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Abstract 

This thesis examines Request Confirmation Networks (ReCoNs), hierarchical 

spreading activation networks with controlled top-down/bottom-up recurrency that are 

inspired by constraints of cortical activity during execution of neuro-symbolic 

sensorimotor scripts. ReCoNs are evaluated in the context of the Function Approximator, 

a showcase implementation that calculates a function value from a handwritten image of 

the function. Background is provided on biological and artificial neural networks, with 

emphasis on biomimetic approaches to machine learning. 
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Chapter 1.  

Introduction 

"...we'll show that you can build a mind from many little parts, each mindless by itself." 

- Marvin Minsky, The Society of Mind 

 

This thesis presents Request Confirmation Networks (ReCoNs), a biologically-

inspired neural network architecture proposed to simulate neuro-symbolic script 

representation and execution in the cerebral cortex. 

1.1. Motivation 

Machine learning, the field of computer science concerned with giving machines 

the ability to autonomously draw increasingly accurate predictions from prior experience, 

is currently experiencing a renaissance on a scale that has prompted forecasts of nearly 

boundless future growth (Knight, 2016). Significant advances are rapidly being made 

across machine learning specialties, from strategic game play (Silver et al., 2017) to 

medical diagnostics (Rajpurkar et al., 2017; Weng, Reps, Kai, Garibaldi & Qureshi, 

2017). However, these developments have yet to lead to what some consider to be "the 

holy grail" of computer science (CNBC, 2016): artificial general intelligence (AGI). 

The concept of AGI, the capacity of a machine to perform all intellectual tasks at 

or beyond a human level, is predicated on the assumption that computation can replicate 
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or emulate biological intelligence. This premise is supported by proponents of the view 

that "[b]rains are, at a fundamental level, biological computing machines" (Cox & Dean, 

2014, p. R921), and borne out in practice by disciplines such as computational 

neuroscience, which treat the brain as an information processing structure with dynamics 

that can be reliably predicted by mathematics and fully described in computable 

algorithms. 

Although it remains unclear whether closely imitating neuroanatomy and/or 

neural function is a necessary prerequisite for intelligence, or if there may be alternative 

physiological configurations that result in intelligent behavior, computer science has 

converged on artificial neural networks (ANNs), systems that bear structural and 

functional resemblance to biological neural networks and neural activity, as a valuable 

component in machine learning and a compelling contender for the foundation of an AGI 

architecture (Fernando et al., 2017).  

 

Fig. 1.1. Comparison of a biological and artificial neuron 

Left: A diagram of a biological neuron (Carlson, 1992). Right: A diagram of an artificial 
neuron (Burgmer, 2005). 

Research correlating biological neural network structure to its emergent function 

appears to support the premise that simulating biological structure may lead to simulated 
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biological function (Hermundstad, Brown, Bassett & Carlson, 2011; Reimann et al., 

2017). Basic neuronal activity has already been artificially replicated with increasing 

specificity at the level of individual neurons (Simon et al., 2015), and there are ongoing 

attempts to reverse engineer algorithms from cortical tissue (Cepelewicz, 2016). 

However, despite a growing body of data, much about the brain and its inner workings 

remains unclear (Gorman, 2014; Lam, 2016).  

The persistent opacity surrounding the details of neural activity itself lends 

incentive to the search for AGI. While AGI may be a desirable goal on its own merits, it 

is also likely that the quest to imbue machines with intelligence will result in a better 

understanding of the human mind and the mechanisms of cognition. Simulating cognitive 

functions may reveal details about the internal architectures from which they emerge; this 

assumption has already led to ANNs becoming a generally accepted model for studying 

neural information processing.  

In the pursuit of AGI via computational neural emulation, rather than attempting 

to faithfully recreate from the ground up biological structures whose subroutines, 

dependencies, and other possible complicating factors are still largely obscure to us, it 

might be possible to artificially recreate brain function at a higher level of abstraction. To 

this end, ReCoNs offer a cortically inspired solution to computationally implementing 

neuro-symbolic sensorimotor scripts.  

The current generation of perceptual machine learning systems approximates 

hierarchical feature detection in sensory areas. As in biological systems, this is a likely 

building block in a greater cognitive architecture that can dynamically reconfigure the 

hierarchies, facilitate motivational learning, and drive symbolic abstraction, sensory-



 

4 

motor integration, and specific higher-level functionality such as self-reflection, 

language, and social cognition. However, current machine learning systems are generally 

feedforward networks that learn to approximate continuous functions after being trained 

with the chain rule in a narrowly defined arena, which results in systems that may 

demonstrate proficiency in a specific task, sometimes even exceeding human 

performance, but cannot translate knowledge across domains, and do not demonstrate the 

universal, adaptive, online learning found in biology. 

This has been a primary point of contention against so-called "connectionist" 

networks in the historic debate between "connectionist" and "symbolic" AI (Sun, 1999). 

The former consists of the large networks of simple units connected by tunable links that 

have become synonymous with modern machine learning, whereas the latter refers to 

networks that focus on developing symbolic representations and associations that can 

serve as the basis for general knowledge acquisition. Although the symbolic paradigm 

has largely been eclipsed by the enormous success of connectionist systems, it offers 

some advantages that may prove integral to the construction of artificial learning systems 

that more closely emulate the flexibility of biological learning, such as the capacity to 

represent recurrencies, composition operators, and grammars.  

The symbolic approach attempts to mimic the logical foundation that enables 

biological systems to autonomously configure basic neuro-symbolic representations of 

acquired knowledge into complex hierarchies capable of representing any combination of 

information. In the brain, these hierarchies can be activated bottom-up, based on 

perceptual input from sensory modalities, or top-down, based on knowledge or directed 

attention (Buschman & Miller, 2007; Gilbert & Sigman, 2007). The cooperative 
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interaction and feedback between bottom-up and top-down processing has been shown to 

occur at nearly every level of cortical sensory processing, making feedforward 

mechanisms alone unlikely to account for either the brain's flexible and invariant pattern 

recognition in changing environments or its corresponding behavioral responses (Gilbert 

& Sigman, 2007). 

ReCoNs unite connectionist and symbolic approaches in a top-down/bottom-up 

hierarchical spreading activation network that can be used to extend a neural learning 

system beyond feature detection to self-driven experimentation and modification of its 

acquired representations without the need for a central control architecture. By providing 

a constrained recurrency framework in which an ANN can symbolically represent, test, 

and internally reconfigure its own learned hypotheses, ReCoNs may be able to serve as 

building blocks in a general learning network with the ability to not just learn and 

respond to sensory input based on predetermined rules, but to locally formulate and 

execute plans based on assimilated knowledge.   

ReCoNs are therefore proposed both specifically as a computational interpretation 

of sensorimotor script execution and, more generally, as a possible foundational 

component in bridging the current neural network-based machine learning systems into a 

more general learning architecture resembling that of the cerebral cortex.  

1.2. Outline 

Chapter 2 offers a brief history of the origins of machine learning, examines the 

biological foundations of ANNs, discusses representative types of ANNs and their 
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applications, and surveys machine learning approaches designed to emulate cortical 

activity. 

Chapter 3 establishes the neurological basis for ReCoNs, specifies ReCoN 

subcomponents and their functions, and outlines the flow of activation through the 

network from initial request to final confirmation or failure. The chapter concludes with a 

study of the pilot ReCoN implementation described in Bach and Herger (2015). 

Chapter 4 provides a system overview and implementation details of the Function 

Approximator, a showcase application of ReCoNs.  Using a combination of a pre-trained 

multilayer perceptron (MLP) and a ReCoN, the system takes handwritten algebraic 

functions as input, identifies their component symbols, and outputs the value of the 

function.  This chapter introduces MESH, a graphical user interface (GUI) for neural 

networks, which adds a visualization component to the Function Approximator. 

Chapter 5 presents and analyzes the results of implementing the Function 

Approximator, and evaluates ReCoNs in the context of other biomimetic machine 

learning approaches as a potential model for sensorimotor script execution in the cerebral 

cortex. 

Chapter 6 summarizes the findings of this thesis and suggests possible future 

directions for ReCoN development. 



 

 

Chapter 2. 

Background 

This chapter includes a brief history of the origins of machine learning and ANNs, 

a basic explanation of biological neural networks, an overview of various types of ANNs 

and their applications, and a current survey of biomimetic neural network approaches to 

machine learning.  

2.1. The origins of machine learning 

The origin of the field of machine learning might be traced back to the Dartmouth 

Summer Research Project on Artificial Intelligence, a workshop held during the summer 

of 1956 and organized by John McCarthy, Marvin Minsky, Nathaniel Rochester, and 

Claude Shannon.  Starting from the premise that all elements of intelligence can be 

precisely defined, and therefore are capable of being simulated by a machine, the 

organizers proposed to "find how to make machines use language, form abstractions and 

concepts, solve kinds of problems now reserved for humans, and improve themselves" 

(McCarthy, Minsky, Rochester & Shannon, 1955, p. 2).   

Soon thereafter, in 1957, Frank Rosenblatt developed the perceptron, a linear 

classification algorithm he devised as a model of information storage and organization in 

the brain (Rosenblatt, 1958). Building upon the simplified logical specifications for a 

biological neuron introduced by Warren McCulloch and Walter Pitts in 1943 (McCulloch 
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& Pitts, 1943), the perceptron was first implemented on an IBM mainframe and could 

distinguish between left and right after training cards printed with squares (Yovits, 1993, 

p. 341). It was later adapted for image recognition as the Mark 1 Perceptron, a custom-

built machine that demonstrated the ability to categorize patterns based on geometric 

similarity (Hay, Lynch & Smith, 1960). 

Shortly following the debut of Rosenblatt's perceptron, one of the earliest 

recorded usages of the term "machine learning" appeared in a manuscript written by a 

Dartmouth workshop attendee, Arthur Samuel. The paper, which describes Samuel's 

landmark work on the first computational learning system for the game of checkers, 

defines machine learning as the practice of "programming computers to learn from 

experience" without explicit instructions on how to do so, and draws a sharp distinction 

between systems designed to learn only specific tasks and "the neural-net approach".  

Although Samuel deemed the latter less efficient than the former, he claimed that it 

"should lead to the development of general-purpose learning machines" (Samuel, 1959, p. 

535). 

Not all machine learning systems employ neural networks, but those that do have 

garnered significant attention in recent years thanks to a rapid cycle of setting and 

exceeding benchmarks, notably including human performance, across a variety of arenas 

(Eckersley, Nasser et al., 2017). Some of the most successful algorithms involve deep 

learning, which harnesses multiple layers of artificial neurons. Although Samuel's 

prediction that neural networks would lead to AGI has yet to be conclusively proven, it 

remains a compelling theory nearly six decades later. 
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2.2. Biological neural networks 

The neuron is the basic processing unit of a biological brain. A neuron typically 

consists of a cell body, called the "soma", dendrites, and an axon (see Figure 1.1). 

In general, dendrites are short fibers that receive incoming signals from other 

neurons and relay them to the soma, while the axon, a single long fiber, transmits 

outgoing messages from the soma to other neurons or body tissues across communication 

interfaces called synapses. When the aggregate of the input, both excitatory and 

inhibitory, received by the neuron exceeds its activation threshold, the neuron “fires”, and 

an electrical impulse, also known as an action potential, is discharged to the axon as 

output and travels across a synapse to the receiving cell.  Synapses can be either 

excitatory, encouraging the signal to be passed on, or inhibitory, dampening the signal.  

According to de Garis, Shuo, Goertzel & Ruiting (2010, p. 3), "[t]he human brain 

has about 100 billion neurons, with each neuron connecting to roughly 10,000 others, 

with each synapse firing at maximum of about 10 bits per second; hence the total bit 

processing rate is of the order of 1016 bits per second." This electrochemical activity 

translates into brain function.  

The anatomy of the human brain is highly modular, with distinct anatomical 

regions specializing for particular behaviors. Distinguishing patterns of information flow 

within these regions have prompted suggestions that they evolved to provide algorithms 

that solve different computational problems; for instance, large numbers of recurrent 

connections may imply short-term memory storage, whereas regions like the thalamus, 

that have activation from a variety of other areas moving through them, appear to 



 

10 

perform information routing (Marblestone, Wayne & Kording, 2016). Signals sent and 

received by firing neurons in each of these areas result in corresponding function. 

To illustrate a specific example: the largest part of the human brain is the 

cerebrum, which is divided into two hemispheres. Each hemisphere is subdivided into 

four major "lobes", regions specialized for various functions: the frontal lobe is 

commonly associated with attention and planning, the parietal lobe with sensory 

integration and language, the occipital lobe with visual processing, and the temporal lobe 

with translating sensory input into meaningful information (Ackerman, 1992).  

 

Fig. 2.2. The lobes of the cerebrum 

The frontal, parietal, temporal and occipital lobes have all been shown to specialize for 
different brain functions. (Carter, n.d.) 

Neurons in the primary visual cortex (V1), located in the occipital lobe, will fire 

in response to visual stimuli in their receptive fields. A V1 neuron will be most 

responsive to particular set of input for which it is "tuned", such as orientation or color. 

Activation is transmitted from V1 through higher-layer visual processing areas, which 

respond to more complex properties, like geometric shapes and motion, and objects, like 
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faces.  By sequentially activating the hierarchical networks that together encode the 

features of a particular object, neural firing patterns result in the recognition of visual 

input.  

2.3. ANNs in machine learning 

ANNs consist of “artificial neurons”, functions that sum weighted inputs to 

produce activations in a fashion roughly analogous to biological neurons (see Figure 1.1). 

Machine learning systems pass input data through layers of these nodes connected by 

weighted links. Similar to the hierarchical feature processing in the visual cortex, each 

successive layer represents an element of the data at progressively higher levels of 

abstraction (LeCun, Bengio & Hinton, 2015; Belinkov et al. 2017). 

2.3.1. The artificial neuron 

The McCulloch-Pitts model is widely credited as the first formal definition of an 

artificial neuron. Based on observations from theoretical neurophysiology, McCulloch 

and Pitts (1943) expressed neural activity in terms of propositional logic, resulting in a 

description of a linear threshold neuron capable of handling only binary input and output.  

To emulate synaptic contribution, inputs can be either excitatory (+1) or inhibitory (-1). If 

the sum of all inputs exceed a given threshold value T, the neuron output will be 1, else 

output will be 0. 
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Fig. 2.3.1.  McCulloch-Pitts neuron 

x1, x2, and x3 represent weighted inputs +1, -1, and +1 respectively. When summed, they 
do not exceed the threshold T (1 < 2), so the neuron output is 0. 

This simple neuron can represent the linear logical operators NOT, AND, and 

OR, and can also be layered into more complex logic gates, as exhibited by its extension 

into the first artificial neural network implementation, Rosenblatt's perceptron.  

Although the McCulloch-Pitts model has been superseded by more sophisticated 

and efficient algorithms with decimal input and output and non-linear transfer functions, 

the basic architecture of an artificial neuron remains recognizably derivative of this early 

prototype.  

2.3.2. Learning with ANNs  

In a general sense, ANNs "learn" by updating the weights of the links that connect 

neurons.  Weights are coefficients by which each input passed along a link is multiplied 

before arriving at its target neuron, and determine how impactful a particular input will 

be in the neuron's calculation. Methods of training neural networks can be classified into 

three main learning paradigms: reinforcement learning, supervised learning, and 

unsupervised learning. 
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In reinforcement learning systems, an agent learns via repeated interactions with 

its environment. Each action performed by the agent generates a cost, which the agent 

attempts to minimize over time, in pursuit of maximizing a long-term reward. The trial-

and-error mapping of environmental situations to actions based on an anticipated numeric 

reward imbues reinforcement learning systems with a semblance of goal-driven behavior. 

This characteristic resemblance to the behavior of living systems has prompted various 

parallels to be drawn between reinforcement learning and biology, especially in regard to 

the role of the dopamine system in the brain for reward-dependent learning in mammals 

(Montague, Eagleman, McClure & Berns, 2006). 

Supervised learning offers the ability to precisely correct inferences made by a 

neural network by providing an "answer key" of accurate labels along with the input data. 

Teaching the names of everyday objects to young children is a common example of 

supervised learning in humans: a depiction of the object, or the object itself, is indicated 

to the child along with the pronunciation of the object's name, and the child is expected to 

repeat the pronunciation. This establishes an association between the object and its name 

in the child's mind at a symbolic level; by learning and storing a symbolic representation 

of the characteristic features that compose a tree, a child does not have to be shown an 

example of every kind of tree (pine, palm, etc.) in order to eventually predict that a rooted 

trunk with branches indicates the presence of a tree, even if the specific configuration has 

not previously been encountered. 

Part of the process of properly forming associations is error correction. If a child 

points to a cat and calls it a dog, that error should be corrected by its parent or other 

supervisor so that the child doesn't continue building inaccurate representations based on 
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this mistake. Similarly, supervised learning ensures that incorrect predictions made by an 

ANN are immediately remedied during training by providing feedback in the form of a 

loss function, which calculates a penalty to the system based on the difference between 

the expected output and the prediction.  

In contrast, an unsupervised learning network converges on a function based on 

statistical regularities in the input data without relying on labels to guide or correct its 

conclusions. A similar principle appears to be at work in the brain, where learning is 

governed by changes in the synaptic connections between neurons (Martin, Grimwood & 

Morris, 2000). The generally accepted Hebbian theory of neural learning, often 

paraphrased as "neurons wire together if they fire together" (Löwel & Singer, 1992, p. 

211), states that if a presynaptic cell is repeatedly involved in the excitation of a 

postsynaptic cell, the strength of the synapse between them will increase, resulting in a 

higher likelihood of the postsynaptic cell firing if the presynaptic cell is active. In the 

same way that an ANN represents acquired knowledge through updated link weights, the 

neuroplasticity of a biological neural network thereby depends on synaptic weight 

updates.  

A potentially problematic characteristic of unsupervised learning is that these 

correlations are reinforced without regard to error. Unlike the supervised and 

reinforcement learning paradigms, which provide feedback on the value of particular 

associations, unsupervised learning strengthens connections solely on the basis of 

correlated firing between the neurons they connect, whether or not that firing or the 

resultant relation is always valid or useful.  
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2.3.3. Types of ANNs 

Despite the parallels drawn between artificial and biological neural networks, it 

should be established that ANNs generally differ considerably from biology in that, 

whereas biological neurons map temporal and spatial inputs to discrete activation values 

which are in turn mapped to synaptic outputs, an artificial neuron computes an activation 

of a normalized weighted real-valued sum. As features are added and structures 

reconfigured for performance optimization in specific tasks, ANNs deviate to varying 

degrees further from their biological foundations. 

The ANN adaptions summarized in this section were selected to provide a 

representative cross-section of the diverse formats and capabilities of contemporary 

artificial networks, as well as a very basic understanding of some of the foundational 

principles of the networks outlined in Section 2.4. They have discrepant claims to 

biological plausibility, and are by no means intended to be a complete representation of 

the field. 

2.3.3.1.  Multilayer Perceptron (MLP) 

The single-layer perceptron developed by Rosenblatt was the first and most basic 

of neural network algorithms. Weighted inputs are fed directly into a row of output 

nodes, which sum the received input and fire if it exceeds their threshold. The difference 

between the actual output and the target output is typically used to adjust the weights and 

train the network.  

Although this feedforward structure is capable of linear binary and multiclass 

classification, as Marvin Minsky and Seymour Papert famously pointed out, it cannot be 

trained to recognize pattern classes that aren't linearly separable and is subsequently 
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unable to represent the exclusive-OR (XOR) operator (Minsky & Papert, 1969/2017). 

MLPs, perceptron architectures that incorporate one or more hidden layers, offer a 

solution to this problem.  

The formal definition of a perceptron prescribes a threshold activation function, as 

seen in the McCulloch-Pitts model, but the term "multilayer perceptron" has become 

generally accepted to encompass architectures of neurons with arbitrary activation 

functions (the neurons in the MLP implementation discussed in Chapter 4 of this thesis 

employ a rectifier (ReLU)). 

 

Fig. 2.3.3.1. A multilayer perceptron 

A structural diagram of an MLP with a single hidden layer. (Isokama, Nishimura & 
Matsui, 2012) 

Figure 2.3.3.1. displays the structure of a generic fully-connected MLP. Input data 

is fed into the first layer of neurons, which send their output to each neuron in the next 

layer. Activation is subsequently passed through all hidden layers until it reaches the 

output layer, where it can be compared against the label and the loss function can 
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compute the appropriate feedback, which is distributed back through the network via 

backpropagation. 

Backpropagation has emerged as an integral technique to assign credit to 

individual neurons for their role in the final output of an ANN. Backpropagation 

leverages gradient descent, an optimization algorithm that seeks the parameters that best 

minimize an objective function. In the case of backpropagation, the function being 

minimized is the network loss function. The derivative of the loss is calculated with 

respect to the network weights, where the derivative with respect to each weight is 

dependent on the derivatives of the weights in the following layer. 

Despite its widespread adoption and proven utility in ANNs (the MLP classifier 

discussed in this thesis employs backpropagation), it is generally accepted that it is 

unlikely that the brain implements an exact version of the backpropagation algorithm 

(Bengio, Lee, Bornschien, Mesnard & Lin, 2015; O'Reilly & Munakata, 2000). Recent 

work suggests that biological neural networks instead approximate backpropagation 

solely through local Hebbian plasticity, with certain neurons encoding the difference 

between actual activity and predicted activity, and propagating these prediction errors 

through the network (Whittington & Bogacz, 2017). 

2.3.3.2.  Convolutional Neural Network (CNN) 

Although traditional MLPs can be useful for image recognition, their fully-

connected nature makes scaling to handle high dimensional input computationally 

prohibitive, and they are not robust to distortion or variance in input data. CNNs are a 

subclass of MLPs that provide solutions to these issues and have thereby come to 

dominate the field of image analysis: CNN architectures were the first to achieve 
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learning-based face detection (Vaillant, 1994), currently hold the performance record on 

multiple image databases (Benenson, 2017), and are widely employed in technology 

found in self-driving cars (Tian, Pei, Jana & Ray, 2017), where feature detection and 

recognition is critical. 

The predecessor to CNNs, the neocognitron, was inspired by Nobel Prize-winning 

research performed in the 1960s by David Hubel and Torsten Wiesel at Harvard Medical 

School, which indicated that a neuron in the visual cortex is sensitive to stimuli only 

within a small, specific region of the visual field, termed its "receptive field" (Fukushima, 

1980). Based on their findings, Hubel and Wiesel proposed an information processing 

model of the visual cortex that relied on two types of specialized cells for hierarchical 

feature extraction: "simple cells" that learn to respond to a particular feature within their 

receptive field, and "complex cells" that integrate these features into composite 

representations (Hubel & Wiesel, 1961).  

In the neocognitron, a multilayered network capable of unsupervised pattern 

recognition, complex cells were connected to multiple simple cells in the preceding layer 

that extracted the same feature at different positions. The complex cells would respond if 

activation was received from any one of these simple cells. By alternating layers of 

complex cells, which effectively blurred small differences in identified features, with 

layers of simple cell feature extractors, simple cells at higher layers learned to 

accommodate distortions and translations in the features to which they were responsive, 

resulting in the shift-invariance characteristic of CNNs.  

The first CNN was introduced by LeCun et al. (1998). LeNet-5, a 7-layer CNN 

trained by backpropagation, extracted features in "convolutional layers", corresponding to 
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the simple cell layers of the neocognitron, while "subsampling layers", corresponding to 

the complex cell layers of the neocognitron, blurred local pattern distortions. To combine 

features learned in the lower layers, the last convolutional layer was fully connected to 

the output layer, essentially uniting the neocognitron with an MLP.  

 

Fig. 2.3.3.2. A convolutional neural network 

A filter, represented here by a small square, moves over the pixels in the input image to 
create feature maps, which are subsampled by pooling layers into more feature maps. 

The process repeats until the data exits the fully connected output layer. (Aphex34, 2015) 

In a typical CNN (depicted in Fig. 2.3.3.2.), a matrix of weights, also known as a 

"filter" or "kernel", is convolved over an input image, represented as a larger matrix of 

pixel values. As the filter moves over the input, covering each pixel at least once, the dot 

product of the pixel values and the weights are translated into "feature maps", matrixes 

that capture regions with salient features. Different filters extract different features 

relevant for accurate network output. Training the CNN, usually via backpropagation, 

updates the filter weight values, which improves the network's identification of regions 

that are significant for feature extraction.  

Optionally following the convolutional layers in a CNN, subsampling, or 

"pooling", layers perform a similar process to reduce the spatial size of the input. A 



 

20 

favored algorithm for these layers is "max pooling", which uses the max value within the 

filter matrix as the value for the corresponding position in the feature map. 

The last layer of a CNN is generally fully-connected, and forces the data into the 

number of output classes desired. 

2.3.3.3.  Recurrent Neural Network (RNN) 

Unlike feedforward networks such as MLPs and CNNs, where input data moves 

through the network in only one direction, RNNs rely on directed cycles to achieve data 

persistence and process arbitrary input sequences. 

 

Fig. 2.3.3.3.1. Recurrent vs. feedforward network 

Left: A hidden layer in a feedforward network; Right: A recurrent hidden layer, where 
the output of a node is recycled as its input. 

 Long Short-Term Memory networks (LSTMs) are a particularly notable type of 

RNN whose ability to form long-term dependencies has led to field-defining applications 

in speech recognition and natural language processing. An LSTM unit typically contains 

a "memory" cell, which holds a value for an arbitrary period of time, and a series of 

"gates", which manage state. These gates are similar to traditional neurons and control 

whether or not, and how much, information should be allowed into and out of the cell. 
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Fig. 2.3.3.3.2. Long Short-Term Memory 

A "peephole" LSTM unit showing the flow of data through input, output, and forget gates 
and a central memory cell (BiObserver, 2015). 

In a "peephole" LSTM (Fig. 2.3.3.3.2.), an input gate i controls new values 

entering a memory cell c, a forget gate f determines how much value remains in the cell, 

and the output gate o calculates the output of the unit based on the cell activation. Their 

respective gate activations it, ot, and ft at a given time step t are based on ct-1. This gated 

recurrency of an LSTM allows it to maintain a representation over time of its input 

sequences without interference from novel stimuli. 

2.4. Biomimetic ANNs 

Computational neural network implementations can be considered on a spectrum 

between two poles: 1) systems that maximize machine learning performance without 

particular regard for biological plausibility, and 2) biologically faithful interpretations 

focused on providing neurobiological insight, with varying degrees of direct applicability 

to machine learning.  

The majority of commercial neural network architectures are positioned firmly 

into the first category. Research and Development divisions may take inspiration from 
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biological systems, but trading algorithm designers and self-driving car manufacturers are 

governed primarily by practical application. In the final implementation, minimal or no 

consideration is given to preserving correlation between program structure and brain 

architecture, or program function and brain activity.  

The second category is largely composed of models of neurosystems developed 

for academic and medical purposes. de Garis, Chen, Goertzel, and Ruiting (2010) provide 

a comprehensive review of several large-scale brain simulations, including the Blue Brain 

Project (Markram, 2006), that display the complex dynamics of brain regions but do not 

yield intelligent behaviors. Much of the work performed under the recently declared 

International Brain Initiative (Human Brain Project, 2017) also falls primarily into this 

category; a major goal of its founding member institutions is to directly measure and map 

electrical and chemical activity to generate neural circuit diagrams that can be compiled 

into a cohesive, definitive model of the brain (Amunts et al., 2016; National Institutes of 

Health, 2014).  

As ReCoNs are a cortically inspired solution to a machine learning problem, 

comparable approaches are found along the spectrum between these two classes: 

biomimetic learning systems based on cortical anatomy and physiology.  

2.4.1. Current approaches to biomimetic learning 

In 2010, a survey of then-notable biologically inspired cognitive architectures1 

concluded that “it [was] not yet possible to tell whether emulating the brain on the 

architectural level is going to be enough to allow rough emulation of brain function” 

                                                
1 This survey incidentally includes MicroPsi, the cognitive architecture used as a foundation for the pilot 
ReCoN implementation discussed in Bach and Herger (2015) and later in this thesis. 
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(Goertzel, Lian, Arel, De Garis & Chen, 2010, p. 30). Subsequent research has 

contributed to an increasing body of evidence suggesting that this is, in fact, likely 

(Eliasmith et al., 2012; Reimann et al., 2017).   

Given that brain is our only present example of general intelligence, and 

considering that the first successes in machine learning directly resulted from attempts to 

simulate its structure and function, it appears sensible to pursue AGI by continuing these 

efforts. This sentiment was echoed in 2014 by prominent computer scientist Yoshua 

Bengio, who noted that "[a]s far as I know we haven't found AI yet, so any inspiration 

we're getting from biology is worth taking in and…see[ing] if there's some computational 

or mathematical principles that we can use" (Hernandez, 2015). 

This section surveys current approaches to machine learning that intentionally 

attempt to recreate biological neural function with biomimetic artificial neural networks. 

It is important to note that these approaches are by no means mutually exclusive, and can 

be considered as potentially complementary angles from which to unpack the intricacies 

of the brain and cognition.  

2.4.1.1.  Reverse-engineering the cortex 

A founding member of the newly formed International Brain Initiative, the U.S.-

based massively multi-institutional Brain Research through Advancing Innovative 

Neurotechnologies (BRAIN) initiative seeks to develop new technologies to map the 

brain at multiple scales and expose the relationship between brain function and behavior 

(BRAIN Initiative, n.d.). Although the majority of this work appears to fall outside the 

narrowly defined scope of biomimetic learning systems, one subprogram in particular is 

relevant to consider. 
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In 2016, under the heading of the BRAIN initiative, the Intelligence Advanced 

Research Projects Agency (IARPA) announced that it would be delegating $100 million 

to the Machine Intelligence from Cortical Networks program (MICrONS), which intends 

to reverse-engineer machine learning algorithms from a cubic millimeter of rodent visual 

cortex (Cepelewicz, 2016). Three independent teams from Harvard University, Carnegie 

Mellon University, and Baylor College of Medicine were selected to pursue this line of 

inquiry, each using a different approach: translating electron microscopy analysis into 3D 

mapping of neuronal connections; using genetic markers to map neural circuitry; and 

testing hypotheses about the development of communication between different neural 

circuit components, respectively (Singer, 2016). 

2.4.1.2.  Spiking Neural Network (SSN) 

Certain biomimetic machine learning systems, SSNs, have focused on emulating 

the spiking nature of biological neural networks. Biological neurons have a "membrane 

potential", the voltage difference between the neuron's interior and its exterior 

environment that gates its inclination to fire, and transmit information via short voltage 

increases known as "spikes". Unlike MLP neurons, which propagate analog activation at 

each network step, SSN neurons have an internal threshold representing membrane 

potential that is elevated by discrete incoming spikes, and only fire when the threshold 

value is reached. The time elapsed between spikes, the frequency of the spikes, and other 

spike-related variables offer additional dimensions for encoding information in the 

network. SSNs are thereby able to replace biologically implausible backpropagation with 

biologically plausible spike-timing dependent plasticity, which locally adjusts link 
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weights based on the relative timing between a neuron receiving activation and firing 

(Diehl & Cook, 2015; Taherkhani, Belatreche, Li & Maguire, 2014). 

SSNs have exhibited sufficiently significant neurobiological parallels as to be 

used to replicate in vitro features in when studying biological neural networks (Brette et 

al., 2007; Maheswaranathan, Ferrari, VanDongen & Henriquez, 2012). This correlation 

has also been displayed in task execution; Spaun, a large-scale SSN with 2.5 million 

spiking neurons, demonstrated a range of behaviors associated with cognitive functions 

(Eliasmith et al., 2012), and an SSN-based virtual insect successfully learned to avoid 

environmental obstacles to reach a target location without prior priming for navigation 

(Zhang, Xu, Henriquez & Ferrari, 2013).  

Despite these achievements, and despite the assertion that temporal coding in 

SSNs may enable a single spiking neuron to achieve the same compute as hundreds of 

hidden neurons in a sigmoidal network (Maass, 1997), SSNs have to date found limited 

application in machine learning. This can be traced to their relative complexity in 

implementation, large processing demands for biologically plausible models, and lower 

performance on benchmarks compared to other types of ANNs (Sengupta, Ye, Wang, Liu 

& Roy, 2018). However, recent advances in SSN optimization may reignite interest in 

their machine learning applications (Sengupta et al., 2018), and the event-driven nature of 

SNNs makes them an appealing candidate for neuromorphic hardware (Merolla et al, 

2014; Lee, Delbruck & Pfeiffer, 2016), discussed in Section 2.4.1.5. 

2.4.1.3.  Hierarchical Temporal Memory (HTM) 

HTM is a theory of intelligence developed by Palm Pilot inventor and Numenta 

co-founder Jeff Hawkins that serves as the basis for machine learning technology.  As in 
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spiking models, HTM is similarly fundamentally time-based: it parses a stream of data to 

discover patterns and anomalies, and uses hierarchical caching of these learned sequences 

to generate future predictions. 

In a HTM system, unlabeled data flows through an encoder into a spatial pooler, 

which uses a "winners take all" approach to map only the top 2% of neurons maximally 

activated by the input to a Sparse Distributed Representation (SDR), an array of bits 

where each bit index has a specific semantic meaning encoding a feature of the input 

data. If the same bit is active in two SDRs, it indicates semantic similarity in the 

corresponding inputs. In an approximation of unsupervised Hebbian learning in the brain, 

when a bit becomes active, it forms connections to neighboring bits that were active in 

the previous time step. Upon recurrence of the sequential activation pattern, the 

connections are strengthened, otherwise the connections are weakened and eventually 

dropped. The system thereby continuously learns to predict the next sequence by tuning a 

"connection permanence" scalar that indicates whether a particular connection is closer to 

becoming permanent (1) or being dropped (0) (Numenta, 2012).  

To more accurately depict the modularity of the cortex, which is discussed further 

in Section 3.1., the HTM model was recently extended into laterally connected vertical 

layers of nodes, an endeavor to approximate pyramidal neurons in cortical columns 

(Hawkins, Ahmad & Cui, 2017). 

When evaluated against four other popular techniques in its specialty arena, 

continuous sequence learning, HTM achieved comparable prediction accuracy to state-of-

the-art systems, demonstrated fast recovery after sequence changes, and did so without 

requiring either periodic retraining or external input to determine the higher-order data 



 

27 

structure, unlike the other systems against which it was matched (Colyer 2017; Cui, 

Ahmad & Hawkins, 2016). As of this writing, HTM has not set any machine learning 

benchmarks, but remains potentially promising in the eyes of those who anticipate that 

AGI must necessarily emulate cortical architecture; in April 2015, IBM dedicated a 

research group of around 100 people, the “Cortical Learning Center”, to further explore 

HTM algorithms (Simonite, 2015).  

2.4.1.4.  Capsule networks 

 In 2011, machine learning pioneer Geoffrey Hinton introduced "capsules", groups 

of neurons whose outputs represent different instantiation parameters of the same entity 

(Hinton, Krizhevsky & Wang, 2011). Capsule design was inspired by techniques in 

computer vision and graphics rendering, which, in contrast to the scalar output of 

traditional feature detecting neurons, use vectors of outputs to represent learned features, 

and can thereby explicitly encode "pose", the spatial relationship between features.  

 While traditional CNNs achieve shift-invariance through sub-sampling, which 

summarizes activity across neurons and discards these spatial relationships between 

higher-order features, each capsule in a capsule network learns to recognize multiple 

orientations of a single visual entity. The output for each capsule is a vector of parameters 

specifying the variation of a detected entity from its implicit canonical representation of 

that entity, the length of which represents a probability prediction that the entity is 

present in the capsule's domain. Capsule networks are therefore able to represent exact 

spatial relationships of higher-order features and learn to recognize wholes as sums of 

their parts. 
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 A "dynamic routing" algorithm is used to determine the most consistent 

interpretation of information between competing capsules. An activated capsule sends 

output to all possible parent capsules in the next layer, and calculates for each a 

"prediction vector", the product of its own output and a weight matrix. A large product 

induces top-down feedback that increases the contribution the capsule makes to that 

parent, while decreasing it for the others. (Sabour, Frosst & Hinton, 2017) 

 As noted in Sabour, Frosst & Hinton (2017), capsule networks and dynamic 

routing have some claim to biological plausibility based on models of pattern recognition 

in the visual cortex. Specifically, the preservation of structural relationships between 

input features by encapsulation, the use of capsules as the fundamental units of each 

network layer, and the dynamic routing between capsules are reminiscent of the 

modularity and activation patterns found in the cortex, discussed further in Section 3.1.  

2.4.1.5.  Neuromorphic hardware 

 The brain is generally estimated to operate on 12 W to 20 W (Clancy, 2017; Jabr, 

2012), whereas the IBM Sequoia supercomputer has less processing power and consumes 

7.9 MW (Docksai, 2017), and in 2005, one simulated second of a detailed 100 billion 

neuron model of the brain took 50 days on a Beowulf cluster of 27 3GHz processors 

(Izhikevich, 2005). The brain's computing power, coupled with its energy efficiency, has 

led to growing attention on neuromorphic hardware, biologically inspired devices capable 

of improving performance when running large scale ANNs and other computationally 

demanding programs. Some neuromorphic architectures also seek to better approximate 

the qualities displayed in biological systems by incorporating features not found in 
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traditional processing units, such as chaotic elements proposed as being integral to the 

complex dynamics demonstrated by the brain (Kumar, Strachan & Williams, 2017). 

 Neuromorphic hardware implementations can be analog, digital, or hybrid 

platforms. The memristor, a circuit element that emulates the plasticity and timing 

dependence of synapses in the brain (Strukov, Snider, Stewart & Williams, 2008), is 

"ubiquitous" in neuromorphic systems due to their energy efficiency and strong claims to 

biological plausibility (Schuman et al., 2017). Two particularly famous neuromorphic 

architectures, the University of Manchester's SpiNNaker and IBM's TrueNorth, are both 

digital, massively parallel systems that do not use memristors: SpiNNaker consists of 

approximately 57,000 nodes of 18 ARM9 cores each that can model up to a billion 

neurons and a trillion synapses in real time (Painkras et al., 2013), and TrueNorth is a 64 

µW 5.4-billion-transistor silicon chip with 4096 neurosynaptic cores each simulating 256 

programmable neurons (Merolla et al., 2014). 

 A self-organized mesh of silver nanowires, 2 square millimeters in size, at UCLA 

is perhaps an especially unusual neuromorphic device. Formed by pouring silver nitrate 

onto tiny copper spheres, the resulting nanowire mesh was exposed to sulfur gas to 

induce the formation of silver sulfide. When voltage is applied, silver ions are pushed out 

of the silver sulfide and form silver filaments that act as switches for the current; 

reversing the current shrinks the filaments, turning off the switch (von Bubnoff, 2017). 

This mesh has demonstrated emergent logical behaviors, such as prediction of statistical 

trends after training, and is inherently fast, with tens of thousands of state changes per 

second (von Bubnoff, 2017; Scharnhorst, Woods, Teuscher, Stieg & Gimzewski, 2017).  
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Chapter 3. 

Request Confirmation Networks 

ReCoNs are hierarchical dynamic ANNs designed to simulate the representation 

and execution of sensorimotor scripts without the need for a central control architecture, a 

function that might be realized biologically by the modularity of the cerebral cortex. 

ReCoNs were first introduced in Bach and Herger (2015), which provides a complete 

formal specification and results from a pilot implementation. 

3.1. The neurological inspiration for ReCoNs 

The outer layer and largest region of the human cerebral cortex, the neocortex, is 

thought to consist of over 180 distinct areas (Glasser et al., 2016), functionally defined 

regions composed of millions of neurons organized into basic units of approximately 80 -

100 neurons each.  These units, known as cortical minicolumns, average 30 - 60 µm in 

diameter (Buxhoeveden & Casanova, 2002; Jones, 2000) and extend through the six main 

layers of the cortical sheet.   

Neurons within a minicolumn are responsive to similar object features (Horton & 

Adams, 2005), have common outputs, and are vertically interconnected. The overlapping 

processing chains between neurons in a minicolumn form circuits that map arrays of 

inputs to arrays of outputs (Mountcastle, 1997), prompting assertions from 

neuroscientists that they "may well constitute a fundamental computational unit of the 

cerebral cortex" (Cruz et al., 2005, p. 322).  
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Fig. 3.1. Cortical minicolumns 

Left: Large pyramidal neurons (outlined in white) in the cortex; Right: Euclidean 
spanning trees (white) denoting minicolumns composed of these neurons (Buxhoeveden, 

Switala, Litaker, Roy & Casanova, 2001) 

Minicolumns form maps by default, but can also be recruited into sequences and 

scripts (Cosentino, Chute, Libon, Moore & Grossman, 2006), and learn how to bind to 

each other to form dynamic processing hierarchies. They are often stacked across areas 

into receptive fields, where individual units receive activation from a corresponding 

group of units in neighboring areas. Various lines of research suggest that the inhibition 

of this activation is crucial to understanding the function of a minicolumn (Buxhoeveden 

& Casanova, 2002): whereas lateral excitation between minicolumns has been shown to 

cause neurons to develop related afferent connections, reciprocal lateral inhibition 

produces dissimilar afferent connections, thereby causing neighboring minicolumns to 

encode for different receptive fields (Favorov & Kelly, 1994). 

A long-held theory of biological learning proposes that the primary role of the 

cortex is unsupervised learning through prediction (Yger & Harris, 2013). The balance of 

excitation and inhibition between minicolumns results not only in orderly yet diverse 
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receptive fields, but also in "a variety of stimulus feature-extracting properties" (Favorov 

& Kelly, 1994, p. 408) that would seem consistent with this interpretation. A 2004 study 

of a model of inhibitorily coupled minicolumns further appears to support this premise by 

demonstrating that the minicolumns were able to self-organize via Hebbian plasticity into 

selective receptive fields that allowed them to serve as classifiers for input patterns (Lüke 

& von der Malsburg, 2004). 

The body of literature supporting the role of minicolumns as a fundamental 

information processing module has made them a popular choice for simulation in 

biologically inspired ANN architectures (for examples, see Azam, 2000; Johansson & 

Lansner, 2007; Koene & Hasselmo, 2005; Lüke & von der Malsburg, 2004; Martinet, 

Sheynikhovich, Benchenane & Arleo, 2011; Richert, Fisher, Piekniewski, Izhikevich & 

Hylton, 2016; Sandberg, Lansner, Petersson & Ekeberg, 2002). Of the approaches to 

ANNs previously discussed in this thesis, as mentioned in Section 2.4.1., two explicitly 

purport to model cortical columns: HTM (Section 2.4.1.3.) and Hinton's capsule networks 

(Section 2.4.1.4.). 

3.2. ReCoN Structure 

ReCoNs are auto-executable networks of stateful nodes with typed links that 

perform neural computations and script execution by passing activation along the links in 

a controlled hierarchical sequence termed "request confirmation". They are implemented 

within the MicroPsi formalism (Section 3.3.1). 
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3.2.1. Nodes and links 

According to Lamb (2000), "if a neuron is analogous to a logic gate, a cortical 

(mini)column is more analogous to a small subroutine". In this sense, a ReCoN node can 

be considered as an approximation of a cortical minicolumn, representing a subroutine 

within the ReCoN hierarchy. 

Each ReCoN node is a state machine with one of eight states, {inactive, 

requested, active, suppressed, waiting, true, confirmed, failed}. The state of a node is 

determined by its activation level, which results from the activation of connected nodes in 

the preceding time step. This internode state dependency allows for the simulation of 

excitatory and inhibitory relationships, such as those of neighboring minicolumns. 

 

Activation State Meaning 

< 0 failed will remain until requesting ends 

< 0.01 inactive will change to prepared when requested 

< 0.3 preparing inhibits neighbors, changes to suppressed 

< 0.5 suppressed inhibits neighbors, changes to requesting 
when no longer inhibited 

< 0.7 requesting starts requesting, changes to pending 

< 1 pending continues requesting, will either change to 
confirmed or failed 

>=1 confirmed will remain until requesting ends 

Table 3.2.1. ReCoN node states and corresponding activation levels 
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 Nodes are connected to each other by weighted links. They receive input from 

incoming links via "slots" and transmit output on outgoing links via "gates". The ReCoN 

nodes used in the implementation discussed in Chapter 4 have five input slots and five 

output gates, one of each type gen (general), por (left), ret (right), sub (below), and sur 

(above).  Each link between ReCoN nodes is either of a type sub/sur, which connects a 

parent node to a child node, or por/ret, which connects a predecessor node to a successor 

node and indicates a lateral relationship. Gates of type gen, representing a general 

association, are available to connect ReCoN nodes to nodes of other types.  

3.2.2. Script execution  

Section 2.2. outlined the spreading of activation through cortical areas in response 

to visual input, resulting in recognition of the viewed object. This sequence can be 

considered in terms of bottom-up execution, originating from environmental stimuli and 

ending in the activation of the symbolic internal representation of the input. Conversely, a 

similar sequence could be executed top-down by directly activating the upper hierarchy 

of the network encoding the object, thereby calling the symbolic representation of the 

object to mind without extending all the way through the primary visual cortex. This top-

down activation has been implicated as the underlying process in voluntary memory 

recall (Miyashita & Hayashi, 2000; Tomita, Ohbayashi, Nakahara, Hasegawa & 

Miyashita, 1999) and dream imagery, which involves the higher processing networks for 

visual memory but not the low-level perceptual networks (Solms, 1997).  

Sensory circuits at early stages of processing, like those in the primary visual 

cortex, are shared by pathways that govern both action and perception (Goodale & 
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Milner, 2013). This allows them to be harnessed into schemas, higher-order neuro-

symbolic complexes composed of many subnetworks of varying function and 

complexity. Schemas represent objects or events and organize categories of information 

and relationships between them (DiMaggio, 1997); scripts are a category of sensorimotor 

schema that encode key sequences of events and the relevant actions necessary to fulfil 

behavioral routines and activities (Barnett et al., 2007).  

The deliberate top-down initiation of a script, as in the intentional moving of an 

arm or imagining of an object, has been attributed to activity in the prefrontal cortex 

(Deiber et al., 1991; Frith, Friston, Liddle & Frackowiak, 1991), an area associated with 

goal-directed behavioral planning and task management (Koechlin, Basso, Pietrini, 

Panzer & Grafman, 1999; Tanji & Hoshi, 2001). To execute a cognitive process or an 

action, activation flows from its initial stimulation in the prefrontal cortex through the 

relevant schematic components, continuing either until the objective has been 

successfully achieved, or until the sequence is interrupted or fails. 

ReCoNs offer a possible model for how these schemas and sensorimotor scripts 

are represented and executed in the cortex. The execution of a ReCoN script begins with 

a request signal to its root node, signified by activating its sub slot. The script execution 

tests a hypothesis, represented by the root node and defined in the script itself, which will 

return a binary truth value.  

Parent nodes request confirmation from their child nodes via sub links, and 

receive in return a wait signal, followed by either confirmation or failure of the request 

via sur links. A successor node that requires confirmation from predecessor nodes before 

executing its own subsequence is prevented from becoming prematurely active by an 
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inhibit request signal received via por links until that confirmation is available, and will 

send back an inhibit confirm signal via ret links while its sequence executes, indicating to 

its predecessors that calculation is in progress. 

 

Fig. 3.2.4.  Example ReCoN script execution 

Activation of the root node (1) sends requests for computation top-down through the 
network via sub links to check the validity of its hypothesis or perform actions. 

Confirmation or failure percolates bottom-up via sur links. (Bach & Herger, 2015) 

Calculation is finished when the last element of the sequence changes its state to 

confirmed and the confirmation propagates back to the root node, or upon interruption or 

failure.  

The reciprocal inhibition of ReCoN nodes provides discrete on-off control that 

acts as a decentralized gating mechanism. Inhibition has been shown to play a similar 

role in biology, as noted in Section 3.1., as well as in the significance of the inhibitory 

outputs of the basal ganglia in gating the thalamus (Goldberg, Farries & Fee, 2013) or in 

the instantiation of pathway-specific gating (Yang, Murray & Wang, 2016). 
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3.3. Prior ReCoN implementation 

A pilot ReCoN implementation is outlined in Bach and Herger (2015), which 

describes results obtained from allowing a MicroPsi agent to explore a Minecraft world, 

using ReCoNs to recognize previously visited locations. 

3.3.1. MicroPsi 

MicroPsi (Bach, 2003) is a cognitive architecture designed to provide a 

framework in which to run and test ANN-based agents. It extends Dietrich Dörner’s PSI 

theory, which models the mind as an information processing architecture and sets 

computational formalisms for the interaction between cognitive, motivational, and 

emotional processes (Dörner & Güss, 2013). The current iteration of MicroPsi, 

MicroPsi2, offers a graphical editor and runtime system for ANNs and agent 

environments.2 

An overview of the architecture of a typical MicroPsi agent is displayed in Figure 

3.3.1.  Perceptual sensors provide environmental input to the agent, while other sensors 

monitor simulated "urges", like "hunger" and "tiredness", and affect the agent's 

motivation, which governs the priority it places on potential near-future actions. 

Short-term memory provides a local perceptual space and associated 

representations, whereas long-term memory stores knowledge acquired from the agent's 

history of interacting with its environment.  The exchange between these two forms of 

memory is managed by a memory maintenance module. 

                                                
2 The MicroPsi Editor Shell (MESH) is discussed in Section 4.3. of this thesis. 
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Action is decided and executed within the behavior script space, which 

encompasses the "internal behaviors" analogous to higher cognitive processes.  A meta-

management system allocates processing resources to the internal behavior processes and 

memory maintenance based on the current situation and state of the agent. 

 

Fig. 3.3.1.  MicroPsi agent architecture 

An agent receives external and internal stimuli from perceptual and body urge sensors, 
respectively. Actions are based on previously acquired knowledge and governed by 

motivation. Memory maintenance manages the exchange between long- and short-term 
memory, and meta-management coordinates resources between subsystems. (Bach, 2009) 

3.3.2. Active perception with ReCoNs 

In the active perception task discussed in Bach and Herger (2015), learned 

features of the Minecraft environment encountered by a MicroPsi agent were encoded by 

ReCoN link weights. Hypotheses represented by the ReCoN root nodes were based on an 

autoencoder, an ANN whose output is a reconstruction of its input, that captured the 

features of an environmental scene; the original feature input and the autoencoder output 

are shown in Figure 3.3.2.  Higher-level nodes encode object representations and 
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geometric relations between objects, whereas nodes further down the hierarchy encode 

for lower-level compositional visual features.   

 

Fig. 3.3.2.  Action space and input sample of a ReCoN-based agent in Minecraft 

Left column: The red line shows the path of the agent through the Minecraft environment; 
Right column: Training data from the Minecraft client as seen in a graphical user 
interface (top), visual input to the agent (center), and features learnt by the agent 

(bottom) (Bach & Herger, 2015) 

When an agent traveled into a new space, it would check its existing hypotheses 

to see if it recognized the environment as a specific combination of stored features.  If the 

agent had not previously encountered that space, all of its existing hypotheses failed, and 
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it would form a new model built from a combination of the sub-hypotheses that were 

confirmed by local features of that environment. 

The agent was tested by allowing it to freely tour a fixed set of Minecraft 

locations. Once the agent had formed sufficient internal representations to be able to 

successfully identify all locations, it stopped generating new hypotheses. This indicated 

that the ReCoNs had worked as anticipated and were able to represent all features 

necessary for the agent to recognize any previously encountered environment. 

3.3.3. Revisiting ReCoNs 

Although results from the active perception ReCoN implementation appeared 

promising, no further work was performed. The source code for the implementation has 

since either been lost or deleted. 

The ReCoNs discussed in the following chapters of this thesis are a reconstruction 

of the original networks. They were built based on the details available in Bach and 

Herger (2015), instructions provided by Joscha Bach, and a code extract discovered in the 

MicroPsi2 MESH application that specifies the ReCoN node activation thresholds and 

corresponding states defined in Table 3.2.1. They are implemented within a general 

framework for neural networks built from scratch to be roughly compatible with 

MicroPsi2 in order to preserve the option for future extension into that architecture. 

A stand-alone program designed to serve as an illustrative proof-of-concept for 

the recreated ReCoNs is detailed in Chapter 4. 
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Chapter 4. 

Function Approximator 

The Function Approximator was created as a basic example of ReCoN operation 

and proof of concept. The system accepts images of handwritten algebraic functions as 

input and outputs the function value. It consists of a function parser to segment the 

handwritten function into its individual symbols, an n-layer perceptron pre-trained on 

handwritten digits 0-9 and the mathematical operators +, -, ´, and ÷ to classify the 

symbols, a ReCoN that is custom-built based on the array of recognized symbols to 

represent the identified function, and a stacked calculator to execute the function. 

4.1. Biological function approximation 

The ability to approximate numerosity, the magnitude of a stimulus, and to 

perform elementary arithmetic, is found in both humans and animals (Woodruff & 

Premack, 1981). Humans also associate discrete numeric values with perceptual 

representations, such as the verbal "nine" and visual Arabic numeral "9", and lab-trained 

rhesus macaques have demonstrated the ability to do the same, even completing 

rudimentary addition tasks using visual symbols (Livingstone et al., 2014).  

The neurobiological foundations of numerical competence are distributed across a 

network in the parietal and frontal lobes (Nieder, 2016). Numerous studies have shown 

that the intraparietal sulcus (IPS), a region that runs horizontally across the surface of the 

parietal lobe, plays a principal role in both non-symbolic and symbolic numerical 
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processing, including arithmetic approximation with Arabic numerals (Cantlon, Brannon, 

Carter & Pelphrey, 2006; Dehaene, Spelke, Pinel, Stanescu & Tsivkin, 1999). Monkeys 

trained to associate numerosity with Arabic numerals and young children developing 

familiarity with number symbols show elevated activity in the prefrontal cortex (PFC) 

compared to the IPS when processing symbolic numbers; this effect fades over time as 

children gain numeric fluency and may signify the PFC mapping non-symbolic to sub-

symbolic representations (Nieder & Dehaene, 2009). As IPS neurons respond earlier in 

hierarchical number processing than those in the PFC, and, unlike PFC neurons, are 

sensitive to perceptive modality, it is thought that the IPS may extract quantitative 

information before it is processed by the PFC in a goal-directed manner (Nieder, 2016). 

The PFC, parietal, premotor, posterior temporal, and subcortical areas have all 

been implicated in arithmetic calculation, differing based on calculation task (Arsalidou 

& Taylor, 2011). Recent research has indicated that in simple digit addition, digit 

comprehension occurs in the left superior temporal area in the temporal lobe, is executed 

in the left inferior parietal area, located directly below the IPS, followed by recognition in 

the corresponding regions in the right hemisphere (Iijima & Nishitani, 2017).  

Given the difficulty of disentangling the exact neurobiological mechanisms of 

variably encoded numeric representation during calculation from the instrumental 

processes required for both arithmetic and non-arithmetic operations (Gruber, Indefrey, 

Steinmetz & Kleinschmidt, 2001), there is currently no consensus model of numeric 

representation in calculative tasks (Eger, 2016). The ReCoN structures generated by the 

Function Approximator are therefore not intended to be a precise depiction of 

neurobiology, but are rather proposed as a simple and generally translatable abstraction 
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of hierarchical excitation and inhibition between cortical modules during neuro-symbolic 

script execution.  

4.2. System Overview 

A function image is first parsed into separate images of its digits and 

mathematical operators. These subcomponent images are prepped according to MNIST 

preprocessing directives (LeCun, 1998) and fed into an MLP of n layers, where n >= 2. 

The MLP is a symbolic classifier pre-trained on a combination of MNIST data and the 

algebraic operators +, -, ´, and ÷, adapted from a Kaggle handwritten math symbols 

dataset (Nano, 2016). The MLP output is a prediction of the symbol depicted in each 

image; these predictions are gathered in an array representing the original function. 

 

Fig. 4.2.1.  Sequence diagram of function parsing and classification 
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An image of a handwritten function (4´2-5), is parsed into five 28x28 pixel images 
depicting its respective subcomponent symbols. Each of these five images is fed into a 
pre-trained MLP classifier, which outputs a classification prediction for its symbol. 

The array of symbols identified by the MLP is used to build a ReCoN that 

embodies the predicted function in its topology, with the root node symbolizing the 

numeric function value.  Activation of a ReCoN root node initiates the subroutine 

represented by the ReCoN.  In the case of the Function Approximator, the subroutine is 

the execution of the predicted function and comparison of the resulting numeric value 

against the correct value label of the input handwritten function. The ReCoN uses a 

stack-like data object, referred to herein as "the stack", to perform the mathematical 

operations of the function and return a final value. 

 

Fig. 4.2.2.  Diagram of ReCoN and stack 
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The array of digits and algebraic operators output by the MLP classifier is used to 
generate a ReCoN that represents and executes the predicted function by pushing and 

pulling values to and from a stack-like data object. 

4.3. Implementation 

The Function Approximator is a "recipe", or predefined program, that runs on a 

stateful neural network architecture.  This architecture provides the framework for both 

the MLP and ReCoN, and can be extended into any neural network configuration.  A full 

specification of this architecture is included as Appendix A. 

4.3.1. Datasets 

Two datasets, MNIST and a Kaggle handwritten math symbols dataset (Nano, 

2016), were combined to create the training data for the MLP classifier. The handwritten 

functions used as input data for the Function Approximator can be adapted from any 

source, provided that they follow the parameters defined here. 

4.3.1.1.  MNIST 

The MNIST database is commonly used for training image processing systems. It 

consists of 60,000 training images and 10,000 testing images depicting handwritten 

greyscale digits 0-9, as well as respective labels for each set.  

MNIST images are normalized to fit within a 20x20 pixel box, which is then 

centered inside a 28x28 pixel canvas. Pixel values are 0-255, with 0 indicating 

background (white) and 255 indicating foreground (black). The MNIST images and their 

one-hot encoded labels are packaged as multidimensional matrices in IDX file format. 
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Fig. 4.3.1.1. Sample MNIST digits 

Four images from MNIST database. From left to right: 5, 0, 4, 1. (TensorFlow, 2015) 

4.3.1.2.  Handwritten math symbols dataset 

The original Kaggle database (Nano, 2016) from which the mathematical 

operators used here were derived consists of sets of 45x45 pixel images depicting 78 

different symbols commonly used in mathematical and scientific publications. Only the 

sets for +, -, ´, and ÷ are relevant to this implementation.   

 

Name Symbol Number of files Sample image 

Addition + 25,113  

Subtraction - 33,998  

Multiplication ´ 3,252  

Division ÷ 764  

Table 4.3.1.2. Original math symbol sets from Nano (2016) 
 

Given that all four algebraic operators can be expected to appear in any random 

function with equal probability, it was necessary to trim the larger sets significantly so as 

not to unduly bias the MLP toward symbols that appeared more often in its training data, 

while also maintaining a balanced ratio of the total number of mathematical operators to 
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the total number of MNIST images. Images visually determined to not resemble their 

respective symbols were manually removed as well.  

All images were size normalized and centered to match the MNIST dataset. The 

image filenames are prefixed with the symbol depicted in the image, which is used to 

generate a one-hot encoded label.  As with MNIST, the images and labels are packaged 

as multidimensional arrays. 

Initial results for a combined MNIST and math symbols training set (with 20% of 

the overall symbols retained for testing) of 4606 addition symbols, 6363 subtraction 

symbols, 2,444 multiplication symbols and 567 division symbols indicated a strong bias 

against the underrepresented division symbol, so an additional 240 division symbols were 

handwritten, scanned, and included, which appeared to slightly improve performance 

over most training runs.  

4.3.1.3.  Combined MNIST and math symbols 

 A single dataset containing both the MNIST and math symbol images is 

generated by zipping each set with their respective labels, combining the two zipped sets 

into a single array, randomly shuffling the array contents, and unzipping the shuffled 

array into an images matrix and a labels matrix. 

4.3.1.4.  Handwritten functions 

 

Fig. 4.3.1.4. Sample handwritten function 
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The functions used as input for testing the Function Approximator were 

handwritten by members of the Harvard Program for Evolutionary Dynamics on white 

paper with black ink, scanned, and uploaded as individual PNG images.  

 The image filenames serve as the function labels and are therefore manually 

named to reflect the function and its evaluation; for example, Figure 4.3.1.4 would be 

named "4*2-5=3.png".  This is done so that, after the function is parsed into its individual 

symbols, each symbol image file can be automatically labeled with the correct symbol as 

its filename, and the final output of the Function Approximator can be compared against 

the correct function value.    

4.3.2. Function Parser 

The Python image processing library scikit-image is used to divide a PNG image 

of a handwritten function into PNG images of its component symbols.   

The image is converted from RGB to greyscale, then thresholded using Otsu's 

algorithm, which calculates the optimal division between a binary distribution of 

foreground and background pixel values such that the internal variance of both classes is 

minimal. The image is masked using the calculated threshold, and distinct continuous 

foreground areas are identified. 

Each foreground area is bounded and cropped, employing sufficient padding to 

ensure that the non-continuous dots in the division symbols are not identified as 

independent components and bounded separately. The cropped images are saved in a 

folder named for the function, as derived from the function filename. In order to serve as 

labels and conserve the left-right order of appearance of the symbols in the function, 

image filenames are in the form "index | identity.png", where index is the position of the 
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symbol in the function and identity is the symbol itself. For example, the filename for the 

first of the five images generated from Figure 4.3.1.4 would be "0 | 4.png". 

To prepare the images according to MNIST preprocessing directives (LeCun, 

1998), they are first trimmed of all excess whitespace.  The trimmed symbols are then 

pasted onto the center of a square background; if a symbol's width w exceeds its height h, 

the canvas dimensions are wxw, whereas a symbol taller than it is wide is pasted on a 

canvas of dimension hxh.  Finally, the square image is resized to 20x20 pixels and 

centered on a blank canvas on 28x28 pixels. 

4.3.3. MLP 

The first of the two neural networks employed by the Function Approximator is a 

fully-connected n-layer feed-forward perceptron, where n >= 2, layer0 has 784 nodes, 

layern-1 has 14 output nodes, and any optional hidden layers can be of variable size.  As 

networks increase in size and prediction accuracy, there is a corresponding increase in 

processing demands and execution time.  All MLP nodes are of the type "register", which 

are defined as having one input slot of type gen and one output gate of type gen. 

4.3.3.1.  Pre-trained MLPs  

The Function Approximator offers the choice between three pre-trained MLPs of 

sizes [784, 14], [784, 60, 14], and [784, 240, 60, 14]. These were created by saving the 

link weights of MLPs trained with backpropagation on the combined MNIST and math 

symbols database. The Function Approximator MLP is generated by specifying a 

network of the same size as an available pre-trained network and initializing the 

network's links with the saved weights.  
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Fig. 4.3.3.1. Learned symbol representations of a pre-trained MLP 

Images of symbolic representations learned by the pre-trained 2-layer MLP [784, 14], 
created by translating the 784 link weights for each output node into pixel values. Large 

weights correspond to pixels identified as important to recognizing a symbol; white pixels 
indicate large positive weights (a foreground pixel here would strongly imply this 

symbol) and black pixel values indicate large negative weights (a foreground pixel here 
would strongly imply a different symbol). 

If an MLP is desired with dimensions other than those of the three provided pre-

trained networks, new networks can be trained and saved for future use by running the 

"Classifier" recipe on its own.  

4.3.3.2.  MLP flow sequence 

After the file parser has processed a handwritten function into a folder containing 

images of the constituent symbols, each successive image file in the folder is handed to 

the MLP.  A 28x28 pixel image is converted to a flattened array of 784 (28 ´ 28) pixel 

values, which are used as the input activation for the slots of the 784 layer0 nodes. 
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A step function governs the spread of activation through the MLP.  Activated 

nodes, defined as nodes with any slot whose activation > 0, are called by the step function 

to pass their activation values held in their slots to their gates, where the activation is 

subject to the gate function.   

With the exception of output layer nodes, which have identity functions, all MLP 

node gates employ a ReLU function, where 𝑓(𝑥) = &0, 𝑥 ≤ 0
𝑥, 𝑥 > 0. This function returns 0 

for activations equal to or less than 0 and an identity function otherwise, and was selected 

due to its slight advantage in performance (1-2% improvement in classification accuracy) 

over the hyperbolic tangent function (tanh). 

The step function then calls for activation values to be sent from the gate of a 

layern node to the slots of all layern+1 nodes to which it is connected via a link.  The 

activation is multiplied by the link weight before arriving in the layern+1 target slot, which 

sums all activations received from its origin nodes in layern. 

The step function repeats until activation has traveled from the MLP input layer 

through all hidden layers into the last layer of the network, where the activation in each 

of the 14 output node gates is collected into an array. The 14 array indices represent the 

14 possible predictions, with indices 0-9 reserved for the corresponding digits 0-9 and 

indices 10-13 denoting +, -, ´, and ÷, respectively.   

A softmax function, given by 𝜎(𝑥,) = 	
./0

∑ ./22
, is applied to the array to force all 14 

values to sum to 1.  The resultant largest array value indicates the strongest probability 

that the input image depicts the symbol represented by its index, and is therefore selected 

as the prediction of the MLP for that image. 
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4.3.4. ReCoN 

The array of predicted symbol values returned by the MLP as a result of 

processing a handwritten function image is used to construct a ReCoN that represents the 

function in its structure. 

 

Fig. 4.3.4.  Example ReCoN structure 

The identified function 4´2-5 generates this ReCoN. The topmost node, or "root node", 
has two "child" nodes: the left branch represents the function's hierarchical operations, 

and the right branch represents the function value. Grey indicates "leaf" nodes. 

The activation flows through the network hierarchy according to the ReCoN 

specifications, finally activating each of the last layer "leaf" nodes in sequence. When a 

leaf node receives activation, if it holds a value, it pushes that value onto the stack (see 

Figure 4.2.2. and Figure 4.3.5).  If the value pushed is a mathematical operator, the prior 

two values on the stack are accepted as its operands, and the result of the operation is 

pushed to the top of the stack.   
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Only the last leaf node does not hold a value. When it receives activation, it pulls 

its value from the top of the stack. This value is handed to its parent node and compared 

against the function label. If all symbols have been correctly classified, the function will 

be properly executed and return the numeric value specified by the function's label, 

otherwise the value returned by the ReCoN will be incorrect.  

Confirmation of the root node's request is not predicated on a correct or incorrect 

function value; request confirmation depends only on the correct sequence of activation 

spreading through the network to return a value, rather than failing or timing out before a 

value can be returned.  

This may at first seem counterintuitive, but the internal confirmation of a 

hypothesis in a biological neural network does not necessarily indicate that it accurately 

reflects reality, only that the script has executed satisfactorily. Hemispatial neglect, the 

loss of awareness in one side of the field of vision caused by damage to the 

corresponding cerebral hemisphere, provides an extreme example of this principle; when 

asked to draw a clock, individuals with hemispatial neglect will often complete only half 

of the clock face (Chen & Goedert, 2012). In this case, it could be said that the request to 

draw the clock has been confirmed, as the individual believes that the script governing 

clock drawing has been successfully executed, but the confirmation is inaccurate. 

4.3.5. Stack 

In this implementation, the stack is responsible for executing the calculations 

represented by the ReCoN.  It functions as a stacked (Reverse Polish) calculator, 

receiving input values from activated leaf nodes, performing operations in sequence, and 
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pushing the results to the top.  The top result is pulled into the last leaf node when it 

receives activation. 

 

Fig. 4.3.5.  Sequence diagram of stack execution 

The stack execution sequence of the function 4´2-5. The stack calculates 8 from 4´2 
before 5 and - are pushed on top. 3 is then calculated from 8-5, and pulled into the last 

leaf node. 

This implementation provides functionality only for positive input integers in 

functions that are limited to the four basic algebraic operators and executed left-to-right, 

but the stack calculator could be revised to respect order of operations without altering 

the ReCoN structure or training data.  Other possible alterations and extensions are 

discussed in Section 5.1. 
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4.3.6. Output 

When run from a command line interface (CLI), the printed output of the 

Function Approximator provides the function label, the label for each symbol and the 

classifier's prediction for that symbol, the correct value for the function, and the ReCoN 

output with a ✓indicating a correct function evaluation and a ⌧ indicating an incorrect 

function evaluation, as shown in Figure 4.3.6.1. 

 

Fig. 4.3.6.1. Function Approximator CLI output 

Command line output shows results for the classification and evaluation of 4´2-5 

4.4. MESH 

MESH is a graphical editor developed by MicroPsi Industries for instantiating 

MicroPsi agent environments and running neural network agents.  It provides a graphical 

user interface (GUI) in which the Function Approximator component architectures and 

activation spreading can be visualized in 3D.  

The implementation described here is visualized in MESH version 0.2.4; as of this 

writing, a later version is publicly available for download on the MicroPsi Industries 

website (http://www.micropsi-industries.com). 
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4.4.1. MESH Classifier 

The MLP classifier described in 4.2.3. consists of 784 input nodes, n layers of 

hidden nodes, and 14 output nodes.  While this arrangement can be modeled in MESH, 

there are some drawbacks, as demonstrated in Figure 4.4.1.1. 

   

Fig. 4.4.1.1. MLP Classifier in MESH without flow modules 

A 2-layer MLP with 784 input nodes and 14 output nodes. Left: an overview of the 
network; Right, a zoomed-in view with one of the links highlighted. 

Although the zoomed-in view nicely reveals the level of visual detail available in 

MESH, the overlap of 10,976 links is too convoluted to provide an informative 

representation of the entire network.  More importantly, the processing power and time 

required to render any additional hidden layers is prohibitive for a standard-build 

personal computer.  

A workaround can be applied in the form of flow modules.  Flow modules are 

individual computational units that act as functional groups of nodes and together form a 

flow graph.  Flow modules are not only visually compact, they require significantly less 

processing power for MESH to render and run than the equivalent number of individual 

nodes.   
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The MLP classifier in Fig. 4.4.1.2. was adapted for use from a MicroPsi Industries 

demo agent built to classify the MNIST dataset. 

   

Fig. 4.4.1.2. MLP Classifier in MESH with flow modules 

Left: The MLP Classifier is displayed here with a datasource, four flow modules, a 
shallow copy of the flow modules, and printers and plotters for visual output; Right: 
Activation flows from the datasource through the MLP layers and into the printers, 
plotters, and modules that handle network parameters to update for the next epoch. 

The MLP is displayed with a top row of four flow modules, labeled as layers 0 

through 3 and representing a network with 784 input nodes, 3 hidden layers of 150, 100, 

and 50 nodes, and 14 output nodes.  Each of the four flow modules has 784 inputs and 

"hidden" dimensions of 150, 100, 50, and 14, respectively, and the flow graph they form 

is fully connected.  When the last flow module receives activation, all flow graph 

calculations are performed in a single time step. 

Beneath the top row of flow modules is a visually identical row of flow modules.  

This is the shallow copy of the flow graph, which is connected to the validation data and 

computes the network's loss function using categorical cross entropy, which calculates 

H(𝑝, 𝑞) = −∑ 𝑝(𝑥)𝑙𝑜𝑔(𝑞(𝑥))9 , where p is the target vector and q is the vector of 

predictions output by the flow graph.  
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In addition to the datasource module, which represents the combination MNIST 

and math operations dataset, also pictured are a trigger module and execution node to 

induce activation in the network, as well as various debuggers, printers, plotters, and 

various administrative units required to implement gradient descent and update the 

network parameters accordingly. In MESH, the activation flow through the network is 

represented by a glowing animation (see Figure 4.4.1.3). 

 Images of the classification results generated by the printers and a chart of the loss 
function derived from the plotters are saved to a folder for review.   

 

 

Fig. 4.4.1.4. MESH Classifier results and loss function 

Top: Left: Results from the first training epoch; Right: Results from a later epoch. 
Bottom: Final graph of the classifier loss function 
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4.4.2. MESH ReCoN 

A ReCoN can be modeled and run as a stand-alone network in MESH.  In this 

case, activation is simulated by providing sub-activation to the ReCoN root node. 

 

Fig 4.4.2.1. ReCoN in MESH 

ReCoN nodes are shown in blue. An execution node, in yellow, simulates activation to the 
network by sending sub-activation to the ReCoN root node. Actuator nodes, in pink, 

provide the sur-activation necessary for the last layer nodes to respond affirmatively to a 
request for confirmation. 

ReCoN nodes are denoted by spheres with a row of smaller circles above, 

representing slots, and below, representing gates (Fig. 4.4.2.2., left).  ReCoN nodes in 

MESH have four types of slots and gates not included in the nodes used in the Function 

Approximator ReCoNs, but are made available to represent more types of relationships 

between nodes. These additional relationships are not used for the networks discussed in 
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this thesis, but are important to understanding the potential uses for ReCoNs and are 

given further consideration in Section 5.2. 

   

Fig. 4.4.2.2. MESH ReCoN node display 

Left: A ReCoN node with the sub slot highlighted; Right: Highlighting a node displays its 
current level of each activation type. The stronger "glow" of the top node indicates a 

higher level of activation than its three child nodes. 

The MESH GUI allows the controlled script execution characteristic to ReCoNs 

to be easily followed via the animated "glow" depicting activation spreading through the 

network hierarchy. Nodes have three possible levels of "glow", corresponding to low, 

medium, and high levels of activation, respectively. Fig. 4.4.2.3. displays sequential 

excerpts from the activation flow through a ReCoN.  
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Fig. 4.4.2.3. ReCoN activation spreading in MESH 

Top left: Activation moves from the execution node to the ReCoN root node. Actuator 
nodes hold their activation until requested by the nodes in the last layer of the ReCoN; 
Top right: Activation flows into the first and second layers. The successor node in the 

first layer is suppressed by its predecessor from activating its child node in the last layer; 
Bottom left: Activation reaches the last layer nodes, which confirm their parents' requests 
in sequence; Bottom right: Activation has propagated fully through the network and back 
up to the root node, which displays activation values of 1, corresponding to "confirmed". 

The first network step (tracked in the top left corner of the display), introduces 

activation from the execution node to the ReCoN root node. The actuator nodes are also 

active, but hold their activation until they are requested by the nodes in the last layer of 

the ReCoN (Fig. 4.4.2.3., top left).  

In the next step, as it receives continued activation from the execution node, the 

root node activation changes from .2, preparing, to .6, requesting, prompting activation 

to flow from the root node into the first layer and for the first layer nodes to change their 

respective activation values to .2 accordingly. This induces a wait signal to be sent via the 

por link connecting the first layer nodes, which sets successor node activation to .4, 

waiting, while the activation of the predecessor node moves to .6, requesting, and 

activation is released from the predecessor node into the second layer (Fig. 4.4.2.3., top 

right). 



 

62 

A parent node continually requesting confirmation from its children will change 

its activation to .8, pending, until its request is either confirmed or denied. The activation 

level of a suppressed successor node will remain at .4, corresponding to waiting, until its 

predecessor receives the response requested from its child nodes and lifts the wait signal. 

This activation gating prevents the successor node from sending activation to its children 

before the predecessor node has received confirmation from its subnetwork.  

When activation reaches the last layer nodes of the ReCoN, if they are not 

connected to sources that yield positive sur-activation, symbolizing grounded input 

representation, they will respond with an activation value of 0, indicating a failed state.  

This failure propagates backwards through the network, and the root node's request 

would be unconfirmed. In this implementation, the last layer ReCoN nodes are connected 

to actuator nodes that provide the activation necessary for the last layer nodes to confirm 

their parents' requests. Each root node therefore changes its state in sequence to 

confirmed with an activation value of 1, and this activation is sent back through the 

hierarchy (Fig. 4.4.2.3., bottom left) until all requested confirmation has been received. 

Once activation has propagated fully through the network and back up to the root 

node, the activation value of the root node is 1 and the hypothesis it represents is 

considered confirmed (Fig. 4.4.2.3, bottom right).  
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Chapter 5. 

Results and Analysis 

This section provides analysis and evaluation of the Function Approximator 

implementation in general and of ReCoNs specifically, both within the context of the 

Function Approximator and, more broadly, as a potential model for cortical activity. It 

concludes with a discussion of the contributions made by this thesis. 

5.1. Function Approximator 

The Function Approximator recipe and the neural network architecture on which 

it runs were written in Python, a popular language for machine learning. Python was 

chosen not only to allow leveraging of the SciPy ecosystem components, including 

NumPy for matrix manipulation and sci-kit image for image parsing, but to ensure 

language compatibility with MicroPsi2, which was necessary for the MESH visualization 

and desirable for possible future extensions. 

The quality and quantity of available data proved to be a not insignificant obstacle 

in training the MLP classifier. The selected Kaggle dataset of handwritten mathematical 

operator symbols was the only suitable publicly accessible option, and unfortunately (as 

discussed in Section 4.3.1.2.) did not contain enough multiplication or division symbols 

to avoid undue system prejudice towards those operators. Additionally, the stroke width 

of the Kaggle symbols is uniformly significantly narrower than that of most MNIST 

symbols, which likely also contributed to training bias. Despite the practical 
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complications involved in compiling an ideal dataset, if greater classification accuracy 

had been required, it may have been preferable to do so. However, as the Function 

Approximator was built as a showcase and proof-of-concept for ReCoNs, optimizing the 

performance of the MLP classifier was not a primary concern; the classifier achieved 

96% accuracy with 4 layers of size 784, 240, 60, 14 respectively, which was adequate for 

purpose. 

The Function Approximator, as implemented, leaves significant room for 

improvements and extensions. The MLP could incorporate any number of classic 

optimization techniques to enhance performance, or be replaced by a CNN. An improved 

classifier would facilitate the inclusion of more symbols in the training set without a 

prohibitive drop in accuracy, opening possibilities for additional function operations. If 

symbols for left "(" and right ")" parentheses were added, they could be used to indicate 

modifications to the stack calculator's left-to-right function execution; alternatively, or 

additionally, the system could be reorganized to process functions via order of operations. 

At the moment, although the stack calculator can technically handle multiple-digit 

numbers, as well as negative and decimal values, the ReCoNs built from the identified 

function arrays are structured to represent single-digit positive integers only. The choice 

to severely limit the capabilities of the Function Approximator was made to maintain the 

ReCoN structure as a simple and generally translatable abstraction of cortical activity, 

rather than including specific functionalities, such as bit shift representation for multiple-

digit values, that would expand the Function Approximator but obscure or detract from 

the neurobiological model. 
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5.2. ReCoNs 

The Function Approximator (re-)establishes that ReCoNs, as specified in Bach & 

Herger (2015), can be used to hierarchically represent and execute neuro-symbolic 

scripts, characterized here by algebraic functions, and that this can be performed entirely 

locally, without the need for a central control architecture. However, this implementation 

is merely a first step in exploring the full potential offered by the request confirmation 

model of cortical activity. 

As discussed in Section 4.1., the ReCoNs generated by the Function 

Approximator are not implied to be a portrayal of numerical calculation in the brain, but 

are instead intended to be a generalization of a proposed model of hierarchical cortical 

excitation and inhibition during neuro-symbolic script execution. Algebraic functions 

were determined to be a straightforward and easy-to-follow illustrative example, as 

opposed to attempting to depict the ambiguities inherent in more complex scripts, such as 

making a meal or planning a trip, that could equally be represented by this structure. It 

should also be noted that the ReCoN nodes, as implemented, might be considered more 

analogous to a unified collection of cortical minicolumns, or possibly a "macrocolumn" 

(Mountcastle, 1997), than to a single minicolumn; this abstraction could be unraveled if 

desired into a larger and more granular simulation, but is useful here for clarity and 

conciseness in the model. 

The Function Approximator serves as a foundational proof of concept, but does 

not make use of a number of characteristics inherent to ReCoNs that significantly extend 

their functionality. For instance, beyond the sub, sur, por, ret, and gen gates used in the 

Function Approximator, ReCoNs have the capacity to encode additional neuro-symbolic 
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associations, further expanding the options for hierarchical representations. In the same 

way that sub/sur denotes parent/child and por/ret denotes predecessor/successor, cat/exp 

can be used to denote category/exemplar, where the former is a category and the latter is 

an instance of that category, and sym/ref to denote symbol/referent, where the former is a 

symbol and the latter is a concept represented by that symbol; for example, sym/ref is 

useful for linking an object representation with words for that object. These typed links 

enable ReCoNs to structurally encode the complex relationships embedded in higher-

order scripts and schemas. 

In contrast to the ReCoNs described in Bach & Herger (2015), which learned to 

recognize previously visited environments, the link weights of the Function 

Approximator ReCoNs remain static, and the networks do not engage in any type of 

learning. Extending the Function Approximator ReCoNs into a more granular structure 

with adequate numbers of nodes, as suggested above, and imposing a learning rule, 

would allow them to be similarly translated into learning networks. In this case, the 

stacked calculator could be replaced entirely by a ReCoN trained to perform arithmetic 

calculations on the numeric values represented in its subnetworks. 

In the Function Approximator, bottom-up activation is used solely to confirm an 

already made request, but could also serve as stimulus for a directed decision to send top-

down activation through a relevant network. For example, in a reinforcement learning 

environment, the presence of a food item would send bottom-up activation through a 

network in a ReCoN-based agent that recognizes the object as edible, and, depending on 

the agent's environment, simulated urges ("hunger", "tiredness", etc.), and other 

parameters, may inspire the top-down activation of networks that perform the actions 
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necessary to consume the food. Alternatively, if the agent is hungry, it can send top-down 

activation to search for the presence of food in its environment, and receive bottom-up 

activation when it has been located. This modulation of complementary top-

down/bottom-up activation by a sensory-driven motivational system connected to a 

reward architecture is a natural next step for ReCoN development. 

5.3. Contributions 

ReCoNs offer a unique combination of certain structural and functional features 

that may prove useful to the field of biomimetic neural networks. 

The Function Approximator illustrates the proposed role of request confirmation 

in top-down and bottom-up excitation and inhibition between cortical modules when 

executing hierarchical neuro-symbolic sensorimotor scripts. Top-down activation of the 

"root node" of a ReCoN-embodied script leads to its execution, whereas perceptual input 

sends activation bottom-up through related networks. Child and predecessor nodes inhibit 

their parent and successor nodes, respectively, while awaiting confirmation from their 

own subnetworks. This constrained recurrency ensures an ordered spread of activation 

through the hierarchy and enables local control. 

ReCoNs are inherently state-based networks, and, in contrast to those ANNs that 

model neurons as pure functions with link weight as the single parameter, ReCoN links 

and nodes are designed such that they can act as stateful machines unto themselves, 

accepting any number of parameters. This is especially relevant when considering recent 

experimental results that reveal that each biological neuron functions as a collection of 

independent threshold units, with output dependent on stimulation location and origin 
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(Sardi, Vardi, Sheinin, Goldental & Kanter, 2017); with trivial modification, ReCoNs are 

capable of accommodating these variables. ReCoNs are able to model multiple types of 

output signals, which offers the opportunity to simulate both spikes and bursts, or 

oscillatory and non-oscillatory channels, or multiple cell types. 

When compared to existing biomimetic approaches, in some respects ReCoNs 

appear to inhabit a comparable space to capsule networks and the cortical column 

implementation of HTM, which similarly purport to model cortical activity and account 

for the recurrency integral to the function of biological cortical circuits (Gilbert & 

Sigman, 2007; Shu, Hasenstaub & McCormick, 2003). While it is difficult at this stage to 

compare the Function Approximator ReCoNs, which are rudimentary prototypes that do 

not perform learning, with these more sophisticated learning networks, some differences 

are apparent. Unlike capsule networks, which are specialized to address the limitations of 

CNNs in visual recognition, ReCoNs are not structured to perform batch learning, nor 

must they necessarily optimize a single objective function for a specific task, 

characteristics that seem to align them more closely with HTM (Ahmad, 2017).  

However, in contrast to HTM (and to capsule routing), ReCoNs are designed to 

represent objects and concepts at a neuro-symbolic level, encoding partonomic 

associations between symbols with typed links and constrained hierarchical activation 

spreading.  
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Chapter 6. 

Summary & Conclusions 

This thesis proposes ReCoNs, hierarchical neuro-symbolic spreading activation 

networks first introduced in Bach & Herger (2015), as a candidate model for the 

execution of sensorimotor scripts in the cortex. It provides background on both biological 

and artificial neural networks, and surveys existing biomimetic machine learning 

approaches against which ReCoNs can be contextualized. The neurological foundations, 

history, and a full specification of ReCoNs are given, followed by a detailed description 

and visualization of the Function Approximator, a showcase implementation for the 

ReCoNs. Finally, an evaluation and analysis is offered for both the Function 

Approximator and the ReCoNs, along with an exploration of the contributions that 

ReCoNs make to the field of biomimetic machine learning. 

6.1. Directions for future research 

The ReCoNs built for this thesis were constructed with an eye toward eventual 

deployment in MicroPsi2; section 5.2. mentions that a natural next step for ReCoN 

development would be to unlock their learning capacity and use them as the basis for an 

agent with motivation and reward systems that can freely explore simulated 

environments, which can be accomplished within the existing MicroPsi2 architecture. 

Another possible avenue of exploration would be to incorporate ReCoNs with one 

or more other types of neural networks, such as Generative Adversarial Networks 
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(GANs), essentially employing ReCoNs as a locus of control for more specialized 

functionalities. 

6.2. Conclusion 

This thesis represents a preliminary step toward establishing the usefulness of 

ReCoNs and the request confirmation model of spreading activation; further work is 

necessary to determine their full potential, both as a technology and as a candidate for 

modeling cortical activity. However, Chapter 2 of this thesis covers a number of field-

defining applications inspired by prior architectures. ReCoNs may prove to be a valuable 

contribution in their own right, but it is hoped regardless that they will serve as 

groundwork for future research into cortical activity and biomimetic learning systems. 
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Appendix A. 

Code Resources 

The following is a reproduction of an iPython notebook3 documenting the 

foundational neural network architecture on which the Function Approximator runs. 

NODENET 
 
This document describes Nodenet, a state-based neural network generator that creates 
linked networks of nodes. A network can be of any structure; configuration specifications 
come from predefined scripts ("recipes"). 

The recipe examined here constructs a simple multilayer perceptron (MLP) with three fully-
connected layers built for classification of a combination of MNIST and images of addition, 
subtraction, multiplication and division symbols selected from a Kaggle handwritten math 
symbols dataset. 
 

 
 
The desired number of nodes per layer is entered in the network_dimensions array. 
The [784, 60, 14] specifications above will build a 3-layer network with 784 nodes in 
the input layer, 60 nodes in the hidden layer, and 14 nodes in the output layer. 

Looking more closely at build_nodenet(), we see that it first generates data about 
nodes from the network_dimensions, then uses that data to add nodes to the nodenet: 
 

 
 
Once the nodes have been added to the nodenet, link data is generated from information 
about the nodenet, then used to create links between the nodes: 
                                                
3 The notebook, along with code for the Function Approximator, can be found at 
https://github.com/kvgallagher/nodenet 
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NODES 
Nodes are fundamental network units, generally arranged in layers, that perform transfer 
functions on one or more aggregated inputs. They have a unique UID, a name, an activation 
value, a node function (described later), and vectors of slots and gates. 
 

 
 
Nodes receive input from the nodes they are connected to in the previous layer via slots: 
 

 
 
Slots have an activation value representing their received input and a name that indicates 
their type. The type of a slot indicates a neuro-symbolic relationship between it and the 
origin gate from which it receives activation. 

Although the slots used in the MLP recipe described here are uniformly of type gen, 
indicating a general associative relationship, other network structures use more types, such 
as sub/sur, denoting a parent/child relationship, or por/ret, denoting a 
predecessor/successor relationship. 
 

 
 
Nodes send their output activation to the nodes they are connected to in the next layer via 
gates: 
 

 
 
Like slots, gates also have an activation value and a name indicative of their type (gate 
types are identical to slot types). Gates can additionally accept parameters, such as 
threshold value, which will prevent a gate from releasing its activation unless or until it 
meets or exceeds the threshold. 

The gate function performs the transformation of the node input. The functions specified 
here are rectifier (ReLU)), used in the MLP for all nodes except for the output layer nodes, 
which have an identity function. 
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Nodes can also be of different types, which are defined by the number and types of their 
slots and gates. The nodes used in the MLP are uniformly of type register, which has a 
single gen slot and a single gen gate. 
 

 

LINKS 
Links connect a gate of an origin node to a slot of a target node in the next layer. 
 

 
 
Links have a unique UID, an origin node and gate, a target node and slot, and a weight 
value that acts as a coefficient by which the activation traveling over the link is multiplied. 

The weights of links in the network are key to its learning capacity. As the network receives 
feedback on its predictions, weights are tuned via backpropagation (discussed in RUN) 
according to the difference between the predicted value and the actual value. This adjusts 
the relative influence of the origin output on the target input. 

In the MLP, links are initialized randomly but in a uniform distribution within a constrained 
range of -.125 to .125, which was determined to be optimal for learning. 
 

BUILD NODENET 
When build_nodenet() is called, it uses the number of layers and number of nodes per 
layer specified in network_dimensions to generate a list of layers, each a list of the name 
and type for each node assigned to that layer. 
 

 
 
This list is then used to create layers of actual node objects and add them to the nodenet: 

 
 
node_factory creates the nodes, specifying gates with ReLU functions for all nodes other 
than those in the last layer, which are created with identity gate functions: 
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The get_(output)_slots_and_gates functions call slot_factory and 
gate_factory, which create the requested slots and gates, respectively. 
 

 
 
The list of lists (representing layers) of nodes is added to the nodenet, and links are created 
between the nodes: 
 

 
 
generate_link_data generates a list of dicts that contain the information needed to 
create each link: the name of its origin node and gate and its target node and slot. In the 
MLP, the gen slot of every node in a layer is connected to the gen gate of every node in the 
preceding layer. 

The link data is then used to create layers of links and add them to the nodenet: 
 

 
 
The nodenet itself now has a unique UID, a name ("nodenet"), a list of layers of nodes 
(self.layers) and a list of links (self.links_list) that connect them, and an 
unlayered dict of nodes that is helpful for administrative purposes (node_dict). 

Additionally, the nodenet has a learning_rate, set to .05, which tells the network how 
much it should change its weights after each prediction, and a RATE_DECAY, which 
modifies the learning rate over time so that the network weights fluctuate more at first, as it 
starts to "figure out" its parameters, and slowly change less and less as it receives 
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feedback and begins to settle on weights that make better predictions. 
 

 

SET ACTIVATION 
The nodenet is now an MLP ready to classify our dataset, which consists of images of 
handwritten digits (0-9) and addition, subtraction, multiplication, and division symbols, for a 
total of 14 categories (10 digits + 4 symbols). 

The dimensions of [784, 60, 14] were set for a reason: the output layer has 14 nodes, 
each representing a possible digit or symbol that an image could depict. The images in the 
dataset are 28px x 28px = 784px total. Each of the 784 nodes in the input layer will receive 
a single pixel from the image. 

The images are represented as multidimensional arrays of pixel values with accompanying 
one-hot encoded arrays of labels, where the first 10 indices represent the digits 0-9 and the 
last 4 indices represent the mathematical operators. 

The images are fed one by one into the nodenet: 
 

 
 
set_activation first flattens the multidimensional image into a single array of pixel 
values, then normalizes the values between 0 and 1, and sets the slot activation of each of 
the 784 input nodes to be equal to the pixel at the corresponding index in the flattened 
array: 
 

 

 
RUN 
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With the input activation set, the nodenet is ready to predict the image that the activation 
represents.  
 
The end result of run() is a one-hot encoded array of 14 values. The highest value 
indicating the strongest possibility that the image depicts the digit or symbol represented by 
that index. This array is the output of a step function: 
 

 
 
For each layer in the nodenet, _step_function() calls a net_function(): 
 

 
 
The net_function() calls a node_function() for all of the nodes in the nodenet that 
received activation in the preceding time step. In turn, the node function for each node 
passes the received activation to its gates via their gate function: 
 

 
 
The gate function performs its transform on the activation, and 
_step_function() calls _link_function(), which checks all links in the nodenet to 
see if their origin gate received activation. If so, the origin gate activation is multiplied by the 
link weight and the product is sent to the target slot of the node in the next layer. 
 

 
 
When activation reaches the last layer of nodes, _step_function() gathers the 
activation from each node into an array and applies a softmax function, which creates a 
probability distribution by forcing all values in the array to sum to 1. The index of the highest 
value in the softmax array indicates the strongest probability that the input image depicts 
the digit or symbol represented by that index. 
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TRAINING 
At first, the nodenet output is meaningless; it requires feedback on its predictions to 
improve. This feedback is calculated by taking the difference of the prediction and the 
actual desired output, and feeding it backwards through the network via backpropagation. 

Backpropagation proportionally distributes "credit" for successful predictions or "penalty" 
for inaccurate predictions in the form of updates to the link weights. As stated in LINKS, link 
weights determine how much impact a particular node will have on the calculation of the 
nodes it is connected to in the next layer. 

_update_weights() handles the error calculation and credit assignment for the last layer 
of links: 
 

 
 
A one-hot encoded error_array is created from the difference between 
the target_output label and the nodenet prediction. For each node in the last layer, the 
weights of all links that connect to that node are multiplied by the value in the error array at 
the node index, as well as the derivative of the ReLU function applied by the gates of the 
connected nodes in the preceding layer. 

If the network has hidden layers, _update_weights() calls _backprop() to send the 
error signal back through the rest of the network: 
 

 
 
Over time, the nodenet weights converge on values that result in accurate predictions. 
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Appendix B. 

Sample ReCoN Activation Sequence

The activation sequence of a ReCoN computing a 2-operator function (4´2-5). 
 
START 
 
root_node 0.2 - preparing 
root_node 0.6 - requesting 
root_node 0.8 - pending 
 
layer1ops_node0 0.2 - preparing 
layer1ops_node1 0.2 - preparing 
 
layer1ops_node0 0.6 - requesting 
layer1ops_node1 0.4 - suppressed 
 
layer1ops_node0 0.8 - pending 
layer2node0 0.2 - preparing 
layer2node1 0.2 - preparing 
layer2node2 0.2 - preparing 
 
layer2node0 0.6 - requesting 
layer2node1 0.4 - suppressed 
layer2node2 0.4 - suppressed 
 
layer2node0 0.8 - pending 
layer3ops_node 0.2 - preparing 
 
layer3ops_node 0.6 - requesting 
 
layer3ops_node 0.8 - pending 
layer4node0 0.2 - preparing 
layer4node1 0.2 - preparing 
layer4node2 0.2 - preparing 
 
layer4node0 0.6 - requesting 
layer4node1 0.4 - suppressed 
layer4node2 0.4 - suppressed 
 
layer4node0 0.8 - pending 
layer5node0 0.2 - preparing 
layer5node0 0.6 - requesting 
layer5node0 0.8 - pending 
layer5node0 1 - confirmed 
 
layer4node0 1 - confirmed 
 
layer4node1 0.6 - requesting 
 
layer4node1 0.8 - pending 
layer5node1 0.2 - preparing 
layer5node1 0.6 - requesting 
layer5node1 0.8 - pending 
layer5node1 1 - confirmed 
 

layer4node1 1 - confirmed 
 
layer4node2 0.6 - requesting 
 
layer4node2 0.8 - pending 
layer5node2 0.2 - preparing 
layer5node2 0.6 - requesting 
layer5node2 0.8 - pending 
layer5node2 1 - confirmed 
 
layer4node2 1 - confirmed 
 
layer3ops_node 1 - confirmed 
 
layer2node0 1 - confirmed 
 
layer2node1 0.6 - requesting 
 
layer2node1 0.8 - pending 
layer5node3 0.2 - preparing 
layer5node3 0.6 - requesting 
layer5node3 0.8 - pending 
layer5node3 1 - confirmed 
 
layer2node1 1 - confirmed 
 
layer2node2 0.6 - requesting 
 
layer2node2 0.8 - pending 
layer5node4 0.2 - preparing 
layer5node4 0.6 - requesting 
layer5node4 0.8 - pending 
layer5node4 1 - confirmed 
 
layer2node2 1 - confirmed 
 
layer1ops_node0 1 - confirmed 
 
layer1ops_node1 0.6 - requesting 
 
layer1ops_node1 0.8 - pending 
layer5node5 0.2 - preparing 
layer5node5 0.6 - requesting 
layer5node5 0.8 - pending 
layer5node5 1 - confirmed 
 
layer1ops_node1 1 - confirmed 
 
root_node 1 - confirmed 
 
END
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Glossary 

Action potential  An electrical impulse that travels down the axon as neuronal output. 

Afferent  Channels that conduct substances or information into (vs. out of) a system. 

Artificial General Intelligence (AGI)  The theorized capacity of a machine to perform 

all intellectual tasks at or beyond a human level. 

Artificial Neural Network (ANN)  Computing systems wherein nodes are connected by 

weighted links, used to perform learning or more generally simulate the structure 

and function of biological neural networks. 

Autoencoder  An ANN whose output is a reconstruction of its input. 

Backpropagation  A training technique for ANNs that proportionally distributes credit 

for prediction success or error backwards through the network. 

Biomimetic  The quality of emulating biology. 

Bit shift  A bitwise operation in which digits are shifted to the left or right, resulting in a 

new value for the series of bits that have been operated on. Can be used to 

perform arithmetic computations. 

Bottom-up activation  Denotes the flow of activation from lower-level representations, 

generally perceptual input from sensory modalities, to higher-level 

representations. 

Capsule  A group of neurons whose outputs represent different instantiation parameters 

of the same entity. 

Categorical cross entropy  An algorithm to define a loss function by comparing the 

probability distribution of the predicted values against the true probability. 
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Chain rule  A formula to calculate the derivative of the composition of two functions. 

Composition operator  An operator that maps functions to functions. 

Connectionist A.I.  Large networks of simple units connected by tunable links that have 

become synonymous with modern machine learning. 

Convolution  A mathematical operation that produces the integral of the product of two 

functions after one is translated. In CNNs, used to calculate the correspondence of 

a feature to a selected part of the image. 

Convolutional Neural Network (CNN)  An ANN that alternates feature extracting 

convolutional layers with sub-sampling layers that reduce input dimensions. 

CNNs dominate the field of image analysis.  

Cortical column  A vertical module in the cortex proposed by Vernon Mountcastle, 

suggested to be composed of minicolumns. 

Deep learning  Learning performed by ANNs with many layers of artificial neurons. 

Dynamic routing  An algorithm used in capsule networks to determine the most 

consistent interpretation of information between competing capsules. 

Encoder  A technique that encodes an input sequence to an internal representation. 

Feature maps  Matrixes that capture regions with salient extracted features. 

Feedforward  Denotes that input data moves through the network in only one direction. 

Filter  A matrix of weights convolved over a larger input matrix in a CNN for learned 

feature extraction; also known as a "kernel". 

Flow modules  Individual computational units in MESH that act as groups of nodes. 

Fully-connected  Refers to a network, or network layer, where all nodes are connected to 

all other nodes. 
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Gate  A component of an artificial neuron from which output is passed to a link. 

Gradient descent  An optimization algorithm that seeks the parameters that best 

minimize an objective function (in backpropagation, generally the loss function). 

Grammar  Very generally, a set of production rules for symbolic output. 

Hebbian learning  A type of unsupervised learning where connections between neurons 

are strengthened based solely on correlated firing between the neurons they 

connect. Often paraphrased as “neurons wire together if they fire together.” 

HTM  A theory of intelligence developed by Jeff Hawkins that serves as the basis for 

machine learning technology. 

Identity function  A non-transformative function, denoted by x = x. 

Kernel  See “Filter”. 

Link  A connection, often weighted, between two network units. 

Lobe  A specialized region of the cerebrum. 

Long Short-Term Memory (LSTM)  A type of RNN where state is managed by a series 

of gates, allowing the network to maintain a representation over time of its past 

input sequences without interference from new inputs. LSTMs have been field-

defining in speech recognition and language processing.  

Loss function  A function that calculates a penalty to a learning system, generally based 

on the difference between the expected output and the system’s prediction. 

Machine learning  The field of computer science concerned with giving machines the 

ability to autonomously draw increasingly accurate predictions from prior 

experience. 
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McCulloch-Pitts model  A simple linear threshold neuron model developed in 1943 by 

Warren McCulloch and Walter Pitts based on observations from theoretical 

neurophysiology. 

Membrane potential  The voltage difference between a neuron's interior and its exterior 

environment that gates its inclination to fire. 

Memristor  A circuit element commonly used in neuromorphic devices that emulates the 

plasticity and timing dependence of synapses in the brain. 

MESH  A graphical editor developed by MicroPsi Industries for instantiating MicroPsi 

agent environments and running neural network agents. 

MicroPsi  A cognitive architecture based on Dietrich Dörner’s PSI theory designed to 

provide a framework in which to run and test ANN-based agents.  

Minecraft  An online video game environment useful for artificial agent exploration. 

Minicolumn  A vertically interconnected group of ~80-100 neurons thought to act as 

basic computational units in the cortex. 

MNIST  A database of handwritten digits developed by Yan LeCun, commonly used to 

train and test machine learning systems. 

Multilayer perceptron (MLP)  A fully-connected feedforward ANN with one or more 

hidden layers, typically trained by backpropagation. 

Neocognitron  The ANN predecessor to CNNs, inspired by research on receptive fields 

in the visual cortex. 

Neocortex  The largest region and outer layer of the human cerebral cortex, associated 

with higher-order cognitive functions. 

Neuro-symbolic  Denotes the representation of symbolic knowledge in the brain.  
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Neuromorphic hardware  Biologically inspired devices that can be digital, analog, or 

hybrid. Famous implementations include the University of Manchester's 

SpiNNaker and IBM's TrueNorth. 

Neuron  An electrically excitable cell that serves as the basic unit of the nervous system. 

Neuroplasticity  The dynamic and continuous adaptability of the brain. 

Node  A network unit that emulates a biological neuron. 

Normalization  Restructuring data to make it more internally regular. 

Numerosity  The perceived magnitude of a stimulus. 

Perceptron  A linear classifier developed in 1957 by Frank Rosenblatt as an extension of 

the McCulloch-Pitts neuron model. 

Pooling  A type of sub-sampling. A favored pooling algorithm in CNNs is max pooling, 

which selects the largest value within the filter for the corresponding position in 

the feature map. 

Pose  The spatial relationship between features, relevant to image analysis. 

Receptive field  The region of a visual field to which a particular neuron is sensitive. 

Recurrency  Denotes the presence of directed cycles. 

Recurrent Neural Network (RNN)  ANNs that incorporate directed cycles. 

Reinforcement learning  A learning paradigm that focuses on encouraging behaviors 

that maximize a reward function rather than penalizing suboptimal decisions with 

a loss function. 

Request Confirmation Network (ReCoN)  Hierarchical spreading activation networks 

with constrained top-down/bottom-up recurrency proposed as a possible model 

for cortical activity during execution of neuro-symbolic sensorimotor scripts. 
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Request confirmation  The protocol governing the spread of ReCoN activation. 

Schema  A neuro-symbolic representation of objects or events that organizes categories 

of information and relationships between them. 

Script  A category of sensorimotor schema that encodes key sequences of events and the 

relevant actions necessary to fulfil behavioral routines and activities. 

Semantic  Relating to the meaning or interpretation of logic. 

Sensorimotor  Involving both the sensory and motor pathways. 

Shift-invariance  The quality of robustness against (minor) displacements in input, 

generally used in association with CNNs. 

Slot  A component of an artificial neuron into which input arrives. 

Softmax  A function used to force values in an array to sum to zero for probability 

distribution, with the largest array value indicating the strongest probability. 

Sparse Distributed Representation (SDR)  Used in HTM, an array of bits where each 

bit index has a specific semantic meaning encoding a feature of the input data. 

Spike-Timing Dependent Plasticity (STDP) A biologically plausible learning 

paradigm, emulated in SSNs, that locally adjusts link weights based on the 

relative timing between a neuron receiving activation and firing. 

Spike  The short voltage increase output by a firing neuron. Depending on the literature, 

can be considered analogous to "action potential". 

Spiking neural network (SSN)  An ANN that emulates the spiking nature of biological 

neurons. 

Stack  An abstract data type that represents a last in, first out ordered collection of 

elements. 
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Stacked calculator  A calculator that implements Reverse Polish notation, where 

operands follow their operators. 

Step function  A function with a value that is constant during given intervals and 

changes with each interval. 

Sub-sampling  A process employed by CNNs to reduce input dimensionality. 

Supervised learning  A learning paradigm wherein accurate labels are provided 

alongside the input data. 

Symbolic A.I.  Networks that focus on developing symbolic representations and 

associations that can serve as the basis for general knowledge acquisition. 

Synapse  A communication interface between connected neurons. 

Threshold  An internal variable in an artificial neuron that mimics membrane potential in 

a biological neuron, preventing the neuron from firing until the threshold value 

has been met. 

Top-down activation  Denotes the flow of activation from higher-level representations 

to lower-level representations, typically but not necessarily as the result of 

intentional direction. 

Unsupervised learning  A learning paradigm wherein a network converges on a function 

based on statistical regularities in unlabeled input data. 

Weight  The relative contribution of a particular input. In an ANN, this is typically 

represented as a coefficient on a link by which passing activation is multiplied.  


