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ARTICLE

Genome-scale identification of transcription factors
that mediate an inflammatory network during
breast cellular transformation
Zhe Ji 1,2,4, Lizhi He1, Asaf Rotem1,2,5, Andreas Janzer1,6, Christine S. Cheng2,7, Aviv Regev2,3 & Kevin Struhl 1

Transient activation of Src oncoprotein in non-transformed, breast epithelial cells can initiate

an epigenetic switch to the stably transformed state via a positive feedback loop that involves

the inflammatory transcription factors STAT3 and NF-κB. Here, we develop an experimental

and computational pipeline that includes 1) a Bayesian network model (AccessTF) that

accurately predicts protein-bound DNA sequence motifs based on chromatin accessibility,

and 2) a scoring system (TFScore) that rank-orders transcription factors as candidates for

being important for a biological process. Genetic experiments validate TFScore and suggest

that more than 40 transcription factors contribute to the oncogenic state in this model.

Interestingly, individual depletion of several of these factors results in similar transcriptional

profiles, indicating that a complex and interconnected transcriptional network promotes a

stable oncogenic state. The combined experimental and computational pipeline represents a

general approach to comprehensively identify transcriptional regulators important for a

biological process.
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Transcriptional regulatory proteins that bind specific DNA
sequences are the major determinants for regulating gene
expression programs that determine cell state and beha-

vior1–3. It is therefore important to comprehensively identify the
transcription factors and transcriptional regulatory circuits
involved in dynamic biological processes and maintaining stable
cell states. Individual experimental approaches provide specific
types of information, but integration of the various datasets is
necessary for comprehensive understanding. There are only a few
examples in which transcription factors important for a biological
process and transcriptional regulatory connections have been
identified on a comprehensive basis4–8. None of these have been
performed in the context of cellular transformation or cancer.

Transcriptional activator or repressor proteins recruit co-
activator or co-repressor complexes to their target sites via
protein-protein interactions, thereby altering the level of tran-
scription by the general RNA polymerase II machinery9. Some
co-activator and co-repressor complexes are enzymes that locally
modify chromatin structure either by altering nucleosome posi-
tions, removing nucleosomes to generate accessible DNA, or
modifying histones at specific residues through acetylation and
methylation. Chromatin-modifying activities are important for
transcriptional regulation, but they are not the major determi-
nants of gene expression patterns due to their limited specificity
for genomic DNA sequences and their widespread presence in
different cell types. Nevertheless, locally altered chromatin
structures represent genomic regions of transcription factor
activity in vivo under the physiological conditions tested.

Accessible chromatin regions can be mapped on a genomic
scale by DNase I hypersensitivity10 or transposon-based ATAC-
seq11. Accessible regions are typically several hundred bp in
length, and they are generated by nucleosome-remodeling com-
plexes that are recruited by the combined action of multiple
DNA-binding (and associated) proteins that bind to motifs
within the accessible region. This combinatorial recruitment is
critical for biological specificity, because individual sequence
motifs are short and hence occur very frequently throughout large
mammalian genomes simply by chance12,13. Many DNase I
hypersensitive regions are promoters or enhancers; these are
distinguished by virtue of their proximity to the transcriptional
initiation site and by histone modifications (e.g., tri-methylated
H3-K4)14.

The above considerations make it possible to use genome-scale
chromatin accessibility maps to identify transcription factors that
regulate gene expression programs during biological progresses.
One approach is to search for sequence motifs enriched in dif-
ferentially accessible chromatin regions15,16. However, dynamic
chromatin accessibility and differential gene expression are not
always correlated, and many functionally important transcription
factors play a constitutive (i.e., non-regulated) role and will not be
identified by this approach. More directly, genome-scale DNase I
footprinting17,18 and transposon-based ATAC-seq11 can identify
genomic regions protected by bound proteins. However, these
footprinting maps require ~10 times more sequencing reads than
hypersensitivity maps, and hence are considerably more
expensive.

Transcription factors important in various biological contexts
have been identified by integrating chromatin accessibility or
footprinting analyses with gene expression profiles19–21. How-
ever, these previous integrative analyses did not comprehensively
evaluate transcription factors for their role in the biological
process of interest. Here, we develop an experimental and com-
putational pipeline to comprehensively identify transcription
factors and transcriptional regulatory circuits involved in a bio-
logical process. We apply this approach to an inducible model of
cellular transformation in which transient activation of v-Src

oncoprotein converts a non-transformed breast epithelial cell line
(MCF-10A) into a stably transformed state within 24 h22,23. This
epigenetic switch between stable non-transformed and trans-
formed states is mediated by an inflammatory positive feedback
loop involving the transcription factors NF-κB and STAT323,24. A
few transcriptional regulatory circuits involved in this transfor-
mation model have been identified, and these are important in
some other cancer cell types and human cancers24–27. However, a
comprehensive analysis of transcriptional circuitry involved in
this or any other model of cellular transformation has not been
described.

Using this approach, we show that >40 transcription factors are
important for transformation in this model system. Furthermore,
although these factors have different DNA-binding specificities,
they can affect the expression of a common set of genes. This
suggests that cellular transformation is mediated by a highly
interconnected transcriptional regulatory circuit that depends on
the combined inputs of many transcription factors.

Results
Transcriptional regulatory modules during transformation. To
improve our initial transcriptional profiling analysis22, we rea-
nalyzed mRNA expression profiles during the process of trans-
formation (0, 1, 2, 4, 8, 16, and 24 h time points in the presence of
tamoxifen, which induces v-Src; Fig. 1a). Approximately 700
genes are differentially expressed with >1.5-fold change con-
sistently in two biological replicates in at least one time-point
(False Discovery Rate <0.007). These genes form four coherent
clusters: continuously up-regulated; early up-regulated at 2 h;
intermediate up-regulated at 12 h; continuously down-regulated
(Fig. 1b). Principal component analysis indicates that the tran-
scriptional program gradually evolves during the transformation
process (Fig. 1c). As expected, differentially expressed genes are
enriched in pathways strongly associated with cancer progression
such as the inflammatory response, cell migration, angiogenesis,
regulation of apoptosis, and cell proliferation (Fig. 1d and Sup-
plementary Fig. 1).

Genome-scale mapping of transcriptional regulatory regions.
Genome-scale mapping of DNase hypersensitive sites (DNase-
seq)10 of cells at 0, 6, and 24 h after tamoxifen treatment reveals
~212,423 accessible regions (an example region is shown in
Fig. 2a). To further classify types of such regulatory regions14,28,
we performed ChIP-seq for 6 histone modifications at 0, 2, 12, 24,
and 36 h after tamoxifen treatment (Fig. 2a). These results indi-
cate that 12% of the open chromatin regions are located in active
promoters (H3-K27ac and H3-K4me3), 25% are in active
enhancers (H3-K27ac but no H3-K4me3), 19% are in primed
enhancers (H3-K4me1 but no H3-K27ac or H3-K4me3), 16% are
in heterochromatin (H3-K9me3) or polycomb-repressed regions
(H3-K27me3), and the remaining 28% uncharacterized based on
our histone modification analysis (Fig. 2b).

Chromatin accessibility and H3-K27ac levels are dynamically
regulated during the transformation process, while the levels of
various types of histone methylation are largely unchanged
(Fig. 2c). Open chromatin regions in enhancers and hetero-
chromatin are more likely to be dynamically regulated than open
regions in promoters, and 5 times as many genomic regions show
increased accessibility upon transformation as opposed to
decreased accessibility (Fig. 2d). Among open acetylated regions,
those showing increased accessibility during transformation tend
to be more acetylated (Fig. 2e). This suggests that many
chromatin changes are due to increased function of transcrip-
tional activator proteins bound at enhancers that recruit
nucleosome remodeler and histone acetylase complexes.
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Super-enhancer genes are preferentially activated. Super-
enhancers, previously termed dominant or local control
regions29, are large clusters of individual enhancers that typically
drive expression of genes defining cell identity30–32. Using the
ROSE software30–32 and ChIP-seq data for H3-K27ac, we iden-
tified 1050 super-enhancers in at least one time point at 0, 2, and
24 h after tamoxifen treatment (Fig. 2f and Supplementary
Data 1), most of which (85%) pre-exist in non-transformed cells.
367 super-enhancers (35%) show increased acetylation levels >1.5
fold after 24 h of cell transformation, whereas only 18 showed
>1.5 fold decreased acetylation (Supplementary Fig. 2a). Expres-
sion of the genes located in these activated super-enhancer
regions tend to be up-regulated upon transformation (Supple-
mentary Fig. 2b). Gene ontology analyses of genes located in the
super-enhancer regions are enriched in the oncogenic pathways,
such as cell migration, cell proliferation, intracellular signaling
cascade, angiogenesis and gene transcription (Supplementary
Fig. 3).

Bayesian network model to predict TF binding sites in vivo. As
DNase I hypersensitive regions are generated ultimately by
transcription factors bound (directly or indirectly) to DNA
sequences, motif analysis of these accessible regions is a
straightforward approach to identify the relevant transcription
factors. However, this approach involves arbitrary cut-off choices

for the quality of sequence motifs, it does not distinguish between
motifs at the center or edges of accessible regions, and it does not
account for different levels of accessibility. Here, we describe a
Bayesian Network model approach (AccessTF) that starts from all
known sequence motifs in the human genome to predict protein-
binding sites in vivo from DNase I hypersensitivity data.
AccessTF integrates quantitative DNase I hypersensitive mea-
surements with the following motif information: motif quality;
the distance to the closest transcription start site; conservation
among vertebrates (Fig. 3a, b). We define each motif to be in a
bound or unbound state, with a motif more likely to be bound if
located in a DNase hypersensitive region, has higher quality,
higher conservation level, and is more proximal to a transcription
start site (Fig. 3b). The Bayes algorithm is converged and calcu-
lates the probability that a motif is bound.

We tested the performance of the algorithm on binding sites
for AP-1 and STAT3, factors for which we have ChIP-seq data in
the same cell line33. The Area Under ROC Curve (ROC AUC) is
>0.95 for both factors, the Area Under Precision-Recall Curve
(PR AUC) is 0.76 for STAT3 and 0.86 for AP-1 (Fig. 3c and
Supplementary Fig. 4c), and the predicted motif binding
probability increases in accord with the factor binding level
(Fig. 3d and Supplementary Fig. 4b). As expected, DNase I
hypersensitivity around the motif is the major parameter for
distinguishing bound vs. unbound motifs, although motif
information adds some power to the prediction (Fig. 3e and
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Supplementary Fig. 4c). For the factors tested, the quality of the
sequence motif makes a minimal contribution. As further
validation of the algorithm, we performed a similar analysis in
K562 cells using a DNase-seq dataset (for predictions) and ChIP-

seq datasets for many transcription factors (for testing) obtained
by the ENCODE consortium34 (Supplementary Fig. 5). For many
factors, the AUC curves were >0.9 and the PR AUC were >0.75,
indicative of high performance. Some factors had lower AUC
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values (0.75–0.85), probably because these factors can bind sites
that are not in open chromatin regions. Thus, the algorithm
performs well to identify experimentally determined binding sites.

We then applied AccessTF to identify putative in vivo binding
sites for all factors with PWM annotated by MotifDB35. Given the
accuracy of the predictions, we expect that the vast majority of
predicted sites are bound by their cognate factors in vivo under
the conditions tested. However, this motif analysis does not
distinguish among individual members of multi-protein families
that recognize a common sequence motif (e.g., AP-1).

Predicting TFs that regulate chromatin and expression. To
identify transcription factors important for the cellular

transformation, we examined the relative contribution of factor
binding motifs, identified above, to differential chromatin acces-
sibility and to their enrichment in promoters/enhancers of dif-
ferentially expressed gene clusters. Open chromatin regions
containing AP-1, NRF/MAF, STAT, and CEBP motifs are more
likely to have increased accessibility during cell transformation, as
compared to other open chromatin regions (Wilcoxon Rank Sum
Test p-value < 10−40) (Supplementary Fig. 6a). Those motifs are
also enriched in promoters/enhancers of differentially expressed
gene clusters (Supplementary Fig. 6b). Interestingly, these motifs
are associated both with genes that are continuously up-regulated
and continuously down-regulated during transformation. Such
locus-specific effects on transcriptional factor function are

PWM
score

Distance to
TSS

TF binding

DNase-seq
reads

Conservation

a

c

e

Motif with predicted bound P -value < 10–6

Other motifs

A
cc

um
ul

at
iv

e 
fr

ac
tio

n

STAT motif strength PhastCons score log10(nucleotide
distance to TSS)

log2(DNase-seq
read number)

10 12 14  16 18 0.0 0.2 0.4 0.6 0.8 1.0 2 4 6 8 10 0 5 10 150

Search genome-wide motifs for a
transcription factor using Fimo

Annotate motif information and
chromatin accessibility

b

ROC AUC = 0.95

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

PR AUC = 0.76

Recall

P
re

ci
si

on

1.0

0.8

0.6

0.4

0.2

0.0

10

8

6

4

2

0

20
 ~

 4
0

40
 ~

 8
0

>
80

6 
~

 2
0

2 
~

 6<
2

–log10(predicted STAT
binding P -value)

d

Use the Bayesian network model
to estimate the binding

probability for each motif

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

lo
g2

(S
T

A
T

3 
C

hI
P

-s
eq

re
ad

 d
en

si
ty

)

STAT

Fig. 3 AccessTF, a Bayesian network model to identify TF binding sites. a Steps of computational analyses for identifying transcription factor binding sites
using DNase-seq data. b AccessTF integrates motif strength, distance to the closest transcription start site, Phastcon conservation score and surrounding
DNase-seq reads. See Methods for a detailed description. c Area under ROC curves (ROC AUC) and Area under Precisions-Recall Curves (PR AUC) for
measuring the performance of AccessTF predicting the STAT binding status. d STAT motifs grouped by predicted binding probabilities and plotted against
STAT3 binding levels in 400 nt region around the motifs (estimated by ChIP-seq data) after transformation. For the box plot, the bounds of the box
represent the first and third quartiles and the center line represents the median. e Comparing features of STAT motifs with predicted bound P-value < 10−6

vs. others

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04406-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2068 | DOI: 10.1038/s41467-018-04406-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


typically due to functional interactions with other factors that
differentially bind the relevant genomic regions.

On the other hand, chromatin regions with CTCF and NFI
motifs tend to show less accessibility (Wilcoxon Rank Sum Test
p-value < 10−40) (Supplementary Fig. 6c). Open chromatin
regions with CTCF or NFI motifs and without AP-1, NRF/
MAF, STAT, or CEBP motifs are even more likely to have
decreased accessibility (Supplementary Fig. 6c). It is unclear
whether such decreased accessibility reflects decreased activator
function and hence decreased recruitment of the nucleosome
remodelers or increased recruitment of transcriptional co-
repressors (e.g., histone deacetylases) that inhibit the association
and/or function of the remodelers.

TFScore to predict TFs important for transformation. We
developed a score schema (TFScore) to rank transcription factors
in terms of their likelihood of being important for transformation.
TFScore is based on 4 criteria (Fig. 4a): 1) higher motif enrich-
ment in promoters/enhancers of the differentially expressed gene
clusters (Fig. 1b); 2) higher motif occurrences in chromatin
regions showing increased accessibility at 6 and 24 h after

tamoxifen treatment (Fig. 2e); 3) up-regulation of the factor
during cell transformation; 4) higher relative expression level of
an individual factor of a given transcription factor family that
recognize a common sequence motif. The latter two criteria were
used to distinguish the contributions of the various factors with
similar DNA-binding specificities, based on the idea that factors
expressed at higher levels and/or up-regulated are more likely to
be important for transformation. The resulting rank-ordered list
of transcription factors (Fig. 4b and Supplementary Data 2)
reveals known regulators STAT3 and NF-κb near the top of the
list and an unexpectedly large cohort of transcriptional regulators
as potentially being important for the oncogenic transformation.
Although only ~10% of human protein-coding genes are present
in super-enhancer regions, 24 out of the top 50 TFScore-
predicted transcriptional factors are located in super-enhancer
regions (Fig. 4b and Supplementary Data 2), which is highly
significant (Binomial Test P-value < 10−8) and suggestive of their
functional importance.

Many TFScore-predicted TFs are important for transforma-
tion. To validate the functional importance of the predicted
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transcription factors, we genetically inhibited expression of their
genes via siRNAs and tested the resulting cells for their ability to
grow under conditions of low attachment36, a property of
transformed cells. We randomly selected 20 of the top 50 can-
didate transcription factors predicted by TFScore, and as deter-
mined by mRNA levels, we obtained knockdown efficiencies of
>60% (Fig. 5a). Of the 20 knockdowns tested, 17 resulted in >20%
inhibition of cellular transformation and 19 resulted in >15%
inhibition (Fig. 5b), indicating that the corresponding transcrip-
tion factors are important for transformation. These factors
include the expected STAT3 and NFKB2, but they also include
FOSL1, FOSL2, CEBPB, ETS2, MAFB, BHLHE50, KLF5, FHL2,
NFE2L2, IRF9, HIF1A, HBP1, TCF3, SOX15, and TCF7L2. As
negative controls, knockdowns of 6 factors (FOXC1, SOX4,
ATF2, ATF3, SMAD4, and TP53) with middle or low TFScores
did not significantly affect cell transformation efficiencies. Thus,
TFScore predicts transcription factors that are important for
cellular transformation with very good accuracy with P-value <
0.0005 (Fisher’s Exact Test comparing top candidate factors vs.
negative controls). Some of these (TCF7L2, HIF1A, NFKB2,
SOX15, FHL2, and BHLHE40) do not show high enrichment of
binding sites in accessible chromatin regions that are dynamically
regulated. These results indicate a surprisingly large number of
factors are important for the process of cellular transformation in
our model.

TFs important for transformation co-regulate common genes.
To examine the effects of individual factors on gene expression,
we performed transcriptional profiling (RNA-seq) by using siR-
NAs to individually knockdown expression of 6 transcription
factors (CEBPB, NFE2L2, FOSL1, FOSL2, SOX15, and TCF7L2).
When normalized to a control knockdown experiment, 2576

genes show over 2-fold differential expression upon at least one
factor knockdown. Remarkably, the transcriptome-scale gene
expression patterns in these 6 knockdowns are quite similar, even
though the factors have different DNA-binding specificities
(Fig. 6a). Knockdowns of FOSL1 and FOSL2 show the most
similar gene transcriptional response as compared to other
knockdowns, indicating redundancy of transcription factors in
the same family (Fig. 6a). For the 6 factors tested, 1428 genes
(14% of the total expressed genes) are commonly down-regulated,
whereas 87 (0.8% of the total expressed genes) are commonly up-
regulated. The similarities in the gene expression profiles for these
6 knockdown experiments are far above random expectation
(Fig. 6b). In accord with the relevance of these transcription
factors to transformation, the 1428 genes commonly down-
regulated upon knockdown are more likely to be up-regulated
during transformation, whereas the 87 genes commonly up-
regulated upon knockdown are more likely to be down-regulated
during transformation (Fig. 6c).

Only 102 (7.1%) of the 1428 genes that are commonly down-
regulated upon these factor knockdowns are induced >1.5 fold
during cell transformation (Fig. 6a). Those genes encode
important regulators of inflammatory response, cellular signal-
ing pathways, and apoptosis (Fig. 6d). For each of these 102
inducible genes, the AccessTF-predicted binding sites in the
corresponding promoter/enhancer regions provide strong
evidence for which of the 6 factors directly interact with the
DNA and affect transcription of the gene (on average, 4.6
AccessTF-predicted binding sites per gene). These enhancers
and promoters typically lack one or more motifs, and hence
direct binding sites, for transcription factors that nevertheless
influence transcription of the gene. Such “non-directly-bound”
transcription factors could associate with the promoter/
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enhancer via protein-protein interactions with other factors
directly bound to a different motif. Alternatively, they may
indirectly affect transcription of a given gene via effects on
other genes that contribute to the cell state.

We performed similar analyses for the remaining 1326 genes
that are commonly down-regulated upon factor knockdowns, but
are not differentially expressed during cell transformation. Gene
ontology analyses show that these genes encode proteins enriched
in functions such as RNA processing, cell cycle, RNA translation,
and chromatin modification (Fig. 6d and Supplementary Fig. 7).
Compared to inducible genes during transformation, these non-

regulated genes are less likely to be direct targets of six factors
with 3.2 AccessTF-predicted binding sites per gene (Wilcoxon
Rank Sum Test P-value < 10−12). Interestingly, some transcrip-
tion factors functionally important for cell transformation
(HIF1A, ETS2, and FOS) are also common targets.

Functional TFs and target genes are co-expressed in patients.
Using RNA-seq for the Human Cancer Cell Atlas (TCGA)
database, we examined the expression of functional transcription
factors and target genes learned from our cellular transformation
model in breast cancer patients37. Expression of the top 50
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TFScore-predicted functional transcription factors in Fig. 4b are
positively correlated among 1182 patient samples compared to
randomly sampled genes (Fig. 7a). Similarly, the 102 genes that
are up-regulated during cell transformation and are consistently
down-regulated upon 6 factor knockdowns, show significant
positive expression correlation in patient samples as compared to
randomly sampled genes (Fig. 7b). In addition, the transcription
factors (Fig. 7c) and target genes (Fig. 7d) identified here tend to
have higher expression levels in triple negative breast cancers, as

compared to ER-positive breast cancers. Consistent with previous
analyses of individual regulatory circuits in our transformation
model24–27, these data indicate that the functional transcriptional
network identified in our cellular transformation model is rele-
vant in human cancer.

Discussion
We describe a combined experimental and computational
approach to comprehensively identify transcription factors that
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are important for mediating dynamic changes in gene expression
between two physiological states. Experimentally, this approach
combines genome-scale mapping of accessible chromatin regions
via DNase I hypersensitivity, histone modifications, and tran-
scriptional profiling. Although DNase I hypersensitive regions
represent a functional assay for transcription factors bound to
these regions, they do not directly identify motifs or other
sequences bound by proteins in vivo. Instead, bound motifs, and
hence the cognate proteins, are inferred. In contrast, genome-
scale, DNase I footprinting directly identifies sequences bound by
proteins in vivo38–41. However, while individual sequence reads
contribute directly to the identification of DNase hypersensitive
regions, numerous sequence reads are necessary to identify
underrepresented regions of DNase I cleavage that define DNase
footprints. As such, footprinting methods require much higher
(~10 times more) sequencing depth and hence are considerably
more expensive, especially for experiments involving multiple
samples.

Computationally, we first developed a Bayesian network
model, AccessTF, to predict protein-binding sites in vivo in
which information about all known DNA sequence motifs is
combined with quantitative measurements of DNase I hyper-
sensitivity centered on the motifs. This approach is advanta-
geous over standard motif analyses of accessible regions. It does
not involve arbitrary cut-offs for quality of sequence motifs, it
accounts for where the motif is located within the accessible
region, it accounts for the level of chromatin accessibility, and it
yields binding probabilities for each motif. Most importantly,
validation using in vivo binding for multiple transcription fac-
tors (ChIP-seq data) yields high ROC and PR AUC values for
predictions of AccessTF. Of course, any motif- or footprint-
based approach cannot identify transcription factors that
directly associate with target sites but instead are recruited to
such sites via interactions with factors directly bound to the
motif.

Secondly, we develop a novel scoring system, TFScore, to
identify key transcriptional regulators by integrating the
AccessTF-predicted binding sites with four layers of functional
information. This integrative approach provides more powerful
predictions and identifies more functional regulators, and it
doesn’t require a factor to meet all four criteria. TFScore yields a
rank-ordered list of transcription factors that are predicted to be
important for the process of interest. Experimental validation
using siRNA-knockdowns indicates that most of the top 50 fac-
tors on the list are important for transformation, in contrast to all
6 factors tested with low TFScores. This high validation rate
suggests that the computational pipeline should be generally
applicable to identify key transcriptional regulators in other
biological processes.

In principle, our integrated computational analysis is com-
prehensive and loosely analogous to a genetic screen, because it
gives each known transcription factor a score that predicts its
relative importance in transformation. Transcription factors
important for cellular transformation have also been identified on
a genomic scale by screening shRNA or CRISPR libraries42,43.
This genetic approach does not identify physiological target sites
or transcriptional regulatory circuits, but the identified genes are
not restricted to DNA-binding transcription factors. As such,
these approaches are complementary.

Our results indicate that numerous transcription factors play a
functional role in transformation in a single experimental model.
Extrapolation of the result that 85% of the top 50 factors (17 out
of 20 tested) affect transformation suggests the involvement of at
least 40 transcription factors in over 20 protein families in this
oncogenic model. Moreover, it is likely that additional factors
further down the list will also be important, although we have not

experimentally determined false discovery rates throughout the
list. Some factors identified (e.g., NF-κB, STAT3, FOS) are known
to be involved for transformation in our model, others (e.g.,
CEBPB, HIF1a, ETS2, FHL2, TCF7L2, and NFE2L2) have been
described as oncogenes in other settings, and some proteins
(BHLHE40 and MAFB) have not been well linked to cancer.
Transformation in other cellular models also involves many
transcription factors, although not necessarily the same set
identified here42,43. Similarly, we hypothesize that many tran-
scription factors will play a functional role in individual human
cancers, even if only a small number of them are oncogenic
drivers. The involvement of numerous transcription factors in a
dynamic gene expression program has been observed in dendritic
cells responding to pathogens4,5, differentiation of Th17 cells6,7,
and hematopoiesis8

An important observation arising from the siRNA knockdown
experiments is that the 6 factors tested affect the expression of a
common group of genes. It seems likely that many of the 11 other
factors validated to affect transformation will behave in a similar
manner. And more broadly, as the 17 factors shown to be
important for transformation were selected from and distributed
among the top 50 factors, it seems likely that many of them will
affect the common group of genes. This would seem to be sur-
prising because the factors recognize different motifs, and dif-
ferent genes within the common group have different
combinations and organizations of motifs. However, similar
results have been observed in other biological processes44–46.

Previously, we described the transformation process in our
model as an epigenetic switch from a stable non-transformed
state to a stable transformed state mediated by an inflammatory
feedback loop23,24. This epigenetic switch between stable cell
states is analogous to what occurs in cellular differentiation and
formation of distinct and stable cell types from a common pro-
genitor1–3. A similar epigenetic switch involving an inflammatory
feedback loop occurs in a liver cell model of transformation47.
STAT3 is a critical player in both epigenetic switches, but
otherwise the described pathways involved different genes. In
both cases, a molecular pathway involving a small number of
genes was described.

The comprehensive analysis presented here suggests that
this feedback loop is much more extensive, involving numer-
ous transcription factors that control a large and common set
of genes. These genes not only include those induced during
the cellular transformation process, but also many genes that
are constitutively expressed yet are affected in a common
fashion by these factors. In this regard, the set of genes
induced by a given environmental stress is not well conserved
across yeast species, whereas the overall category of genes is
highly conserved48. By analogy with stable developmental
states, we suggest that the critical transcription factors form a
stable regulatory loop for each other’s expression, thereby
leading to a common set of target genes. In this view, transient
induction of Src leads to changes in transcription factor
activity or levels, and the altered state of transcription factors
is self-reinforcing, leading to a new and stable state of gene
expression.

Cancer occurs primarily as a consequence of somatic muta-
tions and DNA methylation of tumor suppressor genes, and every
cancer is genetically and epigenetically distinct. As such, an epi-
genetically stable cancer state is presumably not derived from
evolutionary selection, but rather reflects a natural state of the
wild-type organism. The simplest view is that this natural state
represents a de-differentiated state in early development, where
rapid growth is important. Thus, we suggest that the regulatory
loop that is critical to maintain the stable transformed state in our
model is not generated de novo, but rather reflects the induction
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of a natural de-differentiated, rapid-growth state by a transient
inflammatory stimulus.

Methods
Cell culture and cell transformation assays. MCF-10A-ER-Src cells were cul-
tured in DMEM/F12 medium with the supplements as previously described22,23.
Tamoxifen (TAM, Sigma, H7904) 0.4 mM for 24 h was used to transform this
inducible cell line when the cells were grown to 30% confluence. The transfor-
mation assay that measures growth under low attachment conditions has been
described previously36.

Chromatin immunoprecipitation sequence. ChIP was performed as described
previously33 with some modifications. Cells were treated with ethanol or tamoxifen
(1 µM) for 24 h and then cross-linked using ethylene glycol bis (succinimidyl
succinate) (EGS), disuccinimidyl glutarate (DSG) and disuccinimidyl suberate
(DSS) mixture (2.5 µM each) for 45 min at room temperature. After this initial
crosslinking, cells were further fixed using 1% formaldehyde for 20 min at room
temperature and then quenched by glycine (0.125M). Chromatin in sonication
buffer (50 mM HEPES, pH7.5, 140 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1%
Triton-100, and 0.4% SDS) was sheared using Branson Microtip Sonifier 450 (12
cycles of 15 s at a sonication setting of output 4 and duty cycle 60%) to a size
mostly between 100–150 bp. The sonicated chromatin solution was diluted to
0.085% SDS and immunoprecipitated with antibodies against H3K4me3 (ab8580),
H3K27ac (ab4729), H3K4me1 (ab8895), H3K36me3 (ab9050), H3K27me3
(ab6002), and H3K9me3 (ab8898). Immunoprecipitated chromatin was decros-
slinked using RNase Cocktail (Ambion, AM2286) and Pronase (Roche,
10165921001). ChIP DNA was end repaired, addition of “A” and adapters ligation
and PCR amplification to produce ChIP-seq libraries. The DNA concentration was
measured by Bioanalyzer before sequencing using Hiseq 2000 at the Bauer Core
Facility, Harvard.

DNase-seq. The procedures for DNase treatment of chromatin and library pre-
paration have been described previously10.

siRNA transfection and qPCR. Cells were seeded for 24 h and then transfected
with siRNAs, 50 nM (Dharmacon) and Lipofectamine RNAiMax (Life Technolo-
gies). siRNA sequences were in Supplementary Data 3. After 24 h, cells were split
and treated with either ethanol or Tamoxifen (0.4 µM, Sigma-Aldrich, H7904) plus
AZD0530 (0.4 nM, Selleck Chemicals, S1006) for 24 h. Total RNA was isolated
using mRNeasy Mini Kit (Qiagen, No. 217004). Two microgram RNA was used for
SYBR Green based. Primers were listed in Supplementary Data 4.

RNA-seq library preparation. Briefly, RNA was extracted using mRNeasy Mini
Kit following the manufacturer’s instruction. RNA-seq libraries were prepared
using TruSeq Ribo Profile Mammalian Kit (Illumina, RPHMR12126) as per
manufacturer’s instruction. RNA-seq libraries were sequenced by Bauer Core
Facility using Hiseq 2000.

Analyses of time-series of mRNA expression data. We profiled mRNA
expression profiles using Affymetrix Human U133 2.0 A expression arrays, at 0 h,
1 h, 2 h, 4 h, 8 h, 12 h, 16 h, and 24 h upon Src oncogene induction with two
biological replicates at each time point (GSE17941)22. The gene expression values
were calculated by the RMA approach using Affymetrix Expression Console
Software. We used MAS5 algorithm to estimate whether a gene is expressed in a
sample and required the genes should be expressed in two biological replicates.
Differently expressed genes were selected using the cutoff >1.5 fold change con-
sistently in two biological replicates as compared to control in at least one time
point during cell transformation. To test the validity of the cutoff, we randomized
the fold-change values across genes 100,000 times, and applied the cutoff to esti-
mate the false discovery rate (FDR) for differentially expressed genes as <7 × 10−3.
The expression values were then mean-normalized and standardized. We used K-
mean clustering to group differentially expressed genes into four coherent clusters,
with median Pearson Correlation values >0.7 of genes in each cluster.

DNase-seq and ChIP-seq data analyses. Raw Fastq reads were aligned to human
reference genome (hg19) using Bowtie49 allowing up to 2 mismatches. Only the
uniquely mappable reads were used for subsequent analyses. For DNase-seq data,
we used MACS50 to call peaks with the cutoff P-value < 10−11 in at least one
sample and using the following parameters “macs2 callpeak --llocal 1000000 -g
2.7e9”. For ChIP-seq data for H3K27ac, H3K4me3, and H3K4me1, we used
MACS50 to call peaks with the cutoff P-value < 10−8 in at least one sample and
using the following parameters “macs2 callpeak --llocal 1000000 -g 2.7e9”. For
ChIP-seq for H3K27me3, H3K9me3 and H3K36me3, we used SICER51 to call
peaks with the cutoff E-value >40, window size 200 bp and gap size 600 bp, which is
better for identifying broad read peaks. Then for each data type, we merged
overlapping significant peaks from samples in different time points. For each

merged peak, its expression level in a sample was measured by the Reads per
Million (RPM) value.

Bayesian network model to identify potential functional TFBS. To identify
potential functional TFBS, we considered transcription factors with annotated
Position weight matrix (PWM) in human, mouse and rate defined by MotifDB35.
Based on those PWM, we used FIMO52 to search potential TFBS in human genome
(hg19) with default cutoff E-value < 10−4.

For each potential TFBS i in the genome, its binding status is a hidden variable,
either bound (bi= 1) or unbound (bi= 0). To estimate the binding probability, we
hypothesized that a motif is more likely to be functional and bound by the factor, if
it is closer to a transcription start site (TSS), show higher conservation during
evolution, is more similar to the consensus sequence (higher PWM score) and is
located more accessible chromatin regions. For each TFBS, we calculated its
distance to the closest TSS defined by refSeq (TSS_disti), normalized as di= 1/(1+
TSS_disti/1000). The PWM score is calculated based on Fimo Score, as fi=
(Fimo_Scorei-10)/10. We used the averaged PhastCons53 score across 44 placental
mammals to measure its conservation level as ci. During our analyses, we found
motifs located at edges of or close to DNase-seq peaks are less likely to be bound
(as determined by ChiP-seq), and can cause false positives in prediction. So, we
calculated the number of DNase-seq reads 200 bp upstream and downstream a
motif, respectively, and picked the lower number to represent the chromatin
accessibility. We used the Bayesian Network Model (Table 1) to estimate the
contribution of PWM score (fi), distance to TSS (di), conservation level (ci),
and DNase I tag (ni) to the probability of motif binding (P(bi= 1)), as shown in
Fig. 3b.

The contribution of PWM score (fi), distance to TSS (di) and conservation levels
(ci) to TF binding probability (yi= P(bi= 1)) is modeled by logistic regression:

log
yi

1� yi

� �
¼ β0 þ β1 ´ fi þ β2 ´ di þ β3 ´ ci

The TF binding probability (yi= P(bi=1)) is correlated with the chromatin
accessibility, which is measured as the number of DNase-seq tags around the motif
(ni). The distribution is modeled by the negative binomial distribution:

P nijbi ¼ 0ð Þ ¼ Negative Binomial nijK0; r0ð Þ
¼ niþK0�1ð Þ!

ni ! K0�1ð Þ! ð1� r0ÞK0 rni0

P nijbi ¼ 1ð Þ ¼ Negative Binomial nijK1; r1ð Þ
¼ niþK1�1ð Þ!

ni ! K1�1ð Þ! ð1� r1ÞK1 rni1

The expectation–maximization (EM) algorithm was used to find maximum
likelihood estimates of parameters in the model, including β0, β1, β2, K0, r0, K1, r1.
We randomly picked 10,000 motifs for training to learn the parameters of
AccessTF, and applied the parameters to predict the binding status of another
randomly picked 10,000 motifs for testing to evaluate the algorithm performance.
We set the prior binding status based on the number of DNase I tags around the
motif. Motifs with top 5% number of tags were set as bound and others were set as
unbound. We tried different prior probabilities and obtained similar predicted
posterior binding probabilities after converge. We picked the selected one as it
converges quickest to get the parameter of AccessTF on the training set and the
prediction performed the best to predict the motif binding status on the testing set.

To examine the performance of the algorithm in predicting the motif status for
AP1 and STAT in ER-Src cells, we analyzed ChIP-seq data for AP1 (FOS, JUN and
JUNB) and STAT3 factors, respectively. We used MACS50 to call ChIP-seq peaks
using the following parameters “macs2 callpeak --llocal 1000000 -g 2.7e9”, with the
cutoff P-value < 10−8. The motifs with defined ChIP-seq peaks were considered as
true positive, and those not overlapping with ChIP-seq peaks were considered as
true negative.

Table 1 Bayesian Network Model Parameters

Normalized value Type Range

PWM score (fi) (Fimo_Scorei-10)/10 Continuous (0, 1)
Distance to TSS (di) 1/(1+TSS_disti/1000) Continuous (0, 1)
Conservation (ci) PhastCon Score in placenta Continuous (0, 1)
TF binding (bi) Hidden Binary 0, 1
DNase I tag (ni) DNase-seq read # in 200 bp

upstream or downstream from the
motif

Continuous (0, +)
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Using the same analyses procedure, we applied AccessTF to predict
transcription factor binding sites in K562 cells using DNase-seq data in ENCODE
project34. ChIP-seq data for transcription factors in K562 cells were used to
measure the algorithm performance.

TFScore. We rank-ordered the candidate factors based on 4 following criteria:
(1) Relative contribution of the motif to general increased chromatin

accessibility during the cell transformation. If the motif occurrence is higher, the
corresponding TF is more likely to be important. For each accessible motif
identified in AccessTF, we calculated the sum of reads in 200 nt upstream and
downstream, normalized it to total number of reads and obtained the read per
million (RPM) value to represent its surrounding chromatin accessibility in a
sample. For each PWM, we calculated the sum of fold changes at 6 h and 24 h after
Tamoxifen treatment relative to 0 h to represent its contribution to increased
chromatin accessibility, using the following scoring definition. The regulation at 6
h: +0 (<= 600), +1 (601–1000); +2 (1001–1500); +3 (1501–3000); +4
(3001–5000); +5 (>5001). The regulation at 24 h: +0 (<=2000),+ 1 (2001–4000);
+2 (1001–1500); +3 (1501–3000); +4 (3001–5000); +5 (>5001).

(2) Relative enrichment of motifs in promoter/enhancer regions of differentially
expressed gene clusters. A factor is more likely to be important, if the motif
enrichment is higher. For each PWM, we assigned the accessible motifs to the
nearest closest expressed gene with the distance between the motif and TSS smaller
than 100 kb. We also associated the motif and gene if the distance is within 20 kb.
We used the Fisher Exact test to check the enrichment of the motifs in differentially
expressed gene clusters (Fig. 1b) as compared to expressed genes which do not
show differential expression. The –log10 (P-value) was used to indicate the relative
enrichment, using the following scoring definition: +0 (<= 8); +1 (8–11); +2
(11–14); +3 (14–17); +4 (17–20); +5 (>20).

(3) If a transcription factor is significantly up-regulated over 1.5 fold, we added
scoring +15. An up-regulated factor is likely to be more important

(4) For transcription factors in the same family which have similar binding
motifs, we picked a representative PWM and rank-ordered their relative
importance based on their expression levels. A factor expressed at a higher levels if
more likely to be important. Suppose the highest expression level of genes in a
family is E, Following is the scoring definition: +5 (=E); +3 (E/2–E); +0 (E/4–E/2);
−5 (E/6–E/4); −10 (<= E/6).

The final TFScore is the sum of the above four criteria.

RNA-seq data analyses. Raw reads were aligned to GENCODE41 defined tran-
scripts and then human reference genome (hg19) using Tophat49 allowing up to 2
mismatches. Only the uniquely mappable reads were used for subsequent gene
expression analyses. Gene expression levels were calculated as transcripts per
million (TPM) value.

Gene ontology analyses. The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID)54 was used for gene ontology analyses.

TCGA data analyses. RNA-seq gene expression and genetic annotation data for
1182 breast cancer patients were downloaded from TCGA database37. We calcu-
lated Spearman’s rank correlation coefficient values between gene pairs among
transcription factors and target genes. We also randomly selected expressed genes
and calculated Spearman’s correlation as the background distribution. We grouped
breast cancer patients based on their genetic subtypes as following: Triple Negative
(ER−, PR−, and HER2−), Luminal A (ER+, PR+, and HER2−), Luminal B (ER+,
PR+, and HER2+), and HER2+ (ER−, PR−, and HER2+). To calculate the
relative expression of a set of transcription factors and target genes, we first
median-normalized the log2 gene expression levels across patient samples. And
then we took the median normalized values across genes in a gene set to indicate
the relative expression level of the gene set in a sample.

Data availability. All sequencing data that support the findings of this study have
been deposited in the National Center for Biotechnology Information Gene
Expression Omnibus (GEO) and are accessible through the GEO series accession
numbers GSE100259, GSE100255, GSE100257 and GSE100258. All computational
codes are available from the authors upon request.
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