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Abstract 
Large calibrated datasets of 'random ' natural im- 

ages have recently become available. These make possi- 
ble precise and intensive statistical studies of the local 
nature of images. We report results ranging from the 
simplest single pixel intensity to joint distribution of 3 
Haar wavelet responses. Some of these statistics shed 
light on old issues such as the near scale-invariance 
of image statistics and some are entirely new. We fit 
mathematical models to some of the statistics and ex- 
plain others in terms of local image features. 

1 Introduction 
There has been much attention recently to the 

statistics of natural images. For example, Ruder- 
man [7] discusses the approximate scale invariance 
property of natural images and Field [4] linked the 
design of the biological vision system to the statis- 
tics of natural images. Zhu, Wu and Mumford [9] 
set up a general frame work for natural image mod- 
eling via exponential models. Simoncelli[l] uncovered 
significant dependencies of wavelet coefficients in nat- 
ural image statistics. In most of these papers, sim- 
ple statistics are calculated from which some proper- 
ties are derived to prove some point. But little effort 
has been made to systematically investigate the ex- 
act statistics that underline natural images. Many of 
these papers base their calculation on a small set of 
images, casting doubt on how robust their results are. 
Also, because of the small sample sets, rare events 
(e.g. strong contrast edges) which are important vi- 
sually may not show up frequently enough to stabilize 
the corresponding statistics. We tried to overcome 
these problems by using a very large calibrated im- 
age data base (about 4000 1024 x 1536 images taken 
by digital camera), provided by J.H. van Hateren (for 
details, see [5]). Figure 1 shows some sample images 
from this data base. These images measure light in 
the world up to an unknown multiplicative constant 
in each of the image. We will only work on the log 
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Figure 1: Four images from the data base 

intensity, and use statistics which do not contain the 
constant (now an additive constant). We believe our 
work here can serve as a solid starting point for fur- 
ther image modeling and provide guidance in design 
of image processing and image compression systems. 

We explain some symbols we will use in the paper: 
Assume X is a random variable on R, we use p and U' 

to represent the mean and variance of X .  We define: 

E ( X - d 4  s =  E ( X  - PI3 
I C =  

U 4  U3 

where K is the kurtosis, S is the skewness. Assuming Y 
is another random variable on R, we denote the differ- 
ential entropy for X by X ( X ) ,  and denote the mutual 
information between X and Y by Z ( X , Y ) ,  both in 
bits. We use differential entropy instead of discrete 
entropy, because the variables are real valued. For de- 
tails, see [a ] .  All our pictures of probability distribu- 
tions (or of normalized histograms) will be shown with 

54 1 
0-7695-0149-4/99 $10.00 0 1999 IEEE 

mailto:David_Mumford@brown.edu


Figure 2: left: log histogram of l n ( l ( i , j ) )  - 
average( ln( l ) ) ,  right: log histogram of l n ( l ( i ,  j)) - 
l n ( l ( i , j  + 1)) 

the vertical scale not probability but log of probability: 
this is very important as it shows the non-Gaussian 
nature of these probability distribtuions more clearly 
and shows especially the nature of the tails. We will 
regard each image I in the data set as a 1024 x 1536 
matrix, and l ( i ,  j )  represents the intensity a t  position 
(4 j > .  

2 Single Pixel Statistics 
The left image of Figure 2 shows ln(histogram) of 

the random variable ln( l ( i ,  j)) - average(ln(1)). Con- 
stants associated to this statistics are p = 0, U = 0.79, 
S = 0.22, K = 4.56, 7f = 1.66. From the log plot and 
the skewness S, we can see that this statistic is not 
symmetric. One important reason is the presence of 
a portion of sky in many images, which is quite dif- 
ferent from other parts of images, always with a high 
intensity value. Another interesting feature is the lin- 
ear tail in the left half. Obviously, this statistic is non 
Gaussian, although the center part of the log plot does 
show a parabola shape. The kurtosis is bigger than 3 
(the value for Gaussians) but not very large. 

3 Derivative Statistics 
We now look at  the marginal distribution of hor- 

izontal derivatives, which in discrete case, is simply 
the difference between two adjacent pixels in a row, 
i.e. D = l n ( I ( i , j ) )  - In( l ( i , j  + 1)). The right image 
of Figure 2 shows the ln (His togram)  of D, and here 
are some constants associated to it: p = 0, U = 0.260, 
S = 0.085, K = 17.43, 7.1 = -0.24. The value of U is 
quite interesting: random horizontally adjacent pixels 
have roughly 25% more or less energy. The kurtosis 
is now very large but one should be aware that this 
statistic is very sensitive to outliers and so the num- 
ber cannot be taken very seriously. 

We wish to model this statistic: notice that the 
shape of the histogram has a distinct peak at  0, and 

Figure 3: The two models with best fitting constants 

a concave tail. Writing the density function for D as 
f(z), we consider the following models: 

1 1 
Model 1 f(z) = - 2 . (1 + 2 2 / S 2 ) t  

2 is fixed since the integral of f(z) is 1, so both models 
have 2 free parameters. Model 1 is the t-distribution 
and Model 2 is the generalized Laplace distribution, 
whose parameters s, a are directly related to the vari- 
ance and kurtosis by: 

Figure 3 shows the best fit of both models to 1n(f(z)) .  
We choose parameters such that the mean square error 
is minimal, obtaining t = 2.60 for model 1 and a = 
0.55 for model 2. It’s obvious that model 2 is better 
in the tails. Note that in Model 2, the parameters 
of the model can be calculated (numerically) directly 
from the variance and kurtosis using (3.1), we find 
such calculated model is very close to the best fitting 
model. 

4 Joint Distribution of Two Adjacent 
Pixels 

Figure 4, left, shows the joint distribution of the 
intensities pl  and pa at two horizontally adjacent 
pixels, where p l  = l n ( l ( i , j ) )  - average(ln(l)),pZ = 
In(l(i,  j+l))-average(ln(1)). The constants we found 
are: 7.1(pl,p2) = 1.51,1(pl,p2) = 1.80. Notice that 
the mutual information 7.1 between adjacent pixels is 
a large number, indicating that adjacent pixels are 
highly correlated. On the other hand, we can see from 
the contour plot, that there is some symmetry along 
p l  = pa,  and a rough symmetry along p l  = -p2, we 
may guess that the sum and the difference of two ad- 
jacent pixels are more likely independent. Figure 4, 
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Figure 4: Left figure: Joint Histogram of p l  and p a ,  
Right figure: The product density function of p l  - p z  
and pi + pz  
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right, shows the product distribution of the marginals 
of p l  + pa and p l  - pa.  Comparing the two contour 
plots, we can see that at the center part (where the 
density is much higher than other places) the product 
distribution and the original distribution are very sim- 
ilar, but the shape of the level curves away from (0,O) 
becomes quite different. The mutual information be- 
tween p l  + p z  and p l  - p 2  is 0.0255. Compared to that 
of p l  and p z ,  it's very small, indicating a rough inde- 
pendence between p l  + p ~  and p1 -pa from information 
theory point of view. 

5 Joint Statistics in the Wavelet Do- 
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Figure 5: Haar Filters 

The idea of applying wavelet pyramids to image 
processing has proven to be very successful. Here we 
use the simplest wavelets: Haar wavelets. Figure 5 
shows the four basic Haar filters in 2D. Assuming we 
have a 8 x 8 image, we can apply the horizontal filter 

Figure 6: Relations Between Wavelet Coefficients 

on non overlapping 2 x 2 blocks of the image, to get a 
4 x 4 matrix of responses, called the first level horizon- 
tal sub band. Similarly, we have the first vertical and 
diagonal sub bands. Next, apply the low pass filter 
on the image, getting a 4 x 4 image, and repeat the 
above procedure on this smaller image to get the sec- 
ond level horizontal, vertical and diagonal sub bands, 
all of them with dimension 2 x 2. This procedure can 
go on till we get a 1 x 1 image. This way we get 
the wavelet pyramid of sub bands whose statistics we 
wish to study. Figure 6 shows the sub bands of the 
first two levels. In order to describe the relative posi- 
tions of wavelet coefficients in sub bands, we borrow 
some of the definitions given in [l]: we call the coef- 
ficients at adjacent spatial locations in the same sub 
band brothers, (left, right, upper, lower brothers ac- 
cording to the relative positions), call the coefficients 
in same level, same position, but different orientations 
cousins. And call the relationship of coarse-scale co- 
efficients and finer-scale coefficients parent and child. 
Figure 6 shows a coefficient C in the vertical sub band, 
and its relatives. 
5.2 2D Joint Statistics for Haar Wavelet 

In this subsection, we look at the joint statistics 
of different coefficient pairs. Where we have used the 
Haar wavelet for simplicity, the general model we find 
here also fits to other wavelet bases. Figure 7 shows 
the mesh plot of the joint statistics of the pair hori- 
zontal component(hc), and its vertical cousin(vc). We 
found that: for any angle 0 5 0 5 TT, the cross section 
along hc = tan(0)vc is similar to the derivative stat,is- 
tics we got in section 3, and the 'generalized Laplacian' 
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Figure 7: Mesh Plot of the ln(Joint Histogram) of 
Horizontal Component and its Vertical Cousin 

model can be easily used to  fit the cross sections here. 
This suggests, as a first step, fitting a model 

The fittings are pretty good, Figure 9 shows the worst 
fitting case (with largest mean square error) among all 
cross sections , even which fits very well. 

Using this method, we successfully fit other pairs 
of wavelet coefficients. Figure 8 shows the contour 
plot of the joint density functions of different pairs. 
We see that 2D joint density functions have variable 
and complex structures. But for a specific pair, we 
may come up with some specific simple model. For 
example, notice that the level curves of the horizon- 
tal component(hc) and its vertical cousin(hv) pair 
show a shape similar to the curve defined by: 1x1 + 
IyI = 1, hence we may model the density function as: 
f ( c h ,  C V )  = e c l + c ~ ( ~ c * ~ + ~ c u ~ ) "  for some constants ~ 1 ,  

Cz, cy. All these shapes reflect typical local features in 
the images, such as the fact that horizontal and ver- 
tical edges are more common than diagonal ones. We 
leave to a later paper the detailed exploration of these 

. features. 

5.3 3D joint statistics for haar wavelet co- 
efficient s 

Here we just present the joint statistics for the 
triple: horizontal component, its vertical cousin 
and diagonal cousin. Figure 10 shows a level sur- 
face(c0unterpart of a single level curve in Figure 8) 
viewed from different angles. We can see more struc- 
tures here. There are four corners on the 'horizontal' 
and 'vertical' axes, which imply that the probability 
density heavily concentrates on these two axis. 

-2 0 2 
vertical component 

-2 0 2 
diagonal component 

-2 0 2 
upper brother 

-2 0 2 
left brother 

- r 
5 3  c 3  

6 2  a 2 2  

e1 

8 0  
E , '  
d -1 2 -1 

-2 8-2 
2 -3 2 -3 

- 0 0  - 

-2 0 2 -2 0 2 
left brother upper left brother 

3 3 

8 2  p 2  
5 1  - 
E O  E o  g - 1  8-1 
2 -2 2 -2 

.c U 1  - 

-3 -3 

-5 0 5 -5 0 5 

horizontal parent diagonal parent 

Figure 8: Contour Plot of the log(histogram) of several 
wavelet coefficient pairs 

5.4 An interesting phenomena and our 

In [l], the authors observed a interesting phenom- 
ena in the joint histograms from images. Let hp rep- 
resents horizontal coefficient at parent level, and hc 
represents horizontal coefficient at  child level, they 
observed that the conditional histogram H(lnlhc1 I 
Inlhpl) has a shape shown in Figure 11 (we will ex- 
plain how we get this figure next). The filters they 
use are separable Quadrature Mirror Filters(QMF). 
We repeated their calculation of 2D histograms using 
QMF and found that the shape of level curves of joint 
histogram H ( h c , h p )  is very close to  a circle, similar 
to  that of the diagonal parent & diagonal child pair, 
shown in figure 8. So our general model (5.1) reduces 

explanat ion 
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Figure 9: The cross section of Figure 6 ,  that has the 
worst fitting curve 

to: 

where r = d m ,  and C1, C2, Q are just con- 
stants, independent of 8. We found that this model fits 
fairly well to the data for C2 = 1 and Q = 0.5. From 
the phenomena they observed, the authors concluded 
in [l] that, the conditional expectation, E(lhclllhpl) 
is approximately proportional to P, and derive a very 
simple linear predictor from it. For the left part, they 
suspected these low-amplitude coefficients are domi- 
nated by quantization and other noise sources. 

This phenomena can be actually explained using 
(5.2). Since f ( h c ,  hp) is symmetric, the density func- 
tion for (lh.1, lhpl) should have the same expression, 
only that C1 is different. So we just assume hc > 
0 , h p  > 0. Let z = In(hc) and y = In(hp), then the 
joint density function for z, y is: 

f ( h c ,  hp) = Cle-Car" (5.2) 

g(z, y) = C~exe~e-c~+' 

where r = d-. The conditional density func- 
tion will be: 

g(z1y) = C(y)exe-caro 

Figure 11 shows the numerically calculated g(z I y). 
Next, we explain analytically this phenomenon. For 
fixed y, let's find z which maximize g(z  I y). Set the 
derivatives of g(z  1 y) to zero, and substitude C2 by 1, 
we get the equation: 

e2Y = e2x(Q&e2~& - 1) (5.3) 

From this equation, it is easy to see that: 

a 1  
2 2  

I (1 - - )y -  -Incr, if y - 0 0  

O B  

0 4  

0 2  - 
6 0  P 
0 - 0 2  

-04  

- 0 6  

1 
Vertical 

Horizontal 

>l ,I 

Figure 10: An equi-surface of 3d joint histogram of 
horizontal component, its vertical cousin and diagonal 
cousin, viewed from three different angles 

1 
2 + ---lna, Q i f y - + - W .  

6 Long Range Covariances 
All the statistics we talked above are small scale 

statistics, i.e. they are about single or a few nearby 
pixels. The most important long range statistic is the 
covariance of two pixel values: 

C(z, Y) =< l(z, Y ) V ,  0) > 

Here < > is the expectation, taking over all the im- 
ages. However, our images are samples of a distri- 
bution which is only well-defined up to an additive 
constant, so we replace this statistic by the 'difference 
function': 

D ( z ,  Y) =< N z ,  Y) - q o ,  0)l2 > 

which is related to the covariance by 

D ( z ,  y) + 2C(z, y) = constant 
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Figure 11: The conditional histogram H(lnlhc1 I 
lnlhpl) calculated from our model. Bright parts mean 
high values 

when both are well defined. 
In [7] , Ruderman calculated the 'one-dimensional' 

difference function, i.e., he took the average of D ( z ,  y) 
over all directions, and got a one dimensional function 
Ill(.) to which he fit a scaling model: 

Ill(.) = c1 + CzIzl--')I (6.1) 

These covariance models correspond in frequency do- 
main to  the power spectrum - h. If r ]  goes to 0, 
note that 1 - r-9 = 1 -e-? l o g r  x r ]  log r giving us the 
model 

a(.) = c1+ Czlog(lzl) (6.2) 
which is the model implied by the assumption that 
2 x 2 block averages of the image I have the same 
distribion as I [8]. The best fitting constants Rud- 
erman found from his image dataset are: C1 = 0.79, 
Cz = -0.64 and r ]  = 0.19. 

We calculated the two dimensional D ( z ,  y) from our 
data set. Using a Fourier transformation technique, 
we actually took into our calculation all  the possible 
pixel pairs within distance of 500 pixels. The statistics 
we got are very stable, and we can look more closely at 
the tail of the statistics, and even take delicate opera- 
tions like derivatives on them. The upper two images 
in Figure 12 show the contour and mesh plot of D ( z ,  y) 
we got. The lower two show the two cross sections 
along horizontal and vertical direction. We can see, 
the cross section along vertical direction grows faster 
than that along the horizontal direction. We believe 
the main reason is that ,  in many images, there is a 
portion of sky at top, and ground at bottom and the 
large difference between them will contribute a lot to 
the difference function along ther vertical direction. 

difference function 5:F1 ._ 

0 500 
-500 

-500 

honzontal cross section 

-500 5w 

difference function 

1 5  

1 

0 5  

0 
500 

5w 

-5w - -5w 

vertical cross section 
1.4- 

-500 500 

Figure 12: Difference Function 

.The upper left image in Figure 13 shows the log-log 
plot of the derivative of the positive part of horizon- 
tal cross section. The base we used when we took 
the log operation is 2. We see that,  between 2 and 
5 (corresponding to distances of 4 and 32 pixels), the 
derivative is close to a straight line, with a slop -1.19. 
If we use model (6.1), then r ]  = -(-1.19 + 1) = 0.19, 
which is exactly what Ruderman got. But notice how 
the log-log plot begin to turn and becomes almost a 
horizontal line around 8. This clearly indicates that 
there exists a linear term , i.e. we can model it as: 

a(.) = c1 + Cz1zI-Q + C3)zI 
Generalizing it to D ( z ,  y),  we seek a model: 

D ( z ,  Y) = Cl(t9) + Cz(B)r-q + C3(O)r 

where, r = d m ,  and t9 = tan-'( 5 ) .  The best fit- 
ting r ]  we got is 0.32, and the best fitting Cl(t9>, Cz(t9) 
and C3(0) are shown in figure 13. The maximum fit- 
ting error we got is 0.0035, which is very small, con- 
sidering the range of D ( z ,  y) is between 0 and 0.8, and 
the large area on which we fit the model (a annulus 
with 4 < r < 200). 

One interesting observation we make is that C1(B)+ 
CZ(t9) is almost zero, hence we may fit our model with 
one less parameter: 

D ( z ,  y) = Cz(O)(l - r - v )  + C3(O)r 

Since C3(8) is very small, the linear term can be omit- 
ted when r is small, we get (for T small): 

D(z1 Y) F 3  C(Vn(.) 
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Figure 13: log-log plot of the horizontal cross section 
and some fitting constants,see text 

This shows that while random images seem very close 
to samples from a scale-invariant process, there are 
also systematic deviations from scale invariance on a 
large scale. 

7 Discussion 
We have presented several statistics from natural 

images. From the statistics about derivatives and 
wavelet coefficients, our data suggests that statistics 
involving linear filters (with mean 0) can be modeled 
by ‘generalized Laplace’ distributions. Another new 
observation we make is that there is a linear tail in 
the Difference Functions, which indicates that, strictly 
speaking, natural images may not have the full scale 
invariance property. However we found that this prop- 
erty holds almost exactly locally (i.e. for filters with 
small supports). 
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