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ON CONSISTENCY AND SPARSITY FOR SLICED
INVERSE REGRESSION IN HIGH DIMENSIONS

By Qian Lin§∗ Zhigen Zhao¶∗ and Jun S. Liu§∗

Harvard University§

Temple University¶

We provide here a framework to analyze the phase transition phe-
nomenon of slice inverse regression (SIR), a supervised dimension
reduction technique introduced by Li [1991]. Under mild conditions,
the asymptotic ratio ρ = lim p/n is the phase transition parameter
and the SIR estimator is consistent if and only if ρ = 0. When dimen-
sion p is greater than n, we propose a diagonal thresholding screening
SIR (DT-SIR) algorithm. This method provides us with an estimate
of the eigen-space of the covariance matrix of the conditional expec-
tation var(E[x|y]). The desired dimension reduction space is then
obtained by multiplying the inverse of the covariance matrix on the
eigen-space. Under certain sparsity assumptions on both the covari-
ance matrix of predictors and the loadings of the directions, we prove
the consistency of DT-SIR in estimating the dimension reduction
space in high dimensional data analysis. Extensive numerical exper-
iments demonstrate superior performances of the proposed method
in comparison to its competitors.

1. Introduction. For a continuous multivariate random variable (y,x)
where x ∈ Rp and y ∈ R, a subspace S ′ ⊂ Rp is called the effective dimension
reduction (EDR) space if y ⊥⊥ x|PS′(x) where ⊥⊥ stands for independence.
Under mild conditions (Cook [1996]), the intersection of all the EDR spaces
is again an EDR space, which is denoted as S and called the central space.
Many algorithms were proposed to find such subspace S under the assump-
tion d = dimS ≪ p. This line of research is commonly known as sufficient
dimension reduction. The Sliced Inverse Regression (SIR, Li [1991]) is the
first, yet the most widely used method in sufficient dimension reduction,
due to its simplicity, computational efficiency and generality. The asymp-
totic properties of SIR are of particular interest in the last two decades. The
consistency of SIR has been proved for fixed p in Li [1991], Hsing and Carroll
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[1992], Zhu and Ng [1995] and Zhu and Fang [1996]. Later, Zhu et al. [2006]
have obtained the consistency if p = o(

√
n). A similar restriction also ap-

pears in two recent work (see Zhong et al. [2012] and Jiang and Liu [2014]).
When p > n, a common strategy pursued by many recent researchers is to
make sparsity assumptions that only a few predictors play a role in explain-
ing and predicting y and apply various regularization methods. For instance,
Li and Nachtsheim [2006], Li [2007] and Yu et al. [2013] applied LASSO
(Tibshirani [1996]), Dantzig selector (Candes and Tao [2007]) and elastic
net (Zou and Hastie [2005]) respectively to solve the generalized eigenvalue
problems raised by a variety of SDR algorithms.

However, a piece of jigsaw is missing in the understanding of SIR. If the
dimension p diverges as n increases, when will the SIR break down? A sim-
ilar question has been asked for a variety of SDR estimates in Cook et al.
[2012]. In this paper, we prove that, under certain technical assumptions,
the SIR estimator is consistent if and only if ρ = lim p

n = 0. Such a re-
sult on inconsistency provides theoretical justifications for imposing certain
structural assumption, such as sparsity, in high dimensional settings. This
behavior of SIR in high dimension, which will be called the phase transition
phenomenon, is similar to that of the principal component analysis (PCA),
an unsupervised counterpart of SIR. This extension is, however, by no means
trivial. After all the samples (yi,xi) are sliced into H bins according to the
order statistics of yi , the sliced samples are neither independent nor identi-
cally distributed. This difference increases the difficulty significantly. In this
paper, we provide a new framework to study the phase transition behaviour
of SIR. The technical tools developed here can potentially be extended to
study the phase transition behaviour of other SDR estimators.

The second part of the article aims at extending the original SIR to the
scenario with ultra-high dimension (p = o(exp(nξ))). Based on equation (3)
in Section 2, the central space can be estimated by the column space of
Σ̂

−1

x col(V̂ H), where Σ̂
−1

x is any consistent estimate of the precision matrix
Σ−1

x and col(V̂ H) is the estimate of the space col(var(E[x|y])). To estimate
the column space of var (E[x|y]), we propose a diagonal screening procedure
based on new univariate statistics varH(x(k)), which are the diagonal ele-
ments of var (E[x|y]), motivated by recent work in sparse PCA (Johnstone
and Lu [2004]). After ranking the predictors according to the magnitude
of varH(x(k)) decreasingly, we choose the set I consisting of the first R
predictors as active predictors. The SIR procedure is subsequently applied
to these selected predictors to estimate the d-dimensional column space of
var(E[xI |y]) by col(V̂ I

H) where V̂
I
H is the matrix formed by the top d eigen-

vectors of Λ̂
I
H. We embed V̂

I
H into Rp×d by filling in 0’s for entries outside
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the chosen row set I, and denote this new matrix by e(V̂
I
H). The estimate

of the central space is defined to be col(Σ̂
−1

x e(V̂
I
H)). We name this two-stage

algorithm as Diagonal Thresholding SIR (DT-SIR), and prove that DT-
SIR is consistent in estimating the central space under certain regularity
conditions. Extensive simulation studies show that DT-SIR performs better
than its competitors and is computationally efficient.

The rest of the paper is organized as follows. In Section 2, we briefly
describe the SIR procedure and introduce the notations. In Section 3, af-
ter a brief review of existing asymptotic results of SIR procedure, we state
Theorems 2 and 3 to discuss the phase transition phenomenon of SIR. In
Section 4, we propose the DT-SIR method and show that DT-SIR is consis-
tent in high dimensional data analysis. In Section 5, we provide simulation
studies to compare DT-SIR with its competitors. Concluding remarks and
discussions are put in Section 6. All the proofs are presented in appendices.

2. Preliminaries and notations.

2.1. Sliced inverse regression Consider the multiple index model

(1) y = f(βτ1x, · · · ,βτdx, ϵ)

where x ∈ Rp, ϵ is the noise and f is an unknown link function. Without
loss of generality, we assume that E[x] = 0 ∈ Rp. Although the p× d matrix
V = (β1, · · · ,βd) is not identifiable, the space spanned by the β’s, which is
called the column space of V and denoted by col(V ), might be identified. Li
[1991] proposed the Sliced Inverse Regression (SIR) procedure to estimate
the central space col(V ) without knowing f(·), which can be briefly sum-
marized as follows: Given n i.i.d. samples (yi,xi), i = 1, · · · , n, SIR first
divides them into H equal-sized slices according to the order statistics y(i).

1

We re-express the data as yh,j and xh,j , where (h, j) is the double subscript
in which h refers to the slice number and j refers to the order number of a
sample in the h-th slice, i.e.,

yh,j = y(c(h−1)+j), xh,j = x(c(h−1)+j).

Here x(k) is the concomitant of y(k). Let the sample mean in the h-th slice

be xh,·, and let the mean of all the samples be x. Then, Λp ≜ var(E[x|y])
can be estimated by:

(2) Λ̂H =
1

H

H∑
h=1

x̄h,·x̄
τ
h,·.

1To ease notations and arguments, we assume that n = cH and H = o (log(n) ∧ log(p))
throughout the article.
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Based on the observation that

(3) col(Λ) = Σxcol(V ),

the SIR then estimates the central space col(V ) by Σ̂−1
x col(V̂ H) where V̂ H

is the matrix formed by the top d eigenvectors of Λ̂H.. Throughout the
article, we assume that d is fixed and the d-th largest eigenvalue λd of Λp

is bounded away from 0 when n, p → ∞. In order for SIR to result in a
consistent estimate of the central space, Li [1991] imposed the the following
two conditions:

• (A1). Linearity condition: For any ξ ∈ Rp, E[ξτx|βτ1x, · · · ,βτdx] is
a linear combination of βτ1x, · · · ,βτdx.

• (A2). Coverage condition: The dimension of the space spanned by
the central curve equals the dimension of the central space, i.e., d′ = d.

2.2. Further Notations. Let Sh be the h-th interval (yh−1,c, yh,c] for 2 ≤
h ≤ H − 1, S1 = (−∞, y1,c] and SH = (yH−1,c,∞). Note that these in-
tervals depend on the order statistics y(i) and are thus random. For any
ω in the product sample space, we define a random variable δh = δh(ω) =∫
y∈Sh(ω)

f(y)dy where f(y) is the density function of y. For I ⊂ {1, · · · , n},J ⊂
{1, · · · , p} and a n × p matrix A, AI,J denotes the |I| × |J | sub-matrix
formed by restricting the rows of A to I and columns to J . In articular,
A−,J denotes the sub-matrix formed by restricting the columns to J ; For
a matrix B = AI,J ∈ R|I|×|J |, we embed it into Rp×p by putting 0 on
entries outside I ×J and denote the new matrix as e(B). Similar notations
apply to vectors. For two positive numbers a and b, we let a∨ b ≡ max{a, b}
and let a ∧ b ≡ min{a, b}. Let τ(x, t) = x × 1(|x| > t) be the hard thresh-
olding function. Throughout the article, C, C1 and C2 are used to denote
generic absolute constants, though the actual value may vary from case to
case. For a vector x, we denote its k-th entry as x(k). Let β1 and β2 be
two vectors with the same dimension, the angle between these two vectors
is denoted as ∠(β1,β2). For two sequences {an}, {bn}, we let an ≪ bn stand
for an = O(bϵn) for some positive ϵ < 1 and let an ≻ bn stand for lim bn

an
= 0.

3. Consistency of SIR. In order to control the behavior of SIR, we
need to impose the following boundedness condition (A3) on the predictors’
covariance matrix in addition to the tail condition (sub-Gaussian) on their
joint distribution. We also need a condition (A4) for the central curve.

• (A3) Boundedness Condition: x is sub-Gaussian; and there exist
positive constants C1, C2 such that

C1 ≤ λmin(Σx) ≤ λmax(Σx) ≤ C2
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where λmin(Σx) and λmax(Σx) are the minimal and maximal eigen-
values of Σx respectively.

• (A4) The central curve m(y) ≜ E[x|y] has finite fourth moment and
is ϑ-sliced stable (defined below) with respect to y and m(y).

Definition 1. For two positive constants γ1 < 1 < γ2, let AH(γ1,γ2)
be the collection of all the partition −∞ = a0 < a1 < · · · < aH−1 < aH = ∞
of R satisfying that

γ1

H
≤ P (ai ≤ y < ai+1) ≤

γ2

H
.

The central curve m(y) = E[x|y] is called ϑ-sliced stable with respect to y
for some ϑ > 0 if there exist positive constants γi, i = 1, 2, 3 such that for
any β in the central space for any partition in AH(γ1,γ2), we have

(4)
1

H

∣∣∣H−1∑
h=0

var(βτm(y) | ah ≤ y ≤ ah+1)
∣∣∣ ≤ γ3

Hϑ
var(βτm(y)).

The central curve is sliced stable if it is ϑ-sliced stable for some positive
constant ϑ.

Remark 1. Note that we only need (4) to hold for all unit vectors in
the central space by rescaling. By considering the orthogonal decomposition
of β in a general space with respect to the central space and its complement,
it is easy to see that the sliced stability implies that (4) holds true for all
vector β. In particular, we have the following two useful consequences of the
slice-stability.

i) By choosing βτ = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the k-th position, we
have

|
H∑
h=0

var(m(y, k) | ah ≤ y ≤ ah+1)| ≤ γ3H
1−ϑvar(m(y, k)),

where m(y, k) is the k-th coordinate of the central curve m(y).

ii) Since equation (4) holds for all unit vector β, we have

∥
H∑
h=0

var(m(y) | ah ≤ y ≤ ah+1)∥2 ≤ γ3H
1−ϑ∥var(m(y))∥2.
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Remark 2. Suppose E[m(y)] = 0 and there are n samples mi ≜ m(yi).
Let mh,i and mh,· be defined similarly to xh,i and xh,·, respectively. On one
hand, we have the classic consistent estimator 1

n

∑
imim

τ
i of var(m(y)).

On the other hand, if we expect that the slice-based estimate 1
H

∑
hmh,·m

τ
h,·

of var(m(y)) is consistent, we must require that the average loss of variance
in each slice to decrease to zero as H increases, i.e.,

(5)
1

H

∑
h

m̄h,·m̄
τ
h,· −

1

n

∑
i

mim
τ
i =

1

H

∑
h

1

c

∑
i

(m̄h,· − m̄h,i)
2 → 0.

In Definition 1, we simply choose the decreasing rate to be a power of H. It
would be easily seen that if m is smooth and y is compactly supported then
(5) holds automatically. In this sense, for general curve m and random
variable y, the sliced stability is a condition on smoothness of the central
curve m and tail distribution of m(y). This is not surprised at all, since most
work on the consistency of SIR estimate requires some kind of smoothness
for the central curve and a tail distribution control for m(y).

The most popular smoothness and tail condition might be the one pro-
posed by Hsing and Carroll [1992] (later used in Zhu et al. [2006], Zhu and
Ng [1995]) in their proof of the consistency of SIR, which is explained be-
low. For B > 0 and n ≥ 1, let Πn(B) be the collection of all the n-point
partitions −B ≤ y(1) ≤ · · · ≤ y(n) ≤ B of [−B,B]. First, they assumed that
the central curve m(y) satisfies the following smoothness condition

lim
n→∞

sup
y∈Πn(B)

n−1/4
n∑
i=2

∥m(yi)−m(yi−1)∥2 = 0, ∀B > 0.

Second, they assumed that for B0 > 0, there exists a non-decreasing function
m̃(y) on (B0,∞), such that

m̃4(y)P (|Y | > y) → 0 as y → ∞(6)

∥m(y)−m(y′)∥2 ≤ |m̃(y)− m̃(y′)| for y, y′ ∈ (−∞,−B0) ∪ (B0,∞)

By changing the tail condition (6) to a slightly stronger condition E[m̃(y)4] <
∞, Neykov et al. [2015] proved that the modified condition implies the sliced
stability condition. Now, we are ready to state our main results.

Theorem 1. Under conditions (A1), (A2), (A3) and (A4), we have

(7) ∥Λ̂H −Λp∥2 = OP (
1

Hϑ
+
H2p

n
+

√
H2p

n
).
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The proof of the theorem is deferred to the Appendix. As a direct conse-
quence of Theorem 1, we observe that if ρ = limn→∞

p
n = 0, we may choose

H = log (n/p) such that the right hand side of equation (7) converges to 0.
Thus, Theorem 1 implies that Λ̂H is a consistent estimate of Λp if ρ = 0.

Remark 3 (More on Convergence Rate). Note that the convergence rate
in (7) depends on the choice of H. This may seem not very desirable at the
first glance. Since the convergence rate of Λ̂H might be different from that
of col(V̂ H), we may expect that the convergence rate of col(V̂ H) does not
depend on the choice of H. In fact, we have

Λ̂H −Λp =
(
Λ̂H − PV Λ̂HPV

)
+
(
PV Λ̂HPV −Λp

)
.(8)

From the proof of Theorem 1, we can easily check that the first term is of

convergence rate pH2

n +
√

pH2

n and the second term is of rate 1
Hϑ . Since

PV Λ̂HPV and Λp share the same column space, if we are only interested in
estimating PV , then the convergence rate of the second term does not matter
provided that H is a large enough integer, which may depend on ϑ and γ3

but does not depend on n and p. For such an H, if AH(γ1,γ2) is non-empty,
Theorem 1 and (8) hold for both categorical and continuous response variable
Y .

Theorem 2. Under conditions (A1), (A2), (A3), (A4) and assuming
that ρ = lim p

n = 0, we have

∥Σ̂
−1

x Λ̂H −Σ−1
x Λp∥2 → 0 as n→ ∞

with probability converging to one, where Σ̂x = 1
n

∑n
i=1 xix

τ
i .

We define the distance D(V 1,V 2) of two d-dimensional subspaces V 1 and
V 2 as the operator norm (or Frobenius norm) of the difference between PV 1

and PV 2 . Simple linear algebra shows that if the β̃i’s satisfyΣxβ̃i = λiΛpβ̃i,
then

col(V ) = span
{
β̃1, · · · , β̃d

}
.

Let V̂ be the matrix formed by the top d generalized eigenvectors of (Σ̂
−1

x , Λ̂H).
Recall that the d-th eigenvalue of Λp is assumed to be bounded away from
0. Therefore Theorem 2 implies that D(P

V̂
, PV ) → 0 when ρ = 0.

We have already shown that the SIR procedure provides us with a consis-
tent estimate of the sufficient dimension reduction space when ρ = 0 under
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mild conditions. It is then natural to ask: is this condition necessary? Our
next theorem gives the answer.

Theorem 3. Under conditions (A1), (A2), (A4) and assuming that
x ∼ N(0, Ip) for the single index model

y = f(βτx, ϵ),

we have:

(i) When ρ = lim p
n ∈ (0,∞), ∥Λ̂H−Λp∥2, as a function of ρ, is dominated

by
√
ρ ∨ ρ when H,n→ ∞;

(ii) Let β̂ be the principal eigenvector of the SIR estimator Λ̂H . If ρ =
lim p

n > 0, then there exists a positive constant c(ρ) > 0 such that

lim inf
n→∞

E∠(β, β̂) > c(ρ)

with probability converges to one.

We illustrate this result via a numerical study of the linear model

(9) y = xτβ + ϵ where βτ = (1, 0, · · · , 0),x ∼ N(0, Ip), ϵ ∼ N(0, 1).

Figure 1 shows how E∠(β, β̂) is related to the dimension p for fixed ratio
ρ = p

n (taking values in {.1, .3, .7, 1, 2, 4}), where β is estimated by the

SIR with the slice number H = 10. For each p, E∠(β, β̂) is calculated
based on 100 iterations. It is seen that this expected angle converges to a
positive number when the ratio ρ is non-zero. In Figure 2, we have plotted
the E∠(β, β̂) against the ratio ρ = p

n , varying between 0.01 and 4 with an
increment of 0.01. The sample size n is 200 and the slice number H is 10. It
is seen that the expected angle decreases to zero as ρ approaches zero, and
increases monotonically when ρ increases.

Results in this section have shown that there is a phase transition phe-
nomenon of the SIR procedure. That is, the estimate of the dimension reduc-
tion space is consistent if and only if the ratio ρ = lim p

n = 0. This provides
a theoretical justification of imposing additional structure assumption such
as sparsity in high dimension.

4. SIR in ultra-high dimension. As we have shown in Section 3, the
SIR estimator fails to be consistent if ρ = lim p

n ̸= 0. Hence, when p ≫ n,
some structural assumptions are necessary for getting a consistent estimate
of the central space. In this paper, we assume that both the loadings of all the
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Fig 1: Numerical approximations of E∠(β̂,β) for model (9) as a function of
dimension p for ρ = .1, .3, .7, 1, 2, and 4, respectively (up left, up right,
middle left, middle right, lower left, lower right), where β̂ is estimated by
SIR.

Fig 2: The relationship of E∠(β, β̂) and the ratio p/n where β̂ is estimated
by SIR.
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directions βj ’s and the covariance matrix Σx are sparse. Other structural
assumptions will be studied in our future work. For βi’s, we impose the
following prevalent sparsity condition.

• (A5) s = |S| ≪ p where S =
{
i | βj(i) ̸= 0 for some j, 1 ≤ j ≤ d

}
and |S| is the number of elements in the set S.

For Σx, the following class of covariance matrices has been introduced in
Bickel and Levina [2008] (see also Cai et al. [2010]).

U(ϵ0, α, C) =
{
Σx : max

j

∑
i

{|σi,j | : |i− j| > l} ≤ Cl−α for all l > 0,

and 0 < ϵ0 ≤ λmin(Σx) ≤ λmax(Σx) ≤
1

ϵ0

}
.

In this paper, to simplify the notations and arguments, we choose a slightly
stronger condition.

• (A6) Σx ∈ U(ϵ0, α, C) and max1≤i≤p ri is bounded where ri is the
number of non-zero elements in the i-th row of Σx.

Let T =
{
k | var (E[x(k)|y]) ̸= 0

}
. If k ∈ T , there exists η ∈ col(Λ) such

that η(k) ̸= 0. Since we have (3):

Σxcol(V ) = col(Λ),

there exits a β ∈ col(V ) such that η = Σxβ. Thus if k ∈ T , then k ∈
supp(Σxβ) for some β ∈ col(V ). In particular, with the above sparsity
assumptions (A5) and (A6) , we have |T | ≤ smax1≤i≤p ri = O(s).2 Note
that our goal here is to recover the column space col(V ) rather than S.
Indeed, we are not able to consistently recover S unless for the trivial case.
The key for recovering cov(V ) is to consistently recovering the set T .

At the population level, var(E(x(k))|y) can separate T from T c. When
there are only finite samples, we use

varH(x(k)) =
1

H

H∑
h=1

x̄h,·(k)
2(10)

as an estimate of var(E(x(k))|y). These are the diagonal elements of the
matrix Λ̂H . Note that these quantities depend on the sliced sample means,
which are neither independent nor identically distributed. Thus, the usual

2We could introduce ξ = max1≤i≤p ri, then |T | ≤ sξ. The arguments below still work,
except we might need sξ = o(p).
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concentration inequalities for χ2 are no longer applicable. We need extra
efforts to get the concentration inequalities; this concentration result is one
of the main technical contributions of this article, and can be further gen-
eralized.

Remark 4. The link function f( ) is not involved explicitly in the defini-
tion of varH(x(k)), and only the order statistics of the response is required.
This nonparametric characteristic of the method is of particular interest to
us and will be further investigated in a future research. Screening statistics
inspired by the sliced inverse regression idea have been proposed in various
formats, such as those in Jiang and Liu [2014], Zhu et al. [2012] and Cui
et al. [2015].

With the quantities varH(E[x(k)|y]), we define the inclusion set Ip(t) and
the exclusion set Ep(t) below, which depend on a thresholding value t:

Ip(t) =
{
k |varH(x(k)) > t

}
and Ep(t) =

{
k |varH(x(k)) ≤ t

}
.

Note that Ip(t) can be viewed as an estimate of T and is thus also denoted

by T̂ . After reducing the dimension to a level such as p/n is sufficiently

small, the SIR estimator Λ̂
T̂ ,T̂

is a consistent estimate of ΛT ,T . Let V̂
T̂
be the

matrix formed by the top d eigenvectors of Λ̂
T̂ ,T̂

. We then use Σ̂
−1

x col(e(V̂
T̂
)) to

estimate the central space col(V ), where Σ̂
−1

x is a consistent estimate of Σx.
Estimating the covariance matrix and precision matrix in high dimension is
a challenging problem by itself and is not a main focus of this article. We
employ the methods of Bickel and Levina [2008] to solve it. In summary,
we propose the following Diagonal Thresholding screening SIR (DT-SIR)
algorithm:

Algorithm 1 DT-SIR

1. Calculate varH(x(k)) according (10) for k = 1, 2, · · · , p;

2. Let T̂ =
{

k | varH(x(k)) > t
}

for an appropriate t ;

3. Let Λ̂
T̂ ,T̂
H be the SIR estimator of the conditional covariance matrix for the data (y, x−,T̂ )

according to equation (2);

4. Let V̂
T̂
be the matrix formed by the top d eigenvectors of Λ̂

T̂ ,T̂
;

5. Σ̂
−1

x col
(
e
(
V̂

T̂
))

is the estimate of col(V )



12 Q. LIN, Z. ZHAO AND J. S. LIU

A practical way to choose an appropriate t in step 2 will be presented in
Section 5 . To ensure theoretical properties, we need an assumption on the
signal strength:

• (S1) ∃ C > 0 and ω > 0 such that var(E[x(k)|y]) > Cs−ω when
E[x(k)|y] is not a constant.

Theorem 4. Under conditions (A1) – (A6) and (S1), and let t = as−ω

for some constant a > 0 such that t < 1
2var(m(y, k), ∀k ∈ T , we have

i) T c ⊂ Ep holds with probability at least

(11) 1− C1 exp
(
−C2

n

H2sω
+ C3 log(H) + log(p− s)

)
;

ii) T ⊂ Ip holds with probability at least

(12) 1− C4 exp
(
−C5

n

H2sω
+ C6 log(H) + log(s)

)
,

for some positive constants C1, · · · , C6.

This theorem has a simple implication. If n
sω ≻ log(p) + log(s), we may

choose H = log( n
sω log(p)), so that

n

H2sω
≻ log(p) + log(H) + log(s).

Thus , we know T = Ip with probability converging to one. Next, we have
results for the consistency of DT-SIR.

Theorem 5. Under the same assumptions and choosing the same t as
Theorem 4, if n

sω ≻ log(p) + log(s), we have

∥e(Λ̂T̂ ,T̂
H )−Λp∥2 → 0 as n→ ∞

with probability converging to one, where T̂ = I(t) and H = log( n
sω log(p)).

Theorem 6. Let Σ̂x be the estimator of co-variance matrix from Bickel
and Levina [2008]. Under the same assumptions of Theorem 5, we have

∥Σ̂
−1

x e(Λ̂
T̂ ,T̂
H )−Σ−1

x Λp∥2 → 0 as n→ ∞

with probability converging to one.
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5. Simulation Studies. We consider the following settings in generat-
ing the design matrix x and the response y. In Settings I-III, each row of x
is independently sampled from N(0, I).

• Setting I. yi = sin(xi1 + xi2) + exp(xi3 + xi4) + 0.5 ∗ ϵi, where ϵi
iid∼

N(0, 1);

• Setting II. yi =
∑7

j=1 xij ∗exp(xi8+xi9)+0.5∗ϵi where ϵi
iid∼ N(0, 1);

• Setting III. yi =
∑10

j=1 xij ∗ exp(
∑20

i=11 xij) + ϵi where ϵi
iid∼ N(0, 1);

In Settings IV to VI, each row of x is independently sampled from N(0,Σ).

• Setting IV. yi = (xi1 + xi2 + xi3)
3/2 + 0.5 ∗ ϵi, where ϵi

iid∼ N(0, 1)
and Σ = (σij) is tri-diagonal with σii = 1, σi,i+1 = σi+1,i = ρ and
σi,i+2 = σi+2,i = ρ2;

• Setting V. yi =
∑7

j=1 xij ∗ exp(xi8 + xi9) + ϵi, where ϵi
iid∼ N(0, 1),

and Σ = B ⊗ Ip/10 with B = (bij)1≤i≤10,1≤j≤10 given as bij = ρ|i−j|;
• Setting VI. Assume the same setting as in Setting V except that
Σ = (σij) is tri-diagonal with σii = 1, σi,i+1 = σi+1,i = ρ and σi,i+2 =
σi+2,i = ρ2.

• Setting VII. Assume the same setting as in Setting V except that
Σ = (σij) is given as σij = ρ|i−j|.

DT-SIR first screens all the predictors according to the statistic varH,c(x(k)),
which requires a tuning parameter t. We chose t by using an auxiliary vari-
able method based on an idea first proposed by Luo et al. [2006] and ex-
tended by Wu et al. [2007] and Zhu et al. [2011]. In our setting, for a given
sample (yi,xi), we generate zi ∼ N(0, Ip′) where p

′ is sufficiently large and
chosen as p in our simulation studies. It is known that y and z are indepen-
dent. The threshold t can be chosen as

t̂ = max
1≤k≤p′

{varH,c(z(k)).}

In DT-SIR, when n > 1000, H is chosen as 20; when n ≤ 1000, H is chosen
as 10 in the screening step and 20 in the SIR step.

We also consider the following alternative methods in the screening step:
Sure Independent Ranking and Screening (SIRS) in Zhu et al. [2011], SIR
for variable selection via Inverse modeling (SIRI) in Jiang and Liu [2014],
and trace pursuit in Yu et al. [2016]. As a comparison, we also considered
two screening methods that are not based on the sliced regression: Distance
correlation in Székely et al. [2007] and SURE independence Fan and Lv
[2008]. For SIRS, the threshold is chosen according to the auxiliary statistic
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(2.9) of Zhu et al. [2011]. For SIRI, the predictors are chosen according to
10-fold cross validation. The threshold values c̄SIR and cSIR are chosen as
the 10-th and 5-th quantile of a weighted χ2 distribution given in Theorem
3.1 of Yu et al. [2016]. In both SURE and DC screening, the top ⌊γn⌋ where
γ = 0.01 are kept for subsequent analyses.

After the screening step, similar to DT-SIR, we then applied the SIR algo-
rithm (steps 3-5 of DT-SIR) to estimate col(V ). These alternative methods
are denoted as SIRS-SIR, SIRI-SIR, SURE-SIR, DC-SIR, and TP-SIR, re-
spectively, in the following discussions. Another method that we compared
with is the sparse SIR, abbreviated as SpSIR, proposed in Li [2007]. After
obtaining an estimator col(V̂ ), we calculate D(Pcol(V̂ ), Pcol(V )) as a measure
of the estimation error. We replicate this step 100 times, and calculate the
average distance for the estimation result from each method and report these
numbers in Table 1-3. For each setting, the average distance of the optimal
method is highlighted using bold fonts. We further run a two-sample T-test
to test if the actual estimation error of each method is significantly different
from that of the best method for that example at 1% level of significance.

Under all settings, the average distance obtained by DT-SIR was much
smaller than that obtained by SpSIR and SURE-SIR. The p-values for com-
paring DT-SIR and SpSIR/SURE-SIR are all significant at the 0.01 level.
When p ≥ n, the sparse SIR completely failed because the average distance
of the estimated space to the true space is

√
2d, indicating that the space

estimated by sparse SIR is orthogonal to the true space spanned by β.
Under settings II-IV, DT-SIR performed either the best or not signifi-

cantly worse than the best method. For all other cases, DT-SIR performed
the best except for a few cases: Setting I when n = 500, p = 1000, setting
V when n = 500, p = 6000, setting VI when n = 500, p = 6000, and setting
VII when n = 1000, p = 1000.

When p = 6000, n = 500, both DT-SIR and SIRI-SIR were the winners.
Under Setting III, DT-SIR performed better than SIRI-SIR; under settings
V and VI, SIRI-SIR performed better than DT-SIR; under other settings,
these two methods were comparable.

To graphically show the performance of various methods, we consider
setting IV with d = 1. Consider two cases when (n, p) = (2000, 1000) and
(n, p) = (500, 100). We calculated the estimated directions β̂ using various
methods and computed the angle between < β̂ > and < β >. We replicate
this step 100 times to calculate the average angles for each method. The
results are displayed in Figure 3, which shows clearly that DT-SIR performed
better than its competitors.

Additionally, DT-SIR is computationally efficient. To show this, we re-
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Table 1
The average distance of the space estimated by each of the 7 methods tested to the true
space col(V ) under various settings with p = 1000. The boldfaced number in each row

represents the best result for that simulation scenario, and the “*” in cells represents that
the p-value of the two-sample T-test comparing the estimation error of the corresponding

method with that of the best method is less than 0.01.

n DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

I

500 0.655(*) 0.751(*) 0.492 2(*) 1.39(*) 0.731(*) 1.18(*)
1000 0.3 0.431(*) 0.309 2(*) 1.29(*) 0.632(*) 0.94(*)
2000 0.221 0.341(*) 0.226 1.58(*) 1.04(*) 0.655(*) 0.784(*)
3000 0.167 0.245(*) 0.149 1.48(*) 0.816(*) 0.641(*) 0.713(*)

II

500 0.383 0.396 0.371 2(*) 1.64(*) 1.08(*) 0.389
1000 0.235 0.227 0.256 2(*) 1.36(*) 0.266(*) 0.318(*)
2000 0.161 0.157 0.189(*) 1.25(*) 1.25(*) 0.387(*) 0.264(*)
3000 0.134 0.129 0.153(*) 0.975(*) 1.12(*) 0.404(*) 0.23(*)

III

500 1.15 1.48(*) 1.38(*) 2(*) 1.97(*) 1.85(*) 1.13
1000 0.426 0.974(*) 0.596(*) 2(*) 1.94(*) 1.57(*) 0.429
2000 0.263 0.403(*) 0.29(*) 1.33(*) 1.89(*) 0.996(*) 0.338(*)
3000 0.214 0.297 0.238(*) 1.06(*) 1.82(*) 0.475(*) 0.299(*)

IV

500 0.263 0.257 0.333 1.41(*) 0.335(*) 0.334(*) 0.332(*)
1000 0.219 0.447(*) 0.25 1.41(*) 0.436(*) 0.459(*) 0.469(*)
2000 0.161 0.4(*) 0.196(*) 0.42(*) 0.442(*) 0.469(*) 0.452(*)
3000 0.134 0.377(*) 0.177(*) 0.297(*) 0.43(*) 0.458(*) 0.438(*)

V

500 0.546 0.529 0.562 2(*) 1.62(*) 1.24(*) 1.09(*)
1000 0.401 0.463(*) 0.514(*) 2(*) 1.15(*) 0.367 0.615(*)
2000 0.288 0.418(*) 0.341(*) 1.51(*) 0.926(*) 0.569(*) 0.54(*)
3000 0.249 0.399(*) 0.284(*) 1.24(*) 0.691(*) 0.597(*) 0.511(*)

VI

500 0.568 0.535 0.566 2(*) 1.64(*) 1.24(*) 1.08(*)
1000 0.427 0.524(*) 0.548(*) 2(*) 1.22(*) 0.39 0.641(*)
2000 0.311 0.469(*) 0.351(*) 1.51(*) 0.927(*) 0.598(*) 0.583(*)
3000 0.265 0.456(*) 0.307(*) 1.25(*) 0.807(*) 0.622(*) 0.56(*)

VII

500 0.556 0.534 0.585(*) 2(*) 1.66(*) 1.26(*) 1.11(*)
1000 0.436(*) 0.528(*) 0.545(*) 2(*) 1.22(*) 0.39 0.643(*)
2000 0.303 0.465(*) 0.358(*) 1.51(*) 0.747(*) 0.589(*) 0.579(*)
3000 0.258 0.468(*) 0.319(*) 1.25(*) 0.698(*) 0.63(*) 0.558(*)

port the computing time for one replication under Setting II for various
pairs of (n, p) in Table 4. All computations were done on a computer with
Intel Xeon(R) E5-1620 CPU@3.70GHz and 16GB memory. It is clearly seen
that DT-SIR performed as fast as SURE-SIR, and both were much faster
than other competitors. Consider the case when p = 3000, n = 2000. The
computation time of DT-SIR was only 30 seconds; while that for DC-SIR
was 21 minutes and 38 seconds, and the that for TP-SIR was 6 minutes and
17 seconds.
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Table 2
The average distance of the space estimated by each of the 7 methods we tested to the

true space col(V ) under various settings with n = 2000.

p DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

I

500 0.213 0.312(*) 0.206 1.44(*) 0.903(*) 0.629(*) 0.772(*)
1000 0.221 0.341(*) 0.226 1.58(*) 1.04(*) 0.655(*) 0.784(*)
2000 0.241 0.29 0.214 2(*) 1.07(*) 0.677(*) 0.793(*)
3000 0.23 0.278 0.218 2(*) 1.17(*) 0.683(*) 0.797(*)

II

500 0.163 0.16 0.19(*) 0.83(*) 1.22(*) 0.369(*) 0.26(*)
1000 0.161 0.157 0.189(*) 1.25(*) 1.25(*) 0.387(*) 0.264(*)
2000 0.172 0.159 0.196(*) 2(*) 1.23(*) 0.404(*) 0.259(*)
3000 0.164 0.158 0.199(*) 2(*) 1.3(*) 0.414(*) 0.261(*)

III

500 0.272 0.353 0.29(*) 0.916(*) 1.84(*) 0.846(*) 0.341(*)
1000 0.263 0.403(*) 0.29(*) 1.33(*) 1.89(*) 0.996(*) 0.338(*)
2000 0.262 0.368 0.285(*) 2(*) 1.92(*) 0.98(*) 0.339(*)
3000 0.269 0.344 0.291(*) 2(*) 1.93(*) 1.09(*) 0.339(*)

IV

500 0.145 0.409(*) 0.182(*) 0.248(*) 0.406(*) 0.433(*) 0.438(*)
1000 0.161 0.4(*) 0.196(*) 0.42(*) 0.442(*) 0.469(*) 0.452(*)
2000 0.16 0.395(*) 0.198(*) 1.41(*) 0.472(*) 0.506(*) 0.447(*)
3000 0.15 0.395(*) 0.216(*) 1.41(*) 0.49(*) 0.527(*) 0.447(*)

V

500 0.272 0.434(*) 0.353(*) 1.09(*) 0.876(*) 0.547(*) 0.539(*)
1000 0.288 0.418(*) 0.341(*) 1.51(*) 0.926(*) 0.569(*) 0.54(*)
2000 0.289 0.418(*) 0.351(*) 2(*) 0.868(*) 0.596(*) 0.537(*)
3000 0.3 0.417(*) 0.372(*) 2(*) 0.968(*) 0.605(*) 0.544(*)

VI

500 0.307 0.479(*) 0.368(*) 1.1(*) 0.858(*) 0.566(*) 0.583(*)
1000 0.311 0.469(*) 0.351(*) 1.51(*) 0.927(*) 0.598(*) 0.583(*)
2000 0.309 0.461(*) 0.399(*) 2(*) 1.08(*) 0.617(*) 0.585(*)
3000 0.31 0.46(*) 0.408(*) 2(*) 1(*) 0.638(*) 0.587(*)

VII

500 0.299 0.482(*) 0.343(*) 1.09(*) 0.818(*) 0.564(*) 0.583(*)
1000 0.303 0.465(*) 0.358(*) 1.51(*) 0.747(*) 0.589(*) 0.579(*)
2000 0.309 0.455(*) 0.383(*) 2(*) 0.966(*) 0.622(*) 0.578(*)
3000 0.308 0.46(*) 0.357(*) 2(*) 0.858(*) 0.626(*) 0.58(*)

Table 3
The average distance of the space estimated by each of the 7 methods tested to the true

space col(V ) under various settings with n = 500 and p = 6000.

DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

I 0.694 0.631 0.606 2(*) 1.43(*) 0.97(*) 1.19(*)

II 0.446 0.462 0.414 2(*) 1.74(*) 1.08(*) 0.4

III 1.35 1.56(*) 1.56(*) 2(*) 1.99(*) 1.88(*) 1.37

IV 0.163 0.122 0.245(*) 1.41(*) 0.27(*) 0.305(*) 0.195(*)

V 0.481(*) 0.431 0.486(*) 2(*) 1.62(*) 1.1(*) 0.995(*)

VI 0.463(*) 0.423 0.494(*) 2(*) 1.62(*) 1.11(*) 0.999(*)

VII 0.44 0.412 0.477(*) 2(*) 1.61(*) 1.1(*) 1.03(*)
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Fig 3: Simulated value of E∠(β̂,β) for the various methods. Left panel:
(n, p) = (2000, 1000); Right panel: (n, p) = (500, 1000).

Table 4
Comparison of computing time under setting II.

DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

n p=1000

500 1” 1’12” 7” 11” 1” 24” 29”

1000 2” 2’2” 20” 11” 1” 1’52” 1’2”

2000 3” 3’27” 1’14” 13” 2” 7’38” 2’18”

3000 4” 4’59” 2’45” 15” 3” 6’51” 3’7”

p n=2000

500 1” 2’48” 35” 2” 1” 3’46” 1’7”

1000 3” 3’27” 1’14” 13” 2” 7’38” 2’18”

2000 12” 4’55” 2’35” 1’39” 12” 14’24” 3’22”

3000 30” 6’0” 4’10” 5’19” 30” 21’38” 6’17”

6. Conclusion. When the dimension p diverges to infinity, classical
statistical procedures often fail unless additional structures such as sparsity
conditions are imposed. Understanding boundary conditions of a statistical
procedure provides us theoretical justification and practical guidance for our
modeling efforts. In this article, we provide a new framework to show that
ρ = lim p

n is the phase transition parameter for the SIR procedure. Under
certain conditions, it is shown that the SIR estimator is consistent if and
only if ρ = 0. When ρ > 0, where the original SIR fails to be consistent, we
propose a two-stage method, DT-SIR for variable screening and selection
in ultra-high dimension situations and show that the method is consistent.
We have used simulated examples to demonstrate the advantages of DT-SIR
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compared to its competitors. This method is computationally fast and can
be easily implemented for large data sets.

Appendices

In the following two sections we offer some details about our theoretical
derivations, but some more tedious intermediate steps (organized as Lemmas
6-21) are deferred to the Supplemental Document to this article, which is
available on line.

A. The Key Lemma. The following lemma plays an important role
in developing the high dimensional theory for sliced inverse regression. The
proof of this key lemma is lengthy and technical. It will be helpful to keep
in mind that H and ν (if they are not constants) grow at very slow rate
compared with c and n (e.g., polynomial of log(n)). Let m(y) = E[x|y], and
x = m(y) + ϵ. Notations mh,j , mh,·, m, and ϵh,j , ϵh,·, ϵ are similarly
defined as xh,j , xh,· and x that were introduced before.

Lemma 1. Let x ∈ Rp be a sub-Gaussian random variable which is upper
exponentially bounded by K (see Definition 4). For any unit vector β ∈ Rp,
let x(β) = ⟨x,β⟩ and m(β) = ⟨m,β⟩ = E[x(β) | y], we have the following:

i) If var(m(β)) = 0 , there exists positive constants C1, C2 and C3 such
that for any b = O(1) and sufficiently large H, we have

P(varH(x(β)) > b) ≤ C1 exp

(
−C2

nb

H2
+ C3 log(H)

)
.

ii) If var(m(β)) ̸= 0 , there exists positive constants C1, C2 and C3 such
that, for any ν > 1, we have

|varH(x(β))− var(m(β))| ≥ 1

2ν
var(m(β))

with probability at most

C1 exp

(
−C2

n var(m(β))

H2ν2
+ C3 log(H)

)
.

where we choose H such that Hϑ > C4ν for some sufficiently large
constant C4.
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A.1. Proof of Lemma 1 i) If m(β) = 0 (or equivalently var(m(β)) = 0),
since

ϵ̄h,·(β)
2 =

(
c− 1

c

1

c− 1

c−1∑
i=1

ϵh,i(β) +
1

c
ϵh,c(β)

)2

≤2

(
1

c− 1

c−1∑
i=1

ϵh,i(β)

)2

+ 2

(
1

c
ϵh,c(β)

)2

for h = 1, ..., H − 1 and ϵ̄H,·(β) =
1
c

∑c
i=1 ϵH,i(β), we have

varH(x(β))− var(m(β))

=
1

H

H−1∑
h

ϵ̄h,·(β)
2 +

1

H
ϵ̄H,·(β)

2

≤ 2

H

H−1∑
h

(
1

c− 1

c−1∑
i=1

ϵh,i(β)

)2

+ ϵ̄H,·(β)
2

+
2

Hc2

H−1∑
h

ϵh,c(β)
2

≜2I + 2II.

Thus

P(varH(x(β)) > b) ≤ P(I > b/4) + P(II > b/4).(13)

Lemma 17 (iii) in Supplement implies that

P (ϵ(β)|y∈Sh
> t) ≤ CH exp

(
− t2

K2

)
for some positive constant C. Since E[x(β)|y] = 0,we have E[x(β)|y ∈ Sh] =
0. From Lemma 9, we know that for 1 ≤ h ≤ H − 1, ϵh,i(β) can be treated
as c− 1 i.i.d. samples from ϵ(β)|y∈Sh

. According to Lemma 17 (iv),

P

(
| 1

c− 1

c−1∑
i=1

ϵh,i(β)| >
√
b/2

)
≤ C1 exp

(
−b(c− 1)

8C2HK2 + 4
√
bK

)
.

Similarly, we have

P

(
|1
c

c∑
i=1

ϵH,i(β)| >
√
b/2

)
≤ C1 exp

(
−bc

8C2HK2 + 4
√
bK

)
.
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Thus, if b = O(1) and H is sufficiently large, we have

P(I >
b

4
) ≤C1

(
(H − 1) exp

(
−b(c− 1)

8C2HK2 + 4
√
bK

)
+ exp

(
−bc

8C3HK2 + 4
√
bK

))
≤C1 exp

(
−C2

cb

H
+ C3 log(H)

)
for some positive constants C1, C2 and C3.

Since ϵi(β) are i.i.d. samples from a sub-Gaussian distribution ϵ(β) with
mean 0 and upper-exponentially bounded by 2K. Lemma 19 implies that if
b = O(1) and H is sufficiently large, we have

P(II > b/4) ≤P(
1

n

∑
i

ϵi(β)
2 > bc/4)

≤P(
1

n

∑
i

ϵi(β)
2 − E[ϵ(β)2] > bc/4− E[ϵ(β)2)

≤P

(∣∣∣ 1
n

∑
i

ϵi(β)
2 − E[ϵ(β)2]

∣∣∣ ≥ cb/4− 4K2

)

≤C1 exp

(
−C2

√
n(cb/4− 4K2)

K2

)
≤C1 exp

(
−C2

cb

H
+ C3 log(H)

)
for some positive constants C1, C2 and C3 if H is sufficiently large. We used
in above the fact that E[ϵ(β)2] ≤ 4K2.

To summarize, if b = O(1) and H is sufficiently large, we have

P(varH(x(β)) > b) ≤ C1 exp

(
−C2

cb

H
+ C3 log(H)

)
for some positive absolute constants C1, C2 and C3.

A.2. Proof of Lemma 1 ii) Since x is sub-Gaussian and β is unit vector,
we know that var(m(β)) = O(1). Ifm(β) ̸= 0 (or equivalently var(m (β)) ̸=
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0), we have∣∣∣varH(x(β))− var(m(β))
∣∣∣

=
∣∣∣ 1
H

∑
h

xh,·(β)
2 − var(m(β))

∣∣∣
=
∣∣∣ 1
H

∑
h

mh,·(β)
2 +

2

H

∑
h

mh,·(β)ϵh,·(β) +
1

H

∑
h

ϵh,·(β)
2

− var(m(β))
∣∣∣

≤A1 +A2 +A3 +A4,

where

(14)

A1 =
∣∣∣ 1
H

∑
h

µh(β)
2 − var(m(β))

∣∣∣,
A2 =

1

H

∑
h

∣∣∣mh,·(β)
2 − µh(β)

2
∣∣∣,

A3 =
1

H

∑
h

ϵ̄h,·(β)
2,

A4 = (
1

H

∑
h

mh,·(β)
2)1/2(

1

H

∑
h

ϵh,·(β)
2)1/2.

Lemma 1 ii) is a direct corollary of the following properties of Ai’s.

Lemma 2. Let the Ai’s be defined as in equation (14). There exist pos-
itive constants C1, C2 and C3, such that for any ν > 1 and H satisfying
Hϑ = N1ν for sufficiently large N1, we have that each of the following
events

i) Θ1 =
{
A1 ≤ 1

4ν var(m(β))
}
,

ii) Θ2 =
{
A2 ≤ 1

8ν var(m(β))
}
,

iii) Θ3 =
{
A3 ≤ 1

16ν var(m(β))
}
,

iv) Θ4 =
{
A4 ≤ 1

16ν var(m(β))
}
,

occurs with probability at least

(15) 1− C1 exp

(
−C2

c var(m(β))

Hν2
+ C3 log(H)

)
.
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□

A.2.1. Proof of Lemma 2.

A.2.1.1. Proof of i) : Recall definitions of the random intervals Sh, h =
1, 2, · · · ,H and random variable δh = δh(ω) =

∫
y∈Sh(ω)

f(y)dy. We have

∣∣∣ 1
H

∑
h

(µh(β))
2 − var(m(β))

∣∣∣
≤
∣∣∣var(m(β))−

∑
h

δh (µh(β))
2
∣∣∣+ ∣∣∣ 1

H

∑
h

(µh(β))
2 −

∑
h

δh (µh(β))
2
∣∣∣

≜B1 +B2

Let ϵ = 1
Hn0+1 where n0 = N2ν for some sufficiently large constant N2

and let event E(ϵ) be defined as in Lemma 11 in Section E, i.e., E(ϵ) ={
ω
∣∣∣ |δh − 1

H | > ϵ, ∀h
}
. For any ω ∈ E(ϵ)c, we have

B1 =
∑
h

δh(ω)var(m(β)|y ∈ Sh(ω))

≤(
1

H
+ ϵ)

∑
h

var(m(β)|y ∈ Sh(ω))(16)

≤(1 +Hϵ)
γ3

Hϑ
var(m(β))(17)

≤ 2γ3

N1ν
var(m(β)),(18)

where inequality (16) follows from the fact that δh(ω) ≤ 1
H + ϵ, inequality

(17) follows from the sliced stable condition (4) and inequality (18) follows
from the requirement that Hϑ > N1ν, and the fact

B2 ≤ϵ
∑
h

(βτµh)
2 =

∑
h

ϵ

δh
δh (β

τµh)
2

≤ Hϵ

1−Hϵ

∑
h

δh (β
τµh)

2(19)

≤ 2

N2ν

∑
h

δh (β
τµh)

2

where inequality (19) follows from the fact δh ≥ 1
H − ϵ.
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From (17), we observe that∑
h

δh (µh(β))
2 ≤

(
1 +

2γ3

N1ν

)
var(m(β)).(20)

Combining with (19), we then have

B2 ≤
2

N2ν

(
1 +

2γ3

N1ν

)
var(m(β)).

So when E(ϵ)c occurs, we have

B1 +B2 ≤
(
2γ3

N1ν
+

2

N2ν

(
1 +

2γ3

N1ν

))
var(m(β)).

Note that N1 and N2 can be chosen sufficiently large so that

B1 +B2 ≤
4γ3

N1ν
var(m(β)) ≤ 1

4ν
var(m(β)).(21)

Consequently, conditioning on E(ϵ)c where ϵ = 1
HN2ν+1 , if we choose Hϑ >

N1ν, then

(22)
∣∣∣ 1
H

∑
h

(µh(β))
2 − var(m(β))

∣∣∣ ≤ 1

4ν
var(m(β)).

Since var(m(β)) = O(1), Hϑ > N1ν and ϵ = 1
HN2ν+1 , the desired probabil-

ity bound follows from Lemma 11, i.e.,

P(E(ϵ)) ≤C1 exp

(
− Hc+ 1

32(Hn0 + 1)2
+ log(H2

√
Hc+ 1)

)
≤C1 exp

(
−C2

c var(m(β))

Hν2
+ C3 log(H)

)
.

for some positive constants C1, C2 and C3. □

Remark 5. From (22), conditioning on E(ϵ)c, we obtain the following
two inequalities

1

H

∑
h

(µh(β))
2 ≤

(
1 +

4γ3

Hϑ

)
var (m(β))(23)

and

1

H

∑
h

|µh(β)| ≤
((

1 +
4γ3

Hϑ

)
var (m(β))

)1/2

.(24)

In particular, 1
H

∑
h (µh(β))

2 and 1
H

∑
h |µh(β)| are bounded by OP (1).
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A.2.1.2. Proof of ii) : Denote 1
c−1

∑c−1
i=1 mh,i(β) by m′

h(β) and mH,·(β)
by m′

H(β), we have

A2 ≤
1

H

H∑
h=1

∣∣∣m′
h(β)

2 − µh(β)
2
∣∣∣+ 1

Hc2

H∑
h=1

mh,c(β)
2

+
2(c− 1)

c

(
1

H

H∑
h=1

m′
h(β)

2

)1/2(
1

Hc2

H∑
h=1

mh,c(β)
2

)1/2

+
2

Hc

H∑
h=1

µh(β)
2

≜ I + II + III + IV

Before we start proving this part, we need to introduce two events and bound
their probabilities. First, let

(25) E1(N3, ν) =
{
η(β) >

1

N3ν

√
var(m(β))

}
.

where η(β) = max1≤h≤H

{∣∣∣m′
h(β)− µh(β)

∣∣∣} . According to Lemma 17 (i),

(iv) and Bonferroni’s inequality, we have

P (E1(N3, ν)) ≤2H exp

(
1

(N3ν)2
−(c− 1)var(m(β))

2CHK2 + 2
N3ν

√
var(m(β))K

)
(26)

≤C1 exp

(
−C2

c var(m(β))

Hν2
+ C3 log(H)

)
(27)

for some positive constants C1, C2 and C3. Second, let

E2(N4, ν) ≜
{
II >

1

N4ν
var(m(β))

}
,

then

P (E(N4, ν)) ≤ P

(
1

nc

∑
i

m2
i >

var(m(β))

N4ν

)

≤C1 exp

(
−C2

√
n(c

var(m(β))

ν
)−K2)

)
≤C1 exp

(
−C2

c var(m(β))

Hν
+ C3 log(H)

)
for some positive constant C1, C2 and C3. It is easily to see E(N4, ν) ⊂
E(N4, ν

2).
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For I. Conditioning on the event E(ϵ)c ∩E1(N3, ν)
c, combining with (24),

we have

I ≤ 1

H

∑
h

η(β)(η(β) + 2|µh(β)|) ≤ η(β)2 +
2η(β)

H

∑
h

|µh(β)|

≤

((
1

N3ν

)2

+
2

N3ν

(
1 +

4γ3

Hϑ

)1/2
)
var(m(β))

≤ 1

32ν
var(m(β))

if N3 is sufficiently large .

Remark 6. From above, conditioning on the event E(ϵ)c ∩ E1(N3, ν)
c,

we have

1

H

H∑
h=1

m′(β)2 ≤1 + 32ν

32ν
var(m(β)).(28)

For II. Conditioning on E2(N4, ν)
c, we have II ≤ var(m(y))

N4ν
.

For III. When the event E(ϵ)c∩E1(N3, ν)
c∩E2(N4, ν

2)c occurs, according
to equation (28),

III ≤ 2(c− 1)

c

√
1 + 32ν

32ν

1√
N4ν

var(m(β)) <
1

16ν
var(m(β)).

if N4 is sufficiently large.

For VI. When the event E(ϵ)c∩E1 (N3, ν)
c∩E2(N4, ν)

c occurs, from (22),
we know

V I =
2

Hc

∑
h

µh(β)
2 ≤ 9

4c
var(m(β)) <

1

16ν
var(m(β)).

To summarize, we know that there exist positive constant C1, C2, C3 and
C4 such that

A2 ≤ I + II + III + V I ≤ 1

8ν
var(m(β))

holds on the event E(ϵ)c∩E1(N3, ν)
c∩E2(N4, ν

2)c which is with probability
at least

1− C1 exp

(
−C2

c var(m(β))

Hν2
+ C3 log(H)

)
for some positive constants C1,C2 and C3.
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A.2.1.3. Proof of iii) : Similar to the proof of Lemma 1 (i) we have

P(A3 > b) ≤ C1H exp

(
−(c− 1)b

8C2HK2
1 + 4

√
bK2

)

for some positive constants C1, C2 and C3. In particular , if we take b =
1

16ν var(m(β)), we know that

A3 ≤
1

16ν
var(m(β))

with probability at least

1− C1 exp

(
−C2

c var(m(β))

Hν2
+ C3 log(H)

)
for some positive constant C1, C2 and C3 .

A.2.1.4. Proof of iv) : Let

D1 ≜
1

H

∑
h

mh,·(β)
2, D2 ≜ A3 =

1

H

∑
h

ϵ̄h,·(β)
2

Consequently,

P
(
D

1/2
1 D

1/2
2 >

1

16ν
var(m(β))

)
≤P
(
|D1| >

2ν + 1

2ν
var(m(β))

)
+ P

(
D2 >

var(m(β))

(2ν + 1)16ν

)
(29)

Note that

|D1 − var(m(β))| ≤ A2 +A1

According to (i) and (ii), the right hand side of (29) is bounded by

C1 exp

(
−C2

c var(m(β)

Hν2
+ C3 log(H)

)
for some positive constants C1, C2 and C3.

□

B. Proofs of theorems in section 3.
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B.1. Proof of Theorem 1. Let S be the central subspace of dimension
d≪ p, i.e., y ⊥⊥ x|P Sx and dim(S) = d. We have the decomposition

(30)
x = P Sx+ P S⊥x ≜ z +w

= E[z|y] + z − E[z|y] +w ≜ m+ v +w

where z = P Sx, m = E[z|y], v = z − E[z|y] and w = P S⊥x. Note that m
lies in the central curve, v lies in the central space and w lies in the space
perpendicular to S. We introduce

mh,j , mh,·, m, zh,j , zh,·, z, and wh,j , wh,·, w(31)

similar to the definition of xh,j , xh,· and x. Consequently, we can define Λ̂z

and have the following decomposition

(32) Λ̂H ≡ 1

H

∑
h

xh,·x
τ
h,· = Λ̂z + ZWτ +WZτ +WWτ ,

where

Z =
1√
H

(z1,·, ..., zH,·) and W =
1√
H

(w1,·, ...,wH,·) .

We need to bound ∥Λ̂z −Λp∥2 and ∥WWτ∥2.

Lemma 3.

∥WWτ∥2 ≤ OP (
H2p

n
)(33)

Proof. From Lemma 1, for any unit vector β ⊥ col(Λ), i.e. var(m(β)) =
0, we have

P(βτWWτβ > C
H2p

n
) ≤ C1 exp (−C2p+ log(H)) .(34)

for some positive constants C1 and C2. Then the ε-net argument (see e.g.,

Vershynin [2010]) implies that ∥WWτ∥ ≤ OP (
H2p
n ) □

Lemma 4.

∥Λ̂z −Λp∥ ≤ OP

(
1

Hϑ

)
.(35)

As a direct corollary, we have ∥Λ̂z∥ ≤ OP (1).
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Proof. From Lemma 1, we have

P
(∣∣βτ (Λ̂z −Λ)β

∣∣ > C

Hϑ
∥Λ∥2

)
≤ C1 exp

(
−C2

c var(m(β))

H1+2ϑ
+ C3 log(H)

)
.

Note that we only need to verify it for β ∈ col(Λp), which is a d-dimensional

space. Then the ε-net argument implies that ∥Λ̂z −Λp∥2 ≤ OP
(

1
Hϑ

)
. □

Theorem 1 follows from Lemma 4 and Lemma 3. In fact,

∥Λ̂H −Λp∥ ≤ ∥Λ̂z −Λp∥+ ∥ZWτ +WZτ∥2 + ∥WWτ∥2

≤ OP

(
1

Hϑ
+

√
H2p

n
+
H2p

n

)
.

□

B.2. Proof of Theorem 2. Theorem 2 is a direct corollary of Theorem 1
and Lemma 13. In fact, we have:

∥Σ̂
−1

X Λ̂H −Σ−1
X Λp∥2

≤ ∥Σ̂
−1

X −Σ−1
X ∥2∥Λ̂H∥2 + ∥Σ−1

X ∥2∥Λ̂H −Λp∥2,

which → 0 if ρ = limn→∞
p
n = 0. □

B.3. Proof of Theorem 3.

(i) The proof for part (i) is similar to the proof of Theorem 1 and the
standard Gaussian assumption on x simplifies the argument and improves
the results. Since w = P S⊥x is normal and independent of y, there exists
a normal random variable ϵ ∼ N(0, I) such that w = Σ1/2ϵ where Σ =
cov(w). Using the decomposition (32), we may write

W =
1√
Hc

Σ1/2Ep×H(36)

where Ep,H is a p×H matrix with i.i.d. standard normal entries. Corollary
4 implies that

∥WWτ∥2 ≤ C

(√
p

n
+

√
H

n

)2

≤ OP

( p
n

)
.
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Lemma 4 implies

∥Λ̂z∥2 ≤ ∥Λp∥2 +OP

(
1

Hϑ

)
.

By the Cauchy inequality, we have

∥C1∥22 ≤ ∥Λ̂z∥2∥WWτ∥2 ≤ OP

( p
n

)
.

Thus,

∥Λ̂H −Λp∥2 ≤ OP (
1

Hϑ
+
p

n
+

√
p

n
).

In particular, ifH,n→ ∞ and ρ = lim p
n ∈ (0,∞), we know that ∥Λ̂H−Λp∥2

is dominated by ρ ∨√
ρ as a function of ρ. □

(ii) The proof for part (ii) is similar to the proof of Theorem 2 in
Johnstone and Lu [2009] but is technically more challenging. Let D =
ZZτ +WWτ and B = ZWτ +WZτ , then

Λ̂H =D +B.

Since we are working on single index model with x is standard normal, z =
Pβx = βz(y) for some scalar function z(y) and w = Pβ⊥x are independent
normal random variables. Let Σ = var(w), then we can write

W =
1√
Hc

Σ1/2E

where E is a p×H matrix with i.i.d. standard normal entries.
Since z = βz(y), we have Z = 1√

H
β(z1,·, z2,·, ..., zH,·). To ease notation,

let θτ = (z1,·, z2,·, ..., zH,·), then

(37)
D =

1

H
∥θ∥2ββτ + 1

n
Σ1/2EEτΣ1/2

B = βuτ + uβτ where u =
1

H
√
c
Σ1/2Eθ.

Let 0 < α < arctan( 1
16) and

Nα =
{
x ∈ Rp : ∠ (x,β) ≤ α and ∥x∥ = 1

}
(38)

be the set of unit vectors making angle at most α where ∠(x,y) is the angle
between the vectors x and y. In order to proceed, we need the following
lemma.
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Lemma 5. Let β̂ and β̂− be the principal eigenvector of S+ ≜ D + B
and S− ≜ D − B, respectively. There exists a positive constant ω(α) such

that for any β̂ ∈ Nα, i.e., ∠
(
β̂,β

)
≤ α, we have

∠
(
β̂, β̂−

)
≥ 1

3
ω(α)(39)

with probability converging to one as n→ ∞.

Proof. The proof is presented in Lin et al. [2015].

Note that S+ and S− have the same distribution (viewed as functions of
random terms E and θ):

S−(E, θ) = S+(−E, θ).

Let Aα denote the event
{
∠
(
β̂,β

)
≤ α

}
∪
{
∠
(
β̂−,β

)
≤ α

}
, then

E[∠
(
β̂,β

)
] ≥ E[∠

(
β̂,β

)
,Ac

α] + E[∠
(
β̂,β

)
,Aα]

≥ E[∠
(
β̂,β

)
,Ac

α] +
1

2
E[∠

(
β̂, β̂−

)
,Aα]

≥ min{α, ω(α)
6

} > 0.

□

SUPPLEMENTARY MATERIAL

Supplement to “ On the consistency and sparsity for sliced in-
verse regression for high dimensions”
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In the
supplement, we prove the rest results stated in the paper.
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C. Proof of Lemma 5. We need the following lemmas.

Lemma 6. Recall that u = 1
H
√
c
Σ1/2Eθ defined as in (37), then there

exist positive constants C1 and C2 such that

0 < C1 ≤ ∥u∥2 ≤ C2

with probability converging to one as n→ ∞.

Lemma 7. Assuming conditions in Theorem 3, let B and Nα be defined
as in (37) and(38) respectively where 0 < α < arctan( 1

16) .

i) There exists positive constant C1 such that for any x ∈ Nα, we have
∥Bx∥ ≥ C1 with probability converging to one as n→ ∞;

ii) For any x ∈ Nα, we have
∣∣∣ cos∠(x, Bx)

∣∣∣ ≤ 4α with probability con-

verging to one as n→ ∞.

The following lemma is borrowed from Johnstone and Lu [2004].

Lemma 8. Let ξ be a principal eigenvector of a non-zero symmetric
matrix M. For any η ̸= 0,

∠(η,Mη) ≤ 3∠(η, ξ).

The proof of Lemma 5 is made plausible by reference to the Figure C1.

1

http://www.imstat.org/aos/
http://arxiv.org/abs/arXiv:0000.0000


2 Q. LIN, Z. ZHAO AND J. S. LIU

Fig C1: An illustrated graph

Since

sin
(
∠
(
β̂, S−β̂

))
= sin (ω1 + ω2) = sin (π − ω1 − ω2)(C.1)

≥ min
{

sin (ω1) , sin (ω3)
}
,(C.2)

we only need to prove that there exists a positive small constant ω(α) ( < π
2

) such that sin (ω1) , sin (ω2) ≥ sin (ω(α)) . In fact, if such ω(α) exists, we
may choose M = S−, ξ = β̂− in Lemma 8 and get

∠
(
β̂, β̂−

)
≥ 1

3
∠
(
β̂, S−β̂

)
≥ 1

3
ω(α).

For ω3. From Lemma 7 ii),
∣∣∣ cos∠(β̂, Bβ̂)

∣∣∣ ≤ 4α, we know that there exists

positive constants δ(α)(< π
2 ) such that sinω3 ≥ sin (δ(α)) .

For ω1. Applying the law of sines to the triangle △(O,O1, O2) , we have

sinω1

∥Bβ̂∥
=

sinω3

∥Dβ̂∥

=
sin∠

(
Bβ̂, β̂

)
∥Dβ̂∥

 .(C.3)

Note that from Lemma 7 i), there exists a constant C1 > 0 such that
∥Bβ̂∥ > C1 and

∥Dβ̂∥ ≤ ∥D∥ ≤ 1

H
∥θ∥2 + ∥ 1

n
EEτ∥,
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is bounded by an absolute constant C given limn→∞
p
n = ρ ̸= 0 and sliced

stable condition. Then (C.3) implies

sinω1 =
∥Bβ̂∥ sin∠(Bβ̂, β̂)

∥Dβ̂∥
≥ C1 sin δ(α)

C
≥ sinω′ > 0

where ω′ ( < π
2 )is an small angle such that the last inequality holds. In

particular, we have ω1 ≥ ω′. Hence

∠(β̂, S−β̂) ≥ω′ ∧ δ(α) ≜ ω(α)

□

C.1. Proof of Lemma 6 Proof : In fact, let T be an orthogonal matrix
such that Tβ = (1, 0 · · · , 0)τ and M = TββτT τ , then

cH2uτu = θτEτΣEθ

= θτEτEθ − θτEτββτEθ

= θτEτT τTEθ − θτEτT τ (Tβ)βτT τTEθ

d.
= θτEτEθ − θτEτMEθ

d.
=
p− 1

p
θτEτEθ,

where
d.
= means equal in distribution. Note that EτE is full rank H × H

matrix, combining with Lemma 14 , we know that

C1(1−

√
H

p
)2 ≤ λmin(

1

p
EτE) ≤ λmax(

1

p
EτE) ≤ C2(1 +

√
H

p
)2

for some positive constants C1 and C2 with probability at least 1−2 exp(−p/8).
Note that lim p

n = ρ > 0 as n→ ∞ and n = Hc, we know there exists posi-
tive constants C1 and C2 such that

C1
1

H
∥θ∥2 ≤ ∥u∥2 ≤ C2

1

H
∥θ∥2

with probability at least 1− 2 exp(−p/8).
On the other hand, the sliced stable condition implies that lim 1

H ∥θ∥2
exists ( ̸= 0), so ∥u∥2 is bounded away from 0 and ∞ with probability 1 as
n→ ∞. □
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C.2. Proof of Lemma 7 Proof : For i), ∀x ∈ Nα, let

x = cos(δ)β + sin(δ)η where η ⊥ β, ∥η∥ = 1, δ ≤ α.

Since Bx = cos(δ)u+ (uτη) sin(δ)β, we have:

∥Bx∥ ≥ cos(δ)∥u∥ − sin(δ)∥u∥ ≥ 1

2
cos(δ)∥u∥

≥ 1

2
cos(α)∥u∥ > C1

4
> 0

for some positive constant C1.

For ii), since
xτBx = 2(uτη) cos(δ) sin(δ)

we have that uniformly over Nδ,

|xτBx| ≤ |uτη| sin(2δ)

which in turn implies:∣∣∣ cos(∠(Bx,x))
∣∣∣ = |xτBx|

∥x∥∥Bx∥
≤ sin(2δ)|uτη|

1
2 cos(δ)∥u∥

≤ 4δ ≤ 4α.

□

D. Appendix B: Proofs of Theorems 4 to 6.

D.1. Proof of Theorem 4. Let x(k) =< x,βk > where βk = (0, .., 1, ...0) ∈
Rp with the only 1 at the k-th position. Recall that

T =
{
k
∣∣∣ E[x(k)|y] is not constant. }

Ip(t) =
{
k
∣∣∣ varH(x(k)) > t

}
Ep(t) =

{
k
∣∣∣ varH(x(k)) ≤ t

}
.

and |T | ≤ Cs for some positive constant C. Since var(E[x(k)|y]) > C
sω , we

may choose t = a
sω for sufficiently small positive constant a such that for

any k ∈ T , t < 1
2var(E[x(k)|y]. According to Lemma 1 and the Bonferroni’s

inequality, we have

P (T c ⊂ Ep(t)) ≥ 1−
∑
k∈T c

P ( varH(x(k)) > t)

≥ 1− C1 exp

(
−C2

ct

H
+ C3 log(H) + log(p− s)

)
.
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and

P(T ⊂ Ip(t)) ≥ P

(∩
k∈T

{
varH(x(k)) ≥

1

2
var(m(k, y))

})

≥ 1−
∑
k∈T

P
(
varH (x(k)) <

1

2
var (m(k, y))

)
≥ 1− C1 exp

(
−C2

c var(m(k, y))

H
+ C3 log(H) + log (Cs)

)
,

i.e., we have (11) and (12) hold. □

D.2. Proof of Theorem 5 By choosing H, c and t = a
sω properly, from

Theorem 4, we have

P (T̂ = T ) ≥ 1− C1 exp
(
−C2

n

H2sω
+ C3 log(H) + log(p− s)

)
for some positive constants Ci, i = 1, 2, 3. When T̂ = T , we have |T̂ | = O(s).

For the n samples (Yi, X
T̂
i ), apply Theorem 1, we have

∥e(Λ̂
T ,T
H )−Λp∥2 ≤ ∥Λ̂

T ,T
H −ΛT ,T

p ∥2 ≤ OP (
1

Hϑ
+
H2s

n
+

√
H2s

n
).

In particular, with probability converging to one, we have

∥e(Λ̂
T ,T
H )−Λp∥2 → 0 as n→ ∞.

D.3. Proof of Theorem 6. The proof is almost identical to the proof of
Theorem 2, except that we additionally need to use Theorem 1 in Bickel
and Levina [2008].

E. Appendix C

E.1. Assisting Lemmas

Definition 2. A set of random variables x1, ..., xn can be treated as i.i.d
random samples from a random variable x, if for any n variates symmetric
function f(w1, ..., wn) , f(x1, ..., xn) is identically distributed as f(z1, ..., zn)
where z1, ..., zn are i.i.d random samples from x.

Lemma 9. Let (xi, yi) be n i.i.d random samples from a joint distribution
(x, y). Sort these samples according to the order statistics of yi’s and denote



6 Q. LIN, Z. ZHAO AND J. S. LIU

the sorted samples by (x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n)). Then for any a,
b (1 ≤ a ≤ b + 1 ≤ n), x(a+1), ..., x(b) can be treated as b − a i.i.d samples

from x
∣∣∣ (y ∈ [y(a), y(b+1)]

)
.

Proof. In fact, we only need to prove that y(a+1), · · · , y(b) can be treated

as b − a i.i.d. samples of y
∣∣∣(y ∈ [y(a), y(b+1)]). The latter only needs to be

proved for uniform distribution which can be verified directly.

Corollary 1. In the slicing inverse regression contexts, recall that Sh
denotes the h-th interval (yh−1,c, yh,c] for 2 ≤ h ≤ H−1 and S1 = (−∞, y1,c],
SH = (yH−1,c,∞). We have that xh,i, i = 1, · · · , c− 1 can be treated as c− 1

random samples of x
∣∣∣(y ∈ Sh) for h = 1, ..., H − 1 and xH,1, ..., xH can be

treated as c random samples of x
∣∣∣(y ∈ SH).

Lemma 10. Suppose that (x, y) are defined over σ-finite space X × Y
and g is a non-negative function such that E[g(x)] exists. For any fixed pos-
itive constants C1 < 1 < C2, there exists a constant C which only depends
on C1, C2 such that for any partition R =

∪H
h=1 Sh where Sh are intervals

satisfying

C1

H
≤ P(y ∈ Sh) ≤

C2

H
, ∀h,(E.1)

we have
sup
h

E(g(x)
∣∣∣y ∈ S′

h) ≤ CHE[g(x)].

Proof. According to Fubini’s Theorem, for any h,

E[g(x)] =
∑
k

P(y ∈ Sk)

∫
X
g(x)p(x|y ∈ Sk)dx

≥P(y ∈ Sh)

∫
X
g(x)p(x|y ∈ Sh)dx.

Due to the condition (E.1), there exists a positive constant C such that∫
X
g(x)p(x|y ∈ Sh)dx ≤ CHE[g(x)].

□
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Corollary 2. Let x be a multivariate random variable with covariance
matrix Σ. For any partition satisfying (E.1), there exists a constant C such
that

var(βτx|y∈S′
h
) ≤ CHvar(βτx), for any unit vector β,

and
λmax

(
var

(
x
∣∣∣y ∈ S′

h

))
≤ CHλmax (var (x)) .

Corollary 3. Let x be a sub-Gaussian random variable which is upper-
exponentially bounded by K. Then for any partition satisfying (E.1), there
exists a constant C such that

E[exp
(
x2

K2

) ∣∣∣y ∈ S′
h] ≤ CHE[exp

(
x2

K2

)
].

Recall the definition of the random intervals Sh, h = 1, 2, · · · ,H and ran-
dom variable δh = δh(ω) =

∫
y∈Sh(ω)

f(y)dy.

Lemma 11. Define the event E(ϵ) =
{
ω
∣∣∣ |δh − 1

H | > ϵ, ∀h
}
. There

exists a positive constant C such that, for any ϵ > 4
Hc−1 we have

(E.2) P (E(ϵ)) ≤ CH2
√
Hc+ 1 exp(−(Hc+ 1)

ϵ2

32
)

for sufficient large H and c.

Proof. The proof is deferred to the end of this paper.

E.2. Some Results from Random Matrices Theory. We collect some di-
rect corollaries of the non-asymptotic random matrices theory (e.g., Rudel-
son and Vershynin [2013]).

Lemma 12. Let M be any p× n matrix (n > p) whose columns M i are
independent sub-Gaussian random vectors in Rp with second moment Ip and
λ+sing,min(M), λsing,max(M) be the minimal non-zero and maximal singular

value of M . Then for every t, with probability at least 1− 2 exp(−C ′t2), we
have :

√
n− C

√
p− t ≤ λ+sing,min(M) ≤ λsing,max(M) ≤

√
n+ C

√
p+ t.
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Lemma 13. Let x1, · · · ,xn be n i.i.d. samples from a p-dimensional
sub-Gaussian random variable with covariance matrix Σ and ρ = p

n . If there
exists positive constants C1 and C2 such that

C1 ≤ λmin(Σx) ≤ λmax(Σx) ≤ C2.

Let Σ̂x = 1
n

∑
i xix

τ
i . Then

∥Σ̂x −Σx∥2 → 0 if ρ = 0 when n→ ∞.

It is also easy to see that, given the boundedness condition on ΣX , ∥Σ̂
−1

X −
Σ−1
X ∥2 → 0 if ρ = p

n → 0 when n→ ∞.

Proof. Let xi = Σ
1/2
x mi where mi is sub-Gaussian random variable

with covariance matrix Ip and M = (m1, ...,mn). From Lemma 12, we
have

∥ 1
n
MM τ − Ip∥2 → 0

and

∥Σ̂
−1

−Σ−1∥2 = ∥Σ−1/2∥2∥
1

n
MM τ − Ip∥2∥Σ−1/2∥2 → 0,

with probability converges to 1 as n→ ∞ because

λmax

(
1

n
MM τ

)
≤
(
1 +

(C + 1)
√
p

√
n

)2

and

λmin

(
1

n
MM τ

)
≥
(
1−

(C + 1)
√
p

√
n

)2

with probability at least 1− 2 exp(−C ′p). □

The following lemma is well known in the non-asymptotic random matrix
theory (Vershynin [2010] Proposition 5.34 ) which is slightly different from
the Lemma 12.

Lemma 14. Let Ep×H be a p×H matrix, whose entries are independent
standard normal random variables. Then for every t ≥ 0, with probability at
least 1− 2 exp(−t2/2), we have :

λ+sing,min(Ep×H) ≥
√
p−

√
H − t,

and
λsing,max(Ep×H) ≤

√
p+

√
H + t.
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Corollary 4. We have

1

2

(√
p−

√
H
)
≤ λ−sing,min (Ep×H) ≤ λsing,max (Ep×H) ≤

3

2

(√
p+

√
H
)
.

with probability converging to one, as n→ ∞.

Proof. Choosing t =
√
p/2, according to Lemma 14, we have:

P

(
λmax(EH)
√
p+

√
H

≤ 3

2

)
≥ P

(
λmax(EH)
√
p+

√
H

≤ 1 +

√
p

2
√
p+ 2

√
H

)
and

P

(
λ+min(EH)√
p−

√
H

≥ 1

2

)
≥ P

(
λmax(EH)
√
p−

√
H

≥ 1−
√
p

2
√
p− 2

√
H

)

with probability at least 1− 2 exp(−p/8). i.e., With probability converging
to one, we have

1

2
(
√
p−

√
H) ≤ λ−min(Ep×H) ≤ λmax(Ep×H) ≤

3

2
(
√
p+

√
H).

□

E.3. Basic Properties of sub-Gaussian random variables. We rephrased
several equivalent definitions of the sub-Gaussian distribution here (See e.g.,
Vershynin [2010] ):

Definition 3. Let x be a random variable. Then the following properties
are equivalent with parameters Ki’s differing from each other by at most an
absolute constant factor,

1. Tails: P(|x| > t) ≤ exp(1− t2/K2
1 ) for all t ≥ 0.

2. Moments: (E[|x|p])1/p ≤ K2
√
p for all p ≥ 1.

3. Super-exponential moment: E exp(x2/K2
3 ) ≤ e.

Moreover, if E[x] = 0, then the properties 1 − 3 are also equivalent to the
following one:

4. Moment generating function: E[exp(tx)] ≤ exp(t2K2
4 ).

Definition 4. For a sub-Gaussian random variable x with the constants
Ki, i = 1, 2, 3, 4 given in Definition 3, we will call a constant K an upper-
exponential bound of x or x is upper-exponentially bounded by K if K >
maxi{K1,K2,K3,K4}.
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We summarize some properties regarding the sub-Gaussian distributions
into the following lemmas.

Lemma 15. Let δ1, ..., δn be n (not necessarily independent or with mean
zero) sub-Gaussian random variables upper-exponentially bounded by K.

i) 1
n

∑n
i=1 δi is sub-Gaussian and upper-exponentially bounded by K.

ii) δ1 − E[δ1] is sub-Gaussian upper-exponentially bounded by 2K.
iii) If they are independent and with mean zero , then 1√

n

∑
i δi is sub-

Gaussian and upper-exponentially bounded by K.

iv) If they are i.i.d., then we have the concentration inequality:

P
(∣∣∑n

i=1 δi
n

− E[x]
∣∣ > t

)
≤ 2 exp

(
−nt2

2K2e+ 2tK

)
.

Proof. i) follows from the linear property of expectation and the the
convexity of exponential function. i.e.,

E[exp(
1

nK2

∑
i

δ2i )] ≤ E[
1

n

∑
h

exp(
δ2i
K2

)] ≤ max
i

E[exp(
δ2i
K2

)] ≤ e.

ii) From Definition 3, we know that |E[δi]| ≤ K which gives us the desired
upper-exponential bound of δi − E[δi].
iii) is trivial as δ1, · · · , δc are independent and with mean zero.
iv) Since δ1 is sub-Gaussian upper-exponentially bounded by K, we have:

E[|δ1|p] =
∫ ∞

0
ptp−1P(|δ1| > t)dt ≤

∫ ∞

0
ptp−1 exp

(
1− t2

K2

)
dt

=
ep

2
Γ(
p

2
)Kp for any p ≥ 1

≤ p!Kp−2 (K
2e)

2
for any p ≥ 2

Recall the well known Bernstein inequality.

Lemma 16. ( Bernstein Inequality ). If there exists positive constants
V and b such that for any integers m ≥ 2,

E[|δ1|m] ≤ m!bm−2V/2

then

(E.3) P
(∣∣∑n

i=1 δi
n

− E[x]
∣∣ > t

)
≤ 2 exp

(
−nt2

2V + 2tb

)
.
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By chooing V = K2e and b = K, we get the desired concentration in-
equality. □

Lemma 17. Suppose that (x, y) are defined over σ-finite space X × Y
and x is sub-Gaussian with mean 0 and upper exponentially bounded by K,
let m(y) = E[x|y], ϵ(y) = x−m(y), then we have

i) m(y) and ϵ(y) are sub-Gaussian and upper-exponentially bounded by
K and 2K respectively.

ii) Let Z consists of points y such that x|y is not sub-Gaussian, i.e.,

Z ≜
{
y | ∃t ∈ (0, t0] such that

∫
X
exp(tx2)p(x|y)p(y)dx = ∞

}
,

then P(y ∈ Z) = 0.

iii) For any fixed positive constants C1 < 1 < C2 and any partition R =∪H
h=1 Sh where Sh are intervals satisfying

C1

H
≤ P(y ∈ Sh) ≤

C2

H
,∀h,

there exists a constant C such that

sup
h

P(x|y∈Sh
> t) ≤ CH exp

(
1− t2

K2

)
.

As a direct corollary, we know that there exists a positive constant C
such that

E
[
exp

(
(x|y∈Sh

)2

2K2

)]
≤ CH,

and
E
[∣∣∣(x|y∈Sh

)
∣∣∣m] ≤ CHmKmΓ(

m

2
)/2.

vi) Suppose that x|y∈Sh
is defined as in iii). Let xi, i=1,...,c be c samples

from x|y∈Sh
, x̄h = 1

c

∑
i xi and µh = E[x|y∈Sh

], we have

P[|x̄h − µh| > t] ≤ 2 exp

(
−ct2

2CHK2 + 2tK

)
.

Proof. i) By Jensen’s inequality, we have

E[exp(tE[x|y])] ≤ E[E[exp(tx)|y]] = E[exp(tx)] ≤ exp(t2K2
1 ).
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i.e., m(y) is sub-Gaussian and upper-exponentially bounded by K1. Since x
, m(y) is sub-Gaussian and upper-exponentially bounded by K1, we know
that ϵ = x − m(y) is sub-Gaussian and upper-exponentially bounded by
2K1.

ii) Let p(x, y) be the joint density function of (x, y) and p(x), p(y) be the
marginal distribution of x, y. Since x is sub-Gaussian, we know there exists
t0 > 0 such that∫

X
exp(tx2)

∫
Y
p(x|y)p(y)dydx ≤ e for 0 ≤ t ≤ t0.

By Fubini Theorem, we know

(E.4)

∫
Y
p(y)

∫
X
exp(tx2)p(x|y)dxdy ≤ e for 0 ≤ t ≤ t0.

Recall that we have Z ≜ {y|∃t ∈ (0, t0] such that
∫
X exp(tx2)p(x|y)p(y)dx =

∞}, from equation (E.4), we know P(y ∈ Z)=0. In particular, we know that
for any y ̸∈ Z, x|y is sub-Gaussian. However, the norm (e.g., sub-exponential
norm)of x|y might be varying along with y and , as a function of y , it might
be not bounded.

iii) From Lemma 10, we know that there exists a positive constant C such
that ∫

X
exp(tx2)p(x|y ∈ Sh)dx ≤ CHe.

For simplicity if notation, we will denote x|y∈Sh
by z through out this lemma.

So for 0 ≤ t ≤ t0 =
1
K , we have

P (z > a) ≤
E[exp

(
tz)2

)
]

exp(t2a2)
≤ CHe exp

(
−t2a2

)
.

From the above tail bounds, we have that for any integer m > 0

E[
∣∣z∣∣m] = ∫ ∞

0
P(|z| > t)(m)tm−1dt ≤ CHm

∫ ∞

0
exp(− t2

K2
)tm−1dt

≤CHmKm(m/2)/2.

We then have

E
[
exp

(
tz2
)]

≤
∞∑
m=0

E
[
tmz2m

]
m!

≤
∞∑
m=0

E
[
tmz2m

]
m!

≤
∞∑
m=0

tmCHmK2mΓ(m)

m!
= CH

∞∑
m=0

tmK2m
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From which we know if 0 ≤ t < 1
2K

−2, the R.H.S is bounded by CH for a
positive constant C.

vi) From the previous proof, we know that for any integer m ≥ 2

E[|z|m] ≤ CHm!Km = m!Km−2(2CHK2)/2.

By the Bernstein inequality (E.3), we have:

P
(∣∣∣∑c

i=1 zi
c

− E[z]
∣∣∣ > t

)
≤ 2 exp

(
−ct2

2CHK2 + 2tK

)
.

□

Lemma 18. Let zi, i = 1, · · · , n be i.i.d. samples of a sub-Gaussian dis-
tribution exponentially upper bounded by K, then there exist positive con-
stants C1, C2 such that, if

√
nϵ→ ∞, we have

P(| 1
n

∑
i

(zi − z̄)2 − var(z)| > ϵ) ≤ C1 exp(−C2
ϵ
√
n

K2
),

where z̄ = 1
n

∑
i zi.

Proof. Recall the following Hanson-Wright inequality in Rudelson and
Vershynin [2013]

Lemma 19. Let v = (x(1), · · · ,x(n)) be a sub-Gaussian random vector
with independent components x(β) such that E[x(β)] = 0 and ∥x(β)∥ψ2 ≤
K. Let A be an n× n matrix. Then there exists a positive constant C such
that for any t > 0,

P{|xτAx− E[xτAx]| > t} ≤ 2 exp

(
−C min

(
t2

K4∥A∥2HS
,

t

K2∥A∥HS

))
.

Here the ψ2 norm of a random variable z is defined as ∥z∥ψ2 ≜ supp p
−1/2(E|z|p)1/p

and the HS norm of a matrix A is defined as ∥A∥HS = (
∑

i,j |ai,j |2)1/2.

Since

P

(
| 1
n

∑
i

(zi − z̄)2 − var(z)| > 2ϵ

)

= P

(
| 1
n

∑
i

(zi − E[z])2 − (E[z]− z̄)2 − E[(z − E[z])2]| > 2ϵ

)

≤ P

(
| 1
n

∑
i

(zi − E[z])2 − E[(z − E[z])2]| > ϵ

)
+ P

(
(E[z]− z̄)2 > ϵ

)
,
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and zi − E[z] are sub-Gaussian with mean 0, from Lemma 19 by choosing
A = 1

nIp and zτ = (z1 − E[z], .., zp − E[z]), we have

(E.5) P

(
| 1
n

∑
i

(zi − E[z])2 − E[(z − E[z])2]| > ϵ

)
≤ 2 exp

(
−C

√
nϵ

K2

)
,

since
√
nϵ→ ∞.

The following follows from the usual deviation argument:

P
(
(E[z]− z̄)2 > ϵ

)
≤ C1 exp (−C2nϵ) .

Combining with the estimate (E.5), we know there exists positive con-
stants C1 and C2 such that

P

(
| 1
n

∑
i

(zi − z̄)2 − var(z)| > ϵ

)
≤ C1 exp

(
−C2

√
nϵ

K2

)
,

for sufficiently large n since
√
nϵ→ ∞. □

E.4. Proof of Lemma 11. We only need to prove this lemma for n i.i.d.
sample yi’s from a uniform distribution over [0, 1]. We slightly change the
notation of order statistics y(i) to y(i,n) so that we can keep track of the
sample size. Since y is uniform distribution on [0, 1], it is well known that
y(i,n) ∼ Beta(i, n − i + 1) with expectation i

n+1 and mode i−1
n−1 . Lemma 11

is a direct corollary of the following lemma.

Lemma 20. Suppose there are n = Hc i.i.d. samples from uniform dis-
tribution over [0, 1], when H,c are sufficiently large, we have the following
large deviation inequalities of y(kc,Hc), k = 1, · · · , (H − 1).

i) There exists a positive constant C, such that for any ϵ > 1
Hc−1 , we

have

P
(
y(kc,Hc) >

k

H
+ ϵ

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

2

)
;

ii) There exists a positive constant C, such that for any ϵ > 2
Hc−1 , we

have

P
(
y(kc,Hc) <

k

H
− ϵ

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

8

)
;
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iii) Let δ(k,H, c) = |y((k−1)c,Hc)−y(kc,Hc)| , for 2 ≤ k ≤ H−1, δ(1,H, c) =
|y(c,Hc)| and δ(H,H, c) = |1 − y((H−1)c,Hc)|. There exists a positive

constant C, such that for any ϵ > 4
Hc−1 , we have for any 1 ≤ k ≤ H:

P
(
|δ(k,H, c)− 1

H
| > ϵ

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

32

)
.

We will prove Lemma 20 later. Assuming it, we have

P (E(ϵ)) ≤
H∑
k=1

P
(
|δ(k,H, c)− 1

H
| > ϵ

)
≤ CH2

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

32

)
.

□

E.4.1. Proof of Lemma 20. The first part: For any 1 ≤ k ≤ H − 1, we
note that

P
(
y(kc,Hc) >

k

H
+ ϵ

)
≤ P

(
y(kc,Hc) >

kc

Hc+ 1
+ ϵ

)
=

1

B(kc,Hc− kc+ 1)

∫ 1

x> kc
Hc+1

+ϵ
xkc−1(1− x)Hc−kcdx.

When ϵ > 1
Hc−1 , we know the mode xM = kc−1

Hc−1 < xD ≜ kc
Hc+1 + ϵ , so we

have

(E.6)

P
(
y(kc,Hc) >

k

H
+ ϵ

)
≤ (xD)

kc−1(1− xD)
Hc−kc+1

B(kc,Hc− kc+ 1)

≤ H
(xD)

kc(1− xD)
Hc−kc+1

B(kc,Hc− kc+ 1)
.

The last inequality due to HxD ≥ 1. If ϵ+ k
H ≥ 1, then P(y(kc,Hc) > k

H +ϵ) =
0 and Lemma 20 holds automatically.

We may assume that ϵ+ k
H < 1 below. Let us denote the right hand side

of (E.6) by A, then

log(A) = log(H) + kc log(E + ϵ) + (Hc− kc+ 1) log(1− E − ϵ)

+ log(Hc+ 1)!− log(kc)!− log(Hc− kc+ 1)!

− log(Hc+ 1) + log(kc) + log(Hc− kc+ 1),
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where E = kc
Hc+1 . According to the Stirling formula:

log(n!) = n log(n)− n+
1

2
log(2πn) +O(

1

n
),

when m is sufficiently large we have:

log(A) = log(H) + (Hc+ 1)(E log(1 +
ϵ

E
) + (1− E) log(1− ϵ

1− E
))

− 1

2
(log(Hc+ 1)− log(kc)− log(Hc− kc+ 1))

− 1

2
log(2π) +O(

1

kc
) +O(

1

Hc− kc+ 1
)

≤ log(H)− (Hc+ 1)ϵ2

2(1− E)
− 1

2
log(2π)

(E.7)

− 1

2
(log(Hc+ 1)− log(kc)− log(Hc− kc+ 1)) +O(

1

c
)

≤ log(H)− (Hc+ 1)ϵ2

2(1− E)
− 1

2
(log(Hc+ 1)− log(kc)− log(Hc− kc+ 1)),

where we use the fact that kc
Hc+1 ≤ E + ϵ < 1 and the following elementary

lemma, which can be proved by the Taylor expansion:

Lemma 21. Suppose a, b are positive numbers such that a+ b = 1, then
for any 0 < ϵ < b, we have:

a log(1 +
ϵ

a
) + b log(1− ϵ

b
) ≤ − ϵ

2

2b
.

Now we know that there exists a positive constant C such that for any
1 ≤ k ≤ H − 1 and for any ϵ > 1

Hc−1 , the following holds:

P
(
y(kc,Hc) >

k

H
+ ϵ
)

≤ CH

√
(kc)(Hc− kc+ 1)

Hc+ 1
exp

(
−(Hc+ 1)

ϵ2

2(1− E)

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

2(1− E)

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

2

)
.

The last inequality follows from ϵ2

1−E ≥ ϵ2 since 1
H+1 ≤ E ≤ H−1

H .
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The second part: The proof of the second part is similar. For completeness,
we sketch some calculations below. For any 1 ≤ k ≤ H − 1, when ϵ > 2

Hc−1 ,
we have

P
(
y(kc,Hc) <

k

H
− ϵ

)
≤ P

(
y(kc,Hc) <

kc

Hc+ 1
− ϵ/2

)
=

1

B(kc,Hc− kc+ 1)

∫
x< kc

Hc+1
−ϵ
xkc−1(1− x)Hc−kcdx.

Since ϵ > 1
Hc−1 , we know the mode xM = kc−1

Hc−1 > xD′ ≜ kc
Hc+1 − ϵ/2, so we

have

P
(
y(kc,Hc) ≤

k

H
− ϵ

)
≤(xD′)kc(1− xD′)Hc−kc

B(kc,Hc− kc+ 1)

≤H (xD′)kc(1− xD′)Hc−kc+1

B(kc,Hc− kc+ 1)
.

The last inequality due to H(1− xD′) ≥ 1.
The rest is similar to the first part. We have that for any 1 ≤ k ≤ H − 1

and for any ϵ > 2
Hc−1 ,

P
(
y(kc,Hc) <

k

H + 1
− ϵ

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

8

)
.(E.8)

The third part: The third part is a direct corollary of the first two
parts. Note that for any 2 ≤ k ≤ H − 2, for any ϵ > 4

Hc−1

P
(
|δ(k,H, c)− 1

H
| > ϵ

)
= P

(∣∣∣y(k+1)c,Hc −
k + 1

H
− (ykc,Hc −

k

H
)
∣∣∣ > ϵ

)
≤ P

(
|y(k+1)c,Hc −

k + 1

H
| > ϵ

2

)
+ P

(
|ykc,Hc −

k

H
| > ϵ

2

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

32

)
.
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When k = 1, we have

P
(
|δ(1,H, c)− 1

H
| > ϵ

)
= P

(
|yc,Hc −

1

H
| > ϵ

)
≤ P

(
yc,Hc −

1

H
> ϵ

)
+ P

(
yc,Hc −

1

H
< −ϵ

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

8

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

32

)
.

When k = H, we have

P
(
|δ(H − 1,H, c)− 1

H
| > ϵ

)
= P

(
|y(H−1)c,Hc −

H − 1

H
| > ϵ

)
≤ P

(
y(k+1)c,Hc −

H − 1

H
> ϵ

)
+ P

(
y(H−1)c,Hc −

H − 1

H
< −ϵ

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

8

)
≤ CH

√
Hc+ 1 exp

(
−(Hc+ 1)

ϵ2

32

)
.

□
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