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Abstract 

Study Objectives: This study evaluated a novel artificial neural network (ANN) based sleep 

disordered breathing (SDB) screening tool incorporating nocturnal pulse oximetry with 

demographic, anatomic and clinical data. The tool was compatible with 6 categories of apnea 

hypopnea index (AHI) with 4% oxyhemoglobin desaturation threshold, ≥ 5/hour, 10/hour, 15/hour, 

20/hour, 25/hour, and 30/hour. 

Methods: Using a general population dataset, the training set included 2,280 subjects, while the 

test set included 470 subjects. The input of this tool was a set of 22 variables. The tool had six 

multilayer perceptron (MLP) neural network models for each AHI threshold. Several criteria were 

explored to evaluate the accuracy of the tool: area under the receiver operating characteristic 

curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value 

(NPV), and 95% confidence intervals (CI).  

Results: The AUCs  were 0.904, 0.912, 0.913, 0.926, 0.930, and 0.954 respectively, with models 

of AHI ≥ 5/hour, 10/hour, 15/hour, 20/hour, 25/hour, and 30/hour thresholds. The sensitivities of 

all MLP neural network models were higher than 95%. The AHI ≥ 30/hour model had the maximum 

sensitivity: 98.31% (95% CI: 95.01% - 100%).  

Conclusions: The results of this study suggested that the ANN based SDB screening tool can 

be used to identify the presence or absence of SDB. Future validation should be performed in 

other populations to determine the practicability of this screening tool in sleep clinics and other at 

risk populations. 

Keywords: Sleep disordered breathing, screening, artificial neural network, general population. 
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Brief Summary 

Current Knowledge/Study Rationale: All previous ANN screening tools were developed using 

clinical population datasets with relatively small numbers of subjects. This study introduces an 

ANN based screening tool developed by using a large general population database and 

incorporates clinical, anatomic and pulse oximetry input data to accurately screen for the 

presence or absence of SDB. 

Study Impact: This study is one of the first studies to combine ANN models with easy to 

implement physiologic monitoring to predict the presence of SDB. Therefore, it has the potential 

for widespread clinical use and could result in a decrease in health care costs by reducing the 

need for both overnight laboratory-based polysomnograms (PSG) and home sleep studies (HST).  
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Introduction 

 Sleep disordered breathing (SDB) is a potentially remedial risk factor for hypertension, 

diabetes, stroke, coronary artery disease, and heart failure.1 In one study, in a heart failure 

population, the prevalence of SDB was 76%.2 Various SDB screening tools based on 

questionnaires and anthropometric data, such as the Berlin,3 STOP,4 STOP-BANG,4 NoSAS,5 

and 4-variable tool have been developed over the past twenty years.6 However, the accuracy of 

these existing screening tools to diagnose SDB is relatively low.7 Therefore, confirmation requires 

a diagnostic study, either an overnight laboratory-based polysomnogram (PSG) or a home sleep 

study (HST). An overnight PSG is expensive, complex, and inconvenient. Although HST is less 

expensive,8 false negative studies can occur and SDB severity tends to be underestimated. 

Consequently, many potential SDB patients never receive a diagnosis. One approach to address 

this deficiency would be a more accurate, convenient method of facilitating SDB screening. 

 Artificial neural networks (ANN) are increasingly used in biomedical fields such as 

classification of biologic specimens, prediction of pharmacokinetics of drugs and in the diagnosis 

and prognosis of diseases.9 For example, they have been used in the fields of cardiology to predict 

the presence of coronary artery and congenital heart disease,10,11 and in pulmonology to classify 

pulmonary nodules.12 Some attempts have been made to use ANN to diagnose SDB based solely 

on anthropometric, demographic and historical clinical data with modest success. In this paper, 

we propose the inclusion of nocturnal physiologic data to potentially enhance accuracy. Pulse 

oximetry is a physiologic signal that is widely available. It has been considered as a screening 

tool for SDB, but is insufficient by itself to confirm a diagnosis of sleep apnea with an accuracy for 

an AHI > 15/hour of 86% and 80% in a high and low risk populations respectively.13 We 

hypothesized that use of an ANN in combination with pulse oximetry would result in a more 

accurate screening tool for SDB. Therefore, in this study, we developed and tested a novel ANN 
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based SDB screening tool using a large general population database, the Sleep Heart Health 

Study (SHHS). 

 

Methods 

Data set 

In this research, the Sleep Heart Health Study database (SHHS) was used to develop the 

neural network based screening tool.14-16 It is an ideal resource to be utilized for this purpose 

because of its database of 6,441 subjects with polysomnograms and associated anthropometric 

and medical history data. A complete description of the SHHS has been previously published.14-

16 Only the baseline examination cycle between November 1, 1995 and January 31, 1998 was 

used as the study dataset. The dataset included 1,280 variables and 5,804 subjects, with 2,765 

males (47.6%) and 3,039 females (52.4%). Six hundred two American Indian subjects were 

excluded because consent was withdrawn. We manually selected 22 SDB related variables from 

the 1,280 variables as the candidate variables for the screening tool. A total of 1,866 subjects 

were missing responses for some of the 22 SDB related variables in the baseline examination 

cycle. Additionally, 879 subjects responded do not know for frequency of snoring question. 

Therefore, we removed these subjects from our final dataset. We also removed the subjects who 

had poor pulse oximeter signal quality or a short PSG duration (< 5 hours). The resulting dataset 

thus included 2,850 subjects. Shown in Table 1 is the demographics and other relevant variables 

of the resulting dataset. The body mass index (BMI) was computed as weight in kilograms over 

height in meters squared. Neck circumference (cm) was measured at the medial point. Frequency 

of snoring was defined as 0=not snoring, 1=1 night/week, 2=1 or 2 nights/week, 3=3 to 5 

nights/week, and 4=6 or 7nights/week. Fall asleep while in a car, fall asleep while sitting inactive 

in a public place, and fall asleep while sitting and talking were defined as 1=no chance, 2=slight 

chance, 3=moderate chance, and 4=high chance.   
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The resulting dataset was further randomly separated into two datasets, training set (80%) 

and test set (20%). Table 2 shows the number of positive and negative subjects in the training set 

and the test set, and their respective prevalence at each AHI threshold. The AHI mean of the 

overall training set is 11.0 ± 13.7. The AHI mean of the test set is 12.3 ± 15.8. Table 3 compares 

the characteristics of the final used variables in the training and test sets. There were no significant 

differences between the two sets. 

Development of the Models 

 We classified SDB position and negative subjects by 6 thresholds of AHI with 4% 

oxyhemoglobin desaturation. The 22 manually selected variables were used as the candidate 

features. We created 6 MLP neural network models correspond to the 6 levels of AHI threshold: 

AHI ≥ 5/hour, 10/hour, 15/hour, 20/hour, 25/hour, and 30/hour. We normalized the features by a 

min-max normalization strategy to (0, 1), and used the extremely randomized trees algorithm to 

select input features of the MLP neural network models.17,18 

A neural network is a type of mathematical model with optimizable parameters. The 

multilayer perceptron (MLP), a specific type of neural network model (Figure 1), was used in this 

study. In this paper, we used the training set to teach each of six neural network models, . Each 

neural network model corresponds to one of the 6 levels of AHI threshold. The backpropagation 

algorithm in conjunction with the limited memory version of the Broyden-Fletcher-Goldfarb-

Shanno optimization algorithm (L-BFGS) was used to train the neural network models.19  The 

training process is an optimization process: it optimized the parameters in neural network models 

to reduce the output error rate. The output of the neural network model is a value between 0 and 

1. (See appendix for more details)  

Evaluation and Statistical Analysis 

 The performance of the screening tool was evaluated by using the test set to calculate the 

tool’s AUC, sensitivity, specificity, positive predictive value (PPV), negative predictive value 
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(NPV), and 95% confidence interval (CI). The receiver operating curve is a curve of true positive 

rate (sensitivity) vs false positive rate (1 – specificity). The confidence intervals were calculated 

by the normal approximation interval formula (as in (1)). Here, p is the probability, n is the sample 

size, and z is the z-value of 95% confidence interval.  

!" = $	 ± ' ∗ 	 ) *+)
,    (1) 

Results 

 Evaluation of the screening tool is displayed in Table 4 and Figure 2. The AUCs were 

0.904, 0.912, 0.913, 0.926, 0.930, and 0.954 when SDB was defined at the AHI threshold ≥ 

5/hour, 10/hour, 15/hour, 20/hour, 25/hour, 30/hour, respectively. The result showed that the AHI 

≥ 30/hour threshold model had the highest AUC although there were no large differences among 

the AUCs  of each model. As shown in Table 4, we selected the operating points with high AUC 

and sensitivities for each model. The maximum sensitivity was 98.31% when the threshold was 

AHI ≥ 30/hour. The minimal sensitivity was 95.12% when the threshold was AHI ≥ 5/hour. The 

specificities of all MLP neural network models were greater than 60%. The minimum specificity 

was 62.81% when the threshold is AHI ≥ 5/hour. The maximum specificity was 72.0% when the 

threshold was AHI ≥ 20/hour. The AHI ≥ 30/hour model had the highest 99.73% NPV based on 

an 8.52% prevalence of positive subjects in the dataset. The AHI ≥ 5/hour model had the highest 

PPV (77.61%) based on 55.93% prevalence of positive subjects. 

Discussion 

 In this study, we used ANN modelling of demographic, anthropometric, clinical and pulse 

oximetry data to develop a tool which can be used for screening individuals for the presence of 

SDB. We found that that at commonly used thresholds of AHI, the sensitivity, negative predictive 

value and AUC  were greater than 90%. This suggests that addition of pulse oximetry in an MLP 

neural network model can be a useful screening tool for SDB in a general population.   
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 In our study, we found 90-99% sensitivity, negative predictive value and AUC for AHI 

thresholds ranging from 5 to 30/hour using our MLP neural network models. These results exceed 

those published using other commonly used screening instruments when tested in the same 

SHHS dataset and in comparison to other studies. The Stop-Bang questionnaire consists of 8 

Yes/No items.4 It has been tested in the SHHS dataset and has 87.0% sensitivity and 43.4% 

specificity for moderate-to-severe (15≤AHI≤30) subjects, and 70.4% sensitivity and 59.5% 

specificity for severe (30≤AHI) subjects.7 The 4 variable tool includes age, blood pressure (BP), 

body mass index (BMI), and snoring as input data.6 It has 24.7% sensitivity and 93.2% specificity 

for moderate-to-severe patients, and 41.5% sensitivity and 93.2% specificity for severe patients 

when tested in the SHHS dataset.7 The Berlin questionnaire is another commonly used 

instrument. In a recent review, it was reported to have a 69-93% sensitivity and 19-54% specificity 

using an AHI threshold of 30/hour with a 4% oxygen desaturation requirement.20 As with the 

STOP-BANG and 4-variable tool, these validation statistics indicate a number of patients will be 

misclassified. From a clinical perspective, screen positive patients using these latter instruments 

will still need a confirmatory PSG or HST, and screen negative patients deemed to be at high-risk 

will also need further testing. Furthermore, in most validation studies, the test dataset consists of 

patients recruited from sleep clinics or those with a high suspicion of SDB, and results may not 

be applicable to a more diverse population. 

There have been other efforts to apply ANN modelling of clinical data to predict the 

presence of SDB. El-Solh et al.21 developed a neural network model using 12 clinical input 

variables to predict AHI values. In the 80 subjects used to test their predictive model, they found 

comparable AUCs at AHI thresholds of 10, 15 and 20 /hour.21 Kirby et al.22 introduced a 

generalized regression neural network (GRNN) model to predict AHI values. There were 150 

subjects used to test their GRNN model which had 23 input variables. This model acquired high 

sensitivity 98.9% when AHI ≥ 10 was applied to define obstructive sleep apnea (OSA).22 Teferra 
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et al.23 used 9 input variables in an ANN model which had only 74% sensitivity and 78% specificity 

to predict SDB at an AHI threshold of 15 /hour. In a recent study by Karamanli et al.24 an ANN 

model was developed using 4 input variables and correctly classified 86.6% of subjects. However, 

all previous ANN research efforts used clinical population datasets with relatively small numbers 

of subjects to develop ANN models. The largest test dataset was 150 subjects,22 and therefore 

may not have had enough subjects to adequately validate the neural network models. 

Furthermore, unlike our study, not all commonly employed thresholds of AHI were evaluated. 

 In this study, our novel ANN based screening tool was developed and tested using a 

general population dataset. The AUCs of all MLP neural network models were over 0.9. The 

sensitivities of all MLP neural network models were over 95%. The test results validate that the 

screening tool has high performance and its high negative predictive value of 97.61% at an AHI 

threshold of 15/hour indicates that it can be used in the general population to exclude the 

presence of moderate to severe OSA. This is clinically relevant because a recent comprehensive 

review concludes that it is unclear whether mild OSA is associated with an increase in 

cardiovascular or cerebrovascular events.25 

Our study is not the first one to incorporate physiologic data in an ANN model to predict 

the presence of SDB. In a study by Lweesy et al.26 features of the electrocardiogram (ECG) were 

used with >90% accuracy in classifying a small number of subjects with symptoms of OSA. 

Although it is possible to record ambulatory ECG signals, correct placement of the leads is 

important and prone to error. Use of pulse oximetry is easier for a lay person. Nevertheless, 

addition or substitution of other physiologic signals in our ANN model could produce better or 

comparable results. 

This study does have some limitations. First, although the SHHS database is derived from 

the general population, it is oversampled with snorers and is limited to subjects over the age of 

40 years.14 Second, in clinical practice, some patients may not identify their own sleep problems 
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in questionnaires. Therefore, data from the SHHS population may not have the same predictive 

accuracy of responses from patients regarding sleep problems. Third, some patients deny sleep 

problems and will not either voluntarily report them. Both of these latter limitations may reduce 

the performance of the screening tool in clinical use. Second, despite the large number of subjects 

in SHHS, there were a relatively small number of subjects with high values of AHI. This reduces 

the reliability of the evaluation results in the high threshold models. Finally, subjects with missing 

data were excluded from the analysis. We believe that this was non-differential, and thus did not 

bias the results. 

Despite these limitations, our study has important strengths. We used a large database of 

well-characterized subjects. It is one of the first studies to incorporate easy to implement 

physiologic monitoring to ANN modelling to predict the presence of SDB. Thus, it has the potential 

to be implemented in primary care physicians’ offices to screen populations at high risk for SDB 

such as those with obesity, snoring, diabetes and heart failure, and thus decrease the need for 

referral to a sleep physician. Used by sleep physicians, results from the tool may be sufficient in 

some patients to determine whether or not a patient has SDB. Thus the tool could result in a 

decrease in health care costs by reducing the need for both PSG and HST. 

Conclusion 

In summary, we have developed ANN models that incorporate clinical, anatomic and pulse 

oximetry input data to accurately screen for the presence or absence of SDB. This tool may have 

utility in identifying patients with SDB. Future studies should be done in other populations to 

determine the feasibility of applying this screening tool in clinics and other at risk populations.  
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Figure Titles and Captions 

Figure 1—Multilayer perceptron neural network 

Figure 2—Receiver operating characteristic (ROC) curves of each apnea hypopnea index (AHI) 

threshold model 

Figure 3—Development Process 
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Table 1—Demographics and Related Variables of the Sleep Heart Health Study Dataset 

 Mean ± SD (min-max) 

Age (years) 62.1 ± 10.1 (39-90) 

Body Mass Index (kg/m2) 28.51 ± 5.0 (18-50) 

Neck Circumference (cm) 38.4 ± 4.2 (27-59) 

Percent of sleep time oxygen saturation below 

70% (%) 

0.03 ± 0.6 (0-24) 

Percent of sleep time oxygen saturation below 

75% (%) 

0.07 ± 1.2 (0-46.4) 

Percent of sleep time oxygen saturation below 

80% (%) 

0.19 ± 2.1 (0-66.3) 

Percent of sleep time oxygen saturation below 

85% (%) 

0.57 ± 3.8 (0- 82.0) 

Percent of sleep time oxygen saturation below 

90% (%) 

3.45 ± 9.9 (0-99.6) 

Percent of sleep time oxygen saturation below 

95% (%) 

44.9 ± 34.4 (0 -100) 

Minimum  oxygen saturation in sleep (%) 85.3 ± 6.1 (24 - 97) 

Frequency of Snoring 2.6 ± 1.2 (0 - 4) 
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Fall asleep while in a car 1.2 ± 0.5 (1 - 4) 

Fall asleep while sitting inactive in a public place 1.8 ± 0.9 (1 - 4) 

Fall asleep while sitting and talking 1.2 ± 0.5 (1 - 4) 

AHI 11.26 ± 14.2 (0 - 199.5) 

 Percentage 

Female (%) 44.5% 

Male (%) 55.5% 

Heart Failure (%) 1.26% 

Heart Attack (%) 6.56% 

Stroke (%) 2.96% 

Hypertension (%) 67.9% 

Diastolic Blood Pressure (> 90)(%) 6.14% 

Systolic Blood Pressure (> 170)(%) 1.86% 

Diabetes (%) 6.42% 
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Table 2—Prevalence and Number of SDB Positive and Negative Subjects 

AHI ≥ Training 

Positive 

Training 

Negative 

Test Positive Test Negative Prevalence 

5 1266 1014 328 242 55.93% 

10 814 1466 216 354 36.14% 

15 523 1757 157 413 23.86% 

20 366 1914 109 461 16.67% 

25 259 2021 80 490 11.89% 

30 184 2096 59 511 8.52% 
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Table 3—Key Variables in the Training Set and Test Set 

 Training Set (Mean ± SD) Test Set (Mean ± SD) p-value* 

Minimal oxygen saturation in 

sleep (%) 

85.4 ± 5.86 85.0 ± 6.78 0.224 

Percent of sleep time oxygen 

saturation below 75% (%) 

0.07 ± 1.17 0.13 ± 1.43 0.355 

Percent of sleep time oxygen 

saturation below 80% (%) 

0.17 ± 1.92 0.29 ± 2.77 0.310 

Percent of sleep time oxygen 

saturation below 85% (%) 

0.53 ± 3.53 0.77 ± 4.69 0.238 

Percent of sleep time oxygen 

saturation below  90% (%) 

3.36 ± 9.72 3.85 ± 10.7 0.313 

Percent of sleep time oxygen 

saturation below 95% (%) 

44.5 ± 34.4 47.0 ± 34.2 0.117 

Age (years) 62.0 ± 10.2 62.5 ± 9.89 0.313 

Body Mass Index (kg/m2) 28.5 ± 4.89 28.7 ± 5.22 0.376 

Neck Circumference (cm) 38.4 ± 4.18 38.4 ± 4.25 0.969 

Frequency of Snoring 2.63 ± 1.16 2.61 ± 1.19 0.711 

Fall asleep while sitting 1.78 ± 0.85 1.75 ± 0.84 0.564 
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inactive in a public place 

* The two-tailed Student’s t-test was used to assess the difference in the mean values. The 

statistical significance value was p < 0.05. 
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Table 4—Test Set Evaluation 

AHI ≥ Sensitivity 

(95% CI) 

Specificity (95% 

CI) 

PPV (95% CI) 

 

NPV (95% CI) 

 

AUC  

 

5 95.12% 

(92.79% - 

97.45%) 

62.81% 

(56.72% - 

68.90%) 

77.61% 

(73.54% - 

81.69%) 

90.78% 

(86.04% - 

94.92%) 

0.904 

10 95.37% 

(92.57% - 

98.17%) 

68.93% 

(64.11% - 

73.75%) 

65.19% 

(59.94% - 

70.44%) 

96.01% 

(93.67% - 

98.46%) 

0.912 

15 95.54% 

(92.31% - 

98.77%) 

69.25% 

(64.80% - 

73.70%) 

54.15% 

(48.28% - 

60.02%) 

97.61% 

(95.86% - 

99.36%) 

0.913 

20 97.25% 

(94.18% - 

100%) 

72.02 % 

(67.92% - 

76.11%) 

45.10% 

(38.74% - 

51.47%) 

99.10% 

(98.10% - 

100%) 

0.926 

25 96.25% 

(92.09% - 

100%) 

70.20% 

(66.16% - 

74.25%) 

34.53% 

(28.29% - 

40.77%) 

99.13% 

(98.16% - 

100%) 

0.930 

30 98.31% 

(95.01% - 

100%) 

71.62 % 

(67.72% - 

75.53%) 

28.57% 

(22.36% - 

34.79%) 

99.73% 

(99.2% - 

100%) 

0.954 
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CI: Confidence intervals; PPV: Positive predictive value; NPV: Negative predictive value; AUC: 

Area under the receiver operating characteristic curve 

  



 

Development of the Algorithm 

 The development process of the screening tool is schematically described in Figure S1. 

Initially, our team (with substantial input from SFQ and GES) empirically selected 22 candidate 

variables based on their known association with SDB from the 1280 variables as features. The 

22 candidate variables included: the SaO2% during sleep, age at time of study in years, based 

on start date of SHHS1 PSG recording; Gender as reported by Parent Cohort; Parent Cohort 

reported Diabetes Status; Neck circumference in centimeters. Questions included: How often do 

you snore? What is chance that you would doze off or fall asleep while in a car, while stopped for 

a few minutes in traffic? What is the chance that you would doze off or fall asleep while sitting 

inactive in a public place? What is the chance that you would doze off or fall asleep while sitting 

and talking to someone?  

 

 

Normalization 

We used the Scikit-learn machine learning library to develop the screening tool.17 The min-

max normalization strategy was applied to normalize the 22 candidate features to the range [0, 

1]. The following equations further clarify the normalization process:         

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑋𝑋 − min(𝑋𝑋)

max(𝑋𝑋) − min(𝑋𝑋)
       (2) 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 ∗ (max−min) + min        (3)          



 

Here in (2), 𝑋𝑋 is a 2D array storing all candidate features. The max(𝑋𝑋) and min(𝑋𝑋) are two 1D 

arrays with maximum values and minimum values of the features in the full dataset. In (3), the 

(max, min) is the normalized range of the candidate features. In this study, max is 1, min is 0.  

 

Feature Selection 

We employed the extremely randomized trees algorithm with model selection as the 

feature selection algorithm.1,2 The extremely randomized trees algorithm is a tree-based 

ensemble method to build 10 total randomized trees.2 The importance weights of each feature 

were computed by the feature selection algorithm. Features used at top of the trees have higher 

important weight.1 The total weight is 1 of the 22 candidate features. The input features of each 

MLP neural network model were selected from the 22 candidate features based on their 

importance weights. The AHI threshold ≥ 5/hour had 7 input features. The AHI thresholds ≥ 

10/hour, 15/hour, and 20/hour models had 8 input features each. The AHI threshold ≥ 25/hour 

model had 11 input features. The AHI threshold ≥ 30/hour model had 9 input features.  

 

Construction of Neural Network Models 

The MLP neural network had two layers: one hidden layer, and an output layer. The MLP 

neural network models were trained by the backpropagation learning method in conjunction with 

the well-known limited memory BFGS optimization algorithm (L-BFGS) with L2 regularization. The 

L-BFGS is a quasi-Newton method algorithm with limited computer memory.3 During the 

optimization process, the parameters in neural network models were random initiated. The 

parameters of the model were optimized to reduce the output error. The output error was 

computed by the cross-entropy cost function. This process was repeated for all subjects in the 

training set over several iterations. After sufficient training, the model learned how to accurately 

compute the output result. In this study, we used two types of activation functions for the hidden 



 

layer of different neural network models: the logistic function (Logistic, in (4)) and the hyperbolic 

tangent function (Tanh, in (5)). The activation function of output layer is the logistic function. We 

applied the grid search method to optimize the hyper-parameters of the MLP neural network 

models and used the AUC as the metric. In the optimization procedure, we used a 10-fold cross-

validation to evaluate the AUC.4 The optimized hyper-parameters, activation function, and input 

features for each model are listed in Table S1. 

𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑥𝑥) =  
1

1 + 𝑒𝑒−𝑥𝑥
    (4) 

𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡ℎ(𝑥𝑥) =  
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
    (5) 

 

Table S1—Hyper-parameters and Selected Features of Each Model 

AHI ≥ Activation 
function of 
hidden layer 

Hidden 
neurons 

L2 
regularization 
term 

Features 

5 Logistic 4 10-4 Age, BMI, MinO2Sa, NC, O2Sa90, 
O2Sa95, Snore 

10 Tanh 3 10-2 Age, BMI, MinO2Sa, NC, O2Sa85, 
O2Sa90, O2Sa95, Snore 

15 Logistic 6 10-3 Age, BMI, MinO2Sa, NC, O2Sa85, 
O2Sa90, O2Sa95, Snore 

20 Logistic 4 10-2 Age, BMI, MinO2Sa, NC, O2Sa85, 
O2Sa90, O2Sa95, Snore 

25 Tanh 10 10-3 Age, BMI, MinO2Sa, NC, O2Sa75, 
O2Sa80, O2Sa85, O2Sa90, O2Sa95, 
Snore, SInPub 

30 Tanh 7 10-3 Age, BMI, MinO2Sa, NC, O2Sa80, 
O2Sa85, O2Sa90, O2Sa95, Snore 

BMI: Body Mass Index; MinO2Sa: Minimal oxygen saturation in sleep; NC: Neck circumference; O2Sa90: 
Percent of sleep time oxygen saturation below 90%; O2Sa95: Percent of sleep time oxygen saturation 
below 95%; Snore: Frequency of Snoring; O2Sa85: Percent of sleep time oxygen saturation below 85%; 
O2Sa75: Percent of sleep time oxygen saturation below 75%; O2Sa80: Percent of sleep time oxygen 
saturation below 80%; SInPub: Fall asleep while sitting inactive in a public place 
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