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Abstract 

Researchers in education and the behavioral sciences are increasingly conducting 

latent profile analysis by focusing investigations on subpopulations of individuals to 

describe individual differences with greater nuance. At the same time, missing data is 

practically inevitable, and even modest missingness rates can threaten the validity of 

inferences. Multiple imputation is a powerful strategy to treat missing data, but it suffers 

from key limitations in both the imputation and pooling phases when conducting latent 

profile analysis.  

In this dissertation, I conduct three studies to address these gaps. In the first study 

(Chapter 2), I evaluate whether recursive partitioning imputation algorithms better 

mitigate nonresponse bias than alternative missing data approaches that are common in 

practice. I find that recursive partitioning imputation algorithms perform well when 

sample sizes are large (𝑁 = 1,200), but not when sample sizes are small (𝑁 = 300) or 

when class separation is weak (i.e., entropy ≈ .74). In response, I propose a hybrid 

imputation procedure in the second study (Chapter 3); the proposed method embeds a 

finite mixture model to generate imputations using a joint modeling framework within a 

larger chained equations procedure. I demonstrate the hybrid imputation procedure using 

real-world data. 

In the final study (Chapter 4), I scrutinize current practices for conducting finite 

mixture model selection with missing data. I am not aware of any studies evaluating 

whether model selection decisions are sensitive to real-world missing data problems. I fill 

this gap in research by studying whether selection decisions are sensitive to missing data 

if either a full information maximum likelihood (FIML) or a multiple imputation strategy 
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is employed. Two findings emerge. First, with regards to FIML, the BIC under extracts 

the true number of classes relative to the complete data condition in the presence of small 

sample sizes and small classes. Second, with regards to multiple imputation, current 

practices for pooling information criteria result in model selection decisions that poorly 

replicate the decisions that would have been made had the data been complete. I propose 

two remedial procedures for future practice, and, using simulations, I show that these two 

procedures outperform current practices. 
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Chapter 1: Prologue 

This dissertation represents the current state of my research agenda focused on 

effectively treating missing data in person-centered analysis. The origins of this research 

agenda can be traced back to an impulsive purchase of Professor Craig Enders’ (2010) 

book, Applied Missing Data Analysis, while serving as a teaching assistant for Professor 

Katherine Masyn’s Applied Latent Class Analysis course at StatsCamp in the summer of 

2016. Professor Masyn’s course introduced students to the basics of conducting a person-

centered analysis where the focus of study is on how individuals in a population are 

similar to and different from one another. The course has always been quite popular 

among education and psychological researchers because phenomena in these fields tend 

to be nuanced and complex, requiring an analytic framework (like person-centered 

analysis) that describes individual differences (Bergman & Magnusson, 1997; Bergman 

& Trost, 2006). The course’s popularity reflects the general trend of increased adoption 

of person-centered approaches. In fact, over the past 20 years, publication rates for 

studies that implement a person-centered analysis are experiencing exponential growth, 

as indicated by yearly rates doubling every three to four years, on average, for 

manuscripts in the Web of Science database (Figure 1.1).  

 Attendees of StatsCamp arrive ready to analyze a real-world dataset of their own 

by applying the methods they learn in the course. Consistent with the experiences of 

applied behavioral science researchers everywhere, missing data is prolific in these 

datasets, and it is important to address the missing data using appropriate statistical 

techniques because missingness rates as low as 5-10% can threaten the validity of 

inferences (Little, Jorgensen, Lang, & Moore, 2014). As a teaching assistant, I knew 
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missing data was an unavoidable topic for which the students would seek my advice, so I 

was eager to learn more about the topic. “What should I tell my students regarding best 

practices for treating their missing data in their own person-centered analyses?”, I 

remember thinking to myself while scarfing down green chile ice cream at a shop in Old 

Town, Albuquerque. To that point, I had been telling my students that the software we 

were using defaults to estimating using full information maximum likelihood (FIML), 

and all that is required with that estimator is that the data be missing at random (MAR) 

conditional on the observed indicator variables. 

But what if the missing at random assumption was not tenable given just the 

variables that represented the class indicators, as one student pointed out to me? My 

response was that the student should conduct multiple imputation with the assistance of 

external variables while using standard software packages such as mice (van Buuren & 

Groothuis-Oudshoorn, 2011) in R (R Core Team, 2020) or the mi impute command in 

Stata (StataCorp, 2019). I soon discovered that I was offering poor advice. As I turned the 

pages in Professor Enders’ book in the ice cream shop, I came across the sentence that 

caused my heart to skip. In referring to latent profile analysis (LPA), a type of person-

centered analysis, Enders (2010, pp. 268–269) explained, “[M]ultiple imputation can 

produce biased estimates of the model parameters, even when the data are [missing 

complete at random] MCAR.” Humbled now, knowing that I had offered the student poor 

advice, I needed to know for myself why multiple imputation was so inadequate in 

person-centered analysis, even if its use was prolific in regression analysis, factor 

analysis, and structural equation modeling. The question also remained: what do I tell this 

student who is concerned that the MAR assumption requires external variables which 
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themselves contain missing data? Seeking a satisfactory answer to that question began a 

research agenda that continues to this day.  

Multiple imputation in LPA is problematic for two reasons, but only one has been 

recognized in the current literature. The first reason, and the reason previously explored 

in literature, is that the single-class imputation models standard in software fail to 

produce imputations that reflect the unobserved heterogeneity present in data with latent 

subpopulations—subpopulations that are assumed to be present in an LPA (Enders, 2010; 

Enders & Gottschall, 2011; Sterba, 2016). Stated in a more technical way, because 

single-class imputation models do not reflect the true multiple group structure of the data 

and result in biased estimates, imputations drawn from these models do not meet 

statistical requirements to be considered “proper”—neither in a Bayesian sense (Schafer, 

1997) nor in a frequentist framework (Rubin, 1987).    

Upon leaving Albuquerque, I was determined to identify methods for generating 

proper imputations in LPA. I had identified a research question that I was going to 

explore at the next Modern Modeling Methods conference hosted by the University of 

Connecticut in 2017. Specifically, I was unsatisfied by the fact that the research to date 

on multiple imputation in LPA had relied on multivariate normal imputation methods to 

create the imputed datasets, when so many other methods were available that did not 

make such strong parametric assumptions. In preparing for that conference, I quickly 

realized that even if I were to identify an imputation method that produced proper 

imputations, multiple imputation is challenging in a person-centered analysis for a second 

reason that has not been fully discussed in literature. 
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The second reason why multiple imputation is problematic concerns model 

selection. Specifically, researchers conducting LPA typically do not know the number of 

latent subpopulations supported by the data a priori. To ascertain this value, the 

researcher enumerates the classes by fitting alternative finite mixture models with 

different numbers of mixture components specified. Each mixture component represents 

a latent class which is, in turn, presumed to represent a distinct latent subpopulation in the 

overall population. To settle on a final model, the researcher is instructed to evaluate the 

model fit information and balance that information with substantive theory (Masyn, 

2013). Simulation studies have shown that relative fit information provided by 

information criteria, such as the BIC, are useful in deciding on a final model (Nylund, 

Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008).  

The challenge with multiple imputation is that the models are fit separately to 

each imputed dataset, resulting in multiple information criteria values. Popular software 

defaults to averaging the information criteria values across the imputed datasets, even 

though previous literature in the covariate-selection regression context suggests that 

averaging information criteria is not theoretically justified and is often not an optimal ad-

hoc pooling strategy. Indeed, although previous literature had offered different strategies 

for pooling information criteria, I had not found any studies comparing these alternative 

strategies to the default averaging technique standard in software. This revelation was 

concerning because I realized that even if the challenge of creating proper imputations 

were to be resolved, how an applied researcher conducting person-centered analysis 

should best conduct model selection would remain an unsettled question. 
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Thus, the research agenda that came to form this dissertation can be summarized 

by offering solutions to these two challenges. The first challenge is generating proper 

imputations that reflect the multiple group structure of the data represented by latent 

subpopulations. Provided that the first challenge can be satisfactorily resolved, the second 

challenge is identifying best practices for conducting model selection in an LPA with 

missing data. The remainder of this prologue provides an intuitive understanding for both 

these challenges. 

Challenge 1: Generating Proper Imputations for LPA 

To provide intuition for why multivariate normal imputation—or equivalently, 

normal regression imputation—does not reflect the multiple group structure in a person-

centered analysis, consider that incorporating group information when generating 

imputations (through, for example, interaction terms) is critical. In fact, multiple studies 

have shown that if missingness depends on group membership (such as subpopulations), 

then bias can result if group membership information is not incorporated in the 

imputation model (Collins, Schafer, & Kam, 2001; Enders & Gottschall, 2011). To avoid 

bias, researchers should adopt what is termed an inclusive analytic strategy (Graham, 

2003; Little et al., 2014; Rubin, 1996; Schafer & Graham, 2002). When there are many 

groups, this means that the researcher either specifies many more interaction terms with 

group membership than are hypothesized to exist, or the researcher fits separate 

imputation models across the groups entirely (Allison, 2002; Enders, 2010).   

To clarify concepts, consider the relationship between the amount of strenuous 

weekly cardiovascular exercise and percent body fat among healthy adults with a 

substantial portion of individuals missing exercise values. Even though the researcher 
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may not be interested in how gender may moderate this relationship, it is best practice to 

either specify interaction terms between gender and daily exercise when imputing 

missing exercise times, or to specify a multiple group imputation model where exercise 

values are imputed separately between males and females. Incorporating gender 

information in the imputation model is important because males and females differ in 

healthy ranges of percent body fat, so ignoring these gender differences risks biasing 

estimates if the missingness rates depend on gender. However, even if the missingness 

does not depend on gender, the inclusion of these interaction terms (or a multiple group 

imputation model) will still result in unbiased estimates. Thus, methodologists 

recommend researchers adopt an inclusive strategy by incorporating group information to 

offset potential sources of bias. 

However, unlike in the example above, an individual’s group (or subpopulation) 

is usually assumed to be a latent variable and one that is not directly observable in an 

LPA. This precludes the adoption of an inclusive analytic strategy that explicitly 

incorporates group information. The fact that group membership cannot be directly 

observed has negative consequences when single-class models (such as the normal 

imputation regression model) are used to impute missing profile indicator values. This is 

because the imputations generated from a single-class model fail to reproduce 

subpopulations in the data, resulting in imputations that do not meet the requirements for 

statisticians to deem them proper (Rubin, 1987; Schafer, 1997).  

The problem with single-class imputation models in LPA is easily visualized. 

Consider a pedagogical example with two well-separated subpopulations of individuals, 

as displayed in Panel A of Figure 1.2, and many observations missing 𝑌2 (so that only 
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𝑌1 values are observed for these observations). For simplicity, assume the missingness on 

𝑌2 is completely random so that the distribution of the missing observations matches the 

distribution of the observed observations; thus, a proper imputation procedure should 

result in the distribution illustrated in Panel A. However, if a normal imputation model is 

specified, then imputations will be drawn from a single-class distribution resembling 

Panel B in Figure 1.2. Thus, when the imputed data are combined with the complete 

cases (see Panel C in Figure 1.2), the resulting distributions of the subpopulations are less 

well separated and observably different in configuration (i.e., are elliptical and not 

perfectly circular) than the true distributions in Panel A. 

Chapter 2 

If the problem with generating proper imputations in LPA with normal regression 

stems from normal regression models assuming the data are generated from a single 

class, then it seems logical that methods which do not make this assumption may mitigate 

any bias due to improper imputations. Clustering algorithms are particularly useful in 

modeling the unobserved heterogeneity in the data that is implied by latent 

subpopulations. Fitting finite mixture models is one means for clustering the data and is 

used ubiquitously in LPA. However, several other clustering methods exist.  

Recursive partitioning is one such alternative clustering algorithm, and imputation 

models that incorporate recursive partitioning are available in mainstream software. In 

recursive partitioning, the observations are clustered into rectangular partitions in the 

data, which can be visualized by the rectangular clusters formed in Figure 1.3. The 

clustering process guarantees that the imputations exhibit some multiple group structure. 

As can be seen in Figure 1.3, the rectangular clusters formed from recursive partitioning 
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clustering are different than those implied by a mixture distribution of two Gaussian 

distributions (separately indicated by the grey and gold dots).  Nevertheless, the recursive 

partitioning process ensures that observations are clustered into increasingly homogenous 

subgroups with respect to the latent classes. This clustering process clearly avoids the 

problems of imputing from a single-class model.  

I hypothesize that recursive partitioning imputation algorithms will bypass the 

problems associated with single-class imputation models because they impose a multiple-

group structure when generating imputations. In Chapter 2, I evaluate the performance of 

recursive partitioning imputation when treating missing data in LPA using the fully 

conditional specification (van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006), 

where missing values are imputed sequentially by each variable containing missing data. 

Imputing in this manner is highly flexible in that it allows for external variables of 

multiple data types (i.e., categorical, ordinal, continuous, etc.) to be specified so that 

imputations are generated following an inclusive analytic strategy. Consistent with my 

hypothesis, I find that recursive partitioning imputation algorithms—and classification 

and regression tree imputation, in particular—bypass the problems associated with 

single-class imputation models and, under certain conditions, are capable of generating 

proper imputations.  

Chapter 3  

Although the recursive partitioning imputation procedure avoids imputing from a 

single-class model, it is nevertheless uncongenial with the analytic model. 

Uncongeniality is a concept introduced by Meng (1994) in which the imputation model 

differs in substantively meaningful ways from the analytic model. For recursive 
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partitioning imputation, this is visualized in Figure 1.3 by the rectangular clusters which 

do not match the circular latent classes. Uncongeniality in multiple imputation can result 

in biased parameter estimates if the imputation model is not sufficiently complex to 

capture the true data generating model. In contrast, a congenial model is at least as 

complex as the analytic model and captures the data generating mechanism well. 

Congenial models are known to mitigate bias even if the additional complexity leads to 

imputation inefficiency. Because mitigating bias is the primary concern when treating 

missing data, it is considered best practice to ensure that the imputation model is at least 

as complex as the analytic model (Murray, 2018; Rubin, 1996). This is done in an 

inclusive strategy when, for example, more interactions are incorporated into the 

imputation model than are hypothesized to exist.  

 In Chapter 3, I perform an initial study to address inherent uncongeniality 

between a recursive partitioning imputation model and a finite mixture model as the 

analytic model. To enhance congeniality, I propose and investigate the performance of an 

imputation procedure where a mixture regression model is used to generate imputations. 

The mixture regression model allows for AVs to be specified in order to make the MAR 

assumption more tenable.  

 I also investigate whether the proposed imputation procedure can perform well 

under model uncertainty. After all, the number of subpopulations is not known, so the 

number of components to specify in the mixture model is not known to the imputer. Even 

outside of the person-centered analysis context, missing data literature is increasingly 

recognizing that imputations should reflect inherent uncertainty in the true data 

generating model. In particular, some are now arguing that imputations cannot be proper 
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if they do not incorporate uncertainty of the true data generating model, in addition to the 

more traditional sources of uncertainty required for valid inference (Kaplan & Yavuz, 

2019). The imputation procedure I propose attempts to ensure that model uncertainty is 

reflected in the imputations by separately considering competing mixture models 

specified with different numbers of components at each iteration. I evaluate whether the 

proposed procedure adequately recaptures key parameters using an empirical dataset. I 

find that additional work is needed to fine-tune the proposed imputation algorithm before 

it can be adopted by applied researchers. 

 Even if these issues can be resolved, the challenge does not end with generating 

proper imputations for LPA. The imputer is still in a position where they must conduct 

class enumeration and select a final model. Chapter 4 addresses this second challenge. 

Challenge 2: Model Selection with Multiply Imputed Data in LPA 

There is currently a gap in literature about how best to pool results from the 

analysis phase when conducting model selection during class enumeration. Class 

enumeration refers to a model selection procedure where the researcher determines the 

number of subpopulations supported by the data using statistical evidence, including 

nested model tests and information criteria. Best practices for pooling information criteria 

and conducting hypothesis tests during class enumeration have not been established. 

Thus, although multiple imputation represents a powerful technique to treat missing data 

in variable-centered approaches, its application in person-centered approaches will 

remain limited by unresolved methodological gaps for conducting model selection. 
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Chapter 4 

The third and final study addresses the current gap as it relates to pooling 

information criteria for model selection in LPA. Through a simulation study, I consider 

alternative pooling procedures to averaging the information criteria, and I evaluate how 

these alternatives perform in selecting the correct model.  

In addition to completing the simulation study to compare alternative pooling 

procedures, I also note that the standard BIC formula is only correct if the data do not 

contain missing values. This is important because applied researchers often prioritize the 

BIC because the BIC has shown favorable performance in simulations (Nylund et al., 

2007). I show that when data are missing, the BIC tends to select a model with too few 

components (i.e., under extracts the number of classes). The source of this problem has to 

do with the assumption that 𝑁 complete observations are present in the data when 

calculating the penalty term. In this chapter, I propose an adjustment to the penalty term 

to be applied when data are missing. 

Summary and Contributions to Applied Research  

 The adoption of multiple imputation to address missing data in LPA is hindered 

by two challenges. The first challenge is generating proper imputations so that unbiased 

estimates and valid inferences can be obtained for the parameter estimates that define the 

latent classes. The second challenge concerns pooling model fit information to conduct 

model selection given that the number of latent classes supported by the data must be 

determined empirically. Chapters 2 and 3 investigate methods to address the first 

challenge. Chapter 4 addresses the challenge with pooling model fit information. In 



 

12 

 

Chapter 5, I reflect on the lessons learned from each of the studies and provide tangible 

guidance to applied researchers. 

 This dissertation provides several contributions to methodological and applied 

research in education and the behavioral sciences. Specifically, I demonstrate that the 

current practice of fitting mixture models to profile indicators with missing values using 

FIML has many limitations. The limitations of current practice threaten the validity of 

inferences regarding class definitions and subpopulation membership (Chapter 2). 

Similarly, current practices do not guarantee model selection decisions are robust to 

missing data (Chapter 4). My fundamental assertion is that multiple imputation can be a 

viable missing data strategy in LPA, one that is better positioned than FIML to address 

the limitations that I describe. The simulations contained in this dissertation provide 

empirical support that, under certain conditions, multiple imputation can better address 

missing data than FIML.  

In summary, my dissertation makes an important contribution by paving the way 

for a line of inquiry oriented around providing researchers an expanded toolkit to address 

missing data when conducting person-centered analysis like LPA. Given the limitations 

of current practices, expanding the methodological toolkit is important to ensure that 

applied researchers are using statistical techniques that are robust to missing data 

problems as they seek to advance education and the behavioral sciences.  
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Figures 

Figure 1.1 

Yearly Publications  

 
Note. Includes latent profile analysis, latent class 

analysis, growth mixture modeling, factor mixture 

modeling, latent transition analysis, or mixture modeling 

in education and psychology journals listed in the Web of 

Science database.  Best fit line derived from exponential 

function with a doubling period of 3.75 years. 
 

Figure 1.2 

Problems with Single-Class Imputation Models 

 

 
 

Notes. (A) The true distribution of the data (including for the 

fully observed values and those values missing 𝑌2 had 𝑌2 been 

observed). (B) The distribution of the imputations using a 

simple linear regression model for the observations missing 𝑌2 

when group membership is not known. (C) The resulting 

distribution that combines the complete cases and imputed 

cases (i.e., imputed data). 
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Figure 1.3 

Uncongeniality of Clusters from Recursive 

Partitioning 

Note. Rectangular clusters (sixteen in total) 

formed by recursive partitioning using 

classification and regression trees overlaid 

on two well-separated subpopulations 

generated by a mixture of Gaussians. 
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Chapter 2: Evaluating Recursive Partitioning Imputation to Treat Missing Data in 

Latent Profile Analysis 

Marcus R. Waldman & Katherine E. Masyn 

Over the last few decades, methodologists have implored researchers in the 

behavioral sciences to adopt “state of the art” (Schafer & Graham, 2002) strategies to 

address missing data. Missing at random (MAR; Rubin, 1976) procedures are especially 

encouraged because they leverage observable information to improve the robustness of 

conclusions by mitigating nonresponse bias (Hancock, Stapleton, & Mueller, 2019; T. D. 

Little, Jorgensen, Lang, & Moore, 2014; Wilkinson, 1999). Although valid inference with 

MAR strategies is technically only guaranteed if the missing data mechanism is ignorable 

(i.e., the propensity for missingness is explained only by observables), MAR strategies 

can also protect against nonresponse bias when the mechanism is nonignorable if the 

missing values are well predicted by observed variables (Enders, 2008, p. 128; van 

Buuren, 2018, p. 101). The most common MAR strategies employed in psychology and 

the behavioral sciences include multiple imputation (MI; Rubin, 1987) and full 

information maximum likelihood (FIML) (Allison, 2002; Enders, 2010; R. J. Little & 

Rubin, 2002; Molenberghs & Kenward, 2007). 1 

Currently, researchers conducting latent profile analysis (LPA) rely almost 

exclusively on FIML to treat missing data. To highlight this fact, we identified thirty 

 

 

1 Weighted adjustment using propensity scores is an alternative MAR strategy to FIML and MI, and it is 

used heavily in large-scale surveys and in the clinical sciences (Molenberghs & Kenward, 2007). Although 

some studies in psychology have advocated for a weighted adjustment approach with promising simulation 

results in attrition contexts (Hayes & McArdle, 2017a; Hayes et al., 2015; McArdle, 2013), weighted 

adjustment is generally a complete case analysis (R. J. Little & Rubin, 2002) and is limited in its ability to 

treat multivariate missing data patterns like those observed in LPA (Hayes, 2017). We, therefore, do not 

consider weighted adjustment approaches.  
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highly cited LPA studies in the literature to inform the simulation study included in this 

chapter. We found that FIML was reported as the missing data strategy used to handle 

missing data in all cases, provided that a missing data strategy was reported at all. None 

of the authors reported specifying auxiliary variables (AVs) that are external to the LPA 

to address the missing data problem. This makes clear that researchers conducting LPA 

are relying heavily on the viability of the assumption that the missing data mechanism is 

ignorable absent any external information. Such an ignorability assumption is generally 

considered overly restrictive given the complicated contexts in which behavioral science 

data are collected and missing data appear.  

To mitigate the associated nonresponse bias in observational data, methodologists 

strongly encourage researchers to adopt an “inclusive analysis strategy” (Collins, Schafer, 

& Kam, 2001) and incorporate many AVs to treat missing data with MAR procedures 

(Enders, 2010; T. D. Little et al., 2014; Rubin, 1996; Schafer, 1997; Schafer & Graham, 

2002). When analyzing data using covariance structure models (i.e., regression and path 

analysis, factor models, or structural equation models), an inclusive strategy under FIML 

can be accomplished using specialized specification rules (Graham, 2003) or two-step 

procedures (Savalei & Bentler, 2009; Yuan & Bentler, 2000). Both augment the analytic 

model to factor in information from AVs. However, as we elaborate later, it is not 

obvious how to appropriately augment the mixture models used in LPA to incorporate 

AVs, and, even if it is possible, any developed procedure would likely be plagued by 

several limitations in real-world applications. Indeed, even in covariance structure 

models, it is common to quickly experience convergence issues when incorporating AVs 

in a FIML approach (Enders, 2010). 
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In contrast, multiple imputation is generally considered more flexible and better 

able to incorporate AVs than FIML because the model used to treat missing data (i.e., the 

imputation model) can be distinct from the analytic model used to make inferences and 

answer substantive research questions (Meng, 1994; Rubin, 1996; van Buuren, 2018).  

Moreover, multiple imputation can accommodate the inevitable complications that arise 

in the real world, including treating the missingness on AVs, which themselves are 

comprised of multiple data types (continuous, categorical, etc.). This is especially true if 

a multivariate imputation by chained equations (MICE) procedure is employed to 

generate the imputations (Azur, Stuart, Constantine, & Leaf, 2011; van Buuren, Brand, 

Groothuis-Oudshoorn, & Rubin, 2006).  

Some have cautioned against using multiple imputation (Sterba, 2016) because 

popular models used to generate the imputed datasets assume that the data exhibit a 

single group structure (Enders, 2010; Enders & Gottschall, 2011). In a joint modeling 

imputation framework, for example, it is typically assumed that the data are drawn from a 

(single) multivariate normal distribution (King, Honaker, Joseph, & Scheve, 2001; 

Schafer, 1997). Equivalently, if using MICE, the linear regression models popular in 

imputing continuous data assume a single-class structure with imputations drawn from a 

univariate normal distribution. The single-class assumption is problematic in LPA 

because such an analysis is person-centered in that the explicit goal is to identify multiple 

hidden subpopulations of individuals. Thus, creating imputed datasets from single-class 

imputation models risks obfuscating the very subgroups that the researcher intends to 

illuminate.  
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However, imputation models need not assume a single-class structure. For 

example, recursive partitioning regression models utilize a form of clustering to calculate 

predicted values for each observation. The clustering process assures that the imputations 

are drawn from a multiple group structure. Although recursive partitioning regression 

models are available in software when generating imputations using MICE, the 

performance of these methods has yet to be evaluated for LPA. This indicates a gap in 

literature, as these methods may provide a better option than FIML in treating missing 

data.   

The purpose of this study is to fill this gap. Through a simulation study, we show 

that imputations created from recursive partitioning algorithms can effectively attenuate 

nonresponse bias and lead to valid inference outside of settings with small class sizes. In 

this way, we show that recursive partitioning imputation allows for an inclusive missing 

data strategy and is more effective than FIML in attenuating nonresponse bias outside of 

small class sizes. Thus, this study opens the door for multiple imputation to be an option 

for applied researchers treating missing data in person-centered analysis. 

Background 

In this section, we provide a brief background on the finite mixture models fit in 

LPA, we highlight the challenges associated with conducting an inclusive strategy with 

FIML, and we introduce recursive partitioning as a viable imputation strategy for data 

containing latent subpopulations.  



21 

 

Gaussian Finite Mixture Models 

As typically implemented in LPA, individuals are clustered into homogenous 

subpopulations (or classes) by fitting Gaussian finite mixture models. It is assumed that 

the indicators are normally distributed conditional on class membership:  

[𝒚
𝑖
|κ = 𝑘]~MVN(𝜇𝑘, Σ𝑘) (1.1) 

where 𝒚𝑖 is the vector of latent class indicator data and 𝜅 represents the categorical latent 

variable representing class membership, while 𝜇𝑘 and Σ𝑘 represent the within-class mean 

vector and variance-covariance matrix for class 𝑘, respectively.  

Finite mixture models require the researcher to specify the total number of 

component densities to be fit to the data, 𝐾. Typically, this value is not known a priori, so 

it must be inferred empirically from the data. The number of components is determined 

by fitting a sequence of mixture models with increasing numbers of classes until 

convergence becomes intractable. This process is referred to as enumerating the classes. 

A model within the sequence is then selected. For our purposes here, we assume that the 

number of classes is known. Model selection with incomplete or imputed datasets is an 

important topic that is addressed in Chapter 4.   

Assuming that 𝐾 is known, then the categorical latent variable, 𝜅, follows a 

multinomial distribution:  

κ~Multinomial(𝜋1, … , 𝜋𝐾) (1.2) 

where 𝜋𝑘 represents the likelihood of a randomly selected individual belonging to class 

𝑘, and 𝑘 = 1, … , 𝐾.  From (1.1) and (1.2), the corresponding likelihood of observing the 

complete data 𝑌 is given by: 
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ℒ(𝑌|𝜃) = ∏ ∑ 𝜋𝑘𝒩𝐽(𝒚𝑖|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

 (1.3) 

where 𝜃 = {{𝜋𝑘, 𝜇𝑘 , Σ𝑘}:  𝑘 = 1, . . , 𝐾} .    

Inclusive Missing Data Strategy: Limitations with FIML 

All missing data strategies can be justified by manipulating and studying the 

properties of the joint distribution formed by the data and the missing data mechanism. If 

profile indicator data are missing, then the complete indicator data 𝑌 is composed of both 

the missing and observed elements so that 𝑌 = {𝑌obs, 𝑌mis}. The joint distribution of the 

data and missing data mechanism can then be written as:  

Pr(𝑌, 𝑅; 𝜃, 𝜓) = Pr(𝑌obs, 𝑌mis, 𝑅; 𝜃, 𝜓) (1.4) 

where 𝑌 represents the complete data with parameters 𝜃, and 𝑅 represents the missing 

data patterns with corresponding parameters 𝜓 (collectively referred to as the missing 

data mechanism). All MAR missing data strategies assume that the missing data 

mechanism is ignorable when estimating the 𝜃 parameters, resulting in the inferences 

being drawn from the observed data likelihood. The primary requirement for ignoring 𝑅 

and 𝜓 during estimation is that the data must be MAR: that is, the missing profile 

indicator data (𝑌mis) is independent of the missing data patterns (𝑅) conditional on the 

observed data (𝑌obs), as given by  

𝑌mis ⊥ 𝑅 | 𝑌obs (1.5) 

(R. J. Little & Rubin, 2002, pp. 117–119; Rubin, 1976)2. 

 

 

2 An additional requirement is distinctiveness of 𝜃 and 𝜓 (R. J. Little & Rubin, 2002, pp. 119–120). 

Because distinctiveness is not considered as important (Schafer, 1997, p. 11), we do not elaborate.  
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Violations of the MAR assumption in (1.5) can lead to biased 𝜃 estimates and 

invalid inference. In real-world LPA settings where the data are often observational in 

nature, the MAR assumption is likely untenable. A more tenable assumption is that MAR 

holds conditional on 𝑌obs and other observables. In the latter setting, valid inference can 

theoretically be obtained by conditioning on additional variables: 

𝑌mis ⊥ 𝑅 | (𝑌obs, 𝑋) (1.6) 

where 𝑋 are the additional variables that are incorporated into the model as AVs. 

Furthermore, it has been shown that highly predictive AVs can substantially reduce bias, 

even in settings where data remain missing not at random (Enders, 2010; van Buuren, 

2018)  For these reasons, methodologists generally implore applied researchers to 

incorporate many AVs to address missing data as part of an inclusive strategy (Collins et 

al., 2001; Enders, 2010; Rubin, 1996; Schafer & Graham, 2002).  

Outside of mixture modeling, researchers have numerous options to include AVs 

and adopt an inclusive strategy. If treating missing data with multiple imputation, the 

researcher can specify AVs as part of the imputation model and remove these external 

variables when fitting the analytic model to the imputed datasets. Missingness in the AVs 

is easily treated if using the fully conditional specification (FCS; van Buuren et al., 2006) 

as part of a MICE imputation procedure.  

Likewise, researchers have several options to include AVs if employing FIML 

estimation to treat missing data for regression analysis, factor analysis, structural 

equation modeling, and related covariance structure models. An inclusive strategy can be 

implemented by fitting a “saturated correlates” model (Graham, 2003). A saturated 

correlates model augments the analytic model with a set of missing data correlates as 
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AVs. A series of correlations are calculated with the goal of “working the AVs into the 

analysis without altering the substantive interpretation of the parameters” (Enders, 2010, 

p. 133). In this way, the MAR assumption is made more tenable by the inclusion of AVs 

without making parameter interpretations conditional on these variables, as would occur, 

for example, if the AVs were simply added as predictors in a regression analysis. 

The saturated correlates model can be fit to covariance structure models using either a 

two-stage approach or specifying models according to Graham’s (2003) rules. The two-

stage analysis mimics a method-of-moments estimation procedure. In the first stage, one 

estimates the sufficient statistics of the model (i.e., the variance-covariance matrix) in 

such a way that the estimates are informed by the AVs. With the variance-covariance 

matrix estimated, one can then fit the covariance structure model of interest (Savalei & 

Bentler, 2009; Yuan & Bentler, 2000). Alternatively, a saturated correlates model can be 

fit by correlating the AVs to any disturbance or uniqueness terms according to Graham’s 

(2003) rules.3  By correlating the AVs with these error terms, Graham’s (2003) rules 

“[transmit] the information [needed for the MAR assumption to be tenable] from the 

auxiliary variables to the analysis model variables without affecting the interpretation of 

the parameter estimates” (Enders, 2010, p. 135).  

However, saturated correlates models have limitations, even outside of mixture 

modeling. First, if the AVs themselves contain missing values, then the researcher either 

must adopt a listwise deletion strategy or specify the AVs as endogenous variables. If the 

latter approach is taken, then strong parametric assumptions about the distribution of the 

 

 

3
 We refer the reader to Enders (2010, Chapter 5) for illustrative examples of how to implement Graham’s 

(2003) rules with different types of covariance structure models. 
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AVs must be made. For example, it is not uncommon to assume that binary AVs are 

treated as continuous so as to specify the necessary correlations required as part of 

Graham’s (2003) rules. Additionally, convergence issues are common with a saturated 

correlates approach, and convergence becomes increasingly more difficult to achieve as 

the number of AVs increases. Between the distributional assumptions implied by 

endogeneity and the convergence issues, researchers often need to make compromises in 

deciding which AVs they need to exclude (Enders, 2010). Such compromises are not 

necessary when conducting multiple imputation according to the FCS because the FCS is 

highly flexible in treating varied data types and is more robust against nonconvergence 

(van Buuren, 2018). 

Additionally, it remains unclear how to work the AVs into the analysis without 

causing the definitions of the classes to change and individuals to switch classes in an 

LPA. In Technical Appendix B, we show that specifying a mixture model according to 

Graham’s (2003) rules causes class-specific mean estimates to change, even when the 

data are complete. Class means are often used to define the classes when naming the 

classes. Therefore, specifying a mixture model according to Graham’s (2003) rules risks 

substantively altering the very definitions of the classes. In addition, there is evidence 

that individuals switched classes when the mixture was specified according to Graham’s 

(2003) rules. This is shown by nonequivalent marginal probability estimates across the 

classes between a mixture model fit per the usual specification as opposed to a mixture 

model specified according to Graham’s (2003) rules.  

Why do Graham’s  (2003) rules alter key parameter interpretations when the 

latent variable is categorical (i.e., mixture models) and not when the latent variable is 
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continuous (e.g., factor analysis)? In brief, implementing Graham’s (2003) rules with 

categorical latent variables results in the AVs effectively becoming additional class 

indicators; the corresponding fitted mixture model results in parameter estimates that best 

explain differences in relations between the AVs and the class indicators. However, AVs 

are external variables, so content validity considerations demand that they should not 

influence the definitions of the classes. What is clear is that by altering the parameters 

that define the classes, Graham’s (2003) rules do not accomplish their fundamental goal 

of preserving interpretations in mixture models.  

 If Graham’s (2003) rules fail to preserve key interpretations, it seems reasonable 

to question whether there is a two-stage procedure that could be developed to accomplish 

this goal, as is available with covariance structure models. Unfortunately, we do not 

consider a two-step approach possible. Mixture models require person-level data and 

cannot be fit to a covariance matrix, unlike covariance structure models. This is because 

mixture models estimate higher order moments in the data than simply the means and 

covariance matrices modeled in covariance structure models (Masyn, 2013; McLachlan 

& Peel, 2004). Consequently, there is no obvious way to translate the first step from the 

two-step approach by estimating the sufficient statistics.  

In summary, it remains unclear how to conduct an inclusive missing data strategy 

when fitting a mixture model using FIML without changing the definitions of the classes. 

Even if a clever set of rules akin to Graham’s (2003) rules could be identified for 

mixtures that accomplish this goal, there are still practical limitations that make an 

inclusive strategy with FIML unpalatable. These include increased convergence issues or 

invoking strong parametric assumptions to treat missing values in the AVs. Multiple 
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imputation is more flexible in treating a variety of data types and is less prone to practical 

problems like convergence issues, making the method more amenable to an inclusive 

strategy. 

Multiple Imputation: Theoretical Advantages and Known Limitations in LPA 

As an alternative to FIML, MI is better equipped to incorporate AVs (Enders, 

2010; van Buuren, 2018). Unlike FIML, MI’s multiple phase approach separates and 

distinguishes the problem of treating missing data (imputation phase) from how 

substantive questions would be answered had the data been complete (the analysis 

model). Specifically, the model used to treat the missing data through generating 

imputations can be “uncongenial” (Meng, 1994) with the finite mixture model that would 

ultimately be fit to make inferences in LPA. This explicit separation of the missing data 

problem from the analysis problem protects the AVs from unduly influencing class 

membership above and beyond their role in treating the missing data. Additionally, 

saturated correlates models exhibit convergence difficulties when fit with a large number 

of AVs, a problem that is not observed with MI (Enders, 2010). Finally, unlike a 

saturated correlates approach, which places strict parametric assumptions on the AVs if 

these variables themselves contain missingness, missingness in the AVs can be addressed 

using nonparametric MI algorithms that are also more robust to misspecification issues 

(van Buuren, 2018). Thus, from a theoretical perspective, MI is often a more attractive 

alternative for dealing with missing data than FIML. Nevertheless, nuanced issues remain 

that threaten the validity of inferences drawn from mixture models when MI is used to 

treat missing data that contain latent subpopulations.  
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To understand these nuanced issues, it is important to consider some of the 

theoretical underpinnings that make MI a justifiable missing data strategy. MI, like 

FIML, requires that the missing data mechanism be ignorable. Unlike FIML, however, 

MI takes a Bayesian perspective in treating the missing data and relies on the Bayesian 

Central Limit theorem for valid frequentist inference. In particular, Little and Rubin 

(2002, p. 210) show that the posterior density for parameters 𝜃 given the observed data is 

given by   

Pr(𝜃|𝑌obs)  ∝ ∫ Pr(𝜃|𝑌mis, 𝑌obs) Pr(𝑌mis|𝑌obs, 𝜃) 𝑑𝑌mis

𝑌mis

(1.7) 

where 𝑌obs and 𝑌mis represent observed and missing data, respectively. AVs can be 

incorporated in (1.7) to ensure that the ignorability requirement is met or to mitigate the 

effect of violations to the MAR assumption if the missing data mechanism is 

nonignorable:  

Pr(𝜃|𝑌obs)  ∝ ∫ Pr(𝜃|𝑌mis, 𝑌obs) Pr(𝑌mis|𝑌obs, 𝑋, 𝜃) 𝑑𝑌mis

𝑌mis

 (1.8) 

where 𝑋 is the set of AVs. The integral in (1.8) implies that valid inferences about 𝜃 can 

be accomplished through a marginalizing process over all plausible values for 𝑌mis under 

the assumption that true posterior predictive distribution for the missing data (i.e., 

[𝑌mis|𝑌obs, 𝑋, 𝜃]) can be sampled independently (R. J. Little & Rubin, 2002; Rubin, 

1987). Sampling from the true posterior predictive distribution [𝑌mis|𝑌obs, 𝑋, 𝜃] is 

guaranteed to lead to “Bayesianly proper” (Schafer, 1997, pp. 105–106) imputed datasets 

and valid Bayesian inference. In large samples and when the regularity conditions are 

met, the Bayesian Central Limit theorem ensures that Bayesian inference is consistent 

with frequentist inference. However, imputations sampled from a distribution other than 
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the true posterior predictive distribution are not theoretically guaranteed to lead to valid 

Bayesian inference, but, in many cases, they can perform well in real-world situations 

(van Buuren, 2018). Unfortunately, LPA is not one of those situations. 

Multiple studies have shown that if missingness depends on group membership 

(such as subpopulations), then bias can result if group membership information is not 

incorporated in the imputation model (Collins et al., 2001; Enders & Gottschall, 2011). 

This is because the imputed datasets may not reflect key features of the data’s structure if 

group membership information is not incorporated into the imputation models. As part of 

an inclusive strategy, this means that the researcher either specifies many interaction 

terms with group membership information, or the researcher fits separate imputation 

models across the groups entirely (Allison, 2002; Enders, 2010).   

However, in a person-centered analysis, an individual’s group (i.e., 

subpopulation) is assumed to be a latent quantity and not known a priori. This precludes 

the adoption of inclusive analytic strategies that explicitly incorporate group information. 

The fact that group membership cannot be directly observed has negative consequences 

when single-class imputation models are used to construct plausible values. This is 

because the imputations generated from a single-class model fail to reproduce the 

multiple group structure of the data, resulting in imputations that are not Bayesianly 

proper. This was discussed in the pedagogical example in Chapter 1. 

Conditional Mean Imputation by Recursive Partitioning Prediction Models   

Recursive partitioning refers to a stratification algorithm by which partitions are 

formed by successively splitting up the data in a hierarchical fashion, ultimately leading 

to rectangular clusters of observations (Breiman, 1984). Specifically, an automated 
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procedure identifies a splitting variable and then selects the optimal cut point on that 

variable in a manner that results in the maximum reduction on a so-called impurity 

metric. This variable selection and splitting process repeats itself until a termination 

condition is met: either the change on the impurity measure no longer sufficiently 

decreases, or the number of observations in a resulting partition reaches some minimum 

value (Strobl, Malley, & Tutz, 2009). The final partition (or node) for any given 

observation can be determined by a set of decision rules that follow a tree-like structure, 

often referred to as a decision tree. An example of a decision tree and the corresponding 

rectangular clusters is illustrated in Figure 2.1. 

In regression contexts, Breiman’s (1984) classification and regression tree 

algorithm (CART) is a highly popular application of recursive partitioning for prediction. 

Specifically, upon termination of the recursive partitioning process, a summary statistic 

(e.g., mean, median, etc.) using only outcome values from observations in the terminal 

node are utilized (see Strobl, Malley, & Tutz, 2009 for more details). Because the same 

variable is chosen as the splitting variable multiple times, CARTs can accommodate 

nonlinear and even discontinuous functions.  Moreover, CARTs automatically search for 

the presence of high-order interaction terms (Burgette & Reiter, 2010; Doove, van 

Buuren, & Dusseldorp, 2014) in the recursive partitioning process. 

The machine learning community has since extended Breiman’s (1984) CART 

algorithm with post hoc procedures to improve predictions coming from recursive 

partitioning regression algorithms. The random forest (RF; Breiman, 2001) algorithm 

represents one important extension. RFs are known to produce more accurate predictions 
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that better generalize to out-of-sample data than predictions from CART with pruning 

alone (Hastie, Tibshirani, & Friedman, 2009).  

The machine learning community was also first to employ CART and RF 

predictions for missing values as part of a conditional mean imputation procedure 

(Bárcena & Tusell, 2000; Conversano & Cappelli, 2002; Conversano & Siciliano, 2009; 

Creel & Krotki, 2006; D’Ambrosio, Aria, & Siciliano, 2012; Ishwaran, Kogalur, 

Blackstone, & Lauer, 2008; Stekhoven & Bühlmann, 2011).  Although the predicted 

value may best approximate the true value on average, it is well known that conditional 

mean imputation does not lead to valid statistical inference because it does not account 

for sampling variability or other important sources of variability (van Buuren, 2018). In 

particular, conditional mean imputation leads to speciously narrow confidence intervals, 

inflated Type-I error rates, and, critically in multivariate application, positively biased 

point estimates among association parameters that define the relations among the 

variables (R. J. Little & Rubin, 2002, Chapter 4).  One may expect that biased association 

parameters would translate to bias across parameters of substantive interest, such as the 

class-specific means of the profile indicators.  

CART and RF Imputation: A Multiple Group Missing Data Approach  

To resolve the problems associated with conditional mean imputation, several 

researchers have extended recursive partitioning imputation algorithms to reflect the 

important sources of variability around predicted values (Burgette & Reiter, 2010; Doove 

et al., 2014; Shah, Bartlett, Carpenter, Nicholas, & Hemingway, 2014; Sovilj et al., 

2016).  In order to capture important sources of variability, values are randomly drawn 

from a donor pool that includes all values that would have otherwise been used to inform 
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the aggregate summary statistic to construct a predicted value. Randomly sampling from 

the donor pool implies that the plausible values are constructed by sampling from an 

empirical distribution. Valid inference technically requires that this empirical distribution 

sufficiently approximates the true posterior predictive distribution of the missing values,  

[𝑌mis|𝑌obs, 𝑋, 𝜃] in (1.8), so that the imputations are Bayesianly proper. However, 

previous empirical studies from imputation methods that utilize donor pools to sample 

from empirical distributions have shown strong performance so long as the empirical 

distribution approximates the true distribution well (van Buuren, 2018) 

Imputation algorithms that incorporate random partitioning through CART or RF 

models work in much the same way as when the goal is prediction. Specifically, CART 

and RF regression models can be embedded in a MICE procedure in multivariate missing 

data settings. MICE proceeds by sweeping across the data and sequentially fitting 

univariate CART or RF regression models to construct a donor pool for the missing 

values. At each sequential step, imputations are then drawn from the donor pool and 

substituted for the missing values. Sweeping across the dataset in this way repeats 

multiple times so that a Markov chain Monte Carlo (MCMC) is formed (van Buuren et 

al., 2006). Multiple imputed datasets are then constructed by sampling from the 

corresponding MCMC chain. We refer to the corresponding CART and RF MICE 

procedures as MICE-CART or MICE-RF, respectively. 

In the R (R Core Team, 2020) computing environment, researchers can 

implement MICE-CART using the mice (van Buuren & Groothuis-Oudshoorn, 2010) 

package. MICE-RF can be implemented using either the mice or CALIBERrfimpute 

(Shah, Bartlett, Hemingway, Nicholas, & Hingorani, 2014) packages. For convenience, 
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only the mice package is employed in this study. It is important to note that neither 

implementation prunes to increase parsimony in the decision trees used to construct the 

donor pools. The advantages and disadvantages of not pruning are detailed later in the 

Discussion section. 

MICE-CART and MICE-RF are promising alternatives to imputing with single-

class models. Doove et al. (2014) and Shah et al. (2014) showed that generating imputed 

data from MICE-CART and MICE-RF models substantially reduces bias when high-

order interactions in multiple regression contexts are present but not modeled, even 

compared to alternative nonparametric methods, such as predictive mean matching. 

These findings are consistent with other literature demonstrating the utility of recursive 

partitioning algorithms to detect interactions (Jacobucci, Grimm, & McArdle, 2017; 

Morgan & Sonquist, 1963; Strobl et al., 2009). 

The favorable performance of MICE-CART and MICE-RF with unmodeled 

interaction terms has direct implications for LPA. In the hypothetical event that class 

membership was known, one could specify appropriate interactions with dummy 

variables to generate proper imputations. Thus, the challenge of imputing class indicators 

without knowing subpopulation membership is highly related to the challenge of 

imputing data when interactions are present but are left unmodeled, a scenario where 

CARTs and RFs excel.  

Another reason why MICE-CART and MICE-RF are expected to perform well is 

because they incorporate clustering when constructing imputations (van Buuren, 2018). 

Specifically, the stratification process that results in rectangular clusters results in 

increasingly homogenous subgroups ultimately used to form the donor pool (see Figure 
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2.1). The clustering process in the first step guarantees that the imputations have some 

multiple group structure. Although the structure implied by imputed data generated from 

MICE-CART and MICE-RF may be qualitatively different than the true structure of data 

with subpopulations in LPA, it nevertheless avoids the problems of a single-class model. 

Finally, an important application of mixture modeling separate from latent profile 

analysis is semiparametric density estimation where a multivariate density is 

approximated using finite mixture models. There, the goal is to simply approximate the 

joint distribution for the true data in a flexible and nonparametric manner. MICE-CART 

and MICE-RF are both nonparametric methods, implying that the imputation models are 

more aligned with the goal of semiparametric density estimation than traditional, 

parametric imputation models.  

Simulation Design 

To study the performance of MICE-CART and MICE-RF in addressing missing 

data when the missingness depends on external variables, we conducted a simulation 

study. To inform the simulation conditions and to set parameters to typical values 

observed in applied literature, we used the Web of Science database to identify thirty 

frequently cited articles employing LPA that were published between 2008-2018 in 

developmental and educational psychology journals. From each study, we recorded the 

sample size of the analytic dataset, the number of classes selected, the number of 

indicators used to construct the profiles, the proportion of observations in the smallest 

profile, and the observed entropy value (Table 2.1). We also noted typical rates of 

missingness and how missing data were treated for each study. 
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Missing Data Rates Observed in Applied Research 

  The thirty LPA studies provided limited information regarding missing data rates, 

when such information was provided at all. Indeed, only about one-third (11 of the 30 

studies) reported missingness information. Of those reporting indicator missingness 

information, the reporting range of missing value rates across individual indicators was 

the most common reporting method (seven of 11 studies), followed by reporting the 

proportion of observations with complete data (three of 11 studies). A single study 

reported covariance coverage rates, which is only appropriate in covariance structure 

models.  

The reporting observations with complete cases would have been ideal to inform 

the simulation design. However, predicting this value from either the range of missing 

data rates or the covariance coverage rates proved difficult. For example, one typical 

study included five indicators and reported missingness rates ranging from 10.7% to 

25%. The percentage of observations with complete data in this study could range 

anywhere between 0-75%. In the simulation study, we fixed the missing data rate such 

that 50% of observations are missing at least one indicator value. With the chosen 

missing data mechanism (discussed below) this corresponds to marginal missingness 

rates for each variable of approximately 25%.  

Number of Indicators and Classes Observed in Applied Research 

The modal number of profiles in the selected LPA articles was found to be 𝐽 = 4 

indicators (Panel A in Figure 2.2). Correspondingly, four classes were the most 

frequently reported number of classes in the 30 selected LPA articles (Panel B in Figure 

2.2). However, we chose to simulate data from a three-class model (𝐾 = 3) to make the 
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simulation study time-feasible and to minimize convergence issues encountered with 

fitting mixture models with more components.  

Class Separation Values Observed in Applied Research 

The 25th and 75th quantiles of the reported entropy values were .74 and .88, 

respectively (Panel C in Figure 2.2). To achieve entropy values that reflect these typical 

values, the Mahalanobis distances (MD) between the class means were manipulated so 

that the entropy values from the simulation roughly matched the 25th and 75th quantile 

values from the LPA studies (Figure 2.3). In conducting this manipulation exercise, the 

unequal mixing condition was chosen because that condition was highly represented in 

the LPA studies. We found that the corresponding MD values associated with the 25th 

and 75th entropy quantiles were MD = 2.84 and MD = 3.70, respectively.  

Manipulated Conditions 

Primary Manipulated Factors 

We manipulated three primary factors in the simulations. First, we manipulated 

the sample size because we believe sample size influences the quality of the donor pools. 

This is because the donor pool represents an empirical distribution that approximates a 

posterior distribution. As sample size increases, the empirical distribution is expected to 

converge to the true posterior distribution for 𝑌obs, leading to improved imputations. 

Thus, we manipulated the sample size between N = 300 (small sample) and N = 1,200 

(large sample), according to the interquartile range that is typically observed in applied 

research as indicated by the sample of our 30 studies.  

Along the same lines, we also manipulated mixing proportions because we 

anticipated that the quality of the donor pool would be hindered by small class sizes. We 
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expected that the donor pool would be a particularly poor reflection of the true posterior 

predictive distribution for 𝑌mis with unequal mixing proportions and small class sizes. To 

test this hypothesis, we manipulated the mixing proportions between the condition with 

equal mixing and a condition with unequal mixing, such that the smallest class 

represented about 10% of the sample. This value is slightly less than would be predicted 

by the best fit line in Panel D of Figure 2.3, but it is certainly consistent with proportions 

observed in literature.  

Finally, we manipulated class separation between weakly separated (MD = 2.86; 

entropy ≈ .74) and highly separated (MD = 3.70; entropy ≈ .88) values that were 

observed from the manipulation exercise described above. We anticipated that recursive 

partitioning algorithms would outperform imputation procedures that assume a single 

class and do not embed any clustering in this setting. However, hard clustering (like that 

formed by the rectangular stratum in recursive partitioning) is less appropriate when 

classes are weakly separated. As a result, performance was expected to decline in weakly 

separated settings because recursive partitioning algorithms do not account for 

uncertainty in classification.  

Secondary Manipulated Factors  

In addition to sample size, mixing proportions, and class separation, we also 

manipulated additional quantities to enhance the generalizability of the conclusions. This 

includes: (1) whether there are mean differences by classes as would occur when the 

auxiliary variable is a distal outcome, and (2) whether profile membership moderates the 

correlation between the auxiliary variable and profile indicators. Specifically, in the mean 

differences condition, the mean value between the reference class and two nonreference 
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classes will be separated by 𝛿 = 0.5 SD, while the nonreference classes will be separated 

by 𝛿 = 1 SD. Finally, in the moderation condition, the correlation between the AV and 

the profile indicators is set to 𝑟 = .40 for the first class, 𝑟 = 0 for the second class, and 

𝑟 = -.40 for the last class. 

Overall Design 

  In total, 32 simulation conditions were manipulated. The fixed and manipulated 

conditions are summarized in Table 2.2. We conducted 500 replications across each 

condition with 𝑀 = 100 imputed datasets.  

Data Generating Mechanism and Missing Data Mechanism 

We generated complete data using a three-class Gaussian mixture model as a 

template (Panel A of Figure 2.4). Specifically, data were generated from this template by 

first randomly drawing profile memberships for each observation from a multinomial 

distribution and then subsequently drawing values for the profile indicators and AVs 

from a multivariate normal distribution with a profile-specific population mean vector 

and a unitary variance-covariance matrix. Drawing values for the AVs jointly with the 

profile indicators separately across profiles allowed for mean differences across profiles, 

and it also allowed for different covariance specifications with the indicators across the 

profiles.  

We identified indicator data that were set to missing in a manner which ensured 

that the propensity for missingness was informed by the auxiliary variable. Observations 

could be missing up to three indicator values, resulting in 15 possible missing data 

patterns total (including the pattern corresponding to no missingness).  Missing data 

patterns were assigned using a latent response variable formulation: 
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𝜂∗ = 𝐴𝑉 + 𝜖 

where  𝜖~𝑁(0,0.1). We manipulated cut points for the 𝜂∗ latent variable so that the 

marginal missingness rates across each indicator value averaged approximately 25% 

each, while half of the observations contained complete data.  

Analytic Model 

We fit the standard latent profile model diagrammed in Panel B in Figure 2.4 to 

either the observed dataset of profile indicators or to the imputed datasets using Mplus 

version 8.0 (Muthén & Muthén, 2017). Subsequently, results were exported to R using 

the MplusAutomation package (Hallquist & Wiley, 2018). We evaluated the 

performance of FIML in estimating parameters from the observed data likelihood 

function. We also evaluated the performance of a multivariate normal imputation 

procedure using the Amelia package (Honaker, King, & Blackwell, 2011) in R. The 

multivariate normal imputation is denoted EMS-MVN because the expectation-

maximization with sampling (EMS; King et al., 2001) imputation algorithm is employed 

by Amelia. We assessed the performance of several MICE imputation procedures, 

including (a) predictive mean matching (denoted MICE-PMM), and (b) MICE-CART, 

and (c) MICE-RF using the mice R package.  

Evaluative Criteria 

All pooling was conducted using Rubin’s (1987) rules, which assume that the 

posterior distribution in (1.8) is approximated by a normal distribution, i.e. 

[𝜃|𝑌obs, 𝑋]~𝒩𝑞𝐾
(�̅�, �̂�), (1.9) 

�̅� =
1

𝑀
∑ 𝜃𝑚

𝑀

𝑚=1

 (1.10) 
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�̂� = �̅� + (1 +
1

𝑀
) 𝐵 (1.11) 

where 𝑞𝐾 is the number of parameters in 𝜃 and depends on the number of mixture 

components 𝐾 fit to the data. The posterior distribution is centered at the mean of the 

maximum likelihood estimates 𝜃𝑚 obtained from fitting the mixture model to each 𝑚 =

1, … , 𝑀 imputed datasets. Finally, �̂� is the observed-data posterior variance; it is a 

composite of the within imputation variance covariance matrix (�̅�) and the between 

imputation variance covariance matrix (𝐵), each given by 

�̅� = ∑ 𝐼−1(𝜃𝑚|𝑌𝑚
imp

)

𝑀

𝑚=1

(1.12) 

𝐵 =  
1

𝑀 − 1
(𝜃𝑚 − �̅�)(𝜃𝑚 − �̅�)

𝑇
(1.13) 

where 𝐼−1(𝜃𝑚|𝑌𝑚
imp

) is the observed information matrix obtained by fitting the model to 

the 𝑚th imputed dataset 𝑌𝑚
imp

.  

Recovery of 𝝁𝒌 and 𝝅𝒌 Parameters (i.e., Bias) 

We analyzed the absolute and relative bias of the class-specific mean estimates as 

well as the marginal class probability estimates. We defined relative bias as the ratio:  

Relative Bias =
Bias(𝜃IMP)

Bias(𝜃FIML)
 (1.14) 

where “IMP” refers to one of the missing data procedures tested in this simulation study 

(e.g., EMS-MVN, MICE-PMM, MICE-CART, or MICE-RF). Relative bias values near 

zero indicate complete attenuation of the bias, whereas relative bias values greater than 1 

or less than -1 imply that the bias is greater in magnitude for the alternative procedure 
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relative to FIML. Finally, negative values are indicative that the direction of the bias is 

opposite from that observed in FIML.  

KL-Divergence (i.e., Density Estimation) 

Whereas the proceeding section focused on recovering select statistics of typical 

interest to applied researchers (e.g., 𝜇𝑘 and 𝜋𝑘) to answer substantive research questions, 

this section studies the performance of each MAR strategy in recovering the full joint 

distribution of the true data generating mechanism. We used the Kullback-Leibler (KL) 

divergence to quantify the degree to which the distribution implied by fitting a mixture 

model to the observed (FIML) or imputed (EMS-MVN, MICE-CART, etc.) data matched 

the joint distribution in the population. In this way, we were interested in the KL-

divergence to evaluate how well the implied multivariate distribution estimated from one 

of the missing data strategies approximated the true data generating mechanism. Indeed, 

one important application of finite mixture models is semiparametric applications where 

a joint density is approximated (e.g., density estimation). The KL-divergence is a metric 

for evaluating how well the density estimation is proceeding. 

The KL-divergence between the model-estimated distribution and the population 

distribution is given by:  

KL(𝜃||𝜃) = ∫ Pr(𝑌|𝜃) log
Pr(𝑌|𝜃)

Pr(𝑌|𝜃)
𝑌

𝑑𝑌 (1.15) 

where Pr(𝑌|𝜃) is the density for a 𝐾 = 3 class Gaussian mixture model and 𝜃 is the 

estimate of the sufficient statistics from the sample after employing one of the MAR 

strategies. We used Monte Carlo integration with 50,000 sampled nodes to approximate 

the integral in (1.15).  
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The KL-divergence is always greater than zero and takes on the value zero if the 

estimated joint distribution exactly equals the true data generating distribution. However, 

the value of KL-divergence is not on an interpretable scale. Therefore, we mapped the 

KL-divergence on an interpretable scale and calculated the percent reduction in the KL-

divergence relative to the KL-divergence observed from the FIML parameter estimates. 

This percent reduction is given by:  

Percent Reduction KL = 100 × (1 −
KL(𝜃||𝜃IMP)

KL(𝜃||𝜃FIML)
) % (1.16) 

where 𝜃FIML is the FIML estimate and 𝜃IMP is the estimate obtained from an imputation 

procedure. A near 100% reduction in the KL-divergence corresponds to estimates that 

approximate the true data generating mechanism extremely well and reflects a holistic 

attenuation of bias across all sufficient statistics estimated by fitting a mixture model to a 

sample. In contrast, a negative percent reduction corresponds to a set of estimates that, 

relative to FIML, fails to well-approximate the full joint distribution.  

95% CI Coverage Rates 

To assess coverage, we took the mean of the individual 95% confidence interval 

coverage rates across replications. We did not analyze the mean of the coverage rates of 

the profile variance estimates, as these quantities are generally not of substantive interest 

to applied researchers. Following Muthén & Muthén (2002), we considered coverage 

rates falling between .91 to .98 as acceptable because they neither unduly risked invalid 

inference through narrow intervals nor were they too conservative to be considered 

needlessly inefficient. 
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Imputation Efficiency 

Finally, we analyzed the increase in variance attributable to the missingness. A 

typical statistic for this quantity is the average relative increase in variance (ARIV), 

which can be roughly thought of as the mean increase in the standard errors squared due 

to between-imputation uncertainty. The ARIV is calculated as  

ARIV =
tr(�̅�−1�̂�)

𝑀
 (1.17) 

which mathematically translates to the mean of the proportional increase in the 

eigenvalues observed in the within- vs. total- imputation asymptotic covariance matrices. 

It is important to note that the ARIV results in an unbiased estimate of the (average) 

increase in variance attributable to missingness only if �̅� is an unbiased estimate of the 

complete-data asymptotic variance-covariance matrix. Bayesianly proper imputations are 

sufficient to guarantee that this condition holds (Schafer, 1997), but in simulation studies, 

the complete-data asymptotic variance-covariance matrix can be obtained directly. Thus, 

we calculated the average relative increase in variance from this matrix directly using the 

formula: 

ARIV =
tr(𝐼(𝜃|𝑌)�̂�)

𝑀
 (1.18) 

where 𝐼(�̂�|𝑌) is the observed information matrix using the complete data, and �̂� is the 

covariance matrix of the posterior distribution [𝜃|𝑌obs, 𝑋] approximated by Rubin’s 

(1987) rules during the pooling phase.  

We note that imputation efficiency is not to be confused with sampling 

variability. Imputation efficiency relates to the variability due to sampling different 
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imputations (e.g., between-imputation variability). The sampling variability refers to both 

the within- and between- imputation variability. 

Results 

 We now present the results according to our evaluative criteria: bias, density 

estimation, 95% CI coverage, and imputation efficiency. 

Bias and Density Estimation 

Large Sample (N = 1,200) Recovery of  𝝁𝒌 and 𝝅𝒌 

 Figures 2.5 and 2.6 display the change in absolute bias in the class indicators 

across latent classes when implementing FIML (start of arrow) as opposed to one of the 

alternative MAR strategies (end of arrow) for the large sample size condition. In 

recovering class means, MICE-CART and MICE-RF generally outperformed FIML, 

EMS-MVN, and MICE-PMM in large sample, equal mixing conditions. This was true in 

both weakly and strongly separated classes, as exhibited by the end of the arrow 

terminating near the line indicating nominal bias in Figure 2.6. 

However, when classes were unequally mixed, imputing using recursive 

partitioning imputation algorithms did not always exhibit minimal bias. Specifically, 

although both MICE-CART and MICE-RF resulted in decreased bias when classes were 

strongly separated, these algorithms were associated with an increase in bias for the small 

class (i.e., class 𝑘 = 3) in the weakly separated condition (see Figure 2.5). 

 The relative bias estimates (Tables 2.3 and 2.4) coincided with the conclusions 

drawn from analyzing change in absolute bias (Figures 2.5 and 2.6). In terms of relative 

bias for the profile indicator means and class proportions, MICE-CART generally 

outperformed MICE-RF in large samples with equal mixing and strong separation. 
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However, performance between these two methods was roughly equivalent when classes 

were weakly separated. Additionally, both recursive partitioning methods outperformed 

EMS-MVN and MICE-PMM methods in the large sample, equal missing condition, 

regardless of the class separation condition. Similarly, these methods most often 

outperformed FIML as indicated by values between -1 and 1; exceptions represented the 

special circumstance when the magnitude of the bias exhibited by FIML was extremely 

small.  

In summary, in large samples, recursive partitioning algorithms outperformed 

FIML and alternative imputation algorithms in recovering class means and proportions. 

The situation where there was a small class and where the classes were weakly separated 

represented a notable exception to this rule. Although MICE-CART mitigated 

nonresponse bias in large samples if class separation was strong (MD = 3.70; entropy 

values averaging near .88), when class separation was weak (MD = 2.84; entropy values 

averaging near .74), MICE-CART only mitigated nonresponse bias across all mean and 

marginal class probability parameters when classes were equally mixed.  

Small Sample (N = 300) Recovery of 𝝁𝒌 and 𝝅𝒌 

 Figures 2.7 and 2.8 display the change in absolute bias when implementing FIML 

compared to the alternative missing data procedures in the small sample condition. 

Similar to that found in large samples, we found that the recursive partitioning algorithms 

(and especially MICE-CART) most frequently outperformed FIML. Moreover, the 

degree to which recursive partitioning algorithms attenuated bias appeared more sensitive 

to class separation in the small sample condition than in the large sample condition when 

classes were equally mixed. Relative to other imputation methods such as EMS-MVN 
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and MICE-PMM, recursive partitioning methods demonstrated equally poor or even 

worse performance in recovering class means and proportions for the small class in 

unequal mixing. This was especially true under weak separation conditions.  

Large Sample (N = 1,200) Percent Reduction in the KL-Divergence 

  We found that MICE-CART consistently resulted in parameter estimates that 

minimized the KL-divergence between the parameter estimates and the population 

distribution. This is illustrated in Figure 2.9, which plots the median and interquartile 

range of the percent reduction in the KL-divergence, marginalized across all manipulated 

conditions except sample size. When analyzed separately by mixing and separation 

conditions (Table 2.5), the KL-divergence relative to FIML was quite consistent across 

the manipulated conditions, ranging between 71.3% to 73.9%. Nevertheless, the 

difference in performance between MICE-CART and MICE-RF was substantively small 

compared to the difference in performance between recursive partition imputation 

algorithms and MAR procedures that did not implement recursive partitioning. 

Specifically, while the percent reduction in the KL-divergence ranged between 66.38-

72.76% for MICE-RF, this range was observed to be -8.95-57.50% and 10.21-59.80% for 

EMS-MVN and MICE-PMM, respectively. In summary, recursive partitioning 

imputation algorithms outperformed alternative MAR procedures in recovering the joint 

distribution of the complete data when sample sizes were large. 

Small Sample (N = 300) Percent Reduction in the KL-Divergence 

The strong performance of recursive partitioning imputation algorithms to 

replicate the true data generating distribution observed in large samples (𝑁 = 1,200) did 

not transfer to small samples (𝑁 = 300) (see Figure 2.10).  As reflected in Table 2.5, 
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recursive partitioning algorithms performed as poorly and often worse than alternative 

imputation algorithms in reducing the KL-divergence (MICE-CART: Range = 36.02-

50.91%; MICE-RF: Range = 48.11-56.30%; EMS-MVN = 36.02-79.90%; MICE-PMM = 

33.87-67.39%). Moreover, whereas MICE-CART uniformly outperformed MICE-RF in 

large samples, the reverse was true in small samples. We discuss causes and implications 

of these results in the Discussion section. 

95% CI Coverage 

Figure 2.10 illustrates the average 95% CI coverage rates across profile indicators 

by sample size, marginalized across all other simulation conditions. In general, MICE-

CART and MICE-RF outperformed FIML in estimating the 95% CIs that demonstrate 

acceptable coverage.  

Table 2.5 reports the 95% CI coverage rates averaged across (a) class means and 

(b) marginal class probabilities by sample size, mixing, and separation condition. In large 

samples, we found that the MICE-CART procedure resulted in acceptable coverage rates 

across all mixing and separation conditions. In contrast, MICE-RF resulted in too narrow 

of confidence intervals consistently across class means (Range = .86-.92) and frequently 

across class proportions (Range = .87-.96). All other missing data procedures, and 

especially FIML (Range = .54-.88), resulted in unacceptably poor coverage across the 

conditions and in large samples. 

Imputation Efficiency 

In large samples, we found that the ARIV differed modestly across the imputation 

procedures and ranged between 0.60-0.99. Thus, compared to the standard errors of the 

complete data, the standard errors estimated after pooling were 36-98% wider. MICE-
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CART is the least efficient of the imputation strategies, resulting in the largest increase in 

variance (ARIV: Range = 0.63-0.99), whereas MICE-RF resulted in increases in variance 

that were competitive with the most efficient procedure, MICE-PMM.  

In small samples, we found that imputation results in extremely large increases in 

variance across procedures when classes were weakly separated and a small class was 

present, with ARIV ranging between 5.68-6.71. Increases in variance were relatively 

more modest in the unequal mixing and strongly separated condition (Range = 1.30-1.61) 

and in the equal mixing and weakly separated conditions (Range = 1.09-1.75). In the 

equal mixing and strongly separated condition, ARIV values mirrored those observed in 

the large sample conditions (Range = 0.71-0.88).  

As with what was observed in large samples, MICE-CART resulted in the least 

efficient imputations of the imputation procedures (Range = 0.71-6.71), while MICE-RF 

was relatively more efficient than MICE-CART, in general (Range = 0.78-6.42), but less 

efficient than EMS-MVN (Range = 0.88-6.44). Finally, MICE-PMM was frequently 

found to result in the smallest increase in variance, even in small samples (Range = 0.74-

5.68).  

 

Discussion 

This simulation study suggests that when the data are MAR conditional on AVs, 

recursive partitioning imputation models (and MICE-CART, in particular) can 

outperform FIML and single-class imputation alternatives in terms of mitigating 

nonresponse bias and recovering the joint distribution of the data generating mechanism. 

In particular, the simulation study suggests that MICE-CART imputation uniformly 

performs well in large samples (𝑁 = 1,200) when class separation is strong (entropies 
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average near .88). When class separation is weak (entropy ≈ .74), the strong performance 

in large samples is sensitive to whether or not the classes are equally mixed; if a small 

class is present (one that represents 10% of the population) even when sample sizes are 

large, then MICE-CART only uniformly mitigates nonresponse bias when the classes are 

strongly separated. 

In small samples (𝑁 = 300), recursive partitioning imputation methods only 

demonstrated superior performance when classes were strongly separated and equally 

mixed. Because it is rather unlikely that applied researchers experience data conditions 

where classes are both equally mixed and strongly separated in practice, we conclude that 

neither MICE-CART nor MICE-RF demonstrated adequate performance in small sample 

settings in treating the missing data. 

Why do the recursive partitioning methods perform poorly in small samples or 

when there exists a small class and the classes are not strongly separated?  This finding 

can be explained by the degradation of the donor pool used to sample the imputations in 

these settings. A high-quality donor pool is one whose empirical distribution well 

approximates the posterior predictive distribution of the missing values, 

[𝑌mis|𝑌obs, 𝑋, 𝜃], and is effective at matching missing values with observations from the 

same latent class. As implemented in the mice R package, MICE-CART and MICE-RF 

create decision trees with stopping criteria determined by a minimum node size of five 

observations. One would expect that for a fixed node size, a decision tree would include 

more cut points in large samples than in small samples. Thus, in large samples, 

observations are more likely to be stratified into clusters so that the donor pools are more 

homogenous with respect to the joint distribution of the profile indicators and auxiliary 
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variables and, therefore, are clustered together into the same latent class. The improved 

homogeneity implies that observations with missing values are more finely matched to 

observations that are similar with respect to the joint distribution of the profile indicators 

and AVs. In contrast, decision trees constructed with small observations with a fixed 

terminating criterion lead to fewer cut points, decreased stratification, and clusters that 

are less homogenous. The matching process is, therefore, coarser, resulting in an 

empirical distribution that does not approximate the true posterior predictive distribution 

of the missing values, [𝑌mis|𝑌obs, 𝑋, 𝜃], well. 

As demonstrated by the simulations, high-quality donor pools for observations in 

a small class (one that represents 10% of the population) are difficult to construct, even in 

large samples, if the classes are weakly separated so that entropy values average near .74. 

This is not surprising, given that the number of observations belonging to the small class 

is not large. Compounded by greater overlap between the classes induced by weak 

separation, it is expected that the quality of donor pools for small classes will degrade.   

Future studies should investigate how to improve the quality of the donor pools, 

especially in the settings where MICE-CART and MICE-RF fail to uniformly perform 

well (i.e., small sample settings or large sample settings where classes are weakly 

separated [entropy ≈ .78]). Implementing common pruning techniques to improve 

predictions and to increase the size of the donor pool may seem attractive, but pruning is 

likely counterproductive in attenuating nonresponse bias. Again, the goal of the donor 

pool is to construct an empirical distribution that well approximates the posterior 

predictive distribution of the missing values with respect to all moments of the 

[𝑌mis|𝑌obs, 𝑋, 𝜃] distribution. Pruning may improve prediction by better estimating the 
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first moment of [𝑌mis|𝑌obs, 𝑋, 𝜃]. However, mixture models model higher order 

moments. Combined with the fact that pruning leads to coarser matches due to fewer cut 

points, decreased stratification, and less homogenous clusters, one would expect that any 

gain in approximating the first moment of [𝑌mis|𝑌obs, 𝑋, 𝜃] is offset by declines across 

higher order moments. In fact, previous studies have shown that the superior performance 

of pruning in prediction contexts does not necessarily translate to superior performance in 

treating missing data (Hayes & McArdle, 2017b; Hayes, Usami, Jacobucci, & McArdle, 

2015).  

Improving the quality of the donor pool in LPA likely requires researchers to rely 

on parametric assumptions to sample from a known distribution rather than an empirical 

distribution (as is done in forming donor pools). There are several avenues by which this 

can proceed. First, covariance structure models can be imbedded within a recursive 

partitioning framework so that, at each terminal node, a covariance and mean structure 

are estimated. This “SEM Trees” (Brandmaier, von Oertzen, McArdle, & Lindenberger, 

2013) approach is currently an area of active research with promising results.  

Alternatively, regression mixture models can be modeled directly to generate 

imputations. This is also an area of active research. A Bayesian nonparametric imputation 

model utilizing Dirichlet processes to model class membership in order to fit an “infinite” 

mixture model has recently received attention in the machine learning community (Sovilj 

et al., 2016). Alternatively, EM with sampling imputation algorithms with finite mixtures 

have also been developed and utilized for imputation in the behavioral sciences (Vidotto, 

Vermunt, & Kaptein, 2015). A critical challenge with a finite mixture approach, however, 

is that the number of subpopulations is not known a priori, and the number of classes 
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supported by the data may be sensitive to nonresponse bias. Regardless of the mixture 

modeling approach, it is necessary to make these algorithms flexible enough to 

incorporate many AVs which themselves contain missing data to reflect the multiple data 

types that appear in the real world. In the next chapter, we perform an initial study to 

investigate whether Bayesian model averaging can effectively address model uncertainty. 

Finally, we acknowledge that this study only focuses on the challenges associated 

with the imputation phase and leaves the pooling phase unaddressed. Before multiple 

imputation can become mainstream or be recommended over FIML, appropriate 

strategies for pooling model fit information must be identified. We evaluate appropriate 

pooling procedures for information criteria in Chapter 4.   

In summary, we have shown that multiple imputation can outperform FIML in the 

more realistic situation where the MAR assumption is only tenable with the inclusion of 

AVs. As expected, FIML results in biased parameter estimates in real-world data 

conditions. Thus, applied researchers should test the MAR assumption before conducting 

an LPA. This can be done by evaluating if variables available to the researcher in the 

dataset explain missing data patterns above and beyond that explained by observed 

profile indicator values. If predictive variables are found, researchers employing FIML to 

treat missing data with sample sizes above 𝑁 = 1,200 should conduct a sensitivity 

analysis using MICE-CART imputation. Such a sensitivity analysis can provide valuable 

evidence regarding whether conclusions about class definitions and inferences regarding 

class proportion are sensitive to violations of the MAR assumption. 
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Tables 

Table 2.1  

Descriptive Statistics of Metadata in Reviewed Articles 

  

# of Studies M SD Min 

0.25 

Quantile Median 

0.75 

Quantile Max 

Sample size, N 30 932.5 886.8 137 292 640 1167 4417 

# of indicators, J 30 5.2 2.44 2 4 5 6 12 

# of components, K 30 3.9 1.37 2 3 4 4 8 

Entropy 27 0.82 0.09 0.63 0.74 0.85 0.88 0.98 

Min. class prop., 𝜋𝑚𝑖𝑛  29 0.11 0.1 0.02 0.06 0.09 0.13 0.47 
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Table 2.2   

Data Generating and Manipulated Simulation Conditions (500 

Replications/Condition) 

  Value 

# of 

Conditions Notes 

Fixed Simulation Conditions 

# of indicators, J 4 1 Represents the modal number in the literature 

review. 
# of classes, K 3 1 Although 𝐾=4 represented the modal value in the 

literature review, 𝐾 = 3 was the second most 

common and chosen because it was the second 
most common value and greatly reduced 

computational burden. 

Imputed datasets, M 100 1 
 

Obs. with complete data 50% 1 Corresponds to a missing data rate of 
approximately 25% across each indicator. This 

value is the upper limit of those found in the 

literature review. 
Correlation, r 0.40 1 

 

Primary Manipulated Conditions 

Sample size Small sample vs. Large 

sample 

2 Small sample size (N = 300) and large sample size 

(N = 1,200) correspond to the 25th and 75th 

percentile of sample sizes found in the literature 
review. 

Mixing proportions Not Equal vs. Equal 2 Not equal corresponds to 𝝅 = [0.45,0.45,0.10]. 𝜋3 

= 0.1 was identified as typical given a 𝐾 = 3 class 

model in the literature review. 

Class separation Weak vs. Strong 2 Weak separation corresponds to entropy value of 

approximately .74 in not equal mixing proportions 

condition. Strong correlation corresponds to an 
entropy value of approximately .88. These values 

correspond to the 25th and 75th percentile of 

entropies found in the literature review. 

Secondary Manipulated Conditions 

Mean differences in AVs by 

class 

No Mean Differences 

vs. Mean Differences 

2 In the mean difference setting, the mean value 

between the reference class and the two 

nonreference classes is 0.5 SD. The nonreference 
classes is separated by 1 SD.  

Profile membership 

moderates relationship 
between AVs and indicators 

No Moderation vs. 

Moderation 

2 In moderation condition the correlations between 

the AVs and indicators are r = .4, r = 0, and r = -.4, 

respectively across the 𝐾 = 3 classes.  

Total Simulation Conditions 32 
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Table 2.3  

Large Sample (N = 1,200) Relative Bias  

  Unequal Mixing  Equal Mixing 

 
Weakly Separated  Strongly Separated  Weakly Separated  Strongly Separated 

 k=1 k=2 k=3  k=1 k=2 k=3  k=1 k=2 k=3  k=1 k=2 k=3 

 Means (𝝁𝒌), 𝒀𝟏 

Complete 0.11 -0.02 -0.01  0.03 -0.05 -0.05  -0.05 -0.06 0.01  0.22 0.00 0.01 

MVN 0.15 0.60 0.65  -1.52 0.17 0.40  -2.81 0.32 0.90  -8.23 0.02 0.78 

PMM 0.50 0.41 0.12  -0.47 0.39 -0.09  -2.16 0.34 0.71  -5.93 0.44 0.60 

CART 0.57 -0.04 0.03  -0.35 -0.08 0.17  -0.92 -0.10 0.28  -2.50 -0.03 0.29 

RF -0.03 -0.38 0.04  -1.70 -0.73 0.05  -2.86 -0.40 0.35  -7.17 -0.63 0.29 

 Means (𝝁𝒌), 𝒀𝟐 

Complete 0.13 0.10 0.01  -0.16 -0.03 0.00  -0.09 -0.02 0.02  0.10 -0.01 0.03 

MVN -1.70 -0.37 1.26  -9.76 -0.89 1.13  -4.17 -1.30 0.76  

-

11.93 -1.65 0.68 

PMM 0.26 0.22 1.21  -3.30 0.12 0.92  -3.93 -1.06 0.60  

-

13.03 -1.14 0.35 

CART 0.69 0.38 0.49  -0.60 0.12 0.39  -0.07 -0.11 0.33  -1.46 0.00 0.28 

RF 0.36 0.31 0.81  -1.59 0.04 0.81  -0.55 -0.32 0.62  -2.92 -0.27 0.57 

 Means (𝝁𝒌), 𝒀𝟑 

Complete 0.06 -0.05 0.04  0.04 0.01 -0.04  0.00 -0.01 0.05  0.16 0.00 -0.04 

MVN 1.87 0.40 0.71  1.55 0.47 0.56  1.29 0.05 0.81  0.93 0.28 0.71 

PMM 1.81 0.38 0.34  1.58 0.41 0.31  1.49 0.10 0.76  1.25 0.30 0.68 

CART 1.16 0.12 0.14  0.44 0.20 0.05  0.65 0.26 0.25  0.20 0.31 0.08 

RF 1.55 0.37 0.33  0.86 0.40 0.19  0.95 0.57 0.43  0.43 0.58 0.25 

 Means (𝝁𝒌), 𝒀𝟒 

Complete 0.07 0.00 -0.36  0.05 -0.04 -0.03  0.07 0.02 0.01  0.46 -0.04 0.01 

MVN -0.10 0.70 -1.20  -1.56 0.78 -0.65  -10.54 0.83 0.46  51.29 1.05 0.44 

PMM 1.49 0.28 -0.30  0.93 0.27 0.40  -4.91 0.54 0.92  21.06 0.72 1.02 

CART 1.12 0.20 -1.50  0.19 0.20 0.06  -1.39 0.29 0.30  8.42 0.30 0.41 

RF 1.48 0.46 -1.56  0.58 0.43 -0.23  -2.34 0.61 0.41  13.10 0.60 0.46 

                

 Marginal Class Probabilities (𝝅𝒌) 

Complete 0.11 -0.12 2.73  0.02 -0.01 -0.11  0.05 0.04 0.04  0.12 0.00 0.01 

MVN -0.57 -0.58 -0.46  -1.15 -0.43 1.62  -31.72 -0.06 2.10  32.07 -0.11 2.28 

PMM -0.23 -0.57 3.67  -0.90 -0.51 0.57  -27.05 -0.03 1.81  28.29 -0.23 1.89 

CART 0.36 -0.39 9.01  -0.27 -0.11 0.32  -8.12 0.07 0.63  10.32 -0.02 0.75 

RF 0.38 -0.32 8.53  -0.14 -0.11 -0.03  -11.07 0.18 0.95  12.80 0.03 0.98 
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Table 2.4  

Small Sample (N = 300) Relative Bias 

  Unequal Mixing  Equal Mixing 

 
Weakly Separated  Strongly Separated  Weakly Separated  Strongly Separated 

 k=1 k=2 k=3  k=1 k=2 k=3  k=1 k=2 k=3  k=1 k=2 k=3 

 Means (𝝁𝒌), 𝒀𝟏 

Complete 0.52 0.25 -0.27  0.31 -0.01 -0.06  0.91 0.36 -0.08  -1.79 0.19 -0.01 

MVN 0.98 0.67 -0.79  -0.15 0.29 0.07  -0.20 0.57 0.79  -23.74 0.24 0.72 

PMM 1.16 0.22 -1.62  0.31 0.30 -0.37  0.39 0.28 0.61  -17.60 0.44 0.57 

CART 1.69 -0.41 -3.07  0.86 -0.13 -0.30  1.52 -0.41 0.26  -7.03 0.01 0.39 

RF 0.85 -0.68 -2.36  -0.90 -1.16 -0.50  0.18 -0.64 0.31  -28.95 -0.58 0.29 

 Means (𝝁𝒌), 𝒀𝟐 

Complete 0.24 0.42 0.07  0.17 0.12 0.00  -1.70 0.14 -0.09  0.13 0.03 0.00 

MVN -0.82 -0.01 0.89  -3.77 -0.40 1.05  -12.67 -0.52 0.72  -7.37 -1.49 0.66 

PMM 0.26 0.20 0.74  -0.84 0.28 0.83  -12.13 -0.69 0.60  -7.95 -1.17 0.40 

CART 1.87 -0.37 0.30  1.58 0.17 0.59  1.86 -0.47 0.42  -0.45 -0.24 0.41 

RF 0.73 -0.01 0.70  -0.19 0.34 1.00  -2.64 -0.47 0.77  -2.23 -0.58 0.76 

 Means (𝝁𝒌), 𝒀𝟑 

Complete 0.23 -0.89 -0.15  -0.03 0.06 -0.06  0.40 -0.02 0.02  -0.06 -0.11 -0.03 

MVN 1.51 -0.63 0.17  1.76 0.39 0.33  1.11 0.00 0.80  0.96 0.22 0.71 

PMM 1.55 -0.49 -0.24  1.62 0.40 0.08  1.16 0.10 0.69  1.18 0.36 0.65 

CART 2.24 -1.23 -0.60  1.61 0.29 -0.06  1.40 0.08 0.37  0.80 0.51 0.24 

RF 1.99 -0.57 -0.36  1.56 0.49 -0.07  1.19 0.62 0.51  0.47 0.85 0.35 

 Means (𝝁𝒌), 𝒀𝟒 

Complete 0.42 -0.28 1.02  -0.01 -0.02 -2.96  6.01 -0.25 -0.25  0.38 -0.13 -0.10 

MVN 1.01 0.59 2.34  -1.74 0.75 -12.69  -47.33 0.80 0.21  11.71 1.13 0.29 

PMM 1.73 0.27 2.22  1.07 0.36 -6.51  -25.40 0.56 0.63  5.79 0.81 0.95 

CART 2.70 0.18 3.03  1.96 0.36 -9.88  -1.30 0.44 -0.09  2.62 0.54 0.42 

RF 2.27 0.52 2.84  1.66 0.53 -13.33  -14.41 0.79 0.11  4.52 0.86 0.43 

 0.42 -0.28 1.02  -0.01 -0.02 -2.96  6.01 -0.25 -0.25  0.38 -0.13 -0.10 

 Marginal Class Probabilities (𝝅𝒌) 

Complete 0.45 1.43 0.69  0.19 -0.21 1.13  2.68 -0.23 -0.89  0.05 -0.13 -0.10 

MVN 0.59 2.78 1.13  -0.31 -1.19 1.82  -12.78 -0.44 2.38  11.39 -0.31 2.19 

PMM 0.97 2.41 1.32  -0.04 -1.07 2.42  -7.32 0.00 1.68  9.81 -0.29 1.87 

CART 1.88 1.99 1.91  0.88 -0.43 4.01  5.03 0.66 -0.34  3.74 0.07 0.85 

RF 1.53 2.34 1.72  0.80 -0.86 4.76  1.97 0.69 0.40  4.79 0.12 1.12 
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Table 2.5  

Recovery of the Joint Distribution, Imputation Efficiency, and 95% CI 

Coverage 

  Small Sample (N = 300)  Large Sample (N = 1,200) 

  

% Reduc. 

KL Div. ARIV 

Avg. 𝝁𝒌 

Coverage 

Avg. 𝝅𝒌 

Coverage  

% Reduc. 

KL Div. ARIV 

Avg. 𝝁𝒌 

Coverage 

Avg. 𝝅𝒌 

Coverage 

 Unequal Mixing & Weakly Separated 

Complete 100 - .87 .78  100 - .94 .94 

FIML 0 - .76 .70  0 - .68 .85 

MVN 79.90 6.44 .96 .98  57.50 0.65 .88 .90 

PMM 67.39 5.68 .95 .96  59.79 0.64 .85 .92 

CART 36.02 6.71 .95 .93  73.34 0.99 .94 .96 

RF 51.89 6.42 .96 .94  72.76 0.69 .92 .96 

 Unequal Mixing & Strongly Separated 

Complete 100 - .93 .96  100 - .95 .99 

FIML 0 - .82 .92  0 - .61 .88 

MVN 57.0 1.4 .95 .99  14.3 0.7 .83 .74 

PMM 57.42 1.30 .93 .99  37.18 0.64 .80 .85 

CART 50.91 1.60 .94 .98  73.63 0.73 .93 .96 

RF 56.30 1.54 .95 .98  68.28 0.78 .90 .95 

 Equal Mixing & Weakly Separated 

Complete 100 - .92 .93  100 - .95 .99 

FIML 0 - .82 .87  0 - .64 .82 

MVN 74.67 1.09 .96 .98  42.04 0.60 .82 .81 

PMM 60.68 1.20 .95 .98  40.74 0.54 .81 .85 

CART 44.73 1.75 .95 .98  71.27 0.63 .93 .95 

RF 57.47 1.47 .95 .98  68.89 0.52 .89 .91 

 Equal Mixing & Strongly Separated 
          

Complete 100 - .94 1  100 - .94 1 

FIML 0 - .82 .95  0 - .54 .78 

MVN 36.02 0.88 .93 .93  -8.95 0.77 .74 .70 

PMM 33.87 0.74 .91 .93  10.21 0.60 .72 .75 

CART 46.09 0.71 .93 .97  73.93 0.63 .91 .92 

RF 48.11 0.78 .93 .97  66.38 0.59 .86 .87 
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Figures 

 

Figure 2.1 

Recursive Partitioning Decision Trees and Rectangular Partitions 

 

 

Notes. Illustration showing decision tree (Panels A & B) and corresponding rectangular 

partitions (Panel C). Colored points represent observations drawn from a 𝐾=2 class 

mixture model. 
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Figure 2.2  

Metadata Collected on Applied Studies which Informed the Simulations 

 

Notes. Univariate information and bivariate relationships among the metadata collected from 30 

frequently cited studies that employed LPA.  
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Figure 2.3  

Simulated Entropy Values 

 

Notes. Observed entropy values at various class separation values.  Each separation value was replicated 

500 times. Dashed lines represent the predicted MD required for the entropy value to correspond the 25 th 

and 75th percentile recorded in the literature review, on average.  
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Figure 2.4   

Template and Analytic LPA Models 

(A) 

 

(B) 

 

Notes. Latent profile models reflecting (A) the data generating 

mechanism for simulating complete data, and (B) the analytic models 

fit to either the observed or the imputed data. 
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Figure 2.5  

Absolute Bias Reduction in Large Sample (N = 1,200) and Unequal Mixing Conditions 

 

Notes. Change in absolute bias relative to FIML in the large sample and unequal mixing 

conditions, displayed separately by weakly separated (crimson) and strongly separated 

(teal) conditions. 
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Figure 2.6  

Absolute Bias Reduction in Large Sample (N = 1,200) and Equal Mixing Conditions 

 

Notes. Change in absolute bias relative to FIML in the large sample and equal mixing 

conditions, displayed separately by weakly separated (crimson) and strongly separated 

(teal) conditions. 
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Figure 2.7 

Absolute Bias Reduction in Small Sample (N = 300) and Unequal Mixing Conditions 

 

Notes. Change in absolute bias relative to FIML in the small sample and unequal 

mixing conditions, displayed separately by weakly separated (crimson) and strongly 

separated (teal) conditions. 
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Figure 2.8  

Absolute Bias Reduction in Small Sample (N = 300) and Equal Mixing Conditions 

 

Notes. Change in absolute bias relative to FIML in the small sample and equal mixing 

conditions, displayed separately by weakly separated (crimson) and strongly separated 

(teal) conditions. 
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Figure 2.9  

Percent Reduction in KL-Divergence 
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Figure 2.10  

95% CI Coverage  
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Chapter 3: Investigating the Performance of a Proposed Hybrid Approach to 

Generate Imputations in a Latent Profile Analysis under Model Uncertainty: An 

Initial Study  

Marcus R. Waldman & Katherine E. Masyn 

A central goal in person-centered analysis is to identify subpopulations of 

individuals for which membership cannot be directly observed. These subpopulations are 

of substantive interest because they may explain important individual differences that 

may not otherwise be identified using traditional variable-centered analyses that assume a 

single, overall relation exists among a set of variables (e.g., ANOVA, factor analysis, and 

structural equation modeling). Common examples of person-centered analysis include 

latent class analysis, latent profile analysis, latent transition analysis, and growth mixture 

modeling. The focus of this study is on latent profile analysis (LPA), whereby researchers 

cluster individuals into homogenous subgroups using a carefully chosen set of continuous 

indicator variables. The clustering process is completed by fitting finite mixture models 

(FMMs), and the resulting clusters are referred to as latent classes. Each latent class is 

presumed to represent a distinct subpopulation, and the classes are then named based on 

distinguishable features that define that cluster. For example, classes are often 

distinguished based on class-specific means for the indicator variables.  

The naming process is only meaningful if the mean estimates are unbiased so that 

valid inferences are made during the naming process. Biased estimates may distort 

between-class differences and complicate the ensuing inference that naming of the 

classes represents. It is well established that missing data can threaten the validity of 

inferences if not adequately treated using appropriate missing data strategies. For 
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example, listwise deletion may result in nonresponse bias if the missingness is not 

completely at random. In contrast, nonresponse bias can be mitigated if the researcher 

employs an estimator that assumes the data are missing at random (MAR; Rubin, 1976). 

Full information maximum likelihood (FIML) and multiple imputation (MI; Rubin, 1978, 

1987) are two MAR estimators used ubiquitously in traditional variable-centered 

analyses. The data are said to be MAR if the missing data patterns are independent of the 

missing values conditional on the observed values. In practice, the MAR assumption is 

made more tenable through the inclusion of auxiliary variables (AVs) that would not 

otherwise appear in the main analysis but are specified to inform the missing values 

(Meng, 1994; Rubin, 1996; Schafer, 1997; Schafer & Graham, 2002). An inclusive 

missing data strategy is one in which the researcher liberally incorporates AVs while 

employing a MAR estimator (Collins, Schafer, & Kam, 2001; Enders, 2010) such as 

FIML or MI.  

Despite the effectiveness of FIML and MI at mitigating nonresponse bias in 

variable-centered approaches, mitigating bias remains a challenge for both estimators in 

person-centered analysis such as LPA. In Chapter 2, we detailed limitations of FIML in a 

person-centered analysis. In brief, FIML is not conducive to an inclusive missing data 

strategy because the corresponding AVs effectively act as additional indicators of the 

latent classes. In a person-centered analysis, it is undesirable for external variables (e.g., 

AVs) to directly define the latent classes; the only variables that should define the latent 

classes should be the carefully chosen set of indicator variables (Asparouhov & Muthén, 

2014; Vermunt, 2010).  
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In contrast, MI explicitly separates the treatment of the missing data from the 

analysis of the data by using a stagewise approach which ensures that the AVs do not 

unduly influence the class definitions. In the first stage of MI, the researcher creates 

multiple copies of completed datasets by substituting the missing data with imputed 

values. In the second stage, the imputed datasets are analyzed as if they were complete 

(Enders, 2010; Rubin, 1987; van Buuren, 2018). An inclusive strategy in MI can be 

accomplished by incorporating AVs in the first stage but not including these external 

variables when fitting the mixture models in the second stage. Thus, the explicit 

separation between treating the missing data problem and fitting an analytic model allows 

the researcher to include AVs to treat the missing data without having these variables 

enter the analysis stage where the class definitions are determined.  

Despite the conceptual benefits of separating the missing data problem from the 

intended analysis, methodologists have previously cautioned against employing MI in 

LPA (Enders, 2010; Enders & Gottschall, 2011; Sterba, 2016). This is because default 

methods in software assume that the population is comprised of a single, overall class. 

These methods, therefore, do not generate imputations that can reflect multiple latent 

subpopulations. We showed in Chapter 2 that imputing from single-class models results 

in biased class-specific mean estimates of the indicators. Bias in class-specific means 

threatens inference implied by the class naming process because it may distort between-

class differences.  

Using alternative imputation models that do not assume the data are composed of 

a single class partly addresses the bias in class-specific means. In Chapter 2, we found 

that when sample sizes were large (𝑁 = 1,200) and classes were well separated so that 
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entropies averaged near .88, recursive partitioning imputation models reduced 

nonresponse bias and generated proper imputations. Recursive partitioning imputation 

does not assume a single-class model because the method partitions the data into 

rectangular clusters during model fit (Doove, van Buuren, & Dusseldorp, 2014), with 

each rectangular cluster effectively representing a distinct subpopulation from which 

imputations are drawn. Moreover, recursive partitioning imputation is readily available in 

the mice (van Buuren, 2018; van Buuren & Groothuis-Oudshoorn, 2010) package in R 

(R Core Team, 2020).  

However, in Chapter 2, we found that recursive partitioning imputation failed to 

perform well when sample sizes were small (𝑁 = 300). Additionally, in large samples (𝑁 

= 1,200) with a small-sized class that represented only 10% of the population, recursive 

partitioning imputation failed to mitigate nonresponse bias if class separation was weak 

so that entropy values averaged approximately .74. Thus, a remaining challenge is 

identifying an imputation procedure that mitigates nonresponse bias in these small-

sample or small-class, weakly separated data conditions.  

The perspective of this study is that of an applied researcher conducting a person-

centered analysis seeking to implement an inclusive missing data strategy in the presence 

of small class sizes and in sample sizes that are not large (𝑁 = 300-600). These data 

conditions are very common in LPA studies in education and psychology. We investigate 

whether enhancing congeniality between the imputation model and the analytic model by 

generating imputations from a FMM may improve the performance of multiple 

imputations in small-sample and small-class size settings. According to Meng’s 

definition (1994), uncongeniality means that the “analysis procedure does not correspond 
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to the imputation model” (p. 539). Bias can result from uncongeniality if the imputation 

model fails to adequately reflect the complexity of the true data generating mechanism. 

For example, single-class imputation models fail to capture important sources of 

heterogeneity when the overall population is comprised of multiple subpopulations. 

Similarly, recursive partitioning imputation models fail to adequately model the true data 

generating mechanism in small samples because the resulting clusters are shaped 

differently than the elliptical clusters implied by a mixture model. Thus, we prioritize 

greater congeniality between the imputation model and the analytic model in our 

proposed imputation method.  

Specifically, we propose a “hybrid imputation” (van Buuren, 2018) procedure. As 

we will discuss in the following sections, our hybrid imputation procedure is a chained 

equations imputation approach where the indicator variables are imputed simultaneously 

by fitting a compatible FMM, while the fully conditional specification (FCS; Van 

Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006) is reserved for treating the 

incomplete AVs. Joint modeling (JM) imputation refers to multiple variables being 

imputed simultaneously (Schafer, 1997), rather than sequentially. By incorporating a JM 

block where the indicator variables are imputed from fitting a finite mixture model, we 

enhance the congeniality between the imputation model and the analytic model, resulting 

in decreased bias and improved efficiency. At the same time, we preserve the flexibility 

of the FCS to treat the complex missing data problems that arise when employing an 

inclusive analysis strategy with many AVs. In this sense, our hybrid imputation 

procedure combines the strengths of JM with the flexibility of the FCS.  
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Model uncertainty is an unavoidable complication in a person-centered analysis, 

and it is increasingly being recognized as a source of uncertainty that should be reflected 

in the imputations (Kaplan & Yavuz, 2019). Applied researchers rarely know the number 

of classes supported by the data a priori; the value must be inferred from the data by 

comparing the fit of alternative models with different numbers of latent classes specified. 

Therefore, we augment the hybrid imputation procedure to incorporate a model selection 

step at each iteration. This is done by fitting a sequence of models to the data specified 

with increasingly many classes. A reference model is then selected with a probability 

value based on model fit information. By sampling different models from a set of 

alternatives, the imputations are drawn from a mixture of competing models in order to 

reflect model uncertainty. We clarify how our procedure is similar to and different from 

Kaplan and Yavuz’s (2019) Bayesian model averaging imputation approach. 

The investigated method builds on previous literature. While JM imputation 

procedures that incorporate mixture models have been proposed in literature (Razzak & 

Heumann, 2019; Si & Reiter, 2013; Sovilj et al., 2016; van der Palm, van der Ark, & 

Vermunt, 2016; Vermunt, van Ginkel, van der Ark, Andries, & Sijtsma, 2008; Vidotto, 

Vermunt, & van Deun, 2018), these methods have mainly been evaluated in applications 

where categorical variables need to be imputed in large-scale surveys with thousands of 

observations, such as in item response theory contexts. In these setting, sample sizes are 

much larger than what is found in a person-centered analysis. Moreover, the number of 

classes that can be fit to the data can be as high as 70 (Vidotto, Vermunt, & Kaptein, 

2015). This contrasts with the two to 10 classes typically supported by the data for 

research studies in education and psychology, where sample sizes are frequently in the 
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hundreds. Thus, none of the proposed imputation procedures have been specifically 

tailored to the person-centered analysis context where sample sizes are generally much 

smaller, and the number of classes supported by the data is also much smaller. Therefore, 

identifying imputation methods that produce proper imputations in these common data 

conditions is important in order for multiple imputation to be useful for applied 

researchers. 

Moreover, we are unaware of any procedure that employs a hybrid imputation 

strategy with an FMM JM block. Thus, unlike the proposed JM procedures, our 

procedure is designed to exhibit greater congeniality to the analytic models employed in 

person-centered analysis, while also being flexible enough to accommodate complex 

missing data problems in the AVs themselves. Finally, this study aligns with the growing 

sentiment that “Bayesianly proper” (Schafer, 1997) imputations must account for model 

uncertainty. In line with Kaplan and Yavuz (2019), we attempt to account for model 

uncertainty by sampling from a mixture of competing models when generating 

imputations.  

The organization of this chapter is as follows. We provide a brief background 

discussion on FMMs, proper imputations, and important distinctions and commonalties 

between the FCS and JM imputation procedures. Next, we turn to the challenge of 

generating proper imputations. To scaffold concepts, we first assume that the number of 

classes is known a priori in order to clarify concepts regarding hybrid imputation. 

Specifically, we discuss how imputations for the class indicators can be sampled using 

the expectation-maximization (EM) with sampling algorithm (King, Honaker, Joseph, & 
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Scheve, 2001), and how the EM with sampling algorithm can be embedded in a chained 

equation procedure that employs the FCS for the auxiliary variables.  

Having clarified how hybrid imputation can be implemented when the number of 

classes is known, we next consider how to appropriately address model uncertainty 

induced by this number not being known. We discuss limitations with popular strategies, 

such as setting the number of classes to a large value. We then propose a sampling 

strategy that treats the number of classes as a random variable to be estimated. We apply 

the proposed imputation method to a real-world example using the ECLS-K dataset. We 

end with a discussion for future directions. 

Background 

Finite Mixture Models  

Finite mixture modeling exploits the law of total probability to model the joint 

density of individual 𝑖’s indicator data vector, 𝒚𝑖, as a weighted average across 𝐾 

component densities,  

Pr(𝒚𝑖) = ∑Pr(𝜅 = 𝑘) Pr(𝒚𝑖|𝜅 = 𝑘)

𝐾

𝑘=1

 (3.1) 

where 𝜅 is a categorical latent variable representing a latent class, and the family of the 

conditional distribution [𝒚𝑖|𝜅 = 𝑘] is assumed to be known. The specific title for the 

person-centered analysis that is being performed may differ depending on the family of 

this conditional distribution. For a latent class analysis, the indicators are dichotomous, 

and the conditional density is assumed to be a Bernoulli distribution. Latent profile 

analysis (LPA), on the other hand, is generally appropriate when the 𝐽 indicators are 
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continuous variables. The assumption is that the data are a mixture of 𝐾 multivariate 

normal component densities,  

[𝒚𝑖|𝜅 = 𝑘] ~𝒩𝐽(𝝁𝑘, Σ𝑘)   ∀ 𝑘 = 1,… , 𝐾  (3.2) 

where 𝝁𝑘 is the 𝑘th component mean vector and Σ𝑘 is the 𝑘th component variance 

covariance matrix. In LPA, classes are usually defined and given names based on 

examining how 𝝁𝑘 differ across the classes. 

Applied researchers typically do not know the value of 𝐾 or the structure of the 

component variance-covariance matrix, Σ𝑘. Two common specifications for Σ𝑘 include 

the class-varying conditional independence model, where Σ𝑘 is a diagonal matrix, as well 

as the class-varying unrestricted model, where all elements in Σ𝐾 are freely estimated. 

We refer the reader to Masyn (2013) for additional specifications, such as specifications 

that assume the estimates do not vary across the classes.  

To simplify notation, we assume that the researcher specifies the least restrictive 

configuration, in that all elements in Σ𝑘 are freely estimated and may differ across the 

classes. The sequence of models fit to the data can be written as 𝓜= {ℳ𝐾: 𝐾 = 1,2, … } 

where 𝐾 is the number of components. The likelihood of observing the collection of 

complete indicator values, 𝒚𝑖, for all 𝑁 individuals, denoted 𝑌, given a model with 𝐾 

components is 

ℒ(𝜃𝐾|𝑌,ℳ𝐾) =∏∑𝜋𝑘

𝐾

𝑘=1

𝒩𝐽(𝑦𝑖|𝝁𝑘, Σ𝑘)

𝑁

𝑖=1

(3.3) 

where 𝜃𝐾 = {(𝝁𝑘, Σ𝑘, 𝜋𝑘):  𝑘 = 1,…𝐾} and 𝜋𝑘 is referred to as the marginal class 

probabilities or mixture weights. The equation in (3.3) is the complete-data likelihood 

because all elements in the data matrix 𝑌 are complete.  Software relies heavily on the 



 

82 

 

EM algorithm (Dempster, Laird, & Rubin, 1977) to calculate the maximum likelihood 

estimates, 𝜃𝐾. We refer the interested reader to the vast theoretical literature regarding the 

EM algorithm (R. J. Little & Rubin, 2002; McLachlan, 2008; Schafer, 1997), including 

its extensions and applications to mixture modeling (Frühwirth-Schnatter, Celeux, & 

Robert, 2019, Chapter 2; McLachlan & Peel, 2004). 

Bayesianly Proper Imputations 

 When data are missing, the complete data is a superset of the observed and 

missing data 𝑌 = {𝑌obs, 𝑌mis}. Briefly stated, an imputation procedure is said to generate 

proper imputations for 𝑌mis if the procedure results in valid inferences when given the 

observed data and a set of AVs (denoted 𝑋) necessary for an inclusive missing data 

strategy.  

Two different perspectives have been offered in previous literature depending on 

whether one takes a Bayesian (Schafer, 1997) or frequentist approach (Rubin, 1987) to 

conducting inference with multiply imputed data. However, only a Bayesian perspective 

allows for uncertainty in the underlying imputation model (Kaplan & Yavuz, 2019). For 

this reason, we take a Bayesian perspective in defining proper imputations.  

From a Bayesian perspective, uncertainty in the parameter estimates caused by 

missing data is fully captured by the observed data posterior distribution, given by 

Pr(𝜃𝐾|𝑌
obs, 𝑋;ℳ𝐾) ∝ ∫ Pr(𝜃𝐾|𝑌

obs, 𝑌mis;ℳ𝐾  ) Pr(𝑌
mis|𝑌obs, 𝑋;ℳ𝐾) 𝑑𝑌

mis

𝑌mis
 (3.4) 

where [𝜃𝐾|𝑌
obs, 𝑌mis;ℳK] is referred to as the complete data posterior distribution and 

[𝑌mis|𝑌obs, 𝑋;ℳ𝐾] is the posterior predictive distribution for 𝑌mis (R. J. Little & Rubin, 
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2002, p. 210; Rubin, 1987; van Buuren, 2018, pp. 41–44). The posterior predictive 

distribution for 𝑌mis is further given by 

Pr(𝑌mis|𝑌obs, 𝑋;ℳ𝐾) = ∫ Pr(𝑌mis|𝑌obs, 𝑋, 𝜃𝐾;ℳ𝐾) Pr(𝜃𝐾|𝑌
obs) 𝑑𝜃𝐾

𝜃𝐾

. (3.5) 

As defined by Schafer (1997, p. 105), if imputations are independent samples from the 

posterior predictive distribution for 𝑌mis, then the imputations are said to be Bayesianly 

proper. 

 Uncongeniality between the imputation and analysis models can result in invalid 

inference, particularly if the imputation model is less complex than the analysis model. In 

other words, valid inference is only guaranteed if the imputation model is at least as 

complex as the analysis model and is well enough aligned with the reality of the 

underlying data generating mechanism for the missing values (Collins et al., 2001; Meng, 

1994). In this way, the validity of inference may be highly dependent on the imputation 

model being fit because the imputation model must be sufficiently aligned with the 

reality of the true data generating mechanism. Such a situation is difficult in settings such 

as LPA where the number of components is usually not known.  

Kaplan & Yavuz (2019) argue that inference can become more robust to 

violations of congeniality by incorporating Bayesian model averaging imputation. They 

argue that when a researcher is in a situation where the true data generating mechanism is 

unknown, then the imputation model must account for the resulting induced uncertainty 

to generate imputations that are Bayesianly proper. Through Bayesian model averaging, 

model dependence is effectively marginalized out of the posterior predictive distribution 

by considering the posterior distribution as a mixture of competing models. Although not 

explicitly defined by the authors, it stands to reason that imputations for 𝑌mis are said to 
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be Bayesianly proper under Kaplan & Yavuz’s (2019) definition if 𝑌mis is an 

independent sample from the marginal distribution [𝑌mis|𝑌obs, 𝑋], which is a mixture 

across competing models, i.e. 

Pr(𝑌mis|𝑌obs, 𝑋) =  ∑Pr(𝑌mis|𝑌obs, 𝑋;ℳ𝐾) Pr(ℳ𝐾|𝑌
obs, 𝑋)

ℳ𝐾

 (3.6) 

where Pr(ℳ𝐾|𝑌
obs, 𝑋) is referred to as the posterior model probability for model ℳ𝐾. 

The authors show that Bayesian model averaging can minimize the discrepancy between 

the true posterior distribution of 𝑌mis and the distribution from which imputations are 

actually drawn when uncongeniality is unavoidable because the true data generating 

mechanism is not known. 

 Rather than averaging across competing models, our proposed hybrid imputation 

method addresses model uncertainty by sampling directly from the mixture model 

implied in (3.6). At each iteration in our imputation procedure, we first sample a 

reference model using the posterior model probabilities for each competing model. Next, 

we sample imputation from the corresponding predictive distribution conditional on the 

reference model being selected.  

We sample from the mixture model in (3.6) directly because we are not in a 

position to employ Bayesian model averaging. The challenge with including a Bayesian 

model averaging strategy directly in FMMs is that the parameters must have the same 

meaning across the different models. In the linear regression context considered by 

Kaplan and Yavuz (2019), for example, this occurs by creating a full model that contains 

all possible predictors and interaction terms. Each competing model is then simply a 

nested (or constrained) model specified by fixing some of the regression estimates to 
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zero. The result of Bayesian model averaging is a large set of estimates for all of the 

parameters that define the full model.  

For FMMs, however, there is no direct or obvious correspondence to map classes 

obtained from a model with 𝐾 components to a model with 𝐾 + 1 or more components. 

The classes are not exchangeable across different models. That said, combining classes in 

a principled manner has previously been explored in literature (Baudry, Raftery, Celeux, 

Lo, & Gottardo, 2010; Hennig, 2010), with some finding that such an endeavor improves 

classification quality (Wei & McNicholas, 2015). In the discussion, we consider possible 

future directions to map the parameters across competing models so that a model 

averaging approach more aligned with Kaplan and Yavuz’s (2019) recommendations can 

be employed.  

Normal Imputation as a Case Study for Understanding the FCS and JM 

To provide intuition on how FCS and JM modeling differ in their imputation 

approach, we consider the special case where the data originate from a single-class, 

multivariate normal model. Valid inference requires that the imputations reflect 

variability from three sources. These sources are: (1) individual differences in predicted 

values, (2) variability due to sampling error, and (3) variability due to random noise (van 

Buuren, 2018). The FCS takes a “variable-by-variable” approach to construct an imputed 

dataset that reflects the three sources of variability. In particular, imputations for each 

variable are drawn separately by fitting univariate regression models with each variable 

as an outcome and the remaining variables (and AVs) as predictors. JM, in contrast, 

generates imputations for all variables simultaneously. 
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Fully Conditional Specification 

There are several procedures available to ensure that imputations from the FCS 

are proper and reflect the three sources of variability needed for valid inference. To 

reflect sampling variability, a common procedure is to bootstrap the data before fitting 

the univariate regression model. Once the univariate model is fit, predicted values are 

then calculated by using the corresponding coefficient estimates. Random noise is then 

added to the predicted values in a principled manner so that the imputations appropriately 

reflect the third and final source of variability. For normal imputation, random noise can 

be appropriately added to the predicted values by sampling from a normal distribution 

using the residual variance estimate obtained from a linear regression model fit to the 

bootstrapped data. This three-stage procedure of bootstrapping, predicting missing 

values, and then adding random noise repeats itself for all variables in the dataset. One 

sweep across the dataset results in a single sample from the posterior predictive 

distribution of 𝑌mis. Additional samples are obtained by conducting multiple iterations of 

the FCS procedure to form a Markov chain Monte Carlo (MCMC) (van Buuren, 2018; 

van Buuren et al., 2006).  

 In many cases, the FCS is akin to Gibbs sampling (Casella & George, 1992; 

Gelfand & Smith, 1990) in Bayesian estimation whereby the fully joint distribution is 

difficult to sample, so samples are drawn from a constituent set of easier-to-sample 

conditional distributions. As in Gibbs sampling, the FCS results in an MCMC chain and, 

upon convergence, users obtain imputed datasets by sampling from the MCMC chain. 

We refer the reader to the existing literature for a technical discussion on necessary 
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conditions for the FCS to asymptotically approximate Gibbs sampling (Liu, Gelman, Hill, 

Su, & Kropko, 2013; van Buuren, 2018, pp. 119–124). 

One advantage of the FCS is the tremendous flexibility the researcher has in 

specifying the univariate regression models to create imputations. The FCS is unrestricted 

in the types of regression models that can be fit to each variable and is amenable to a 

large number of parametric and nonparametric regression methods. Thus, researchers 

have great flexibility to treat missing data across the varied data types that appear in real-

world settings. 

Joint Modeling by EM with Sampling 

  The primary difference between JM and FCS is that in JM, the imputations are 

created simultaneously across all of the variables. We focus on the EM with sampling 

imputation algorithm because this algorithm shares many similarities with the three-step 

FCS procedure described above, but it can easily incorporate a finite mixture imputation 

model. The first step in the EM with sampling algorithm is to bootstrap the data to ensure 

that the imputed datasets reflect sampling variability. Next, a multivariate normal 

regression model is fit to observed data. Specifically, parameters are estimated by 

maximizing the observed data likelihood using the EM algorithm. Finally, imputed 

values are sampled in two stages. First, the sweep operator1 is applied to obtain the 

predictive density of the missing data conditional on the observed data; in a normal 

regression, the conditional distribution will either be a univariate normal (if only one 

value is missing) or multivariate normal (if an observation is missing more than one 

value) distribution. Next, imputations are simulated from the corresponding conditional 

 
1 For an accessible introduction to the sweep operator, we refer the reader to Little & Rubin (2002). 
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distribution. Researchers can conduct EM with sampling assuming a multivariate normal 

imputation model, as is done in the Amelia R package (Honaker, King, & Blackwell, 

2011). Alternatively, LatentGold (Vermunt & Magdison, 2016) generalizes the EM with 

sampling algorithm to include multiple latent classes by estimating a finite mixture of 

Bernoulli or multinomial distributions, instead of the single-class multivariate normal 

model assumed by Amelia. The EM with sampling algorithm used by LatentGold has 

shown to be useful for imputing categorical item response data (Vermunt et al., 2008; 

Vidotto et al., 2015). We summarize the steps for the EM with sampling algorithm 

procedure in Table 3.1. 

The fact that the EM with sampling algorithm allows for the incorporation of a 

mixture model to generate imputations may be advantageous for person-centered 

analysis, as it allows for greater congeniality between the imputation model and the 

analysis model. The disadvantage, however, is that JM may not be ideal for treating 

incomplete AVs; greater flexibility is needed given the mix of data types (e.g., 

continuous, categorical, etc.) that comprise the set of AVs. Hybrid imputation (i.e., 

imputing a block of variables using joint modeling as part of a larger chained equations 

procedure) may offer a useful compromise between JM and FCS for person-centered 

analysis. It allows greater congeniality between the imputation model and analysis model 

for better performance when small classes are present. At the same time, it allows for 

flexibility in treating the missingness of the AVs which are not of substantive interest. 

We now turn to how our proposed hybrid imputation procedure would be implemented if 

the number of classes is known. Although this is generally not realistic, we present the 

material in this scaffolded format to clarify concepts. 
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A Hybrid Imputation Method when the Number of Classes are Known 

The hybrid imputation procedure that we propose is a chained equation procedure 

that includes a JM block to impute the class indicators and an FCS block to impute any 

AVs. Algorithm 1 in Table 3.2 contains the exact implementation steps. In this section, 

we detail how our hybrid procedure differs from previously proposed imputation 

algorithms that use FMMs by proposing two novel modifications. Next we give a 

Bayesian justification for Algorithm 1 as a proper imputation procedure that 

approximately samples from a posterior distribution using data augmentation (Tanner & 

Wong, 1987).  

Novel Modifications to EM with Sampling  

 We make two novel modifications to the EM with sampling procedure described 

in Table 3.1 that have not previously been employed in literature. Specifically, we 

employ Bayesian bootstrapping in Step 2, instead of relying on sampling with 

replacement, in order to mitigate convergence issues when class sizes are small. Second, 

we fit a mixture regression model in Step 3 that allows for the incorporation of AVs that 

concomitantly predict class membership and missing indicator values.    

The Bayesian Bootstrap 

 We use the Bayesian bootstrap (Rubin, 1981) as an alternative to the traditional 

bootstrap conducted by sampling observations with replacement. The Bayesian bootstrap 

is a simple procedure to reweight observations in order to emulate resampling. Despite its 

name, the Bayesian bootstrap can be conducted in a manner that is completely 

nonparametric and noninformative. The Bayesian bootstrap is best understood by 

comparing it with the traditional bootstrap. In fact, sampling with replacement is simply a 
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means to weight observations. Indeed, by sampling with replacement, the user is 

effectively weighting observations by a value that is in the natural numbers (e.g., if the 

observation was never sampled, then its weight is zero; if it was sampled once, then the 

weight is one; if sampling with replacement resulted in an observation being selected 

twice, then the weight is two; etc.). The sum of the weights is then equal to the total 

number of observations. The Bayesian bootstrap is a procedure to sample an 

observation’s weight, rather than sampling the observations themselves. Weights are 

drawn from a Dirichlet distribution with 𝑁 total categories. A uniform prior can be 

specified so that each observation has an equal chance of being assigned a given weight. 

Thus, the uniform prior is completely noninformative and parallels sampling with 

replacement. The uniform prior is implemented by specifying unit concentration 

parameters for the Dirichlet distribution.  

 Both the Bayesian bootstrap and the traditional bootstrap sample from the 

empirical CDF. Thus, both lead to very similar inferences in samples. In fact, sampling 

with replacement can be seen as simply a special case of the Bayesian bootstrap in that 

the weights are restricted to the natural numbers. By allowing the weights to take on the 

full set of positive real numbers, the Bayesian bootstrap effectively smooths the empirical 

CDF, which is advantageous when sample sizes are small, so the histogram of the 

empirical CDF can appear quite discrete (Chernick, 2011, Chapter 6). We choose the 

Bayesian bootstrap because we find in practice that it leads to improved convergence 

rates when small class sizes are present compared to sampling with replacement. 
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Mixture Regression Models 

 Our goal in including the JM step is to enhance the congeniality between the 

imputation model and the analysis model, so that valid inferences can be made even in 

small class sizes. To do that, our goal is to sample from a posterior predictive density that 

is itself a mixture model. We propose a mixture regression model (B. O. Muthén & 

Asparouhov, 2009; Wedel, 2002), also called a mixture of experts (Jacobs, Jordan, 

Nowlan, & Hinton, 1991) in machine learning literature, as the multivariate model fit in 

Step 3 of Table 3.1. A mixture regression model allows for the specification of AVs so 

that an inclusive strategy can be employed. In particular, mixture regression models allow 

a set of background covariates to predict class probabilities, as well as the class 

indicators, so that the probability of observing the data is given by 

Pr(𝒚𝑖) = ∑𝜋𝑘(𝒙𝑖)𝒩𝐽(𝒚𝑖|𝒙𝑖𝜷𝑘, Σ𝑘)

𝐾

𝑘=1

(3.7) 

where 𝜋𝑘(𝒙𝑖) is modeled using a multinomial logistic regression given by  

𝜋𝑘(𝒙𝑖) =

{
 

 
exp(𝒙𝑖𝜶𝑘)

1 + ∑ exp(𝒙𝑖𝜶𝑘)
𝐾−1
𝑘=1

if 𝑘 < 𝐾

1

1 + ∑ exp(𝒙𝑖𝜶𝑘)
𝐾−1
𝑘=1

if 𝑘 = 𝐾

 (3.8) 

and 𝒙𝑖 is a size 𝑃 vector of the AVs in 𝑋. Mixture regression models can be fit under 

maximum likelihood using the EM algorithm (Gormley & Frühwirth-Schnatter, 2019) in 

software such as LatentGold and Mplus (L. K. Muthén & Muthén, 2017).  

Hybrid Imputation as an Approximate Posterior Sampler with Data Augmentation  

Having discussed our modification to the EMs procedure, we now detail our 

hybrid imputation procedure given in Algorithm 1 (see Table 3.2) and justify it as an 

approximate Bayesian estimation algorithm to sample from the posterior distribution 
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[{𝜙𝑝:  𝑝 = 1,… , 𝑃}, {𝛼𝑘, 𝛽𝑘, Σ𝑘:  𝑘 = 1,…𝐾}|𝑌obs, 𝑋obs;ℳ𝐾] (3.9) 

 where 𝜙𝑝 are the univariate regression parameters defining the FCS when imputing 

𝑋mis. Our procedure uses the Bayesian bootstrap to draw independent samples from a 

sampling distribution that approximates a posterior distribution. In missing data literature, 

approximately sampling a posterior by bootstrapping is common (Efron, 1994; R. J. Little 

& Rubin, 2002; Rubin, 1987; Rubin & Schenker, 1986). Because the posterior 

distribution approximates a posterior with completely noninformative priors, this type of 

posterior sampling is truly nonparametric. Indeed, nonparametric bootstrapping sampling 

algorithms are increasingly gaining attention in the machine learning community because 

they are more efficient at sampling the multimodal posterior distributions that occur in 

mixtures due to label switching  (Fong, Lyddon, & Holmes, 2019). Traditional sampling 

algorithms, such as the Gibbs sampler or Metropolis Hastings algorithms, are inefficient 

because they often fail to switch between modes of the posterior distribution (Celeux, 

Kamary, Malsiner-Walli, Marin, & Robert, 2018, pp. 75–81). 

Our hybrid imputation procedure is designed to sample the posterior distribution 

in (3.9) using three separate data augmentation steps to treat the missing information in 

class membership, missing class indicator data, and missing data in the AVs. The data 

augmentation steps break the full joint distribution down into conditional distributions 

from which samples can easily be obtained. Data augmentation is a common Bayesian 

estimation procedure to sample from an observed-data posterior distribution in a two-

step, iterative fashion. In the most basic application, the two steps involve constructing a 

single imputed dataset (i.e., “I-step”) and a posterior step (i.e., “P-step”). The I-step 

involves sampling from the posterior predictive distribution given a current set of 
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parameter values. The parameters are then updated in the P-step by sampling new 

parameter values conditional on the imputed data points in the I-step.  

In the first data augmentation step, we augment the data matrix to include a 

column for class membership, 𝜅, for each individual. This value is unknown, so it must 

be imputed using data augmentation. Augmenting the data matrix in this way and treating 

𝜅 as a value that is “missing” is the foundation of all Bayesian estimation algorithms; 

with FMMs this is because it allows sampling to occur using conditional distributions 

that are easier to sample (Gelman et al., 2013; McLachlan & Peel, 2004).  

To implement the first data augmentation step, a set of parameter values at 

iteration 𝑡 can be obtained (e.g., {𝛼𝑘
(𝑡), 𝛽𝑘

(𝑡), Σ𝑘
(𝑡):  𝑘 = 1,… , 𝐾} ) by fitting a mixture 

regression model using the EM with sampling procedure given a current imputed dataset 

for the AVs.  Upon convergence of the fitted model, posterior class membership can then 

be sampled by first calculating a set of posterior class probabilities given by  

Pr(𝜅𝑖 = 𝑘) =
𝜋𝑘(𝒙𝑖)𝒩𝐽(𝑦𝑖|𝝁𝑘, Σ𝑘)

∑ 𝜋𝑘(𝒙𝑖)𝒩𝐽(𝒚𝑖|𝒙𝑖𝜷𝑘, Σ𝑘)
𝐾
𝑘=1

 

and then sampling class membership using a multinomial distribution using the posterior 

class probabilities. Having imputed 𝜅𝑖 values for each individual in the augmented data 

matrix, the first data augmentation step is completed.  

 The second data augmentation step involves sampling the missing profile 

indicator data 𝑌mis, given the individual’s 𝜅𝑖 value. Because in LPA the component 

densities are multivariate normal, the posterior predictive density conditional on the 

current class membership value is also normally distributed. Therefore, sampling can be 

accomplished with the assistance of the sweep operator. Upon sampling from the 
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posterior predictive density, the result is a single imputed dataset for the class indicators 

at the current iteration in the MCMC chain, 𝑌(𝑡). 

 The third and final data augmentation step treats the missing data in the AVs. Our 

proposed method attempts to accomplish this by using the FCS to sequentially update the 

imputations for missing AVs. In particular, the 𝑝th AV is imputed by specifying the 

univariate regression model to include the imputed class membership at 𝜅(𝑡) from the 

first data augmentation step, the imputed indicator data 𝑌(𝑡) from the second data 

augmentation step, and the remaining imputed AVs (denoted 𝑋−𝑝
(𝑡)

).  

In summary, by conducting three data augmentation steps and by iteratively 

sampling {𝛼𝑘
(𝑡), 𝛽𝑘

(𝑡), Σ𝑘
(𝑡):  𝑘 = 1,… , 𝐾} and {𝜙𝑝

(𝑡)
:  𝑝 = 1,… , 𝑃}, our procedure can be 

viewed as a Bayesian sampling procedure to approximately sample the posterior 

distribution in (3.9) with missing class membership values, missing class indicator 

values, and incomplete AVs. An MCMC chain is formed by iteratively repeating the data 

augmentation steps. The independent samples of the posterior predictive distribution for 

𝑌mis needed for the imputed datasets to be proper can be obtained by conducting a 

sufficient number of iterations for the chain to converge and then directly sampling from 

the MCMC chain. Model uncertainty is a remaining challenge that we have so far not 

addressed. We turn to this topic next. 

Multiple Imputation when the Number of Classes is not Known 

Rarely are the number of classes, 𝐾, known when an applied researcher conducts 

a person-centered analysis. As a result, some argue that there is inherent model 

uncertainty that should be reflected in the imputations in order for the imputations to be 

Bayesianly proper (Kaplan & Yavuz, 2019). We present three alternative options for 
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dealing with model uncertainty. The first option is to intentionally specify an imputation 

model that is an overfitted mixture model, meaning that the number of components 

specified is sufficiently large that it is, ostensibly, greater than the number of components 

that can be supported by the data. Reversible jump MCMC (Green, 1995) is an 

alternative option to switch between models when sampling from the MCMC chain. We 

discuss the limitations of both these options and justify our choice for employing a third 

option—sampling from a mixture of competing models using Akaike weights.  

Overfitted Mixture Imputation Model  

Uncongeniality threatens inference when the imputation model is less complex 

than the true data generating mechanism. In mixture models, an imputation model fit with 

too few components will lead to uncongeniality and threatens the validity of inferences. 

However, overfitting the number of components is not necessarily problematic for 

inference. This is because fitting a more complex mixture model than the true, simpler 

mixture model still results in the multivariate density being consistently estimated.  

 To understand why overfitting leads to consistent density estimation, consider the 

situation where a finite mixture model is fitted with 𝐾 = 3 total components (i.e., ℳ3) 

with data generated from a 𝐾 = 2 component model (i.e., ℳ2). The parameters in ℳ2 

can be recaptured by the parameters in ℳ3 by either setting one of the three mixture 

weights, 𝜋𝑘 in (3.3), to zero or by setting any two of the component densities to be the 

same (Frühwirth-Schnatter, 2006; McLachlan & Peel, 2004, p. 28). In terms of 

estimation, an overfitted mixture model leads to identifiability issues in the sense that the 

maximum likelihood estimate is no longer unique. For example, setting 𝜋3 to zero allows 

the 𝝁3 and Σ𝑘 to take on any arbitrary value. Reflecting the problems with identifiability, 
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the Fisher information increasingly becomes singular, regardless of whatever optimum is 

reached as the sample size approaches infinity (Drton & Plummer, 2017), and the 

likelihood function takes the shape of a ridge. Despite issues with identifiability for the 

maximum likelihood estimates, any estimates that are obtained that result in the 

likelihood reaching its maximum value will result in the joint distribution of the data 

being consistently modeled as arising from a two-component model. In summary, 

although identifiability of the parameters itself is an issue with overfitting a mixture 

model, overfitting is not necessarily problematic when the goal of fitting the finite 

mixture model is limited to approximating a multivariate density.  

 The fact that overfitting still leads to consistent density estimates has direct 

implications for generating proper imputations when 𝐾 is unknown. All that is necessary 

for proper imputations in the mixture context is to fit a mixture model that has more 

components than the true data generating mechanism because the resulting predictive 

density implied from the imputation model will consistently estimate the true posterior 

predictive density for 𝑌mis. For instance, in the context where finite mixture models are 

employed in a JM framework to impute categorical data in large-scale surveys, it is 

recommended to generate imputations from an imputation model with up to 70 classes 

(Vidotto et al., 2015). Others have recommended that the number of classes be 

determined through an enumeration step conducted before imputing by using the AIC to 

decide on the number of classes. This is because the AIC tends to over extract the number 

of classes (Vermunt et al., 2008; Vidotto et al., 2015).  

 Simply setting the number of classes to a large value has several drawbacks. First, 

even if it were possible to know a priori that a large value of 𝐾 is beyond what the data 
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supports, imputation efficiency is not optimized. Imputation efficiency may be less of a 

concern in large-scale survey or assessment data, but in a person-centered analysis with 

small samples, power is at a premium. Moreover, practical problems, such as instability 

during estimation due to unbounded likelihoods, convergence issues, and the EM 

algorithm getting stuck in suboptimal stationary points, are likely to occur if the number 

of classes is set too large.  

In addition, if the number of classes is determined by the AIC before any 

imputation is completed, then the missingness of the AVs cannot be treated in an optimal 

manner when deciding on the number of classes. This is important because many of the 

AVs may be distal outcomes in a subsequent analysis, so missingness in the AVs and the 

number of classes should mutually inform one another. Finally, deciding on the number 

of classes before drawing imputations prohibits imputations being drawn from the 

mixture of competing models as in (3.6). Thus, uncertainty in the selection of the final 

model is never reflected in the resulting imputation, arguably compromising the degree to 

which the imputations are Bayesianly proper (Kaplan & Yavuz, 2019).  

 In summary, imputing using an overfitted finite mixture model is considered less 

detrimental to inference than using underfited mixture model. This is because an 

overfitted mixture model still consistently approximates the density of the predictive 

distribution. Nevertheless, overfitting should be done judiciously because it does not 

maximize imputation efficiency—an important consideration in the small-sample and 

small-class size settings present in the educational, behavioral, and social sciences.  
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Reversible Jump MCMC 

 As an alternative to fitting an overfitted mixture imputation model, the reversible 

jump MCMC sampler (Green, 1995) is an alternative procedure for sampling posterior 

distributions between alternative mixture models with different numbers of components. 

Paralleling the Metropolis Hastings algorithm, at each step in the sampler, a 𝐾 value is 

proposed, and the corresponding model is either accepted or rejected with a probability 

value calculated given the current state of the parameter estimates. The reversible jump 

MCMC sampler is appealing in theory because it treats 𝐾 as an unknown parameter in 

the model for which a posterior distribution needs to be sampled (McLachlan & Peel, 

2004). By sampling a 𝐾 value at each iteration, the reversible jump MCMC sampler 

incorporates model uncertainty in a principled and direct manner.  

 Despite the theoretical advantages of the reversible jump MCMC sampler, the 

procedure fails to perform well in practice. Calibrating proposals for 𝐾 is an extremely 

arduous task. It is not uncommon, for example, for acceptance rates of the proposal to be 

as small as 1% (Celeux, Fruewirth-Schnatter, & Robert, 2018). Such small acceptance 

rates would unduly extend the computational time required to reach convergence of the 

MCMC chain. Thus, the practical challenges of calibrating the reversible jump MCMC 

sampler are too great to overcome. 

Sampling from a Mixture of Competing Models 

 In our attempt to account for model uncertainty, we investigate whether sampling 

from a mixture of competing models as described in (3.6) results in valid inference even 

in small class settings. In the Background, we offered a Bayesian justification for 

sampling from a mixture of competing models at each iteration of the MCMC chain. Two 
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unresolved issues remain: (1) identifying the set of competing models at each iteration of 

the MCMC chain (referred to as “class enumeration” in person-centered analysis 

literature), and (2) calculating the posterior model probabilities Pr(ℳ𝐾|𝑌
𝑜𝑏𝑠, 𝑋) in (3.6) 

so that sampling weights for each competing model can be calculated (referred to as the 

reference model selection).  

Class Enumeration 

 Model selection with mixture models in a person-centered analysis proceeds first 

by enumerating the classes. This involves fitting a sequence of models with increasingly 

many components until convergence issues become intractable (Masyn, 2013). We have 

found in practice that this threshold usually occurs well before a 𝐾 = 10 component 

model is fit to the data when all parameters in the Σ𝐾 are freely estimated across the 

classes. Thus, we expect relatively few alternative models will need to be considered at 

each iteration of the MCMC chain. 

  We propose enumerating the classes fitting a sequence of competing mixture 

regression models in (3.7) at each joint modeling iteration of the hybrid imputation 

procedure. First, a single-class mixture regression model with 𝐾 = 1 components is fit to 

the indicator data given the current state of the imputed auxiliary variables, (𝑌obs, 𝑋(𝑡)). 

Next, a 𝐾 = 2 mixture regression model is fit to the data. This process continues until 

convergence becomes intractable.  

We specify all elements in Σ𝐾 as freely estimated when enumerating the classes, 

even if the researcher is only ultimately fitting an analysis model with exclusively 

diagonal elements in the class-specific variance-covariance matrices. This is because 

conditioning on auxiliary variables that predict two indicators induces a correlation in the 
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residuals between those two indicators, even when those two indicators are conditionally 

independent given class membership. Moreover, fitting a mixture regression model with 

a simpler Σ𝑘 risks unnecessary uncongeniality if Σ𝑘 requires that the covariance estimates 

be freely estimated to reflect the true data generating mechanism. On the other hand, 

congeniality is guaranteed if the Σ𝑘 configuration is more complex than reality. In 

summary, the enumeration step we propose consists of fitting a sequence of mixture 

regression models with freely estimated residual variance-covariance structures. Models 

are fit until convergence issues become intractable.  

Reference Model Selection 

 Once the classes have been enumerated, a reference must be selected so that 

imputations can be drawn for 𝑌mis, and data augmentation can commence for a particular 

iteration of the MCMC chain. We propose selecting a reference model from a mixture of 

the competing models enumerated in the previous step. A reference model is selected 

from the sequence of models enumerated where each model is weighted by the posterior 

model probability, Pr(ℳ𝐾|𝑌
obs, 𝑋(𝑡)).  

 Literature is rife with options for calculating the posterior model probability. 

Fully Bayesian estimation allows this value to be calculated directly by using the 

posterior distribution and calculating the corresponding Bayes factors (Berger, 1985; 

Kass & Raftery, 1995). Although such an approach may theoretically be ideal, it is 

computationally demanding. To calculate the Bayes factors, the posterior distribution 

would need to be sampled until convergence for each model in the enumeration sequence. 

This would require thousands of samples be drawn at each iteration of the hybrid 

imputation procedure. Clearly, this is not feasible to implement.  
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 Alternatives include approximations to the Bayes factor using either Laplace’s 

method (Kass & Raftery, 1995; Tierney & Kadane, 1986) or the BIC (Schwarz, 1978). 

Laplace’s method relies on asymptotic theory in that the log-posterior distribution is 

assumed to be well approximated by a quadratic approximation centered at the maximum 

likelihood estimate with a curvature given by the observed information matrix. The BIC 

is a further approximation for the posterior model probability. The BIC approximation 

does not require that the observed information matrix be calculated, which makes it the 

easiest to implement in practice. The posterior class probability given the BIC for a 

model fit with 𝐾 components is given as 

Pr(ℳ𝐾|𝑌
obs, 𝑋) ≈

exp(−
1
2BIC

(ℳ𝐾))

∑ exp(−
1
2BIC

(ℳ𝐾∗))ℳ𝐾∗

 (3.10) 

where BIC(ℳ𝐾) are the BIC values obtained by fitting a model with 𝐾 components to 

observed indicators 𝑌obs conditional on the auxiliary variables at a given iteration, 𝑋(𝑡).   

 Despite the simplicity of the BIC approximation, it is known to be a poor 

approximation for the posterior model probability. The label switching issue implies that 

the posterior is not unimodal even in large samples, as is assumed by the BIC 

approximation. Additionally, when an overfitted mixture model is fit to the data, the 

quadratic approximation is no longer tenable because the observed information matrix 

becomes singular (Drton & Plummer, 2017; Gelman, Hwang, & Vehtari, 2014; 

Yamazaki & Watanabe, 2003). In practice, these complications imply that model 

selection based on the BIC only performs well when the true model is one considered in 

the set of models fit to the data. Moreover, as we will show in Chapter 4, we find that the 
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BIC tends to under extract the number of classes when the model is fit to the observed 

data, as is done in our proposed hybrid imputation procedure. Under extraction is 

especially problematic because it would lead to imputations being drawn from an 

uncongenial model.  In contrast to the BIC, the AIC (Akaike, 1974) results in consistent 

density estimation and is not prone to under extracting the number of classes (Frühwirth-

Schnatter et al., 2019, p. 123; McLachlan & Peel, 2004, p. 201; Nylund, Asparouhov, & 

Muthén, 2007; Tofighi & Enders, 2008). For this reason alone, we approximate the 

posterior class probabilities using Akaike weights given by  

Pr(ℳ𝐾|𝑌
obs, 𝑋) ≈

exp (−
1
2AIC

(ℳ𝐾))

∑ exp(−
1
2AIC

(ℳ𝐾∗))ℳ𝐾∗

. (3.11) 

Summary  

 In summary, in this section we modified the hybrid imputation procedure with the 

intention to adequately reflect model uncertainty in the imputations. Specifically, our 

proposed method incorporates an enumeration step to define a set of competing models. 

A reference model is then selected among the competing models using Akaike weights. 

This hybrid imputation procedure is detailed in Algorithm 2 (Table 3.4). 

Applied Example: Case Study with ECLS-K 1998 Data 

We now apply our hybrid imputation procedure to a real-world dataset in order to 

conduct an initial investigation of its performance. In a pedagogical introduction to LPA 

for applied researchers, Berlin, Williams, & Parra (2014) demonstrated how to identify 

different profiles characterizing nutritional, physical activity, and sedentary behaviors 

among Black, non-Hispanic adolescents in the eighth grade. We build on and modify this 

example to investigate the performance of our proposed hybrid imputation procedure.  
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As with Berlin et al. (2014), we utilized data from the Early Childhood 

Longitudinal Study, Kindergarten (ECLS-K) 1998 cohort to serve as an illustrative 

example. The ECLS-K was a nationally representative, longitudinal study following more 

than 21,000 children enrolled in either full-time or part-time Kindergarten in the 1998-

1999 school year. The ECLS-K study followed the children to the end of eighth grade, 

with observations on a wide range of achievement, behavioral, psychological, and school-

environment outcomes being collected up to two times per school year.  

Research Context 

  Berlin et al. (2014) point out that over the past several decades, many studies have 

examined how nutrition and physical activity relate to body mass index (BMI) and differ 

across populations of adolescents, with several studies focusing on differences across sex, 

race, and ethnicity. As stated by Berlin et al. (2014), previous studies have found that 

Black, non-Hispanic youth are at an increased risk of being considered overweight or 

being diagnosed as obese (Davison & Birch, 2001; Ogden, Carroll, Kit, & Flegal, 2012). 

Medical and public health researchers have been interested in examining the 

environmental factors that contribute to these observations, including some hypothesizing 

that school-based determinants influence these disparities. School-based determinants in 

previous research include the availability of unhealthy foods and drinks, participation in 

physical education, and access to extracurricular intramurals or sports. Each of these 

determinants have previously been found to be associated with BMI in adolescents 

(Dennison, Erb, & Jenkins, 2002; Feng, Reed, Esperat, & Uchida, 2011; Fox, Dodd, 

Wilson, & Gleason, 2009; Hollar et al., 2010; Janssen & Leblanc, 2010).  
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Beyond school-based determinants such as PE, researchers are also investigating 

how an individual’s psychological functioning within the school environment contributes 

to between-group differences in obesity rates. The hypothesis considered by Berlin et al. 

(2014) is that the population of eighth graders represented in the ECLS-K is comprised of 

subpopulations defined by differences in physical activity, sedentary behaviors, and 

healthy dietary intake; the authors tested this hypothesis using LPA. 

Measures 

Indicator Variables  

Indicator variables included responses to items on a Likert scale that measure 

weekly physical activity, sedentary behaviors, and dietary intake. Three items measured 

physical activities, including participation in school sports (three categories), 

participation in non-school sports (four categories), days exercised in the past seven days 

(0-7 days; eight categories), and average days in PE per week (0-5 days; six categories). 

Six items measured sedentary behaviors by asking the number of hours per day (0-24 

hours; 25 categories) spent watching TV, playing videogames, or using the internet. Nine 

items measured dietary intake by asking the number of days (0-7 days; eight categories) 

specified foods (e.g., carrots, potatoes, fruit, fast food, etc.) or drinks (e.g., a glass of 

milk, a glass of juice, drank soda, etc.) were consumed.   

We made the following modification to Berlin’s (2014) pedagogical example: 

instead of relying on the raw responses to the items, we instead parceled items to 

construct three profile indicators that measure overall physical activity, sedentary 

behaviors, and dietary intake. We made this decision because LPA assumes the indicators 

are continuous and are not ordinal (as is the format of the raw responses). We constructed 
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the ACTIVITY parcel by standardizing all items before aggregating. The resulting 

ACTIVITY parcel exhibited an average inter-item correlation of 𝑟 = .19 (range = .13-.26; 

𝛼 = .48). Although the reliability for the ACTIVITY score would not be sufficient in a 

substantive research study, for the purposes of illustrating a statistical technique with a 

pedagogical example, we believe the reliability is adequate. We constructed the 

SEDENTARY and DIETARY parcels using the items in their raw scales because all 

items were on the same scale (i.e., hours per day or days per week). Further, all of the 

items used to construct the SEDENTARY and DIETARY parcels exhibited positive 

inter-item correlations (SENDENTARY: M = .36, range = .35-.37 ;  DIETARY: M = .20, 

range = .19-.22), and we concluded that both exhibited acceptable levels of internal 

consistency reliability for the purposes of an empirical example (SENDENTARY: 𝛼 = 

.77, DIETARY: 𝛼 = .59).  Histograms of parcel scores for the analytic sample are shown 

in Figure 3.1. Of note are bumps in density function on the positive end of the tails of the 

distribution for SEDENTARY and DIETARY, as well as the bump in the density 

function on the negative end of the tails for the ACTIVITY distribution. These bumps 

may be suggestive of a subpopulation higher than average on SEDENTARY and 

DIETARY parcel scores and lower than average on ACTIVITY parcel scores. 

 Auxiliary Variables  

We included several AVs which either demonstrated that they were predictive of 

profile membership in the previous LPA studies conducted by Berlin et al. (2017, 2014), 

or external variables that were observed to have an association with one or more of the 

profile parcel indicators. AVs include FEMALE, indicating whether the student identified 

as female; BMI, providing the body mass index of the student; TVROOM, indicating 
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whether the student had a television in their bedroom (1-yes; 0-no); and SES, providing a 

continuous measure of the student’s family’s socioeconomic status. School-level AVs 

include school urbanicity (URBAN) and indicators for whether high-sugar drinks 

(DRINKS), sweets and candy (SWEETS), and other unhealthy snacks (SNACKS) were 

available at school.  

We also included other psychosocial measures as AVs, including continuous 

measures of externalizing (SDQEXT) and internalizing (SDQINT) behaviors. Finally, we 

included measures of socioemotional constructs, including the student’s self-concept 

(CONCPT), perceived locus of control (LOCUS), and feeling of fitting in at school 

(FITIN) as additional AVs.  

Sample and Missing Data Mechanism 

Following Berlin (2014), only data for individuals who identify as Black, non-

Hispanic in eighth grade were analyzed in the illustrative example. However, because the 

intent of this study is to compare missing data strategies, we made the following 

inclusion criterion: observations required complete item-level responses on the profile 

indicators. We made no exclusions based on missingness on the AVs because the AVs 

should not directly inform class membership, even if they are predictive of the latent 

classes. Applying these inclusion and exclusion criteria results in a sample size of 𝑁 = 

608 girls and boys. In total, 20.7% of the observations were complete across all AVs. 

Missingness in the individual AVs ranged from 0-66.3% (M = 6.4%). For the empirical 

example, missingness was induced on the ACTIVITY, DIET, and SEDENTARY parcels 

using the ampute function as part of the mice R package. The missing data mechanism 

was specified so that missing indicator values were dependent on the student’s BMI. An 
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overall missingness rate of the indicator variables was set at 50%, with each variable 

missing approximately one-quarter of its observations. 

Model Selection and Class Definitions 

  Best practices for the class enumeration process and the decision on the number 

of subpopulations supported by the data continues to be an active area of research. Some 

simulation studies purport that the BIC (Nylund et al., 2007) and parametric bootstrap 

likelihood ratio tests  (McLachlan, 1987; McLachlan & Peel, 2004) perform best in 

identifying the number of classes; others have reported that the aBIC is superior (Tofighi 

& Enders, 2008). Given the ambiguities from simulation results, methodologists 

recommend that researchers settle on the number of classes by taking a holistic approach, 

informed by balancing statistical considerations, such as information criteria and 

hypothesis tests, with substantive considerations, such as the formation of very small and 

uninteresting classes if fitting a model with too many mixture components.  

  Although applied researchers have generally embraced the concept of balancing 

multiple statistical criteria with substantive considerations in published manuscripts 

employing LPA, there has been little consideration with regards to the within-class 

covariance structure. Masyn (2013) suggests that four alternative structures be examined, 

including (1) class-invariant, diagonal,  (2) class-varying diagonal, (3) class-invariant, 

unrestricted, and (4) class-varying, unrestricted covariance matrices. Thus, the model 

selection process involves identifying the number of classes supported by the data by 

considering different within-class covariance structures. To provide structure to such a 

process, Masyn (2013, p. 591) recommends a two-stage procedure for model selection. In 

the first stage, classes are enumerated separately across the four different covariance 
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structures to arrive at four candidate models. The second stage involves deciding among 

the four candidate models.  

Information criteria, likelihood ratio tests, and other relevant information for 

model selection across the four covariance structures is displayed in Table 3.6. Also 

provided is a brief explanation about why each model was selected. We settled on 𝐾 =

3 classes within each structure, with the exception of the class-varying, diagonal 

structure, for which we settled on 𝐾 = 4 classes.  

Next, to settle on a final model, we first employed chi-squared difference testing 

to test which of the three covariance structures was best supported among the three 

candidates, for which we settled on a 𝐾 = 3 classes (see Table 3.7). Although chi-square 

difference testing can be accomplished for testing nested models fit with the same 

number of classes, such a test cannot be performed for models with a different number of 

classes because of violations of the regularity conditions (McLachlan & Peel, 2004). The 

data supported a class-varying, unrestricted within-class covariance structure 𝐾 = 3 

solution over a class-invariant, diagonal structure (p < .001) or a class-invariant, 

unrestricted structure (p < .001). Thus, the final selection decision rested on choosing 

among the 𝐾 = 4 solution with a class-varying, diagonal structure or the 𝐾 = 3 decision 

with a class-varying, unrestricted structure.  

We selected the 𝐾 = 3 solution with a class-varying, unrestricted structure as the 

final model. Although the model specified with a 𝐾 = 4 class-varying diagonal structure 

displayed better model fit, the 𝐾 = 3 solution resulted in classes that were substantively 

more meaningful. Profiles with class-specific means plotted across the ACTIVITY, 
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SEDENT, and DIET parcels in the complete data case are displayed in Figure 3.2. We 

name our classes as follows: 

1. “Balanced” class (63.5%). Characterized by about-average levels of physical 

activity but exhibited both less sedentary behaviors and less dietary intake than 

the active-recovery class. 

2. “Active-recovery” class (31.8%). Higher-than-average physical activity levels and 

sedentary behaviors. 

3. “At risk” class (4.6%). Characterized by very high sedentary behaviors, high 

dietary intake, and substantially lower-than-average activity levels. 

Results 

 The profiles of estimated class-specific means when using a FIML estimation 

strategy, CART multiple imputation, and the proposed hybrid imputation procedure are 

displayed in Figure 3.2. As expected, we found a substantial discrepancy in the “at risk” 

class between estimated means when the missing data are treated with FIML compared to 

the complete data solution. In particular, the mean estimate for dietary consumption and 

activity is substantially more positive for the FIML estimate as compared to the mean 

estimates when fitting the complete data in the “at risk” class. As expected, due to the 

small sample size, the performance of MI by CART imputation was mixed. CART 

imputation better recovered mean values in dietary consumption in the “at risk” class; 

however, it failed to adequately recover the mean values for activity and sedentary 

behaviors.  

 Surprisingly, the performance of the MI by hybrid imputation was also mixed. As 

with CART imputation, the proposed hybrid imputation strategy better recovered mean 
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estimates for the “at risk” class for dietary intake. However, hybrid imputation failed to 

recapture corresponding mean values for activity levels and sedentary behaviors. 

Additionally, Table 3.8 displays the discrepancies between the complete data 

standardized means and the estimate obtained from each model. While hybrid imputation 

was superior for recovering means across the indicators for the “Balanced” class, 

surprisingly, FIML generally better recovered means of the indicators for the two other 

classes. We discuss the implication of these mixed findings next. 

Discussion 

 We have investigated a proposed hybrid imputation strategy that incorporates a 

mixture regression model to impute class indicators that selects the number of classes 

iteratively so that model uncertainty is reflected in the imputations. We compared the 

performance of our proposed strategy to FIML and CART imputation using an empirical 

example from the ECLS-K dataset. We found surprisingly mixed results, with hybrid 

imputation better recapturing class-specific means on some indicators but FIML better 

recapturing the means for the indicators in most of the cases.  

 To understand these results, we first ruled out that the poor performance may be 

the result of data being generated from an uncongenial model. In particular, we would 

have expected poor performance if imputations were being generated from a mixture 

model with fewer than the true number of components. This is because such a model is 

less complex than the true data generating mechanism, and congeniality requires that the 

imputation model be at least as complex as the data generating mechanism. Figure 3.3 

illustrates the number of classes selected at each iteration of the MCMC chain. Our 

model selection procedure resulted in a model that is at least as complex in the vast 
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majority of iterations (99.3%). This result is to be expected because the AIC is known to 

over extract the number of classes. In summary, the mixed results were not explained by 

selecting a model with too few components.  

 We believe there are several modifications we can make in future work to 

improve the performance of the hybrid imputation strategy. This includes incorporating 

prior information to circumvent unbounded likelihoods and mixture model averaging to 

utilize all information from overfit mixture models. We discuss each of these two 

modifications in more detail.  

Incorporating Prior Information to Improve Estimation Stability 

We often encountered convergence issues, in that the likelihood function behaved 

as if it were unbounded and unstable when fitting mixture models at each iteration of the 

MCMC chain. An unbounded likelihood is a known issue when the within-class variance 

covariance matrix, Σ𝑘, is not constrained (McLachlan & Peel, 2004, p. 4). In future work, 

we will specify weakly informative priors on the class-specific variance-covariance 

matrix in order to remedy this issue and allow for more stable estimation to proceed.  

In addition, priors can be specified on 𝛼 parameters that define the weights of the 

mixture, 𝜋(𝒙𝑖). In fact, the posterior distribution of parameters from an overfitted 

mixture has much more stable behavior than the likelihood function when the priors on 

the marginal probability parameters are sufficiently shrunk towards zero (Celeux, 

Fruewirth-Schnatter, et al., 2018, p. 142; Rousseau & Mengersen, 2011). Specifying 

priors may lead to more stable behavior in sampling the mixture regression model 

parameters obtained for the joint modeling step.  
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Mixture Model Averaging  

 In addition to incorporating prior information, we plan to modify our proposed 

hybrid imputation procedure in a manner that incorporates mixture model averaging (Wei 

& McNicholas, 2015). Mixture model averaging involves selecting a reference model and 

then incorporating all available information from models fit with more components to the 

reference model to improve classification quality. In this way, all relevant information 

could inform class membership during each iteration of the MCMC chain.  

 Mixture model averaging proceeds by mapping (or merging) the clusters from the 

more complex mixture model to the clusters from the simpler reference model. This is 

done by considering different merging combinations and selecting the combination that 

minimizes the Rand index. Posterior class probabilities following mixture model 

averaging are then computed through a weighted average of the class probabilities from 

each overfitted model, weighted by the posterior model probabilities. Wei & McNicholas 

(2015) find that mixture model averaging improves the classification quality of the 

resulting clusters. The improvement in classification quality likely would result in 

improved imputation efficiency, which is important to counteract the inefficiency caused 

by relying on the AIC, as it results in an overfit (but congenial) mixture model. Mixture 

model averaging is a Bayesian model averaging procedure and, therefore, is a more direct 

extension of the Kaplan & Yavuz (2019) imputation approach to account for model 

uncertainty than the hybrid procedure we have proposed.  

 In conclusion, identifying methods that produce proper imputations in small-

sample settings (e.g., 𝑁 = 300) or in large samples (e.g., 𝑁 = 1,200) when a small class is 

present (e.g., a class that represents 10% of the population) and class separation is weak 
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(e.g., entropy is approximately .74) is an important step for multiple imputation to 

become a mainstream strategy for treating missing data in person-centered analyses like 

LPA. We investigated whether a proposed a hybrid imputation procedure that 

incorporates mixture modeling would perform well in these settings. We were surprised 

to find that the proposed procedure poorly recaptured the class-specific means in an 

illustrative example using the ECLS-K. In response, we outlined several modifications 

we plan to make for future work
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Tables 

 

Table 3.1  

Summary of EM with Sampling  

EM with Sampling 

1. Identify a multivariate distribution to 

model the complete data, 𝑌|𝑋. 

 

2. Bootstrap the data. 

 

3. Fit the multivariate model in Step 1 

using the EM algorithm to the 

bootstrapped data. 

 

4. Sample from the conditional distribution 

𝑌mis|𝑌obs, 𝑋 using the parameter 

estimates obtained from Step 3.  

 

5. Repeat Steps 2-4 many times to form an 

MCMC chain. 
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Table 3.2  

Algorithm 1: Proposed Hybrid MICE Procedure when ℳ𝐾 is Known 

1. Specify an imputation model for the missing data correlates, [𝑋𝑝
mis|𝑋𝑝

obs, 𝑋−𝑝, 𝑌, 𝜅, 𝜙𝑝, 𝑅] for 

each 𝑝 = 1,… , 𝑃 

2. Initialize 𝜿. Fit a k class mixture model to 𝑌obs. Save the corresponding parameter estimates 

�̂�(0). Use �̂�(0) to obtain the estimated posterior class probability vector for each individual,𝜏𝑖
(0)

. 

For each individual, sample 𝜅𝑖
(0)~Multinomial(𝜏𝑖

(0)) to obtain 𝜿(0). 

3. Initialize 𝒀mis. Using �̂�(0) and 𝜿(0), sample from the conditional predictive distribution 

𝑌mis
(0)
~[𝑌mis|𝑌obs, �̂�(0), 𝜿(0)] using EM with sampling or alternative multivariate imputation 

procedure. Note that in the initialization step, the predictive distribution need not be conditional 

on the missing data correlates. 

4. Initiate 𝑋. Stratified by classes as specified by 𝜿(0), fill in starting imputations 𝑋𝑝
(0)

 by random 

draws from the observed values 𝑋𝑝
obs.  

5. Repeat for iterations 𝑡 = 0,… , 𝑇 

a. JM step. Impute the class indicators using the EM with sampling procedure outlined 

in Subroutine 1. 

b. FCS step. For each 𝑝 = 1,… , 𝑃 

i. Sample weights from 𝒘𝑝
(𝑡+1)~Dirichlet(𝑁, 𝟏).  

ii. Fit the imputation model identified in Step 1 with sampling weights  𝒘𝑝
(𝑡+1)

 to 

obtain �̂�𝑝
(𝑡+1)

 

iii. From the fitted model, impute 𝑋𝑝
mis by sampling from the predictive 

distribution implied in Step 1.  
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Table 3.3  

Subroutine 1: Single Iteration of EM with Sampling Procedure for Sampling 𝑌𝑚𝑖𝑠 

1. Sample weights from 𝒘0
(𝑡+1)~Dirichlet(𝑁, 𝟏).  

2. Sample sufficient statistics by fitting the mixture regression model below with 𝒘0
(𝑡+1)

 

specified as sampling weights and obtaining the corresponding MLE, �̂�(𝑡+1). 

 

3. Obtain posterior class probabilities �̂�𝑖𝑘
(𝑡+1)

 for each observation using �̂�(𝑡+1) and 𝑋(𝑡) via  

 

 

�̂�𝑖𝑘
(𝑡+1) =

�̂�𝑖𝑘
(𝑡+1)𝒩𝐽(�̂�𝑖𝑘

(𝑡+1), Σ̂𝑘
(𝑡+1))

∑ �̂�𝑖𝑘
(𝑡+1)𝒩𝐽(�̂�𝑖𝑘

(𝑡+1), Σ̂𝑘
(𝑡+1))𝐾

𝑘=1

 

 

where 

�̂�𝑖𝑘
(𝑡+1) =

{
 
 

 
 exp(𝒙𝑖

(𝑡+1)�̂�𝑘
(𝑡+1))

1 + ∑ exp(𝒙𝑖
(𝑡+1)�̂�𝑘

(𝑡+1))𝐾−1
𝑘=1

if 𝑘 < 𝐾

1

1 + ∑ exp(𝒙𝑖
(𝑡+1)�̂�𝑘

(𝑡+1))𝐾−1
𝑘=1

if 𝑘 = 𝐾

 

 

and 

�̂�𝑖𝑘
(𝑡+1) = 𝒙𝑖

(𝑡+1)�̂�𝑘
(𝑡+1)

 

4. Sample class membership. For each individual, sample 𝜅𝑖
(𝑡+1)~Multinomial(�̂�𝑖

(𝑡+1)
) 

5. Sample 𝑌mis. Using �̂�(𝑡+1) and 𝜅𝑖
(𝑡+1)

, sample plausible values for 𝑌mis  by sampling from the 

posterior predictive distribution [𝑌mis|𝑌obs, �̂�(𝑡+1), 𝜿(𝑡+1), 𝑋(𝑡), 𝑅] where 

 

[𝒚𝑖
mis|𝒚𝑖

obs, �̂�(𝑡+1), 𝜅𝑖
(𝑡+1), 𝑋(𝑡), 𝑅]~𝒩𝐽(�̂�𝑖𝑘

mis, Σ̂𝑖𝑘
mis),  

�̂�𝑖𝑘
mis = �̂�𝑖,𝑘

(𝑡+1)[\𝒓𝑌,𝑖]

+ Σ̂𝑘
(𝑡+1)[\𝒓𝑌,𝑖 , 𝒓𝑌,𝑖](Σ̂𝑘

(𝑡+1))
−1
[𝒓𝑌,𝑖 , 𝒓𝑌,𝑖](𝒚𝑖

𝑜𝑏𝑠

− �̂�𝑖,𝑘
(𝑡+1)[𝒓𝑌,𝑖]) 

Σ̂𝑖𝑘
mis = Σ̂𝑘

(𝑡+1)[𝒓𝑌,𝑖 , 𝒓𝑌,𝑖] − Σ̂𝑘
(𝑡+1)[\𝒓𝑌,𝑖 , 𝒓𝑌,𝑖](Σ̂𝑘

(𝑡+1))
−1
Σ̂𝑘
(𝑡+1)[𝒓𝑌,𝑖 ,\𝒓𝑌,𝑖] 

 

and 𝒓𝑌,𝑖 is a scalar or vector indexing the observed responses so that \𝒓𝑌,𝑖 refers to the index of 

missing responses for individual 𝑖.   
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Table 3.4  

Algorithm 2: Proposed BMA-Hybrid MICE Procedure when ℳ𝐾 is Unknown 

1. Conduct Steps (1)-(5) in Algorithm 1 

2. Repeat for iterations 𝑡 = 0,… , 𝑇 

a. JM with BMA Step. Impute the class indicators using the EM with sampling 

procedure outlined in Subroutine 2. 

b. FCS step. For each 𝑝 = 1,… , 𝑃 

i. Sample weights from 𝒘𝑝
(𝑡+1)~Dirichlet(𝑁, 𝟏).  

ii. Fit the imputation model identified in Step 1 with sampling weights  𝒘𝑝
(𝑡+1)

 to 

obtain �̂�𝑝
(𝑡+1)

 

iii. From the fitted model, impute 𝑋𝑝
mis by sampling from the predictive 

distribution implied in Step 1.  

 

 

Table 3.5  

Subroutine 2: Proposed BMA-Hybrid MICE Procedure when ℳ𝐾 is Unknown 

1. Sample weights from 𝒘0
(𝑡+1)~Dirichlet(𝑁, 𝟏).  

2. Enumeration. Define Occam’s window by enumerating the classes and fitting regression 

mixture models weighted by 𝒘0
(𝑡+1)

 until convergence issues are reached. This will lead to the 

set  {𝜃𝐾
(𝑡+1):  1 ≤ 𝐾 ≤ 𝐺} 

3. Sample Reference Model, H. Among the models in Occam’s window, sample the reference 

model, ℳ𝐻, with probability 

 

Pr(𝐻 = 𝐾) =
AIC(t+1)(ℳ𝐾)

∑ AIC(t+1)(ℳ𝐾∗)
𝐺
𝐾∗=1

, 𝐾 = 1,2, … , 𝐺 

  

4. Sample 𝑌mis. Using the estimates from the reference model, complete Steps (3)-(5) in 

Subroutine 1.  
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Table 3.6   

Class Enumeration: ECLS-K Illustrative Example 

 

 
Notes. Highlight indicates candidate models across the class-specific variance-covariance 

specifications.  
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Table 3.7   

Chi-square Difference Tests: ECLS-K Illustrative Example  

H0 Model 

 

df p 

  2 Profiles 

1 Class-invariant, diagonal  43.38 9 <0.001 

2 Class-varying, diagonal  27.62 6 <0.001 

3 Class-invariant, unrestricted 34.86 6 <0.001 

  3 Profiles 

4 Class-invariant, diagonal  426.62 15 <0.001 

5 Class-varying, diagonal  228.69 9 <0.001 

6 Class-invariant, unrestricted 376.31 12 <0.001 

  4 Profiles 

7 Class-invariant, diagonal  282.62 21 <0.001 

8 Class-varying, diagonal  39.69 12 <0.001 

9 Class-invariant, unrestricted 294.11 18 <0.001 
Notes. With the exception of (1) and (3) which employed a Wald test due to 

negative test statistic values, Satorra-Bentler scaled chi-square statistic was 

employed for all hypothesis testing. Model selected through enumeration 

highlited.  

 

Table 3.8   

Discrepancies Against Complete Data Estimates: 

ECLS-K Illustrative Example  

  ACTIVITY SEDENT DIET 

 
Class 1: “Balanced” 

FIML -0.032 -0.052 -0.081 

CART -0.021 -0.049 -0.093 

Hybrid -0.005 0.016 -0.011 

 
Class 2: “Active-recovery” 

FIML -0.043 -0.008 -0.133 

CART -0.163 -0.079 -0.224 

Hybrid -0.069 -0.136 0.187 

 
Class 3: “At risk” 

FIML 0.506 -0.098 1.467 

CART 1.098 -0.75 0.66 

Hybrid 0.738 -1.232 -0.41 

Notes. Standardized units. Best peforming model is bolded. 

𝝌𝟐 
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Figures 

 

Figure 3.1 

Standardized Parcel Scores: ECLS-K Illustrative Example 
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Figure 3.2  

Profile Plot by Imputation Method: ECLS-K Illustrative Example 

 
Notes. Profiles constructed by plotting class-specific means across the parcels. Class 1 corresponds to the 

“Balanced” profile, Class 2 corresponds to the “Acitve-recovery” profile, and Class 3 corresponds to the “At-

risk” profile. Complete data results shown by solid black line. Dashed lines indicate solutions given missing 

data according to an imputation method. 
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Figure 3.3   

AIC Imputation Model Selection 

 
Notes. MCMC chain contained 500 iterations. 
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Chapter 4: On Model Selection using Information Criteria with Finite Mixtures in 

the Presence of Missing Data 

Marcus R. Waldman & Katherine E. Masyn 

Education and behavioral science researchers conduct person-centered analysis to 

identify homogenous subpopulations within a larger heterogenous population. Through 

the process of identifying these subpopulations, researchers are investigating sources of 

unobserved heterogeneity that cannot be obtained by traditional variable-centered 

analytic strategies, such as linear regression models, factor analysis, or structural equation 

modeling. Some examples of person-centered analysis performed by behavioral 

researchers include the identification of developmental trajectories for socio-emotional 

difficulties (McCoy, Jones, Roy, & Raver, 2017), the discovery of emergent patterns of 

ADHD psychopathologies in school-aged children (Ostrander, Herman, Sikorski, 

Mascendaro, & Lambert, 2008), and the investigation of distinct typologies of students 

who choose to drop out of high school (Bowers & Sprott, 2012). The rapid adoption of 

person-centered analysis in the last decade demonstrates that advancing behavioral 

research requires statistical methods that do not assume all individuals follow a single 

relationship, process, or trajectory. Instead, person-centered analysis represents an 

advancement because the focus of study is on exploring how individuals are 

systematically similar or different from one another. 

Researchers rely heavily on finite mixture models to conduct person-centered 

analysis. Finite mixture models partition the overall population into a specified number of 

latent classes; each latent class is assumed to represent a distinct subpopulation of 

individuals within the larger population. The classes are “latent” because class 
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membership cannot be ascertained directly, and the mixture models are “finite” because 

the researcher must specify the number of classes to be modeled. Because the number of 

classes is rarely known a priori, it must be inferred from the sample through a model 

selection process. Model selection involves fitting a sequence of finite mixture models 

with increasingly more classes and then proceeding to select a final model from the 

sequence by analyzing the model fit information.  

The model selection process remains controversial and is a longstanding 

challenge, even after more than 30 years of sustained research. Over this time period, 

there has been a myriad of proposed strategies, including traditional frequentist 

information criteria (IC), newer criteria specifically designed for mixture models (e.g., 

Drton & Plummer, 2017), k-fold cross-validation procedures (Grimm, Mazza, & 

Davoudzadeh, 2017; He & Fan, 2019), specialized nested model tests (Lo, Mendell, & 

Rubin, 2001; McLachlan, 1987), measures of classification quality (Celeux & 

Soromenho, 1996), and alternative ad-hoc approaches that are purported to work well in 

practice absent a theoretical basis (Celeux, Fruewirth-Schnatter, & Robert, 2018). No 

single procedure has proven best in simulations, and the current recommendation is that 

applied researchers synthesize all available statistical information and augment that 

information with substantive theory to justify and settle on a final model (Masyn, 2013; 

Ram & Grimm, 2009).  

In vetting all the available information for model selection, applied researchers 

tend to use the Akaike information criterion (AIC; Akaike, 1974), the Bayesian 

information criterion (BIC; Schwarz, 1978), and the adjusted BIC (aBIC; Sclove, 1987) 

to justify a final model. Multiple ICs are required because no single IC is best at 



131 

 

accomplishing two complementary but distinct goals: identifying the correct number of 

subpopulations present in the data (i.e., consistency) and maximizing out-of-sample fit of 

the multivariate distribution that is implied by the fitted mixture model (i.e., prediction). 

In particular, the BIC is consistent in that it will lead to correct model selection decisions 

if the true model is one that is under consideration when sample sizes are sufficiently 

large. However, the AIC leads to selection decisions that minimize fit to out-of-sample 

data if the true model is not in the sequence of models actually fit to the data. Therefore, 

applied researchers must balance the competing goals of consistency and prediction in 

real-world settings by synthesizing the evidence from each IC when settling on a final 

model (Masyn, 2013; Ram & Grimm, 2009). 

However, the ICs all make simplifying assumptions, rely on asymptotic 

principles, and assume the data are complete (i.e., non-missing). Consequently, 

methodologists have conducted simulation studies that are designed to evaluate how 

consistency and prediction play out in real-world conditions experienced by researchers 

conducting a person-centered analysis (e.g., Drton & Plummer, 2017; Nylund, 

Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008). As evidenced by Nylund et al.’s 

(2007) paper demonstrating the consistency properties of the BIC being cited over 5,000 

times since its publication, these simulation studies have played a prominent role in 

shaping model selection decisions and have complemented our understanding of how 

consistency and prediction manifest in real-world data. 

Even so, simulation studies conducted to date have assumed that data are 

complete, although missing data is almost inevitable in the behavioral sciences. 

Presumably, model selection decisions made when data are missing adequately replicate 
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the decisions that would have been made if the data were fully observed, provided that 

the researcher employed appropriate missing data strategies. We challenge this 

assumption and assert that it remains an open question whether model selection decisions 

will replicate, even if appropriate missing data strategies are employed. Indeed, if model 

selection decisions fail to replicate in the presence of missing data, then we must 

understand the causes behind such a phenomenon in order to update our best practices.  

There are many reasons why model selection decisions may fail to replicate when 

the data are missing. Nonresponse bias is the most obvious. If the missing data 

mechanism is not ignorable because the data are missing not at random (MNAR; Rubin, 

1976), then the parameters that define the subpopulations may themselves be biased. As a 

result of nonresponse bias, the latent classes may exhibit decreased separation, with the 

limiting case occurring when the classes collapse into a single class. Intuitively, bias that 

results in decreased class separation, especially collapse, would lead to systematically 

under extracting the true number of classes, thereby potentially obfuscating important 

sources of heterogeneity. 

A less obvious reason why model selection decisions may not replicate involves 

sample size. In fact, in small samples with missing data treated with FIML, it is well 

established that hypothesis tests exhibit inflated Type I error rates. As pointed out by 

McNeish & Harring (2017), this is because a reference distribution with 𝑁 complete 

observations is assumed. When data are missing, the reference distribution fails to 

capture the added variability induced by uncertainty associated with the missing data. 

The problems associated with inference when data are missing and sample sizes are small 

are not limited to hypothesis tests, however. For example, the penalty term for the BIC 
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multiplies the number of parameters by log 𝑁. This penalty term assumes that 𝑁 

observations are complete. Consequently, in sample sizes experienced by real-world 

researchers (𝑁 = 300-1,200), the BIC may over-penalize models when data are missing. 

We show that the relative magnitude of this over-penalization depends on the fraction of 

missing information—a prominent quantity in missing data theory. Our simulations 

suggest that the BIC tends to under extract the true number of classes, especially when 

sample sizes are small or there exists a small-sized class. 

Finally, model selection decisions may not replicate if a multiple imputation 

strategy is employed and ICs are averaged across the imputed datasets, as is done in 

leading person-centered software such as Mplus (Muthén & Muthén, 2017) or 

LatentGOLD (Vermunt & Magdison, 2016). This is because averaging assumes that the 

average of the model deviances obtained from the imputed datasets is an unbiased 

estimate for the complete data model deviance. We show that averaging leads to a biased 

estimate of the complete data deviance. Several alternative model selection procedures to 

averaging have been proposed (Chaurasia & Harel, 2012; Consentino & Claeskens, 2010; 

van Buuren, 2012; Wood, White, & Royston, 2008); however, no strategy has been 

shown to be universally superior (van Buuren, 2018), and none have been evaluated in 

the context of finite mixture models. To fill this gap in research, we evaluate several 

alternative model selection procedures when fitting finite mixture models. We show that 

a stacking strategy, whereby a final model is selected by appending all imputed datasets 

into a single flat file, results in model selection decisions that better capture the decision 

that would have been made had the data been complete. 
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In summary, our simulations indicate that model selection decisions using ICs are 

not robust to missing data, regardless of whether FIML or multiple imputation is 

employed. This finding highlights that missing data is an area that has been too long 

ignored in person-centered analysis. It further identifies an important area for further 

methodological inquiry, given that researchers in education and psychology are 

increasingly using mixture models to identify sources of unobserved heterogeneity in 

individual outcomes, trajectories, and processes.  

To be clear, our central argument is not that FIML or multiple imputation are 

fundamentally limited as missing data strategies in person-centered analysis. Instead, our 

central argument is that model selection is currently conducted using practices with 

strong assumptions that are easily violated and highly sensitive to missing data. This is 

true regardless of whether a FIML or multiple imputation strategy is employed. By 

gaining a deeper understanding of how the underlying causes of these assumption 

violations manifest in practice, we seek to bring attention to this issue so that best 

practices can be updated and remedial measures, like the two we propose, can be taken.  

Missing Data Approaches to Estimating Finite Mixture Models  

Notation and Background 

Finite mixture modeling exploits the law of total probability to model the joint 

density of individual 𝑖’s data vector, 𝒚𝑖, as a weighted average across 𝐾 component 

densities  

Pr(𝒚𝑖) = ∑ Pr(𝜅 = 𝑘) Pr(𝒚𝑖|𝜅 = 𝑘)

𝐾

𝑘=1

(4.1) 



135 

 

where 𝜅 is a categorical latent variable representing a latent class, and the family of the 

conditional distribution Pr(𝒚
𝑖
|𝜅 = 𝑘) is assumed to be known. In this study, we consider 

a finite mixture of Gaussians where the conditional distribution is assumed to be a 

multivariate normal distribution 

[𝒚𝑖|𝜅 = 𝑘] ~𝒩𝐽(𝝁𝑘, Σ𝑘)   ∀ 𝑘 = 1, … , 𝐾  (4.2) 

where the data vector 𝒚𝑖 is of size 𝐽, 𝝁𝑘 is the 𝑘th component mean vector, and Σ𝑘 is the 

𝑘th component variance covariance matrix. A finite mixture of Gaussians is frequently 

fitted when applied researchers conduct a latent profile analysis (LPA) to cluster 

individuals and identify homogenous subpopulations within a larger population. Here, the 

𝐽 “indicators” of the clusters contained in 𝒚𝑖 and the indicators are generally treated as a 

continuous random variable.  

In LPA, applied researchers typically do not know the value of 𝐾 or the structure 

of the component variance-covariance matrix, Σ𝐾. It is often observed in practice that if 

Σ𝑘 includes freely estimated covariance terms, then convergence issues result because the 

likelihood can be unbounded. Unboundedness is not present and convergence issues are 

less prevalent in conditional independence models where the component variance-

covariance matrix is diagonal and of the form  

Σ𝑘 =  diag(𝝈𝑘
2)   ∀ 𝑘 ∈ {1,2, … , 𝐾} (4.3) 

where 𝝈𝑘
2 = [𝜎1𝑘

2 , 𝜎2𝑘
2 , … , 𝜎𝐽𝑘

2 ]. For notational convenience, we assume that indicators are 

conditionally independent, except in the case of single-class models where the indicators 

can freely covary. We note, however, that conditional independence is a strong 

assumption, and alternative specifications of the component variance-covariance matrices 

should be tested when conducting a person-centered analysis in practice (Masyn, 2013).  
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Under conditional independence, the sequence of models fit to the data can be 

written as 𝓜 = {ℳ𝐾: 𝐾 = 1,2, … } where 𝐾 is the number of components. The likelihood 

of observing the collection of complete 𝒚𝑖 for all 𝑁 individuals, denoted 𝑌, given a model 

with 𝐾 components is 

ℒ(𝜃𝐾|𝑌, ℳ𝐾) = ∏ ∑ 𝜋𝑘

𝐾

𝑘=1

∏ 𝜙(𝑦𝑖𝑗|𝜇𝑗𝑘, 𝜎𝑗𝑘
2 )

𝐽

𝑗=1

𝑁

𝑖=1

 (4.4) 

where 𝜃𝐾 = {𝝁𝑘, 𝝈𝑘
2 , 𝜋𝑘: 𝑘 = 1, … 𝐾}, 𝜋𝑘 is a parameter for the marginal probability 

Pr(𝜅 = 𝑘), and 𝜙 is the univariate normal density. The equation in (4.4) is the complete-

data likelihood because all elements in the data matrix 𝑌 are complete. The 

corresponding complete-data loglikelihood is  

ℓ(𝜃𝐾|𝑌, ℳ𝐾) = log ℒ(𝜃𝐾|𝑌, ℳ𝐾) = ∑ log ∑ 𝜋𝑘

𝐾

𝑘=1

∏ 𝜙(𝑦𝑖𝑗|𝜇𝑗𝑘, 𝜎𝑗𝑘
2 )

𝐽

𝑗=1

𝑁

𝑖=1

. (4.5) 

Software relies heavily on the expectation-maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977) to calculate the maximum likelihood estimates, 𝜃𝐾, 

although gradient-based optimization methods can also be used to assist in obtaining 

faster convergence. We refer the interested reader to the vast theoretical literature 

regarding the EM algorithm (R. J. Little & Rubin, 2002; McLachlan & Krishnan, 2008; 

Schafer, 1997), including its extensions and applications to mixture modeling (Frühwirth-

Schnatter, Celeux, & Robert, 2019, Chapter 2; McLachlan & Peel, 2004). Briefly, the EM 

algorithm is a two-step procedure. In the E-step, an individual’s probability of belonging 

to each of the 𝜅 = 1, … , 𝐾 class is calculated. These values are referred to as posterior 

class probabilities. In the M-step, the parameters in 𝜃𝐾 are updated by what the 𝜃𝐾 values 

would have been if 𝜅 had been observed and weighted by the posterior class probabilities. 
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Thus, even when the indicator data are complete, the EM algorithm treats the estimation 

problem as a missing data problem such that each individual’s 𝜅 value is missing. The E-

step provisionally treats the missing data problem using the current 𝜃𝐾 estimates in the 

cycle, while the M-step updates the parameters as if the data were complete. The E-step 

and M-step repeat until the parameter estimates converge.  

Ignorability and FIML 

In the presence of missing indicator data, 𝑌 can be partitioned into observed and 

missing subsets (i.e. 𝑌 = {𝑌obs, 𝑌mis}). The observed data loglikelihood for model ℳ𝐾 is 

calculated by including only the observed elements in the likelihood calculation, i.e.  

ℓobs(𝜃𝐾|𝑌obs, ℳ𝐾) = ∑ log ∑ 𝜋𝑘

𝐾

𝑘=1

∏ 𝜙(𝑦𝑖𝑗|𝜇𝑗𝑘, 𝜎𝑗𝑘
2 )

{𝑗:  𝑦𝑖𝑗∈𝑌obs}

𝑁

𝑖=1

. (4.6) 

 

As is the case when the indicator data were fully observed, estimates for 𝜃𝐾 in the 

presence of missing data can be obtained through either the EM algorithm or through 

direct likelihood approaches using gradient-based optimization algorithms. In particular, 

the E-step is augmented such that the missing data problem in 𝑌 is also provisionally 

treated, in addition to provisionally treating the missing 𝜅 values. Alternatively, a direct 

likelihood approach applies root finding optimization techniques to maximize the 

observed data likelihood. Whether maximized by the EM algorithm or by direct 

likelihood, all available elements in 𝑌obs inform the calculation of the corresponding 

observed-data likelihood function and, therefore, influence the final parameter estimates. 

This procedure, FIML, therefore gets its name because all available information is 

utilized, unlike in complete case analysis. 
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To produce parameter estimates free of nonresponse bias, FIML requires that the 

so-called ignorability assumption be tenable. Ignorability means that the missing data 

mechanism can be ignored when maximizing the observed-data loglikelihood function 

(Rubin, 1976). To understand why, consider that theoretical justifications for all 

treatments of missing data, including FIML, begin by studying the joint distribution of 

the complete data and the missing data mechanism 

Pr(𝑌obs, 𝑌mis, 𝑅|𝜃𝐾 , 𝜓, ℳ𝐾) (4.7) 

where the complete data 𝑌 is segmented into observed 𝑌obs and missing 𝑌mis components, 

𝑅 is the pattern of missingness, and 𝜓 are a set of nuisance parameters describing the 

missing data mechanism.  

As can be seen in (4.6), the missing data mechanism is ignored in the observed-

data likelihood because no terms depend on 𝑅. Ignoring the missing data mechanism 

requires that the data be MAR and that the 𝜃𝐾 parameters be “distinct” from the 𝜓 

parameters, with the latter assumption being tenable under general conditions in practice 

(Schafer, 1997, p. 11). Formally, the data are MAR provided that the missing data 

mechanism is independent of the missing values, conditional on the observed values, i.e.  

Pr(𝑅|𝑌obs, 𝑌mis, 𝜓, ℳ𝐾) = Pr(𝑅|𝑌obs; 𝜓, ℳ𝐾). (4.8) 

The MAR assumption is not fully testable because the missing data mechanism 

may depend on unobservables. To make the ignorability assumption more tenable, 

methodologists recommend that applied researchers employ a “fully inclusive” (Collins, 

Schafer, & Kam, 2001) approach by incorporating many auxiliary variables (AVs) as 

missing data correlates to attenuate any resulting nonresponse bias (Enders, 2010; T. D. 

Little, Jorgensen, Lang, & Moore, 2014; Schafer & Graham, 2002). Simulations have 
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shown that incorporating AVs that explain at least 16% of the variance in the observed 

indicator data can significantly attenuate nonresponse bias (Enders, 2010). Although 

several methods exist to incorporate AVs with the covariance structure models used for 

variable-centered analyses, no such procedures have been developed for mixture models. 

In fact, a current restriction of FIML for person-centered analysis is the inability to 

accommodate missing data correlates in a manner that does not sacrifice the 

interpretability of the classes themselves (see Chapter 2). As a result, parameter estimates 

exhibit bias in real-world settings where missingness most often depends on variables 

other than the observed values of the indicators themselves. 

Conditional Ignorability and Multiple Imputation 

In practice, it is often the case that the ignorability assumption is not tenable 

without the inclusion of AVs. Specifically, conditional ignorability relaxes the 

assumption that missingness is independent of the missing indicator data. A less 

restrictive assumption is that the missing data mechanism is independent of the missing 

values conditional on the observed data and a set of AVs, 𝑋,  

Pr(𝑅|𝑌obs, 𝑌mis, 𝑋, 𝜓, ℳ𝐾) = Pr(𝑅|𝑌obs, 𝑋, 𝜓, ℳ𝐾) . (4.9) 

Multiple imputation is generally more flexible in accommodating AVs so that an 

inclusive missing data strategy is employed and the less restrictive conditional 

ignorability assumption is made (Enders, 2010). This is especially true in mixture settings 

because the multiple imputation procedure completely separates the treatment of the 

missing data from the person-centered analysis itself. In Chapter 2, we explained how 

this separation protects the definition of the classes from being influenced by the AVs 

beyond what is required to treat the missing data.  
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Multiple imputation is conducted in three separate phases, which consist of (1) an 

imputation phase, (2) an analysis phase, and (3) a pooling phase. In the imputation phase, 

the researcher generates 𝑚 = 1, … , 𝑀 completed (i.e., imputed) datasets by substituting 

the missing data with plausible values drawn from probability distribution implied by the 

imputation model. We denote the 𝑚-th imputed dataset as 𝑌𝑚
imp

. In the analysis phase, the 

researcher fits the analysis model as if the data were complete to each of the 𝑀 imputed 

datasets. Finally, the estimates from the 𝑀 analyses must be pooled for inference. 

Multiple imputation is justified under a Bayesian framework. Accordingly, 

researchers seeking to make frequentist inferences using multiple imputation must rely on 

the asymptotic properties guaranteed by the Bayesian central limit theorem. Briefly, the 

Bayesian central limit theorem states that Bayesian and frequentist inference will agree 

under many conditions if the sample size is large enough (Freedman, 1963, 1965; Kaplan, 

2014, pp. 26–30; Le Cam, 1986, pp. 618–621). From a Bayesian perspective, uncertainty 

in the parameter estimates caused by missing data is fully captured by the observed data 

posterior distribution given by 

Pr(𝜃𝐾|𝑌obs, 𝑋; ℳ𝐾) ∝ ∫ Pr(𝜃𝐾|𝑌obs, 𝑌mis; ℳ𝐾 ) Pr(𝑌mis|𝑌obs, 𝑋) 𝑑𝑌mis

𝑌mis

 (4.10) 

where [𝜃𝐾|𝑌obs, 𝑌mis, ℳK] is referred to as the complete data posterior distribution and 

[𝑌mis|𝑌obs, 𝑋] is the posterior predictive distribution for 𝑌mis (R. J. Little & Rubin, 2002, 

p. 210; Rubin, 1987; van Buuren, 2018, pp. 41–44).  The integral in (4.10) implies that 

valid inferences for 𝜃𝐾 can be accomplished through a marginalizing process over all 

plausible values for 𝑌mis, provided that independent samples from the posterior predictive 

distribution can be obtained (R. J. Little & Rubin, 2002; Rubin, 1987). As defined by 
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Schafer (1997, p. 105), if imputations are “Bayesianly proper” in that they are 

independent samples from the posterior predictive distribution for 𝑌mis, then valid 

Bayeisan inference is assured.  

The posterior distribution for 𝜃𝐾 in (4.10) must be approximated by numerical 

integration techniques. Combined, the imputation and analysis phase of multiple 

imputation is a Monte Carlo numerical integration strategy to approximate the integral. A 

common simplifying assumption is that the observed data posterior follows a normal 

distribution, which is generally guaranteed when the sample size is sufficiently large.  

Rubin (1987) provided a set of rules for pooling the parameter estimates obtained 

after analyzing the 𝑚 = 1, … , 𝑀 datasets. Rubin (1987) showed that the posterior 

distribution is centered around the mean of the maximum likelihood estimates (MLEs) 

taken across the 𝑀 imputed datasets (denoted �̅�𝐾) and with a variance that accounts for 

both within- and between- imputation variability, i.e. 

[𝜃|𝒀obs; ℳ𝐾]~𝑁(�̅�𝐾, �̂�𝐾) (4.11) 

where  

�̅�𝐾 =
1

𝑀
∑ 𝜃𝑚,𝐾

𝑀

𝑚=1

 (4.12) 

and 𝜃𝑚,𝐾  is the maximum likelihood estimate when fitting ℳ𝐾 to the 𝑚-th imputed 

dataset. Furthermore, �̂�𝐾  is the total variance reflecting the within-imputation and 

between-imputation components. Technical specifics for pooling parameter estimates and 

conducting hypothesis tests can be found in outside texts (Enders, 2010; R. J. Little & 

Rubin, 2002; Schafer, 1997; van Buuren, 2018). We emphasize that the 𝜃𝑚,𝐾 estimates 

are averaged only to obtain an estimate of the mean of the posterior distribution in (4.10). 
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However, this does not imply that valid inference results if functions of the 𝜃𝑚,𝐾 

parameters (e.g., loglikelihood functions) are averaged. We return to this point when 

discussing pooling information criteria by averaging across the values obtained from the 

imputed datasets. 

FIML as the Currently Preferred Missing Data Strategy 

FIML is by far the most frequently adopted missing data strategy in person-

centered analysis. This may be in part because it is implemented by default in software. 

However, challenges with generating proper imputations have limited the adoption of 

multiple imputation when conducting person-centered analysis. Specifically, popular 

imputation software traditionally assumes that the data were generated from a single-

class model (Enders & Gottschall, 2011). Improper imputations from single-class models 

have been shown in simulations to cause biased parameter estimates (see Chapter 2) and 

under extraction of the classes (Sterba, 2016). Under extraction is problematic in applied 

settings because it obfuscates the potentially important sources of heterogeneity and 

individual differences which motivate a person-centered analysis in the first place. 

Recently developed nonparametric imputation models show great promise in 

generating proper imputations. In Chapter 2, we showed that recursive partitioning 

imputation algorithms do not make a single-class assumption and are available in the 

mice R package (van Buuren & Groothuis-Oudshoorn, 2010). These imputation models 

greatly resolve the parameter bias when in large sample sizes (𝑁 = 1,200) and classes are 

well separated (i.e., an entropy value near .88).  Furthermore, they outperform FIML 

when the missingness depends on AVs. In Chapter 3, we highlighted methodological 

work that is currently underway in order to construct truly Bayesianly proper imputations 
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for person-centered analysis in the smaller sample sizes that are also commonly observed 

in practice (e.g. 𝑁 ≈ 300-600) or when classes are less well separated (e.g., an entropy 

near .74) in large samples (𝑁 = 1,200). Therefore, although FIML has been the dominant 

missing data approach adopted by applied researchers conducting person-centered 

analysis, multiple imputation shows great potential for researchers conducting a person-

centered analysis to incorporate an inclusive strategy.  

Prevailing Information Criteria Model Selection Practices  

Having provided a brief background on FIML and multiple imputation, we now 

discuss current practices in finite mixture model selection. Finite mixture model selection 

in a person-centered analysis is strongly informed by the AIC, the BIC, and the aBIC. 

Each of the three ICs take on the form 

IC(ℳK) =  −2ℓ(𝜃𝐾|𝑌, ℳ𝑘) + penalty(𝑞𝐾, 𝑁) (4.13) 

where −2ℓ(θ̂𝐾|𝑌) is referred to as the model deviance and is the loglikelihood value at 

the maximum likelihood estimate. The penalty depends on the number of parameters, 𝑞𝐾, 

in ℳ𝐾 and, in some cases, the sample size, 𝑁. The penalty terms for the various ICs 

considered in this study are 2𝑞𝐾 corresponding to the AIC, 𝑞𝐾 log 𝑁 corresponding to the 

BIC, and 𝑞𝐾 log
𝑁+2

24
  corresponding to the aBIC. Thus, we write the expressions for the 

AIC, BIC, and aBIC for a model fit with 𝐾 as 

AIC(ℳK) =  −2ℓ(𝜃𝐾|𝑌, ℳ𝑘) + 2𝑞𝐾 (4.14) 

BIC(ℳK) =  −2ℓ(𝜃𝐾|𝑌, ℳ𝑘) + 𝑞𝐾 log 𝑁 (4.15) 

aBIC(ℳK) =  −2ℓ(𝜃𝐾|𝑌, ℳ𝑘) + 𝑞𝐾 log
𝑁 + 2

24
(4.16) 
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The expressions for the information criteria listed above are all formulated using 

the complete-data likelihood in order to ascertain the model deviance. When data are 

missing, however, the model deviance from the complete-data likelihood cannot be 

calculated directly. Under FIML, it is common practice to substitute the observed data 

likelihood for the complete-data likelihood. Under multiple imputation, it is common 

practice to substitute the average of the model deviances across the imputed datasets. We 

scrutinize these practices.  

Consequences of Substituting the Observed-Data Likelihood under FIML on the 

BIC 

When missing data are treated with FIML, the IC values are usually calculated 

using the observed-data likelihood value at the maximum likelihood estimate,  

ICFIML(ℳ𝐾) =  −2ℓ(𝜃𝐾|𝑌obs, ℳ𝑘) + penalty(𝑞𝐾, 𝑁). (4.17) 

We designate this procedure as producing a FIML-IC value, ICFIML. Note that, in general, 

this value does not equal the value that would have been obtained had the data been 

complete because the observed-data and complete-data likelihoods are not equal.  Despite 

substituting the observed-data likelihood, the penalty term remains the same and takes on 

the same value, regardless of whether the data are complete or missing. Because the 

observed-data model deviance is usually less than the complete-data model deviance in a 

finite mixture of Gaussians, the effect is that the model deviance is penalized relatively 

more harshly when there are missing data.  

We argue that failing to adjust the penalty values when relying on the observed-

data likelihood is not appropriate when the penalty term depends on the sample size, 𝑁. 

Such penalty terms wrongly assume that 𝑁 complete observations are present in the 
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sample. This can be seen in the BIC expression typically calculated using FIML, given by 

BICFIML(ℳ𝐾) =  −2ℓ(𝜃𝐾|𝑌obs, ℳ𝑘) + 𝑞𝐾 log 𝑁 . (4.18) 

In Technical Appendix C we derive a correction that accounts for evidence loss 

due to missing data. Briefly, the derivation proceeds by noting that the variances obtained 

from the Fisher information matrix for the observed-data likelihood are larger than the 

corresponding variances obtained from the Fisher information matrix for the complete-

data likelihood. Applying Laplace’s approximation to estimate the model evidence with 

the inflated variance term leads to our BIC expression.  By assuming that the variance of 

the Fisher information matrix is inflated, we correct for the fact that not all 𝑁 

observations are complete. Our proposed BIC expression simplifies to a correction that 

can be applied to FIML-BIC. The correction depends on the fraction of missing 

information, FMI(𝜃𝐾), a quantity that is prominent in missing data theory because it 

governs the rate of convergence for the EM algorithm (Dempster et al., 1977), as well as 

the number of imputed datasets required to reach near-optimal power in frequentist 

inference. In particular, our proposed corrected BIC expression is as follows:  

BICobs(ℳ𝐾) =  BICFIML + log|𝕀𝑞𝐾
− FMI(𝜃𝐾)| . (4.19) 

We refer to the correction term, log|𝕀𝑞𝐾
− FMI(𝜃𝐾)|, as the evidence loss due to 

missing data because this value is always negative and represents the degree to which 

missing data diminishes the model evidence approximated by the BIC. We explain four 

properties by studying our corrected BIC value in (4.19) because these properties lead to 

hypotheses about why model selection decisions for the BIC are sensitive to sample size. 
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1. (Property 1) If the fraction of missing information is trivial, then model selection 

decisions will not be sensitive to whether BICFIML or BICobs is used. This is true 

regardless of sample size. 

2. (Property 2) If the fraction of missing information is nontrivial, the sensitivity of 

model selection decisions to using BICFIML instead of BICobs will decrease as 

sample size increases.  

3. (Property 3) If the fraction of missing information is nontrivial and sample size is 

small, model selection decisions will be sensitive to the choice of BICobs versus 

BICFIML.  

4. (Property 4) In the presence of missing data, model selection using the BICFIML 

will tend to favor more parsimonious models than if BICobs were used for model 

selection. 

We note that Property 1 holds because trivial missingness leads to log|𝕀 −

FMI(𝜃𝐾)| ≈ 0. In the limiting case when there is no missingness, then BICobs =

BICFIML, so model selection decisions will be equivalent.  Property 2 holds because the 

fraction of missing information does not scale with sample size, so 

|−2ℓ(𝜃𝐾|𝑌obs; 𝓜𝐾) + 𝑞𝐾log 𝑁| ≫ |log|𝕀 − FMI(𝜃𝐾)||. 

Thus, as sample size increases, BICFIML converges to BICobs, implying that model 

selection decisions are less sensitive to missing data if using the BICFIML when sample 

sizes are large. In contrast, Property 3 holds because the fraction of missing information 

is not trivial relative to the magnitude to BICFIML when sample sizes are small in the 

presence of missing data. 
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 Finally, we expect that BICFIML will tend to result in selection decisions where a 

more parsimonious finite mixture model is selected than BICobs when missing data are 

present (Property 4). We note that the magnitude of the evidence loss scales with the 

number of parameters because it is the product of the diagonal elements of the  𝕀 −

FMI(𝜃𝐾) matrix, and each of these diagonal elements are less than 1. In fact, as the 

number of parameters increases, log|𝕀 − FMI(𝜃𝐾)| takes on an increasingly negative 

value. Because this negative correction value is added to the traditional BIC penalty term, 

the effect is that the missing data increasingly offset the traditional penalty term as model 

complexity increases. Consequently, compared to the final model selected using BICobs, 

BICFIML will tend to result in a selection decision for a final model specified with fewer 

classes. 

In summary, we delineate these properties in order to construct a hypothesis for 

how model selection decisions may differ if employing FIML in contrast to if the data 

had been complete. In particular, we expect that the FIML-BIC calculated from (4.18) 

will lead to an under extraction of the number of classes in small samples. When the 

evidence loss due to missing data is small in magnitude relative to the likelihood and 

penalty terms, however, we expect that model selections will be less sensitive to 

missingness.   

Current Practice with Finite Mixture Model Selection under Multiple Imputation 

Unlike FIML, model selection procedures with multiple imputation make use of 

the complete-data likelihood to calculate model deviances given the 𝑚 = 1, … , 𝑀 

imputations. The challenge is that the researcher must reconcile 𝑀 distinct IC values.  We 

denote an IC obtained by the 𝑚-th imputed dataset for model ℳ𝐾 as 
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IC𝑚
MI(ℳ𝐾) =  −2 ℓ(𝜃𝐾|𝑌𝑚

imp
; ℳ𝐾) + penalty(𝑞𝐾, 𝑁). (4.20) 

Currently, popular software used in person-centered analysis employs an 

averaging strategy to pool the model deviances. Specifically, the average across the 

model deviances at the maximum likelihood estimate for the 𝑚th imputed dataset is 

taken. Thus, under averaging, the pooled criterion is  

ICavg
MI (ℳ𝐾) = −2

∑ ℓimp (𝜃𝑚,𝐾|𝑌𝑚
imp

, ℳ𝐾)𝑀
𝑚=1

𝑀
+ penalty(𝑞𝐾, 𝑁). (4.21) 

As pointed out in previous literature, there is no theoretical justification for 

averaging (Consentino & Claeskens, 2010; Meng & Rubin, 1992). The implicit 

assumption underlying current practice is that ICavg
MI (ℳ𝐾) is an unbiased estimate of the 

corresponding complete data criteria value, IC(ℳ𝐾). However, this can only be true if the 

averages of the model deviances in (4.21) are unbiased estimates of the complete data 

values. We evaluated this assumption in our simulations, which we turn to now.  

Sensitivity of Finite Mixture Model Selection Decisions to Missing Data under 

Current Practices  

To highlight the shortcomings of current finite mixture model selection practices, 

we conducted a simulation study. We used the Web of Science database to identify 30 

frequently cited articles employing LPA that were published between 2008-2018 in 

developmental and educational psychology journals in order to inform the simulation 

conditions and set parameters to typical values observed in applied literature. We focused 

exclusively on LPA that fit finite mixtures of Gaussian models to make inferences. From 

each study, we recorded the sample size of the analytic dataset, the number of classes 

selected, the number of indicators used to construct the profiles, the proportion of 
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observations in the smallest profile, and the observed entropy value. We also noted 

typical rates of missingness across each indicator variable. 

Simulation Setup 

Manipulated Conditions: Sample Size, Mixing Proportions, and Class Separation 

We manipulated three primary factors in the simulations according to values that 

appear in literature. This includes the sample size, the mixing proportions, and the 

separation between the classes. To demonstrate that model selection using the BIC is 

sensitive to sample size, we varied the sample size between 𝑁 = 300 (small sample) and 

𝑁 = 1,200 (large sample). These values corresponded to the interquartile range that we 

observed in applied research from our sample of 30 studies. 

Sample sizes can be relatively large, but we also hypothesized that the presence of 

a small class could influence the performance of IC-based selection decisions. To test this 

hypothesis, we manipulated the mixing proportions between a condition with equal 

mixing and a condition with unequal mixing, such that the smallest class represented 

about 10% of the sample. This value was well within the interquartile range of the 

smallest class proportions observed in literature. 

Finally, model selection decisions are highly sensitive to the separation of the 

classes. When classes are extremely well-separated, for example, all ICs consistently 

identify the true model if given a large enough sample size. Disagreement among the ICs 

occurs when the classes exhibit the decreased separation that occurs in practice.  The 25th 

and 75th quantiles for the reported entropy values were .74 and .88, respectively. To 

achieve entropy values that reflect these typical values, the Mahalanobis distances (MD) 

between the class means were manipulated so that the entropy values from the simulation 
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roughly matched the 25th and 75th quantile values from the LPA studies.1 As a result, we 

manipulated class separation between weakly separated (MD = 2.86; entropy = .74) and 

highly separated (MD = 3.70; entropy = .88) values that were observed from the literature 

review. 

Fixed Conditions: J, K, Missingness Rate, & M 

The number of indicator variables, 𝐽, the number of classes, 𝐾, the missingness 

rate, and the total number of imputations, 𝑀, were held constant throughout the 

simulations. We set the total number of indicator variables to 𝐽 = 4, the modal value that 

appears in the 30 selected LPA studies. We chose to simulate data from a three-class 

model (𝐾 = 3) to make the simulation study and class enumeration time-feasible; this 

differs from the four-class model that appears most frequently, but it is well within the 

typical range. 

In establishing a fixed missingness rate, we attempted to discern common rates 

reported by applied researchers conducting LPA. However, the 30 studies provided 

limited information regarding missing data rates, when such information was provided at 

all. Only about one-third (11 of the 30 studies) reported missingness information. Of 

those reporting indicator missingness information, the reporting range of missing value 

rates across individual indicators was the most common reporting method (seven of 11 

studies), followed by reporting the proportion of observations completed (three of 11 

studies). A single study reported covariance coverage rates. 

We note that the reporting of complete cases would be ideal to inform the 

simulation. However, predicting this value from either the range of missing data rates or 

 
1 For a given Mahalanobis distance, the entropy value will fluctuate depending on whether equal or unequal 

mixing is present. In conducting this manipulation exercise, the unequal mixing condition was chosen to 

calibrate the Mahalanobis distance because that condition was highly represented in the LPA studies. 
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the covariance coverage rates proved difficult. For example, one typical study included 

five indicators and reported missingness rates ranging from 10.7% to 25%. The 

percentage of observations with complete data in this study ranged anywhere from 0-

75%. In the simulation study, we fixed the missing data rate such that 50% of 

observations were missing at least one indicator value. With the chosen missing data 

mechanism (discussed below), this corresponded to missingness rates for each variable of 

approximately 25%.  

Finally, following Sterba (2016), we set the total number of imputed datasets to 𝑀 

= 100 when studying model selection procedures under multiple imputation. Although 

this value is larger than what is often necessary in practice, we decided to be conservative 

to minimize the risk that model selections were the result of a too-small 𝑀 value. That is, 

if problems appear with 𝑀 = 100 datasets, then they most certainly appear in the smaller 

values (e.g., 𝑀 = 10 or 20) chosen by applied researchers. Nevertheless, we do point out 

that computational speed and storage are no longer barriers like they were in the past, 

when precedents on the number of imputations were set. Thus, we encourage researchers 

to impute more datasets than what has been traditionally seen as necessary. 

Data Generating Model and Missing Data Mechanism 

We generated complete data using 𝐾 = 3 classes as a template with 𝐽 = 4 

indicator variables and one AV. The data generating model is presented in Figure 4.2. 

Data were generated from this template by first randomly drawing class memberships for 

each observation from a multinomial distribution and subsequently drawing values for 

the class indicators and the AV from a finite mixture model with a class-specific 

population mean vector and a unitary variance-covariance matrix. For convenience, the 
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AV was sampled jointly with the profile indicators such that there were no mean 

differences in the AV between classes. Within classes, the correlation between the AV 

and each indicator variable was set to 𝑟 = .40; Enders (2010) reports that such a 

correlation is beneficial to enhance statistical power. 

We identified indicator data that were set to missing in a manner that ensures that 

the propensity for missingness is informed by the AV. Observations could be missing up 

to three indicator values, resulting in 15 possible missing data patterns total (including the 

pattern corresponding to no missingness).  Missing data patterns were assigned using a 

latent variable formulation: 

𝜂𝑖
∗ = 𝐴𝑉𝑖 + 𝜖𝑖 

where  𝜖𝑖~𝒩(0,0.1). We manipulated cut points for the 𝜂∗ latent variable so that the 

marginal missingness rates across each indicator value averaged approximately 25% 

each, while half of the observations contained complete data. 

Critically, this choice of missing data mechanism did not lead to the collapsing of 

the classes or decreased class separation under any condition. Figure 4.1 contrasts the 

class separation value displayed with the complete data versus the separation implied by 

the FIML estimates. The difference is explained by nonresponse bias because the AV is 

excluded from the analysis, making the missing data mechanism nonignorable, as would 

be consistent in practice with external variables. One can see that nonresponse bias led to 

increased class separation with FIML. Thus, we would have expected any under 

extraction results to be exacerbated had the missing data mechanism resulted in decreased 

class separation. 
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Imputation Procedure 

Imputed datasets were constructed by following an EM with sampling (EMS) 

procedure. EMS is a joint, multivariate imputation procedure originally proposed by King 

et al. (2001). It results in proper imputations provided the model is correct and the 

missing data mechanism is ignorable. EMS has subsequently been adopted in mixture 

settings (Vermunt, van Ginkel, van der Ark, Andries, & Sijtsma, 2008; Vidotto, Vermunt, 

& Kaptein, 2015), a natural extension of its use, given that parameter estimation for finite 

mixture models relies heavily on the EM algorithm.   

EMS is a three-step procedure to simulate plausible values and construct imputed 

datasets. The first step accounts for between-imputation variability by bootstrapping the 

data. The EM algorithm is then used to fit the imputation model to the bootstrapped data. 

The final step accounts for within-imputation variability. Here, imputations are simulated 

using the parameter estimates from the second step augmented by the information 

presented by the observed data. A single imputed dataset results at the end of the third 

step. The user continues the three-step cycle until the desired number of imputed datasets 

is constructed.  

Traditionally, the bootstrapping step is conducted by sampling observations with 

replacement. We found this frequently resulted in convergence issues in small samples. 

Through experimentation, we also found that substituting the Bayesian bootstrap (Rubin, 

1981) for sampling with replacement greatly decreased convergence issues. We therefore 

modified step 1 of the EMS procedure by implementing the Bayesian bootstrap.  

The Bayesian bootstrap is a simple procedure to weight observations, and it can 

be conducted in a manner so that the prior is noninformative. It is best understood by 
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comparing it with the traditional bootstrap, in that sampling with replacement is simply a 

reweighting procedure, as well. Indeed, by sampling with replacement, the user is 

effectively weighting observations by a value that is in the natural numbers (e.g., if the 

observation was never sampled, then its weight is zero; if it was sampled once, then the 

weight is one; if sampling with replacement resulted in an observation being selected 

twice, then the weight is two; etc.). The sum of the weights then equals the total number 

of observations. The Bayesian bootstrap is a procedure to sample an observation’s 

weight, rather than the observations themselves. Weights are drawn from a Dirichlet 

distribution with 𝑁 total categories. A uniform prior can be specified so that each 

observation has an equal chance of being assigned a given weight. Thus, the uniform 

prior is completely noninformative and parallels sampling with replacement. The uniform 

prior is implemented by specifying unit concentration parameters for the Dirichlet 

distribution.  

Both the Bayesian bootstrap and the traditional bootstrap sample from the 

empirical CDF. Thus, both lead to similar inferences. In fact, sampling with replacement 

can be seen as simply a special case of the Bayesian bootstrap in that the weights are 

restricted to the natural numbers. By allowing the weights to take on the positive real 

numbers, the Bayesian bootstrap effectively smooths the empirical CDF, which is 

advantageous when sample sizes are small, and the histogram of the empirical CDF can 

appear quite discrete (Chernick, 2011, Chapter 6). We credit the improved convergence 

to the smoothing of the empirical CDF in that all observations generally inform the 

parameter estimates, even if they are down-weighted.  
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Analytic Model 

We fit a conditionally independent, finite mixture of Gaussians model 

diagrammed in Figure 4.3 to model the 𝐽 = 4 profile indicators using only the observed 

data (to study selection under FIML) or to the imputed datasets (to study selection when 

averaging information criteria under multiple imputation).  The mixture models were fit 

using Mplus version 8.0 (Muthén & Muthén, 2017). Subsequently, results were exported 

to R (R Core Team, 2020) using the MplusAutomation package (Hallquist & Wiley, 

2018).  

Model Selection Results 

Figures 4.4-4.6 plot the proportion of the replications that resulted in the ℳ1 to 

ℳ4 that were selected according to minimizing the AIC, BIC, and aBIC, respectively. 

The model selection proportions were disaggregated according to the complete data 

results, the observed data results (in which FIML estimation was applied to the indicator 

data), and the imputed data results. We discuss the results in detail below, but summarize 

three central findings: (1) our results with the complete data replicated what has 

previously been documented in literature; (2) consistent with our hypothesis, BIC model 

selection with FIML resulted in substantial under extraction for several of the simulated 

conditions; and (3) with imputed data, model selection conducted with an averaging 

pooling strategy poorly replicated the complete data selections for the AIC or aBIC. 

Taken together, these findings suggest that finite mixture model selection is highly 

sensitive to missing data.  
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Complete Data Model Selection  

We found that the complete data results were consistent with previous research. 

Consistent with Nylund et al. (2007), we found that the BIC resulted in optimal model 

selection decisions across the simulated conditions (see Figure 4.5). For most conditions, 

the BIC almost uniformly selected the true three-class model, ℳ3, across the replications. 

However, using the BIC resulted in under extraction decisions when the sample size was 

small (𝑁 = 300) and class separation was weak (entropy values averaged near .74). This 

under extraction was not present in large samples (𝑁 = 1,200), regardless of class 

separation. Thus, our findings are consistent with the asymptotic consistency properties 

of the BIC: with large sample sizes (𝑁 = 1,200 in our study), the BIC selected the correct 

model when the true model was contained within the set of models being evaluated.    

As expected, model selection based on the AIC resulted in over extraction of the 

classes across all simulated conditions (Figure 4.4); approximately 90% of replications 

resulted in the four-class model, ℳ4, being selected. The tendency of the AIC to over 

extract the number of classes has been well documented in literature (Frühwirth-

Schnatter et al., 2019, p. 123; McLachlan & Peel, 2004, p. 201) and in previous 

simulation studies (Nylund et al., 2007; Tofighi & Enders, 2008). 

Finally, model selection using the aBIC resulted in over extraction decisions in 

small samples with approximately three-quarters of the replications resulting in the 

selection of ℳ4 (Figure 4.6). However, in large samples, using the aBIC resulted in a 

correct model decision nearly three-quarters of the time. In summary, model selection 

decisions were most accurate using the BIC, followed by the aBIC. Model selection 

decisions using the AIC were the least accurate.  
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Model Selection using FIML in the Presence of Missing Data 

 Consistent with our hypothesis, the BIC led to a substantial under extraction for 

the number of classes when sample sizes were small and missing data were treated with 

FIML (Figure 4.5). The degree of the under extraction was also substantial and 

noteworthy. For example, under extraction was present in at least nine out of 10 

replications when sample sizes were small (𝑁 = 300) and classes were weakly separated 

(entropy values averaged near .74). Though less severe, under extraction was also present 

when separation was strong and mixing was unequal so that a small class was present; in 

that case, nearly 25% of the replications resulted in under extraction. Accordingly, we 

found that the performance of the BIC was highly sensitive to missing data.  

Model Selection using an Averaging Pooling Strategy with Multiply Imputed Data 

Except for when using the BIC, we found that averaging the ICs obtained by 

fitting a mixture model to multiply imputed datasets poorly replicated the complete-data 

selection decisions. Specifically, we found that averaging uniformly resulted in ℳ4 being 

selected across all of the simulated conditions when the AIC was used for model 

selection. In other words, averaging exacerbated the over extraction already problematic 

with the AIC when the data were complete.  

When the aBIC was used to select a final model, averaging also poorly replicated 

complete-data decisions. As with the AIC, averaging exacerbated over extraction 

problems when the data were complete and sample sizes were small, as demonstrated by 

the aBIC uniformly resulting in ℳ4 being selected. Interestingly, however, averaging led 

to the correct model being selected at a far greater rate compared to the complete data in 

the large sample condition. It would be a mistake, however, to conclude that averaging 
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performed well in large samples with the aBIC because the goal of any missing data 

problem should be to replicate inference had the data been complete.  

Moreover, Figure 4.8 shows that the implicit assumption for averaging (i.e., that 

the average of the model deviances across the imputed datasets is an unbiased estimate) 

was violated because the averaged model deviance was found to be negatively biased. In 

fact, bias in model deviance was found to be most pronounced for ℳ1, but the magnitude 

and direction of bias remained almost constant thereafter. At first glance, such a finding 

may suggest that the bias should not have resulted in different selection decisions 

provided that the final model contained more than one class. However, such a conclusion 

would conflate aggregated patterns with replication-specific trajectories in the model 

deviances. In other words, we risked committing the ecological fallacy if we assumed 

trends of the bias represented trends of replication-specific deviance trajectories from the 

model deviances had the data been complete. 

To avoid committing an ecological fallacy, we conducted a trajectory analysis by 

studying bias in rates of change of the model deviances. The first forward difference is 

shown in Figure 4.9. If averaging the model deviances matched the rate of change, we 

would have expected similar model selection results. Correspondingly, if the second-

central difference obtained by averaging matched the complete data at 𝐾 = 3, we would 

have expected that the correct model, ℳ3, would have been selected as frequently when 

averaging as compared to the complete data.  

We found substantial differences in the first- and second-order rates of change. As 

can be seen in Figure 4.9, the rate of change was strongly negatively biased when 

comparing model deviances between ℳ1 and ℳ2. This resulted in a decreased preference 
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for selecting ℳ1 and was evidenced by the BIC; with small samples and weakly 

separated classes, model selections using the BIC were correct in approximately 40% of 

the replications with complete data, while the correct selection rate for averaging was 

found to be less than 30%. We also found substantial negative bias in the second-order 

rates of change for ℳ3 and ℳ4, implying that the overall trajectory pattern was less 

concave at 𝐾 = 2 and 𝐾 = 3. Thus, a minimum value was less likely to be reached in the 

set of 𝐾 values observed. We observed this with the AIC where ℳ4 was consistently 

selected over ℳ3 at a much greater rate than what was observed had the data been 

complete. 

In summary, model selection decisions made by averaging information criteria 

across the imputed datasets did not match those made with complete data. This was 

because there were systematic differences in rates of change between the averaged model 

deviance trajectories and the trajectories that would have been observed had the data been 

complete.  

Discussion of Current Practice Results 

Clearly, model selection decisions are not robust when data are missing. This is 

true regardless of whether a FIML approach or multiple imputation approach is adopted. 

Therefore, the best practices shaped by simulations assuming data are complete do not 

translate to real-world settings where data are most often missing values and researchers 

adopt the two most popular approaches to treating missing data.  

Given the sensitivity of model selections to missing data, it is then natural to ask, 

“What are the underlying causes?” Accordingly, we can provide guidance to address this 

issue in practice. We have demonstrated that the problem is rooted in suboptimal 
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statistical procedures being used to calculate information criteria (e.g., the BIC 

calculation in the case with FIML) or in choosing a pooling strategy (e.g., averaging ICs 

across imputed datasets). In the next section, we discuss a practical remedial strategy to 

correct the BIC so that it accounts for missing information. The following section 

evaluates alternative model selection strategies under multiple imputation.  

Correcting the BIC for Evidence Loss Due to Missing Data under FIML 

We propose a practical, easy-to-calculate correction to BICFIML so that model 

selection decisions in the presence of missing data are more consistent with the decisions 

that would have been made had the data been complete. The problem with correcting the 

BIC for evidence loss due to missing data using (4.19) directly is that, unlike with 

covariance structure models (e.g., Savalei & Rhemtulla, 2012), the FMI(𝜃) is a nontrivial 

matrix to obtain empirically in finite mixture models. This is because finite mixtures 

estimate higher order moments in the data and require an expanded set of sufficient 

statistics relative to those needed for covariance structure models. As a result, structural 

equation modeling software cannot simply be provided with a mean vector, covariance 

matrix, sample size, and have the software estimate the fraction of missing information, 

as is done in Savalei & Rhemtulla’s (2012) procedure to estimate the fraction of missing 

information in covariance structure models. 

However, McNeish & Harring (2017) demonstrated that the proportion of 

elements in the data matrix that are missing can be used to generate a suitable 

approximation of the fraction of information matrix, FMI(𝜃𝐾). In their study, such an 

approximation resolved issues with inflated Type I error rates for multiparameter 

hypothesis tests in small samples in latent growth curve models. McNeish & Harring’s 
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(2017) approximation is grounded in Enders’ (2010, p. 204) claim that this proportion 

represents an upward bound in the fraction of missing information for a given parameter, 

as well as Wagner’s (2010) finding that this value approximates the fraction of missing 

information in real-world survey data well.  

Following McNeish & Harring (2017), we propose that FMI(𝜃𝐾) be 

approximated as 

FMI(𝜃𝐾) = (1 − 𝑐𝐾)𝕀𝑞𝐾
(4.22)  

where 𝑐𝐾 is a scalar given by 

𝑐𝐾 =  
# of elements observed in data matrix

N × (𝐽 + 𝐾 − 1)
. (4.23) 

Note that 𝑐𝐾 represents the proportion of non-missing values in the dataset augmented to 

include posterior class probabilities for a model with 𝐾 classes. The last class is discarded 

(hence, the 𝐾 − 1 term) because the probabilities must sum to one.  

We argue that it is incorrect to disregard the posterior probabilities in 

approximating the fraction of missing information. The slow convergence of the EM 

algorithm, even when indicator data are complete, is evidence in favor of our argument. 

Specifically, it is known that FMI(𝜃𝐾) governs the convergence rate of the EM algorithm 

(Dempster et al., 1977). Therefore, if it were true that we could disregard the posterior 

probabilities, then complete indicator data should lead to the EM algorithm converging to 

a stationary point in one step if provided a reasonable starting position near the maximum 

likelihood estimate so that the quadratic approximation is tenable (Schafer, 1997). We 

know in practice that the EM algorithm takes many iterations to converge, even when the 

indicator data are complete and the starting position is near the maximum likelihood 

estimate. Indeed, the slow convergence of the EM algorithm near the MLE for finite 
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mixture models is a well-documented problem that has resulted in many proposed 

accelerators (McLachlan & Peel, 2004, p. 52). The many iterations required for 

convergence when near the maximum likelihood estimate are an indication that the 

missing information is nontrivial, even when indicator data are complete. Consequently, 

the missing posterior class probabilities must contribute significantly to the overall 

amount of information missing. 

Substituting the approximation in (4.23) into (4.19) and simplifying results in our 

proposed BIC value corrected for information loss:  

BICobs ≈ BICFIML + 𝑞𝐾 log 𝑐𝐾 = −2ℓobs(𝜃𝐾|𝑌obs, ℳ𝐾) + 𝑞𝐾 log 𝑐𝐾𝑁. (4.24) 

The 𝑐𝑘𝑁 term on the right hand side suggests that, under McNeish & Harring’s (2017) 

approximation, the correction for missing information can simply be viewed as 

appropriately down-weighting the sample size because not all 𝑁 observations are 

complete. We now reanalyze the simulations to evaluate whether the proposed BICobs 

approximation better replicates model selection decisions had the data been complete. 

Reanalyzing the FIML Simulation Results 

The model selection results using the proposed BICobs approximation in (4.24) 

are shown in Figure 4.7.  Overall, we found that our proposed approximation better 

replicated the complete data selection decisions than if the BIC was not adjusted for 

evidence loss. For example, the correct model was selected in approximately 15% of 

replications with complete data when mixing was unequal, sample sizes were small, and 

the classes were weakly separated. This value was matched when BICobs was used for 

model selection. In contrast, less than 3% of the replications resulted in ℳ3 being 

selected when BICFIML was used for model selection.  
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Additionally, we found that the proposed BICobs approximation was less 

susceptible to the under extraction problem as compared to BICFIML. For example, 

BICFIML resulted in ℳ1 being selected nearly 60% of the time when classes were weakly 

separated, sample sizes were small, and mixing proportions were equal. The 

corresponding value was 30% with the BICobs, a value that nearly matched the 37% 

found with complete data. Finally, under the large sample size conditions when the BIC 

and BICobs uniformly resulted in correct model selection, BICobs exhibited similar 

correct selection rates. Taken together, these findings suggest that correcting the BIC for 

missing information resulted in model selection decisions that better replicated decisions 

that would have been made had the data been complete.  

Alternatives to Averaging for Multiple Imputation Model Selection  

An unresolved issue in methodological literature is how best to conduct model 

selection using information criteria with multiply imputed data. Several alternatives to 

averaging have been proposed and tested using simulations in the variable selection 

context with linear regression models. Even in this simpler context, the unresolved nature 

of model selection with multiple imputation is highlighted by the lack of clearly defined 

guidelines for applied researchers (see, e.g., van Buuren, 2018, p. 154). 

The alternatives to averaging can be classified as ad-hoc or theoretically-based 

alternatives, depending on whether the approach is based on probability theory (van 

Buuren, 2018). Ad-hoc procedures for model selection include selecting based on a 

majority vote (Brand, 1999; van Buuren, 2012) or pooling the 𝑀 IC𝑚
MI(ℳ𝐾) estimates by 

data stacking (Wood et al., 2008). Alternatively, Consentino and Claeskens  (2010) 

proposed a theoretically based alternative using Meng and Rubin’s (1992) 𝐷𝐿𝑅 statistic, 
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which approximates a likelihood ratio statistic. We discuss each of these alternatives in 

more detail below. 

Majority Vote 

The majority procedure was first proposed by Brand (1999) and maintains current 

support because it has been found to work well in practice and because it provides 

insights about how sensitive model selection decisions are to the missing data (van 

Buuren, 2012, 2018). Selecting a model by majority vote is a two-step procedure that is 

distinct, as it involves no pooling at all. In the first step, the researcher forms a set with 𝑀 

elements, where each element is the model that minimized the information criteria for a 

given imputed dataset. In the second step, the researcher selects the model that appears 

most frequently in the set from the first step. This majority vote process is summarized by 

the mathematical expression, 

ℳmaj
∗ = 𝐦𝐨𝐝𝐞 {

arg min
ℳ𝐾

 IC𝑚
MI(ℳ𝐾) ∶ 𝑚 = 1, … , 𝑀} (4.25) 

where IC𝑚
MI(ℳ𝐾) is given in (4.13). In the case of a multimodal distribution, the most 

parsimonious model is selected to conform to Occam’s razor. 

Stacking 

As an ad-hoc strategy, stacking was first proposed by Wood et al.  (2008). They 

found that the strategy performed well in small samples where power might be an issue 

for variable selection. Stacking involves creating one large flat file out of each of the 

𝑚 = 1, … , 𝑀 datasets, denoted Ystack = {𝑌𝑚
imp

: 𝑚 = 1, … , 𝑀}, 

ICstack
MI (ℳ𝐾) =  −

2

𝑀
𝑙(𝜃stack|𝑌stack; ℳ𝐾) + penalty(𝑞𝐾, 𝑁) (4.26) 
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where 𝜃stack is the maximum likelihood estimate fit to the stacked flat file. The selected 

model is the model that minimizes ICstack(ℳ𝐾), 

ℳstack
∗ =

arg min
ℳ𝐾

{ICstack(ℳ𝐾): 𝐾 = 1,2, … }. (4.27) 

Consentino and Claeskens’ (2010) 𝐃𝐋𝐑 Procedure 

Consentino and Claeskens  (2010) proposed a theoretically-based pooling 

procedure to conduct model selection. We note that model selection using information 

when models are nested can be accomplished by studying differences. In particular, the 

more parsimonious, restricted model is rejected if the difference between the full-model 

and the restricted-model is negative because this indicates that the IC for the full model is 

less than the IC for the more restricted model. When enumerating the classes under 

complete data, for example, it can be shown that the difference in the IC values between 

the restricted model ℳ𝐾 and the full model ℳ𝐾+1 is given by 

ΔIC(ℳ𝐾) = −LR𝐾,𝐾+1 + penalty(𝑞𝐾+1, 𝑁) − penalty(𝑞𝐾, 𝑁) (4.28)  

where LR𝐾,𝐾+1 refers to the likelihood ratio statistic which, in the case of the complete-

data likelihood, is defined as 

LR𝐾,𝐾+1 = −2{ℓ(𝜃𝐾|Y; ℳ𝐾) − ℓ(𝜃𝐾+1|Y; ℳ𝐾+1)}. (4.29) 

Consentino and Claeskens  (2010) point out that the likelihood ratio statistic given 

complete data can be approximated with multiply imputed data using Meng and Rubin’s 

(1992) DLR statistic. Thus, the approximation for ΔIC that Consentino and Claeskens  

(2010) propose is  

ΔIC ≈ −DLR + penalty(𝑞𝐾+1, 𝑁) − penalty(𝑞𝐾, 𝑁). (4.30) 
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Enders (2010, pp. 240–242) provides an accessible overview for how to calculate 

the DLR statistic.2 This procedure demonstrated modest improvements in performance to 

ad-hoc alternatives such as averaging in simulations. However, it has never been studied 

when deciding on the number of classes in finite mixture models.  

Reexamining Simulations: Evaluating Alternatives to Averaging 

Selection decisions by the AIC, BIC, and aBIC using majority vote, stacking, and 

Consentino and Claeskens’ (2010) DLR procedure as alternatives to averaging are 

illustrated in Figures 4.11-4.13, respectively. We found that model selection based on the 

DLR statistic poorly replicated the model selection decisions had the data been complete. 

However, selections based on majority vote or stacking better replicated the complete 

data model selection decisions than averaging. For example, if the aBIC was used for 

model selection, both stacking and majority vote selected the correct model about as 

often as when the data were complete, whereas averaging very rarely resulted in the true 

model being selected. Similar results were also found when the AIC was used for model 

selection, where averaging almost always resulted in ℳ4 being selected. All three 

strategies replicated the complete data model selection decisions when the BIC was used 

(Figure 4.12). In conclusion, stacking and majority vote were less susceptible to over 

extraction, a problem that was most pervasive when an averaging strategy was applied.  

Discussion 

We have demonstrated that current finite mixture model selection practices using 

information criteria lead to suboptimal decisions when data are missing and a FIML or 

multiple imputation strategy is employed. In the case of FIML, the traditional formula 

 
2 Enders (2010) refers to the DLR statistic as 𝐷3.  
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used to calculate the BIC fails to account for evidence loss due to missing data, resulting 

in an under extraction of classes in many real-world conditions. In the case of multiple 

imputation, pooling information criteria by averaging leads to biased estimates of the 

complete data model deviance value, resulting in a tendency for a more complex model 

to be selected compared to the model that would have been selected in the hypothetical 

situation that the data were complete.   

We have evaluated some easy-to-implement remedial strategies to address the 

shortcomings in current practice. Specifically, we propose that the sample size in the BIC 

be corrected to account for the fact that not all 𝑁 observations are complete when the 

observed data loglikelihood is used to calculate the model deviance, as is the case with 

FIML. Additionally, we have shown through simulations that both the stacking and 

majority vote pooling strategies lead to model selections that are frequently more 

consistent with complete-data decisions and are less prone to extraction than averaging in 

multiply imputed data. Although stacking and majority vote pooling strategies both 

outperformed averaging in replicating selection decisions had the data been complete, we 

recommend that researchers adopt a stacking strategy for practical reasons. This is 

because stacking only requires that the researcher fit the model to one dataset and, 

therefore, makes model comparison more manageable so that researchers are better able 

to synthesize the evidence provided by the AIC, BIC, and aBIC as a whole. Moreover, 

we have found that convergence issues are less prevalent with stacked datasets, and time-

to-converge when many imputations are used (e.g., 𝑀 = 100) is only marginally 

increased compared to fitting the model to a single imputed dataset. Thus, stacking 

represents a practical remedial strategy that performs better than averaging. 



168 

 

Our proposed remedial strategies represent an important step in addressing issues 

of model selection in the presence of missing data—issues that have not been given due 

consideration to this point in previous methodological research. Nevertheless, our 

proposals represent only a first step in this area of inquiry, and there are many avenues 

for improvement. For example, our correction relies on an approximation for the fraction 

of missing information, but it remains unknown how well our approximation reflects the 

true net evidence loss. 

Future research should explore practical methods for extracting better estimates of 

the amount of information lost due to missing data. Following the approach by Rubin and 

Schenker  (1986), this could be done by simulating plausible values given the maximum 

likelihood estimates. However, it would be most time efficient if, for example, such 

information could be extracted by studying the rate of convergence of the EM algorithm 

near the maximum likelihood estimate. 

Additionally, future research should identify theoretically justified statistical 

procedures for unbiasedly estimating the complete data model deviance if given multiply 

imputed data. Although stacking resulted in model selections consistent with complete-

data decisions in our simulations, it is limited because it is an ad-hoc strategy which fails 

to be founded in missing data theory. Identifying a theoretically justified pooling strategy 

is especially important because stacking has not been found to perform well outside of 

the finite mixture model selection context, such as with covariate selection in linear 

regression models. Future research should evaluate whether a stacking approach 

generalizes to other mixture contexts, such as latent class models, latent growth curve 

models, factor mixture models, and mixed indicator models.   
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Figures 

Figure 4.1 

Mahalanobis Distance Across Simulated Conditions 

 

Notes.  Class separation implied by fitted models to complete indicator-only data or 

observed indicator-only data. A FIML strategy is employed with the observed data. The 

increased class separation with the observed data treated with FIML are the result of 

nonresponse bias. 

 

  



170 

 

Figure 4.2  

Template Model 

 
Notes. Data generating (i.e., template) finite mixture of Gaussians 

model to construct complete and imputed data for the simulation 

studies. AV denotes auxiliary variable. 
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Figure 4.3 

Analytic Model  
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Figure 4.4  

 

AIC Model Selection 

 

 
Notes. AIC model selection decisions using common approaches to treat the missing data. 

Complete data results shown in grey. A FIML strategy with the AIC calculated using 

(4.14) is shown in green. Multiple imputation selection decisions obtained by pooling by 

averaging are shown in purple. 
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Figure 4.5 

  

BIC Model Selection 

 

 
Notes. BIC model selection decisions using common approaches to treat the missing data. 

Complete data results shown in grey. A FIML strategy with the BIC calculated using 

(4.15) is shown in green. Multiple imputation selection decisions obtained by pooling by 

averaging are shown in purple. 
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Figure 4.6 

  

aBIC Model Selection 
  

 
Notes. aBIC model selection decisions using common approaches to treat the missing 

data. Complete data results shown in grey. A FIML strategy with the aBIC calculated 

using (4.16) is shown in green. Multiple imputation selection decisions obtained by 

pooling by averaging are shown in purple. 
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Figure 4.7  

 

Model Selection Decisions after Correcting the BIC for Evidence Loss 
 

 
Notes. Comparing BIC model selection results between the traditional FIML 

procedure that uses the observed-data likelihood (BICFIML) and a proposed sample-

size correction procedure (BICOBS) that adjust the sample size to account for the fact 

that 𝑁 complete observations are not observed so that there is a loss in model 

evidence. 
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Figure 4.8  

 

Pooled Model Deviances by Averaging 
 

 
Notes. Bias in the model deviance between the deviance calculated by averaging 

and the deviance that would have been calculated had the data been complete. 

Standard errors calculated by bootstrapping across replications.  
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Figure 4.9 

  

First Forward Differences of the Pooled Model Deviances by Averaging 
 

 
Notes. Bias in the rate of change of the model deviance between model ℳ𝐾+1 and 

ℳ𝐾. Standard errors calculated by bootstrapping across replications. 
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Figure 4.10  

 

Second Central Differences of the Pooled Model Deviances by Averaging 

 

 
Notes. Bias in the second-order rate of change of the model deviance evaluated at ℳ𝐾. 

Standard errors calculated by bootstrapping across replications. 
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Figure 4.11  

 

AIC: Multiple Imputation Model Selection Decisions by Pooling Strategy  

 

 

Notes. Avg – pooling by averaging; D-LR – pooling by the DLR statistic; Maj – 

pooling by majority vote; Stack – pooling by stacking.  
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Figure 4.12  

 

BIC: Multiple Imputation Model Selection Decisions by Pooling Strategy 

  
 

 

Notes. Avg – pooling by averaging; D-LR – pooling by the DLR statistic; Maj – pooling 

by majority vote; Stack – pooling by stacking. 
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Figure 4.13 

  

BIC: Multiple Imputation Model Selection Decisions by Pooling Strategy 

 

 
Notes. Avg – pooling by averaging; D-LR – pooling by the DLR statistic; Maj – pooling 

by majority vote; Stack – pooling by stacking. 
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Chapter 5: Epilogue 

In this chapter, I situate the contributions of my dissertation within the historical 

context of missing data as a source of methodological inquiry. I then provide three 

tangible recommendations to applied researchers in the field based on the lessons learned 

from the studies in this dissertation. I close by offering how a follow-up study can be 

designed to provide more precise guidance to applied researchers.  

Contextualizing the Contributions in this Dissertation 

Over the past fifty years, statisticians and methodologists developed an extensive 

methodological toolkit to tackle the problems associated with missing data. Two gold-

standard approaches derived from this toolkit include full information maximum 

likelihood (FIML) and multiple imputation. Because procedures result in valid inference 

so long as the missing data patterns depend only on observables (i.e., the data are missing 

at random [MAR]), influential methodologists have labeled FIML and multiple 

imputation as both “state of the art”  (Schafer & Graham, 2002) methods. Twenty years 

ago, both strategies were generally accepted as equally viable for effectively treating 

missing data in the analytic strategies employed at that time. 

 However, applied researchers in education and the behavioral sciences have 

rapidly begun adopting more modern statistical techniques than the traditional variable-

centered approaches. Specifically, researchers are now asking research questions that 

seek more nuance in explaining how individuals in a population may differ from one 

another on some set of outcomes or trajectories. Answering these research questions 

requires employing person-centered approaches, such as latent profile analysis (LPA). 

Enders (2010) along with Enders and Gottschall (2011) were the first to warn that 
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multiple imputation, as currently implemented by applied researchers, may not result in 

valid inference because the imputation models available in software at that time do not 

reflect the multiple-group structure in the data. Simulation studies by Sterba (2016) 

subsequently confirmed that multiple imputation conducted using single-class models 

does not result in valid inferences.  

 The three studies produced by Enders (2010), Enders and Gottschall (2011), and 

Sterba (2016) have had profound consequences on the missing data practices adopted by 

applied researchers. Although each of these researchers were careful to note that the 

source of the issue was the single-class models that generated the imputations, this 

nuance has been lost in translating and explaining their findings and generating 

recommendations to applied researchers. In effect, many applied researchers are under 

the impression that multiple imputation is fundamentally inviable as a missing data 

approach in person-centered analysis. Combined with the fact that FIML is the default 

estimator in software, the result has been that the expansive missing data toolkit available 

in variable-centered approaches (i.e, multiple imputation and FIML) has been restricted 

to FIML in person-centered analyses.  

 A decade ago, the complete reliance on FIML by applied researchers to treat 

missing data in person-centered analyses was understandable. After all, software was 

limited in the options available to generate imputations, and all of the available options 

inappropriately assumed a single-class structure in the data. Complicating matters further, 

editors and reviewers of journals appear to remain content with the manner in which 

FIML is implemented in practice, without due consideration to possible threats to validity 

when enumerating the classes, conducting model selection, and defining the classes. In 
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particular, it is common for reviewers and editors to be satisfied with an analysis in which 

the researcher assumes that the MAR condition is tenable given the observed profile 

indicator values only. Although missingness at random is not fully testable because the 

missingness may depend on unobservables, the tenability of the MAR assumption can 

easily be ruled out if other variables available in the dataset predict the missing data 

patterns in the profile indicators. It stands to reason that because such an investigation has 

not been a requirement for publication, applied researchers are operating under the 

assumption that fitting a mixture model to the profile indicators using FIML is sufficient 

to guard against possible threats to valid inference.  

 This dissertation makes it clear that such an operating assumption is misguided. In 

fact, in real-world settings where the missing data mechanism is not under the direct 

control of the researcher, it is far more likely that the MAR assumption is violated. 

Recognizing this problem, methodologists have long implored researchers to adopt an 

inclusive strategy by incorporating auxiliary variables into the missing data strategy. This 

applies in any analysis, regardless of whether a variable-centered or person-centered 

approach is taken, as it is well-established that violations to the MAR assumption are 

known to result in nonresponse bias. Indeed, I showed in Chapter 2 that key parameters 

of substantive interest are biased if implementing current missing data practices (i.e., 

FIML) when conducting an LPA in the more realistic situation that MAR is only tenable 

conditional on a set of variables ancillary to the main analysis. This includes bias in class-

specific means which threatens the validity of conclusions regarding the definitions of the 

classes. It also includes bias in the marginal class probabilities, suggesting that 

individuals are being inappropriately assigned to the wrong subpopulation.  
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 Additionally, current missing data practices also threaten the validity of model 

selection decisions during enumeration. In fact, I showed that missing data threatens 

model selection decisions if a FIML approach is taken. This is true even in the case 

where the MAR assumption is tenable and results because the penalty term in the BIC 

assumes all 𝑁 observations contain complete information. In particular, the BIC obtained 

when estimating using FIML tends to lead to model selection decisions where the 

researcher under extracts the true number of classes. Consequently, current practices risk 

obfuscating the important sources of heterogeneity in the data that motivated the analysis 

in the first place. 

 Taken together, I have made it clear in this dissertation that education and 

behavioral science researchers should not be satisfied with current practices for treating 

missing data in person-centered analysis. Naturally, the next question is how to address 

the limitations I have identified. Although there are no easy solutions to address all of the 

problems missing data poses in a person-centered analysis like LPA, the studies 

contained in this dissertation offer several important starting points.  

 First, I demonstrated that FIML is fundamentally not amenable to an inclusive 

missing data strategy because auxiliary variables cannot be incorporated without unduly 

influencing the class definitions and sacrificing the definitions of the classes (Chapter 2). 

Thus, addressing limitations of current practice requires looking outside of a FIML 

strategy entirely.  

 My underlying premise in this dissertation was that the field has been too quick to 

close the door on multiple imputation as a viable strategy that can overcome the extant 

limitations. Although the limited options available in imputation software made it 
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understandable for researchers to not consider multiple imputation a decade ago, several 

modern imputation approaches are now available. Among these are the recursive 

partitioning algorithms available in software which do not impose a single-class structure 

when constructing the imputations. I showed that in some data conditions experienced by 

applied researchers (i.e., sample-sizes greater than 𝑁 = 1,200 with classes exhibiting 

strong separation so that entropy values averaged .88), recursive partitioning 

imputation—and classification and regression tree (CART) imputation, in particular—

mitigate nonresponse bias associated with FIML when the MAR condition requires 

auxiliary variables (see Chapter 2). Still, there are many common situations where CART 

imputation failed to adequately attenuate nonresponse bias, namely in small samples of 

𝑁= 300 or even in large-sample (𝑁 = 1,200) settings where class separation is weak (i.e., 

entropies averaged near .74) and a small class is identified (i.e., a class representing 10% 

or less of the sample). Although recursive partitioning is not a panacea to treating missing 

data in LPA, the importance of this study lies in the fact that it opens a door that was 

previously shut, paving the way for future methodological research to ensure that all 

options are available in the missing data toolkit. Afterall, I demonstrated that if the 

imputation model is sufficiently congenial with the true data generating mechanism, then 

multiple imputation can easily incorporate an inclusive missing data strategy—a strategy 

that cannot be incorporated in FIML. In other words, Chapter 2 provided a proof of 

concept for the benefits of multiple imputation over FIML and provided a rationale for 

why future methodological work should focus on multiple imputation in person-centered 

analysis. 
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  Clearly, multiple imputation holds strong potential for more effectively treating 

missing data than FIML in person-centered analysis like LPA, but several technical 

challenges must be acknowledged and resolved before multiple imputation can become 

mainstream in treating missing data in a person-centered analysis. First, greater 

congeniality than what is offered by recursive partition imputation is required for 

multiple imputation to be effective in small-sample settings (e.g., 𝑁 = 300) or when class 

separation is weak (entropy near .74) and a small class (one that represents 10% or less of 

the population) is present. Although perfect congeniality is impossible because the 

number of subpopulations in a person-centered analysis is unknown, the initial study in 

Chapter 3 explored whether a proposed hybrid imputation procedure that utilizes 

Bayesian model averaging can provide the requisite congeniality and improve inferences. 

Surprisingly, the proposed procedure poorly replicated complete data results using an 

empirical example, indicating that the procedure will need to be fine-tuned before it can 

be recommended to applied researchers.  

 The pooling phase of model fit information provided by information criteria is the 

final technical challenge that will need to be explored for multiple imputation to become 

mainstream. This will ensure the robustness of inferences regarding model selection. The 

default in software is to pool the information criteria by averaging. I demonstrated that 

such a technique poorly replicates the decisions that would have been made had the data 

been complete and that a better strategy is to obtain a pooled information criteria value by 

stacking the imputed datasets (Chapter 4).  

 In summary, it remains an open question how best to treat missing data in a 

person-centered analysis appropriately, and it is clear that future methodological work is 
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needed to fully resolve the issues with current practices. Even though there are not simple 

answers to these issues, the simulation studies that formed this dissertation provide 

valuable insights into some areas where it is clear that best practices can be updated. With 

this in mind, I now discuss my recommendations to provide guidance to applied 

researchers conducting LPA in the presence of missing data.  

Guidance to Applied Researchers 

 As methodologists become increasingly aware of the issues regarding how 

missing data is currently treated, best practices are likely to evolve rapidly in the coming 

years with the advent of new methodologies. In the following, I provide some 

recommendations based on the lessons learned from the simulations in this study. As 

there are no quick fixes to these issues, I strive to incrementally improve current practices 

with the key findings from the studies in this dissertation. 

Recommendation 1: Test the MAR Assumption 

 Consistent with what would be expected from missing data theory, the 

simulations in this study demonstrated that the validity of inferences are threatened when 

current practices (i.e., fitting a mixture model to the profile indicators by estimating with 

FIML) are employed. At a minimum, researchers fitting a mixture model using FIML 

should test whether the tacit assumption that the data are MAR conditional only on the 

observed indicator values is tenable or not. This can be accomplished by evaluating 

whether other variables in the dataset are predictive of any of the missing data patterns. 

Specifically, the MAR assumption is likely violated (and the data are likely missing not 

at random) if a variable in the dataset other than the profile indicators predicts the 

missing data patterns, controlling for the observed indicator values. If a researcher 
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identifies such a variable, then that should warn the researcher that nonresponse bias is 

possible. The fact that the data are MNAR should be acknowledged in the limitations 

section, and journal editors should begin holding researchers accountable for describing 

possible threats to the validity of conclusions induced by missing data. Some researchers 

will be in a position to conduct a sensitivity analysis, which I now discuss. 

Recommendation 2: Conduct a Sensitivity Analysis 

 The simulation studies in this dissertation show that in settings where the sample 

size is sufficiently large, the researcher may be positioned to conduct a sensitivity 

analysis. Specifically, this can be done by fitting the final model to imputed datasets 

constructed from CART imputation with auxiliary variables. Ideally, the inferences 

regarding class-specific means and marginal class probabilities from the imputed dataset 

will align with the conclusions drawn when fitting the mixture model to the profile 

indicators using FIML.  

Researchers should note that the degree to which CART imputation will mitigate 

nonresponse bias relative to FIML will depend on the separation of the classes when a 

small class is found. This is true even if the sample size is large. If results are robust 

across the FIML approach and the imputed datasets generated with CART imputation and 

the classes are sufficiently separated, then conclusions drawn from the class-specific 

means and marginal class probabilities are likely robust to the fact that missingness is 

known to depend on observables other than the profile indicators. In contrast, the classes 

are not sufficiently separated, the simulations showed that CART imputation will only 

attenuate nonresponse bias when the classes are equally mixed so that no small class is 
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found. In this case, CART imputation will provide no additional valuable information on 

assessing whether the results are sensitive to missing data. 

Recommendation 3: Adjust the BIC to Account for Evidence Loss if using FIML 

   In both small and large samples, applied researchers should use the adjustment for 

the BIC provided in Chapter 4 to correct for the fact that the BIC leads to model selection 

decisions with too few classes if mixture models are fit to the profile indicators using 

FIML. The simulations demonstrated that the proposed adjustment procedure mitigates 

the tendency for researchers to under extract the number of classes. 

Future Research Required for More Narrowly Tailored Guidance 

 More work is needed to identify when CART imputation would be effective as a 

sensitivity analysis in an LPA, or even be preferable to a FIML approach entirely. 

Specifically, the factorial simulation design is limited in identifying useful threshold 

values that can offer applied researchers more precise data condition values for when 

CART imputation is valuable for a sensitivity analysis. My recommendation for 

employing CART imputation in a sensitivity analysis when samples are above 𝑁 = 1,200 

observations follows directly from the fact that the simulation studies defined small 

samples as 𝑁 = 300 and large samples as 𝑁 = 1,200 across all replications. Although 

these values correspond to ranges in education and psychology literature (𝑁 = 300 to 

1,200 is the interquartile range for a sample of thirty highly cited LPA studies informing 

the simulation studies), the simulations do not provide clear guidance for intermediate 

values. For example, would CART imputation perform well if sample size is slightly 

reduced to, say, 𝑁 = 1,000? Although one can expect that the positive findings would 

generalize with this sample size, this expectation needs to be verified through a 
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simulation study tailored to that research question. For instance, a simulation study could 

be designed where sample size and class separation values are randomly drawn from a 

uniform distribution at each replication in the simulation. More sophisticated approaches 

to analyze the resulting data would then be needed in order to smooth the results and 

provide information on the expected bias at a given sample size and class separation 

value. Regression analysis or another curve-fitting technique are two options for 

effectively smoothing the data and determining appropriate threshold values.  

Finally, before CART imputation is used in place of FIML, the strong 

performance of stacking should be evaluated using simulation studies. This is true even in 

the large-sample settings where the simulations showed it performed well. Specifically, 

although it is likely that the positive results regarding stacking will generalize to CART 

imputation, this was not directly tested in Chapter 4 because imputations were drawn 

from the true data generating probability distribution. Thus, future work should confirm 

that the results from Chapter 4 generalize to CART imputation in the data conditions 

where we concluded that CART imputation mitigates nonresponse bias. 

Summary 

In conclusion, person-centered analysis like LPA presents unique challenges to 

treating missing data. In this dissertation, I have scrutinized current practices in treating 

missing data and found many limitations. I have argued that multiple imputation is better 

suited to treat missing data than the current practice of estimating mixture models fit to 

profile indicators with FIML, although several challenges remain. Identifying solutions to 

these challenges is imperative to minimize threats to inference when analyzing real-world 

data from education and the behavioral sciences.  
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Technical Appendix A: Useful Principles, Quantities, and Properties in Missing 

Data Theory 

The Missing Information Principle  

The missing information principle (Orchard & Woodbury, 1972) states that the 

complete-data information matrix is the sum of the observed-data information matrix and 

the missing information 

𝐼com(𝜃|𝑌) = 𝐼obs(𝜃|𝑌obs) + 𝐼mis(𝜃|𝑌mis). (A. 1) 

Proof 

The following proof is taken from Schafer (1997, p. 57).  The missing information 

principal follows from the decomposition of the complete-data loglikelihood as the sum 

of observed and missing components,  

log Pr(𝑌|𝜃) = log Pr(𝑌obs|�̂�) + log Pr(𝑌mis|𝑌obs, 𝜃). 

This can be equivalently written as  

ℓcom(𝜃|𝑌) = ℓobs(𝜃|𝑌obs) + log Pr(𝑌mis|𝑌obs, 𝜃). 

Taking the negative Hessian of both sides and applying the distributive property of 

derivative results in the information matrices in (A. 1). 

Fraction of Missing Information 

As defined by Schafer (1997, p. 58), the fraction of missing information FMI(𝜃) 

is given by 

FMI(𝜃) = 𝐼com
−1 (𝜃|𝑌)𝐼mis(𝜃|𝑌mis) =  𝕀 − 𝐼com

−1 (𝜃|𝑌)𝐼obs(𝜃|𝑌obs). (A. 2) 

The latter expression for the fraction of missing information results from solving for 

𝐼mis(𝜃|𝑌mis) in (A. 1) and substituting, i.e.,  

𝐼com
−1 (�̂�|𝑌)𝐼mis(𝜃|𝑌mis) = 𝐼com

−1 (�̂�|𝑌) (𝐼com(𝜃|𝑌) − 𝐼obs(𝜃|𝑌obs)) 
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                         = 𝕀 − 𝐼com
−1 (�̂�|𝑌)𝐼obs(𝜃|𝑌obs). 

 Relative Increase in Variance  

The relative increase in variance is defined as the proportional increase in the 

complete-data asymptotic covariance matrix needed to arrive at the observed-data 

asymptotic covariance matrix, i.e. 

𝑉obs(𝜃|𝑌obs) = (𝕀 + RIV(𝜃)) 𝑉com(𝜃|𝑌). (A. 3) 

Solving for RIV(𝜃) in (A. 3) results in an expression for the relative increase in variance  

RIV(𝜃) =  𝑉obs(𝜃|𝑌obs)𝑉com
−1 (�̂�|𝑌) − 𝕀 = 𝐼obs

−1 (�̂�|𝑌obs)𝐼com(𝜃|𝑌) − 𝕀. (A. 4) 

Property 1 

  The determinant of the identity matrix plus the relative increase in variance matrix 

is strictly greater than or equal to one: |𝕀 + RIV(𝜃)| ≥ 1. 

Proof  

Substituting 𝑉obs(𝜃|𝑌obs) = 𝐼obs
−1 (𝜃|𝑌obs) and 𝑉com(𝜃|𝑌) = 𝐼com

−1 (𝜃|𝑌) into 

(A. 3) and then taking the determinant of both sides and then simplifying the expression 

leads to the following intermediate expression,  

1

|𝐼obs(�̂�|𝑌obs)|
=

|𝕀 + RIV(𝜃)|

|𝐼com(�̂�|𝑌)|
. 

Substituting for 𝐼com(𝜃) using (A. 1) and solving for |𝕀 + RIV(𝜃)| implies that 

|𝕀 + RIV(𝜃)| =
|𝐼obs(𝜃|𝑌obs) + 𝐼mis(𝜃|𝑌mis)|

|𝐼obs(𝜃|𝑌obs)|
. (A. 5) 

 

 



199 

 

Because 𝐼mis(𝜃|𝑌mis) is positive semidefinite the determinant of the combined observed- 

and missing-data information matrices (i.e, the complete-data information matrix) is 

strictly greater than the determinant of the observed-data information matrix alone, i.e.,  

|𝐼obs(𝜃|𝑌obs) + 𝐼mis(�̂�|𝑌mis)| ≥ |𝐼obs(𝜃|𝑌obs)|.  

Applying this inequality into (A. 5) implies that 

|𝕀 + RIV(𝜃)| ≥
|𝐼obs(�̂�|𝑌obs)|

|𝐼obs(�̂�|𝑌obs)|
. 

Simplifying the above results in the inequality provided in Property 1. 

Property 2  

If given the fraction of missing information, the relative increase in variance can 

be obtained via 

 RIV(𝜃) = FMI(𝜃) (𝕀 − FMI(𝜃))
−1

. 

Proof  

Solving for 𝐼obs(�̂�|𝑌obs) in (A. 1) and then taking the inverse of the resulting 

expression leads to the following observed-data information matrix,  

𝐼obs
−1 (�̂�|𝑌obs) = (𝐼com(𝜃|𝑌) − 𝐼mis(𝜃|𝑌mis))

−1
(A. 6) 

Substituting (A. 6) into (A. 4) leads to the following expression for RIV(𝜃):  

RIV(𝜃) = 𝐴(𝜃) − 𝕀. (A. 7) 

where  

𝐴(𝜃) =  (𝐼com(�̂�|𝑌) − 𝐼mis(𝜃|𝑌mis))
−1

𝐼com(𝜃|𝑌). (A. 8) 

Taking the inverse of both sides in (A. 8), 
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      𝐴−1(𝜃) = 𝐼com
−1 (𝜃|𝑌) (𝐼com(�̂�|𝑌) − 𝐼mis(𝜃|𝑌mis))

 = 𝕀 − 𝐼com
−1 (𝜃|𝑌)𝐼mis(𝜃|𝑌mis) (A. 9)

 

Substituting FMI(𝜃) =  𝐼com
−1 (𝜃|𝑌)𝐼mis(�̂�|𝑌mis) from (A. 2) into (A.9) and then inverting 

the left and right hand side results in an expression for 𝐴(𝜃) in terms of FMI(𝜃), 

𝐴(𝜃) = (𝕀 − FMI(𝜃))
−1

. (A. 10) 

Substituting (A. 10) into (A. 7),  

RIV(𝜃) = (𝕀 − FMI(𝜃))
−1

− 𝕀. (A. 11) 

Substituting 𝕀 = (𝕀 − FMI(𝜃)) (𝕀 − FMI(𝜃))
−1

 in (A. 11),  

         RIV(𝜃) = (𝕀 − FMI(𝜃))
−1

− (𝕀 − FMI(𝜃)) (𝕀 − FMI(𝜃))
−1

= (𝕀 − 𝕀 + FMI(𝜃)) (𝕀 − FMI(𝜃))
−1

.  (A. 12)
 

Simplifying (A. 12) results in the Property 2.  

Property 3  

A useful relationship between the relative increase in variance and the fraction of 

missing information is as follows:  

𝕀 + RIV(𝜃) = (𝕀 − FMI(𝜃))
−1

.  

Proof  

Solving for  (𝕀 − FMI(𝜃))
−1

 in (A. 11) results in Property 3. 
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Technical Appendix B: Illustrating the Limitations of a Saturated Correlates 

Approach in Latent Profile Analysis 

To highlight the difficulty in implementing a saturated correlates approach in a 

latent profile analysis, we utilized data from the Early Childhood Longitudinal Study, 

Kindergarten (ECLS-K) 1998 cohort. With empirical data we show that implementing 

Graham’s rules (2003) results in individuals switching classes and it leads to undesired 

changes in class definitions. In other words, while Graham’s rules (2003) preserves the 

interpretation of parameters in regression models, structural equation models, or other 

covariance structure models, these rules do not preserve the interpretation of the 

parameters that define the classes in latent profile analysis. 

   The ECLS-K is a nationally representative, longitudinal study following children 

enrolled in either full-time or part-time Kindergarten in the 1998-1999 school year to the 

end of eighth grade. The dataset contains a wide range of achievement, behavioral, 

psychological, and school-environment outcomes being collected up to two times a 

school year.  We build on an introduction to LPA for applied researchers provided by 

Berlin, Williams, & Parra (2014) investigating distinct subpopulation of Black, non-

Hispanic adolescents in eighth grade who differ according to dietary intake, physical 

activity, and sedentary behaviors.  

Measures and Inclusion Criteria 

The constructs of interest include weekly physical activity, sedentary behaviors, 

and dietary intake. Three items measured physical activities, including participation in 

school sports (three categories), participation in non-school sports (four categories), days 

exercised in the past seven days (0-7 days; 8 categories), and average days in PE per 
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week (0-5 days; 6 categories). Six items measured sedentary behaviors by asking the 

number of hours per day (0-24 hours; 25 categories) spent watching TV, playing 

videogames, or using the internet. Nine items measured dietary intake by asking the 

number of days (0-7 days; 8 categories) specified foods (e.g., carrots, potatoes, fruit, fast 

food, etc.) or drinks (e.g., a glass of milk, a glass of juice, drank soda, etc.) were 

consumed.   

Because LPA relies on the assumption that indicators are continuous, we parceled 

items to construct three profile indicators that measure overall physical activity, sedentary 

behaviors, and dietary intake. The ACTIVITY parcel was constructed by standardizing 

all items before aggregating. The SEDENTARY and DIETARY parcels were constructed 

using the items in their raw scales because all items were on the same scale (i.e., 

hours/day or days/week). The auxiliary variable used in this example is the student’s 

predicted BMI in eighth grade. This value was predicted by fitting a latent growth curve 

model to BMI data collected in seven waves between Kindergarten and eighth grade.   

Only data for individuals who identify as Black, non-Hispanic in eighth grade are 

analyzed in the illustrative example. We required that all class indicator data be present in 

order to be included in the study. Requiring complete data implies that any difference in 

the parameter estimates across the specified models is the result of one specification 

changing the parameter’s interpretation, and not differences because missing data are 

being treated. Applying these inclusion criteria results in a sample size of 𝑁=608 girls 

and boys.   
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Analytic Strategy 

 To identify if Graham’s (2003) rules preserves the interpretation of the parameters 

of the latent classes, we fit two separate mixture models. We specify the first mixture 

model according to the regular specification. The second mixture model is specified 

according to Graham’s (2003) rules. The total number of classes specified was 𝐾 = 3, 

which was determined by minimizing the BIC. 

If Graham’s (2003) rules preserves the interpretation of the parameters that define 

the classes, then the class-specific means should be equivalent across the two fitted 

models. Similarly, if the two models result in equivalent classifications into the latent 

classes, then this should be reflected by the marginal class probabilities being equivalent. 

Regular Specification Graham’s (2003)  Rules Specification 

 
Notes. Regular specification of a 

finite mixture model for latent 

profile analysis.  

 

Mplus Code: 

         %OVERALL% 
 

       [ c#1*2.62697 ]; 

       [ c#2*1.96629 ]; 

 

       %C#1% 

 

       activity WITH sedent*0.02210; 

 

Notes. Finite mixture model specified 

according to Graham’s (2003) rules. 

 

Mplus Code: 
        

 

      %OVERALL% 

 

       [ c#1*2.01049 ]; 

       [ c#2*1.56094 ]; 

 

       %C#1% 
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       activity WITH diet*0.05300; 

       sedent WITH diet*-0.05011; 

 

       [ activity*-0.02476 ]; 

       [ sedent*2.65952 ]; 

       [ diet*2.26605 ]; 

 

       activity*0.40506; 

       sedent*1.21632; 

       diet*0.26683; 

 

       %C#2% 

 

       activity WITH sedent*0.28524; 

       activity WITH diet*0.05147; 

       sedent WITH diet*-1.00020; 

 

       [ activity*0.11883 ]; 

       [ sedent*5.16571 ]; 

       [ diet*3.03186 ]; 

 

       activity*0.33318; 

       sedent*5.12648; 

       diet*0.85182; 

 

       %C#3% 

 

       activity WITH sedent*1.82689; 

       activity WITH diet*0.03423; 

       sedent WITH diet*-0.14302; 

 

       [ activity*-0.50638 ]; 

       [ sedent*10.96636 ]; 

       [ diet*3.25351 ]; 

 

       activity*0.21963; 

       sedent*28.22388; 

       diet*1.09756; 

 

       activity WITH sedent*0.02103; 

       activity WITH diet*0.05051; 

       activity WITH bmi7hat*-0.43547; 

       sedent WITH diet*-0.04691; 

       sedent WITH bmi7hat*0.12228; 

       diet WITH bmi7hat*-0.05482; 

 

       [ activity*-0.01788 ]; 

       [ sedent*2.58428 ]; 

       [ diet*2.22146 ]; 

       [ bmi7hat*23.64010 ] (c1); 

 

       activity*0.40754; 

       sedent*1.07994; 

       diet*0.24012; 

       bmi7hat*26.41688; 

 

       %C#2% 

 

       activity WITH sedent*0.22583; 

       activity WITH diet*0.05782; 

       activity WITH bmi7hat*-0.09564; 

       sedent WITH diet*-0.83204; 

       sedent WITH bmi7hat*-1.07637; 

       diet WITH bmi7hat*-0.01836; 

 

       [ activity*0.07593 ]; 

       [ sedent*4.89019 ]; 

       [ diet*2.90937 ]; 

       [ bmi7hat*23.64010 ] (c1); 

 

       activity*0.36193; 

       sedent*5.17748; 

       diet*0.66108; 

       bmi7hat*15.65743; 

 

       %C#3% 

 

       activity WITH sedent*0.03752; 

       activity WITH diet*0.05405; 

       activity WITH bmi7hat*1.35984; 

       sedent WITH diet*-0.05141; 

       sedent WITH bmi7hat*-41.36480; 

       diet WITH bmi7hat*-9.50095; 

 

       [ activity*-0.23295 ]; 

       [ sedent*9.79538 ]; 

       [ diet*3.80696 ]; 

       [ bmi7hat*23.64010 ] (c1); 

 

       activity*0.32718; 

       sedent*32.94598; 

       diet*1.51608; 

       bmi7hat*188.48395; 

 

Results 

 The marginal class probabilities and standardized class means across the indicator 

parcels for both specifications is shown in the figure below. We find that specifying 

according to Graham’s (2003) rules does not result in equivalent parameter estimates in 
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the class means, suggesting that such a specification risks changing the definitions of the 

classes. Moreover, the two specifications lead to differences in the marginal class 

probabilities. For example, the third class was found to comprise only 4.6% of the 

population according to the regular specification, but the corresponding class comprised 

7.6% of the population when the mixture model is specified according to Graham’s 

(2003) rules. Thus, Graham’s (2003) rules neither preserves the parameters that define 

the classes nor results in observations being classified into the same classes.  
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Technical Appendix C: Derivation of 𝐁𝐈𝐂𝐨𝐛𝐬 

To understand why the penalty term 𝑞𝐾 log 𝑁 assumes 𝑁 complete observations, 

we first derive the expression for the BIC assuming the data are complete. Then we 

consider whether the tacit underlying assumptions are appropriate in the presence of 

missing data.  

Derivation of the BIC in Complete-Data Settings 

The BIC is derived using large sample theory to approximate to the log-integrated 

likelihood function (also referred to as the model evidence) given by  

 log Pr(𝑌|ℳ𝐾) = ∫ Pr(𝑌, 𝜃𝐾|ℳ𝐾)
𝜃𝐾

𝑑𝜃𝐾 . (C. 1) 

Making use of Laplace’s method (Kass & Raftery, 1995; Tierney & Kadane, 

1986), it can be shown  that, under certain conditions, (C. 1) can be well approximated as 

the loglikelihood at the maximum likelihood estimate plus the log determinant of the 

Fisher information matrix, i.e., 

log Pr(𝑌; ℳ𝐾) ≈ ℓ(𝜃𝐾|𝒀) −
1

2
log|𝐼(𝜃𝐾|𝑌)| (C. 2) 

where 𝜃𝐾 is the MLE and 𝐼(𝜃𝐾|𝑌) is the complete-data Fisher information matrix.  The 

BIC makes use of another approximation: the determinant of 𝐼(𝜃𝐾) is approximately 

given by 𝑁𝑞𝐾,  i.e., 

|𝐼(𝜃𝐾|𝒀)| ≈ 𝑁𝑞𝐾 . (C. 3) 

The approximation in (C. 3) is justified by the central limit theorem because (a) 

the standard errors are of order 𝑁−
1

2 under the regularity conditions, implying that the 

diagonals of the Fisher information matrix are of order 𝑁, and (b) the determinant is the 

product of 𝑞𝐾 diagonals of the Fisher information matrix. Substituting the approximation 
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(C. 3) into (C. 2), simplifying, and then multiplying by -2 results in the familiar expression 

for the BIC given by Schwarz (1978), i.e.,  

 BIC = −2ℓ(𝜃𝐾|𝑌) + 𝑞𝐾 log 𝑁 . (C. 4) 

Adjusting the BIC to Account for Evidence Loss due to Missing Data 

In practice, the penalty term in calculating the BIC using only the observed data 

𝑌obs (i.e., BICFIML) remains the same as in the complete data case. The tacit assumption 

here is that the determinant of the Fisher information matrix given the observed data is 

approximately equal the determinant value of the complete-data information matrix, i.e., 

|𝐼obs(𝜃𝐾|𝑌obs)| ≈ |𝐼com(𝜃𝐾|𝑌)| ≈ 𝑁
𝑞𝐾
2 . (C. 5) 

We assert here that a penalty which approximates the determinant as 𝑁
𝑞𝐾
2  over 

estimates |𝐼obs(𝜃𝐾|𝑌obs)| whenever there is nontrivial missing information and especially 

in small samples. We further assert that model selection based on BICFIML leads to 

decisions that favor more parsimonious models than what would have been made had the 

data been complete. 

To justify our assertions, we start with the same foundation of the BIC in the 

complete data case: Laplace’s method. However, in this case we approximate the log-

integrated observed-data likelihood using the observed-data likelihood function and the 

corresponding observed-data Fisher information matrix,   

log Pr(𝑌obs; ℳ𝐾) ≈ ℓ(𝜃𝐾|𝑌obs) +
1

2
log|𝐼obs(�̂�𝐾|𝑌obs)| . (C. 6) 

Following from the missing information principle in (A.1), we note that the 

asymptotic covariance matrix if given the observed-data,  𝐼obs
−1(�̂�𝐾|𝑌obs), is related to the 

asymptotic complete-data covariance matrix,  𝐼com
−1 (𝜃𝐾|𝑌) by the relative increase 
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invariance matrix, RIV(𝜃𝐾). Substituting 𝐼obs
−1(𝜃𝐾|𝑌obs) for 𝑉obs(�̂�) and 𝐼com

−1 (𝜃𝐾|𝑌) for 

𝑉com(�̂�) in  (A.4) yields  

𝐼obs
−1 (�̂�𝐾|𝑌obs) = (𝕀 + RIV(𝜃𝐾)) 𝐼com

−1 (𝜃𝐾|𝑌). (C. 7) 

To provide intuition about the relative increase in variance, 𝐼obs
−1(𝜃𝐾|𝑌obs) 

represents the “total” variance and 𝐼com
−1 (𝜃𝐾|𝑌obs) represents the “within-imputation” 

variance components used in Rubin’s (1987) rules for multiple imputation. Inverting 

(C. 7) and then taking the determinant implies that the determinant of the observed-data 

Fisher information matrix is  𝑁𝑞𝐾 scaled by the scalar value |𝕀 + RIV(𝜃𝐾)|
−1

,  

|𝐼obs(𝜃𝐾|𝑌obs)| =
|𝐼com(𝜃𝐾|𝑌)|

|𝕀𝑞𝐾
+ RIV(𝜃𝐾)|

≈
𝑁𝑞𝐾

|𝕀𝑞𝐾
+ RIV(𝜃𝐾)|

. (C. 8) 

Substituting the approximation in (C. 8) into (C. 6) and simplifying implies that  

log Pr(𝑌obs; ℳ𝐾) ≈ ℓ(𝜃𝐾|𝑌obs) −
1

2
(𝑞𝐾log 𝑁 − log|𝕀𝑞𝐾

+ RIV(𝜃𝐾)|). (C. 9) 

An expression for the BIC adjusted for evidence loss due to missing data (i.e., BICobs) is 

then obtained by multiplying the above equation by -2, 

BICobs = −2ℓ(𝜃𝐾|𝑌obs) + 𝑞𝐾log 𝑁 − log|𝕀𝑞𝐾
+ RIV(𝜃𝐾)| (C. 10) 

Noting that −2ℓ(𝜃𝐾|𝑌obs) + 𝑞𝐾log 𝑁 is defined as BICFIML, (C. 10) can be expressed as 

BICobs =  BICFIML − log|𝕀𝑞𝐾
+ RIV(𝜃𝐾)| . (C. 11) 

Thus, BICobs is simply the traditional FIML BIC formulation corrected for the added 

variability resulting from the missing data, and log|𝕀𝑞𝐾
+ RIV(𝜃𝐾)| represents the 

amount of evidence lost from the model evidence that the BIC approximates.  

The relative increase in variance is related to the fraction of missing information, 

FMI(𝜃𝐾), a quantity of theoretical importance because, among other reasons, it governs 



 

211 

 

the convergence rate of the EM algorithm (Dempster, Laird, & Rubin, 1977). Thus, the 

evidence loss can also be expressed in terms of the fraction of missing information.  In 

particular, Property 3 in Technical Appendix A states that |𝕀𝑞𝐾
+ RIV(𝜃𝐾)| =

|𝕀𝑞𝐾
− FMI(𝜃𝐾)|

−1
. BICobs can, therefore, be expressed as 

BICobs =  BICFIML + log|𝕀𝑞𝐾
− FMI(𝜃𝐾)| . (C. 12) 
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