
Software Identification and Entitlement Tracking
Using Blockchain Technology

Citation
Swanson, Jared. 2018. Software Identification and Entitlement Tracking Using Blockchain
Technology. Master's thesis, Harvard Extension School.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364546

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364546
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Software%20Identification%20and%20Entitlement%20Tracking%20Using%20Blockchain%20Technology&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=01fbe9afa27762e0536f7acfb07dbebb&departmentSoftware%20Engineering
https://dash.harvard.edu/pages/accessibility

Software Identification and Entitlement Tracking Using Blockchain Technology

Jared Swanson

A Thesis in the Field of Information Technology

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

May 2018

Copyright 2018 Jared Swanson

Abstract

This research assessed the applicability of blockchain technology to a registry for

software asset management data aligned with the requirements of the International

Organization for Standardization (ISO). ISO has developed a series of standards that

specify data formats and practices for digital tags to help track software assets, but to

date, adoption of the standards have been slow, and tools to improve tag deployments and

utilization have not yet become widespread. To assess the potential for blockchain

technology to catalyze the emergence of capabilities based on software tagging, this

investigation involved a design and proof of concept implementation of a software

tagging registry based on blockchain technology.

The preliminary research suggests that blockchain technologies could be very

effective at enabling much higher degrees of security and automation for software

tracking. Blockchains have proven highly effective for environments with high security

demands, with low trust, and that require a full enumeration of all past changes. These

traits closely match the characteristics of a software tag registry, namely a need for a

transparent, publicly accessible, high-availability, platform to share tags in an

environment with diverse methods for determining trust.

The proof of concept was implemented using a Hyperledger Fabric blockchain

platform, which was mostly successful. However, the exercise revealed several key

weaknesses of the Hyperledger Fabric blockchain implementation for that application.

These weaknesses were specific to the Hyperledger Fabric implementation of blockchain,

and do not apply to blockchain technologies in general. The research and proof of

concept indicated that using blockchain to implement a software tagging registry is a

viable approach, but that development of a full registry would likely require a different

blockchain implementation than the one used in this proof of concept.

Contents

Abstract...iv

Contents..vi

Figures..viii

Chapter 1: Introduction..1

Chapter 2: Background..6

2.1 SWID Tags...8

2.2 Entitlement Schema...12

2.3 Blockchain...15

2.4 SWID, Ent, and Blockchain Integration..17

Chapter 3: Software Registry Concept..20

3.1 Trust Relationships...22

3.2 Financial Feasibility:..24

Chapter 4: Competing Capabilities..26

Chapter 5: SWID and Ent Registry Design...28

5.1 Key Architectural Components..28

5.1.1 Cloud Server (IaaS)...28

5.1.2 Docker Platform..29

5.1.3 Blockchain Solution..29

5.1.4 SWID/Ent Channel Smart Contract Functions.................................30

5.1.5 SWID/Ent Gateway Interface...30

5.1.6 Web Front End..31

5.2 Selection of Hyperledger Fabric:...31

5.3 Hyperledger Fabric Architecture..32

5.3.1 Key Concepts..33

5.3.2 Types of Nodes..34

5.3.3 Transaction Time Sequence Diagram...34

vi

5.4 Roles and Use Cases..36

5.4.1 Supported Roles and Use Cases..36

5.4.2 Unsupported 19770-3 Use Cases..39

Chapter 6: SWID and Ent Registry Development...42

6.1 Implementation Process...42

6.1.1 Environment Setup..43

6.1.2 Hyperledger Fabric Network..43

6.1.1 Smart Contract for the SWID Blockchain..44

6.1.2 Smart Contract for the Ent Blockchain...47

6.1.3 ExpressJS Server...48

6.1.4 Graphical Web-Based Interface..48

6.1.5 Deployment to Cloud..50

6.2 Review of Hyperledger Fabric Implementation..50

6.2.1 Hyperledger Strengths..51

6.2.2 Hyperledger Weaknesses..53

Chapter 7: System Walkthrough..56

Chapter 8: Future Capabilities...64

8.1 Peer-to-Peer Information Sharing..64

8.2 Certificate Authority for Trusted Software..65

8.3 Reputation Scoring...66

8.4 Software Whitelisting on Endpoints..67

8.5 Software Discovery..68

8.6 Decomposition of Application Dependencies for Digital Rights Assurance...72

Chapter 9: Conclusion...73

References..75

Glossary...77

vii

Figures

Figure 1. SWID Tag UML Diagram..11

Figure 2. Ent UML Diagram..14

Figure 3. Minimal SWID and Ent Data Required by ISO 19770 Standard.......................21

Figure 4. Key Components of SWID and Ent Registries..28

Figure 5. Sequence of Successful Hyperledger Fabric Transaction..................................34

Figure 6. Implemented Use Cases...36

Figure 7. Supported and Unsupported ISO Standard 19770-3 Use Cases.........................40

Figure 8. Pseudo-UML Diagram of Validator Design...46

Figure 9.Graphical User Interface Page Functions..49

Figure 10. Graphical User Interface Home Page...57

Figure 11. Graphical User Interface SWID Submission..57

Figure 12. SWID Tag Submission Sequence Diagram..58

Figure 13. Successful Tag Submission..59

Figure 14. Informative Error..59

Figure 15. SWID Tag Query Page...60

Figure 16. Initial Ent Tag...61

Figure 17. Ent Submission Success 1..61

Figure 18. Ent Decrementing Entitlements 1...61

Figure 19. Ent Submission Success 2..62

Figure 20. Ent Decrementing Entitlements 2...62

Figure 21. Ent Submission Success 3..62

Figure 22. Ent Decrementing Entitlements Below Zero..62

Figure 23. Ent Submission Informative Error..63

Figure 24. Ent Query Page...63

viii

Chapter 1: Introduction

Software asset tagging has great potential to improve software asset management,

cybersecurity, and software license management. The ability to tag all trusted software

would facilitate the development of a range of tools that could greatly improve current

software asset management and cybersecurity methods.

The International Organization for Standardization (ISO) developed standards for

software tagging that targets software asset management as its primary use case. It

specifies where tags can be stored, what minimal set of information is required in each

tag, how the data should be formatted, and what standard operations are permissible for

tags. This greatly facilitates software asset management practices by permitting scanning

tools to perform scans of an environment to discover all software very quickly and

potentially with perfect results. Tags can also be used to track software licenses and to

associate each instance of software with the appropriate license to ensure that all software

in the environment is operating with a valid license.

In terms of cybersecurity, software tagging could provide a much simpler and

more reliable approach if it is coupled with trust-based policies or trust-related data to

serve as a basis for software whitelisting. Blacklisting is still a prevailing security method

used in the cybersecurity industry, but they are not able to address modern attack vectors

such as polymorphic malware or zero-day attacks. Polymorphic malware is a malicious

form of software that can continually change its own code to evade detection, but

preserves its ability to perform its intended function. A zero-day attack is an exploit of a

1

software vulnerability that is not known to its potential victims, thereby making it

difficult to prevent.

The inadequacy of blacklisting technologies has led many current state-of-the-art

technologies to adopt behavior-based approaches. Behavior-based tools identify

behaviors that are considered normal within an environment, and then react to departures

from normal system behavior. Behavioral techniques can be great additions to a defense-

in-depth strategy, but unfortunately, as behavioral technologies become more accurate

and sensitive, attackers are able to devise attacks with increased stealth to blend in with

normal operations. Further refinement of behavioral tools or layering behavior-based

security with additional security measures increases complexity, which can itself

introduce new costs and new vulnerabilities. Simple software whitelisting approaches

using information stored in a list or database of trusted tags could disrupt the current

trend with a much simpler implementation that could even ensure that every bit of each

program on a system is trusted.

Properly tagged software can also be used to easily correlate matching licenses to

ensure complete compliance with licensing requirements across an enterprise. Licenses

could then be updated or removed as necessary. Most tools currently performing this task

require manual input and tracking, and many rely on warnings for product deactivations,

or reminder emails from vendors to renew software licenses. An enterprise with

comprehensive tagging could track software deployments internally, better optimize its

license allocations, and achieve much greater degrees of automation in the license

management process.

2

While useful in theory, software asset tagging has been slow to mature and fulfill

the role its creators envisioned for it in cyberspace. For one, the cases described above

assume full tagging of cyber assets. It is likely that no single enterprise has tags for all of

its software, and it would be prohibitively expensive for organizations to create the tens

of thousands of tags necessary to enable them to use tag-based tools to account for the

software components they use. Since customers are not using tools that require software

asset tags, software vendors see little need to begin tagging their products. This creates a

situation where neither vendors nor consumers have the incentive to initiate the creation

of a body of software tags.

Blockchain technologies may provide a means to overcome the economic

gridlock preventing software tags from achieving more widespread use. The concept of a

blockchain is still not rigorously defined, but it is often associated with a concept of a

distributed ledger, which is a a set data shared between many stakeholders, and a defined

set of actions stakeholders can take to modify the data in the ledger. Blockchains are a

relatively new technology that shows promise to allow transactions to be conducted in

environments where all participants are distrustful of one another.

Technology based on a blockchain could be used to crowdsource a registry of

software tags to distribute the costs of tagging software. Tags placed on a publicly

accessible blockchain could allow users to trust records with selected digital signatures,

even if they don’t trust any other users of the blockchain, or even the providers of

blockchain services. This means that organizations would no longer need to tag their own

software if a trusted tag is already available in the blockchain. They could use records

from any trusted tag creators, and issue new tags for a much smaller subset of software.

3

Once the blockchain matures and the data becomes more comprehensive, most

organizations may be able to completely automate the process of software tagging.

The validation of content from websites is an example of a mature capability

where cryptographic signatures are used for certificate authorities to vouch for the

credibility of websites. Certificate authorities sign and store trusted public keys so users

can validate the credibility and authenticity of the website they are visiting. This service

is transparent to most users, but has evolved into a multi-billion dollar industry. There is

currently no comparable infrastructure that will automatically certify programs or

applications stored on a user’s machine. However, signed tags can be used to perform

software assurance, and a blockchain with signed software tags could provide the

backbone for this type of capability.

Blockchains have also been proposed and implemented as tools to provide

attestation for copyright or ownership of any software at a certain point in time. By

necessity, blockchains must determine a specific order for all of its data. This requirement

can be used to provide high-integrity timestamps for any records added to the blockchain,

which can then be validated by anyone who can access a copy of the blockchain.

Therefore, even the most basic blockchain implementation for software asset tags could

extend to serve this, and many other functions. It is important to note that the ISO

software tagging standards are intended to apply to a much broader set of software

components than executable files and applications. They are intended to enable tagging

for all digital assets. This may include authors tagging their written works, musicians

tagging their songs, researchers tagging their databases, and a vast number of other use

cases.

4

The research conducted in this thesis was the creation of a blockchain platform to

serve as a software tag registry. The intent of the registry, if deployed publicly, would be

to overcome the low adoption of software tagging by using a crowdsourcing strategy to

create a central, publicly accessible database to permit tag reuse throughout the cyber

ecosystem.

5

Chapter 2: Background

Many organizations struggle to track software product deployments and locate

software assets across their enterprises. After decades of industry evolution many

companies are still surprised by the results of software audits, the size of bills paid for

unused software, or breaches due to outdated and forgotten software running on their

systems. These challenges are a result of ineffective software asset management

processes and capabilities.

Software asset management has not drawn the same level of interest and

innovation as other technologies like big data, cyber threat analytics, machine learning,

and other higher-profile fields. Yet the need to track software assets and licenses

continues to be crucial for many organizations. In recognition of this need, the

International Organization for Standardization (ISO) has created the 19770 family of

standards to define software asset management (SAM) processes and formats. Over the

past two years, these new standards have presented new formats and practices for more

effective management of software assets and tracking, but adoption of these standards

into industry tools and processes has been slow. Yet, the slow maturation of SAM

capabilities is not due to a lack of need.

According to a 2016 Gartner report, many organizations can reduce spending on

software up to 30 percent through application configuration optimization, recycling

software licenses and SAM tools. That year Gartner estimated that organizations would

spend $332 billion on software (Gartner, 2016).

6

While organizations continue to demand better software asset management, a

review of existing literature and existing capabilities show that the processes remain

unreliable, and labor intensive. Efforts in standardization and cyber information sharing

could provide a solid foundation to increase the quality and reduce the cost of software

asset management efforts. The Department of Defense provides one example of

movement in this direction. The DoD Information Technology Standards Registry (DISR)

is the single DoD registry for approved information technology standards, and standards

from the DISR Baseline are mandated for use in the DoD acquisitions process. (DoD

Information Technology Standards Registry, 2017) The DISR Standards and guidance

lists the ISO/IEC Standard 19770-2 as “Mandated.” According to the DoD definitions,

this means that it “must be used in lieu of a competing or similar standard.” and that “The

standard is required for the management, development, and acquisition of new or

improved DoD systems that produce, use, or exchange information.” ISO/IEC Standard

19770-2 defines an internationally-recognized format and set of data elements for use in

digital Software Identification tags (SWID tags). The DoD requirement to use tags

compliant with the ISO 19770-2 Standard is one sign that large organizations recognize

the value of these tags, and that they are likely to become more prevalent in the

marketplace in the coming years.

These developments may provide a strong foundation to build utilities that could

support more capable and efficient software asset management programs. SWID tags,

combined with their sister standard for a software entitlement schema, and new

advancements in blockchain technology could work together to transform the software

asset management industry.

7

2.1 SWID Tags

ISO Standard 19770-2 defines a common format for expressing information about

software products and a set of operations to record and track relevant changes to software

over time. These are known as Software Identification tags, more commonly called

SWID tags. The first version of ISO Standard 19770-2 was published in 2009. An

updated version was published in 2015 to improve upon the original standard.

To use this software tagging standard, organizations need to issue, replace, and

remove software identification (SWID) tags as software is deployed, updated, and

removed. While there are some tools that use SWID tags for software discovery, there are

no commercially available tools to largely automate tag deployment and analysis.

The infrastructure for software tagging is not sufficiently mature for most

software consumers to justify investments in SWID-based technologies. The ISO 19770-

2 Standard recognizes that software publishers are best positioned to tag their own

products; however, software publishers lack a sufficient incentive to drive widespread

availability of SWID tags for software products and components. This means that any

investment in SWID-based discovery technologies on the part of software consumers

would only grant visibility to a small number of software packages, which would not

address organizations’ needs for security or SAM solutions. As SWID tags become more

prevalent, investments in these technologies become better justified.

There is strong evidence that the use SWID tags is growing more prevalent.

Corporations like Microsoft, Symantec, Adobe, Hewlett Packard, and IBM have all

signed on to participate in efforts related to SWID tagging. The U.S. Federal Government

8

is also taking steps to drive adoption in the marketplace. In April of 2016, the National

Institute of Standards and Technology (NIST) published guidance on SWID tag usage for

the Federal Government in its Interagency Report 8060 titled “Guidelines for the

Creation of Interoperable Software Identification (SWID) Tags” which adds additional

government-centric requirements on top of the existing ISO Standard 19970-2

requirements. The U.S. Army, U.S. Navy, U.S. General Services Administration, U.S.

Department of Homeland Security, National Institute of Standards and Technology, and

Department of Defense have all participated in efforts to drive SWID tag adoption. This

level of backing by large organizations in the software marketplace suggests that SWID

tags will grow more prevalent over time.

If ISO 19770-2-compliant SWID tags become more prevalent, investment in

SWID tag-based SAM practices could prove highly beneficial to many organizations.

They could more easily:

1) Purchase diverse standards-compliant tools which interoperate with tools in their
existing infrastructures

2) Gain better and more granular insight into the set of software assets they use than
is possible with current technologies

3) Precisely locate outdated and insecure software
4) Avoid vendor lock-in, (an anti-competitive situation that occurs when an

organization tailors its infrastructure too closely to specific vendors’ products, and
can only switch to incorporate products from other vendors at great cost)

5) Centralize, track, and optimize software deployments. For example, unused
devices, or unneeded software deployments can help an organization identify its
unused and unneeded assets and reduce its consumption of software products

6) Remain flexible amid changing technologies, infrastructures, and legal
requirements.

7) Take advantage of industry best practices and share lessons learned that emerge
surrounding the standard

8) Use external auditing to ensure proper system implementation
9) Meet the information needs of required audits with greater precision, and less

time and cost

9

This list is not exhaustive, but is meant to illustrate tangible value from SWID

tag-based SAM. A UML diagram detailing the structure of SWID tags as defined by ISO

is shown on the next page.

10

Figure 1. SWID Tag UML Diagram. This material is reproduced from ISO 19770-2:2015 with permission of the American National
Standards Institute (ANSI) on behalf of the International Organization for Standardization (ISO). No part of this material may be
copied or reproduced in any form, electronic retrieval system or otherwise or made available on the Internet, a public network, by
satellite or otherwise without the prior written consent of the ANSI. Copies of this standard may be purchased from the ANSI, 25
West 43rd Street, New York, NY 10036, (212) 642-4900, http://webstore.ansi.org.

2.2 Entitlement Schema

ISO Standard 19770-3 defines an entitlement schema intended to help track

software entitlements aligning to ISO Standard 19770-1, which covers more general

software asset management processes. These two software asset management standards

are intended to maximally align to ISO Standard 19770-2, creating an integrated,

cohesive structure for identification and management of software assets. It also seeks to

incorporate existing entitlement information so existing entitlements can be easily ported

into the software asset management process.

A software entitlement is a right to use a specific software product or service.

Entitlement information stored in a data tag defined by the ISO Standard is referred to as

an “Ent.” ISO Standard 19770-3 also notes a large number of benefits from using Ents.

The most important regarding this research topic are:

• “immediate software consumer recognition of details of the usage rights derived
from their software entitlement;

• “ability to specify details to customers that allow software assets to be measured
and reported for license compliance purposes;

• “increased awareness of software license compliance issues on the part of end-
customers;

• “improved software consumer relationships through quicker and more effective
license compliance audits;

• “receipt of consistent and uniform data from software licensors, resellers, and
SAM tools providers.

• “more consistent and structured entitlement information, supporting the use of
automated techniques to determine the need for remediation of software licensing;

• “improved ability to avoid software license under-procurement or over-
procurement with subsequent cost optimization;

• “standardized usage across multiple platforms, rendering heterogeneous
computing environments more manageable” (ISO, 2016).

12

By linking entitlements to the SWID tags, contractual and financial information

can, through automated tools, be combined to enable a complete mapping of software

entitlements that an organization has purchased to their deployment across networks.

Expanding from a system focused specifically on software identification based on SWID

tags, which can be helpful for security functions, and adding entitlement information can

provide a much greater depth of functionality. The main focus for the future evolution of

ISO Standard 19770-3 seeks to determine the level of software usage so that software

investments can be better optimized.

SWID tags and Ents share a very useful feature, often referred to as

“decomposability.” This means that tagging can be conducted at many different levels.

Tagging at lower, more detailed levels can achieve highly granular visibility into the

software terrain of an organization. One the other hand, many software packages, such as

a complete operating system, can be bundled into a single tag. This may be helpful for

asset tagging at the device level. Tags can also cover bundles of software, such as such as

suites of products, and they can tag each individual product, and even tag down to the

level of each component in a software product. This capability provides a powerful and

scalable model for tracking software assets, even down to the level of single files.

The UML domain model for SWID tags as defined by ISO is shown on the

following page.

13

Figure 2. Ent UML Diagram. This material is reproduced from ISO 19770-3:2016 with
permission of the American National Standards Institute (ANSI) on behalf of the
International Organization for Standardization (ISO). No part of this material may be
copied or reproduced in any form, electronic retrieval system or otherwise or made
available on the Internet, a public network, by satellite or otherwise without the prior
written consent of the ANSI. Copies of this standard may be purchased from the ANSI,
25 West 43rd Street, New York, NY 10036, (212) 642-4900, http://webstore.ansi.org.

14

2.3 Blockchain

Blockchain technologies first drew attention with the release of Bitcoin on

January 9, 2009 by an individual using the name Satoshi Nakamoto, though the

individual’s actual name is unknown (Swan, February 2015). Bitcoin is the first known

functioning blockchain application based on peer-to-peer file sharing using BitTorrent

and common public key cryptographic techniques. Within a decade the market cap of the

Bitcoin cryptocurrency has grown, peaking at over $300 billion in December of 2017

(Blockchain.info, January 2018). The ability of a digital currency to succeed in low-trust

environments, and remain secure and trusted despite antagonism from many actors, some

with nation-state capabilities, has drawn broad interest from across software

communities.

The most notable architectural characteristics of the Bitcoin architecture is: first,

its decentralized method to achieve consensus, and second, the blockchain itself in the

form of an immutable ledger that ensures the integrity of all Bitcoin transactions. Many

engineers have used these concepts to create many new new digital currencies, though

none have proven nearly as successful as Bitcoin.

A second characteristic of the Bitcoin blockchain has led to the emergence of a

new concept known as a smart contract. Nakamoto developed Bitcoin with support for a

specific set of contracts, including escrow transactions, bonded contracts, third-party

arbitration, multiparty signatures, and others. The idea that sets of contracts could be

written explicitly in code demonstrates great promise for automating transactions with

greater speed, efficiency, and explicitness. This idea was expanded with the roll-out of the

15

Ethereum blockchain created by Vitalik Buterin in July 2015. Instead of building support

for many types of contracts, as Nakamoto did for Bitcoin, Buterin created a set of Turing

complete operations that could run on a blockchain. This concept would allow any

contract that can be run on modern computers to be written and executed on the

Ethereum blockchain.

Since the release of the initial Bitcoin and Ethereum blockchains, many new

implementations and designs of blockchain technology have emerged, each design

targeting a different set of challenges. Several of these implementations have become a

part of the Hyperledger Project under the Linux Foundation. These include Hyperledger

Burrow, contributed by Monax with co-sponsorship from Intel; Hyperledger Fabric,

contributed by IBM; Hyperledger Indy, contributed by the Sovrin Foundation;

Hyperledger Iroha, contributed by Soramitsu, Hitachi, NTT Data, and Colu; and

Hyperledger Sawtooth, contributed by Intel.

In general, blockchains function well in low-trust environments. In many

implementations any user can validate the entire history of transactions if they choose to.

This openness helps the system maintain a high level of security compared to other

database technologies, and provides current and potential users with proof of the

trustworthiness of the database. Furthermore, it can be decentralized, which means that

even if certain nodes hosting the database are taken off line, the network can continue to

function. If necessary, every user could hold a record of all of the blockchain’s data, and

still be sure through cryptographic signatures that they retain records that are fully

consistent with everyone else’s blockchain.

16

While many blockchain implementations seek to address a range of problem sets,

blockchains have drawn special attention for its potential to improve asset tracking and

supply chain research. The research in this thesis fits that mold, and seeks to lay the

foundations for greater interoperability between any tools or utilities that comply with

existing international standards and that incorporate industry best practices for software

asset management.

2.4 SWID, Ent, and Blockchain Integration

The structure of ISO Standard 19770-2 and 19770-3 lend themselves very well to

an immutable data storage structure. Both SWID tags and Ents are intended (though not

required) to reference one another, making it possible to trace the history of any updates

or changes to records to be through all related tags that have been previously deployed.

Each set of related tags starts from a Primary Tag. Thereafter, additional tags describe

changes or updates to the information of a previous tag. In the case of SWID tags, this

includes installation, patching, new editions, software bundling. In the case of Ents, the

establishment of ownership of software is followed by many actions, including licensing,

license renewal, and software asset transfers, each of which can be traced back to the first

record specifying entitlement and licensing information for a software product. This

decision to store software data as a Primary Tag and store a record of each change to that

record makes software tagging highly amenable to immutable data storage design

patterns.

Blockchains excel at assuring the integrity of its records using a design pattern

that retains a record of any initial data and retains a sequential record of all changes. The

17

design of its integrity protection doubles as a method to allow users to trace the history of

all transactions back to its earliest records, closely mirroring the way records in the ISO

SAM standards are intended to be traced back to the earliest related record.

As a registry performing a security function, availability of the system is also

important. Blockchains are often designed to be decentralized, meaning that they have no

single points of failure. Many parties participate in maintaining and growing the data, and

it would be difficult to compromise a sufficient number of nodes at a similar time to

corrupt the blockchain. Generally, a blockchain with a larger number of participants will

be more secure than blockchains with fewer participants. This method of using

blockchain can make blockchains more secure than traditional databases which can be

rendered unavailable by the compromise of a single node.

If blockchain served as the backbone technology for a registry for SWID tags and

Ents, users would have an incentive to download their own copies of the ledger. In some

contexts, they will want to hold a copy within their environments where their applications

could access data more quickly, and where they could ensure they can still access the data

in the case of an external network failure. Other users may want to intentionally validate

the integrity of their tags. The incentive for many users to hold separate copies dovetails

closely with the property of many blockchains where more users holding a copy of the

blockchain increases the security of the data held within the blockchain.

In addition, blockchains can be designed to be pseudo-anonymous. In this case,

identities are tied to cryptographic keys, rather than to individuals. Users can then use a

private key of their choosing which may not be traceable back to the individual or

organization that controls the key. For SWID tags and Ents, this could be useful to ensure

18

that people or organizations that want to provide information are permitted to do so

without having that information traced back to them. For example, if a tag consumer

wants to purchase new software, it would not want its competitors to know about its

transactions and would want to remain anonymous, and so could choose to use a single-

use key. Other blockchains are designed for users to have known identities that are linked

to private keys. An example of this case would be a software creator that wants to sign

tags for all of its products and patches so that its customers can validate the integrity of

all of the software they buy and/or update. Both of these models can be used on the same

blockchain instantiation.

Blockchain technologies are a concrete technology that naturally implements

many of the needed capabilities to implement the ISO 19970 Standard. While many

additional technologies are required to devise working and valuable SWID tag and Ent

registries, a blockchain implementation is a logical tool to consider as a basic building

block.

19

Chapter 3: Software Registry Concept

The centralization of SWID tags into a decentralized registry can allow users to

leverage records that other individuals or organizations have previously created to pre-

populate much of their software asset information that they may otherwise need to enter

and track manually. Organizations providing tags may be software creators, commercial

tag providers, or tag consumers. For software consumers, software tagging is usually

prohibitively expensive, but by sharing information in a registry, their workload can be

distributed between multiple parties. The ISO Standards for SAM provide an excellent

opportunity to design a solution that is both universal and vendor agnostic. Any user is

empowered to fill gaps by tagging any software, which continues to provide additional

data that could make the registry more comprehensive, allowing any users to achieve

higher levels of automation for their software asset tracking. This type of information

sharing platform could reduce the costs of software asset tagging and provide a free and

valuable resource for organizations to maintain a deep understanding of how they use

their software resources. Registries of software identification and entitlement tags could

then function as a foundational capability on top of which a larger and more complex set

of systems, utilities, and business logic can be built.

The minimum set of data required for a SWID tag is fairly small:

• Software Identity
◦ Name
◦ Tag ID
◦ Flag to Designate Tags for Patches

20

◦ Flag to Designate Supplemental Tags
◦ Version of the Tag
◦ Version of the Software
◦ Scheme off the Version (e.g., ‘multipartnumeric’)
◦ Entity

▪ Role of Tag Creator
▪ Regid of Tag Creator
▪ Name of Tag Creator

For Ents the minimum set of required fields is:

• Ent
◦ Ent Identifier
◦ Ent Creation Date
◦ Ent Type
◦ Entity

▪ Role of the Ent Creator
▪ Regid of the Ent Creator
▪ Name of the Ent Creator

Figure 3. Minimal SWID and Ent Data Required by ISO 19770 Standard

21

SWID tags are infinitely extensible and can incorporate any relevant data. With a

little additional information, stored either in the tags themselves or from an external

source, software asset and license management tools could support a large number of

capabilities that are currently in high demand. For the initial proof of concept, it would be

better to ensure that the system remains extensible, as there are likely many more

potential uses and systems that can be built on top of the registry than are envisioned

here. That said, some examples may illustrate the power and diversity of the potential for

new capabilities.

• Peer-to-peer information sharing
• Use of certificate authorities to validate trusted software
• Reputation scoring
• Software whitelisting
• Identification of unknown programs
• Decomposition of application dependencies for digital rights assurance

Any software creator could freely access and leverage the SWID and Ent

resources to develop a plethora of new technologies. Adherence to international SAM

standards could help the market to coalesce around a common, open data format to

support the maturation of the industry.

3.1 Trust Relationships

Information sharing for SWID tag information can fit well into emerging

resources and institutions operating in cyberspace. Notably, Executive Order 13691

called for the creation of Information Sharing and Analysis Organizations to help cross-

company and cross-sector collaboration and information sharing for cybersecurity

purposes (EO 13691, 2015). Since the evidence of a software program’s presence will

22

likely be limited to a finite set of programs, ISAOs or similar commercial or 501(c)(3)

organizations can publish information to a centralized blockchain for consumption across

a broad number of organizations. The availability of a centralized data source may prove

a defining factor that could make SWID tag-based SAM feasible in an environment

where a relatively low proportion of software is tagged by the publisher or the distributor.

In the case of profit-seeking organizations, there will likely be a demand to limit

access to blockchain information to paying subscribers only. These cases can all be

covered in a single blockchain instantiation.

Information on a blockchain can be matched to a cryptographic public key, which

can allow client applications to distinguish between trusted and untrusted tags. This

enables a high degree of automation and a large range of configuration options to

discriminate between trusted and untrusted data.

One trust model entails an organization choosing a list of tag issuers to trust.

These may be software creators, or other third parties that issue software tags which have

created tags for software products. This relationship may also support a use case where

one or more trusted tag creators issue tags linked to previous tags created by another

untrusted tag creator, certifying certain tags as trustworthy.

Other users may opt to use another trust model that includes authorities who

certify entities that provide information to the registry. This model is commonly used for

Internet browsing to distinguish between trusted and untrusted websites. For example, an

organization may register a public key with a company like Verisign. That organization

can then use its key as a certificate on any websites it chooses to validate its identity and

trusted status. Visitors that trust Verisign’s certification process can determine whether or

23

not to trust the website by checking if the public key is registered with Verisign’s

Certificate Authority. A similar system is possible to determine the validity or quality of

SWID tags, and/or the software they are tagging.

In recent years, another model has garnered increased attention. This model uses

analytics to assess a reputation score based on a number of factors. This score can allow

organizations to choose what scores they will require, either to determine if they should

trust a tag on the blockchain, or if they should trust a software product registered on the

blockchain. This provides great potential for companies to use more advanced analytics

such as Monte Carlo analysis to optimize their assessment of trustworthiness based of a

much larger range of data.

The availability of these diverse options presents tool developers and

organizations with flexibility to customize trust decisions according to their needs.

3.2 Financial Feasibility:

The core benefits of the proposed system are to enable new capabilities, enhance

modularity of SAM systems through the use of existing standards, and make processes

more economical; however, the design itself can be structured to collect enough income

to be self-sustaining. While the blockchain is open to the public, the requirements to be

able to add records to the blockchain can and should be restrictive to ensure the health of

the blockchain and the quality of the data on it. For example, a software producer could

be charged per tag issued. This can be nominal for a software producer compared to the

cost of creating or deploying new software or a software patch, but it also protects the

chain from being overloaded by fake or low-quality tags. This is a type of Denial of

24

Service scenario referred to through the rest of this document as “flooding.” In some

observed cases, users will sometimes repurpose blockchains from their intended use to

store other data in a publicly protected and immutable data repository. The best price

structure for the SWID and Ent registries may be to ensure that the cost is higher than

other immutable data storage services, such as the Ethereum blockchain (which will store

any data a user likes), but be priced low enough to be a negligible expense for software

producers and consumers and provide a minimal impediment to adoption of the SWID

and Ent registries into their tool sets.

A small fee based on the number of tags or the amount of data used addresses two

needs for the system. First, it can help cover the cost of system maintenance, and second,

it can discourage mass uploads which could reduce the usefulness and value of the

blockchain to its users. If the blockchain grows too large to function on a standard

platform, the cumulative sum of small fees could cover the cost of scaling to a big data

infrastructure, though this is unlikely to be a constraining factor. We can note that the

blockchain for Bitcoin, a highly active cryptocurrency, had not surpassed 20GB within its

first five years of operation. While SWID tags and Ents will typically contain more data

than a Bitcoin transaction, the community of tag creators is expected to be much smaller

and more targeted, resulting in a lower frequency of transactions. The infrastructure

developed in this thesis could scale to store ten 10TB of data—enough to store billions

reasonably sized tags.

25

Chapter 4: Competing Capabilities

This research did not identify any existing capabilities that perform the services

identified in the concept proposed in this assessment. That said, there are existing SWID-

based capabilities that could be seen to compete indirectly with SWID tag and Ent

registries.

TagVault.org is a not-for-profit certification authority for software tagging which

focuses on ISO 19770-2 and ISO 19770-3 standards. It provides a tag validation tool both

for tag producers to verify that the tag is properly formed, and for tag consumers to

validate that a signature of a tag is valid, and that the tag content has not been modified

(tagvault.org, 2018). While valuable, these resources do not provide many of the

advantages envisioned from the SWID tag and Ent registries, such as allowing

configurable levels of trust and signatures for software discovery tools.

Additionally, Steve Clos, the director of TagVault.org, co-founded Managesoft,

which developed a database of Software Identification tags for open source tools, and

several SAM tools. Flexera Software LLC acquired ManageSoft in 2010 and now

controls its assets, including its proprietary database of software tags (Bloomberg). Since

this database is used for scanning tools, and not for many of the applications envisioned

for the SWID and Ent registries, it is not considered to be in direct competition.

Other competing capabilities do not make use of software tagging at all, but seek

to provide some of the same services. One example are heuristic tools. These tools extract

available data such as file size, file hash, installed location, program test output, etc. and

26

use the available information to automatically determine a best guess for the

identification of the software. As the science of artificial intelligence and deep learning

continue to improve, they may be used to create much more effective programs that could

provide similar services as those provided by software tag-based tools. Since many

environments will likely have a mix of both tagged and untagged software, heuristic tools

may also provide complementary information to provide insight into untagged software

in a given environment.

27

Chapter 5: SWID and Ent Registry Design

This section details the plans for implementation of the registry infrastructure for

the concept described above. A Hyperledger Fabric blockchain implementation supports

two blockchain ledgers. One contains SWID tag information with the unique SWID Tag

ID as a key and the XML formatted text of the tag as the value. The second contains Ent

information, with the Ent ID as a key, and the XML-formatted text for the Ent as the

value.

5.1 Key Architectural Components

Each of the technologies described below provides crucial resources that are

necessary to create a blockchain registry service.

Figure 4. Key Components of SWID and Ent Registries

5.1.1 Cloud Server (IaaS)

A virtual cloud server with a static IP address supports the entire application. In

the rest of this section, this virtual server will be referred to as the Cloud Server. The

28

implementation on a single server is sufficient for a proof of concept, but the it does not

have any of the security benefits of a distributed blockchain. A more secure application

would need to run on multiple server instances.

5.1.2 Docker Platform

Docker containers have become a leading cloud technology. They allow for

highly modular design and can guarantee transportability of applications across

platforms. The Hyperledger Fabric blockchain implementation consists of five executable

files. However, all instructional documentation centers on the deployment of docker

containers to host each of the Hyperledger entities. The Docker platform runs on top of

the Cloud Server operating system and access to all Hyperledger Fabric services occurs

through these containers.

5.1.3 Blockchain Solution

Hyperledger Fabric was selected as the blockchain solution for the foundational

blockchain technology for this application. The rationale for selection of Hyperledger

fabric is detailed in Section 5.2. A different smart contract (i.e., chaincode) was added to

each of two channels ensuring the proper formatting for additions of SWID tags (first

ledger) and Ents (second ledger). The Hyperledger Fabric provides an API to interact

with a blockchain platform. The API can be used to add and retrieve records from a

blockchain. This includes issuing chaincode, which will be used to define the roles, and

the permitted operations for interaction with both the SWID tag and Ent ledgers. The

Hyperledger Fabric blockchain supports integration with different databases which have

different performance characteristics. At the time of this writing, Hyperledger Fabric

29

supports both LevelDB and CouchDB databases. (For additional information, see

http://leveldb.org and https://couchdb.apache.org.) This research was conducted on

CouchDB, which allows for constant time lookups for information since the underlying

data structure is based on a B tree. A B tree is a data structure for storing key-value pairs

that allows access to data in constant time for systems with fixed key lengths, regardless

of the amount of data the structure is storing. Different channels are able manage

permissions for different users; however, this functionality is not necessary for the design

of the registry. Standard practices exist to provide signatures within software tags

themselves, making digital signing using the Hyperledger Fabric utilities redundant and

overly restrictive. Therefore, all invocations and queries to the SWID/Ent ledgers were

passed through a single user account, where both the private and public keys of that

account were made accessible to all users. This allows for digital signing to be handled

externally from the Hyperledger Fabric processes.

5.1.4 SWID/Ent Channel Smart Contract Functions

The smart contracts that can be used for both the SWID tag and Ent ledgers must

enforce conformance to the ISO standards 19770-2 and 19770-3 for software

identification tags and software entitlements. This ensures proper formatting for every

record.

5.1.5 SWID/Ent Gateway Interface

The SWID/Ent gateway interface allows https traffic from the public Internet.

This will allow users to interface with the web-based graphical user interface front end.

30

The https certificate for the web server will not be registered with a certificate authority

for this proof of concept.

5.1.6 Web Front End

The web front end provides a web-based graphical user interface, allowing users

to perform the use cases described in section 5.2. Namely, it allows users to manually

enter and retrieve tag information. In the future, a machine-to-machine interface would

much more effectively integrate with automated SAM and security tools, but the

graphical user interface is sufficient to demonstrate the concept.

5.2 Selection of Hyperledger Fabric:

At the time of this writing, the Linux Foundation’s Hyperledger project has five

business blockchain frameworks. Hyperledger Fabric was selected as the foundational

technology for the blockchain database since it was the only Hyperledger framework that

was approved for deployment in production at the time development began SWID and

Ent registries.

Two other possible blockchain implementations that could have filled this role

include Hyperledger Sawtooth and Hyperledger Iroha. The Hyperledger project describes

Hyperledger Sawtooth as “a modular platform for building, deploying, and running

distributed ledgers. Distributed ledgers provide a digital record (such as asset ownership)

that is maintained without a central authority or implementation.” Some key advantages

to this framework are its ability to run both as a permissioned and a permissionless

blockchain. A permissioned blockchain means that the entities that participate on the

31

blockchain must be identified and given permission to interact with the blockchain. A

permissionless blockchain allows for decentralized validation where anyone can

participate.

The Hyperledger project states that Hyperledger Iroha is “designed to be simple

and easy to incorporate into infrastructural projects requires distributed ledger

technology. Hyperledger Iroha features a simple construction; modern, domain-driven

C++ design, emphasis on mobile application development and a new, chain-based

Byzantine Fault Tolerant consensus algorithm, called Sumeragi.” The main advantages of

the Iroha blockchain is that it is lightweight and its consensus algorithm can function well

in environments with unreliable connectivity, such as mobile devices.

5.3 Hyperledger Fabric Architecture

During the course of the development of application, it became clear that the

Hyperledger Fabric blockchain has not yet reached a sufficient level of maturity for this

application. Several months of research and testing failed to provide a technical

description of the Hyperledger Fabric components, and how they work together.

Professional training through a company that contributes code to the Hyperledger Fabric

project, Altoros Systems, was able to provide descriptions of the basic components and

design decisions of the Hyperledger Fabric system. However, the training made clear that

deployment of a production application would require professional consultation from

individuals involved in the development of the project, or a well-resourced dedicated

team to perform the necessary development operations functions. Some of the relevant

information from this training is reconstituted below.

32

5.3.1 Key Concepts

Blockchain Ledger. Data stored in the form of a list. In the context of Hyperledger

Fabric, it includes all permission configurations for entities that are able to interact with

the ledger, the smart contracts that can function on the ledger, and all transactions that

change data on the ledger. In Hyperledger Fabric, each item in the ledger’s list includes a

hash of the previous list item, making the ledger into a blockchain.

Smart Contract (also called “chaincode”). A smart contract is a software program

that reads or writes state to a ledger. Any state that a smart contract writes to a ledger is

called a transaction. In Hyperledger Fabric, peers have a copy of the smart contracts and

a client can initiate its execution by by requesting that peers execute the smart contract

and provide any data inputs the peers require to run smart contract.

Transaction. Any record proposed to be added, or previously added to a ledger

following the successful invocation of a smart contract. A client can propose a

transaction, and if the invocation is successful, the transaction is said to be valid. If the

invocation is unsuccessful, the transaction is said to be invalid.

Channel. A blockchain ledger. Peers can participate on multiple channels,

meaning that they are reading and/or operating on multiple blockchain ledgers.

Endorser. Endorsers determine whether proposed transactions are valid or invalid.

If a client obtains the appropriate endorsements determined by a smart contract’s

endorsement policy, the client can send the transaction with the appropriate endorsements

to the ordering service, which can validate the endorsements and commit the transaction

to the ledger. Transactions that fail to obtain the appropriate endorsements will not be

added to the ledger.

33

5.3.2 Types of Nodes

Clients. Submits transactions to the peers and to the orderer

Peers. Maintains a copy of the ledger and adds any new valid transactions to its

ledger. Some peers function as endorsers.

Ordering Service. Ensures consistent sequencing of transactions and delivers all

valid transactions to all subscribed peers

5.3.3 Transaction Time Sequence Diagram

Figure 5. Sequence of Successful Hyperledger Fabric Transaction

The image above illustrates an example sequence for a successful transaction.

1) The client sends a transaction proposal to an endorsing peer (Endorser 1),

specifying a method it would like to invoke on the smart contract, and supplying any

additional information required for the transaction. The peer processes the proposal by

running the specified method in the smart contract to ensure that the transaction runs

34

successfully within the parameters specified by the smart contract. Once the transaction is

processed successfully, the endorser signs the transaction and provides the signature back

to the client.

2) The client sends the same transaction proposal to a second endorsing peer

(Endorser 2). This can take place concurrently with the previous step. The second

endorsing peer also checks that the transaction operates within the parameters specified

by the smart contract, signs the transaction proposal, and sends the signature back to the

client.

3) If an endorsement policy for the smart contract does not require endorsements

from additional peers, like Endorser 3, the client will not need to seek additional

endorsements.

4) The client attaches the endorsement signatures to the transaction proposal and

sends it to the orderer.

5) The orderer checks the endorsement policy of the invoked smart contract. In

this case, signatures are required for Endorser 1 and Endorser 2. The endorser validates

that the tag has the two required signatures, assigns a unique block number to the

transaction, and signs the transaction proposal and endorsements, and the transaction

proposal is then considered a transaction. The transaction, combined with the

endorsement data is called a block.

6) The orderer sends the block to all subscribed peers. This includes any endorsers

for the smart contract, any endorsers that are not required to sign the smart contract, and

any peers that are subscribed to the blockchain, but do not provide endorsements.

35

5.4 Roles and Use Cases

This section addresses three sets of use cases. The first section (section 5.4.1)

addresses the use cases that have been fully implemented over the course of this research.

The second section (section 5.4.2) addresses use cases that were planned, but were not

implemented since their implementation would not have been informative.

5.4.1 Supported Roles and Use Cases

The section below outlines the basic roles and use cases addressed by the system
developed.

Figure 6. Implemented Use Cases

36

1. SWID Tag Issuer Creates a Corpus SWID Tag: A Tag Issuer can add an entry to

the SWID blockchain for a new software product. Per ISO Standard 19770-2,

Corpus Tags are intended to tag pre-installation distributions of software.

2. SWID Tag Issuer Creates a Primary SWID Tag: A Tag Issuer can add an entry to

the SWID blockchain for a software product or a bundle of software products.

3. SWID Tag Issuer Creates a Patch SWID Tag: A Tag Issuer can add an entry to the

SWID blockchain for a patch which is linked to one or more existing products and

any other patches to which it may have a relation.

4. SWID Tag Issuer Creates a Supplemental SWID Tag: A Tag Issuer can add an

entry to the SWID blockchain for a tag providing additional information about an

existing software product. Per ISO Standard 19770-2, all Supplemental SWID

tags must have a link to a Primary SWID tag.

5. SWID Tag Consumer Retrieves a SWID Tag Using a Unique Software ID: A

SWID tag Consumer can submit a unique Software ID to retrieve SWID tag

information on that product. Unique Software IDs will conform the tag identifier

as defined in ISO Standard 19770-2. The SWID tag ID servers as a key, and the

SWID tag itself is the value of a key-value pair stored on the blockchain, allowing

a utility to query the blockchain for the appropriate record.

6. SWID Tag Consumer Retrieves SWID Tags Using the Tag Name: SWID tag

Consumers can submit a tag Name to retrieve all tags bearing that tag Name. ISO

19770-2 requires all SWID tags to have a tag Name, so this query can be used to

retrieve any tags. Tag Names are not required to be unique, so they can be used to

retrieve multiple tags.

37

7. SWID Tag Consumer Retrieves SWID Tags Using the Name of the Creating

Organization: A SWID tag Consumer can submit the name of an organization and

retrieve a list of all of the tags created by that organization.

8. SWID Tag Consumer Retrieves all SWID Tags: A SWID tag Consumer can issue

a request to retrieve a list of all SWID tags.

9. Software Owner Creates ‘Initial’ Ent Tag: The Software Owner can create an

initial Ent which associates a Software Owner to a specific software product (i.e.,

associates a software owner to a SWID tag).

10. Software Owner/Software Licensor Creates an ‘AllocationSent’ Ent: Both

Software Owners and authorized Licensors can allocate licenses to software

licensees (most commonly Software Consumers). This adds a record to the

blockchain noting that the allocation has been made.

11. Software Consumer Creates an ‘AllocationReceived’ Ent Tag: A Software

Consumer can add an ‘AllocationReceived’ Ent tag to the blockchain. This

responds to an ‘AllocationSent’ Ent Tag issued by a Software Licensor.

12. Ent Tag Consumer Retrieves an Ent Tag Using a Unique Ent Tag ID: An Ent

Consumer can submit a unique Ent ID to retrieve the related Ent information.

Unique software IDs must conform to the tag Identifier as defined in ISO

Standard 19770-3. The Ent ID servers as a key, and the Ent itself is the value of a

key-value pair stored on the blockchain, allowing a utility to query the blockchain

for the appropriate record.

13. Ent Tag Consumer Retrieves Ent Tags Using the Tag ID of its Linked Initial Tag:

An Ent Consumer can submit the Ent ID of an Initial Ent and retrieve the initial

38

Ent and a list of all of the Supplemental Ents that are linked to that Initial Ent.

Results will include one Initial Ent and a list of zero or more supplemental Ents

linked to that initial Ent.

14. Ent Tag Consumer Retrieves All Ent Tags: An Ent consumer can issue a request to

retrieve a list of all Ents.

5.4.2 Unsupported 19770-3 Use Cases

Following the creation of classes to validate all entities for the SWID standard,

implementing full functionality to validate information for the Ent would have required a

nearly identical process. The process would have required a tailored implementation

since Hyperledger Fabric smart contracts are written in Golang, and there is currently no

credible software that could validate a tag with the XML schema provided by the ISO.

While validation of data using an XML schema will not currently work within the

Hyperledger Framework, validation of XML schema is a tried-and-true technology, and

recreating this functionality for Ents did not further the research objectives. The use cases

below describe use cases that should have been implemented per the 19770 Standard, but

that were not due to this limitation. The new use cases that were included have been

added to the Use Case diagram in red with a gray background below.

39

Figure 7. Supported and Unsupported ISO Standard 19770-3 Use Cases

1. Software Licensor/Software Consumer creates ‘Revocation’ Ent: Software

Licensors and Software Consumers can add an Ent to the blockchain revoking an

existing Ent. This may be done for example if there was an error made in the

initial Ent.

2. Software Consumer Creates a ‘TransferSent’ Ent: Software Consumers can

reallocate their software assets. For example, a corporate headquarters may wish

to transfer software entitlements to one of its branches, or during a merger an

acquired organization’s entitlement may be consolidated into the acquiring

40

organization. By adding a ‘TransferSent’ Ent to the blockchain, the software

entitlements associated to one owner can be shifted to another.

3. Software Consumer Creates a ‘TransferReceived’ Ent: In response to the issuance

of a ‘TransferSent’ Ent, the designated recipient can receive the transfer by adding

a ‘TransferReceived’ Ent to the blockchain.

4. Software Consumer Creates a ‘Consolidation’ Ent: In accordance with ISO

Standard 19770-3, a ‘Consolidation’ Ent can be used to combine multiple

different entitlements into a single entitlement.

5. Software Consumer Creates a ‘Archived’ Ent: While not necessary on a

blockchain record, to comply with ISO Standard 19770-3 and integrate with any

tools compliant with that Standard, Organizations can issue an Ent to the

blockchain denoting certain Ents as ‘archived’.

41

Chapter 6: SWID and Ent Registry Development

All preliminary research on blockchain technologies and the 19770 Standards was

completed in July 2017. Development on the research application began in late July. This

section describes the stages of development.

6.1 Implementation Process

The initial development plan for the components detailed in Section 5.1 started

with the services with the fewest dependencies on other parts of the system, and

progressed to those with the most dependencies. Setup of the initial environment was not

dependent on any aspects of the application so it was addressed first. All other elements

relied, either directly or indirectly on the Hyperledger Fabric network. This step was the

most time-consuming and revealed the greatest challenges for using Hyperledger Fabric

for the creation of SWID tag and Ent registries, and an adequate network configuration

was never achieved. Use of a template network was sufficient to test smart contracts for

the SWID and Ent blockchains so work could progress. The SWID and Ent blockchains

are independent of each other, and so could be implemented in any order. The SWID

blockchain was selected first since it requires simpler operations. Ent blockchain could

use same functionality as the SWID blockchain and extend it to address additional needs.

When the ledgers were completed, the Gateway Interface was developed to

retrieve and commit data to the blockchains and a graphical user interface was created to

enable users to interact with the Gateway Interface to retrieve and commit data.

42

The development steps proceeded as follows:

1. Environment setup
2. Set up the Hyperledger Fabric network
3. Develop smart contracts for the SWID blockchain
4. Develop smart contracts for the Ent blockchain
5. Develop the Gateway Interface
6. Develop the graphical website for the user-facing application
7. Deploy application to cloud server

6.1.1 Environment Setup

The environment consisted of a virtual machine run on a VirtualBox hypervisor.

The virtual machine was used to host a minimal Ubuntu 16.04 operating system. Golang,

Docker, and NodeJS resources were downloaded in accordance with the the Hyperledger

documentation for needed prerequisites (Hyperledger, 2017). Setup of these resources

was trivial and will not be detailed further.

6.1.2 Hyperledger Fabric Network

The initial goal for the Hyperledger Fabric network was to store a key-value pair

and return the appropriate value when a query provided the appropriate key. Substantial

research failed to uncover documentation or methods providing guidance for how to

implement this functionality with acceptable levels of security, reliability, and flexibility.

Following several months of investigation and testing, efforts to establish a suitable

Hyperledger Fabric network were discontinued. Some challenges that led to the

abandonment of a suitable network configuration are detailed in section 6.2.

In lieu of a network designed for the SWID and Ent blockchain registries, a

sample single-peer, single-channel network configuration provided by the Hyperledger

project served as a template. The sample configurations could not be used to realize any

43

security, reliability, or transparency benefits expected from a blockchain implementation.

Attempts to modify the sample to incorporate additional peers or support multiple

channels were unsuccessful.

During work, maintaining versions using built-in scripts often specified paths to

remotely hosted scripts and containers that negatively impacted efforts for version control

for the containers used for the application. Since updates are often not backward-

compatible, these hidden updates disrupted development several times. Best practice

dictates that versions are selected and updates are only deployed when their effectiveness

can be validated through a change management procedure. It is also not clear how to

retrieve older versions of scripts once they had been altered by other scripts, so frequent

restorations from backup files were necessary.

While some of these issues required workarounds for the development of other

elements of the system, using an existing sample network as a template was sufficient to

allow for testing of smart contracts for the SWID and Ent blockchains.

6.1.1 Smart Contract for the SWID Blockchain

Early in the development of the SWID blockchain, it became clear that

development would need to take place in two phases. A healthy rhythm for coding

includes a tight feedback loop from adding code to seeing the results of tests validating

the new code that has been created. Testing includes both ensuring that the code can

compile and that it can run and pass all tests. In an effective development environment,

each iteration of this loop should only take a few seconds. When developing within the

Hyperledger Fabric network, tests between code changes required removal of a container,

44

and initialization of new container which took between 90 and 110 seconds. This

extended the feedback loop to roughly two minutes. Therefore, functionality for the smart

contract was first developed separately from the Hyperledger Fabric network on a

separate test server where it could be quickly tested. Once the program worked, it was

ported over to the Hyperledger Fabric network where troubleshooting the integration of

the smart contract could take place.

Hyperledger Fabric currently has an API that allows smart contracts to be written

in Golang or Java. All early development work had been conducted in Golang, so Golang

was selected for implementation of both the SWID and Ent smart contracts. Part way

through development, it became clear that the publicly available Golang libraries would

not be adequate for the implementation of the 19770-2 or 19770-3 standards. Golang has

a standard library for marshaling and unmarshaling XML and JSON data. Unfortunately

these functions require the object model to be completely defined in order to extract the

necessary data. Both the 19770-2 and the 19770-3 ISO standards are infinitely extensible.

Any tag creator can define its own objects or attributes and include them in a tag. In these

cases, the available Golang libraries would ignore these data. This means that to use

Golang, a custom parser would be required to validate that each tag submitted complied

with ISO Standards, and extract the data into memory.

Utilities are available for many languages that take input from the XML Schema

Definition (XSD) file and validate conformance to the file, and other tools can automate

the construction of a data model using the conditions codified in an XSD file. While

some of these tools exist for Golang, none of them have achieved the level of

45

completeness or reliability to be used in production code. The object model used in the

smart contract was coded manually using the Golang XML and JSON encoding libraries.

The smart contract was successfully developed to ensure the proper usage of all

XML elements described in the ISO 19770-2 Standard, but it did not permit users to

include custom objects or attributes. This means that the implementation using standard

Golang libraries was not successful in fully implementing the the ISO 19770-2 Standard,

and additional work, or a new approach, would be required.

Figure 8. Pseudo-UML Diagram of Validator Design

The primary purpose of the smart contract is to ensure that tags added to the

SWID database are all compliant with the 19770-2 standard. The smart contract makes

use of a pattern similar to a composite design pattern to ensure that validation can check

all elements directly or indirectly contained within the top level SoftwareIdentity object.

A composite design pattern was not used since the Golang XML and json encoder

libraries require all attributes of child elements to be visible to their parent elements.

46

Since the separation of concerns was already broken, establishment of a common

interface would not have been helpful.

Each defined type within the software identity data model has a “validate()”

method which ensures that every attribute for that type is conformant with the ISO

19770-2 Standard. Each parent object then runs the validate() method on all of its child

objects if there are any. This creates a recursive validation call that ensures every data

field is compliant with the standard. This validation must pass for all objects before the

smart contract will permit a new tag to be committed to the blockchain.

6.1.2 Smart Contract for the Ent Blockchain

The design of the smart contract for adding Ents is closely related to the design of

the smart contract used for SWID tags. Since the process would be similar to develop a

contract to validate all of the objects and attributes for the Ent Standard as it was for the

SWID standard, it would not have been informative to manually recreate that

functionality. In future versions, this service should be replaced by a reliable library that

could validate conformance of each tag with the XML Schema Definition provided by the

ISO. However, as mentioned above, research did not identify a Golang library that would

be adequate for a production application.

One notable requirement for Ents that differed from SWID tags was a need to

query existing data contained within the blockchain in order to determine if a new tag is

valid. Specifically, entitlements in ISO Standard 19770-3 contain a “quantification”

attribute which may express, for example, how many instances of a software a company

47

is entitled to use. If that organization would like to reallocate or transfer more

entitlements than they have rights to, the transaction should be invalid.

The Hyperledger API provides functionality to retrieve existing state stored within

the ledger. The application makes use of these functions to read all additions and

subtractions to the quantification of a software entitlement from all linked tags. The

existence of sufficient entitlements is required for a transaction to be considered valid.

6.1.3 Gateway Interface

The Gateway Interface is an ExpressJS server that responds to HTTP requests. It

responds to GET requests for the home page by providing HTML files that make up the

graphical web-based interface. When the user issues commands through the graphical

interface, the Gateway Interface will route the resulting POST request to the appropriate

smart contract and method. This routing is performed by calls to the Hyperledger Fabric

API based on NodeJS. Methods from this API are used for the submission and retrieval of

all information to the Hyperledger Fabric ledger.

6.1.4 Graphical Web-Based Interface

The graphical user interface consists of five HTML files for each of the five

following functions:

1. Introductory page
2. Submission of SWID tag
3. Query SWID tags
4. Submission of Ent
5. Query Ents

48

Figure 9. Graphical User Interface Page Functions

Since pages are very small, all data is preloaded upon visiting the homepage to

ensure fast navigation. All data returned following submission attempts or queries is

returned through asynchronous calls to limit delay due to data transmission over network

connections.

The Introductory page presents summary text about the application and a

navigation menu to the other pages.

The pages for SWID tag and Ent submission contain a text area for the user to

enter a tag and a submit button to send the request to commit the entered contract to the

blockchain for validation. If the request fails, a Javascript alert provides details about the

error. If a request succeeds, a Javascript alert will provide a notification that the request

has succeeded and provide the ID number of the new block containing the tag that was

submitted.

49

The pages for SWID tag and Ent retrieval contain a dropdown used to select the

field the user would like to use to query the tag. A text box is provided for users to enter

the key they would like to query on. A submit button sends an asynchronous request to

the server to search the index specified in the dropdown for the key specified in the text

box. If there are no results to return, the area below the search parameters will appear

empty. If there are results, they will be printed in a list below the search parameters.

6.1.5 Deployment to Cloud

Deployment to the cloud consisted of the steps listed in section 6.1.1. Following

the necessary setup of the environment, all files in the VM development environment

were copied to the Cloud server. The ExpressJS server was modified to reply to requests

on the public Internet. Launching the Gateway Interface and booting the Hyperledger

Fabric network completed the system for the proof of concept.

6.2 Review of Hyperledger Fabric Implementation

Hyperledger Fabric was a crucial component in the development of this proof of

concept. Several features of the Hyperledger Fabric have the potential to provide useful

capabilities for the applications, but unfortunately it was found to be unsuitable for a

registry for software identification and tracking purposes as planned in this document.

The following two subsections address both the strengths and weaknesses of the

Hyperledger Fabric discovered during the development of this proof of concept.

50

6.2.1 Hyperledger Strengths

Concept of channels which allows clean separation of ledgers: Channels

permit a Hyperledger network to separate data into separate ledgers. In the case of the

SWID and Ent registry, this would permit greater modularity in the design where one

ledger could hold all SWID tags and one ledger could hold all Ents. There are several

advantages to this division. First, if a smart contract is vulnerable to exploitation, it

cannot write directly to another ledger, so separate channels may remain unaffected by

the breach. Second, channels allow different peers to subscribe to different channels, so

peers need only interact with data that is relevant to them in a publish-subscribe type of

model. Third, system architectures can maintain better separation of concerns between

different types of data. This is advantageous if, for example, one blockchain needs to be

replaced by a new implementation, it may only be necessary to change one channel and

leave all other functioning channels alone, thereby saving developer resources.

Support for cross-channel querying: Channels are separate ledgers. Participants

in a Hyperledger network might participate on several channels, but not on others. A

smart contract on one channel cannot directly change the state or activate a smart contract

on another channel, but it can query another channel, and use state from that channel in

part of the process of its own smart contracts. This allows for blockchains to interleave in

many unique ways. For example, if an Ent on one channel were to reference a SWID tag

on another channel, it could retrieve the relevant data using the Hyperledger Fabric API

and ensure atomicity between the query and the full execution of the smart contract. This

could also be useful to track monetary exchanges. For example, if one ledger records

51

payment information, other ledgers could ensure that funds have transferred successfully

before allowing their transactions to succeed.

Messaging to external parties: Hyperledger Fabric allows clients to create event

listeners that will notify them of specific events. The most obvious use case for these

messages is for a client to listen for a transaction that it has submitted so it can be notified

when or if the transaction succeeds. This permits the client to wait for a response rather

than query a peer at intervals to see if a transaction has been committed. However, over

the course of these investigations, it became clear that these event listeners could be used

for more powerful purposes, such as writing data across-channels. Hyperledger Fabric

permits read-only queries across channels, but it does not permit a smart contract from

one channel to write data to another channel. Event listeners can integrate with simple

middleware implementations to provide an efficient means to perform write operations

across channels. A client can listen for an event from a smart contract on one ledger, and

when the event is triggered, it can use data from that event to execute a different smart

contract on a different ledger. Using this method, Hyperledger Fabric can effectively

automate interactions between multiple blockchains.

Constant-time record lookups: Hyperledger Fabric permits the use of either

LevelDB or CouchDB for its database implementation. The SWID and Ent blockchain

used CouchDB which is based on a B tree data structure. The Hyperledger Fabric API

also permits an arbitrary number of indexes. Each of these indexes contains an array of

strings which is used to hierarchically drill down to the appropriate value. Since

CouchDB uses a B tree structure, keys that are made from an equal length will be found

in O(1) time. This is useful for data retrieval, especially as ledgers scale to greater sizes.

52

6.2.2 Hyperledger Weaknesses

Ordering Service is a single point of failure: Blockchain implementations are

often touted as data stores that have no single point of failure. Hyperledger Fabric can be

designed to decentralize endorsements for its smart contracts, but its ordering service,

which determines the sequence that transactions are added to the blockchain and

disseminates approved transactions to any subscribed peers, still presents a single point of

failure. The ordering service can be made more robust by shifting from a single node

ordering service to a cluster of 3-7 nodes functioning in an Apache Kafka messaging

fabric. (For additional information, see https://kafka.apache.org.) While this cluster can

ensure redundancy so that node failures can’t bring down the network, the orderer would

still be controlled by a single organization. A breach or malicious act by that organization

could compromise the blockchain.

Endorsement policies can’t be updated once started: Hyperledger fabric stores

the keys of all endorsing nodes and the orderer in the first block of the ledger, known as

the genesis block. Once the chain is in operation, no new endorsers can be added. This

means that all endorsing participants on the blockchain must be identified prior to

operation of the ledger, and, if the set of endorsers needs to be modified, a new ledger

must be created and integrated into any existing dependent infrastructures.

SAM system as designed only uses one endorser: Hyperledger fabric is well

designed to serve many endorsers, however the implementation for the SWID tag and Ent

registries only requires one endorser. This introduces another single point of failure. This

is not a weakness of the Hyperledger Fabric implementation, but an example of a

drawback for the use of Hyperledger Fabric for an Ent and SWID registry.

53

Documentation Gaps: Throughout the research process, a frequent and severe

lack of documentation prevented the set up and management of a Hyperledger Fabric

network. The Hyperledger project maintains a site with instructional documentation that

describes how to perform certain functions, such as setting up a network, running

chaincode, and developing applications that integrate with the blockchain network. A

number of sample configurations are provided to demonstrate each of these functions.

This effort is useful, but major gaps remain. For example, in a number of the network

configurations, certain functionality was said to be “built in” to certain docker containers.

This facilitated the process of setting up the example applications, but left gaps for setting

up a new network with the configurations that made sense for other applications. In

another example, the documentation deferred configurations to an application developer

that knows how to build Hyperledger Fabric applications. This suggests that for certain

operations, it is expected that many configurations are not feasible without costly

consultation from experts. Given the lack of documentation to build this expertise, these

consultants would likely need to be drawn from the Hyperledger Fabric development

communities. Additionally, no explanation is provided for how the entities within

Hyperledger Fabric networks function together to provide useful services for software

applications. Since Hyperledger Fabric is very new, there are no books available to fill

any information gaps and scant information is available through other online sources.

Insecure defaults: In many online support forums, users are encouraged to use

the examples provided by the Hyperledger project, and adapt them to meet different

needs. Since insufficient documentation was available to set up a network with a

configuration desired for the SWID and Ent blockchains, the SWID and Ent blockchains

54

use this approach. However, based on several insecure default configurations,

applications made in this way should not be used in an application without review by an

expert specializing in Hyperledger Fabric networks. One example of an insecure

configuration in the sample implementation is that all keys, public and private, are shared

by all peers on the network. This means that any peer could impersonate any other peers,

and is a highly insecure default configuration that was never mentioned in the

documentation. This configuration makes every peer a single point of failure for the

system, negating any security advantages for the use of a blockchain solution.

55

Chapter 7: System Walkthrough

The primary interaction between the SWID and Ent blockchain is expected to be

machine-to-machine communication. However, a web-based graphical user interface to

manually submit and query tags on the blockchain can provide a more intuitive

demonstration of the capability. Outwardly, the system resembles a simple database

system that accepts and stores well formed values, and allows those values to be retrieved

based on desired search parameters. This section walks through this simple process

showing each of the capabilities, and explaining the more complex process taking place

underneath.

The screenshots shown below were from an Internet application accessible from a

public IP address. The introductory page renders explanatory text, and several buttons

allow users to access dedicated pages to perform four basic operations: submit a SWID

tag, query for SWID tags, submit an Ent, and query for Ents.

56

Figure 10. Graphical User Interface Home Page

On the page for SWID tag submission, a user can enter text into a text box. When

the user clicks ‘Submit,’ the client sends a POST request to the SWID/Ent gateway

service with the user-entered content.

Figure 11. Graphical User Interface SWID Submission

57

To the user, a successful invocation appears as a successful load into a database,

but the submission process is more complex.

Figure 12. SWID Tag Submission Sequence Diagram

The request content is then passed through a NodeJS API shim, which routes the

submission to the Hyperledger peer, and designates which smart contract, and which

function on the smart contract the data should be passed to. The smart contract executes

on a Docker container separate from the peer. If the function on the smart contract finds

that the tag is well formed, the peer will endorse the transaction. Since this proof of

concept has only one endorser, only one endorsement is needed and the shim can then

pass the transaction with the endorsement signature to the orderer. The orderer can

validate that the transaction has the proper endorsements and sign the transaction itself.

At this point, the transaction becomes a block. The block is then transmitted to any peers

on the network, which will then re-validate that the block has received all necessary

endorsements (in this case, it need only validate its own earlier endorsement), and the

signature of the order. Once validated, the peer will add the block to its ledger. The shim

then returns a message to the SWID/Ent Gateway Interface, signaling the successful

58

submission of the transaction. This success message is passed back to the client along

with the ID of the new block which is displayed to the user, as shown below.

Figure 13. Successful Tag Submission

In the case the submission is unsuccessful, the transaction will never be endorsed

by the peer, passed to the orderer, or committed to the ledger. Instead, when the smart

contract executes and finds that the transaction is malformed it will pass an error message

back to the shim, which will report the error directly to the Gateway Interface. The

Gateway Interface then returns the error message to the client, which then alerts the user

of the submission error.

For example, if the user submits a new tag as shown above, but leaves out the

final closing guillemet, the smart contract will identify the XML syntax error and return

details of the error to help identify the reason for the error. The client can then alert the

user with an informative error message as shown below.

Figure 14. Informative Error

59

The process to query the blockchain for SWID tags begins similar to the process

for SWID tag submissions. The user selects an index to search from the dropdown menu,

or requests to retrieve all tags. The user can then enter a key in that index into the textbox

and click submit. The index and the search term are both passed to the ExpressJS server

in a POST request. Here, instead of calling on the shim to submit the transaction, it will

call on the shim to query the transaction. The shim still submits this transaction to the

peer to execute the smart contract and, if the transaction is valid, endorse the transaction,

but the shim will not submit an endorsed transaction to the orderer. This prevents

transactions for queries from being added to the ledger.

If the peer executing the smart contract finds that the query is malformed and an

error is returned, the user will be alerted. Otherwise, if the tags are found, the records will

be returned and ultimately shown to the user as shown below.

Figure 15. SWID Tag Query Page

Ents use a different smart contract tailored to Ent submissions and queries, but the

general process is almost identical to SWID tag submissions and queries, so they will not

be covered in detail here. One notable difference, however, is that past transactions in

60

some cases determine the validity of current transactions. For example, if one tag is

entered specifying that an organization has rights to 10 copies of software, that

organization can’t transfer entitlements to 15 copies of the software to another

organization. This is shown another way in the eight frames shown below.

1) An initial Ent is submitted, signifying the rights to 10 copies of software.

Figure 16. Initial Ent Tag

2) The Ent is well formed and the transaction is successful. (Note that the

examples used for Ent are not compliant with the standard as discussed in section 6.4.)

Figure 17. Ent Submission Success 1

3) Another Ent is submitted, this time allocating -5 entitlements, reducing the

amount of entitlements available, leaving a total of five.

Figure 18. Ent Decrementing Entitlements 1

4) The operation succeeds.

61

Figure 19. Ent Submission Success 2

5) This process can be repeated, allocating another -5 entitlements since there are

enough remaining.

Figure 20. Ent Decrementing Entitlements 2

6) The operation succeeds.

Figure 21. Ent Submission Success 3

7) The user can still submit a request to allocate another -5 assets related to the

Initial Ent, even though the balance has reached zero, but since the balance is insufficient,

it will fail.

Figure 22. Ent Decrementing Entitlements Below Zero

8) The operation fails.

62

Figure 23. Ent Submission Informative Error

Querying for Ents is structured identically to querying for SWID tags, except

different indexes are used. The query below shows that the successful transactions were

stored to the ledger and does not show the unsuccessful transaction was not.

Figure 24. Ent Query Page

63

Chapter 8: Future Capabilities

The vision of a SWID and Ent blockchain registry is not a single, demonstrable

capability. Rather, it is a platform, on top of which a broad range of new tools and new

capabilities can emerge. In addition to providing information for IT consumers, it can be

used by different vendors to produce a large array of tools and services, and extensible

channels can support a broad range of new business models. These sections describe, at a

notional level, several select capabilities that could be built on top of the platform.

8.1 Peer-to-Peer Information Sharing

Peer-to-Peer information sharing can could occur easily through properly

formatted SWID tags. Organizations can share information directly through the chain

itself by issuing tags. In many cases, organizations will not trust the content, quality, or

accuracy on many or most of the tags on the chain. However, if an organization were to

recognize the public key of a known organization, they could, through a tool of their

choice, choose to trust the information on the chain signed by the organization’s key.

Then, for example, if a trusted vendor issues licenses to a third party with rights to sell

those licenses, and those licenses pass through multiple organizations, a potential new

customer can purchase the licenses, knowing that they are valid because the authenticity

of that license can be traced back to the initial transaction where the trusted vendor

signed the original transfer of licenses.

64

8.2 Certificate Authority for Trusted Software

Certificate Authorities could serve to centralize the effort required to distinguish

which peers are trustworthy on a blockchain. Using the SWID and Ent registry smart

contracts, we have already verified that tags are properly formatted as specified in ISO

Standards 19770-2 and 19770-3. There are many other aspects of software tags that users

may need to trust, such as quality, completeness, consistency, reputation etc. No single

trust authority can be expected to determine what is needed for all users. For instance,

technologies that are broadly trusted in China and that are certified by a body like the

government may not be trusted by political dissidents. Likewise, software for use in the

construction of a control system in a military unmanned aerial vehicle may have a more

restrictive set of trusted tag providers than a store clerk trying to figure out which mobile

phone applications won’t inconvenience her with adware.

In many cases, individually selecting the peers whose tagging practices and whose

whose software can be trusted is not feasible. Certificate Authorities already exist that

will vouch for the credibility of different organizations. One approach to make trust

determinations more scalable would be to integrate tools that use the SWID and Ent

blockchain with the existing system of certificate authorities. This could allow the same

process, and perhaps even the same keys and infrastructures, to be used to facilitate the

selection of trusted peers on the SWID and Ent blockchains.

65

8.3 Reputation Scoring

Reputation Scoring is a method to determine a level of trust for some entity based

on a number of indicators. In the cybersecurity space, it has received substantial attention

as a way to select an acceptable level of risk by determining how to apply automated

policies to entities, such as websites or executable files, when they don’t fall clearly into

“known good” or “known bad” categories. Reputation scores can be generated by taking

one or more indicators and running them through an algorithm in order to determine

some index for trustworthiness of an entity. Based on this index, organizations can

educate their business decisions, such as determining which websites their employees

will be allowed to access, or which software can be allowed on their networks.

The algorithms that underlie a reputation scoring scheme can be very simple or

highly complex. An example on the simple (and sub-optimal) side could be how many

users have registered their own tags for a product. On the complex side, multiple data

sources could be combined with machine learning techniques to predict the probability of

a security breach. In practice, there is rarely enough structured data to effectively use

these more advanced techniques. More and better data can lead to more predictive

reputation scores. The SWID registry could help provide a publicly accessible store of

data with established software attributes, such as common identifiers for software,

patches, configurations that could help correlate information for more advanced

calculations.

66

8.4 Software Whitelisting on Endpoints

1. Many users in enterprise systems are granted limited permissions to their

machines. One implementation of these policies is an application whitelist, which

prevents users from executing programs that have not been explicitly approved

(listed on the whitelist). Often these are difficult to update with new patches and

updates, and unforeseen dependencies can also make downloading of necessary

programs prohibitively difficult. Many organizations will make due with a

commercially-provided blacklist, which contains signatures of known malicious

software. The most common of these are often referred to as “anti-virus”

products. These often use massive databases, and in many cases can be easily

circumvented through the use of polymorphic malware. Whitelisting is generally

considered a more secure (albeit, more restrictive) approach. A registry of SWID

tags and Ents could provide a key platform for whitelisting software that could

provide many more customization capabilities, easier configuration, and more

automated software whitelisting practices, thereby reducing the disadvantages,

and retaining the robust advantages of whitelisting approaches.

Current whitelist technologies generally accept a list of applications that are

permitted to run in a certain environment. This basic use case could easily be permitted

by a tool that references SWID tags and/or Ents on the blockchain to determine if it is

acceptable from both a security and commercial standpoint for certain programs to

remain in the environment. While tags may contain more data than is necessary for this

67

simple use case, it is highly feasible. By using ISO standardized tags, greater

interoperability could enable more portability between environments and between tools.

In some cases it may be difficult or undesirable to tag each software component.

In these cases we can take advantage of the ability of ISO 19770 family of standards to

“bundle” software together. For example, many organizations like to start from a secure

baseline operating system image. From that image, they add additional applications as

needed. The entirety of an operating system can be included on one tag, which could

eliminate the need to tag thousands of operating system components. Then additional tags

can be used to describe any programs that are not contained in the base image, still

achieving the benefits of a fully tagged infrastructure.

Information sharing could make tags available for both software components and

software bundles using the three trust relationships described earlier, and could be used to

make the cost of maintaining a full whitelist of software components more feasible.

These include peer-to-peer trust relationships, trust authorities, or reputation scoring to

automate the process of distinguishing between trusted and untrusted software. Any

permutation of these approaches could be used in the same whitelisting scheme and can

address both software identification, and software licensing issues.

8.5 Software Discovery

Numerous auto-discovery tools are used to scan networks for IT assets and

software, but, as research firms like Gartner acknowledge, only “a limited number…

should be used for IT asset management purposes” (Adams, July 2014). This caution

stems from the low reliability of the information gleaned from these tools. In other cases,

68

cybersecurity tools from major vendors can be repurposed to gain limited insight. For

example, many security orchestrators can support extensions that can yield slightly more

information about each host the software is installed on.

Given these limitations, tools will often use heuristic approaches to determine

probabilities that discovered software is a certain application. This approach leaves a

major gray area of uncertainty over which applications are running on the network and

where they are located. This is much less secure than a system that can definitively

identify software packages down to the service pack, the update, even determine the

order in which the updates were installed.

 According to the ISO 19770-2 standard, software producers, organizations using

the software, or third party tag producers can all issue tags. By sharing information over a

central repository between trusted tag users, the process of determining the identity of

many, or all applications on a network may be possible in a highly automated way. The

use of peer-to-peer or trust authority models to acquire trusted tags could allow tags

generated at the Enterprise, Industry Sector, Technology, or SecAAS Level to be shared

across industry. This creates a situation where a tag can be issued once, and be shared

across all tag users, rather than relying on each organization to create and/or manage its

own sets of tags.

The ISO Standard 19970-2 defines an “evidence” field to describe unknown

programs based on observed characteristics, including the hash of the executable file.

This field is intended for use in tags where the identity of the software is unknown. The

challenge then becomes a question of correlating existing tags for known software with

tags for unknown software. This correlation effort could also leverage the same

69

information sharing model that leverages whole industries to build out a common

repository of information benefit of all. This information could be included on the SWID

registry through the issuance of Supplemental Tags.

This approach would likely be highly effective for programs that operate on

abstracted platforms. For instance, a hash of a docker container will be identical, since it

is running on the docker platform, or a hash of a Java executable of a given version will

always be the same because it runs on the standard Java virtual machine. This will also

work well for interpreted programs. As long as a script for an interpreted program

remains unaltered, it will always have the same hash regardless of the system it runs on.

This covers a large number of applications. In each of these cases, a single “evidence”

field value could be mapped to a single unique software ID in the SWID registry, thereby

also connecting it to any other data resources and tools that can be linked to tags in the

registry.

This mapping becomes more difficult in the context of compiled programs that do

not have a standard abstraction layer, such as running on a common runtime environment,

but there are many possible approaches to deal with these cases. First, while installed

applications vary based on factors such as the CPU instruction set of the machine it is

loaded onto, the compiler used to compile it, and so on, the content of the installation

program is still consistent. According to ISO Standard 19970-2, installation programs get

their own type of SWID tag called a Corpus Tag. The hash of installation media can be

used for a one-to-one mapping between programs that may be compiled in various ways,

and the unique software ID for that program. To ensure this identification isn’t lost, as a

program is installed, some tools may be able to map the hash of the unique binary to the

70

appropriate software ID for later reference to ensure that all programs have appropriate

tags.

This does not work, however, when the program has already been installed on a

machine and the installation programs are not available, or are not traceable to the

installed programs. One way to handle this case is to allow many-to-one mappings

between the “evidence” field for unknown tagged software, and software identifiers. The

number of relationships to store all permutations for an installed program across all

hardware, compilers, compiler settings, tag installations, orders of tag installations, etc.

would be prohibitively large. However, if a very large number of the instances of binary

files are created in a similar way, for example if the most common programs run on only

a few hundred models of CPU, using a small set of different compilers and compiler

settings (perhaps defined by the common installation program), and altered by a common

ordering of applied patches, then a few hundred or a few thousand values for “evidence”

fields may be able to positively correlate them for the vast majority cases where these

mappings may be needed. Due to the scaling challenges for this type of application, it

would be better to store these data in a mutable data structure. A large number of

mappings may be needed, and determining which mappings are most commonly needed

likely means that an eviction algorithm, such as Least Frequently Used with Dynamic

Aging (LFUDA), would be needed to identify and retain commonly requested variants

and evict hashes for binary files that are rarely used.

71

8.6 Decomposition of Application Dependencies for Digital Rights Assurance

Tracking software dependencies can be very difficult in the software development

process. Software products often make use of a large number of existing software

components and libraries to reduce the amount of work necessary to develop new

services. Often these existing components have terms of use and other licensing

restrictions, especially for incorporation in other commercial software. It can be easy to

lose track of these components in large software projects. The ability to scan the project

and identify all of its components means that any tagged entitlement information on those

products can also be recovered and accounted for throughout the process to ensure that

the product does not infringe on any licensing requirements.

72

Chapter 9: Conclusion

Creating an application for a SWID and Ent registry on a blockchain

implementation is feasible and practical. Blockchain, however is often used to refer to

multiple ideas. First is the blockchain itself that ensures the integrity of data by

cryptographically linking each block to the previous block. The second is distribution of

the data among multiple participants to ensure redundancy and transparency. The last is

the use of consensus algorithms to resolve conflicts when mutually distrustful parties

disagree. The SWID and Ent registries do not require a blockchain for implementation,

but the cryptographic blockchain, and distributed structures have clear benefits. Since the

blockchain can be transparent, a single party can determine the order in which blocks are

added, and remove the need for a consensus algorithm.

Hyperledger Fabric seems like a good fit for this kind of system. It uses a

blockchain, allows data to be distributed across many peers, and centralizes the function

to determine the order for blocks to be added to the blockchain. Unfortunately,

Hyperledger Fabric does not seem mature enough to support the registries at this time,

and has architectural incompatibilities with this model. Creating a working application

for production use would require refactoring, likely replacing the Hyperledger Fabric

platform with a solution with more stability and better documentation.

Nonetheless, the results of this proof of concept found that creating blockchain-

based registries for SWID tags and Ents is feasible, even though the use of Hyperledger

Fabric is problematic for that use case. All of the issues encountered were due to the

73

Hyperledger Fabric implementation of blockchain, but none of those issues applied to

blockchain technologies in general. Therefore, while implementing SWID tag and Ent

registries was problematic in this case, the concept of using blockchain to create these

registries is still promising.

A simple blockchain, lacking support for distribution or a consensus algorithm

can be implemented in all major database platforms. A smaller, but still sizable number of

database applications support data synchronization enabling the creation of a distributed

platform. The system will still require some kind of service to determine the order records

should take. However, if all records in the registry are transparent and users can validate

every record with the digital signatures of the data contributors, centralizing the function

for sequencing record entries is probably acceptable. If the organization ordering the data

is malicious, it could not corrupt data already on the blockchain. It could only prevent

new valid records from being added. Therefore, a more mature distributed database with

a simple ordering system could be a good option for a better implementation that would

require much less work and complexity than the design used here.

The research conducted was not able to investigate the potential of a blockchain

registry of SWID tags and Ents to help achieve a high enough level of adoption to make

software asset tagging cost effective for software consumers. However, the background

research still indicates that there is a lot of potential for this approach. Done well,

software asset tags could provide great value to a large number of consumers, and

registries could provide an essential foundation to support a diversity new cyber

capabilities.

74

References

Abdrashitov, Oleg. 2017 November 26-28. Group Training.

Blockchain.info. (2018 January 14). Blockchain: Market Capitalization. Retrieved from
https://blockchain.info/charts/market-cap

Cheikes, B. A. Feldman, L. Waltermire, D. Witte, Greg. (2016). Guidelines for the
Creation of Interoperable Software Identification (SWID) Tags (NIST Interagency
Report 8060). Retrieved from
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8060.pdf

Company Overview of ManageSoft Corporation. Bloomberg. Retrieved from
https://www.bloomberg.com/research/stocks/private/snapshot.asp?
privcapId=199107

DoD Information Technology Standards Registry. (2017). DISR Standards and Guidance
as of January 2017. Retrieved from http://www.dsp.dla.mil/Specs-Standards/List-
of-DISR-documents

Executive Order 13691, 3 C.F.R. (2015).

Gartner. Inc. (2016). Gartner Says Organizations Can Cut Software Costs by 30 Percent
Using Three Best Practices. Stamford, CT. Retrieved from
https://www.gartner.com/newsroom/id/3382317

Gartner. Inc. (2007). What You Need to Know About Inventory Tools for IT Asset
Management. Stamford, CT: Adams, P.

House of Representatives. (2016). H. Rep. No 114-840 § 1653 — National Defense
Authorization Act for Fiscal Year 2017. Washington, DC: U.S. Government
Publishing Office. Retrieved from https://www.congress.gov/bill/114th-
congress/house-bill/4909

Hyperledger documentation available at http://hyperledger-fabric.readthedocs.io

International Organization for Standardization. (2012). Information Technology—
Software asset management—Part 1: Processes and tiered assessment of
conformance (ISO/IEC JTC 1/SC 7 Standard No. 19770-1). Retrieved from
https://www.iso.org/standard/52293.html

International Organization for Standardization. (2015). Information technology—
Software asset management—Part 2: Software identification tag (ISO/IEC JTC
1/SC 7 Standard No. 19770-2). Retrieved from
https://www.iso.org/standard/65666.html

75

https://www.iso.org/standard/65666.html
https://www.iso.org/standard/52293.html
http://hyperledger-fabric.readthedocs.io/
https://www.congress.gov/bill/114th-congress/house-bill/4909
https://www.congress.gov/bill/114th-congress/house-bill/4909
http://www.dsp.dla.mil/Specs-Standards/List-of-DISR-documents
http://www.dsp.dla.mil/Specs-Standards/List-of-DISR-documents
https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=199107
https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=199107
https://blockchain.info/charts/market-cap

International Organization for Standardization. (2016). Information Technology—IT asset
management—Part 3: Entitlement schema (ISO/IEC JTC 1/SC 7 Standard No.
19770-3). Retrieved from https://www.iso.org/standard/52293.html

Swan, M (2015). Blockchain: Blueprint for a New Economy. Sebastopol, CA: O’Reilly
Media Inc.

Tagvault.org. (2018, January 9). Tools Overview: SWID Tag (19770-2 Support).
Retrieved from https://tagvault.org/certification/swid-tools-overview

76

https://www.iso.org/standard/52293.html

Glossary

Behavior-Based Tool In the context of information technology, a utility that is

programmed with a baseline understanding of normal behaviors for an

environment. The tool will identify any activity that diverges from normal.

Blockchain Multiple definitions are in use. In some contexts, it is a simple design pattern

where blocks of data are stored with a defined sequence, and each block contains

a cryptographic hash of all of the contents of the previous block, ensuring that any

modification of the data is detected. In other contexts, it is used to describe

several technologies working together, including the blockchain design described

above, distribution of data across many stakeholders, and a consensus algorithm.

Certificate Authority An entity that certifies cryptographic public keys.

Consensus Algorithm That is used to ensure that no participant can compromise the

system, and ensure data remains consistent across all users.

Defense-in-Depth An approach to security that involves an overlay of many defensive

measures that provide overlapping functions.

Distributed Ledger A list of records that is shared between many parties.

Pseudo-Anonymity a trait where actions or things can associated to an identifier, but

identity of the entity linked to that identifier can’t be known.

Software Asset Management The practices that involve the management of software

assets including acquisition, deployment, use, and removal.

77

Software Entitlement (Ent) A data schema defined by ISO Standard 19770-3 that links

instances of software on a system with the entitlements to use that software.

Software Identification (SWID) A data format and set of standard operations defined by

ISO Standard 19970-2 that links data on software to instances of data deployed on

systems.

Vendor Lock-In A state where a buyer becomes dependent on a particular vendor for

their products or services.

78

	Abstract
	Chapter 1: Introduction
	Chapter 2: Background
	2.1 SWID Tags
	2.2 Entitlement Schema
	2.3 Blockchain
	2.4 SWID, Ent, and Blockchain Integration

	Chapter 3: Software Registry Concept
	3.1 Trust Relationships
	3.2 Financial Feasibility:

	Chapter 4: Competing Capabilities
	Chapter 5: SWID and Ent Registry Design
	5.1 Key Architectural Components
	5.1.1 Cloud Server (IaaS)
	5.1.2 Docker Platform
	5.1.3 Blockchain Solution
	5.1.4 SWID/Ent Channel Smart Contract Functions
	5.1.5 SWID/Ent Gateway Interface
	5.1.6 Web Front End

	5.2 Selection of Hyperledger Fabric:
	5.3 Hyperledger Fabric Architecture
	5.3.1 Key Concepts
	5.3.2 Types of Nodes
	5.3.3 Transaction Time Sequence Diagram

	5.4 Roles and Use Cases
	5.4.1 Supported Roles and Use Cases
	5.4.2 Unsupported 19770-3 Use Cases

	Chapter 6: SWID and Ent Registry Development
	6.1 Implementation Process
	6.1.1 Environment Setup
	6.1.2 Hyperledger Fabric Network
	6.1.1 Smart Contract for the SWID Blockchain
	6.1.2 Smart Contract for the Ent Blockchain
	6.1.3 Gateway Interface
	6.1.4 Graphical Web-Based Interface
	6.1.5 Deployment to Cloud

	6.2 Review of Hyperledger Fabric Implementation
	6.2.1 Hyperledger Strengths
	6.2.2 Hyperledger Weaknesses

	Chapter 7: System Walkthrough
	Chapter 8: Future Capabilities
	8.1 Peer-to-Peer Information Sharing
	8.2 Certificate Authority for Trusted Software
	8.3 Reputation Scoring
	8.4 Software Whitelisting on Endpoints
	8.5 Software Discovery
	8.6 Decomposition of Application Dependencies for Digital Rights Assurance

	Chapter 9: Conclusion
	References
	Glossary

