
Targeting the renin-angiotensin system to improve 
cancer treatment: Implications for immunotherapy

Citation
Pinter, Matthias, and Rakesh K. Jain. 2018. “Targeting the renin-angiotensin system to improve 
cancer treatment: Implications for immunotherapy.” Science translational medicine 9 (410): 
eaan5616. doi:10.1126/scitranslmed.aan5616. http://dx.doi.org/10.1126/scitranslmed.aan5616.

Published Version
doi:10.1126/scitranslmed.aan5616

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:37160084

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:37160084
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Targeting%20the%20renin-angiotensin%20system%20to%20improve%20cancer%20treatment:%20Implications%20for%20immunotherapy&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=4c52ddd0b7965b91a6f5daf77bd9d855&department
https://dash.harvard.edu/pages/accessibility


Targeting the renin-angiotensin system to improve cancer 
treatment: Implications for immunotherapy

Matthias Pinter1,2 and Rakesh K. Jain1,*

1Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard 
Medical School and Massachusetts General Hospital, Boston, MA 02114, USA

2Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical 
University of Vienna, Vienna, A-1090, Austria

Abstract

Renin-angiotensin system (RAS) inhibitors (RASi)—widely prescribed for the treatment of 

cardiovascular diseases— have considerable potential in oncology. The RAS plays a crucial role in 

cancer biology and affects tumor growth and dissemination directly and indirectly by remodeling 

the tumor microenvironment. We review clinical data on the benefit of RASi in primary and 

metastatic tumors and propose that, by activating immunostimulatory pathways, these inhibitors 

can enhance immunotherapy of cancer.

INTRODUCTION

The circulating renin-angiotensin system (RAS) is mainly known for its pivotal role in 

maintaining cardiovascular homeostasis and fluid and electrolyte balance. In addition, a 

local RAS is expressed in many tissues and mainly acts at the cellular level, where it 

mediates cell proliferation, growth, and metabolism. The local RAS works synergistically 

and independently of the systemic RAS. Angiotensin II (AngII) is the main effector and 

maintains tissue homeostasis by exerting regulatory and counterregulatory effects through its 

different receptors. Alternative peptide-receptor axes also assist in maintaining this balance 

(1–7). Figure 1 provides an overview of the main components of the RAS. Dysregulation of 

the RAS, for example, by overexpression of certain RAS components [such as renin, Ang-

converting enzyme (ACE), or AngII type 1 receptor (AT1R)], can be involved in the 
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pathophysiology and progression of a broad range of diseases, such as arterial hypertension, 

kidney disease, and other cardiovascular conditions (5, 8, 9).

The discoveries of captopril—the first orally active ACE inhibitor (ACEi)—in the 

mid-1970s (10) and losartan—the first orally active, selective AT1R blocker (ARB)—around 

a decade later (11) represent milestones in the history of the RAS. Numerous ACEis and 

ARBs have been developed since then. Now, ACEis and ARBs are the most common 

inhibitors of the RAS and are widely used in the management of several diseases, such as 

arterial hypertension, heart failure, myocardial infarction, and chronic kidney disease (12–

15). Direct renin inhibitors (such as aliskiren) represent a third class of RAS-acting agents 

and have been added to the armamentarium more recently (16). A list of RAS inhibitors 

(RASi) approved by the U.S. Food and Drug Administration (FDA) is provided in table S1.

After being in clinical use for more than two decades in nonmalignant diseases, ACEi/ARBs 

have recently received considerable attention in oncology. A large-scale meta-analysis (17), 

published in 2010, found an increased overall occurrence of cancer in ARB users. However, 

two other meta-analyses published subsequently did not confirm these data (18, 19). The 

FDA also rebutted these findings with their own meta-analysis (20) and an integrated 

analysis of all 19 rodent carcinogenicity assays of ARBs (21). Thus, the data to date do not 

support an association between ACEi/ARB use and an increased cancer risk. However, they 

do not suggest a reduced occurrence of cancer either.

Of interest, an increasing number of preclinical studies support the involvement of RAS 

signaling in cancer development, growth, and progression (4). These data have led to 

investigations of the effects of RASi—both retrospectively and prospectively—in patients 

with different types of cancer. Interim analysis of a recent phase 2 trial—stemming from our 

preclinical findings (22)—showed encouraging R0 (microscopically margin-negative) 

resection rates in patients with locally advanced pancreatic ductal adenocarcinoma (PDAC) 

receiving neoadjuvant losartan plus chemoradiation (23). Moreover, our recent retrospective 

analysis indicated that RASi use is associated with improved survival of patients with 

nonmetastatic PDAC, presumably by stimulating the tumor’s immune microenvironment, 

normalizing its extracellular matrix (ECM), and reducing the malignant potential of cancer 

cells (24).

In light of these emerging data, we discuss the role of the RAS in cancer biology with a 

special emphasis on tumor immunity. In addition, by carefully analyzing the studies with 

positive versus negative outcomes, we make a case for targeting the RAS to improve 

treatment of certain malignancies. Moreover, RASi may not only improve the outcome of 

immunotherapies but also reduce or even prevent adverse effects associated with these 

therapies.

The AngII/AT1R axis shapes the tumor microenvironment and promotes an 
immunosuppressive milieu

Components of the RAS are expressed in various human cancers and cell lines (4). 

Overexpression of AT1R is typically associated with more aggressive tumor features (larger 

tumors, higher grade, and higher vascular density) and worse outcomes (25–29).
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Moreover, RAS components are also expressed in many cell types of the tumor 

microenvironment, such as endothelial cells, fibroblasts, monocytes, macrophages, 

neutrophils, dendritic cells, and T cells (4, 30–34). RAS signaling in these cells can facilitate 

or hinder growth and dissemination and has been shown to affect cell proliferation, 

migration, invasion, metastasis, apoptosis, angiogenesis, cancer-associated inflammation, 

immunomodulation, and tumor fibrosis/desmoplasia (1, 4). Generally, the AngII/AT1R axis 

is considered to favor tumor growth, whereas AngII/AT2R and Ang(1–7)/MAS signaling 

have opposing effects (1, 4). However, there are also conflicting reports suggesting potential 

tumor type–specific differences (35–39).

The tumor-promoting actions of the ACE/AngII/AT1R axis, the main target of classical 

RASi, have been reviewed elsewhere (1, 4). In this section, we focus on its role in tumor 

immunity and propose RASi as an adjunct for immunotherapy. Immune checkpoint 

inhibitors have recently achieved compelling success in melanoma and other solid tumors 

(40). However, their efficacy is diminished by a major barrier—the immunosuppressive 

tumor microenvironment (41). Here, we review how AngII/AT1R signaling shapes the tumor 

immune microenvironment by modulating desmoplasia, vasculature, inflammation, and 

immune cells. We also discuss how RASi could alleviate immunosuppression and enhance 

the outcome of immunotherapy.

Tumor desmoplasia and solid stress

By regulating cancer-associated fibroblasts (CAFs) and profibrogenic pathways [such as 

transforming growth factor–β (TGF-β)], the RAS plays a key role in establishing a 

desmoplastic environment (22, 42), which affects the immune response in multiple ways 

(Fig. 2). CAFs can manipulate the immune system directly by inhibiting T and NK (natural 

killer) cell functions, promoting accumulation of suppressive cell types, and maintaining an 

inflammatory protumorigenic milieu (43). TGF-β can also directly induce immune 

suppression by inhibiting the T cell response (44). Dense tumor fibrosis represents a 

physical barrier to T cell infiltration (45). It also compresses blood vessels by increasing 

solid stress (46, 47). The reduced tumor perfusion results in a hypoxic and acidic milieu, 

which promotes reprogramming of macrophages into an immunosuppressive phenotype, 

impairs tumor killing functions of immune cells, and up-regulates the expression of 

inhibitory immune checkpoint molecules, such as programmed death-ligand 1 (PD-L1), by 

immune, stromal, and tumor cells (Fig. 3) (46–51). Normalizing the desmoplastic milieu (for 

example, by targeting profibrotic pathways and CAFs) can improve the efficacy of 

immunotherapy (52–54).

Several studies have demonstrated that RASi can successfully normalize the fibrotic stroma. 

Co-injection of cancer cells with stromal cells increases tumor size and fibrosis, and 

treatment with ARBs attenuates these effects (55, 56). Losartan inhibits collagen I 

production by CAFs and reduces stromal collagen and hyaluronic acid (HA) in several 

desmoplastic tumor models by decreasing profibrotic signaling via TGF-β, connective tissue 

growth factor, HA synthase 1 and 3, and endothelin-1 (22). Therefore, losartan reduces solid 

stress and improves vascular perfusion, resulting in decreased tumor hypoxia and improved 

distribution and efficacy of anticancer drugs and nanotherapeutics (22, 42). Similarly, 

Pinter and Jain Page 3

Sci Transl Med. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhalation delivery of losartan and telmisartan reduces active TGF-β and collagen I 

expression and increases the intratumoral distribution of nanoparticles (57, 58). Moreover, 

the cross-talk between tumor-associated neutrophils (TANs), adipocytes, and pancreatic 

stellate cells (PSCs) promotes tumor desmoplasia and pancreatic cancer growth in obesity 

(59). AT1R inhibition attenuates obesity-induced fibrosis and tumor progression and 

improves response to chemotherapy (CHT). The AT1R blockade also reduces TANs and 

regulatory T cells (Tregs) and increases CD8+ T cells through inhibition of PSC activation 

and subsequent reduction of interleukin-1β (IL-1β) expression (59). In another orthotopic 

model of pancreatic cancer, inhibition of aberrant TGF-β activity by losartan reduced 

collagen deposition and accumulation of Tregs (60).

Collectively, these data support the idea that targeting AngII/AT1R signaling with RASi can 

effectively reduce tumor desmoplasia and thereby decrease solid stress, increase tumor 

perfusion, reduce hypoxia, enhance T cell infiltration and antitumor immunity, and improve 

delivery and efficacy of anticancer drugs. Thus, inhibiting the AngII/AT1R axis appears to 

be an attractive strategy, especially for highly desmoplastic tumors, such as PDAC and some 

subtypes of breast and lung cancer, and RASi may represent a promising combination 

partner for immunotherapy.

Angiogenesis and tumor vasculature

Considerable evidence suggests that AngII/AT1R signaling promotes VEGF-mediated 

angiogenesis in solid tumors. AT1R expression correlates with VEGF and VEGF receptor 

(VEGFR) expression and microvessel density (MVD) in different human tumors (26, 27, 

29). In experimental studies, AngII promoted VEGF expression in tumor (61–63) and 

stromal cells (64). Treatment with either ACEi or ARB reduced VEGF expression and 

decreased MVD and neovascularization in vivo (65, 66).

VEGF also induces vascular hyperpermeability, one of the main characteristics of the 

abnormal tumor vasculature (46, 48). Tumor vessel leakiness promotes tumor hypoxia and 

acidosis by impairing tumor blood flow (Fig. 2) (48, 67). As mentioned above, hypoxia 

helps to create an immunosuppressive milieu (Fig. 3) and promotes tumor progression and 

dissemination (48, 68). Tumor vessel normalization can alleviate hypoxia, reprogram the 

immunosuppressive microenvironment, and improve the efficacy of immunotherapy in mice 

(68, 69). Glioblastoma patients who show enhanced tumor blood perfusion under anti-

angiogenic therapy have markedly prolonged survival compared to subjects who experience 

no change or a decrease in perfusion (70–72). RASi also reduces VEGF-mediated vascular 

leakiness in the dermis and retina of rodents (73, 74).

In an orthotopic model of PDAC, inhibition of aberrant TGF-β signaling by losartan restored 

vessel diameter and permeability (60). In a retrospective study of glioblastoma patients 

receiving anticancer therapy, a concomitant treatment with matrix-depleting antihypertensive 

drugs improved vascular function as assessed by magnetic resonance imaging (75).

The impaired perfusion and hypoxic condition of tumors can be further aggravated by 

AngII-induced vasoconstriction and increased vascular resistance (Fig. 2) (76, 77). Our 

laboratory has shown that AngII transiently enhanced tumor blood flow and interstitial fluid 
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pressure by increasing the mean arterial blood pressure in different tumor types (78, 79). 

However, Thews and colleagues (80) found that AngII infusion decreased tumor perfusion 

and oxygenation in small subcutaneous sarcomas but increased both parameters in large 

tumors. They concluded that perfusion decreased due to vasoconstriction of preexisting 

functionally intact host vessels in small sarcomas, whereas the newly formed tumor vessels 

in large tumors did not seem to have this vasoresponsive capability, possibly due to lack of 

smooth muscle cells and/or angiotensin (AT) receptors (80).

Together, available data indicate that AngII/AT1R signaling impairs tumor blood supply 

through multiple mechanisms, such as desmoplasia-mediated vessel compression, VEGF-

induced vessel leakiness and abnormal morphology, and AngII-mediated vasoconstriction of 

host vessels. The resulting tumor hypoxia aggravates immunosuppression and evasion. 

Although RASi can reduce VEGF-mediated angiogenesis and desmoplasia, additional 

studies are needed to ascertain whether RASis have the ability to normalize the tumor 

vasculature, similar to anti-VEGF agents (48).

Inflammation and immune cell modulation

The RAS promotes cancer-related inflammation and infiltration of tumor-promoting immune 

cells (1, 4, 81), both of which enhance the immunosuppressive micro-environment (41, 82). 

Here, we discuss how the RAS modulates the expression of inflammatory cytokines and 

orchestrates the recruitment of cancer-associated immune cells to the tumor 

microenvironment.

Inflammatory cytokines—A number of studies have shown that AngII/AT1R signaling 

can increase the production and release of several proinflammatory cytokines in both tumor 

and stromal cells (4). Fibroblasts represent a main target of the RAS and play a pivotal role 

in maintaining an inflammatory response. Cytokines released from tumor and stromal cells 

upon AT1R activation by AngII include TGF-β, IL-1α, IL-1β, IL-6,IL-8,MCP-1(monocyte 

chemoattractant protein–1), M-CSF, COX-2 (cyclooxygenase-2), and CRP (C-reactive 

protein) (Fig. 2) (4, 22, 42, 56, 59, 65, 83–87). Immunomodulatory cytokines (such as TGF-

β, IL-1β, MCP-1, IL-6, and IL-8) can up-regulate multiple—mostly immunosuppressive—

pathways by modulating the differentiation and recruitment of both myeloid and lymphoid 

immune cell types (Fig. 2) (44, 82, 88–91). COX-2 suppresses antitumor immunity and 

contributes to resistance to immunotherapy, mainly through prostaglandin E2 synthesis (92, 

93). The role of tumor-derived CRP in tumor immunity is less clear, but it may impair 

dendritic cell function by reducing their migration activity (94).

Oxidative stress represents another aspect of cancer-related inflammation. Although reactive 

oxygen species (ROS) are involved in T cell activation (95, 96), exposure to ROS can reduce 

T cell fitness (90, 97, 98) and enhance the function of Tregs (99) and TAMs (100). TAMs 

typically show a polarized M2-like phenotype and contribute to immunosuppression, 

whereas M1-like macrophages are known to induce anti-tumor immunity (101). AngII/

AT1R signaling induces ROS generation in tumor cells and stromal cells (4). In prostate 

cancer cells, AngII-mediated expression of oxidative stress–related proteins (such as 
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inducible nitric oxide synthase) and the generation of the ROS family member O2
− radical 

are attenuated by the ARB candesartan (102).

Immune cells—Several studies have shown that RASi can reduce infiltration of TAMs. In 

human prostate cancer, high MCP-1 and macrophage infiltration are associated with more 

aggressive tumor features, and MCP-1 independently correlates with prostate-specific 

antigen recurrence (103). AngII/AT1R signaling promotes production and infiltration of 

TAMs in experimental tumor models; inhibition of AngII production or AT1R signaling 

down-regulates MCP-1, restrains tumor-induced TAM response, reduces tumor growth, and 

prolongs survival (34, 103–105).

AngII/AT1R signaling is also important for myeloid differentiation and functional 

maturation (106). ACE knockout mice show enhanced extramedullary myelopoiesis and 

increased numbers of cells with MDSC phenotype (32). In contrast, cultured bone marrow 

from ACE 10/10 mice, a mouse line overexpressing ACE in monocytic cells, demonstrates 

enhanced myeloid maturation and reduced MDSC production; macrophages from these mice 

have a more proinflammatory phenotype and more antitumor activity compared to those 

from wild-type mice (107). Similarly, tumor-bearing ACE 10/10 mice showed enhanced 

immune response, which ultimately resulted in a reduced tumor growth. Notably, ACEi 

reversed the beneficial effects on tumor growth, but AT1R blockade did not, suggesting that 

the effects of ACE overexpression were not dependent on AngII/AT1R signaling (108, 109).

Together, available data clearly demonstrate that AngII/AT1R signaling stimulates the 

expression of different cytokines and growth factors from tumor and stromal cells, which 

enhance cancer-related inflammation and promote an immunosuppressive microenvironment 

(Fig. 2). Beyond the tumor immune microenvironment, the AngII/AT1R axis is also crucial 

for the maturation and function of immunostimulatory myeloid cells, and ACE 

overexpression in monocytic cells enhances antitumor immunity, although the latter effect 

seems to be independent of the AngII/AT1R axis. These conflicting data highlight the 

complexity of the RAS in cancer immunity. However, because studies supporting a 

stimulatory role of RAS in tumor immunosuppression considerably outweigh opposing data, 

we propose that RASi can effectively reprogram the tumor microenvironment toward an 

immunostimulatory milieu and enhance the efficacy of immunotherapy.

RASi to reduce side effects of immunotherapy

As discussed above, RASi may increase the intratumoral delivery of T cells and 

immunotherapeutic agents by modulating tumor vasculature and desmoplasia. This may 

allow for reduction in the dose of immunotherapeutic agents without decreasing the 

therapeutic benefit and could ultimately result in a decreased number of severe (grades 3 and 

4) immunotherapy-related adverse effects. These side effects can occur in more than 50% of 

patients, especially if certain checkpoint blockers are combined, and some can be even life-

threatening (110, 111).

Obesity and associated chronic inflammation seem to play a critical role in inducing 

immunotherapy-associated toxicities (112, 113). Systemic stimulatory immunotherapy, such 

as αCD40/IL-2, can cause a cytokine storm, characterized by high tumor necrosis factor–α 
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(TNF-α) and IL-6, resulting in multiorgan pathologies and lethality in obese but not in lean 

mice (112, 113). The TNF blockade ameliorates the observed toxicities in obese mice (113). 

Inhibition of the RAS can also ameliorate chronic inflammation, as shown by reduced serum 

concentrations of proinflammatory cytokines (TNF-α and IL-6) in patients with 

hypertension and diabetes (114–116). This represents another way that RASi may help to 

reduce or even prevent immunotherapy-induced toxicity.

RAS inhibition can improve treatment of certain tumors

The effect of RASi on the clinical outcome of patients with different tumor types has been 

extensively studied in recent years. Tables S2 and S3 provide an overview of the published 

prospective (117–126) and retrospective studies (24, 127–175), respectively. Here, we 

summarize the main conclusions based on the available data.

RASi usage in conjunction with CHT

Available clinical data suggest that RASi may potentiate the effect of certain systemic 

antitumor therapies. The use of RASi was associated with better outcomes in patients with 

different solid tumors who received platinum-based CHT (142, 143, 149, 165, 172). The 

gain in overall survival (OS; the length of time from either the date of diagnosis or the start 

of treatment that patients are still alive) ranged from ~3 months in advanced non–small cell 

lung cancer (NSCLC) to 5.7 months in advanced gastric cancer and even 11 months in 

metastatic colorectal cancer (CRC) (142, 149, 165, 172). In line with the clinical data, 

experimental studies showed that platinum-based CHT can increase VEGF production 

through up-regulation of AT1R expression. This seems to represent a mechanism for 

platinum resistance that can be successfully targeted by RASi (176, 177).

In addition, concomitant RASi treatment was associated with better survival in patients with 

metastatic renal cell carcinoma (RCC; gain in OS, 7 to 26 months) (137–140), metastatic 

CRC (gain in OS, ~11 months) (172), glioblastoma (175), and advanced hepatocellular 

carcinoma (HCC; gain in OS, ~5 months) (173) who received VEGF-targeted therapies. 

Because AngII/AT1R signaling promotes VEGF-mediated angiogenesis (4), RASi may 

potentiate the effect of anti-VEGF therapy. In a mouse model of Ehrlichs’s ascites 

carcinoma, the ARB olmesartan augmented the anti-angiogenic effect of the tyrosine kinase 

inhibitor (TKI) sorafenib (178). RASi may also represent a strategy to inhibit rapid 

revascularization (179, 180) and regrowth of tumors (181, 182) after cessation of anti-VEGF 

therapy, which is often necessary due to treatment-related side effects, especially with 

VEGFR TKIs (183, 184). Notably, arterial hypertension is a common side effect of anti-

VEGF therapy and can be associated with better survival outcomes (185). VEGF-targeted 

therapy-induced hypertension is often treated with RASi, which could represent a potential 

con-founder for the reported beneficial survival results associated with RASi use in patients 

who received anti-VEGF therapies. However, two points suggest otherwise: First, some 

studies reported the number of patients who received RASi either at baseline or after 

initiation of anti-VEGF therapy and showed that most of the patients were taking RASi 

already at baseline (137, 139). Second, McKay and colleagues (140) demonstrated that even 

in the subgroup of patients who developed anti-VEGF therapy-induced hypertension, RASi 

users had improved survival compared to nonusers.
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Finally, two studies suggested a putative clinical benefit of RASi use in patients who 

received epidermal growth factor receptor (EGFR) TKIs (128, 143). This could be explained 

by the preclinical finding that AT1R signaling can regulate proliferation and migration of 

cancer cells through transactivation of the EGFR by metalloproteinase-dependent shedding 

of EGF ligands (4).

Tumor characteristics as determinants of RASi efficacy

RASi use was associated with better outcomes in multiple studies, whereas no association 

was found in others. This suggests that response to RASi treatment may also vary by tumor 

type and depend on certain tumor characteristics, as discussed below.

In breast cancer, only 2 of 13 studies shown in tables S2 and S3 reported beneficial effects of 

RASi use, whereas 3 studies found worse outcomes. A meta-analysis found no association 

of ACEi/ARB use with disease-free survival (DFS; the length of time after primary 

treatment for a cancer ends that the patient survives without any signs or symptoms of that 

cancer) or OS in breast cancer (186). The heterogeneity in terms of tumor stage, hormone 

receptor status, human epidermal growth factor receptor 2 overexpression, and (neo)adjuvant 

treatment regimen could have masked a potential benefit of RASi in certain subgroups and 

highlights the need for careful patient selection to obtain homogenous and comparable study 

cohorts.

The use of RASi was associated with better outcomes in patients with RCC, CRC, and HCC 

(tables S2 and S3). These tumors are well known to respond to anti-VEGF therapy (187–

189). As discussed earlier, RASi may enhance the efficacy of VEGF-targeted therapies and 

thereby improve clinical outcome. However, in HCC (125, 126, 159, 164) and some CRC 

(167) and RCC (144) studies listed in tables S2 and S3, most of the patients were not treated 

with anti-VEGF treatment, suggesting that anti-VEGF–responsive tumors generally seem to 

be more sensitive to RASi.

RASi therapy had a clinical benefit in both slowly progressing cancers, such as prostate 

cancer, and highly aggressive tumor types, such as glioblastoma and pancreatic cancer 

(tables S2 and S3). A phase 2 study at the Massachusetts General Hospital (MGH) is 

currently investigating whether adding losartan to CHT (FOLFIRINOX), followed by 

chemoradiation, can convert locally advanced PDAC to resectable tumors (23). Preliminary 

results from this trial showed that R0 resection was achieved in 13 of 25 patients (52%), 

which is a major improvement compared to previously reported R0 resection rates obtained 

with neoadjuvant FOLFIRINOX and radiation in locally advanced PDAC (23 to 24%) (190, 

191). The median OS was 33 months, with a 2-year survival rate of 65% for all patients and 

83% for resected patients (23).

In addition, RASi use was effective in both early and advanced tumor stages. In some tumor 

types, the effect of RASi was investigated primarily in either early tumors (such as resected 

urinary tract cancer) (130, 147, 150, 151) or advanced stages (such as metastatic NSCLC) 

(142, 149). In RCC and CRC, positive outcomes were reported for both early (144, 167) and 

metastatic diseases (137–140, 172). Notably, in PDAC, a survival benefit in RASi users was 
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only shown for locally advanced/metastatic diseases treated with CHT (168–170) but not for 

resected early/locally advanced tumors (174).

In contrast, in our own retrospective analysis, RASi use was associated with longer OS in 

pancreatic cancer patients with resected primary tumors (median OS, 36.3 versus 19.3 

months) and locally advanced tumors (median OS, 11.3 versus 9.3 months) but not in 

metastatic patients. To obtain mechanistic insights, we performed RNA sequencing 

expression profiling of prospectively collected cancer treatment–naïve pancreatic cancer 

samples (four lisinopril-treated patients versus four controls). Our data suggest that 

lisinopril, which was the most commonly used ACEi in our cohort, normalized the ECM, 

down-regulated genes involved in cancer progression (such as Wnt and Notch signaling), 

and up-regulated genes associated with the activity of T cells and antigen-presenting cells. In 

addition, we identified a predictive gene signature for RASi-mediated survival, which was 

validated in two publicly available cohorts (24). A recently published meta-analysis pooling 

data on different solid tumor types (192) showed that the use of ACEi or ARB was 

associated with improved DFS and OS. After pooling studies that were classified as early 

(I/II) or advanced (III/IV) stage-dominant, the association with DFS remained significant in 

both stages (P = 0.04 and P = 0.03, respectively); a positive association with OS was only 

observed in advanced tumor stage (192).

Finally, HCC usually develops in patients with underlying liver fibrosis/cirrhosis (193). The 

peritumoral liver tissue and the severity of liver dysfunction determine prognosis of HCC, 

and complications of cirrhosis (portal hypertension and variceal bleeding) are a common 

cause of death in patients with HCC (193). The AngII/AT1R axis plays a crucial role in the 

pathophysiology of liver cirrhosis (194), and RASi can improve both liver fibrosis (195) and 

portal hypertension (196). These effects, in addition to the direct antitumor effects of RASi, 

may also contribute to the improved outcome observed in HCC patients treated with RASi 

(125, 126, 159, 164, 173).

CONCLUSIONS

Preclinical studies have provided compelling evidence that the AngII/AT1R axis regulates 

almost all hallmarks of cancer. RASi can directly attenuate tumor growth and dissemination 

and improve the efficacy of systemic therapies by increasing drug delivery to the tumor 

tissue. The latter should help to reduce the dose of CHT and immunotherapy without 

decreasing the benefit and consequently decrease the anticancer therapy–induced side 

effects.

It is also clear that AngII/AT1R signaling contributes to the immunosuppressive tumor 

microenvironment in multiple ways. The immunosuppressive milieu is a major barrier for 

immunotherapy and may explain why immune checkpoint inhibitors have failed in some 

tumor types, such as PDAC, and have benefited only a fraction of patients in other 

indications where these agents are approved. Studies have shown that AT1R inhibition can 

decrease infiltration of immunosuppressive cell types and increase the number of effector T 

cells. This could also help to reduce the dose of immunotherapy without lowering drug 

efficacy, eventually resulting in a decreased number of severe immunotherapy-induced side 
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effects. Although not yet studied in the context of tumor immunity, the AngII/AT1R axis is 

also important for the maturation of immune effector cells.

Multiple clinical studies have also revealed that RASi may have beneficial effects in a broad 

range of malignancies. The gain in survival is tumor type– and stage-dependent and ranged 

from 3 months (advanced NSCLC) to more than 25 months (metastatic RCC) in 

retrospective studies. However, response to RASi treatment may not only vary with tumor 

types but also depend on certain tumor characteristics, cancer treatment, and RASi type and 

dosing. More precisely, RCC, HCC, PDAC, glioblastoma, urinary tract cancer, and NSCLC 

seem to belong to the responsive tumor types, whereas breast cancer is rather unresponsive 

to RASi. With respect to cancer treatment, RASi use was associated with better outcomes in 

patients with NSCLC, gastric cancer, and CRC who received platinum-based CHT and in 

those with RCC, HCC, and CRC treated with anti-VEGF therapy (for example, sunitinib). 

More data are needed for other tumor types, such as melanoma, thyroid cancer, head and 

neck cancer, and hematologic malignancies.

Because the clinical evidence largely came from retrospective studies and small prospective 

pilot trials, these findings should be considered as hypothesis-generating. However, given 

the large amount of preclinical and clinical data suggesting a beneficial effect of RASi in 

different cancer types, we propose that RASis have a great potential to become an adjunct 

within the oncological armamentarium. Ongoing trials testing whether RASi can improve 

the antitumor effect of certain anticancer treatments are listed in table S4.

Future perspectives and translational challenges

Advancing the promising strategy to reprogram the tumor micro-environment with RASi to 

enhance anticancer treatment will require a close interplay between basic and clinical 

research and addressing a number of outstanding questions. Preclinical research should 

combine immune checkpoint inhibitors or other immunotherapy approaches with RASi to 

confirm whether RASis have the potential to reprogram the immunosuppressive 

microenvironment and eventually render tumors more sensitive to immunotherapies. In 

addition, mechanistic studies should not only focus on effects of RASi on the tumor stroma 

but also investigate treatment-related changes within immune cell populations in the bone 

marrow and lymphoid organs. This will help to better understand the role of the RAS in 

cancer immunity.

Moreover, clinical pilot studies focusing on biological readouts—such as intratumoral ECM 

deposition, immune cell infiltration, and drug distribution—should be designed to confirm 

the available preclinical data and to pave the way for large randomized controlled efficacy 

trials. These studies should seek to identify those patients who may benefit most from 

concomitant RASi use. Such personalized approaches require a tight integration between 

measurements of various biomarkers—circulating (profibrotic molecules, immune cells, and 

chemokines), tissue (profibrotic molecules, collagen, and HA), and imaging (perfusion, 

oxygenation, and drug distribution)—and the treatment outcome (197). Assessing the 

intratumoral expression of the components of the RAS may also have the potential to predict 

response to RASi treatment.
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Finally, the beneficial response of tumors to RASi is dose-dependent. For example, the 

collagen content of desmoplastic tumors decreases with an increasing dose of ARBs (42). 

However, increasing the dose can cause hypotension and other adverse effects. One potential 

solution to this challenge is to develop nanoformulations of RASi that will preferentially 

deliver RASi to the tumor microenvironment. Addressing these issues and challenges will 

unravel the complexity of RAS signaling and its role in different malignancies and enable 

development of new strategies to deliver RASi to tumors in safe doses with an even better 

outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The RAS is a complex system whose bioactive peptides signal through different receptors
Angiotensinogen (AGT), generated and released into circulation by the liver, is hydrolyzed 

by renin, a product of the kidneys’ juxtaglomerular cells, to form AngI. AngI is then 

hydrolyzed by ACE, predominantly expressed by endothelial cells in the vascular territory of 

the lungs, to form the biologically active AngII. In addition to AngII, other truncated 

bioactive peptides have been identified, such as AngIII, AngIV, Ang(1–7), Ang(1–9), AngA, 

and alamandine. AngII interacts with two seven-transmembrane receptors, AT1R and AT2R, 

both of which also mediate the effects of AngA. Ang(1–7) mainly acts via the MAS receptor 

(MASR), and alamandine binds and signals through MRGD (MAS-related G protein– 

coupled receptor D). IRAP (insulin-regulated membrane aminopeptidase; also known as 

AT4R) is a binding site for AngIV (1–7). APA, aminopeptidase A; APN, aminopeptidase N; 

DC, decarboxylase; MLDAD, mononuclear leukocyte-derived aspartate DC; NEP, neutral 

endopeptidase; PEP, prolyendopeptidase.
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Fig. 2. The AngII/AT1R axis regulates the tumor stroma and contributes to an 
immunosuppressive micro-environment
AngII/AT1R signaling can increase production and release of several proinflammatory 

cytokines in both tumor and stromal cells. Immunomodulatory cytokines regulate a myriad 

of immunosuppressive immune responses by modulating differentiation, recruitment, and 

function of both myeloid and lymphoid immune cell types (4, 43, 44). More precisely, these 

cytokines suppress the differentiation and function of immunostimulatory cell types [for 

example, TH (T helper) and CD8+ cells, NK cells, and dendritic cells] and activate 

recruitment and function of tumor-promoting cell types [such as Tregs, TH17 cells, TANs, 

TAMs (tumor-associated macrophages), and MDSCs (myeloid-derived suppressor cells)]. 

Fibroblasts are a major source of cytokines and also play a key role in establishing a 

desmoplastic stroma by production and deposition of ECM. The dense tumor fibrosis 

represents a physical barrier to immune cell infiltration (45) and compresses blood vessels 

by increasing tissue stiffness and solid stress. The reduced tumor perfusion results in a 

hypoxic and acidic milieu, which further promotes immunosuppression (46–48). Vascular 

endothelial growth factor (VEGF)–induced vascular leakiness (48) and AngII-mediated 
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vasoconstriction (76, 77, 80) further impair tumor perfusion and aggravate hypoxia. GM-

CSF, granulocyte-macrophage colony-stimulating factor. PGE2, prostaglandin E2.
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Fig. 3. Tumor hypoxia and acidosis promote immunosuppression
AngII/AT1R-mediated effects on tumor vas-culature (shown in Fig. 2) can impair tumor 

perfusion and oxygenation, resulting in hypoxia and acidosis within the tumor stroma. The 

resulting up-regulation of various cytokines, growth factors, and transcription factors 

[including HIF (hypoxia-inducible factor), VEGF, and TGF-β] enhances an 

immunosuppressive microenvironment, characterized by impaired T and dendritic cell 

function, accumulation of immunosuppressive cell types (M2-like macrophages, MDSCs, 

and Tregs), and increased expression of inhibitory immune checkpoint molecules such as 

PD-L1 in tumor and immune cell types (48–50, 68). Ang-2, angiopoietin-2; CCL, CC 

chemokine ligand; CTLA-4, cytotoxic T lymphocyte–associated protein 4; SDF, stromal 

cell–derived factor.
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