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A Nasal Brush-based Classifier of 
Asthma Identified by Machine 
Learning Analysis of Nasal RNA 
Sequence Data
Gaurav Pandey  1, Om P. Pandey1, Angela J. Rogers2, Mehmet E. Ahsen1, Gabriel E. 
Hoffman1, Benjamin A. Raby3, Scott T. Weiss3, Eric E. Schadt  1 & Supinda Bunyavanich  1,4

Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-
based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls 
underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline 
identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic 
regression classification model. This classifier performed with strong predictive value and sensitivity 
across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by 
RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), 
(2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with 
other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), 
where the classifier had a low to zero misclassification rate. Following validation in large, prospective 
cohorts, this classifier could be developed into a nasal biomarker of asthma.

Asthma is a chronic respiratory disease that affects 8.6% of children and 7.4% of adults in the United States1. Its 
true prevalence may be higher2. The fluctuating airflow obstruction, bronchial hyper-responsiveness, and air-
way inflammation that characterize mild to moderate asthma can be difficult to detect in busy, routine clinical 
settings3. In one study of US middle school children, 11% reported physician-diagnosed asthma with current 
symptoms, while an additional 17% reported active asthma-like symptoms without a diagnosis of asthma2. 
Undiagnosed asthma leads to missed school and work, restricted activity, emergency department visits, and hos-
pitalizations2,4. Given the high prevalence of asthma and consequences of missed diagnosis, there is high potential 
impact of improved biomarkers for asthma5.

National and international guidelines recommend that the diagnosis of asthma be based on a history of typical 
symptoms and objective findings of variable expiratory airflow limitation6,7. However, obtaining such objective 
findings can be challenging given currently available tools. Pulmonary function tests (PFTs) require equipment, 
expertise, and experience to execute well8,9. Results are unreliable if the procedure is done with poor technique8. 
PFTs are usually not immediately available in primary care settings. Despite the published guidelines, PFTs are 
not done in over half of patients suspected of having asthma8. Induced sputum and exhaled nitric oxide have been 
explored as asthma biomarkers, but their implementation requires technical expertise and does not yield better 
clinical results than physician-guided management alone10. Given the above, the reality is that most asthma is still 
clinically diagnosed and managed based on self-report8,9. This is problematic because most patients with asthma 
are frequently asymptomatic at the time of exam and under-perceive as well as under-report symptoms11.

A nasal biomarker of asthma is of high interest given the accessibility of the nose and shared airway biology 
between the upper and lower respiratory tracts12–15. The easily accessible nasal passages are directly connected to 
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the lungs and exposed to common environmental factors. Here we describe first steps toward the development 
of a nasal biomarker of asthma by reporting our identification of an asthma classifier using nasal gene expression 
data and machine learning (Fig. 1). Specifically, we used RNA sequencing (RNAseq) to comprehensively profile 
gene expression from nasal brushings collected from subjects with mild to moderate asthma and controls, cre-
ating the largest nasal RNAseq data set in asthma to date. We focused on mild to moderate asthma because the 
waxing and waning nature of non-severe asthma render it relatively difficult to diagnose. Using a robust machine 
learning-based pipeline comprised of feature selection16, classification17, and statistical analyses18, we identified 
an asthma classifier that accurately differentiates between subjects with and without mild-moderate asthma based 
on nasal brushings. We evaluated the classification performance of this asthma classifier on eight test sets of 
independent subjects with asthma and other respiratory conditions, finding that it performed with high accuracy, 
sensitivity, and specificity for asthma. Although this study’s focus is asthma, the pipeline described could poten-
tially be used to develop classifiers for other phenotypes with high-dimensional data.

Figure 1. Study flow for the identification of a nasal brush-based classifier of asthma by machine learning 
analysis of RNAseq data. One hundred and ninety subjects with mild/moderate asthma and controls without 
asthma were recruited for phenotyping, nasal brushing, and RNA sequencing of nasal brushings. The RNAseq 
data generated were then a priori split into development and test sets. The development set was used for 
differential expression analysis and machine learning (involving feature selection, classification, and statistical 
analyses of classification performance) to identify an asthma classifier that can classify asthma from no asthma 
as accurately as possible. The asthma classifier was then evaluated on eight test sets, including (1) the RNAseq 
test set of independent subjects with and without asthma, (2) two external test sets of subjects with and without 
asthma with nasal gene expression profiled by microarray, and (3) five external test sets of subjects with non-
asthma respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, and smoking) and 
nasal gene expression profiled by microarray. Figure drawn by Jill Gregory, Mount Sinai Health System, licensed 
under CC-BY-ND.
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Results
Study population and baseline characteristics. We performed nasal brushing on 190 subjects for this 
study, including 66 subjects with well-defined mild to moderate persistent asthma (based on symptoms, medica-
tion need, and demonstrated airway hyper-responsiveness by methacholine challenge) and 124 subjects without 
asthma (based on no personal or family history of asthma, normal spirometry, and no bronchodilator response). 
The definitional criteria we used for mild-moderate asthma are consistent with US National Heart Lung Blood 
Institute guidelines for the diagnosis of asthma7, and are the same criteria used in the longest NIH-sponsored 
study of mild-moderate asthma19,20.

From these 190 subjects, a random selection of 150 subjects were a priori assigned as the development set (to 
be used for asthma classifier development), and the remaining 40 subjects were a priori assigned as the RNAseq 
test set (to be used as one of 8 test sets for evaluation of the asthma classifier identified from the development set).

The baseline characteristics of the subjects in the development set (n = 150) are shown in the left section of 
Table 1. The mean age of subjects with asthma was somewhat lower than subjects without asthma, with slightly 
more male subjects with asthma and more female subjects without asthma. Caucasians were more prevalent in 
subjects without asthma, which was expected based on the inclusion criteria. Consistent with reversible airway 
obstruction that characterizes asthma3, subjects with asthma had significantly greater bronchodilator response 
than control subjects (T-test P = 1.4 × 10−5). Allergic rhinitis was more prevalent in subjects with asthma (Fisher’s 
exact test P = 0.005), consistent with known comorbidity between allergic rhinitis and asthma21. Rates of smoking 
between subjects with and without asthma were not significantly different.

RNA isolated from nasal brushings from the subjects was of good quality, with mean RIN 7.8 (±1.1). The 
median number of paired-end reads per sample from RNA sequencing was 36.3 million. Following pre-processing 
(normalization and filtering) of the raw RNAseq data, 11,587 genes were used for statistical and machine learning 
analysis. variancePartition analysis22, which is designed to analyze the contribution of technical and biological 
factors to variation in gene expression, showed that age, race, and sex contributed minimally to total gene expres-
sion variance (Supplementary Fig. 1). For this reason, we did not adjust the pre-processed RNAseq data for these 
factors.

Differential gene expression analysis by DeSeq223 showed that 1613 and 1259 genes were respectively over- 
and under-expressed in asthma cases versus controls (false discovery rate (FDR) ≤ 0.05) (Supplementary 
Table 1). These genes were enriched for disease-relevant pathways in the Molecular Signature Database24, includ-
ing immune system (fold change = 3.6, FDR = 1.07 × 10−22), adaptive immune system (fold change = 3.91, 
FDR = 1.46 × 10−15), and innate immune system (fold change = 4.1, FDR = 4.47 × 10−9) (Supplementary Table 1).

Identifying a nasal brush-based asthma classifier. To identify a nasal brush-based asthma classifier using  
the RNAseq data generated, we developed a machine learning pipeline that combined feature (gene) selec-
tion16 and classification techniques17 that was applied to the development set (Materials and Methods and 
Supplementary Fig. 2). This pipeline was designed with a systems biology-based perspective that a set of genes, 
even ones with marginal effects, can collectively classify phenotypes (here asthma) more accurately than indi-
vidual genes25. More specifically, the goal of building such a classifier is not to elucidate the cause or molecular 
biology of the disease, but rather to identify features (genes in our study) that in combination can discriminate 
between groups of interest (e.g. asthma and no asthma). Such a classifier is likely to include genes known to 
associate with the groups, but it is also possible and even likely (given our incomplete understanding of complex 

RNAseq Development set RNAseq Test Set Development 
vs. Test Set
P valueB

All
(n = 150)

Asthma
(n = 53)

No Asthma
(n = 97)

All
(n = 40)

Asthma
(n = 13)

No Asthma
(n = 27)

Age: years 26.9 (5.4) 25.7 (2.0) 27.6 (6.5) 26.2 (5.1) 25.3 (2.1) 26.6 (6.1) 0.47

Sex: female 89 (59.3%) 24 (45.3%) 65 (67.0%) 21 (52.5%) 2 (15.3%) 19 (70.4%) 0.40

Race 0.60

  Caucasian 116 (77.3%) 21 (40.4%) 96 (99.0%) 32 (80.0%) 5 (38.5%) 27 (100.0%)

  African
  American 24 (16.0%) 23 (43.4%) 1 (1.0%) 5 (12.5%) 5 (38.5%) 0 (0.0%)

  Latino 5 (3.3%) 5 (9.4%) 0 (0.0%) 3 (7.5%) 3 (23.1%) 0 (0.0%)

  Other 5 (3.3%) 4 (7.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

FEV1A:
% predicted 94.7 (10.0) 94.6% (10.9) 94.8 (9.7) 94.5 (11.4) 94.4 (12.0) 94.6 (11.3) 0.90

FEV1/FVCA: % 82.5 (6.4) 81.5 (6.7) 83.1 (6.3) 82.7 (5.5) 84.8 (4.4) 81.6 (5.8) 0.91

Bronchodilator response: % 5.6 (6.0) 8.7 (6.4) 3.9 (5.1) 4.5 (5.4) 7.0 (6.1) 3.3 (4.7) 0.29

Age asthma onset: years 3.2 (2.7) n/a 3.4 (2.0) 0.78

Allergic rhinitis 60 (40.0%) 29 (54.7%) 31 (32.0%) 7 (17.5%) 7 (53.8%) 0 (0.0%) 0.009

Nasal steroids 14 (9.3%) 9 (17.0%) 5 (5.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0.07

Smoking 7 (4.7%) 1 (1.9%) 6 (6.2%) 1 (2.5%) 0 (0.0%) 1 (3.7%) 1.0

Table 1. Baseline characteristics of subjects in the RNAseq development and test sets. Mean (SD) or Number 
(%) provided. Apre-bronchodilator measures. FEV1 = forced expiratory flow volume in 1 second, FVC = forced 
vital capacity. BFisher’s Exact test for categorical variables and t-test for continuous variable.
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diseases such as asthma) that genes not previously associated with the groups can provide information that is use-
ful to the discrimination. This type of data-driven approach has been successful in other disease areas, especially 
cancer26–29.

Feature selection16 is the process of identifying a subset of features (e.g. genes) from a much larger subset in 
an automated data-driven fashion. In our pipeline, this process involved a cross validation-based protocol30 using 
the well-established Recursive Feature Elimination (RFE) algorithm16 combined with L2-regularized Logistic 
Regression (LR or Logistic) and Support Vector Machine (SVM-Linear (kernel)) algorithms17 (combinations 
referred to as LR-RFE and SVM-RFE respectively) (Supplementary Fig. 3). Classification analysis was then per-
formed by applying four global classification algorithms (SVM-Linear, AdaBoost, Random Forest, and Logistic)17 
to the expression profiles of the gene sets identified by feature selection. To reduce the potential adverse effect 
of overfitting, this process (feature selection and classification) was repeated 100 times on 100 random splits of 
the development set into training and holdout sets. The final classifier was selected by statistically comparing 
the models in terms of both classification performance and parsimony, i.e., the number of genes included in the 
model18 (Supplementary Fig. 4).

Due to the imbalance of the two classes (asthma and controls) in our cohort (consistent with imbalances in 
the general population for asthma and most disease states), we used F-measure as the main evaluation metric in 
our study31,32. This class-specific measure is a conservative mean of precision (predictive value) and recall (same 
as sensitivity), and is described in detail in Box 1 and Supplementary Fig. 5. F-measure can range from 0 to 1, 
with higher values indicating superior classification performance. An F-measure value of 0.5 does not represent a 
random model. To provide context for our performance assessments, we also computed commonly used evalua-
tion measures, including positive and negative predictive values (PPVs and NPVs) and Area Under the Receiver 
Operating Characteristic (ROC) Curve (AUC) scores (Box 1 and Supplementary Fig. 5).

 Box 1: Evaluation measures for classifiers. Many measures exist for evaluating the performance of 
classifiers. The most commonly used evaluation measures in biology and medicine are the positive and negative 
predictive values (PPV and NPV respectively; Supplementary Fig. 5), and Area Under the Receiver Operating 
Characteristic (ROC) Curve (AUC score)31. However, these measures have several limitations. PPV and NPV 
ignore the critical dimension of sensitivity31. For instance, a classifier may predict perfectly for only one asthma 
sample in a cohort and make no predictions for all other asthma samples. This will yield a PPV of 1, but poor 
sensitivity, since none of the other asthma samples were identified by the classifier. ROC curves and their AUC 
scores do not accurately reflect performance when the number of cases and controls in a sample are imbal-
anced31,32, which is frequently the case in biomedical studies. For such situations, precision, recall, and F-measure 
(Supplementary Fig. 5) are considered more meaningful performance measures for classifier evaluation32. Note 
that precision for cases (e.g. asthma) is equivalent to PPV, and precision for controls (e.g. no asthma) is equivalent 
to NPV (Supplementary Fig. 5). Recall is the same as sensitivity. F-measure is the harmonic (conservative) mean 
of precision and recall that is computed separately for each class, and thus provides a more comprehensive and 
reliable assessment of model performance for cohorts with unbalanced class distributions. For the above reasons, 
we consider F-measure as the primary evaluation measure in our study, although we also provide PPV, NPV and 
AUC measures for context. Like PPV, NPV and AUC, F-measure ranges from 0 to 1, with higher values indicating 
superior classification performance, but a value of 0.5 for F-measure does not represent a random model and 
could in some cases indicate superior performance over random.

The best performing and most parsimonious combination of feature selection and classification algorithm 
identified by our machine learning pipeline was LR-RFE & Logistic Regression (Supplementary Fig. 4). The clas-
sifier inferred using this combination was built on 90 predictive genes and will be henceforth referred to as the 
asthma classifier. We emphasize that the expression values of the classifier’s 90 genes must be used in combination 
with the Logistic classifier and the model’s optimal classification threshold (i.e. predicted label = asthma if classi-
fier’s probability output ≥0.76, else predicted label = no asthma) to be used effectively for asthma classification.

Evaluation of the asthma classifier in an RNAseq test set of independent subjects. Our next 
step was to evaluate the asthma classifier in an RNAseq test set of independent subjects, for which we used the test 
set (n = 40) of nasal RNAseq data from independent subjects. The baseline characteristics of the subjects in this 
test set are shown in the right section of Table 1. Subjects in the development and test sets were generally similar, 
except for a lower prevalence of allergic rhinitis among those without asthma in the test set.

The asthma classifier performed with high accuracy in the RNAseq test set’s independent subjects, achieving 
AUC = 0.994 (Fig. 2), PPV = 1.00, and NPV = 0.96 (Fig. 3B and D, left most bar). In terms of the F-measure met-
ric, the classifier achieved F = 0.98 and 0.96 for classifying asthma and no asthma, respectively (Fig. 3A and C,  
left most bar). For comparison, the much lower performance of permutation-based random models is shown in 
Supplementary Fig. 6.

Our machine learning pipeline evaluated models from several combinations of feature selection and classifi-
cation algorithms to select the most predictive classifier. Potentially predictive genes can also be identified from 
differential expression analysis and results from prior asthma-related studies. Figure 4 shows the performance of 
the asthma classifier in the RNAseq test set next to alternative classifiers trained on the development set using: (1) 
other classifiers tested in our machine learning pipeline, (2) all genes in our data set (11587 genes after filtering), 
(3) all differentially expressed genes in the development set (2872 genes) (Supplementary Table 1), (4) genes 
associated with asthma from prior genetic studies33 (70 genes) (Supplementary Table 2), and (5) a commonly 
used one-step classification model (L1-Logistic)34 (243 genes). The asthma classifier identified by our pipeline 
outperformed all these alternative classifiers despite its reliance on a small number of genes.
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Figure 2. Receiver operating characteristic (ROC) curve of the predictions generated by applying the asthma 
classifier to the RNAseq test set of independent subjects (n = 40). The ROC curve for a random model is shown 
for reference. The curve and its corresponding AUC score show that the classifier performs well for both asthma 
and no asthma (control) samples in this test set.

Figure 3. Evaluation of the asthma classifier on test sets of independent subjects with asthma. Performance of 
the asthma classifier in classifying asthma (A) and no asthma (C) in terms of F-measure, a conservative mean 
of precision and sensitivity. F-measure ranges from 0 to 1, with higher values indicating superior classification 
performance. The classifier was applied to an RNAseq test set of independent subjects with and without asthma, 
two external microarray data sets from subjects with and without asthma (Asthma 1 and Asthma 2), and 
combined data from Asthma 1 and Asthma 2. Positive (B) and negative (D) predictive values are also provided 
for context.
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We emphasize that our classifier produced more accurate predictions than models using all genes, all differ-
entially expressed genes, and all known asthma genes. This supports that data-driven methods can build more 
effective classifiers than those built exclusively on traditional statistical methods (which do not necessarily tar-
get classification), and current domain knowledge (which may be incomplete and subject to investigation bias). 
Our classifier also outperformed and was more parsimonious than the model learned using the commonly used 
L1-Logistic method, which combined feature selection and classification into a single step. The fact that our 
asthma classifier performed well in an independent RNAseq test set while also outperforming alternative models 
lends confidence to its classification ability.

Evaluation of the asthma classifier in external asthma cohorts. To assess the performance of our asthma  
classifier in other populations and profiling platforms, we applied the classifier to nasal gene expression data 
generated from independent cohorts of asthmatics and controls profiled by microarrays: Asthma 1 (GEO 
GSE19187)35 and Asthma 2 (GEO GSE46171)36. Supplementary Table 3 summarizes the characteristics of these 
external, independent case-control cohorts. In general, RNAseq-based predictive models are not expected to 
translate well to microarray-profiled samples37,38. A major reason is that gene mappings do not perfectly corre-
spond between RNAseq and microarray due to disparities between array annotations and RNAseq gene models38. 
Our goal was to assess the performance of our asthma classifier despite discordances in study designs, sample 
collections, and gene expression profiling platforms.

Figure 4. Comparative performance of the asthma classifier and other classification models in the RNAseq 
test set. Performances of the asthma classifier and other classification models in classifying asthma (left panel) 
and no asthma (right panel) are shown in terms of F-measure, with individual measures shown in the bars. 
The number of genes in each model is shown in parentheses within the bars. The asthma classifier is labeled 
in red and classification models learned from the machine learning pipeline using other combinations of 
feature selection and classification are labeled in black. These other classification models were combinations of 
two feature selection algorithms (LR-RFE and SVM-RFE) and four global classification algorithms (Logistic 
Regression, SVM-Linear, AdaBoost and Random Forest). For context, alternative classification models (labeled 
in blue) are also shown and include: (1) a model derived from an alternative, single-step classification approach 
(sparse classification model learned using the L1-Logistic regression algorithm), and (2) models substituting 
feature selection with each of 3 pre-selected gene sets (all genes after filtering, all differentially expressed genes 
in the development set, and known asthma genes33) with their respective best performing global classification 
algorithms. These results show the superior performance of the asthma classifier compared to all other models, 
in terms of classification performance and model parsimony (number of genes included). LR = Logistic 
Regression. SVM = Support Vector Machine. RFE = Recursive Feature Elimination.
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The asthma classifier performed relatively well (Fig.  3 middle bars) and consistently better than 
permutation-based random models (Supplementary Fig. 6) in classifying asthma and no asthma in both the 
Asthma 1 and Asthma 2 microarray-based test sets. The classifier achieved similar F-measures in the two test sets 
(Fig. 3A and C middle bars), although the PPV and NPV measures were more dissimilar for Asthma 2 (PPV 0.93, 
NPV 0.31) than for Asthma 1 (PPV 0.61, NPV 0.67) (Fig. 3B and D middle bars). The classifier’s performance 
was better than its random counterparts for both these test sets, although the difference in this performance was 
smaller for Asthma 2. This occurred partially because Asthma 2 includes many more asthma cases than controls 
(23 vs. 5), which is counter to the expected distribution in the general population. In such a skewed data set, it 
is possible for a random model to yield an artificially high F-measure for asthma by predicting every sample as 
asthmatic. We verified that this occurred with the random models tested on Asthma 2.

To assess how the asthma classifier might perform in a larger external test set, we combined samples from 
Asthma 1 and Asthma 2 and performed the evaluation on this combined set. We chose this approach because 
no single large, external dataset of nasal gene expression in asthma exists, and combining cohorts could yield 
a joint test set with heterogeneity that partially reflects real-life heterogeneity of asthma. As expected, all the 
performance measures for this combined test set were intermediate to those for Asthma 1 and Asthma 2 (Fig. 3 
right most bars). These results supported that our classifier also performs reasonably well in a larger and more 
heterogeneous cohort.

Overall, despite the discordance of gene expression profiling platforms, study designs, and sample collection 
methods, our asthma classifier performed reasonably well in these external test sets, supporting a degree of gen-
eralizability of the classifier across platforms and cohorts.

Specificity of the asthma classifier: testing in external cohorts with non-asthma respiratory 
conditions. To assess the specificity of our asthma classifier, we next sought to determine if it would misclas-
sify as asthma other respiratory conditions with symptoms that overlap with asthma. To this end, we evaluated 
the performance of the asthma classifier on nasal gene expression data derived from case-control cohorts with 
allergic rhinitis (GSE43523)39, upper respiratory infection (GSE46171)36, cystic fibrosis (GSE40445)40, and smok-
ing (GSE8987)12. Supplementary Table 4 details the characteristics for these external cohorts with non-asthma 
respiratory conditions. In three of these five non-asthma cohorts (Allergic Rhinitis, Cystic Fibrosis and Smoking), 
the classifier appropriately produced one-sided classifications, i.e., samples were all appropriately classified as “no 
asthma.” This is shown by the zero F-measure for the positive (asthma) class (Fig. 5A) and perfect F-measure for 

Figure 5. Evaluation of the asthma classifier on test sets of independent subjects with non-asthma respiratory 
conditions. Performance statistics of the classifier when applied to external microarray-generated data sets of 
nasal gene expression derived from case/control cohorts with non-asthma respiratory conditions. Performance 
is shown in terms of F-measure (A and C), a conservative mean of precision and sensitivity, as well as positive 
(B) and negative predictive values (D). The classifier had a low to zero rate of misclassifying other respiratory 
conditions as asthma, supporting that the classifier is specific to asthma and would not misclassify other 
respiratory conditions as asthma.
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the negative (no asthma) class (Fig. 5C) obtained by the classifier in these cohorts. In other words, the precision 
for the asthma class (PPV) of our classifier was exactly and appropriately zero (Fig. 5B), and NPV was perfectly 
1.00 for these cohorts with non-asthma conditions (Fig. 5D). The URI day 2 and 6 cohorts were slight deviations 
from these trends, where the classifier achieved perfect NPVs of 1.00 (Fig. 5D), but marginally lower F-measure 
for the “no asthma” class (Fig. 5C) due to slightly lower than perfect sensitivity. This may have been influenced 
by common inflammatory pathways underlying early viral inflammation and asthma41. Nonetheless, consistent 
with the other non-asthma test sets, the classifier’s misclassification of URI as asthma was rare and substantially 
less than its random counterpart classifiers (Supplementary Fig. 7).

To assess the asthma classifier’s performance if presented with a large, heterogeneous collection of non-asthma 
respiratory conditions reflective of real clinical settings, we aggregated the non-asthma cohorts into a “Combined 
non-asthma” test set and applied the asthma classifier. The results included an appropriately zero F-measure for 
asthma and zero PPV, and an F-measure of 0.97 for no asthma, and NPV of 1.00 (Fig. 5, right most bars). Results 
from the individual and combined non-asthma test sets collectively support that the asthma classifier would 
rarely misclassify other respiratory diseases as asthma.

Statistical and Pathway Examination of Genes in the Asthma Classifier. An interesting question 
to ask for a disease classifier is how does its predictive ability relate to the individual differential expression status 
of the genes constituting the classifier? We found that 46 of the 90 genes included in our classifier were differen-
tially expressed (FDR ≤ 0.05), with 22 and 24 genes over- and under-expressed in asthma respectively (Fig. 6 and 
Supplementary Table 1). More generally, the genes in our classifier had lower differential expression FDR values 
than other genes (Kolmogorov-Smirnov statistic = 0.289, P-value = 2.73 × 10−37) (Supplementary Fig. 8).

In terms of biological function, pathway enrichment analysis of our classifier’s 90 genes, though statisti-
cally limited by the small number of genes, yielded enrichment for pathways including defense response (fold 
change = 2.86, FDR = 0.006) and response to external stimulus (fold change = 2.50, FDR = 0.012). A minority 
(33) of these 90 genes or their gene products have been studied in the context of asthma or airway inflammation 
by various modes of study as summarized in Supplementary Table 5. These results suggest that our machine 
learning pipeline was able to extract information beyond individually differentially expressed or previously 
known disease-related genes, allowing for the identification of a parsimonious set of genes that collectively ena-
bled accurate disease classification.

Discussion
Using RNAseq data generated from our cohorts, combined with a systematic machine learning analysis approach, 
we identified a nasal brush-based classifier that accurately distinguishes subjects with mild/moderate asthma 
from controls. This asthma classifier, consisting of the expression profiles of 90 genes interpreted via a logistic 
regression classification model, performed with high precision (PPV = 1.00 and NPV = 0.96) and recall for classi-
fying asthma (AUC = 0.994). The performance of the asthma classifier across independent test sets demonstrates 
potential for the classifier’s generalizability across study populations and two major modalities of gene expression 
profiling (RNAseq and microarray). Additionally, the classifier’s low to zero rate of misclassification on external 
cohorts with non-asthma respiratory conditions supports the specificity of this asthma classifier. Our results rep-
resent the first steps toward the development of a nasal biomarker of asthma.

Our nasal brush-based asthma classifier is based on the common biology of the upper and lower airway, a con-
cept supported by clinical practice and previous findings12–15. Clinicians often rely on the united airway by screen-
ing for lower airway infections (e.g. influenza, methicillin-resistant Staphylococcus aureus) with nasal swabs42. 
Sridhar et al. found that gene expression consequences of tobacco smoking in bronchial epithelial cells were 
reflected in nasal epithelium12. Wagener et al. compared gene expression in the nasal and bronchial epithelia from 
17 subjects, finding that 99% of the 33,000 genes tested exhibited no differential expression between the nasal 
and bronchial epithelia in those with airway disease13. In a study of 30 children, Guajardo et al. identified gene 
clusters with differential expression in nasal epithelium between subjects with exacerbated asthma vs. controls14. 
The above studies were done with small sample sizes and microarray technology. More recently, Poole et al.  
compared RNAseq profiles of nasal brushings from 10 asthmatic and 10 control subjects to publicly available 
bronchial transcriptional data, finding correlation (ρ = 0.87) between nasal and bronchial transcripts, as well as 
correlation (ρ = 0.77) between nasal differential expression and previously observed bronchial differential expres-
sion in asthmatics15. To the best of our knowledge, our study has generated the largest nasal RNAseq data set in 
asthma to date and is the first to identify a nasal brush-based classifier of asthma.

Although based on only 90 genes, our asthma classifier classified asthma with greater accuracy than models 
based on all genes, all differentially expressed genes, and known asthma genes (Fig. 4). Its superior performance 
supports that our machine learning pipeline successfully selected a parsimonious set of informative genes that 
(1) captures more actionable knowledge than traditional differential expression and genetic association analyses, 
and (2) cuts through the potential noise of genes irrelevant to asthma. These results illustrate that data-driven 
methods can build more effective classifiers than those built exclusively on current domain knowledge. This 
is likely true not just for asthma but for other phenotypes as well. About half the genes in our asthma classifier 
were not differentially expressed at FDR ≤ 0.05, and as such would not have been examined with greater interest 
had we only performed traditional differential expression analysis, which is the main analytic approach of vir-
tually all studies of gene expression in asthma12–15,43,44. Consistent with motivations underlying systems biology 
and genomic approaches25,45, our study demonstrated that the asthma classifier captures signal from differential 
expression as well as genes below traditional significance thresholds that may still have a contributory role to 
asthma classification.

With prospective validation in large cohorts, our asthma classifier could lead to the development of a mini-
mally invasive biomarker to aid asthma diagnosis at clinical frontlines, where time and resources often preclude 
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Figure 6. Heatmap showing expression profiles of the 90 genes constituting the asthma classifier. Columns 
shaded pink at the top denote asthma samples, while samples from subjects without asthma are denoted by 
columns shaded grey. 22 and 24 of these genes were over- and under-expressed in asthma samples (DESeq2 
FDR ≤ 0.05), denoted by orange and purple groups of rows, respectively. The 33 genes in this set that have been 
previously studied in the context of asthma are marked in blue. The classifier’s inclusion of genes not previously 
known to be associated with asthma as well as genes not differentially expressed in asthma (beige group of rows) 
demonstrates the ability of a machine learning methodology to move beyond traditional analyses of differential 
expression and current domain knowledge.
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pulmonary function testing (PFT). Nasal brushing can be performed quickly, does not require machinery for 
collection, and implementation of our classification model yields a straightforward, binary result of asthma or 
no asthma. Because it takes seconds for nasal brushing and bioinformatic interpretation could be automated, an 
asthma classifier such as ours may be attractive to time-strapped clinicians, particularly primary care providers at 
the frontlines of asthma diagnosis. Asthma is frequently diagnosed and treated in the primary care setting46 where 
access to PFTs is often not immediately available. Gene expression-based diagnostic classifiers are being success-
fully used in other disease areas, with prominent examples including the commercially available MammaPrint47 
and Oncotype DX48 for diagnosing breast cancer phenotypes, leading to better outcomes. These examples from 
the cancer field demonstrate an existing path for moving a classifier such as ours to clinical use.

We recognize that our asthma classifier did not perform quite as well in the microarray-based vs. 
RNAseq-based asthma test sets, which was to be expected due to differences in study design and technologi-
cal factors between RNAseq and microarray profiling. First, the baseline characteristics and phenotyping of the 
subjects differed. Subjects in the RNAseq test set were adults who were classified as mild/moderate asthmatic 
or healthy using the same strict criteria as the development set, which required subjects with asthma to have an 
objective measure of obstructive airway disease (i.e. positive methacholine challenge response). In contrast, sub-
jects in the Asthma 1 microarray test set were all children (i.e. not adults) with nasal pathology, as entry criteria 
included dust mite allergic rhinitis specifically35 (Supplementary Table 3). Subjects from the Asthma 2 cohort 
were adults who were classified as having asthma or healthy based on history. As mentioned, the diagnosis of 
asthma based on history alone without objective lung function testing can be inaccurate49. The phenotypic dif-
ferences between these test sets alone could explain differences in performance of our asthma classifier in these 
test sets. Second, the differential performance may be due to the difference in profiling approach. Gene mappings 
do not perfectly correspond between RNAseq and microarray due to disparities between array annotations and 
RNAseq gene models38. Compared to microarrays, RNAseq quantifies more RNA species and captures a wider 
range of signal43. Prior studies have shown that microarray-derived models can reliably predict phenotypes based 
on samples’ RNAseq profiles, but the converse does not often hold38. Despite the above limitations, our asthma 
classifier performed with reasonable accuracy in classifying asthma in these independent microarray-based test 
sets. These results support a degree of generalizability of our classifier to asthma populations that may be pheno-
typed or profiled differently.

An effective clinical classifier should have good positive and negative predictive value50. This was indeed the 
case with our asthma classifier, which achieved high positive and negative predictive values of 1.00 and 0.96 
respectively in the RNAseq test set. We also tested our asthma classifier on independent tests sets of subjects 
with allergic rhinitis, upper respiratory infection, cystic fibrosis, and smoking, and showed that the classifier 
had a low to zero rate of misclassifying other respiratory conditions as asthma (Fig. 5). These results were par-
ticularly notable for allergic rhinitis, a predominantly nasal condition. Although our classifier is based on nasal 
gene expression, and asthma and allergic rhinitis frequently co-occur21, our classifier did not misclassify allergic 
rhinitis as asthma. Although these conclusions are based on relatively small test sets due to the scarcity of nasal 
gene expression data in the public domain, the performance of our classifier gives hope that it has the potential to 
be generalizable and specific in much larger cohorts as well.

Although we have generated one of the largest nasal RNAseq data set in asthma to date, a future direction of 
this study is to recruit additional cohorts for nasal gene expression profiling and extend validation of our find-
ings in a prospective manner. We recognize that our development set was from a single center and its baseline 
characteristics, such as race, do not characterize all populations. However, we find it reassuring that the classifier 
performed reasonably well in multiple external data sets spanning children and adults of varied racial distribu-
tions, and with asthma and other respiratory conditions defined by heterogeneous criteria. Subjects with asthma 
in our development cohort were not all symptomatic at the time of sampling. The fact that the performance of our 
asthma classifier does not rely on symptomatic asthma is a strength, as many mild/moderate asthmatics are only 
sporadically symptomatic given the fluctuating nature of the disease.

We see our nasal brush-based classifier of asthma as the first step in the development of nasal biomarkers for 
asthma care. As with any disease, the first step is to accurately identify affected patients. The asthma gene panel 
described in this study provides an accurate initial path to this critical diagnostic step. With a correct diagnosis, 
an array of existing asthma treatment options can be considered6. A next phase of research will be to develop a 
nasal biomarker to predict endotypes and treatment response, so that asthma treatment can be targeted, and even 
personalized, with greater efficiency and effectiveness51.

In summary, we demonstrated an innovative application of RNA sequencing and machine learning to identify 
a classifier consisting of genes expressed in nasal brushings that accurately classifies subjects with mild/moderate 
asthma from controls. This asthma classifier performed with accuracy across independent and external test sets, 
indicating reasonable generalizability across study populations and gene expression profiling modality, as well as 
specificity to asthma. This asthma classifier could potentially lead to the development of a nasal biomarker of asthma.

Materials and Methods
Study design and subjects. Subjects with mild/moderate asthma were a subset of participants of the 
Childhood Asthma Management Program (CAMP), a multicenter North American study of 1041 subjects with 
mild to moderate persistent asthma19,20. Findings from the CAMP cohort have defined current practice and 
guidelines for asthma care and research20. Asthma was defined by symptoms ≥2 times per week, use of an inhaled 
bronchodilator ≥twice weekly or use of daily medication for asthma, and increased airway responsiveness to 
methacholine (PC20 ≤ 12.5 mg/ml). The subset of subjects included in this study were CAMP participants who 
presented for a visit between July 2011 and June 2012 at Brigham and Women’s Hospital (Boston, MA), one of the 
eight study centers for CAMP.
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Subjects with “no asthma” were recruited during the same time period by advertisement at Brigham & 
Women’s Hospital. Selection criteria were no personal history of asthma, no family history of asthma in 
first-degree relatives, and self-described Caucasian ethnicity. Participation was limited to Caucasian indi-
viduals because a concurrent independent study was planned that would compare these same subjects to 968 
Caucasian CAMP subjects who participated in the CAMP Genetics Ancillary study52. Subjects underwent pre- 
and post-bronchodilator spirometry according to American Thoracic Society guidelines. Only those meeting 
selection criteria and with demonstrated normal lung function without bronchodilator response were considered 
to have “no asthma.”

Nasal brushing and RNA sequencing. Nasal brushing was performed with a cytology brush. Brushes 
were immediately placed in RNALater (ThermoFisher Scientific, Waltham, MA) and then stored at 40 °C until 
RNA extraction. RNA extraction was performed with Qiagen RNeasy Mini Kit (Valencia, CA). Samples were 
assessed for yield and quality using the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) and Qubit 
fluorometry (Thermo Fisher Scientific, Grand Island, NY).

Of the 190 subjects who underwent nasal brushing (66 with mild/moderate asthma, 124 with no asthma), a 
random selection of 150 subjects were a priori assigned as the development set (for classification model devel-
opment), with the 40 remaining subjects earmarked to serve as a test set of independent subjects (for testing the 
classification model). To minimize potential batch effects, all samples were submitted together for RNA sequenc-
ing (RNAseq). Staff at the Mount Sinai genomics core were blinded to the assignment of samples as development 
or test set. The sequencing library was prepared with the standard TruSeq RNA Sample Prep Kit v2 protocol 
(Illumina). The mRNA libraries were sequenced on the Illumina HiSeq. 2500 platform with a per-sample target 
of 40–50 million 100 bp paired-end reads. The data were put through Mount Sinai’s standard mapping pipeline53 
(using Bowtie54 and TopHat55, and assembled into gene- and transcription-level summaries using Cufflinks56). 
Mapped data were subjected to quality control with FastQC and RNA-SeQC57. Data were pre-processed sepa-
rately for the development and test sets to avoid leakage of information across the two data sets and maintain 
fairness of the machine learning procedures as much as possible. Genes with fewer than 100 counts in at least half 
the samples were dropped to reduce the potentially adverse effects of noise. DESeq223 was used to normalize the 
data sets using its variance stabilizing transformation method.

Variance partition analysis of potential confounders. Given differences in age, race, and sex distribu-
tions between the asthma and “no asthma” classes, we used the variancePartition method22 to assess the degree 
to which these variables influenced gene expression and potentially confounded the target phenotype (asthma 
status). The total variance in gene expression was partitioned into the variance attributable to age, race, and sex 
using a linear mixed model implemented in variancePartition v1.0.022. Age (continuous variable) was modeled as 
a fixed effect, while race and sex (categorical variables) were modeled as random effects. The results showed that 
age, race, and sex accounted for minimal contributions to total gene expression variance (Supplementary Fig. 1). 
Downstream analyses were therefore performed with gene expression data unadjusted for these variables.

Differential gene expression and pathway enrichment analysis. DESeq223 was used to identify dif-
ferentially expressed genes in the development set. Genes with FDR ≤ 0.05 were deemed differentially expressed, 
with fold change <1 implying under-expression and vice versa. To identify the functions underlying these genes, 
pathway enrichment analysis was performed using the Gene Set Enrichment Analysis method applied to the 
Molecular Signature Database (MSigDB)24.

Identification of the Asthma Classifier by Machine Learning Analyses of the RNAseq Development  
Set. To identify gene expression-based classifiers that predict asthma status, we applied a rigorous machine 
learning pipeline that combined feature (gene) selection16, classification17, and statistical analyses of classification 
performance18 to the development set (Supplementary Fig. 2). The pipeline was implemented in Python using 
the scikit-learn package58. Feature selection and classification were applied to a training set comprised of 120 
randomly selected samples from the development set (n = 150) as described below. For an independent evalua-
tion of the candidate classifiers generated from the training set by this process, they were then evaluated on the 
remaining 30 samples (holdout set). Finally, to reduce the dependence of the finally chosen classifier on a specific 
training-holdout split, this process was repeated 100 times on 100 random splits of the development set into 
training and holdout sets. The details of the overall process as well as the individual components are as follows.

Feature selection. The purpose of the feature selection component was to identify subsets of the full set of genes 
in the development set, whose expression profiles could be used to predict the asthma status as accurately as 
possible. The two main computations constituting this component were (i) the optimal number of features that 
should be selected, and (ii) the identification of this number of genes from the full gene set. To reduce the likeli-
hood of overfitting when conducting both these computations on the entire training set, we used a 5 × 5 nested 
(outer and inner) cross-validation (CV) setup30 for selecting features from the training set (Supplementary Fig. 3). 
The inner CV round was used to determine the optimal number of genes to be selected, and the outer CV round 
was used to select the set of predictive genes based on this number, thus separating the samples on which these 
decisions are made. The supervised Recursive Feature Elimination (RFE) algorithm59 was executed on the inner 
CV training split to determine the optimal number of features. The use of RFE within this setting enabled us to 
identify groups of features that are collectively, but not necessarily individually, predictive. Specifically, we used 
the L2-regularized Logistic Regression (LR or Logistic)60 and SVM-Linear (kernel)61 classification algorithms in 
conjunction with RFE (combinations henceforth referred to as LR-RFE and SVM-RFE respectively). For this, 
for a given inner CV training split, all the features (genes) were ranked using the absolute values of the weights 
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assigned to them by an inner classification model, trained using the LR or SVM algorithm, over this split. Next, 
for each of the conjunctions, the set of top-k ranked features, with k starting with 11587 (all filtered genes) and 
being reduced by 10% in each iteration until k = 1, was considered. The discriminative strength of feature sets 
consisting of the top k features as per this ranking was assessed by evaluating the performance of the LR or SVM 
classifier based on them over all the inner CV training-test splits. The optimal number of features to be selected 
was determined as the value of k that produces the best performance. Next, a ranking of features was derived from 
the outer CV training split using exactly the same procedure as applied to the inner CV training split. The optimal 
number of features determined above was selected from the top of this ranking to determine the optimal set of 
predictive features for this outer CV training split. Executing this process over all the five outer CV training splits 
created from the development set identified five such sets. Finally, the set of features (genes) that was common 
to all these sets (i.e. in their intersection/overlap), which is expected to yield a more robust feature set than the 
individual outer CV splits, was selected as the predictive gene set for this training set. One such set was identified 
for each application of LR-RFE and SVM-RFE to the training set.

Classification analyses. Once predictive gene sets had been selected from feature selection, four global clas-
sification algorithms (L2-regularized Logistic Regression (LR or Logistic)60, SVM-Linear61, AdaBoost62, and 
Random Forest (RF)63) were used to learn intermediate classification models over the training set. These interme-
diate models were then applied to the corresponding holdout set to generate probabilistic asthma predictions for 
the samples. An optimal threshold for converting these probabilistic predictions into binary ones (higher than 
threshold = asthma, lower than threshold = no asthma) was then computed as the threshold that yielded the 
highest classification performance on the holdout set. This optimization resulted in the proposed classification 
models.

Statistical analyses of classification performance. After the above components were run on 100 training-holdout 
splits of the development set, we obtained 100 proposed classification models for each of eight feature 
selection-global classification combinations (two feature selection algorithms (LR-RFE and SVM-RFE) and four 
global classification algorithms Logistic, SVM-Linear, AdaBoost and RF). The next step of our pipeline was to 
determine the best performing combination. Instead of making this determination just based on the highest eval-
uation score, as is typically done in machine learning studies, we utilized this large population of models and their 
optimized holdout evaluation scores to conduct a statistical comparison to make this determination. Specifically, 
we applied the Friedman test followed by the Nemenyi test18,64 to this population of modules and their evaluation 
scores. These tests, which account for multiple hypothesis testing, assessed the statistical significance of the rela-
tive difference of performance of the combinations in terms of their relative ranks across the 100 splits.

Optimization for parsimony. For a phenotype classifier, it is essential to consider parsimony in model selec-
tion (i.e. minimize number of features (i.e. genes)) to enhance its clinical utility and acceptability. To enforce 
this for our asthma classifier, an adapted performance measure, defined as the absolute performance measure 
(F-measure) divided by the number of genes in that model, was used for the above statistical comparison, i.e. 
as input to the Friedman-Nemenyi tests. In terms of this measure, a model that does not obtain the best per-
formance measure among all models, but uses much fewer genes than the others, may be judged to be the best 
model. The result of the statistical comparison using this adapted measure was visualized as a Critical Difference 
plot18 (Supplementary Fig. 4), and enabled us to identify the best combination of feature selection and classifica-
tion method as the left-most entry in this plot.

Final model development. The final step in our pipeline was to determine the representative model out of the 
100 learned the above best combination by finding which of these models yielded the highest evaluation measure 
(F-measure; Box 1 and Supplementary Fig. 5). In case of ties among multiple candidates, the gene set that pro-
duced the best average asthma classification F-measure across all four global classification algorithms was chosen 
as the gene set constituting the representative model for that combination. This analysis yielded the representative 
gene set, global classification algorithm, and the optimized asthma classification threshold. The asthma classifier 
was built by training the global classification algorithm to the expression profiles of the representative gene set, 
and using the optimized threshold for classifying samples positive/negative for asthma.

Evaluation of the Asthma Classifier in an RNAseq test set of independent subjects. The asthma 
classifier identified by our machine learning pipeline was then tested on the RNAseq test set (n = 40) to assess its 
performance in independent subjects. F-measure was used as the primary measure for classification performance, 
as described in Box 1 and Supplementary Fig. 5. AUC, PPV and NPV were additionally calculated for context.

Comparison of Performance to Alternative Classification Models. Although our classifier was 
identified using a rigorous machine learning methodology, the pipeline explored several other models from all 
combinations of feature selection and global classification methods. Thus, we compared the performance of our 
classifier with all these other possible classifiers.

Also, our methodology was not the only way to develop gene expression-based classifiers. Thus, we also com-
pared the classifier’s performance with several other valid methods by applying our machine learning pipeline 
with the feature (gene) selection step replaced with the following alternatively determined gene sets: (1) all filtered 
RNAseq genes, (2) all differentially expressed genes, and (3) known asthma genes from a recent review of asthma 
genetics33. To maintain consistency with the machine learning pipeline-derived models, each of these gene sets 
was run through the same pipeline (Supplementary Fig. 2 with the feature selection component turned off) to 
identify the best performing global classification algorithm and the optimal asthma classification threshold for 
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this predetermined set of features. The algorithm and threshold were used to train each of these gene sets’ repre-
sentative classification model over the entire development set, and the resulting models for each of these gene sets 
were then evaluated on the RNAseq test set. Finally, as a baseline representative of alternative sparse classification 
algorithms, which represent a one-step option for doing feature selection and classification simultaneously, we 
also trained an L1-regularized logistic regression model (L1-Logistic)34 on the development set and evaluated it 
on the RNAseq test set.

Comparison of Performance to Permutation-based Random Models. To determine the extent to 
which the performance of all the above classification models could have been due to chance, we compared their 
performance with that of their random counterpart models (Supplementary Figs 6 and 7). These counterparts 
were obtained by randomly permuting the labels of the samples in the development set and executing each of the 
above model training procedures on these randomized data sets in the same way as for the real development set. 
These random models were then applied to each of the test sets considered in our study, and their performances 
were also evaluated in terms of the same measures. For each of real models tested in our study, 100 corresponding 
random models were learned and evaluated as above, and the performance of the real models was compared with 
the average performance of the corresponding random models.

Evaluation of the asthma classifier in external independent asthma cohorts. To assess the gen-
eralizability of the asthma classifier to other populations, microarray-profiled data sets of nasal gene expres-
sion from two external asthma cohorts – Asthma 1 (GSE19187)35 and Asthma 2 (GSE46171)36 (Supplementary 
Table 3) – were obtained from NCBI Gene Expression Omnibus (GEO)65. For each of these data sets, we obtained 
their probe-level normalized versions from GEO, and then obtained gene-level expression profiles by averag-
ing the normalized expression of all the probes corresponding to the same gene. The probe-to-gene mappings 
were obtained from the microarray platform (GPL) files also available from GEO. The asthma classifier was then 
applied to these gene-level data sets and its performance evaluated on these external asthma cohorts.

Evaluation of the asthma classifier in external cohorts with other respiratory conditions. To 
assess the classifier’s ability to distinguish asthma from respiratory conditions that can have overlapping symp-
toms with asthma, i.e. its specificity to asthma, microarray-profiled data sets of nasal gene expression were also 
obtained for five external cohorts with allergic rhinitis (GSE43523)39, upper respiratory infection (GSE46171)36, 
cystic fibrosis (GSE40445)40, and smoking (GSE8987)12 (Supplementary Table 4). Gene-level expression data sets 
were obtained for these cohorts using the same methodology as described above. The asthma classifier was then 
applied to these data sets, and its performance evaluated on these external cohorts with non-asthma respiratory 
conditions.

Data availability. Data and code for this study (doi:10.7303/syn9878922) are available via Synapse, a soft-
ware platform for open, reproducible data-driven science, at https://www.synapse.org/#!Synapse:syn9878922/
files/.

Ethics approval and consent to participate. The institutional review boards of Brigham & Women’s 
Hospital and the Icahn School of Medicine at Mount Sinai approved the study protocols. Written informed con-
sent was obtained from all subjects and all research was performed in accordance with relevant guidelines and 
regulations.
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