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Abstract

Purpose—Recent studies demonstrate that whole-genome sequencing (WGS) enables detection 

of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as 

balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic 

methods. We aimed to assess our analytical tool for detecting BCAs in The 1000 Genomes Project 

without knowing affected bands.

Methods—The 1000 Genomes Project provides an unprecedented integrated map of structural 

variants in phenotypically normal subjects, but there is no information on potential inclusion of 

subjects with apparently BCAs akin to those traditionally detected in diagnostic cytogenetics 

laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project 

with sufficient physical coverage (8.25-fold).

Results—Our approach detected four reciprocal balanced translocations and four inversions 

ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and 

PCR studies. One of DNAs has a subtle translocation that is not readily identified by chromosome 

analysis due to similar banding patterns and size of exchanged segments, and another results in 

disruption of all transcripts of an OMIM gene.

Conclusions—Our study demonstrates the extension of utilizing low-coverage WGS for 

unbiased detection of BCAs including translocations and inversions previously unknown in the 

1000 Genomes Project.

Keywords

balanced chromosomal rearrangement; the 1000 Genomes Project; G-banded chromosome 
analysis; low-pass whole-genome sequencing

Introduction

A balanced chromosomal rearrangement (or abnormality, BCA) is a type of chromosomal 

structural variant (SV) involving chromosomal rearrangements (e.g., translocations, 

inversions and insertions) without cytogenetically apparent gain or loss of chromatin. The 

incidence of balanced translocations has been estimated to range from 1/500 to 1/625 in the 

general population1–3 and the prevalence is well known to be increased in individuals with 

clinical anomalies4–7. Based on the association of increased prevalence with abnormal 
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clinical phenotypes, studies of BCA such as in the Developmental Genome Anatomy Project 

(DGAP)5,6,8,9 among others7,10 have a high yield in identification of genetic disease due to 

gene disruption or dysregulation.

Current high-resolution methods (i.e., chromosomal microarray analysis and whole exome 

sequencing) are generally insensitive to BCA that are unaccompanied by sizable genomic 

imbalances. Thus, detection of BCA relies on conventional cytogenetic methods (i.e., G-

banded karyotyping), which are limited to microscopic resolution (~3–10 Mb). More 

recently, whole-genome sequencing (WGS) using paired-end analysis has enabled molecular 

delineation of the breakpoints of BCA at base-pair resolution but has been tested and 

validated only in DNA samples harboring previously recognized BCAs.

By utilizing WGS (mean 7.4-fold base-coverage) and orthogonal techniques (i.e., long-read 

single-molecule sequencing), the 1000 Genomes Project establishes the most detailed 

catalogue of human genetic variation, which in turn can be used for association studies 

relating genetic variation to disease. It provides an unprecedented integrated map of SVs 

from 2,054 individuals, including copy-number variants, inversions (< 50 kb) and 

insertions11,12, and serves as an indispensable reference for geographic and functional 

studies of human genetic variation. However, no information was available on the frequency 

of balanced translocations or inversions (> 50 kb in size) in this resource of participants who 

were healthy at the time of enrollment. Our previous pilot study has shown the feasibility of 

detecting BCA with low-pass (or low-coverage) paired-end WGS in a blinded fashion13. In 

the present study, we apply our analytical tool to WGS data released by the 1000 Genomes 

Project11.

Materials and Methods

WGS data from the 1000 Genomes Project

Alignment files from 2,504 presumably healthy individuals were downloaded from the 1000 

Genomes Project. Assessment of data quality and further analysis was processed for each 

individual independently.

Minimum physical coverage requirement used in this study

As shown in our previous study13, the minimum read-pair count was used to avoid false 

negative detection of BCA. This minimum number of read-pairs in a small-insert library 

(400 to 600 bp) was estimated as 120 million (50 bp), which is equivalent to 4-fold base 

coverage from whole-genome sequencing. However, read length (35 to 100 bp) and insert 

size (200 to 600 bp, Figure 1A) were varied among samples from the 1000 Genomes 

Project11. Therefore, physical coverage14 was used as the required selection criteria instead 

of the number of read-pairs (Figure 1B).

We defined a chimeric read-pair if two ends aligned to different chromosomes 

(interchromosomal) or to the same chromosome (intrachromosomal) with an aligned 

distance larger than 10 kb13,15. Physical coverage was estimated by counting the aligned 

distances from the non-chimeric and uniquely mapped read-pairs13. In the present study, the 

minimum physical coverage of 8.25-fold, estimated based on 90 million read-pairs (data 
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from our previous pilot study)13, was set to maximize inclusion of 1,166 out of 2,504 

samples (Supplementary Table 1). This was based on: (1) only 616 out of 2,504 samples 

available for this study with 11-fold physical coverage (estimated based on 120 million read-

pairs), and (2) an increase in the false negative detection rate in our previous study from 

11.1% (1/9) with 90 million read-pairs to 33.3% (3/9) with only 60 million read-pairs13.

Data quality control and BCA detection

We filtered out low-quality reads (≥ 4% of mismatch rates) and extracted uniquely aligned 

reads in both ends for further analysis. Detection of chromosomal rearrangement is based on 

a four-step procedure described in our previous study13: briefly, (1) Event clustering: 

chimeric read-pairs were clustered by sorting the aligned coordinates (GRCh37/hg19) and 

any two read-pairs were considered to represent two distinct events if they were separated by 

a distance of >10 kb; (2) Systematic error filtering: Each event was filtered against a control 

dataset, which was built up by using the events from all the 2,504 samples, and a false 

positive was filtered out if it was identified in more >5% subjects; (3) Random error 

filtering: Event was filtered with a cluster property matrix (i.e., supporting read-pair amount 

and the average number of mismatches) with the reported parameters; and (4) Aligned 

orientations: each event was filtered based on q/p arm genetic exchange (joining type). As 

some of the samples were with short read lengths (i.e., 35 bp), we further used Sanger 

sequencing results to fine map the ligated sequences ate the breakpoints.

Chromosome analysis and FISH validation

Epstein-Barr virus (EBV)-transformed B lymphoblastoid (EBV-B) cell lines were obtained 

from the Coriell Institute (Camden, NJ) for validation. G-banded chromosome analysis was 

performed using standard protocols for more than 100 cells in each EBV-B cell line16. 

Fluorescence in situ hybridization (FISH) was performed for NA18612 using standard 

procedures with BAC clones labeled by nick translation with SpectrumOrange or 

SpectrumRed, SpectrumGreen dUTP (Abbott Molecular, Des Plaines, IL)16,17. BAC clones 

were selected from the UCSC Genome Browser.

Molecular validation of balanced rearrangements

For samples with translocations and available EBV-B cell lines, genomic DNA was extracted 

using a commercial DNA extraction kit (Puregene; Qiagen, Hilden, Germany). For samples 

identified with submicroscopic inversions, DNAs were obtained from the Coriell Institute 

(Camden). Each DNA was quantified subsequently with the Qubit dsDNA HS Assay Kit 

(Invitrogen, Life Technologies, Waltham, MA) for DNA quality measurement.

Genomic reference sequences (GRCh37/hg19) at a 1 kb distance from each putative 

breakpoint region (both upstream and downstream) were used for primer design with 

Primer3 Web and NCBI Primer-Blast (Supplementary Table 2). PCR amplification was 

performed simultaneously in cases and control (DNA from YH, a well-characterized normal 

EBV-B cell line18). PCR products were sequenced by Sanger sequencing on an ABI 3730 

machine (Applied Biosystems, Thermo Fisher Scientific Inc, Wilmington, DE)8,13,19 and 

sequencing results were aligned with BLAT for further confirmation of the balanced 

rearrangement and for mapping breakpoints at single nucleotide level.
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RNA preparation, library construction and sequencing

Total RNA was extracted from each EBV-B cell line with a balanced translocation using 

TRIzol Reagent (Invitrogen) according to the manufacturer’s instructions, and subsequently 

treated with DNase I (Invitrogen)20. For each RNA sample, purity was evaluated with a 

Nano-Photometer spectrophotometer (Implen, Westlake Village, CA), concentration 

measured in a Qubit 2.0 Fluorometer (Life Technologies), and RNA integrity verified using 

an Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA).

For library construction, mRNA enrichment was performed with Oligo(dT)25 Dynabeads 

(Thermo Fisher Scientific) twice and purification was carried out with the Dynabeads® 

mRNA Purification Kit (Invitrogen, No. 61006). The eluted mRNA was fragmented with 

Fragmentation Buffer Mix at 94℃ for 10 min. Reverse transcription (RT) was performed 

with RT Buffer Mix and RT Enzyme Mix followed by double strand cDNA (dscDNA) 

synthesis with Second Strand Buffer Mix and Second Strand Enzyme Mix. End repair, 

adaptor (with barcode) ligation and PCR amplification were performed after dscDNA 

purification. Then, the purified double stranded PCR products were heat denatured to single 

strand and circularized with Splint Oligo Mix and Ligation Enzyme. The single strand circle 

DNA (ssCirc DNA) library was rolling circle amplified for constructing the DNA nanoball 

(DNB), which was substantially loaded into a patterned nanoarray. Paired-end sequencing 

with 50 bp in each end (PE50) was carried out in a BGISeq-500 platform (BGI, Wuhan, 

China)21.

RNA-seq data analysis

Paired-reads that passed standard quality control13,15 were simultaneously aligned to the 

human genome (GRCh37/hg19) using HISAT (Hierarchical Indexing for Spliced Alignment 

of Transcripts)22, and aligned to human transcriptome (RefSeq) via Bowtie23. One base-pair 

mismatch was set in each alignment. Paired-end aligned reads were used for further analysis. 

Alignment files were transformed into Pileup files for determination of coverage with 

Samtools (mpileup). Expression of each gene in each sample was determined based on 

alignment files from the human transcriptome (RefSeq).

Gene expression of each sample was compared to data reported for 13 EBV-B controls 

present in the Genotype-Tissue Expression (GTEx) project24.

Validation of cryptic deletions

Quantitative PCR (qPCR) was performed for validation of the two cryptic deletions. 

Genomic reference sequences (GRCh37/hg19) of each deleted region were used for primer 

design with Primer3 Web and NCBI Primer-Blast (Supplementary Table 2). Melting curve 

analysis was carried out for each pair of primers to ensure specificity of the PCR 

amplification, and the standard curve method was used to determine PCR efficiency (within 

a range from 95% to 105%).

Each reaction was performed in quadruplicate in 10 μl of reaction mixture simultaneously in 

cases and control (DNA from YH EBV-B cell line13) on a StepOnePlus Real-Time PCR 

System (Applied Biosystems) with SYBR Premix Ex Taq Tli RNaseH Plus (Takara 
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Biotechnology Co., Ltd., Dalian, Liaoning, China) with the default setting of the reaction 

condition. The number of copies in each sample was determined by using the ΔΔCt method 

that compared the Ct (cycle threshold) in case to control25. Two independent pairs of 

primers (Supplementary Table 2) were used in quintuplicate for validation of each deletion.

Accession Number

The accession number for the RNA-seq data reported in this paper is GSE94043 (NCBI 

Gene Expression Omnibus).

Code availability

All the programs relevant to this pipeline are available at https://sourceforge.net/projects/

bca-analysis/files/BCA.tar.gz/download.

Results

We assessed 1,166 samples with at least 8.25-fold physical coverage (Supplementary Table 

1) using our reported approach with the same parameters13. Four samples (HG02260, 

HG03729, NA18612 and NA20764) were identified to harbor balanced translocations 

(Figures 1A), and four samples (NA20759, HG04152, NA18959 and NA21133) were with 

inversions, the size of which ranged from 57.8 kb to 13.3 Mb (Figures 1A). Among the four 

cases with balanced translocations, two are female and two are male and they originate from 

different ethnic populations (Table 1)11. For the four cases with inversions, all are males and 

also originate from different ethnic populations (Table 2).

G-banded karyotypes were observed to be directly consistent with the WGS data for samples 

HG02260, HG03729, NA20764 and NA20759 (Figure 1B–E), and those of NA18612 were 

consistent but much less obvious (Figure 2A, described below). Sanger results confirmed 

each rearrangement in all eight samples with BCAs (Tables 1, 2, next-generation cytogenetic 

nomenclature26 shown in Supplemental Table 3). Microhomology sequences were identified 

in eight of 16 breakpoints suggesting the rearrangements were mediated by microhomology-

mediated end joining (MMEJ)27 (Tables 1, 2). The remaining eight breakpoints represented 

non-homologous end joining (NHEJ)28 (Tables 1, 2).

Subtle balanced translocation identified by WGS

Breakpoints of the t(16;17)(q23.1;q24.2) (NA18612, Figure 2B) were located in bands 

16q23.1 and 17q24.2, representing translocated segments of 15.0 Mb and 16.2 Mb, 

respectively. Due to similarity in the G-banding pattern and size of the exchanged segments, 

chromosome analysis did not readily identify the translocation (Figure 2A). Therefore, 

metaphase FISH17 was performed using BAC probes (SpectrumOrange: RP11-7D23 at 

16q24.3, SpectrumGreen: RP11-526M7 at 17q25.1 and SpectrumRed: RP11-135N5 at 

17p13.3) in more than 100 cells confirming the t(16;17) (Figure 2C).

Gene disruptions by the breakpoints of balanced translocations

Among the four cell lines with balanced translocations, the eight breakpoints disrupted six 

genes (Table 1, Figures 2D, 2E, 3A, and 3B), four of which resulted in disruption of all 
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transcripts in the derivative chromosomes of the breakpoints. In contrast, none of the 

breakpoints from the four cases with inversions disrupted any gene (Table 2).

The breakpoint in seq[GRCh37/hg19] 16q23.1(75,336,134_75,336,138) (NA18612, Figure 

2D) disrupts the gene encoding craniofacial development protein 1 (CFDP1, NM_006324), 

resulting in aberrant splicing of intron 6 and absence of expression of exon 7. This 

disruption is supported by observation of RNA-seq reads mapping in the non-exonic region 

(Figure 2D) and decreased expression of exon 7 (Figure 2E). Although CFDP1 has been 

reported to be necessary for cell survival and differentiation during tooth morphogenesis in 

organ culture29, it is unlikely to be haploinsufficient [Haploinsufficiency score 

(HI)=14.9%]30.

In contrast, the seq[GRCh37/hg19] 14q31.1(79,839,173_79,839,174) breakpoint of 

46,XX,t(9;14)(q34.2;q31.1) (HG02260) (Figure 3A) disrupts all transcripts of neurexin 3 

(NRXN3), which is likely to be haploinsufficient (HI=0.3%)30. However, expression of 

NRXN3 was not detectable among any of the EBV-B cell lines including cases and controls 

(Figure 3C)24.

Cryptic deletions

The 3q24 breakpoint of 46,XY,t(3;17)(q24;p13.3) (HG03729) was found to include a 5.2 kb 

deletion, seq[GRCh37/hg19] 3q24(143,817,430_143,822,651)x1, while the 17p13.3 

breakpoint has a 4.4 kb deletion, seq[GRCh37/hg19] 17p13.3(2,910,366_2,914,751)x1 

(Table 1, Figure 3D and 3E). Neither deletion was reported previously11 and both were 

confirmed by quantitative PCR (Figure 3D and 3E).

Positional effects

Previous studies show that genes in proximity to the breakpoints of a structural variant (i.e., 

balanced translocation) may be mis-expressed, which is defined as a positional effect5. One 

mechanism for a positional effect is the disruption of topological associated domains (TADs) 

by the SV’s breakpoints6,9,31. Here, we used boundaries predicted from the human IMR90 

fibroblast cell line (GRCh37/hg19)31 for our study, as TADs are highly conserved across 

different cell types and across species32.

Eight TADs were disrupted by the breakpoints from the four translocations. Thirty-four 

genes are located in these eight disrupted TADs, and expression was observed in 16 of these 

genes in normal EBV-B cell lines (Supplemental Table 4). However, mis-expression was not 

observed in any of these 34 genes from our RNA-seq data (Supplemental Table 4), even 

though two of these genes are predicted to be likely haploinsufficient (Supplemental Table 

4). By using the published ChIP-seq data from Encyclopedia of DNA Elements 

(ENCODE)33 in EBV-B cell line GM12878, 22 of the 34 genes have a candidate promoter 

(indicated by H3K4Me3) near to a potential active regulatory element (indicated by 

H3K27Ac)31,33. In addition, from the accessible chromatin landscape34, 19 of the 34 genes 

have highly associated DNA I hypersensitive sites (DHSs) and each of them has at least one 

DHS located in the same partial TAD as the gene and the predicted promoter.
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The breakpoint in seq[GRCh37/hg19] 17q24.2(64,953,078_64,953,079) is likely to be 

located between the CACNG4 promoter (indicated by H3K4Me3) and its potential enhancer 

[indicated by H3K27Ac31,33 and DHSs34, Figure 3F] in a human embryonic stem cell line 

(H1-hESC)33. These data suggest that the translocation would likely result in disruption of 

the interaction between the promoter and enhancer for CACNG432 in this particular cell line. 

However, mis-expression of CACNG4 was not observed in our RNA-seq data from EBV-B 

cell line (Figure 3G). Both the candidate promoter and enhancer for CACNG4 were likely 

located downstream of the breakpoint33 in EBV-B cell line GM12878 (control EBV-B cell 

line, Figure 3F).

Discussion

Balanced chromosomal abnormalities including translocations and inversions, known to 

cause reproductive problems and/or an abnormal phenotype, currently are mainly detected 

by G-banded chromosome analysis. However, subtle or cryptic BCAs are not detectable by 

current methods but may contribute to birth defects in offspring of the carriers due to 

unbalanced segregations35. In the present study, by utilizing existing genomic data from the 

1000 Genomes Project, we demonstrate the feasibility of using WGS in the detection of 

BCAs in samples without prior knowledge of their existence.

In the present study, we set a cutoff of 8.25-fold physical coverage to maximize the inclusion 

of 1,166 samples out of 2,504 based on the evaluation of the false negative rate in our 

previous study (11.1% with 90 million read-pairs with insert sizes ranging from 400 to 600 

bp)13. The exclusion of more than half of all samples (n=1,338) is because of the smaller 

insert size generated (259.1±93.5 bp, Figure 1A); the number of non-chimeric and uniquely 

mapped read-pairs was 97.0±40.2 millions, although the base-coverage reached 7.4-fold on 

average. This indicates that better performance of detecting BCA can be achieved by using 

larger insert sizes to increase physical coverage, thus, increasing the number of supporting 

read-pairs for the potential BCAs.

The prevalence of reciprocal balanced translocations in this dataset is one in 291.5 (0.34%, 

4/1,166), which is higher than the rate reported estimated by G-banded chromosome 

analysis1–3. This estimate may be biased due to the limited sample size (N=1,166). However, 

the reported incidences may be underestimated as cryptic or subtle rearrangements, such as 

that observed for 46,XY,t(16;17)(q23.1;q24.2) (NA18612) may not be readily identified by 

conventional G-banded chromosome analysis (Figure 3). Another explanation might be that 

the detection of rearrangements was based on WGS of EBV-B cell line-derived DNAs, 

which might have EBV-B specific genomic variants owing to the introduction of genomic 

instability by EBV infection or the conditions of cell culture36. However, as the EBV-B 

specific genomic variants frequently exist as mosaics36, giving the 100% consistency of 

more than 100 metaphases in each sample in the present study and the WGS data of these 

samples used for our analysis were generated from early batches of EBV-Bs in the 1000 

Genomes Project, balanced translocations detected probably represent the true events in the 

subjects’ peripheral blood samples. Nonetheless, our approach reports the true events 

existing in the tested EBV-B cell lines.
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In addition to the detection of balanced translocations, the microscopic inversion and three 

submicroscopic inversions identified (Table 2) were each unique to a single subject among 

all 1,166 samples analyzed. One explanation for not identifying common or recurrent 

inversions is that they may be mediated by repetitive elements28, for which sequencing with 

small-insert library might not be able to detect37. Sequencing with mate-pair library (or large 

insert library) might be able to overcome such challenge and can also largely reduce the 

sequencing cost by reducing the read-pair amount required13,19. Nonetheless, the 

identification of both balanced translocations and inversions underscores the importance of 

using low-pass WGS for nucleotide level precision of chromosomal rearrangements in 

cytogenetic diagnoses, and brings the future of implementing sequencing a step closer as the 

first tier test.

Gene disruptions were observed in six out of the eight breakpoints in four cases with 

balanced translocations, and NRXN3, a likely haploinsufficient gene, was disrupted 

(HG02260). Heterozygous deletion of NRXN3 is reported in autism spectrum disorder 

(ASD)38. Although this participant in the 1000 Genomes Project is assumed to be healthy at 

the time of enrollment, a possible explanation for the absence of ASD in this presumably 

normal individual would be lack of penetrance38 in the absence of a positive comprehensive 

medical assessment or some technical failure in the process.

Two cryptic deletions involving both breakpoints were identified in t(3;17)(q24;p13.3) 

(HG03729) and neither of them were reported previously11. Two possible reasons for missed 

detection in the previous study11 are: (1) only a limited number of reads mapping in these 

regions (Figure 3D and 3E) resulting in read-depth differences insufficiently sensitive for 

identification, and (2) absence of intra-chromosomal aligned read-pairs supporting these two 

deletions. Genomic imbalance commonly involves the breakpoint of balanced translocations 

and some of them are known to be pathogenic or likely pathogenic6, thus, indicating the 

importance of identification.

No aberration in gene expression resulted from a positional effect, such as disruption of 

TADs as observed in our EBV-B cell line-derived RNA-seq data from four cases with 

balanced translocations. One explanation is that expression was only observed in 16 out of 

the 34 genes in normal EBV-B (Supplemental Table 4), and an effect of dysregulated lower 

expression cannot be detected for genes without detectable expression in the EBV-B cell 

lines24. In addition, another reason would be the proximate interaction between promoter 

and enhancer: (1) 22 of the 34 genes have a candidate promoter near to a potential active 

regulatory element31,33; and (2) 19 of the 34 genes have highly associated DHSs34, and each 

of them has at least one DHS located in the same partial TAD as the gene and the predicted 

promoter, indicating some residual interactions remains between promoter and regulatory 

elements, thus, the disruption of TADs is likely insufficient to alter the gene expression. As 

data from RNA expression provides evidence for confirming potential effects attributed to a 

chromosomal rearrangement, it indicates the importance of combining RNA expression 

analysis with identification of BCAs based on DNA samples for clinical interpretation.

We observed a potential disruption of an interaction between the promoter and an enhancer 

for the 17q24.2 breakpoint (NA18612) in H1-hESC, which serves as a reference for disease 
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association prediction31. However, mis-expression of CACNG4 was not observed in our 

RNA-seq data from the EBV-B cell line (Figure 3G). One explanation is that both the 

candidate promoter and enhancer for CACNG4 are likely located downstream of the 

breakpoint33 in the EBV-B cell lines (GM12878, Figure 3F). As another sample type from 

this subject is not obtainable for further validation, this argues the common usage of 

peripheral blood as a valuable sample type for disease studies beyond its simple availability.

Overall, this study is the first reported investigation utilizing low-pass WGS to explore 

detection of BCAs among samples from the 1000 Genome Project without prior knowledge 

of a chromosomal abnormality. In addition, disruption of gene, cryptic imbalances and 

potential disruption of promoter and enhancer interaction were observed in the four cases 

with balanced translocations, demonstrating the advantage of detecting the breakpoints in 

BCAs by molecular methods via paired-end sequencing and Sanger sequencing, and has 

important implications for a new dawn of improved diagnostics in clinical cytogenetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Spectrum of inter- and intra-chromosomal balanced rearrangements and cytogenetic 
validations
Distributions of the average insert sizes and read-pair amounts of 2,504 samples from the 

1000 Genomes Project are shown in (A) and (B), respectively. Insert size and read-pair 

amounts were calculated based on non-chimeric and uniquely mapped read-pairs. (C) 
Spectrum of BCAs. Balanced translocations are indicated with red lines and the 

corresponding sample IDs are shown in red font in each affected chromosome in the outmost 

circle. Inversions are indicated in blue lines and sample IDs are shown in blue font. 

Chromosomal nucleotide positions and bands are shown according to the UCSC Genome 

Viewer Table Browser. In figures (D), (E) and (F), validation of balanced translocations and 

inversion (G) by G-banded chromosome analysis are shown. Ideograms of the balanced 

rearrangements are shown on the left, while the karyogram images are to the right with the 

corresponding ideogram of the derivative chromosomes for reference. Breakpoint regions 
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are indicated with red arrows. Sample name and the International System for Human 

Cytogenomic Nomenclature (ISCN) description are shown below each.
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Figure 2. A subtle translocation t(16;17)(q23.1;q24.2) (NA18612) and the aberrant splicing of 
intron 6 of CFDP1 (NM_006324)
(A) Validation from chromosome analysis. Ideograms of the derivative balanced 

translocation chromosomes are shown with the corresponding G-banded chromosome pairs. 

Breakpoint regions are indicated with red arrows. (B) PCR validation of the junction of 

DNA sequences from the two derivative chromosomes indicated by red arrows while absent 

in the negative control. (C) Validation from FISH. BAC probes are shown with the targeted 

bands (16q24.3 in SpectrumOrange, 17p13.3 in SpectrumRed and 17q25.1 in 

SpectrumGreen, respectively). Derivative chromosomes and normal chromosomes are 

designated with arrows. (D) In the der(17), the genomic location of anti-sense gene CFDP1 
(NM_006324) is shown with the breakpoint mapping in intron 6 (red dotted line). RNA-seq 

read-pairs align to the region (expressed as coverage) proximal to the breakpoint in 

seq[GRCh37/hg19] 16q23.1(75,336,134_75,336,138). It includes the intergenic region in 

17q24.2 and the partial intron 6 of CFDP1 (NM_006324) in 16q23.1 (two grey dotted lines), 

indicating the aberrant splicing of intron 6. (E) Transcript coverage was plotted with the 

paired-end aligned reads (RNA-seq). The coverage of each coordinate is divided by the 

average coverage in this transcript, and subsequently normalized coverage with the average 

coverage from the other three EBV-B cell lines from the 1000 Genomes Project. Black arrow 

indicates low expression in exon 7 that is the absence of exon 7 in the disrupted transcript.
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Figure 3. Gene disruption, cryptic deletions and potential disruption of interaction between 
promoter and enhancer by the breakpoints of balanced translocations
Figures (A), (B) and (C) NRXN3 disruption in 46,XX,t(9;14)(q34.2;q31.1) (HG02260). (A) 
and (B) Genomic locations of NRXN3 and RXRA are shown with breakpoints indicated by 

red dotted lines. (C)NRXN3 and RXRA expression for the four cases from the 1000 

Genomes Project and for 13 reported EBV-B normal control cell lines (the GTEx project). 

Gene expression for NRXN3 and RXRA in HG02260 are indicated with red arrows. Figures 

(D) and (E) cryptic deletions involved at the breakpoints in translocation 46,XY,t(3;17)
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(q24;p13.3) (HG03729). Two cryptic deletions of seq[GRCh37/hg19] 

3q24(143,817,430_143,822,651)×1 and seq[GRCh37/hg19] 17p13.3(2,910,366_2,914,751)

×1 were detected by read-depth difference algorithm and were further confirmed by 

quantitative PCR. The deleted regions are shown in a yellow background with a red arrow 

while the normal copy-ratio (diploid) is shown in a blue background with a blue arrow. Two 

independent pairs of primers (Supplementary Table 2) were used to perform qPCR in 

quintuplicate for validation of each deletion. The bars in cyan show the relative 

quantification of HG03729, while the bars in blue indicate the negative control. Figures (F) 
and (G) potential disruption of interaction between promoter and enhancer from 

rearrangement in 46,XY,t(16;17)(q23.1;q24.2) (NA18612) in H1-hESC. (F) Genes and the 

ChIP-seq data from the ENCODE Project are shown in terms of the genomic location. Each 

cell line with the ChIP-seq data (i.e., H3K4Me3 and H3K27Ac)33 is labeled with a red 

arrow. Breakpoint in seq[GRCh37/hg19] 17q24.2(64,953,078_64,953,079) is shown by a 

green vertical line, while the candidate promoters and enhancers are indicated with orange 

and blue arrows, respectively. The region of potential enhancer in H1-hESC is highlighted in 

DNase I Hypersensitivity Clusters34 in a blue rectangle (DHS region). The figure below is 

zoomed in on the potential enhancer region in H1-hESC. Enrichment of H3K4Me1 and 

absence of H3K4Me3 support a potential active enhancer in this region33,39, while 

enrichment of DNA-binding sequence motifs also indicates the candidate region of the 

interaction for regulatory elements33. (G) Gene expression level (Read Per Kilobase 

Million) of the four cases and 13 EBV-B normal control samples (GTEx project)24.
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