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On June 29, 2015, the U.S. Supreme Court ruled that the Environmental Protection Agency 23	

(EPA) acted unreasonably when it determined that cost was irrelevant to deciding whether it was 24	

“appropriate” to regulate emissions of Hazardous Air Pollutants (HAPs) from coal and oil-fired 25	

utilities (EGUs) (U.S. Supreme Court, Michigan v. EPA, 2015). According to the 1990 Clean Air 26	

Act Amendments, EPA must make a preliminary determination, known as the “appropriate and 27	

necessary” finding, before regulating EGUs. The Court ruled that EPA made a mistake at this 28	

preliminary stage and sent the regulation, known as the Mercury and Air Toxics Standards 29	

(MATS), back to the agency and ordered EPA to consider costs. The public comment period for 30	

this proposal closed on January 15, 2016 and EPA aims to issue a final cost consideration and 31	

renewed “appropriate and necessary” finding by April 15, 2016. 32	

 33	

In its 2011 regulatory assessment1, EPA concluded that the monetized benefits for all air 34	

pollutants (both direct benefits and co-benefits) associated with MATS range between $37 and 35	

$90 billion and far exceed the costs of regulation. However, most of these quantified benefits 36	

come from reductions in particulate emissions. Monetized benefits associated with reducing 37	

HAP emissions in EPA’s regulatory assessment ranged between $4-$6 million, leading some 38	

critics to argue that the rule was unreasonable. However, both the scientific community and EPA 39	

have repeatedly emphasized the many additional, significant, unquantified benefits of this 40	

regulation that further outweigh the costs. Even preliminary efforts to monetize these benefits 41	

suggest they are substantially greater than the costs of the proposed regulation.   42	

 43	

Although EGUs release a variety of HAPs, we will focus specifically on the benefits associated 44	

with reducing emissions of mercury and exposures to its organic form, methylmercury, which is 45	
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formed in aquatic ecosystems and bioaccumulates in food webs. Based on recent peer-reviewed 46	

scientific literature, we find the monetized benefits for EGU mercury emissions reductions 47	

identified by EPA in the regulatory impact analysis supporting MATS vastly understate the 48	

benefits associated with reductions of those emissions. 49	

Specifically we elaborate upon three key points below: 50	

1. Recent research demonstrates that quantified societal benefits associated with declines in 51	

mercury deposition attributable to implementation of MATS are much larger than the 52	

amount estimated by EPA in 2011. 53	

2. As-yet-unquantified benefits to human health and wildlife from reductions in EGU 54	

mercury emissions are substantial. 55	

3. Contributions of EGUs to locally deposited mercury have been underestimated by EPA’s 56	

regulatory assessments. 57	

1. Quantified societal benefits associated with declines in mercury deposition attributable 58	

to implementation of MATS are much larger than the amount estimated by the EPA in 59	

2011.1 60	

Due to data limitations and gaps in the available research, EPA’s regulatory assessment only 61	

considered a small subset of the public health and environmental risks associated with mercury 62	

emissions from EGUs. Specifically, EPA monetized the value of IQ losses for children born to a 63	

limited population of recreational fishers who consume freshwater fish during pregnancy from 64	

watersheds where EPA had fish tissue data. The monetized value of benefits for this small 65	

subpopulation was estimated between $4 and $6 million annually.1 66	
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If one considers instead all of the benefits of reducing EGU mercury emissions, recent research 67	

confirms that the benefits are orders of magnitude greater than those quantified by EPA in 2011. 68	

One study found that the cumulative U.S. economy-wide benefits associated with 69	

implementation of MATS exceeded $43 billion.2 This value is far greater than EPA’s estimate of 70	

the costs associated with the regulation. Other work has estimated an annual benefit of $860 71	

million associated with a 10% reduction in methylmercury exposure in the U.S. population.3 72	

2. As-yet unquantified benefits to human health and wildlife are substantial. 73	

In part these estimates are so much greater than the quantified benefits identified in EPA’s 74	

regulatory assessment because they consider additional types of benefits from reducing EGU 75	

mercury emissions. For example, many of these benefits are associated with adverse impacts of 76	

methylmercury on cardiovascular health. EPA did not quantify cardiovascular effects in the 77	

regulatory assessment. At that time, there was a split in the scientific evidence regarding the 78	

significance of those impacts. On one side, an independent expert panel in 2011 asserted there is 79	

sufficient scientific evidence to incorporate these outcomes in regulatory assessments.4 On the 80	

other, a high-profile study of risks of cardiovascular disease associated with methylmercury 81	

exposures in two U.S. cohorts found no evidence of adverse effects.5 82	

There are several reasons, however, to conclude that the cardiovascular impacts are substantial 83	

despite the latter study. First, the study included only low-to-moderate fish consumers and 84	

therefore lacked the statistical power to detect effects seen in studies that included a greater 85	

range in exposures (e.g., 6). Second, it is challenging to isolate the neurodevelopmental and 86	

cardiovascular impacts of methylmercury exposure from seafood consumption because seafood 87	

also contains long-chained fatty acids (eicosapentaenoic acid and docosahexaenoic acid) that 88	
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serve to mask those deleterious impacts.7, 8 These confounding effects make it difficult for some 89	

epidemiological studies to identify the negative health outcomes associated with methylmercury 90	

exposures against the background of beneficial effects of consuming long-chained fatty acids in 91	

seafood. However, this does not imply that exposures to methylmercury on its own are not 92	

harmful, or that it does not reduce the benefits of an otherwise healthy food source.9, 10 In 93	

addition, imprecision in exposure biomarkers biases many epidemiological studies toward a null 94	

finding rather than detection of adverse effects.11 We note that failure to find a statistically 95	

significant effect is not evidence that no such effect exists, though it may provide evidence that 96	

constrains the magnitude of the effect. 97	

Although EPA’s regulatory assessment did quantify one type of neurological effect (IQ loss) 98	

among one group of fish consumers, its consideration of neurodevelopmental benefits from the 99	

proposed rule is incomplete. For example, the assessment did not consider benefits associated 100	

with reductions in methylmercury in coastal U.S. fisheries. It therefore significantly 101	

underestimates the neurodevelopmental benefits of the rule, because marine fish account for 102	

>90% of methylmercury intake by the U.S. population.12 These benefits are difficult to quantify 103	

because they require attributing changes in methylmercury exposure from domestic, 104	

international, and natural sources of mercury. Nevertheless, many species of marine fish eaten by 105	

Americans spend a large portion of their lifecycle foraging in coastal U.S. domestic waters (Gulf 106	

of Mexico, Atlantic and Pacific coastal waters). Recent research suggests the regulation of 107	

domestic U.S. mercury emissions will have a substantial effect on mercury inputs to coastal 108	

waters (see point 3 below). For example, a recent study reported marked decreases in mercury in 109	

Atlantic coastal fisheries in response to decreases in mercury emissions.13 110	
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Furthermore, recent epidemiological data have revealed a suite of more sensitive 111	

neurodevelopmental effects than full-IQ, the impact valued in EPA’s 2011 regulatory 112	

assessment. Even the original National Academy of Sciences Panel on the Toxicological Effects 113	

of Methylmercury conceded that full-IQ was not the most sensitive indicator of 114	

neurodevelopment.14 In addition, neurodevelopmental impacts of methylmercury have more 115	

recently been documented at exposure levels below the reference dose established by the NRC 116	

Panel in 2000.15 Similar to lead exposure, there is no evidence from epidemiological studies for a 117	

health effects threshold, below which neurodevelopmental effects do not occur.16, 17 As a result, 118	

compared with EPA’s regulatory assessment, a full quantification of the neurodevelopmental 119	

impacts of EGU mercury emissions would need to take into account both other kinds of fish 120	

consumption and effects other than reductions in IQ. 121	

Many other benefits of regulating mercury emissions from EGUs have not been monetized on a 122	

national scale due to the heterogeneity in effects across ecosystems, lack of data, and challenges 123	

associated with monetization. These additional benefits include: 124	

• Reductions in the deleterious impacts of methylmercury exposure on endocrine 125	

function,18 risk of diabetes,19 and compromised immune health.20 126	

• Benefits to fish and wildlife, including sensitive bird species (songbirds, loons), marine 127	

mammals, fish, and amphibian populations threatened by high levels of mercury 128	

contamination in many U.S. ecosystems. Emerging research on the ecological impacts of 129	

methylmercury exposures indicates that adverse effects on the reproductive and 130	

behavioral health of wildlife populations occur at low levels of environmental 131	

exposure.21, 22 132	
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3. Contributions of EGUs to locally deposited mercury have been underestimated by EPA’s 133	

regulatory assessments. 134	

The regulatory assessment supporting MATS1 also underestimates the benefits of reducing EGU 135	

mercury emissions because it underestimated the portion of those emissions that are deposited to 136	

the land and waters of U.S. ecosystems. Human and ecological health risks associated with 137	

utility-derived mercury emissions are greatest in regions that are most affected by locally 138	

deposited mercury. Some of the mercury emissions from EGUs are highly water-soluble and 139	

locally deposited while the rest are emitted to the atmosphere as a stable, long-lived species that 140	

is transported and distributed globally. 141	

Benefits of MATS associated with declines in mercury deposition to U.S. ecosystems in the 142	

regulatory assessment were based on atmospheric modeling that suggested global (non-U.S.) 143	

anthropogenic sources would be most important for regional declines in deposition. However, for 144	

the past two decades, mercury researchers have noted slow and steady declines in atmospheric 145	

mercury concentrations in North America, Europe, and over the open oceans. Initial attempts to 146	

rationalize these observations from a scientific perspective were confounded by a commonly 147	

held (but incorrect) assumption among researchers that global mercury emission trends from 148	

anthropogenic sources were steady or increasing over this same time period. Zhang et al.23 149	

recently corrected an error in previous emissions inventories on the form of mercury released by 150	

EGUs over time. This correction helps enable global models to reproduce the observed declining 151	

atmospheric mercury trends and shows that local and regional mercury deposition to U.S. 152	

ecosystems is much more influenced by domestic actions than previously assumed. 153	
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Other new studies also support the premise that declining mercury emissions in the United States 154	

will substantially reduce mercury deposition and biological exposures in U.S. ecosystems and 155	

hence to U.S. populations.  For example, several U.S. studies have measured substantial declines 156	

in domestic atmospheric and ecologic mercury concentrations attributable to reductions in 157	

mercury emissions from EGUs. Castro and Sherwell24 observed declines in atmospheric mercury 158	

concentrations at a pristine site in Maryland downwind of power plants in Ohio, Pennsylvania, 159	

and West Virginia. Drevnick et al.25 observed a mean ~20% decline in mercury accumulation in 160	

104 sediment cores from the Great Lakes regions attributable to domestic emissions reductions. 161	

Evers et al.26 identified biological mercury hotspots in the northeastern United States driven 162	

mainly by U.S. domestic emissions. Similarly, Hutcheson et al.27 noted declines in 163	

methylmercury concentrations in freshwater fish in the United States concurrent with domestic 164	

mercury emissions reduction. Cross et al.13 report marked decreases in mercury in Atlantic 165	

coastal fisheries in response to decreases in mercury emissions. 166	

Together, these new studies demonstrate that declines in mercury deposition to U.S. ecosystems 167	

and resulting human and ecological exposures have been underestimated by the 2011 regulatory 168	

impact assessment performed by EPA. 169	

References 170	

(1) U.S. Environmental Protection Agency (2011), Regulatory Impact Analysis for the Final 171	

Mercury and Air Toxics Standards (US Environmental Protection Agency, Office of Air Quality 172	

Planning and Standards, Research Triangle Park, NC). EPA-452/R-11-011. Available: http:// 173	

www3.epa.gov/mats/pdfs/20111221MATSfinalRIA.pdf.    174	

(2) Giang, A., Selin, N. E. Benefits of mercury controls for the United States. Proc Natl Acad Sci 175	

USA Early Edition 2015; http://www.pnas.org/cgi/doi/10.1073/pnas.1514395113. 176	



	
	

10	

(3) Rice, G., Hammitt, J., Evans, J. A probabilistic characterization of the health benefits of 177	

reducing methyl mercury intake in the United States Environ. Sci. Technol. 2010, 44, 5216-5224. 178	

(4) Roman, H. A., Walsh, T. L., Coull, B. A., Dewailly, É., Guallar, E., Hattis, D., Mariën, K., 179	

Schwartz, J., Stern, A. H., Virtanen, J. K., Rice, G. Evaluation of the cardiovascular effects of 180	

methylmercury exposures: Current evidence supports development of a dose–response function 181	

for regulatory benefits analysis. Environ Health Perspect 2011, 119, (5), 607-614. 182	

(5) Mozaffarian, D., Shi, P., Morris, S. J., Spiegelman, D., Grandjean, P., Siscovick, D. S., 183	

Williett, W. C., Rimm, E. B. Mercury exposure and risk of cadivascular disease in two U.S. 184	

cohorts. New England Journal of Medicine 2011, 364, 1116-1125. 185	

(6) Choi, A. L.; Weihe, P.; Budtz-Jorgensen, E.; Jorgensen, P. J.; Salonen, J. T.; Tuomainen, T. 186	

P.; Murata, K.; Nielsen, H. P.; Petersen, M. S.; Askham, J.; Grandjean, P. Methylmercury 187	

exposure and adverse cardiovascular effects in faroese whaling men. Environ Health Perspect 188	

2009, 117, (3), 367-372. 189	

(7) Mahaffey, K. R.; Sunderland, E. M.; Chan, H. M.; Choi, A. L.; Grandjean, P.; Marien, K.; 190	

Oken, E.; Sakamoto, M.; Schoeny, R.; Weihe, P.; Yan, C. H.; Yasutake, A. Balancing the 191	

benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish 192	

consumption. Nutr. Rev. 2011, 69, (9), 493-508. 193	

(8) Oken, E.; Radesky, J. S.; Wright, R. O.; Bellinger, D. C.; Amarasiriwardena, C. J.; Kleinman, 194	

K. P.; Hu, H.; Gillman, M. W. Maternal fish intake during pregnancy, blood mercury levels, and 195	

child cognition at age 3 years in a US cohort. Am. J. Epidemiol. 2008, 167, (10), 1171-1181. 196	

(9) Davidson, P. W.; Strain, J. J.; Myers, G. J.; Thurston, S. W.; Bonham, M. P.; Shamlaye, C. 197	

F.; Stokes-Riner, A.; Wallace, J. M. W.; Robson, P. J.; Duffy, E. M.; Georger, L. A.; Sloane-198	

Reeves, J.; Cernichiari, E.; Canfield, R. L.; Cox, C.; Huang, L. S.; Janciuras, J.; Clarkson, T. W. 199	



	
	

11	

Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from 200	

eating fish during pregnancy. Neurotoxicology 2008, 29, (5), 767-775. 201	

(10) Lynch, M. L.; Huang, L.-S.; Cox, C.; Strain, J. J.; Myers, G. J.; Bonham, M. P.; Shamlaye, 202	

C. F.; Stokes-Riner, A.; Wallace, J. M. W.; Duffy, E. M.; Clarkson, T. W.; Davidson, P. W., 203	

Varying coefficient models to explore interactions between maternal nutritional status and 204	

prenatal methylmercury exposure in the Seychelles Child Development Nutrition Study. 205	

Environmental Research 2011, 111, (1), 75-80. 206	

(11) Grandjean, P.; Budtz-Jorgensen, E., An ignored risk factor in toxicology: The total 207	

imprecision of exposure assessment. Pure Appl. Chem. 2010, 82(2), 383-391. 208	

(12) Sunderland, E. M., Mercury exposure from domestic and imported estuarine and marine fish 209	

in the U.S. seafood market. Environ Health Perspect 2007, 115, (2), 235-242. 210	

(13) Cross, F. A.; Evans, D. W.; Barber, R. T., Decadal declines of mercury in adult bluefish 211	

(1972-2011) from the mid-Atlantic coast of the U.S.A. Environ. Sci. Technol. 2015, 49, 9064-212	

9072. 213	

(14) NRC, Toxicological Effects of Methylmercury. National Academy Press: Washington, DC, 214	

2000; p 368. 215	

(15) Bellanger, M.; Pichery, C.; Aerts, D.; Berglund, M.; Castano, A.; Cejchanova, M.; Crettaz, 216	

P.; Davidson, F.; Esteban, M.; Fischer, M. E.; Gurzau, A. E.; Halzlova, K.; Katsonouri, A.; 217	

Knudsen, L. E.; Kolossa-Gehring, M.; Koppen, G.; Ligocka, D.; Miklavcic, A.; Reis, M. F.; 218	

Rudnai, P.; Tratnik, J. S.; Weihe, P.; Budtz-Jorgensen, E.; Grandjean, P., Economic benefits of 219	

methylmercury control in Europe: Monetary value of neurotoxicity prevention. Environmental 220	

Health 2013, 12, (3), doi: 10.1186/1476-069X-12-3. 221	



	
	

12	

(16) Karagas, M. R.; Choi, A. L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; 222	

Grandjean, P.; Korrick, S., Evidence on the human health effects of low-level methylmercury 223	

exposure. Environ Health Perspect 2012, 120, (6), 799-806. 224	

(17) Grandjean, P.; Pichery, C.; Bellanger, M.; Budtz-Jorgensen, E., Calculation of mercury's 225	

effect on neurodevelopment. Environ Health Perspect 2012, 120, (12), A452. 226	

(18) Tan, S. W.; Meiller, J. C.; Mahaffey, K. R., The endocrine effects of mercury in humans and 227	

wildlife. Critical Reviews in Toxicology 2009, 39, (3), 228-269. 228	

(19) He, K.; Xun, P., Liu, K., Morris, S., Reis, J., Guallar, E. Mercury exposure in young 229	

adulthood and incidence of diabetes later in life: the CARDIA trace element study, Diabetes 230	

Care, 36: 1584-1589 (2013). 231	

(20) J.F. Nyland, Fillon, M, Barbosa, R., Jr., Shirley, D.L., Chine, C., Lemire, M., Mergler, D., 232	

Sibergeld, E.K. Biomarkers of methylmercury exposure and immunotoxicity among fish 233	

consumers in the Amazonian Brazil, Envtl. Health Persp., 119(12): 1733-1738 (2011). 234	

(21) Depew, D.C.; Basu, N.; Burgess, N.M.; Campbell, L.M.; Devin, E.W.; Drevnick, P.E.; 235	

Hammerschmidt, C.R.; Murphy, C.A.; Sandheinrich, M.B.; Wiener, J.G. Toxicity of dietary 236	

methylmercury to fish: derivation of ecologically meaningful threshold concentrations. Envtl. 237	

Toxicology Chemistry 2012, 31(7): 1536-1547. 238	

(22) Depew, D.C.; Basu, N.; Burgess, N.M.; Campbell, L.M.; Evers, D.C.; Grasman, K.A.; 239	

Scheuhammer, A.M. Derivation of screening benchmarks for dietary methylmercury exposure 240	

for the common loon (Gavia immer): Rationale for use in ecological risk assessment. Envtl. 241	

Toxicology Chemistry 2012 31(10): 2399-2407. 242	

(23) Zhang, Y.; Jacob, D.J.; Horowitz, H.M.; Chen, L.; Amos, H.M.; Krabbenhoft, D.P.; Slemr, 243	

F.; St. Louis, V.; Sunderland, E.M. Observed decrease in atmospheric mercury explained by 244	



	
	

13	

global decline in anthropogenic emissions. PNAS Early Edition 2016, 245	

http://www.pnas.org/cgi/doi/10.1073/pnas.1516312113. 246	

(24) Castro, M.S.; Sherwell, J. Effectiveness of emission controls to reduce the atmospheric 247	

concentrations of mercury. Envtl. Sci. Tech. 2015, 49(24): 14000-14007. 248	

(25) Drevnick, P.E.; Engstrom, D.R.; Driscoll, C.T.; Swain, E.B.; Balogh, S.J.; Kamman, N.C.; 249	

Long, D.T.; Parsons, M.J.; Rolfhus, K.R.; Rossmann, R. Spatial and temporal patterns of 250	

mercury accumulation in lacustrine sediments across the Great Lakes region. Environ. Poll. 2012 251	

161: 252-260. 252	

(26) Evers, D.C.; Han, Y-J.; Driscoll, C.T.; Kamman, N.C.; Goodale, W.; Fallon Lambert, K.; 253	

Holsen, T.; Chen, C.Y.; Clair, T.A.; Butler, T. Biological mercury hotspots in the northeastern 254	

United States and southeastern Canada. Bioscience 2007, 57(1): 29-43. 255	

(27) Hutcheson, M.S.; Smith, M.C.; Rose, J.; Batdorf, C.; Pancorbo, O.; West, C.R.; Strube, J.; 256	

Francis, C. Temporal and spatial trends in freshwater fish tissue mercury concentrations 257	

associated with mercury emissions reductions. Envtl. Sci. Tech. 2014, 48: 2193-2202. 258	


