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Abstract 

Speech reading or lip reading is the understanding of spoken language while 

watching the speaker. It is a natural extension to increase comprehension when hearing 

becomes challenging. One attentively observes the speaker’s mouth movement as it 

forms the word. Speech reading is a skill, in addition to hand sign language, that helps 

with comprehension. It is an interesting skill yet difficult to learn. 

This thesis describes the development of a deep learning model that translates 

mouth movement into words. The model stacks a Convolutional Neural Network (CNN) 

and Long Short Term Memory (LSTM) for learning the sequence of mouth images. 

The model is trained with a dataset from the GRID corpus. This corpus contains 

video recordings of 34 speakers with each speaks 1000 sentences in English. The trained 

model is capable of predicting words from the mouth video frames with a word accuracy 

of 52.25%, far exceeding human accuracy of 14.47%.  
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Chapter 1 Introduction 

A person could be hearing challenged due to a physical audio sensory problem or 

due to exposure to a noisy environment. People who are hard of hearing often seek 

alternative communication methods. One such method to overcome the challenge is 

speech reading. It is a natural extension to increase comprehension when hearing 

becomes challenging. Bunger [1] defined speech reading as the understanding of spoken 

language while attentively watching the speaker, with or without help of hearing.  

Speech reading is considered as a trainable skill, that one can acquire through 

practice. One of the well-documented speech reading training approaches is the Jena 

Method [1]. This method trains a person by observing the mouth shapes and movement 

as the speaker is forming a word. The observer draws comparisons between an audible 

speech and an inaudible speech. The observer starts with watching and listening to a 

speaker uttering one sentence. After that, the speaker will step inside a soundproof glass 

room and say the same sentence. The observer will try to recognize the words by 

watching the speaker’s mouth without hearing the voice. This training is done repeatedly 

on a particular word until the observer is able to recognize the word without hearing the 

sound. Hilder et. al. [26] reported human participants achieved an average of 14.47% 

accuracy on a monosyllabic words. The accuracy improved to an average of 18.42% with 

one hour training.  

This thesis stands on the premise that speech reading can be learned through 

training. The hypothesis is that we can develop a deep learning model that will recognize 

a video clip of mouth movement and determine the spoken word. This thesis selects deep 
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learning as the approach to solve the problem because it has the capability to extract the 

features from the dataset during the training. Deep learning is capable of discovering 

intricate structures in high dimensional data [2]. This attribute, in particular, is required to 

attack problem with no clear set of features such as in speech reading. Recent research 

results in the area of computer vision and machine learning suggest that the approach is 

plausible. 

This thesis is an attempt to build a model for solving the speech reading problem 

with a deep learning technique. Chapter 2 describes the background of the problem in 

speech reading, the approach taken in the prior research, and the approach used to solve 

the problem. Chapter 3 reviews the prior research that lays the foundation to this thesis. 

Chapter 4 presents an overview of the components, technologies and tools to build the 

solution. Chapter 5 presents an overview and design of the model, dataset and testing 

criteria. Chapter 6 presents the model implementation, the training process, the testing 

results and the model tuning. Chapter 7 summarizes the results and findings along with 

the future work. 
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Chapter 2 Background 

Speech reading, in the context of this thesis, is defined as observing a speaker’s 

mouth movement and determining the spoken word. It is an algorithm that takes video 

frames as input and translates them into a word as the output. The video frames capture 

the speaker’s mouth movement. The translated word is the spoken word from the 

speaker.  

One approach to accomplish this task is to use a set of rules to determine the 

correct translation of the video frames. Hassanat tried to create a set of rules based on the 

lips width and height [9]. The research suggested the ratio of mouth’s inner width and 

height could be used to determine the spoken word. The research utilized a K-Nearest 

Neighbor [9] technique to group the rules based on the lips width and height dataset. 

With a limited set of vocabulary, they achieved an accuracy of 33%. The result showed a 

significant improvement when localized to the dataset of the same speaker only. It is 

clear that manually building the dictionary that is required in such set of rules is 

impractical. One would need to measure the ratio in each frame for every single word 

with the variation of speaker’s lips shape and contour. The result leaves room for 

improvement. It is not generalizing well across speakers and the rules are proving to be 

less accurate. However, this research set the cornerstone for further research. 

The speech reading problem poses three challenges, which we will need to 

address: 

1. There is no clear set of rules that can determine the spoken word from a video 

frames. 
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2. There is no clear set of features that can distinguish one video frames from 

another. 

3. There is no established dictionary that can translate a sequence of video frames to 

a word. 

 

Given these challenges, we propose to utilize deep learning to solve this speech 

reading problem. Deep learning can extract features from the dataset during training, and 

develop set of rules based on the dataset to automate the dictionary building process 

which otherwise would have to be done manually. Deep learning can automate the 

process with an extensive training dataset. 

In this thesis, we describe a deep learning model using a combination of 

Convolution Neural Network (CNN) and Recurrent Neural Networks (RNN). The CNN 

component is required to extract the visual feature of each frame in the video clip. It 

identifies the mouth shape using convolutional combined with a max pooling operation 

on the image. The RNN component is required to extract the temporal feature of the 

frame sequence. The combination of a CNN and an RNN formed a model that was 

trained with a labeled set of mouth video clips. The resulting model is capable of 

translating the mouth clip into words. 

 

 

  



 

5 

Chapter 3 Review of Prior Work 

A number of past research papers have created the foundation for this thesis. This 

chapter reviews the notable research tackling this problem.  

A Spatial Temporal technique of Viseme Extraction: Application in Speech Recognition 

This paper confirms that visemes can be differentiated using the spatial temporal 

features. They extracted the lips feature using edge detection. The main features are the 

vertical opening (DV) and horizontal opening (DH) of the lips. They developed a model 

that differentiates visemes based on the image features. The model was tested on an in-

house dataset and confirmed the difference between visemes [10]. 

From this paper, we borrowed the idea of focusing on the lips region showing 

vertical and horizontal opening to predict the word. 

Method: Feature extraction 

Approach: Lips feature extraction 

Dataset: In-house dataset 

Result: Confirms different visemes have different features  

Scope: Closed domain problem 

 

Visual Speech Recognition 

The Visual Speech Recognition (VSR) model takes the approach of predicting the 

viseme from lips features [9]. Viseme is the visual equivalence to phoneme. This model 
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uses K-Nearest Neighbor technique to predict the viseme from a lips movement. The lips 

feature was extracted with edge detection using a discrete wavelet transformation [25]. 

The paper explained that the point of interest is mainly the inner lips width and height, 

the appearance of tongue and the appearance of teeth. 

The classification process employs dynamic time warping to compensate for the 

length difference, and K-Nearest Neighbor classifier to predict the word. 

This model is trained against an in-house dataset with female and male speakers. The 

evaluation results show that the model achieved 76.38% word recognition rate if the 

model is trained with the same speaker. The result declines significantly to 33% word 

recognition rate when the training data is mixed with different speakers. 

From this paper, we borrowed the idea of focusing to the inner lips width and 

height, and the appearance of tongue and teeth. 

Method: K-Nearest Neighbor 

Approach: Lips feature extraction and K-Nearest Neighbor 

Dataset: In-house dataset 

Result: 76.38% (same speaker), 33% (mixed speakers) 

Scope: Closed domain problem 

 

LipNet: End-to-end Sentence-level Lipreading 

LipNet claims to be the first end-to-end sentence-level deep learning model. The 

model gives 95.2% word accuracy in sentence-level surpassing the average human lip 

reader [5]. The LipNet architecture is composed of a Spatio-Temporal Convolution 
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Neural Network (STCNN) and Recurrent Neural Network (RNN) with Connectionist 

Temporal Classification (CTC) algorithm to approximate the word segmentation [23]. 

The paper showed that combining STCNN and RNN is effective in extracting the spatio-

temporal features. The CTC algorithm produces approximation of maximum-probability 

word segments in a sentence. The model was trained using the GRID corpus [24], which 

currently is the largest public sentence-level dataset available. The performance was 

evaluated by measuring the Character Error Rate (CER) and Word Error Rate (WER) for 

both unseen and overlapped speakers. The model gives a CER of 6.4% and WER of 

11.4% on unseen speakers, and a CER of 1.9% and WER of 4.8% on speakers that were 

included in the training set. The high accuracy performance is attributed to the 

complexity of the network topology. It is capable of extracting the information in high 

granularity. The input layer takes 3 seconds colored mouth clips with total dimension of 

75 frames x 100 pixels wide x 50 pixels high x 3 channels per clip. The model was 

trained on a machine with 8 high end GPUs (28,672 cores), which enable training for a 

complex model. The researchers suggested the overall performance could only be 

improved with a larger dataset. 

From this paper, we took the same logical approach developing a model from the 

spatial and temporal features of the dataset. 

Method: Deep learning 

Approach: Spatio-temporal visual features and sequences model 

Dataset: GRID corpus 

Result: 95.2% accuracy (overlapped speakers), 89.6% (unseen speakers) 

Scope: Closed domain problem 
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Lip Reading Sentence In the Wild 

The Lip Reading in the Wild (LRW) model combines visual and audio cues to 

predict the word [8]. In making the word prediction, the model uses the notion of the 

speaker’s lips and the speaker’s voice. The LRW architecture combines the two channels 

of visual and audio cues. The visual model is a convolutional network that extracts the 

features and passes them as input to a LSTM network. The audio model is a sequence-by-

sequence LSTM network. It was trained using Lip Reading Sentence (LRS) corpus, 

which was produced from BBC broadcasting. The dataset contains facial expressions 

from various speakers, hence the term “in the wild”. This model aimed at tackling the 

speech reading problem in an open domain. 

The LRW was evaluated with watch-only, watch-listen, and watch-listen in noisy 

environment. The watch-only model achieved 53.2% Word Error Rate (WER). In other 

words, it can predict the word with 46.8% word accuracy from reading the lips. The 

accuracy improves with a watch-listen combination. On recordings with no noise, the 

watch-listen model achieved 22.8% WER, or 77.2% word accuracy. These results drop to 

35.1% WER, or 64.9% word accuracy, when the dataset is added with a 10db Signal to 

Noise Ratio (SNR) to simulate a noisy environment. As comparisons, a professional lip 

reader achieved 73.8% WER, or 26.2% word accuracy, on a subset of data. 

From this paper, we borrowed the data pre-processing technique that localizes the 

problem to word segments from a full sentence. 

Method: Deep learning 

Approach: Watch, listen, attend and spell 

Dataset: LRS corpus 
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Result: 46.8% accuracy (watch only), 77.2% (watch and listen) 

Scope: Open domain problem  
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Chapter 4 Technology Choice 

Neural Network 

A neural network models a calculation with the use of layered perceptrons. In a 

simple model, a perceptron is a node that takes inputs, applies weights to each input with 

a bias value and produces an output based on the activation function. The output is passed 

through an activation function to introduce non-linearity in the model. Multiple 

perceptrons can be stacked in a layer to model a rather complex equation. A layer of 

multiple perceptrons takes a number of inputs, which will be directed to each node. Each 

of the nodes will apply weights, bias and activation function, which in turn will produce 

outputs. Neural network is a multiple layer of perceptrons. Neural networks are 

particularly good at modeling complex calculations. A model built in a neural network 

can be trained with a feed-forward and back-propagation computation to optimize 

weights for each node in the model. During the training process, the model learns the best 

weights for each node to achieve the defined goal. The goal could be defined as achieving 

highest accuracy score or minimizing the loss. 

Convolutional Neural Network 

Convolutional Neural Network or CNN is a neural network architecture designed 

specifically for solving the image recognition problem. It utilizes matrix convolution and 

max pooling techniques to detect patterns in an image [15]. Our work takes the advantage 

of the CNN in extracting the mouth opening pattern in each frame in the lips video 

sequence. 
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Recurrent Neural Networks 

Recurrent Neural Network or RNN is a neural networks architecture that adds an 

internal memory in the node. The memory allows RNN to pass a value from a node to 

another node in the same layer, which can represents a system state. It is particularly 

useful for time series computation. 

Long Short Term Memory 

Long Short Term Memory or LSTM is a type of recurrent neural networks that is 

specifically designed for sequential data [16]. It is widely used in speech recognition and 

natural language processing. It considers the sequence when making an inference. LSTM 

has the capability of holding longer-term memory. It prevents the vanishing value 

problem, which occurs in RNN [16]. 

Tensorflow 

Tensorflow [17] is an open source software language for building mathematical 

models and can be used for implementing neural networks. It was originally developed 

by Google’s engineers for machine learning research. The latest iteration, Tensorflow 

1.5.0, includes the Keras library, a wrapper library for developing neural network model 

[17]. 
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Scikit Learn 

Scikit learn is an open source software library in Python that has set of functionalities for 

data mining and analysis [18]. It is built on NumPy, SciPy and matplotlib. 

Pandas 

Pandas are open source software library for Python for data wrangling [19]. They provide 

functionalities for handling datasets in a tabular representation, which makes them 

intuitive to utilize when processing the dataset. 

MessagePack 

MessagePack or msgpack is a software library for Python for serializing data to a binary 

file format [20]. It helps with saving the data from memory to file. 

Ffmpeg 

Ffmpeg is an open source software package for audio and video processing [21]. The 

current research uses ffmpeg for cropping and trimming the video clips. 

Dlib 

Dlib is an open source C++ software library for machine learning and data analysis [22]. 

Our work uses the dlib face detection module for detecting the face and lips region in the 

images.  
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Chapter 5 Model Design 

The contribution of this thesis is a deep learning model called DeepSR for speech 

reading. From a high level perspective, the DeepSR model stacks a Convolutional Neural 

Network (CNN) and a Long Short Term Memory (LSTM). The CNN’s role is extracting 

the image features from each frame of the mouth clip. The LSTM’s role is learning the 

sequence of the features, which were the output of the CNN. 

 

 

Figure 1. DeepSR architecture stacks CNN and LSTM. 

 

The CNN stack consists of a mix of 2D convolutional layers and 2D max pooling 

layers. The 2D convolutional layers take 30x30 pixel grayscale images. This layer applies 
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a 2D convolutional operation with a 3x3 pixel tile. This layer is designed with 64 hidden 

nodes and is activated with ReLU activation function. The 2D max pooling layer applies 

pooling operation on the convolutional output using a 2x2 pixels tile. 

 

 

Figure 2. CNN stack uses 2D convolution, 2D max pooling and flatten operations. 

 

Figure 2 depicts the detailed design of the CNN stack. The input is fed to two 2D 

convolution layers with 64 hidden nodes and 3x3 convolution tiles. These layers are 

utilizing a rectified linear unit (ReLU) activation function. Next in the layer is a 2D max 

pooling with 2x2 tiles. This combination of 2D convolution layers and max pooling is 

repeated three times with an expanding number of hidden nodes. The stack is capped 

with a layer that flatten the output, which then fed to the LSTM stack. 

The LSTM stack takes the output from the CNN stack. This stack learns the series 
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of CNN stack outputs as a sequence. The LSTM layer is designed with 256 hidden nodes 

and is activated with a softmax activation function (Figure 3). The output of the LSTM 

stack is connected with a regular dense layer to classify the result. 

 

 

Figure 3. LSTM cells pass value to the subsequent cells. 

 

Another consideration for the model is modifying the LSTM layer to a 

Bidirectional LSTM layer. Such a layer can be created from two separate LSTM layers 

where each layer reads the sequence in forward and backward direction. 

The input data for this model is designed as a 4D array. The array has the 

dimension of 10x30x30x1 which represents Time x Width x Height x Channel. The 

output is a 1D array with the length of 51 to capture the 51 defined classes in one hot 

encoding. The classes are the distinct spoken words in the dataset. The words in this case 

could be a word, a number or an alphabetical character. 

The model is trained with 90% of the dataset and validated with 5% of the dataset. 

The remaining 5% dataset is held out as the blind test dataset. During the implementation 
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phase, it was found that loading the entire dataset in memory was impractical due to 

hardware limitation. Therefore, the dataset was redesigned with consideration to read in 

subsets. The testing is designed to measure three criteria: accuracy score, the confusion 

matrix and the ROC curve. These three criteria will be applied to the blind test dataset. 
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Chapter 6 Model & Results 

The implementation follows five steps: 

- Data preparation 

- Model development 

- Model training, validation and tuning 

- Blind testing 

- Results interpretation and further tuning 

Data preparation 

The data used for this research comes from the GRID corpus, which was chosen 

because it has a large corpus and a variety of speakers. The corpus is in full color video 

format at 720x526 resolution and 25 fps, with 34 different speakers, each recording 1000 

sentences with 51 different words in total.  The corpus is available for public download at 

their website [24]. 

The first step in data preparation is converting the video to grayscale. The 

conversion reduces the complexity by reducing the number of color channels from three 

(RGB) to one (grayscale). This makes the dataset smaller without sacrificing the quality, 

because we are only interested in the mouth shape. 

After the conversion to grayscale, the video is segmented into word segments. 

The original corpus provided a metadata file, which contains the exact time frame of each 

word in each video clip. The video segmentation is based on the information provided in 

the metadata file. 
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The next step is cropping the video to the mouth region. The cropping is 

performed with facial detection using the dlib library for identifying the mouth region of 

the speaker face. The cropping step is aligned with the model design, in that only the 

mouth shape and movement are important to identifying the spoken word. The cropped 

video is then rescaled to a uniform resolution of 60 pixels width by 30 pixels height. The 

video scaling step ensures each of the data points have the same resolution 

Next, the scaled video is split to half mouth: left and right. This step reduces the 

data size to half without losing any of the important information, due to the symmetry 

that is the left and right sides of the mouth creates the equivalent shape for the same 

word. The resulting split video is stacked together as dataset. The model will learn the 

features from both left and right half the mouth. 

As the last step in data preprocessing, the video frames are trimmed to 10 frames 

in length to reduce the data size. The length is considered to be short enough yet remains 

to have the important information for two syllables words. The dataset has 51 different 

words. Each word represents one class that is encoded with one hot encoding. 

The preprocessed dataset is split into three parts with a random sampling method. 

The split is 90% for training data, 5% for validation test and the remaining 5% for blind 

test. The words were sampled from each class to ensure equal distribution to the three 

dataset. 

In summary, the dataset has close to ~400,000 clips, with total 51 classes. Each 

clip has 10 frames that are 30 pixels wide x 30 pixels high with 1 channel. 
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Model development 

The model uses the Tensorflow library with the Keras wrapper included as part of 

Tensorflow version 1.5. In Keras terms, the model consists of two sequential models. The 

first one is the convolution neural network (CNN) stack. This stack is defined as a mix of 

Conv2D, MaxPooling2D and Flatten objects. The Conv2D object applies the convolution 

operation with 3x3 kernel size, 1x1 strides, same padding, and uses ReLU activation 

function in the output. The MaxPooling2D object applies the max pooling operation to 

the data with 2x2 pool size. The Flatten object transforms the data to a one-dimensional 

array before passing it on to the next layer. 

The second sequential model represents the recurrent neural network (RNN) 

stack. This stack consists of Reshape, TimeDistributed and LSTM objects. Reshape 

transforms the data into a time series. In this case, we define the data structure as time x 

width x height x channel. TimeDistributed object applies the CNN model to each element 

from the time series data. We applied the CNN stack to each frame input. LSTM object 

applies the recurrent cell operation with the 256 cell units. Finally, Dense object fully 

connects the output from the LSTM stack and transforms the output to match 51 target 

classes. Appendix A depicts the implementation using a Tensorboard graph. 

In the model, we defined three hyperparameters: Bidirectional layer, Regularizer 

and Dropout layer for tuning the model. 

The model is using categorical cross entropy as the loss parameter. The model 

learns with Adadelta learning algorithm, which dynamically adjust the learning rate thus 

accelerate the learning time [27]. A single epoch test with our model showed that the loss 

value declines faster than using gradient descent algorithm. 
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Model training, validation and tuning 

The model was trained using the training dataset and validated using the validation test 

dataset. It was trained for 10 epochs with a batch size of 128. The training was done on 

an Intel core i5 machine with a single NVIDIA GTX 1050 GPU, which has 640 cores. It 

took close to 8 hours to complete 10 epochs per session. The total training included the 

following four sessions: training the baseline, training with a bidirectional layer, training 

with a regularizer and training with a dropout layer. The result of each of the training 

session is a trained model in h5 format and Tensorboard logs. The training sessions are 

summarized in the Table 1. 

Table 1. Model training and validation results. 

 Time Train 
Accuracy 

Train Loss Validation 
Accuracy 

Validation 
Loss 

Baseline 7hrs 50mins 80.16% 0.6702 45.74% 2.232 

Bidirectional 8hrs 10mins 80.55% 0.6539 42.67% 2.422 

Regularizer 8hrs 1mins 76.71% 1.054 40.31% 2.523 

Dropout 7hrs 50mins 76.83% 0.8039 45.85% 2.108 

 

The following is a more detailed view of the training sessions as reported in the 

Tensorboard. 

 

Baseline 

This session trains the model with the bidirectional, regularizer and dropout 

options are turned off. The result of this training serves as the baseline. 
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Figure 4 and 5 are screen captures of the Tensorboard report on the baseline run. 

The training took 7 hours and 50 minutes in total to complete 10 epochs. We observed 

the training accuracy hit 80.16% with loss value at 0.6702 (Figure 4). The validation test 

showed an accuracy of 45.74% with loss value at 2.232 (Figure 5). 

 

 

Figure 4. Training accuracy and loss on the baseline run. 
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Figure 5. Validation accuracy and loss on the baseline run. 

 

Bidirectional 

This session trains the model with a bidirectional layer turned on. The training 

took more time and indicates a worse over fitting result than the baseline. Figure 6 and 7 

are screen captures of the Tensorboard report on the model run. The training took 8 hours 

and 10 minutes in total to complete 10 epochs. We observed the training accuracy hit 

80.55% with loss value at 0.6702 (Figure 6). The validation test showed an accuracy of 

42.67% with loss value at 2.232 (Figure 7). This run, while showing a higher training 

accuracy score than the baseline, has a lower validation accuracy score. This indicates a 



 

23 

worse over fitting problem with the bidirectional option turned on. 

 

Figure 6. Training accuracy and loss on the model with bidirectional option on. 
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Figure 7. Validation accuracy and loss on the model with bidirectional option on. 

 

Regularizer 

This session trains the baseline model with the regularizer parameter turned on. 

Figure 8 and 9 are screen captures of the Tensorboard report on the model run with 

regularizer option turned on. The training took 8 hours and 1 minute in total to complete 

10 epochs. We observed the training accuracy hit 76.71% with loss value at 1.054 (Figure 

8). The validation test showed an accuracy of 40.31% with loss value at 2.523 (Figure 9). 

This run is showing a lower training accuracy score than the baseline and a lower 
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validation accuracy score. This indicates a less over fit model than the baseline. However 

the overall accuracy is also declining. 

 

Figure 8. Training accuracy and loss on the model with regularizer option on. 
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Figure 9. Validation accuracy and loss on the model with regularizer option on. 

 

Dropout 

This session trains the baseline model with dropout turned on. Figure 10 and 11 

are screen captures of the Tensorboard report on the model run with dropout option 

turned on. The training took 7 hours and 50 minutes in total to complete 10 epochs. We 

observed the training accuracy hit 76.83% with loss value at 0.8039 (Figure 10). The 

validation test showed an accuracy of 45.85% with loss value at 2.108 (Figure 11). This 

run shows a lower training accuracy score than the baseline and a higher validation 
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accuracy score. This indicates a less over fit model than the baseline and also the overall 

accuracy improves. 

 

Figure 10. Training accuracy and loss on the model with dropout option on. 
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Figure 11. Validation accuracy and loss on the model with dropout option on. 

 

Blind test 

The resulting models are tested with the blind dataset with three test criteria: 

accuracy score, confusion matrix and ROC curve. The accuracy score is calculated using 

accuracy_score function in the sklearn library. The confusion matrix is calculated using 

the confusion_matrix function in the sklearn library and plotted using seaborn library. 

The ROC curve is calculated using roc_curve function in the scikit-learn library and 

plotted using matplotlib library. 



 

29 

Table 2. Blind accuracy score comparisons. 

 Validation accuracy Blind accuracy 

Baseline 45.74% 47.23% 

Bidirectional 42.67% 43.85% 

Regularizer 40.31% 43.75% 

Dropout 45.85% 47.64% 
 
 

Table 3. ROC curve comparisons. 

a. ROC curve on the baseline run. 
 

b. ROC curve on the model run with 
bidirectional option on.  

 
c. ROC curve on the model run with 
regularizer option on. 

 
d. ROC curve on the model run with 
dropout option on. 
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Number of nodes 

The number of nodes has a direct relationship to accuracy and training time. 

Adding nodes to the network improves the accuracy by capturing more features from the 

video clips. However, it requires a longer training time because the number of parameters 

is increasing. Inversely, a reduced number of nodes reduce the footprint and the training 

time. We ran tests on the baseline model with modified number of nodes.  

 

Table 4. Training time and accuracy comparisons over different footprint. 

 Number of 
nodes 

Number of 
trainable 
parameters 

Training Time Validation 
Accuracy 

Baseline 1x Baseline 2,272,755 7hrs 50mins 45.74% 

Half-nodes model  1/2x Baseline 572,179 3hrs 34mins 33.85% 

Quarter-nodes model 1/4x Baseline 145,059 2hrs 14mins 31.28% 
 

Table 4 shows the direct relationship between training time, accuracy and 

footprint. Capping the number of nodes reduce the footprint, training time and accuracy. 

Reducing the nodes to half of the baseline model cuts the training time in half at the cost 

of ~12% accuracy. The larger model has the benefit from the ability to make an 

approximation with more parameters, hence the higher accuracy, at the cost of larger 

footprint and training time. 
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Result interpretation and further tuning 

The results indicate the model is capable of properly classifying the classes. The 

dropout layer and regularizer helps reduce the over fitting. Adding dropout layer and 

regularizer improve the model through better generalization as expected. The loss value 

is still declining at the last epoch. It suggests the accuracy can improve by adding with 

more epochs. 

Based on these conclusions, a final training session was run on the baseline with 

regularizer and dropout. The regularizer value was set at 0.005 or half regularizer value 

of the previous run. The dropout value was set at 0.75 or one and a half dropout value of 

the previous run. The session was run in 20 epochs or and twice of the previous run. The 

final model gave an accuracy score of 52.25% on the blind set testing. The ROC curve 

and confusion matrix are shown in Figure 12 and 13. 

 

 

Figure 12. ROC curve on the final model run with regularizer and dropout. 
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Figure 13. Confusion matrix on the final model run with regularizer and dropout. 
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Chapter 7 Conclusion 

This thesis shows that deep learning can be used to develop an accurate model for 

speech reading even with modest computing power. Our deep learning network 

consisting of a stack of a CNN followed by an LSTM proved very effective. The CNN 

processed the spatial features of image data. The LSTM processed the temporal features 

of time series data. 

 

Table 5. Accuracy comparisons. 

 Accuracy 
score 

Clip 
resolution 

Notes 

Human 14.47% 1920x1080 
full color 

Participants are non-professional. 

Visual Speech 
Recognition (VSR) 

33% 320x240 
full color 

Accuracy achieved on mixed speakers. 
In speaker dependent scenario, the 
accuracy improves to 76.38%. 

LipNet: End-to-end 
Sentence-level 
Lipreading 

95.2% 100x50 
full color 

Accuracy is measured on overlapped 
speakers. The accuracy drops to 89.6% 
on unseen speakers. 

Lip Reading in the 
Wild (LRW) 

46.8% 120x120 
grayscale 

Accuracy from visual recognition. The 
accuracy improves to 77.2% with 
audiovisual combination.  

DeepSR 52.25% 30x30  
grayscale 

Accuracy on unseen words with mixed 
speakers. 

 

Since our baseline model developed in this thesis still suffered from some over 

fitting, we explored parameter tuning as an opportunity for improvement. Two methods 

to improve the model are regularizer and dropout. Applying these methods successfully 
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improved the model accuracy over the baseline model. The bidirectional layer in the 

experiment did not add value to the model. 

The model implemented in this thesis achieved 52.25% accuracy score in a closed 

domain word level speech reading. It means that our approach outperforms human that 

achieves only 14.47% accuracy. Table 5 compares the results of other researchers. 

DeepSR is performing better than VSR and LRW on unseen mixed speakers. While the 

performance is lagging from LipNet, DeepSR succeeded in attaining good performance 

on a single GPU machine, whereas LipNet leveraged a much larger server of 8 GPUs. 

DeepSR performs relatively well with much smaller input dimension (30x30x1) per 

frame, compared to LipNet (100x50x3). 

The experiments conducted throughout this thesis open opportunities for future 

work. Two areas that could be improved are the training time and the accuracy score. A 

significant amount of time was spent on loading the dataset from disk to memory. The 

memory capacity limit in the GPU requires the training process to load the data segments 

in time for training. While larger memory could solve this problem, a better data layout in 

contiguous columnar format is preferred to reduce the read time during the data-sampling 

step. In terms of the accuracy score, the final model can benefit from a larger neural 

network structure. Furthermore, adding more nodes in the CNN stack along with a higher 

resolution of the dataset can improve the result.  
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Appendix A Network Topology 

The diagram below is generated in Tensorboard. It depicts the DeepSR network 

topology in the implementation. 
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Appendix B Source Code 

This following is the full codes and the execution result in jupyter notebook file format. 

Several parts of the output are truncated to save space without missing the important 

information. 

 

{ 
 "cells": [ 
  { 
   "cell_type": "code", 
   "execution_count": 1, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# update1 - train using subset data ~13k rows. accuracy: 5-
6%\n", 
 "# update2 - load dataset in chunks, train using all data. 
smaller network shape 32 - 8, 64 - 16\n", 
 "# update2-remodel - change implementation with keras, resume 
train with chunks\n", 
 "# update2-remodel1 - add tensorboard, roc, evaluate blind set 
and save model\n", 
 "# update2-remodel2 - refactoring\n", 
 "# update3 - full run of the model (24 pickles for training and 
test, 1 pickle for blind, 20 epochs)\n", 
 "# update4 - update3 suffers from overfitting, tune to 
generalize the model (baseline, l2 reg, dropout)\n", 
 "# update4-finaltuning - a tuned version of update4-baseline 1/2 
regularizer, 1.5x dropout, 2x epoch\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 2, 
   "metadata": {}, 
   "outputs": [ 
 { 
  "name": "stderr", 
  "output_type": "stream", 
  "text": [ 
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 "c:\\users\\basuki\\appdata\\local\\programs\\python\\python36\\
lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of 
the second argument of issubdtype from `float` to `np.floating` is 
deprecated. In future, it will be treated as `np.float64 == 
np.dtype(float).type`.\n", 
   "  from ._conv import register_converters as 
_register_converters\n" 
  ] 
 }, 
 { 
  "data": { 
   "text/plain": [ 
    "'1.5.0'" 
   ] 
  }, 
  "execution_count": 2, 
  "metadata": {}, 
  "output_type": "execute_result" 
 } 
   ], 
   "source": [ 
 "# Load and check Tensorflow library version\n", 
 "import tensorflow as tf\n", 
 "tf.__version__\n" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
 "# Dataset\n", 
 "The dataset is a collection of word clips, cropped to halflips, 
with resolution 30x30 pixels, grayscale. The dataset is stored in the 
disk as 25 pickle files.  \n", 
 "The code below extract the dataset from pickle and produce a 
pandas dataframe with the 30x30 clips." 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 3, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Load required libraries\n", 
 "import os\n", 
 "import pickle\n", 
 "import pandas as pd\n", 
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 "import msgpack\n", 
 "import msgpack_numpy as mnp\n", 
 "import gc\n", 
 "import numpy as np\n", 
 "import sklearn\n", 
 "import sklearn.model_selection\n", 
 "import random" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 4, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Set configuration\n", 
 "datadir = \"C:/Users/Basuki/Documents/grid_dataset\"\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 5, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Collection of functions definition required to process 
dataset\n", 
 "\n", 
 "\"\"\"\n", 
 "Function load_chunks reads a pickle file from the data 
directory, unpacks the mouth clips,\n", 
 "splits to half lips, and produces a pandas dataframe.\n", 
 "Param: datadir, pickle_file\n", 
 "Output: a dataframe\n", 
 "\"\"\"\n", 
 "def load_chunks(datadir, pickle_file):\n", 
 " #open dictionary\n", 
 " with open(os.path.join(datadir,\"dictionary.pickle\"), 
'rb') as handle:\n", 
 "     one_hot_dictionary = pickle.load(handle)\n", 
 " #load pickle apply one_hot\n", 
 " df_pickle = 
pd.read_pickle(os.path.join(datadir,pickle_file))\n", 
 " df_pickle[\"one_hot_label\"] = 
df_pickle[\"label\"].apply(lambda x: one_hot_dictionary[x])\n", 
 " #unpack lips\n", 
 " df_pickle[\"unpacked\"] = 
df_pickle[\"frames\"].apply(lambda x:msgpack.unpackb(x, 
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object_hook=mnp.decode))\n", 
 " df_pickle[\"left\"] = df_pickle[\"unpacked\"].apply(lambda 
x: x[:,20:50,:30].ravel().astype(\"float32\"))\n", 
 " df_pickle[\"right\"] = 
df_pickle[\"unpacked\"].apply(lambda x: 
x[:,20:50,30:].ravel().astype(\"float32\"))\n", 
 " #combine\n", 
 " df_left = 
df_pickle[[\"left\",\"one_hot_label\"]].rename(columns={\"left\":\"fea
t\"})\n", 
 " df_right = 
df_pickle[[\"right\",\"one_hot_label\"]].rename(columns={\"right\":\"f
eat\"})\n", 
 " df_halflips = 
pd.concat([df_left,df_right]).reset_index(drop=True)\n", 
 " df_halflips[\"t\"] = [i.shape[0] for i in 
df_halflips.feat]\n", 
 " df_halflips = df_halflips.sort_values(by=\"t\")\n", 
 " #preserve memory\n", 
 " df_result = df_halflips.copy()\n", 
 " del df_halflips\n", 
 " del df_left\n", 
 " del df_right\n", 
 " del df_pickle\n", 
 " gc.collect()\n", 
 " # returned the chunks as a pandas dataframe\n", 
 " return df_result\n", 
 "\n", 
 "\"\"\"\n", 
 "Function get_dataset reads a pickle file at certain index in 
the data directory\n", 
 "and produces the feature set X_data and label y_data.\n", 
 "Param: datadir, index\n", 
 "Output: X_data, y_data\n", 
 "\"\"\"\n", 
 "def get_dataset(datadir, index):\n", 
 " #load data chunks\n", 
 " visemes_pickles = [ f for f in os.listdir(datadir) if 
f.startswith(\"visemes_\")]\n", 
 " df_halflips = load_chunks(datadir, 
visemes_pickles[index])\n", 
 " #get features, add padding\n", 
 " X_data = np.vstack(df_halflips.feat.apply(lambda x: 
np.resize(x,(9000))).values)\n", 
 " #get one_hot_label\n", 
 " y_data = np.array(df_halflips.one_hot_label.tolist())\n", 
 " #preserve memory\n", 
 " del df_halflips\n", 
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 " gc.collect()\n", 
 " return X_data, y_data\n", 
 "\n", 
 "\"\"\"\n", 
 "Function get_chunks_len reads all files in the datadir and 
counts the number of rows\n", 
 "in each file.\n", 
 "Param: datadir\n", 
 "Output: list of row counts in each file\n", 
 "\"\"\"\n", 
 "def get_chunks_len(datadir):\n", 
 " l=[]\n", 
 " for i in range(25):\n", 
 "     X_data, y_data = get_dataset(datadir, i)\n", 
 "     l.append(len(X_data))\n", 
 " return l\n", 
 "\n", 
 "\"\"\"\n", 
 "Function get_random_indices generates list of random indices 
for each file in the datadir,\n", 
 "and splits the indices to three parts 90% train, 5% test and 5% 
blind.\n", 
 "Param: datadir\n", 
 "Output: list of random indices\n", 
 "\"\"\"\n", 
 "def get_random_indices(datadir):\n", 
 " #use get_chunks len if working with different dataset\n", 
 " #chunks_len = get_chunks_len(datadir)\n", 
 " chunks_len = [19510, 24162, 15654, 14634, 15630, 16634, 
16370, 18654, 16892, 15928, 15720, 16080, 17934, 14526, 12738, 13364, 
15852, 15548, 11870, 14196, 13264, 15976, 15056, 15126, 13422]\n", 
 " l = chunks_len[0]\n", 
 " random.seed(7)\n", 
 " indices = random.sample([e for e in range(l)], l)\n", 
 " train_indices = [indices[:round(.9*len(indices))]]\n", 
 " test_indices = 
[indices[round(.9*len(indices)):round(.95*len(indices))]]\n", 
 " blind_indices = [indices[round(.95*len(indices)):]]\n", 
 " for l in chunks_len[1:]:\n", 
 "     random.seed(7)\n", 
 "     indices = random.sample([e for e in range(l)], l)\n", 
 "     train_indices.append(indices[:round(.9*len(indices))])\n", 
 "    
 test_indices.append(indices[round(.9*len(indices)):round(.95*len
(indices))])\n", 
 "     blind_indices.append(indices[round(.95*len(indices)):])    
 \n", 
 " return train_indices, test_indices, blind_indices\n", 



 

44 

 "\n", 
 "\"\"\"\n", 
 "Function get_train_by_indices reads a pickle file at certain 
index in the data directory\n", 
 "and produces the train feature set based on the provided 
indices.\n", 
 "Param: datadir, index, train_indices\n", 
 "Output: X_train, y_train\n", 
 "\"\"\"\n", 
 "def get_train_by_indices(datadir, index, train_indices):\n", 
 " X_data, y_data = get_dataset(datadir, index)\n", 
 " X_train = X_data.take(train_indices, axis=0)\n", 
 " y_train = y_data.take(train_indices, axis=0)\n", 
 " return X_train, y_train\n", 
 "\n", 
 "\"\"\"\n", 
 "Function get_test_by_indices reads a pickle file at certain 
index in the data directory\n", 
 "and produces the test feature set, and test label based on the 
provided indices.\n", 
 "Param: datadir, index, test_indices\n", 
 "Output: X_test, y_test\n", 
 "\"\"\"\n", 
 "def get_test_by_indices(datadir, index, test_indices):\n", 
 " X_data, y_data = get_dataset(datadir, index)\n", 
 " X_test = X_data.take(test_indices, axis=0)\n", 
 " y_test = y_data.take(test_indices, axis=0)\n", 
 " return X_test, y_test\n", 
 "\n", 
 "\"\"\"\n", 
 "Function get_blind_indices reads a pickle file at certain index 
in the data directory\n", 
 "and produces the blind feature set, and blind label.\n", 
 "Param: datadir, index, blind_indices\n", 
 "Output: X_blind, y_blind\n", 
 "\"\"\"\n", 
 "def get_blind_by_indices(datadir, index, blind_indices):\n", 
 " X_data, y_data = get_dataset(datadir, index)\n", 
 " X_blind = X_data.take(blind_indices, axis=0)\n", 
 " y_blind = y_data.take(blind_indices, axis=0)\n", 
 " return X_blind, y_blind" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
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   "source": [ 
 "\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
 "# Model\n", 
 "The model is a series of ConvNets in a LSTM network. The 
ConvNets acquires the image features for each frame in the mouth 
clips. The LSTM recognizes the sequences of ConvNets output and 
classifies the sequence to a word label/class." 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 6, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Set configuration\n", 
 "regularize = True\n", 
 "dropout = True\n", 
 "bidirectional = False" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 7, 
   "metadata": { 
 "scrolled": true 
   }, 
   "outputs": [ 
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 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "WARNING:tensorflow:From 
c:\\users\\basuki\\appdata\\local\\programs\\python\\python36\\lib\\si
te-packages\\tensorflow\\python\\keras\\_impl\\keras\\backend.py:1456: 
calling reduce_sum (from tensorflow.python.ops.math_ops) with 
keep_dims is deprecated and will be removed in a future version.\n", 
   "Instructions for updating:\n", 
   "keep_dims is deprecated, use keepdims instead\n", 
   "WARNING:tensorflow:From 
c:\\users\\basuki\\appdata\\local\\programs\\python\\python36\\lib\\si
te-packages\\tensorflow\\python\\keras\\_impl\\keras\\backend.py:1557: 
calling reduce_mean (from tensorflow.python.ops.math_ops) with 
keep_dims is deprecated and will be removed in a future version.\n", 
   "Instructions for updating:\n", 
   "keep_dims is deprecated, use keepdims instead\n", 
  
 "_______________________________________________________________
__\n", 
   "Layer (type)              Output Shape           Param #   
\n", 
  
 "===============================================================
==\n", 
   "conv2d_1 (Conv2D)         (None, 30, 30, 64)     640   
 \n", 
  
 "_______________________________________________________________
__\n", 
   "conv2d_2 (Conv2D)         (None, 28, 28, 64)     36928 
 \n", 
  
 "_______________________________________________________________
__\n", 
   "max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)     0     
 \n", 
  
 "_______________________________________________________________
__\n", 
   "conv2d_3 (Conv2D)         (None, 14, 14, 128)    73856 
 \n", 
  
 "_______________________________________________________________
__\n", 
   "conv2d_4 (Conv2D)         (None, 12, 12, 128)    147584
 \n", 
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 "_______________________________________________________________
__\n", 
   "max_pooling2d_2 (MaxPooling2 (None, 6, 6, 128)      0     
 \n", 
  
 "_______________________________________________________________
__\n", 
   "conv2d_5 (Conv2D)         (None, 6, 6, 256)      295168
 \n", 
  
 "_______________________________________________________________
__\n", 
   "conv2d_6 (Conv2D)         (None, 4, 4, 256)      590080
 \n", 
  
 "_______________________________________________________________
__\n", 
   "conv2d_7 (Conv2D)         (None, 2, 2, 256)      590080
 \n", 
  
 "_______________________________________________________________
__\n", 
   "max_pooling2d_3 (MaxPooling2 (None, 1, 1, 256)      0     
 \n", 
  
 "_______________________________________________________________
__\n", 
   "flatten_1 (Flatten)       (None, 256)            0     
 \n", 
  
 "===============================================================
==\n", 
   "Total params: 1,734,336\n", 
   "Trainable params: 1,734,336\n", 
   "Non-trainable params: 0\n", 
  
 "_______________________________________________________________
__\n", 
  
 "_______________________________________________________________
__\n", 
   "Layer (type)              Output Shape           Param #   
\n", 
  
 "===============================================================
==\n", 
   "reshape_1 (Reshape)       (None, 10, 30, 30, 1)  0     
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 \n", 
  
 "_______________________________________________________________
__\n", 
   "time_distributed_1 (TimeDist (None, 10, 256)        1734336   
\n", 
  
 "_______________________________________________________________
__\n", 
   "lstm_1 (LSTM)             (None, 256)            525312
 \n", 
  
 "_______________________________________________________________
__\n", 
   "dropout_1 (Dropout)       (None, 256)            0     
 \n", 
  
 "_______________________________________________________________
__\n", 
   "dense_1 (Dense)           (None, 51)             13107 
 \n", 
  
 "===============================================================
==\n", 
   "Total params: 2,272,755\n", 
   "Trainable params: 2,272,755\n", 
   "Non-trainable params: 0\n", 
  
 "_______________________________________________________________
__\n" 
  ] 
 } 
   ], 
   "source": [ 
 "# Create Neural Networks model\n", 
 "from tensorflow.python.keras.layers import Conv2D, 
MaxPooling2D, Flatten, LSTM, Dense, Dropout, TimeDistributed, Input, 
InputLayer, Reshape, Bidirectional\n", 
 "from tensorflow.python.keras.models import Sequential\n", 
 "from tensorflow.python.keras import losses, regularizers, 
optimizers, callbacks\n", 
 "\n", 
 "\"\"\"\n", 
 "Instance vision_model is a Convolution Networks for learning 
the features in each image within a mouth clips.\n", 
 "This code follows the same code in Keras Documentation with a 
change in input shape.\n", 
 "\"\"\"\n", 
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 "vision_model = Sequential()\n", 
 "vision_model.add(Conv2D(64, (3, 3), activation='relu', 
padding='same', input_shape=(30, 30, 1)))\n", 
 "vision_model.add(Conv2D(64, (3, 3), activation='relu'))\n", 
 "vision_model.add(MaxPooling2D((2, 2)))\n", 
 "vision_model.add(Conv2D(128, (3, 3), activation='relu', 
padding='same'))\n", 
 "vision_model.add(Conv2D(128, (3, 3), activation='relu'))\n", 
 "vision_model.add(MaxPooling2D((2, 2)))\n", 
 "vision_model.add(Conv2D(256, (3, 3), activation='relu', 
padding='same'))\n", 
 "vision_model.add(Conv2D(256, (3, 3), activation='relu'))\n", 
 "vision_model.add(Conv2D(256, (3, 3), activation='relu'))\n", 
 "vision_model.add(MaxPooling2D((2, 2)))\n", 
 "vision_model.add(Flatten())\n", 
 "\n", 
 "\"\"\"\n", 
 "Instance video_model is a TimeDistributed/LSTM Networks for 
learning the sequence of a mouth clips.\n", 
 "This code follows the same code in Keras Documentation with a 
change in the input shape.\n", 
 "\"\"\"\n", 
 "video_model = Sequential()\n", 
 "video_model.add(Reshape((10,30,30,1),input_shape=(9000,)))\n", 
 "video_model.add(TimeDistributed(vision_model))\n", 
 "if bidirectional:\n", 
 " video_model.add(Bidirectional(LSTM(256)))\n", 
 "else:\n", 
 " video_model.add(LSTM(256)) \n", 
 "if dropout:\n", 
 " video_model.add(Dropout(0.75)) \n", 
 "if regularize:\n", 
 " video_model.add(Dense(51, 
kernel_regularizer=regularizers.l2(0.005), 
activation=\"softmax\"))\n", 
 "else:\n", 
 " video_model.add(Dense(51, activation=\"softmax\"))\n", 
 "\n", 
 "video_model.compile(loss=losses.categorical_crossentropy,\n", 
 "                
 optimizer=optimizers.Adadelta(),metrics=[\"accuracy\"])\n", 
 "\n", 
 "\"\"\"\n", 
 "Print model summary\n", 
 "\"\"\"\n", 
 "vision_model.summary()\n", 
 "video_model.summary()" 
   ] 
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  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
 "# Training\n", 
 "The training used 80% of the data and validated against the 
rest 20%. Training is done per pickle file to preserve memory. Each 
data is seen in 2 epochs during the training." 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 8, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Load required libraries\n", 
 "import h5py" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 9, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Set configuration\n", 
 "batch_size = 128\n", 
 "num_classes = 51\n", 
 "epochs = 20 #est. an hour per epoch\n", 
 "num_pickle_files = 25 #max 25\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 10, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "model_name = 
\"_\".join((\"./trained\",\"thesis\",\"u4\",\"02042018\",str(epochs),s
tr(num_pickle_files)))\n", 
 "if regularize:\n", 
 " model_name = \"_\".join((model_name,\"regularize\"))\n", 
 "if dropout:\n", 
 " model_name = \"_\".join((model_name,\"dropout\"))\n", 
 "if bidirectional:\n", 
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 " model_name = \"_\".join((model_name,\"bidirectional\"))\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 11, 
   "metadata": {}, 
   "outputs": [ 
 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "16789/16789 [==============================]16789/16789 
[==============================] - 122s 7ms/step - loss: 1.1464 - acc: 
0.7251 - val_loss: 2.3427 - val_acc: 0.4359\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 8 of 25\n", 
   "Train on 15203 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "15203/15203 [==============================]15203/15203 
[==============================] - 113s 7ms/step - loss: 0.9355 - acc: 
0.7831 - val_loss: 2.2300 - val_acc: 0.4646\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 9 of 25\n", 
   "Train on 14335 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14335/14335 [==============================]14335/14335 
[==============================] - 109s 8ms/step - loss: 0.8370 - acc: 
0.8102 - val_loss: 2.1302 - val_acc: 0.4944\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 10 of 25\n", 
   "Train on 14148 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14148/14148 [==============================]14148/14148 
[==============================] - 106s 8ms/step - loss: 0.7627 - acc: 
0.8261 - val_loss: 2.1920 - val_acc: 0.4677\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 11 of 25\n", 
   "Train on 14472 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14472/14472 [==============================]14472/14472 
[==============================] - 110s 8ms/step - loss: 0.8377 - acc: 
0.8127 - val_loss: 2.4714 - val_acc: 0.4215\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 12 of 25\n", 
   "Train on 16141 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "16141/16141 [==============================]16141/16141 
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[==============================] - 118s 7ms/step - loss: 1.0806 - acc: 
0.7443 - val_loss: 2.3749 - val_acc: 0.4369\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 13 of 25\n", 
   "Train on 13073 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13073/13073 [==============================]13073/13073 
[==============================] - 103s 8ms/step - loss: 0.7655 - acc: 
0.8308 - val_loss: 2.1130 - val_acc: 0.5005\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 14 of 25\n", 
   "Train on 11464 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "11464/11464 [==============================]11464/11464 
[==============================] - 95s 8ms/step - loss: 0.8070 - acc: 
0.8173 - val_loss: 2.0977 - val_acc: 0.5015\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 15 of 25\n", 
   "Train on 12028 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "12028/12028 [==============================]12028/12028 
[==============================] - 96s 8ms/step - loss: 1.0305 - acc: 
0.7578 - val_loss: 2.2031 - val_acc: 0.4821\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 16 of 25\n", 
   "Train on 14267 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14267/14267 [==============================]14267/14267 
[==============================] - 107s 8ms/step - loss: 0.8540 - acc: 
0.8006 - val_loss: 2.4403 - val_acc: 0.4277\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 17 of 25\n", 
   "Train on 13993 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13993/13993 [==============================]13993/13993 
[==============================] - 108s 8ms/step - loss: 1.0421 - acc: 
0.7502 - val_loss: 2.2521 - val_acc: 0.4605\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 18 of 25\n", 
   "Train on 10683 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "10683/10683 [==============================]10683/10683 
[==============================] - 91s 9ms/step - loss: 1.3713 - acc: 
0.6845 - val_loss: 2.2105 - val_acc: 0.4790\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 19 of 25\n", 
   "Train on 12776 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
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   "12776/12776 [==============================]12776/12776 
[==============================] - 102s 8ms/step - loss: 0.8814 - acc: 
0.8131 - val_loss: 2.2588 - val_acc: 0.4595\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 20 of 25\n", 
   "Train on 11938 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "11938/11938 [==============================]11938/11938 
[==============================] - 97s 8ms/step - loss: 0.9618 - acc: 
0.7750 - val_loss: 2.2829 - val_acc: 0.4482\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 21 of 25\n", 
   "Train on 14378 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14378/14378 [==============================]14378/14378 
[==============================] - 109s 8ms/step - loss: 0.8294 - acc: 
0.8150 - val_loss: 2.2509 - val_acc: 0.4513\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 22 of 25\n", 
   "Train on 13550 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13550/13550 [==============================]13550/13550 
[==============================] - 105s 8ms/step - loss: 0.7465 - acc: 
0.8346 - val_loss: 2.0527 - val_acc: 0.5077\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 23 of 25\n", 
   "Train on 13613 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13613/13613 [==============================]13613/13613 
[==============================] - 105s 8ms/step - loss: 0.6669 - acc: 
0.8522 - val_loss: 2.0631 - val_acc: 0.5200\n", 
   "\n", 
   "Epoch: 18 of 20, Chunk Num: 24 of 25\n", 
   "Train on 12080 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "12080/12080 [==============================]12080/12080 
[==============================] - 98s 8ms/step - loss: 0.8892 - acc: 
0.7917 - val_loss: 1.9752 - val_acc: 0.5364\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 0 of 25\n", 
   "Train on 17559 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "17559/17559 [==============================]17559/17559 
[==============================] - 126s 7ms/step - loss: 1.0873 - acc: 
0.7362 - val_loss: 1.4870 - val_acc: 0.6410\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 1 of 25\n", 
   "Train on 21746 samples, validate on 24375 samples\n", 



 

54 

   "Epoch 1/1\n", 
   "21746/21746 [==============================]21746/21746 
[==============================] - 145s 7ms/step - loss: 0.8668 - acc: 
0.7996 - val_loss: 1.5738 - val_acc: 0.6164\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 2 of 25\n", 
   "Train on 14089 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14089/14089 [==============================]14089/14089 
[==============================] - 108s 8ms/step - loss: 0.9835 - acc: 
0.7734 - val_loss: 1.8372 - val_acc: 0.5559\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 3 of 25\n", 
   "Train on 13171 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13171/13171 [==============================]13171/13171 
[==============================] - 103s 8ms/step - loss: 0.8812 - acc: 
0.8035 - val_loss: 1.8790 - val_acc: 0.5518\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 4 of 25\n", 
   "Train on 14067 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14067/14067 [==============================]14067/14067 
[==============================] - 108s 8ms/step - loss: 0.9122 - acc: 
0.7887 - val_loss: 1.9955 - val_acc: 0.5138\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 5 of 25\n", 
   "Train on 14971 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14971/14971 [==============================]14971/14971 
[==============================] - 113s 8ms/step - loss: 0.9275 - acc: 
0.7870 - val_loss: 2.0016 - val_acc: 0.5149\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 6 of 25\n", 
   "Train on 14733 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14733/14733 [==============================]14733/14733 
[==============================] - 111s 8ms/step - loss: 0.8405 - acc: 
0.8089 - val_loss: 2.0987 - val_acc: 0.4964\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 7 of 25\n", 
   "Train on 16789 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "16789/16789 [==============================]16789/16789 
[==============================] - 122s 7ms/step - loss: 1.1217 - acc: 
0.7342 - val_loss: 2.0972 - val_acc: 0.4738\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 8 of 25\n", 
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   "Train on 15203 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "15203/15203 [==============================]15203/15203 
[==============================] - 114s 7ms/step - loss: 0.9127 - acc: 
0.7894 - val_loss: 2.1298 - val_acc: 0.5097\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 9 of 25\n", 
   "Train on 14335 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14335/14335 [==============================]14335/14335 
[==============================] - 109s 8ms/step - loss: 0.8177 - acc: 
0.8144 - val_loss: 2.1139 - val_acc: 0.5005\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 10 of 25\n", 
   "Train on 14148 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14148/14148 [==============================]14148/14148 
[==============================] - 109s 8ms/step - loss: 0.7376 - acc: 
0.8312 - val_loss: 2.2838 - val_acc: 0.4656\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 11 of 25\n", 
   "Train on 14472 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14472/14472 [==============================]14472/14472 
[==============================] - 110s 8ms/step - loss: 0.8131 - acc: 
0.8177 - val_loss: 2.7184 - val_acc: 0.3713\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 12 of 25\n", 
   "Train on 16141 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "16141/16141 [==============================]16141/16141 
[==============================] - 119s 7ms/step - loss: 1.0588 - acc: 
0.7510 - val_loss: 2.3813 - val_acc: 0.4482\n" 
  ] 
 }, 
 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 13 of 25\n", 
   "Train on 13073 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13073/13073 [==============================]13073/13073 
[==============================] - 103s 8ms/step - loss: 0.7381 - acc: 
0.8356 - val_loss: 2.1558 - val_acc: 0.4985\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 14 of 25\n", 
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   "Train on 11464 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "11464/11464 [==============================]11464/11464 
[==============================] - 95s 8ms/step - loss: 0.7978 - acc: 
0.8214 - val_loss: 2.0674 - val_acc: 0.5128\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 15 of 25\n", 
   "Train on 12028 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "12028/12028 [==============================]12028/12028 
[==============================] - 98s 8ms/step - loss: 1.0218 - acc: 
0.7593 - val_loss: 2.1671 - val_acc: 0.4831\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 16 of 25\n", 
   "Train on 14267 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14267/14267 [==============================]14267/14267 
[==============================] - 108s 8ms/step - loss: 0.8165 - acc: 
0.8113 - val_loss: 2.3713 - val_acc: 0.4287\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 17 of 25\n", 
   "Train on 13993 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13993/13993 [==============================]13993/13993 
[==============================] - 108s 8ms/step - loss: 1.0269 - acc: 
0.7554 - val_loss: 2.3424 - val_acc: 0.4564\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 18 of 25\n", 
   "Train on 10683 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "10683/10683 [==============================]10683/10683 
[==============================] - 91s 9ms/step - loss: 1.3493 - acc: 
0.6890 - val_loss: 2.0945 - val_acc: 0.5087\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 19 of 25\n", 
   "Train on 12776 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "12776/12776 [==============================]12776/12776 
[==============================] - 102s 8ms/step - loss: 0.8676 - acc: 
0.8155 - val_loss: 2.2836 - val_acc: 0.4718\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 20 of 25\n", 
   "Train on 11938 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "11938/11938 [==============================]11938/11938 
[==============================] - 97s 8ms/step - loss: 0.9316 - acc: 
0.7810 - val_loss: 2.2398 - val_acc: 0.4708\n", 
   "\n", 
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   "Epoch: 19 of 20, Chunk Num: 21 of 25\n", 
   "Train on 14378 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "14378/14378 [==============================]14378/14378 
[==============================] - 111s 8ms/step - loss: 0.7990 - acc: 
0.8200 - val_loss: 2.1713 - val_acc: 0.4759\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 22 of 25\n", 
   "Train on 13550 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13550/13550 [==============================]13550/13550 
[==============================] - 106s 8ms/step - loss: 0.7193 - acc: 
0.8406 - val_loss: 2.1042 - val_acc: 0.4985\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 23 of 25\n", 
   "Train on 13613 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "13613/13613 [==============================]13613/13613 
[==============================] - 106s 8ms/step - loss: 0.6417 - acc: 
0.8604 - val_loss: 2.0051 - val_acc: 0.5251\n", 
   "\n", 
   "Epoch: 19 of 20, Chunk Num: 24 of 25\n", 
   "Train on 12080 samples, validate on 24375 samples\n", 
   "Epoch 1/1\n", 
   "12080/12080 [==============================]12080/12080 
[==============================] - 98s 8ms/step - loss: 0.8491 - acc: 
0.8054 - val_loss: 2.0998 - val_acc: 0.5159\n", 
   "\n" 
  ] 
 } 
   ], 
   "source": [ 
 "# Run training\n", 
 "\n", 
 "\"\"\"\n", 
 "Instance tensorboard will write the training summary of the 
model.\n", 
 "\"\"\"\n", 
 "tensorboard = callbacks.TensorBoard(log_dir=model_name, 
histogram_freq=0, write_graph=True, write_images=True)\n", 
 "\n", 
 "\"\"\"\n", 
 "The training iterates through the number of epochs. In each 
epoch, the model is exposed to the entire training dataset.\n", 
 "To preserve memory, the training is done per dataset file at a 
time.\n", 
 "\"\"\"\n", 
 "train_idxs, test_idxs, blind_idxs = 
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get_random_indices(datadir)\n", 
 "\n", 
 "X_test, y_test = get_test_by_indices(datadir, 0, 
test_idxs[0])\n", 
 "for i in range(1, num_pickle_files):\n", 
 " Xtest, ytest = get_test_by_indices(datadir, 0, 
test_idxs[0])\n", 
 " X_test = np.vstack((X_test,Xtest))\n", 
 " y_test = np.vstack((y_test,ytest))\n", 
 "\n", 
 "for e in range(epochs):\n", 
 " for i in range(num_pickle_files):\n", 
 "     print(\"Epoch: {} of {}, Chunk Num: {} of 
{}\".format(e,epochs,i,num_pickle_files))\n", 
 "     X_train, y_train = get_train_by_indices(datadir, i, 
train_idxs[i])\n", 
 "\n", 
 "     video_model.fit(X_train, y_train, batch_size=batch_size, 
epochs=1, verbose=1, validation_data=(X_test,y_test), 
callbacks=[tensorboard])\n", 
 "\n", 
 "     #preserve memory\n", 
 "     del X_train, y_train\n", 
 "     gc.collect()\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 12, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
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 "\"\"\"\n", 
 "Save the trained model\n", 
 "\"\"\"\n", 
 "video_model.save(\"\".join((model_name,\".h5\")))" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
 "# Evaluation - Test set\n", 
 "Evaluation is done in three criteria: accuracy, confusion 
matrix and roc curve. This section evaluates the model against the 
test set. The accuracy is expected to be high." 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 13, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Load required libraries\n", 
 "import sklearn\n", 
 "import matplotlib.pyplot as plt\n", 
 "import seaborn as sn" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 14, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Collection of functions definition required to evaluate the 
model\n", 
 "\n", 
 "\"\"\"\n", 
 "Function get_accuracy measures the accuracy score of the model 
given features X and label y.\n", 
 "Param: model, X, y\n", 
 "Output: the accuracy score\n", 
 "\"\"\"\n", 
 "def get_accuracy(model, X, y):\n", 
 " #evaluate\n", 
 " y_score = model.predict(X)\n", 
 " y_pred = np.argmax(y_score, axis=1)\n", 
 " y_true = np.argmax(y,axis=1)\n", 
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 " return sklearn.metrics.accuracy_score(y_true,y_pred) \n", 
 "\n", 
 "\"\"\"\n", 
 "Function show_confusion_matrix calculates and displays the 
confusion matrix of the model given features X and label y\n", 
 "Param: model, X, y\n", 
 "Output: confusion matrix\n", 
 "\"\"\"\n", 
 "def show_confusion_matrix(model, X, y):\n", 
 " #evaluate\n", 
 " y_score = model.predict(X)\n", 
 " y_pred = np.argmax(y_score, axis=1)\n", 
 " y_true = np.argmax(y,axis=1)\n", 
 " #show matrix\n", 
 " array = sklearn.metrics.confusion_matrix(y_true,y_pred)   
 \n", 
 " df_cm = pd.DataFrame(array)\n", 
 " plt.figure(figsize = (100,100))\n", 
 " sn.set(font_scale=1.4)#for label size\n", 
 " sn.heatmap(df_cm, annot=True,annot_kws={\"size\": 16})# 
font size\n", 
 " return True\n", 
 "\n", 
 "\"\"\"\n", 
 "Function show_roc_curve calculates and displays the roc curve 
of the model given features X and label y\n", 
 "Param: model, X, y\n", 
 "Output: roc curve\n", 
 "\"\"\"\n", 
 "def show_roc_curve(model, X, y):\n", 
 " y_score = model.predict(X)\n", 
 "\n", 
 " # Compute ROC curve and ROC area for each class\n", 
 " fpr = dict()\n", 
 " tpr = dict()\n", 
 " roc_auc = dict()\n", 
 " for i in range(num_classes):\n", 
 "     fpr[i], tpr[i], _ = sklearn.metrics.roc_curve(y[:, i], 
y_score[:, i])\n", 
 "     roc_auc[i] = sklearn.metrics.auc(fpr[i], tpr[i])\n", 
 " print(roc_auc)\n", 
 "\n", 
 " ## Draw Roc chart\n", 
 " for i in range(51):\n", 
 "     plt.plot(fpr[i],tpr[i])\n", 
 " plt.plot([0, 1], [0, 1], 'k--')\n", 
 " plt.show()   \n", 
 " " 



 

61 

   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 15, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Reload test data\n", 
 "#X_test, y_test = get_test_by_indices(datadir, 0, 
test_idxs[0])\n", 
 "#for i in range(1, num_pickle_files):\n", 
 "# Xtest, ytest = get_test_by_indices(datadir, 0, 
test_idxs[0])\n", 
 "# X_test = np.vstack((X_test,Xtest))\n", 
 "# y_test = np.vstack((y_test,ytest))\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 16, 
   "metadata": {}, 
   "outputs": [ 
 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "Accuracy score: 51.59%\n" 
  ] 
 } 
   ], 
   "source": [ 
 "# Print accuracy score\n", 
 "accuracy = get_accuracy(video_model, X_test, y_test)\n", 
 "print(\"Accuracy score: {:.2f}%\".format(accuracy*100))" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 17, 
   "metadata": {}, 
   "outputs": [ 
 { 
  "data": { 
   "text/plain": [ 
    "True" 
   ] 
  }, 
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  "execution_count": 17, 
  "metadata": {}, 
  "output_type": "execute_result" 
 }, 
 { 
  "data": { 
   "image/png": ""\n", 
   "text/plain": [ 
    "<matplotlib.figure.Figure at 0x159ecd0a940>" 
   ] 
  }, 
  "metadata": {}, 
  "output_type": "display_data" 
 } 
   ], 
   "source": [ 
 "# Print confusion matrix\n", 
 "show_confusion_matrix(video_model, X_test, y_test)" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 18, 
   "metadata": {}, 
   "outputs": [ 
 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "{0: 0.9827497425334706, 1: 0.9647058823529411, 2: 
0.8372085335213999, 3: 0.8031286894923259, 4: 0.9236972972972974, 5: 
0.9420055837986498, 6: 0.9125910769537877, 7: 0.9301030927835052, 8: 
0.9635362917096664, 9: 0.9522659305268001, 10: 0.841306047966632, 11: 
0.8933021806853582, 12: 0.9291666666666668, 13: 0.9900352345298392, 
14: 0.9773429454170958, 15: 0.9278568876639616, 16: 
0.9997938144329896, 17: 0.9523686920700309, 18: 0.8436177991330235, 
19: 0.9379524301964839, 20: 0.9159190246146768, 21: 
0.9654282765737875, 22: 0.9384008462996429, 23: 0.8624913733609385, 
24: 0.8345631641086186, 25: 0.9700509134471398, 26: 
0.9520660744585288, 27: 0.8816872427983539, 28: 0.931875, 29: 
0.8455200823892893, 30: 0.9803647416413374, 31: 0.9953868234007655, 
32: 0.7878350515463918, 33: 0.9830072090628218, 34: 
0.8608656381212771, 35: 0.8861168562564633, 36: 0.9194560669456068, 
37: 0.9138061109015466, 38: 0.9756916679993604, 39: 
0.9821027097384925, 40: 0.6475283213182287, 41: 0.9619577185641929, 
42: 0.9691736183524505, 43: 0.8465499485066941, 44: 
0.9420364637082903, 45: 0.9262151911368399, 46: 0.941204888494281, 47: 
0.8822680412371134, 48: 0.9106940777065259, 49: 0.9318885448916409, 
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50: 0.9622989070367186}\n" 
  ] 
 }, 
 { 
  "data": { 
   "image/png": "\n", 
   "text/plain": [ 
    "<matplotlib.figure.Figure at 0x15aa88895c0>" 
   ] 
  }, 
  "metadata": {}, 
  "output_type": "display_data" 
 } 
   ], 
   "source": [ 
 "# Print roc curve\n", 
 "show_roc_curve(video_model, X_test, y_test)" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
 "# Evaluation - Blind Set\n", 
 "The last pickle file is held as blind set." 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 19, 
   "metadata": {}, 
   "outputs": [], 
   "source": [ 
 "# Load blind dataset\n", 
 "X_blind, y_blind = get_blind_by_indices(datadir, 0, 
blind_idxs[0])\n", 
 "for i in range(1, num_pickle_files):\n", 
 " Xblind, yblind = get_blind_by_indices(datadir, 0, 
blind_idxs[0])\n", 
 " X_blind = np.vstack((X_blind,Xblind))\n", 
 " y_blind = np.vstack((y_blind,yblind))\n" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 20, 
   "metadata": {}, 
   "outputs": [ 
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 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "Accuracy score: 52.25%\n" 
  ] 
 } 
   ], 
   "source": [ 
 "# Print accuracy score\n", 
 "accuracy = get_accuracy(video_model, X_blind, y_blind)\n", 
 "print(\"Accuracy score: {:.2f}%\".format(accuracy*100))" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 21, 
   "metadata": {}, 
   "outputs": [ 
 { 
  "data": { 
   "text/plain": [ 
    "True" 
   ] 
  }, 
  "execution_count": 21, 
  "metadata": {}, 
  "output_type": "execute_result" 
 }, 
 { 
  "data": { 
   "image/png": "\n", 
   "text/plain": [ 
    "<matplotlib.figure.Figure at 0x15aa60adb38>" 
   ] 
  }, 
  "metadata": {}, 
  "output_type": "display_data" 
 } 
   ], 
   "source": [ 
 "# Print confusion matrix\n", 
 "show_confusion_matrix(video_model, X_blind, y_blind)" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": 22, 
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   "metadata": {}, 
   "outputs": [ 
 { 
  "name": "stdout", 
  "output_type": "stream", 
  "text": [ 
   "{0: 0.91888836552049, 1: 0.9718644739449177, 2: 
0.8688559084277858, 3: 0.9513532031517642, 4: 0.9510740601973273, 5: 
0.9307486400138157, 6: 0.8975861545468347, 7: 0.9579814624098867, 8: 
0.9737579242223204, 9: 0.8253347064881565, 10: 0.8658342004856052, 11: 
0.9400111830018373, 12: 0.9804036458333334, 13: 0.959013959013959, 14: 
0.7602669404517454, 15: 0.8738401142041399, 16: 0.9249594574671973, 
17: 0.9935699588477366, 18: 0.8784423865189009, 19: 
0.9328703703703703, 20: 0.9059413238979803, 21: 0.967712283120763, 22: 
0.9725618631732168, 23: 0.7653305926687222, 24: 0.8256252141144227, 
25: 0.9128549647417572, 26: 0.9629320464327638, 27: 
0.8770339855818743, 28: 0.8870442708333333, 29: 0.8731204943357364, 
30: 0.9359384834304793, 31: 0.9862598144182726, 32: 
0.8106995884773662, 33: 0.9489648033126293, 34: 0.9175213675213675, 
35: 0.9664256198347108, 36: 0.9546883933676387, 37: 
0.9476361153780509, 38: 0.9889004509191813, 39: 0.980902290790089, 40: 
0.8391752577319588, 41: 0.9177734375000001, 42: 0.9387842728332209, 
43: 0.9784394250513347, 44: 0.8508591065292096, 45: 
0.9210566266889327, 46: 0.9423110151187905, 47: 0.7213326446280992, 
48: 0.8983402489626556, 49: 0.9727926078028747, 50: 
0.9532591046160984}\n" 
  ] 
 }, 
 { 
  "data": { 
   "image/png": "\n", 
   "text/plain": [ 
    "<matplotlib.figure.Figure at 0x159c7c42898>" 
   ] 
  }, 
  "metadata": {}, 
  "output_type": "display_data" 
 } 
   ], 
   "source": [ 
 "# Print roc curve\n", 
 "show_roc_curve(video_model, X_blind, y_blind)" 
   ] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
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   "outputs": [], 
   "source": [] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [] 
  }, 
  { 
   "cell_type": "code", 
   "execution_count": null, 
   "metadata": {}, 
   "outputs": [], 
   "source": [] 
  } 
 ], 
 "metadata": { 
  "kernelspec": { 
   "display_name": "Python 3", 
   "language": "python", 
   "name": "python3" 
  }, 
  "language_info": { 
   "codemirror_mode": { 
 "name": "ipython", 
 "version": 3 
   }, 
   "file_extension": ".py", 
   "mimetype": "text/x-python", 
   "name": "python", 
   "nbconvert_exporter": "python", 
   "pygments_lexer": "ipython3", 
   "version": "3.6.4" 
  } 
 }, 
 "nbformat": 4, 
 "nbformat_minor": 1 
} 
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