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ABSTRACT
Anatomically, modern humans differ from archaic forms in possessing

a globular neurocranium and a retracted face and in cognitive functions,
many of which are associated with the temporal lobes. The middle cranial
fossa (MCF) interacts during growth and development with the temporal
lobes, the midface, and the mandible. It has been proposed that evolution-
ary transformations of the MCF (perhaps from modification of the tempo-
ral lobes) can have substantial influences on craniofacial morphology.
Here, we use three-dimensional (3D) geometric morphometrics and com-
puter reconstructions of computed tomography-scanned fossil hominids,
fossil and recent modern humans and chimpanzees to address this issue
further. Mean comparisons and permutation analyses of scaled 3D basi-
cranial landmarks confirm that the MCF of Homo sapiens is highly signif-
icantly different (P < 0.001) from H. neanderthalensis, H. heidelbergensis,
and Pan troglodytes. Modern humans have a unique configuration with
relatively more anterolateral projection of the MCF pole relative to the
optic chiasm and the foramen rotundum. These findings are discussed in
the context of evolutionary changes in craniofacial morphology and the
origins of modern human autapomorphies. In particular, the findings of
this study point to variations in the temporal lobe, which, through effects
on the MCF and face, are central to the evolution of modern human facial
form. Anat Rec, 291:130–140, 2008. ! 2008 Wiley-Liss, Inc.

Key words: lateral cranial base; human evolution; temporal
lobes; sphenoid; 3D reconstructions; geometric
morphometrics

Anatomically modern humans differ craniodentally
from all other, extinct, hominins in many ways (see Day
and Stringer, 1982; Lahr, 1996; Stringer, 2001), most of
which relate to two general suites of derived features: a
more globular neurocranium and a more retracted face
(Lieberman et al., 2002). One persistent, important
question is the extent to which these derived features
are related to increases in the relative and absolute
increase in size (encephalization) of the brain, particu-
larly of the telencephalon (Dabelow, 1931; Weidenreich,
1941; Biegert, 1963; Gould, 1977; Holloway et al., 2004).
During human evolution, the brain underwent a

volumetric increase in neocortex size in the frontal,
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temporal, parietal, and occipital lobes, which has tradi-
tionally been associated with increased cognitive com-
plexity (Deacon, 1997; Semendeferi and Damasio, 2000;
Rilling and Seligman, 2002; Rilling, 2006). Recent com-
parative allometric studies have shown that the human
temporal lobes, in particular, have increased relative to
other regions of the cerebrum when compared with non-
human primates (Semendeferi and Damasio, 2000; Ril-
ling and Seligman, 2002). The temporal lobes, which
occupy on average 18.1% of total brain volume in
humans (Semendeferi and Damasio, 2000) consist of an-
atomical units, such as the amygdala, the hippocampus,
and the rhinal cortex. Grossly speaking, the primate
temporal lobe is functionally divided into several regions
of which the superior temporal gyrus has been associ-
ated with auditory processes, the inferior temporal gyrus
with visual processes, and the temporal pole with social
behavior (Rilling and Seligman, 2002). Functional mag-
netic resonance imaging (MRI) studies have shown that
the amygdala is strongly involved in processing of fear-
ful and dangerous experiences (Zola et al., 2000), but al-
together it seems that the human medial temporal lobe
is relatively similar to that of other primates in general
function.
The lateral and caudal parts of temporal lobes, how-

ever, are thought to be very different. This is because of
human speech. The expanded lateral language areas
(Wernicke’s area) have shifted the visual object recogni-
tion pathway into a more laterocaudal position in humans
when compared with other primates (Ungerleider et al.,
1998). From a neuroanatomical point of view, recent
research has shown absolute and relative increase of
white matter in humans compared with apes, which
likely consists of axons that link temporal and frontal
cortical areas (Rilling and Seligman, 2002; Rilling, 2006).
These neuroanatomical and cognitive modifications that
potentially increase the spatial demands of the temporal
lobe might well have influenced the evolution of modern
human craniofacial morphology.
Nineteenth and early twentieth century craniology

laid the foundations of a classic line of research, in
which morphological changes of the brain are hypothe-
sized to impact on the morphology of the basicranium
and the face (Dabelow, 1931; Weidenreich, 1941; Hofer,
1954; Biegert, 1957; Moss, 1962; Enlow, 1975; Gould,
1977; Shea, 1985; Ross and Ravosa, 1993; Ross and Hen-
neberg, 1995; Spoor, 1997; Lieberman, 1998; Lieberman
and McCarthy, 1999; McCarthy and Lieberman, 2001;
Lieberman et al., 2000, 2004; Ross et al., 2004). These
and other studies have mainly addressed factors influ-
encing the evolution and variation of the midline
basicranial angle between pre-sellar and post-sellar com-
ponents. They also addressed the relative proportions of
midline basicranial structures and the potential rela-
tions between variations in these and variations in facial
morphology. While the underlying key idea was that
encephalization leads to basicranial flexure in the mid-
line, recent developmental studies are increasingly
challenging this view. Recent developmental evidence in
primates points to a bidirectional relationship of physical
brain expansion, basicranial development, and growth
under genetic influences and other factors, which are re-
sponsible for eventual basicranial morphology (Jeffery
and Spoor, 2002; Jeffery 2003, 2005; Jeffery et al., 2007;
Hallgrimsson et al., 2007).

Enlow’s counterpart principle (1990) suggests a spatial
correspondence between anatomical structures separated
by the posterior maxillary (PM) plane. One group of
structures comprises the frontal lobes, the anterior cra-
nial base and floor, the ethmomaxillary complex (the
‘‘facial block’’; Lieberman et al., 2000; McCarthy and Lie-
berman, 2001), and the mandibular corpus; the other
comprises the temporal lobes, the posterior base, the
middle cranial fossa, and the mandibular ramus (Bastir
et al., 2004). Recent geometric morphometric studies
have addressed Enlow’s counterpart principle, focusing
on the more complex off-midline basicranial morphology
and its possible interactions with facial morphology
(Bastir et al., 2004, 2006; Bastir and Rosas, 2005). The
results suggest that the lateral basicranial components,
that is, the anterior and middle cranial fossae, are par-
ticularly integrated with facial structures. Thus, spatial
modifications at the lateral basicranium likely have con-
sequences for the spatial arrangement of facial struc-
tures (Bastir et al., 2004).
The developing cranial base is also influenced by the

face (Biegert, 1957; Bastir, 2004; Jeffery, 2005; Rosas
et al., 2006), although facial growth has less influence
on cranial base shape in higher primates and humans.
The brain has especially pronounced effects on basicra-
nial morphology, in large part because the endocranial
fossae are part of the brain’s skeletal capsule (Hofer and
Tigges, 1963; Moss, 1972). The inferior surface of the
brain and the superior surface of the cranial base have
well fitting and fairly complementary ‘‘mirror-like’’ mor-
phologies (Richtsmeier et al., 2006; Fig. 1a,b), although
they are slightly blurred by dura and pia mater, cerebro-
spinal fluid, and other intracranial structures such as
vessels and nerves.
In relation to the effects of neurocranial anatomy on

facial form there has been special interest in the middle
cranial fossae (MCF; Fig. 1c). These have a central posi-
tion in the cranium, lying behind the orbits and midface,
and being anatomically related to the mandibular rami
externally and to the area of cranial base flexion in the
midline (Enlow, 1975; Lieberman et al., 2000, 2002; Bas-
tir et al., 2004, 2006; Bastir and Rosas, 2005). Variations
in MCF morphology, which potentially derive from varia-
tions in temporal lobe morphology, can thus influence
facial shape and positioning relative to other cranial
structures.
It has been argued that several key modern human

autapomorphies, including facial retraction and a short
oropharynx derive, in part, from a more flexed cranial
base, and a relatively wider or larger middle cranial
fossa (Lieberman, 1998, 2000; Spoor et al., 1999; Lieber-
man et al., 2000, 2002). To summarize, in addition to the
classic view that a more flexed cranial base causes the
face as a whole to rotate more ventrally it has been
argued by Lieberman and co-workers, that this also
leads to a decrease of the projection of the upper face,
and a shortening the oropharynx (Lieberman et al.,
2000; McCarthy and Lieberman, 2001).
Although most studies of human cranial development

and evolution have focused on the relationship between
brain form and the morphology of the basicranium in
the midline, variations in MCF morphology are also im-
portant in terms of changes to the lateral (off-midline)
basicranium (Bastir et al., 2004, 2006; Bastir and Rosas,
2005). Additionally, aspects of off-midline basicranial
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morphology have been examined in relation to human
evolution (Maier and Nkini, 1984; Seidler et al., 1997;
Spoor et al., 1999; Lieberman et al., 2002; Baba et al.,
2003). While all these studies have suggested that the
MCF and/or the associated temporal lobes might play an
important role in human craniofacial evolution no com-
prehensive analysis of 3D variations in form of the MCF
of living and extinct members of the genus Homo has
yet been undertaken.
Maier and Nkini (1984) compared, using computed to-

mography (CT) scans, the midline and lateral basicra-
nial morphology of OH9 and modern humans. They
found a flatter lateral cranial base in OH9, suggesting
decreased depth of the MCF in H. erectus compared
with modern humans. The analysis of stereolithographs
of Middle Pleistocene hominids by Seidler et al. (1997)
reported ‘‘laterally flared temporal lobes’’ and a rela-
tively narrow MCF in Kabwe and Petralona. The geo-
metric morphometric analysis of the cranial base by
Spoor et al. (1999), which included a few off-midline cra-
nial landmarks, suggested a possible expansion of the
temporal lobes into the MCF in modern humans com-
pared with Middle Pleistocene hominids, but 3D MCF
anatomy was not examined, because landmarks were
projected into the sagittal plane. Baba et al. (2003) com-
pared CT scans from one H. erectus cranium (Sambung-
macan 4) with a small sample of modern humans (n 5
9), finding that the former had a relatively shorter MCF
both in the sagittal plane and more laterally.
The most detailed analysis to date to consider lateral

cranial base anatomy (Lieberman et al., 2002) found
that the MCF in modern humans is approximately 20%
wider relative to cranial size than in archaic humans
(H. neanderthalensis and H. heidelbergensis s.l.), sug-
gesting that this feature is a potentially important auta-
pomorphy of modern humans. However, the finding is
based on very small samples with a limited number of
landmarks and few off-midline from the MCF. The
potential importance of these findings with respect to
understanding the evolution of modern human cranial
form means that evolutionary variations in MCF form
require more detailed examination.
The aim of the present study is to provide a detailed

comparison of the anatomical relationships of off-midline
MCF landmarks in a broad sample of modern humans
(from Africa, Europe, Asia, Australia, and North Amer-
ica) and a range of fossil hominins and chimpanzees.
The anatomical relationship between the anterior pole of
the MCF, which marks the posterior limit of the upper
lateral face, and other MCF structures is examined for
evidence of a derived modern human morphology con-
sistent with the differences between modern human fa-
cial form, positioning and especially retraction relative
to other hominids. The study tests the null hypothesis
that the shape of the MCF does not differ significantly
between anatomically modern H. sapiens and other spe-
cies of Homo.

MATERIALS AND METHODS

The landmarks used in this study were selected to
characterize middle cranial fossa morphology but with
due regard for the preservation of fossil basicrania and
repeatability of digitization (see intraobserver error
below). Six 3D landmark (lm) coordinates were digitized

Fig. 1. a: Relationships between the brain and the basicranium;
the inferior aspect of the brain matches. b: Superior view of the com-
plete basicranium [see three-dimensional (3D) landmarks described in
the Material and Methods section]. c: Lateral view of the middle cra-
nial fossa showing the three-dimensional landmarks.
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from virtual 3D computer reconstructions of the CT data
(Fig. 1): lm1, petrosal apex (most medial point); lm2, in-
ternal acoustic porus (superomedial border); lm3, fora-
men ovale (most medial point); lm4, foramen rotundum
(most medial point); lm5, anterior MCF-point (maximal
3D curvature of greater sphenoid wings); and lm6, fora-
men opticum (anterolateral border). The reconstructions
were generated with high resolution, which enabled us
also to clearly identify smaller basicranial foramina. In
fossils, in which foramina were filled by sediment, land-
marks were digitized on the CT slices.
We used CT-scanned crania of 22 Liberian chimpan-

zees (Pan troglodytes verus, housed at the Peabody Mu-
seum, Harvard University) and 51 cranial bases of
recent modern humans from Africa, Asia, Australia, and
North-America (from the Penn Cranial CT collection,
Penn State University) and from Europe (Oloriz-collec-
tion, Virtual CT collection of the Museo Nacional de
Ciencias Naturales, Universidad Complutense de Ma-
drid). Landmark data were also obtained from 14 fossils
(Table 1).

GEOMETRIC MORPHOMETRICS

We used standard procedures of Procrustes based geo-
metric morphometric methods to analyze variations in
the form (size and shape) of the landmark configurations
(Rohlf and Slice, 1990; Bookstein, 1991; Dryden and
Mardia, 1993; O’Higgins, 1999; Zelditch et al., 2004).
The 3D landmark configurations were submitted to a
generalized Procrustes analysis (GPA; Rohlf and Slice,
1990) which translates, rotates, and scales (to unit cent-
roid size) all specimens to minimize the sum of squared
landmark deviations from the estimate of the sample
mean leading to a common registration (Kendall, 1989).
Procrustes residual shape coordinates as well as centroid
size were obtained for subsequent statistical analyses
(Bookstein, 1991; O’Higgins, 2000; Zelditch et al., 2004).
The metrics of shape space are Procrustes distances (d)
computed as the square root of the summed squared dis-
tances between homologous landmarks of Procrustes
registered landmark configurations.
The differences in shape between pairs of landmark

configurations were further evaluated independent of

registration using transformation grids computed using
thin plate splines (Bookstein, 1991; O’Higgins, 2000; Zel-
ditch et al., 2004). The TPS function is used to smoothly
interpolate a reference configuration and its accompany-
ing surface into a target configuration and surface.
Registration independence means that transformation
grids, rather than superimposed images or wireframes,
are the preferred way of visualizing shape differences.
The thin plate splines were also used to warp land-
marked images as an aid to interpretation.
Missing data presented a problem common to many

studies of fossils. Our approach in the present study is
to estimate them. There are several statistical and bio-
logical considerations to bear in mind in carrying out
such estimations. Thus, Gunz et al. (2004) differentiated
between statistical, geometric, and anatomical recon-
structions. Among the statistical approaches to recon-
struction they used, multiple multivariate regressions
proved preferable to replacement of missing landmarks
by the mean when reference populations were available.
The geometric approach to reconstruction uses thin-
plate splines to estimate missing landmarks by mini-
mizing the bending energy in the transformation of a
complete reference configuration into the (incomplete)
target configuration (Gunz et al., 2004). Whether statis-
tical or geometric approaches are used to estimate miss-
ing data, anatomical knowledge should inform the ap-
praisal of quality of estimation. Further morphological
integration is an important consideration because, in
highly integrated structures (e.g., where there are miss-
ing data within modules), the quality of prediction of
missing landmarks is likely higher than when predic-
tion is attempted between different modules. In the
present study, missing data had to be estimated in the
H. heidelbergensis s.l. sample [Petralona (lm 6); Arago
21 (lms 1, 2)]. Following Gunz et al. (2004), these were
estimated with satisfactory anatomical results, using
the regression method computed by Morpheus et al.
(Slice, 1998) and reference data from specimens of the
Neanderthal lineage (H. heidelbergensis s.l. and H.
neanderthalensis).
Measurement error can be evaluated by various

methods (von Cramon-Taubadel et al., 2007). Von Cra-
mon-Taubadel’s approach is concerned with localizing
error, that is, estimating how well particular landmark
coordinates are obtained. In the present study, which is
concerned with overall shape variability, we repeatedly
digitized all landmarks on one modern human speci-
men (specimen 794 of the Oloriz collection) on five sep-
arate occasions to assess the error in estimating the
shape of the configuration as a whole. The ratio of
squared Procrustes distances from the mean within
the repeats to that within the modern human sample
is 0.064. A minimum spanning tree based on the
Procrustes distance matrix clustered the repeated
specimens with each other rather than with other
specimens. The largest Procrustes distance between
repeats (d 5 0.05) is less than the smallest Procrustes
distance (d 5 0.08) within the modern human sample.
Furthermore, when the landmark data from repeats
are subjected to GPA/PCA (see below) together with the
landmark data from the human sample, they group
closely together in the relevant PC plots. We used
NTSYSpc 2.1 and morphologika2 for the calculations of
intraobserver error.

TABLE 1. Fossil dataa

Fossil Taxon Data source

Sts5 A. africanus CT
OH9 H. erectus/ergaster CT
KNM-ER 3733 H. erectus/ergaster CT
KNM-ER 3883 H. erectus/ergaster CT
Bodo H. heidelbergensis s.l. CT
Kabwe H. heidelbergensis s.l. CT
Petralona H. heidelbergensis s.l. STL
Arago 21 H. heidelbergensis s.l. CT
Guattari1 H. neanderthalensis CT
Gibraltar1 H. neanderthalensis Original
Saccopastore2 H. neanderthalensis Cast
Singa H. sapiens CT
Skuhl V H. sapiens CT
Mladec 1 H. sapiens CT
aCT, computer tomography; STL, stereolithography.
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Statistical Analyses

To explore patterns of MCF landmark variation a
principal components analysis (PCA) of tangent pro-
jected shape coordinate data was carried out using mor-
phologika2 (O’Higgins, 2000; www.york.ac.uk/res/fme/
resources/software.htm). Aspects of shape variation rep-
resented by PC axes were explored, and TPS transfor-
mations of 3D surface models were used to visualize ev-
olutionary transformations between early hominins and
modern humans (Fig. 2). Permutation tests (Good,
1993) were used to assess the significance of differences
between species means. Significant differences are
visualized by computing and superimposing the land-
mark configurations of species means. Then thin-plate
splines were used to warp the landmarks plus 3D sur-
face data (from the CTs) for an exemplar (close to the
mean) in each species to the mean landmark configura-
tion in that species, thus estimating the species mean
surface of modern humans and then warping this to
the comparison species’ mean (that is H. neandertha-
lensis, H. heidelbergensis sensu lato, P. troglodytes
verus) to visualize differences (Fig. 3). Finally, individ-
ual differences were used to compute, using thin-plate
splines, transformation grids (Fig. 4) to aid interpreta-
tion and localization of differences (Bookstein, 1991;
Zelditch et al., 2004). These surface warpings and visu-
alizations were carried out using Amira 4.1 and mor-
phologika2.

RESULTS

To test if there are significant size differences among
the landmark configurations of modern and fossil homi-
nins, an analysis of variance of centroid size (CS) among
the groupings was computed, revealing significant differ-
ences [F(6,71) 5 18.096; P < 0.001]. However, post hoc
tests of pairwise comparisons showed that only chimpan-
zees (CS 5 38.8) possess a significantly smaller MCF
landmark configuration (P < 0.001) than all hominins
with no significant differences in CS among the means
of the hominin species (H. s. 44.8; H. n. 46.6; H. h. s.l.
47.6; H. e. s.l. 47.8). For this reason, subsequent analy-
ses focus on shape alone.
Figure 2a plots PC 1 vs. PC 2 from the PCA (Table 2)

of the six landmarks from all specimens after GPA and
tangent projection. In this subspace that accounts for
most of the interesting variation in the context of our
study (58% of total variance), the chimpanzees are to-
ward the right (positive) extreme of PC 1 and the mod-
ern humans toward the opposite extreme. Most of the
fossils are located between the modern samples on
PC1, with the Neanderthals forming a distinct group
along with H. heidelbergensis s.l., H. erectus s.l., H.
ergaster, and A. africanus on the combination of PC1
and PC2. The fossil a.m. H. sapiens are well within
the range of recent modern humans. The four fossils
attributed to H. heidelbergensis s.l. occupy a somewhat
intermediate position between the early hominids
(Sts5, OH9, KNM-ER 3733, KNM-ER 3883) and the
Neanderthals. Overall, modern humans, even in this
plot of the PC1-2 subspace, are clearly separated from
earlier hominins. Indeed higher PCs are uninformative
with respect to differences between modern and fossil
hominins.

The apects of shape variability represented by PC1
principally relate to the relative size of the MCF due to
anterolateral displacement of lm5 with respect to lm4
and lm6. Thus, in humans, the most anterior landmark
is lm5, whereas in chimpanzees lm5 is at the same
level as lm6. PC2 largely represents variations in the
positioning of lm6 relative to other landmarks. LM6
is relatively superior, medial, and posterior in early
hominins (positive PC 2 scores) and more inferior,
lateral, and anterior in modern humans (negative PC 2
scores). In top view, early hominins are characterized
by quadratic MCF shape, whereas modern humans
show elongation.
The aspects of shape that underlie evolutionary

changes in the PC1-PC2 subspace from early Homo (pos-
itive scores on PC 2; reference [‘‘ref ’’ in Fig. 2a]) to mod-
ern humans (negative scores on PC 1; target [‘‘tar’’ in
Fig. 2a]) are visualized as surface warps in Figure 2c–d.
These are based on the landmark configurations shown
in Figure 2b and transform the MCF surface of ER 3733
(Fig. 2d), warping it between the positive extreme of
PC2 (close to KNM-ER 3733,) and the mean of the mod-
ern human scatter (Fig. 2e) on these PCs. This warping
(compare Fig. 2d with 2e) shows that, in modern
humans compared with ‘‘ergaster/erectus,’’ there is a
marked forward and lateral expansion of the anterior
part of the MCF relative to the optic and maxillary
nerve foramina.
Similar differences, although subtly different in na-

ture and degree (see below) are observed in mean shape
comparisons of modern humans with other, extinct, spe-
cies of Homo, and chimpanzees (Fig. 3). The mean shape
comparisons between H. sapiens and other hominid
groups as assessed by permutation tests are all highly
significant (Table 3). No significant differences were
found between Neanderthals and the Middle Pleistocene
humans. This may either reflect smaller sample sizes or
lack of any real difference in this basicranial area. This
should be borne in mind in assessing subsequent com-
parisons of these groups (Fig. 4). The differences
between modern humans are visualized in Figure 3 by
warping and comparing the mean MCF surface derived
from modern humans to the mean of each species. These
warps indicate that modern humans possess a particu-
larly elongated MCF with significant forward and lateral
positioning of the anterior MCF point (indicated by the
double-headed arrow) relative to the basicranial foram-
ina and petrosal apex when compared with other species
mean shapes.
These apparent differences were further examined by

use of 2D transformation grids in the parasagittal
planes within the MCF. Figure 4 illustrates these com-
puted between the following: Kabwe (reference) and a
modern human (target; Fig. 4a), Kabwe and Guattari 1
(Fig. 4b), and Guattari 1 and a modern human (Fig. 4c).
These transformations between single specimens do not
take into account individual variation, but the expansion
of the thin-plate spline in the area of lms4, 5, and 6
reflects the mean shape differences shown in Figure 3,
highlighting the finding that forward projection of the
anterior MCF point (also known as the PM point, see
arrows in Fig. 4a,c) relative to other landmarks is an
apparent autapomorphy of modern humans. No such dif-
ference is observed in comparing Kabwe and Guattari
(Fig. 4b).
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Fig. 2. Principal components analysis (PCA) and three-dimensional
(3D) warps illustrating middle cranial fossa (MCF) shape differences
between earlier hominids (H. erectus/ergaster) and modern humans; a:
Scatterplot of PC1 vs. PC2 scores. PC1 separates the chimpanzee
(green diamonds) and the modern human samples (orange squares).
Other hominins (blue circles) are intermediate. Fossil modern humans
Singa, Skuhl-V, and Mladec-1 plot well within the recent modern
human range. PC2: KNM ER-3733, OH-9 and Sts-5 plot at the posi-

tive extreme. Neanderthals are separated from the modern humans.
H. heidelbergensis (sensu lato) specimens are intermediate between
early hominids and modern humans. b: Procrustes registered land-
marks of reference (_ref_; dark-red lms) and target (_tar_; light-blue
lms), c,d: Reference surface produced by warping three-dimensional
(3D) reconstruction of KNM-ER 3733 to reference landmarks (c) and to
the landmark configuration of the target (d).
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Fig. 3. a–c: Mean shape comparisons as three-dimensional (3D) surface warps of a human middle
cranial fossa (MCF) surface model to the mean shapes of modern humans (a), Neanderthals (b), H. heidel-
bergensis s.l (c). d: chimpanzees. Note the different anatomical relations between the anterior MCF pole
and the optic and maxillary nerve foramina.



DISCUSSION

The MCF is related to, and interacts during growth
and development with, the temporal lobes, the midface,
and the mandible. It has been proposed that evolution-
ary transformations of the MCF, perhaps related to evo-
lutionary modification of the temporal lobes, could have
substantially influenced craniofacial morphology.

Our study confirms that modern humans are charac-
terized by a uniquely derived configuration of the MCF.
Additionally, it shows that this happened by at least 130
kyrs ago (Singa, 130 kyrs; Skuhl V, 100 kyrs; and Mla-
dec 1, 35 kyrs). In particular, consistent with previous
suggestions (Seidler et al., 1997; Lieberman et al., 2002)
that modern humans have a relatively wider MCF, we
provide evidence that the anterior MCF pole is more lat-
erally placed in this group. Importantly with regard to
facial retraction (see below), we demonstrate a relatively
longer MCF, which results in a significant forward pro-
jection of the poles of the MCF and temporal lobes rela-
tive to the optic chiasm (canal of the optic nerve), the
foramen rotundum (of the second branch of the trigemi-

Fig. 4. Transformation grids between lateral views of individual fossils. a: Kabwe and a modern human
skull. b: Kabwe and Guattari. c: Guattari and modern human skull. Note the extreme anterosuperior shift
of the anterior MCF point (lm5) with respect to the optic canal (lm6) and the foramen rotundum (lm4) in
comparisons of fossils and modern humans.

TABLE 2. Descriptives of principal components
analysis

PC Eigenvalue % of variance Cumulative %

PC1 1.01E-02 0.45 0.45
PC2 2.68E-03 0.12 0.57
PC3 1.99E-03 0.09 0.66
PC4 1.39E-03 0.06 0.72
PC5 1.29E-03 0.06 0.78
PC6 1.25E-03 0.06 0.83
PC7 1.08E-03 0.05 0.88
PC8 9.18E-04 0.04 0.92
PC9 8.32E-04 0.04 0.96
PC10 5.22E-04 0.02 0.98
PC11 3.74E-04 0.02 1.00

TABLE 3. Permutation tests, Procrustes distance (d),
and significance levels

Compared groups d P value

Humans / Neanderthals 0.1508 <0.001
Humans / MPL 0.121 <0.001
Humans / chimps 0.22 <0.001
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nal nerve), the base of the frontal lobes, the petrosal
apex, and internal acoustic porus (Fig. 4).
Our findings support those of Spoor et al. (1999), Lie-

berman (2000) and Lieberman et al. (2002, 2004), all of
which speculated that aspects of modern human cranio-
facial form may derive from a possible expansion of the
MCF and the temporal lobe. Furthermore, we demon-
strate that the relative anterior projection of the ante-
rior MCF point is a significant autapomorphy of modern
humans. Although our study includes no lateral land-
marks (because this would require semilandmarks and
surface analysis along the smoothly curving lateral and
inferior wall—a study in progress) the warps of Figure 3
do suggest some mediolateral expansion of the MCF
between the anterior MCF point and the maxillary and
optical nerve foramina consistent with the findings of
Seidler et al. (1997) and Lieberman et al. (2002).
It is important to note that these differences are not

directly related to either absolute or relative brain size
but reflect evolutionary changes in brain shape, possibly
the temporal lobes within the MCF. Neanderthals with
cranial capacities similar to modern humans (Ruff et al.,
1997; Rightmire, 2004) display a significantly different
MCF landmark configuration from that of modern
humans. These findings suggest that brain evolution in
modern humans and the Neanderthal lineage has pro-
ceeded differently from the putative ancestral condition.
These results raise several questions. First, do modern

humans have larger temporal lobes than Neanderthals
or H. heidelbergensis s.l.? And, second, are modern
human temporal lobes in a different position with
respect to other MCF structures? Although our study
did not measure the size of the temporal lobe itself
(because the brain is absent in fossils), and there is no
significant difference in MCF size among living and fos-
sil Homo taxa, there does appear to be a difference
between humans and chimpanzees. It is possible that
the lack of significance for the difference between mod-
ern and archaic humans may be due to small fossil sam-
ple size or a lack of correspondence between temporal
lobe and MCF. However, it is interesting that we find no
difference considering that absolute brain size is
increased in modern humans and Neanderthals relative
to Middle Pleistocene humans (Rightmire, 2004). This is
especially so because our findings indicate a consistent
shape difference between archaic (Neanderthals and
Middle Pleistocene) and modern humans, suggesting
functional modification in the latter. It seems likely that
modifications of the lateral temporal lobes (not captured
by our data) underlie the observed shape differences.
Several MRI studies have found that the temporal

lobe in humans is approximately 20% larger relative to
overall brain size than in apes, whereas the frontal lobes
and the occipitoparietal block have undergone no rela-
tive expansion in human evolution (Semendeferi and
Damasio, 2000; Rilling and Seligman, 2002; Rilling,
2006; but see Bruner et al., 2003). Within the temporal
lobes it is held that the lateral and inferior areas in par-
ticular have undergone evolutionary modifications
mostly related to language (Rilling, 2006). Lateral, cau-
dal, and inferior parts of the temporal lobes are very dif-
ferent anatomically compared with nonhuman primates,
which is likely related to human speech. The expanded
lateral language areas have shifted visual pathways into
a more lateral and caudal position in humans (Unger-

leider et al., 1998). Additionally, there is an absolute and
relative increase of white matter in humans that has
been related to axons linking temporal and frontal corti-
cal areas (Rilling and Seligman, 2002, Rilling, 2006).
Thus, although no significant size difference is found
between humans, this does not preclude significant
shape differences being present due to functional modifi-
cations in later human evolution.
It is tempting to speculate that the anterolateral

expansion of the MCF that we observe is secondary to
changes in the temporal lobe and occurred with the ori-
gin of H. sapiens (Spoor et al., 1999; Lieberman et al.,
2002), but this requires further detailed study of the
basicranium and its complex surface morphology. While
there is no doubt that basicranial morphology is influ-
enced by the overall shape of the base of the brain
(Moss, 1972; Richtsmeier et al., 2006), it is necessary to
assess the detailed correspondence of surface morpholo-
gies between the soft tissue of the brain and the bony
basicranium.
The relatively longer MCF of H. sapiens has impor-

tant implications for the evolution of the modern human
craniofacial morphology beyond the MCF. The skull of
H. sapiens is characterized by facial reduction and other
associated morphological features, such as an anteropos-
teriorly short midface and the presence of a chin (e.g.,
Day and Stinger, 1982; Schwartz and Tattersall, 2000;
Lieberman et al., 2002; Rosas and Bastir, 2004; Bastir
et al., 2007). The relatively anterior position of the MCF
poles with respect to the optic and maxillary nerve foram-
ina indicates that, compared with archaic humans, the
posterior limit of the modern human midface (i.e., the
maxillary tuberosities and the orbits) is shifted anteriorly
in relation to several basicranial and neurocranial struc-
tures (Figs. 2–4). As noted by several researchers (Enlow,
1975; Enlow and Azuma, 1975; Bromage, 1992; Lieber-
man, 1998; Rosas, 2001; McCarthy and Lieberman, 2001)
the posterior limit of the face is approximated in the mid-
line of the cranium by the PM plane, defined as the mid-
line projection of the line from the maxillary tuberosities
to the most anterior point on the MCF.
The present findings show that modern humans are

unique in possessing more forward projecting greater
sphenoid wings (anterior limits of the MCF). This shifts
the PM plane relatively anteriorly or rotates it clockwise
when viewed from the right (for review, see McCarthy
and Lieberman, 2001). In either case, the consequences
for the evolution of modern human facial form are appa-
rently significant, prompting the need for further studies
examining the covariation of MCF form with facial and
midline base form.
In terms of evolution, it is possible that greater sphe-

noid wing projection in modern humans is linked both to
a rotation of the PM plane together with increased basi-
cranial flexure. McCarthy and Lieberman (2001) showed
that the lateral orbits and the PM plane are tightly inte-
grated as a facial block. Because the top of the face is
the floor of the anterior cranial base, and because the
PM is nearly 90 degrees relative to the anterior cranial
base, then a more flexed cranial base rotates the face as
a whole ventrally under the anterior cranial fossa.
In addition, there is evidence that midline and lateral

basicranial elements are relatively independent from
each other in some respects (Baba et al., 2003; Bastir,
2004; Bastir and Rosas, 2005, 2006; Bastir et al., 2006).
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Greater sphenoid wing projection does not necessarily
require modifications in basicranial flexure. This may
account for the findings of Baba et al. (2003) that Sam-
bungmacan 4 (SM4) has a degree of basicranial flexure
fully within the range of modern humans, as do many
other hominids (Ross and Henneberg, 1995), yet the
MCF poles of SM4 are much shorter and similar to what
we have found in archaic humans. Additionally, the ar-
chaic hominin from Bodo may manifest a very flexed
midline cranial base while the lateral basicranium is
morphologically primitive (Fig. 2). While the midline
cranial base of Bodo may be taphonomically distorted,
SM4 seems to be well preserved (Baba et al., 2003). It
should be remembered, however, that cranial base angle
is a very complex variable affected by brain size, cranial
base length, face size, as well as many other factors (Lie-
berman et al., 2000; Ross et al., 2004; Jeffery, 2005).
More research is needed to understand the determinants
of basicranial flexure and the variation present among
hominins.
Although this study has identified a clear evolutionary

change in middle cranial fossa anatomy between archaic
and modern humans that may well underlie key autapo-
morphies of the human face, more comparative and de-
velopmental studies are required. In particular, analyses
of MRI and CT data could elucidate the morphological
relationships of the brain and lateral basicranial surfa-
ces and provide insights into how these basicranial ele-
ments interact with the face. Certainly, the findings of
this study point to variations in the temporal lobe,
which, through effects on the MCF and face, are central
to the evolution of modern human facial form. Our find-
ings link cognition and facial morphology in a perhaps
unexpected way.
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