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Abstract 

Growing attention has been drawn to energy use forecasting for smart grid 

applications. Among different modeling methods of predicting building energy use, 

Gaussian process (GP) regression has its advantages since it not only outputs the mean 

value of the prediction, but also the confidence range. In this study, I have developed a 

web application that allows users without programming skills to predict and visualize 

energy demand through GP regression. The web application implements both baseline 

prediction and next-day prediction. This study also explores the visualization techniques 

that facilitate the analysis of energy consumption patterns and transform the data into 

informative insights. This thesis presents two case studies to demonstrate the use of the 

web application and discusses the prediction accuracy. The first case study predicts 

electric energy, chilled water and steam consumption of a campus building. The second 

case study predicts the next-day electric energy demand of a high-tech industry area.  
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Chapter I. 

Introduction 

1.1 Background 

There is growing attention drawn to forecasting building energy usage as it can be 

applied to fault detection and diagnosis1, operation optimization and demand response in 

a smart grid. Energy use forecasting has been widely used in building commissioning to 

determine retrofit savings (Cohen & Krarti, 1995; Kissock, Reddy, & Claridge, 1998). It 

is also essential in fault detection since a baseline prediction is necessary to detect 

abnormalities in energy consumption (B. Yan & Malkawi, 2013). The ability to 

accurately forecast demand-side loads plays a critical role in electric power systems, 

especially since the future power grid is expected to provide unprecedented flexibility in 

how energy is generated, distributed and managed (Burger & Moura, 2015; Jetcheva, 

Majidpour, & Chen, 2014). Power plant level forecasting is crucial to the planning and 

operation of utility companies, while building-level load forecasting is crucial to building 

owners to reduce the electricity charges by optimizing electricity purchase strategies. 

Forecasting both levels is important for design of microgirds and intelligent distribution 

systems as well as the implementation of demand response (Kwac, Flora, & Rajagopal, 

2014). 

                                                
1 Fault detection and diagnosis is a process of monitoring a system, determining whether a fault has occurred 
and which fault occurred or the cause of the observed out-of-control status. (Chiang, Leo H., Richard D. 
Braatz, and Evan L. Russell. Fault detection and diagnosis in industrial systems. Springer Science & Business 
Media, 2001.)  
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1.2 Literature Review 

The literature is rich with forecasting methods for grid-level and building-level 

loads. Perhaps the most attention has been given to the approaches such as artificial 

neural networks (ANN), Support Vector Regression (SVR) and Autoregressive Integrated 

Moving Average (ARIMA) models (Burger & Moura, 2015). Multiple Linear 

Regression, Fuzzy Logic, Decision Trees, and k-Nearest Neighbors (k-NN) methods are 

also widely used (Burger & Moura, 2015; Majidpour, Qiu, Chu, Gadh, & Pota, 2015). 

There has been a surge of interest in Gaussian process (GP) modeling following recent 

advances in the machine learning community (Neal, 1995; Rasmussen, 1996). Gaussian 

Processes have been successful in solving many real-word data modeling problems 

(MacKay, 1997). Recently, Gaussian process modeling has been adopted to forecast 

thermal dynamics and energy consumption in buildings (Kim, Ahn, Park, & Kim, 2013; 

Manfren, Aste, & Moshksar, 2013; J. Yan, Kim, Ahn, & Park, 2013).  

Leith, Heidl, and Ringwood (2004) examined models based on GP priors for 

electrical load forecasting. In their GP models, the features are the order of the data point 

𝑖 and the electrical load of the previous time step 𝑦%&'. The covariance functions account 

for trend, seasonal component, autocorrelation and noise in the data. They compared the 

prediction accuracy of using Basic Structural Models (BSM) and Seasonal Auto-

Regressive Integrated (SARI) models with GP models for weekly electrical demand from 

a mixture of domestic, commercial and industrial users in Ireland. The GP results were 

better than BSM and SARI models.  

Gray and Schmidt (2016) developed a GP regression model to predict the day-

ahead hourly zone temperature in a building. Their study uses synthetic data simulated by 
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TRNSYS (A TRaNsient SYstems Simulation Program2). The input variables include 

ambient temperature, solar gains, heating medium mass flow, number of occupants, hour 

of day, day of week, heating schedule and calculated zone temperature of previous days. 

There are 18 weeks of data for training and 10 for testing. The study compares models 

with different training periods: 72-hour (three days), 168-hour (one week), 504-hour 

(three weeks) and 1008-hour (six weeks). Longer training periods lead to lower day-

ahead prediction errors. The study also compares GP regression with a grey-box model. 

The grey-box model is a series of partial differential equations that describe thermal 

dynamics. It is based on physical principles but simplifies the mathematical system 

description by lumping certain parameters. When using a training period of three weeks 

or longer to predict the day-ahead zone temperature during occupied hours, GP achieves 

a lower prediction error than the grey-box model. However, in their case study, the grey-

box model has a lower total prediction error, requires less training and is less sensitive to 

input data not present in the training dataset than GP. The sensitivity to unknown data is a 

limiting factor for GP prediction, especially when a reduced amount of training data is 

available. 

Heo, Choudhary, and Augenbroe (2012) presented a Bayesian approach, which 

involves GP regression, to calibrate normative energy models. The mathematical model 

is based on the work of Kennedy and O'Hagan (2001). The GP formulation is used to 

compute the likelihoods 𝑝 of observations 𝑦 given model parameters	𝜽, 𝑝(𝑦|𝜽). In their 

case study, 𝜽 includes window opening, indoor temperature during heating, infiltration 

rate and discharge coefficient. The 𝑦 variable to be calibrated is monthly gas 

                                                
2 http://sel.me.wisc.edu/trnsys/ 
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consumption in their study. Later Heo and Zavala (2012) developed a Gaussian process 

modeling framework to determine energy savings in measurement and verification 

(M&V) practices. Burkhart, Heo, and Zavala (2014) extended the Heo and Zavala (2012) 

research by incorporating input uncertainty using a Monte Carlo expectation 

maximization (MCEM) framework. 

1.3 Prior Work 

In my PhD dissertation work, I predicted building energy consumption using GP 

regression (B. Yan, 2013; B. Yan & Malkawi, 2013) with a 90-day building energy 

demand and weather dataset. The targets were hourly chilled water use rate (W/m2) and 

hourly steam use (W/m2). The input features included outside air dry-bulb temperature 

(°C), humidity ratio (kg/kg) and hour of day which is represented by sin 12∙hour
14

 and 

cos 12∙hour
14

. The outcomes consisted of predictive mean and uncertainty range in the 

form of 95% confidence region, as shown in Figure 1. I also compared the accuracy of 

GP regression and neural networks. The results of ten-fold cross validations of different 

predicting period are shown in Figure 2. My PhD thesis also explored GP prediction with 

uncertain predictive input noise and the use of GP prediction as a baseline in fault 

detection. However, the work in my PhD thesis was preliminary and the dataset was 

limited. The study mostly relied on EnergyPlus3 simulation to generate synthetic data. 

There was no visualization component involved to help discover underlying patterns of 

data. No web application tools were developed in my PhD thesis. 

                                                
3 EnergyPlus™ is a whole building energy simulation program that engineers, architects, and researchers use 
to model energy consumption. The models in EnergyPlus are physics-based. More details can be found here: 
https://energyplus.net/ 
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Figure 1 Illustration of 24-hour prediction of chilled water and steam use 

  

Figure 2 Comparison of 𝑹𝟐 values of Gaussian processes and neural networks 
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Figure 3 Accuracy comparison of different machine learning methods for hourly and 

daily prediction 

 

During my course work for this MLA degree, I analyzed the Gund Hall (Harvard 

Graduate School of Design) data with other two teammates for CS109 (Data Science) 

final project4. Using the energy consumption data from 07/01/2011 to 10/31/2014, we 

trained different models to predict daily and hourly energy consumption using linear 

regression, support vector regression, GP regression, random forests and k-nearest 

                                                
4 http://cs109-energy.github.io/ 
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neighbours. Figure 3 shows the prediction accuracy of different machine learning 

methods in this case study. The results of the comparison cannot be readily generalized to 

other cases without further research. Figures 4 and 5 show some preliminary exploration 

in visualization. My CS-E81 (Machine Learning) final project explored the prediction of 

campus-level electric energy consumption using random forests and GP regression. We 

used data from July 2014 to February 2015, approximately 7 months (one month missing) 

data as the training set, and March 2015 to May 2015 approximately 3 months data as the 

testing set. The training R2 score is 0.95 and the prediction R2 score is 0.74 ± 0.16 for 

random forests and 0.77 ± 0.12 for GP regression. We have a website hosted on Github 

for CS109 final project. After launching the website, I received several inquiries from 

students and researchers who would like to know more about this project. According to 

Google Analytics shown in Figure 6, there have been almost 10,000 page views from 10 

countries in the past two years. 

 

Figure 4 Visualization of Gaussian process prediction implemented in Matplotlib Python 

module 
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Figure 5 Visualization of electric energy consumption pattern 

 

Figure 6 Google analytics statistics of CS109 final project website visits 
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There are still several limitations in our final projects of CS109 and CS-E81 due 

to the time constraint. The limitations are in the follow aspects: 

1. Algorithm: GP regression could be a useful tool for engineers to forecast building 

energy demand. The engineers in building or energy industry might not be 

machine learning experts. Therefore, a guideline on the workflow including how 

to select features would be helpful. In our CS109 and CS-E81 projects, I didn’t 

perform feature selection but only tried several different feature combinations 

based on my own domain knowledge. In my PhD and Postdoc projects, I did not 

investigate the feasibility of adopting time series modeling methods, either. 

2. Implementation: For my PhD thesis, I implemented GP regression through a 

Matlab toolbox developed by Rasmussen and Nickisch (2015). In our CS109 and 

CS-E81 projects, I switched to a Python module, Scikit-learn5. Since the data 

wrangling is done in Python, it is much easier to use the same programming 

language for GP regression, but there are downsides. The GP regression in Scikit-

learn module is less recognized than the Matlab toolbox developed by Rasmussen 

and Nickisch (2015), because the work of Rasmussen (2006) is much more 

frequently cited. The implementation of GP regression in the Scikit-learn module 

is based on a translation of the DACE Matlab toolbox (Lophaven, Nielsen, & 

Sondergaard, 2002). Users need to specify the lower and upper bounds of 

hyperparameters in GP regression, which requires manual tuning and additional 

cross-validation. I recently found a Python library for GP regression called 

                                                
5 http://scikit-learn.org/stable/ 



 

10 

GPflow6. GPflow uses Google TensorFlow7 to search for the hyperparameters in 

GP regression. Its implementation seems to be similar to Rasmussen and Nickisch 

(2015)’s Matlab toolbox.  

3. Visualization: This can help users find underlying patterns in data and thus help 

with model development. The visualization implemented in Python Matplotlib for 

CS109 was static. There was no user interaction. The visualization was hard-

coded and therefore users will not be able to use that to view their own data such 

as energy demand patterns and trends unless they change the code.  

Inspired by the considerable attention our website of CS 109 project has drawn, I 

have continued to work on this topic for my MLA thesis. According to my knowledge of 

the existing research and my experience of two previous projects, there are three areas in 

which I could make some contributions. First, the existing research about using GP in 

building energy demand prediction is still very limited compared with that of using other 

widely used machine learning techniques such as ANN and SVR. A workflow including 

feature selection is yet to be developed. Second, for users without programming 

experience, a web application will enable them to develop GP regression models without 

coding. GP toolboxes in Matlab, Python, R, C and C++ are available (Rasmussen, 2011), 

but they all require programming to some extent. A user-friendly web application 

implemented with recent technologies is still lacking. Last, there is no discussion about 

effective visualization methods that could assist in discovering energy consumption 

patterns and understanding prediction outcomes. 

                                                
6 http://gpflow.readthedocs.io/en/latest/ 
7 https://www.tensorflow.org/ 
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1.4 Contribution 

The main contribution of this thesis is a web application that allows users to 

predict and visualize energy demand through Gaussian process regression. Although the 

web application is designed for energy demand prediction, it can be applied to any time 

series data with a single output. The prediction types implemented in the web application 

include baseline prediction8 and next-day prediction. The web application highlights 

visualization techniques designed for pattern discovery and model tuning. It also utilizes 

popular technologies including Tensorflow. This allows the possibilities of integrating 

other machine learning models, such as a deep neural network into the app in the future.  

This thesis advances my prior work by using new technologies to improve the 

design and the performance of a prediction tool. I also explore the visualization 

techniques that facilitate the analysis of energy consumption patterns and transform the 

data into informative insights. In terms of algorithms, the web application adds next-day 

prediction. 

1.5 Outline 

Chapter 2 first reviews the mathematical form of Gaussian process regression. 

Then it discusses how to deal with feature selection and time series predictions in 

Gaussian process regression. Chapter 3 shift the attention to the web application, which is 

the core of this thesis. It first presents the overall functions of the web app, then discusses 

the technology choices. Section 3.3 introduces the implementation details, front-end and 

back-end design. Chapter 4 illustrates the use of the web application through two case 

                                                
8 See Section 2.4 for the definition of baseline prediction. 
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studies. Finally, Chapter 5 concludes this thesis with a discussion on interesting future 

directions for the web application as well as the algorithm development.



 

 

Chapter II. 

Algorithm 

This chapter reviews the basic mathematical form of Gaussian process regression 

and discusses how to deal with feature selection and time series predictions. Section 2.1 

describes the GP regression based on existing studies. Section 2.2 is from a publication of 

my Postdoc work (B. Yan, Li, Shi, Zhang, & Malkawi, 2017) and therefore is not part of 

the work of this thesis. It is here because the equations and process in Section 2.1 and 2.2 

are used in the web application. Section 2.3 introduces the method of time series 

prediction used in this thesis and Section 2.4 discusses the difference of two types of 

predictions in the web application. 

2.1 Standard Gaussian Process Regression 

The Gaussian process regression models used in this thesis are based on the work 

of Rasmussen & Williams (2006). A Gaussian process is specified by a mean function 

and a covariance function 𝑘(𝐱%, 𝐱:). The choice of mean function in this study is the zero 

function, and the covariance function is a squared exponential kernel,  

𝑘(𝐱%, 𝐱:) = 𝜎=1 exp −
1
2 𝐱% − 𝐱:

D𝑊&' 𝐱% − 𝐱:  (1) 

where 

 𝑊 = diag 𝑤'1, 𝑤11, … , 𝑤K1  (2) 
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with parameter 𝑤 defining the characteristic length-scale in covariance function. 𝐷 in 

Equation 2 is the number of features. The characteristic length-scales roughly define how 

far apart the input values 𝑥%,N and 𝑥:,N can be for the response values to become 

uncorrelated, where 𝑥%,N is the value of the 𝑑th feature of the 𝑖th data point . Inputs that 

are judged to be close by the covariance function are likely to have similar outputs. A 

prediction is made by considering the covariance between the predictive case and all the 

training cases 𝐤 𝑋, 𝐱∗  (Rasmussen, 1996). For a noise-free input 𝐱∗, predictive posterior 

mean and variance are (Rasmussen & Williams, 2006) 

 𝔼 𝑓∗	|	𝑋, 𝐲, 𝐱∗ = 𝐤 𝑋, 𝐱∗ D(𝐾 + σY1𝐼)&'𝐲 (3) 

 𝕍 𝑓∗	|	𝑋, 𝐲, 𝐱∗ = 𝑘 𝐱∗, 𝐱∗ − 𝐤 𝑋, 𝐱∗ D(𝐾 + σY1𝐼)&'	𝐤 𝑋, 𝐱∗ 	 (4) 

𝐾 is an 𝑁×𝑁 matrix of covariance functions between each pair of training inputs. σY1  

denotes the variance of Gaussian noise in training targets 𝐲, 𝐼 is an 𝑁×𝑁 identity matrix. 

𝜎=, σY and 𝑤',𝑤1 …𝑤K are hyperparameters to be trained through gradient descent 

optimization algorithm. Figure 7 describes the relationships between inputs and output, as 

well as the ones between training points and the points to be predicted in a GP regression. 

 

Figure 7 Diagram of Gaussian process regression 
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A distinguished feature of Gaussian Processes is that the outcomes come in the 

form of probability distributions, which take uncertainty in the modeling process into 

account. The variance of a prediction (Equation 4) automatically includes two types of 

uncertainties. The first type of uncertainty is noise in the targets 𝐲. The noise might come 

from measurement noise. The process to be modeled itself is stochastic, and thus there 

are random elements in 𝐲. The features in an existing model might not fully explain the 

variance in training targets. There might be some other important features that affect 

outputs. The second type of uncertainty is interpolation uncertainty. The distance 

between the inputs associated with a prediction and training inputs affects the magnitude 

of the variance. GP modeling is an interpolation method. If a new input point lies beyond 

the scope of the training input domain, the variance will be large in the prediction. 

2.2 Feature Selection 

Successful feature selection will improve prediction performance, reduce 

computational cost and provide a better understanding of the underlying prediction 

process. Feature selection is especially helpful for high-dimensional problems such as 

text processing of internet documents and gene expression array analysis (Guyon & 

Elisseeff, 2003). Although energy prediction is not a high-dimensional problem, if there 

are more than a few thousand training points, the covariance matrix gets large and 

computational cost could be high. For instance, hourly prediction using one-year 

historical data requires feature selection in order to reduce computational cost. 

There are feature selection methods based on entropy (Che & Wang, 2014; Zheng 

& Kwoh, 2011). Following the Che and Wang (2014) method, we have tested feature 
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selection based on correlation coefficients and mutual information for GP regression. 

However, these algorithm-independent feature selection methods might not be applicable 

to GP regression or energy demand forecasting discussed in this thesis. Here, we use an 

alternative approach of feature selection specifically targeting GP regression, which has 

been discussed in (B. Yan et al., 2017). The idea is to use the hyperparameters which a 

GP regression learns. Here are the implementation steps.   

1. Normalize all features and the target to [-1, 1]. 

2. Divide the dataset into training, validation and test sets. Use training and 

validation sets for feature selection. If the dataset is large and computational cost 

is a concern, select smaller training and validation sets for the purpose of feature 

selection. 

3. Include all the features to train a GP regression and derive the characteristic 

length-scale 𝑤 that corresponds to each feature from the training set.  

4. Calculate the indicator of each feature as  

 𝑔 𝐱N =
𝑤N

std 𝐱N
	 (5) 

where 𝐱N is the input vector of a certain feature, 𝑑 = 1,2, …𝐷 and D is the 

number of features. The indicator 𝑔 𝐱N  is defined as the characteristic length-

scale of a feature divided by the standard deviation of all inputs on that feature 

dimension. As mentioned in the Modeling Methods section, the characteristic 

length-scale determines how close two points have to be to influence each other. 

As the characteristic length-scale is normalized by the variation of the training 

inputs on that feature dimension, it indicates how significant that feature is. If 
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𝑔 𝐱N  is small, it means small changes in input value of a certain feature will 

have a significant impact on output value. Therefore, a relatively small 𝑔 𝐱N  

indicates that the corresponding feature is important in GP regression. 

5. Select 𝐱('), 𝐱(1), … 𝐱(K∗) as  

 𝐱(') = argmin
c

𝑔 𝐱N 	 (6) 

 

𝐱(1) = arg min
c&{𝐱(e)}

𝑔 𝐱N  

⋮ 

𝐱(K∗) = arg min
c&{𝐱 e ,𝐱 h ,…𝐱 i∗je ,}

𝑔 𝐱%  

(7) 

where (1), (2) and (𝐷∗) denote the rank of features, and 𝑋 denotes the entire 

feature sets. The feature with the smallest 𝑔 𝐱N  is the first feature to select. The 

number of the features 𝐷∗ depends on training and validation accuracies, as well 

as computational cost. In general, if the training and/or validation accuracy of 

using the selected feature(s) is much lower than the accuracy of using all features, 

one should include more features in the model. Otherwise, test with fewer features 

to further reduce computational time.  

2.3 Time Series Prediction 

Energy demand forecasting appears to be a typical time series modeling problem. 

Each data point is associated with a timestamp and energy demand at each time step is 

strongly related to the previous one. For buildings, the energy consumption for heating 

and cooling at different time steps is not independent due to thermal inertia of buildings. 
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Such dependencies due to thermal inertia may be more obvious when time intervals are 

shorter than an hour. 

In order to use GP regression for time series prediction, we can continue to use a 

modification of Equations (1) to (4). To use GP regression for time series prediction adds 

a few time series features and uses a modified training matrix. This study examines the 

effect of adding a few time series features and growing training matrix for time series 

prediction. The time series features tested in this study include: 

𝒊: the order of data points. By using 𝒊, more recent training data points get higher 

weights. The prediction will be more influenced by recent data points.  

𝒚𝐭&𝟏: measured value of the target at the previous time step. When predicting 

next-day energy demand, we will use yesterday’s measured energy use as a 

feature. 

𝒇𝐭&𝟏: predicted value of the target at the previous time step. When performing 𝑋-

day ahead (𝑋 ≥ 2) predictions, measured 𝒚𝐭&𝟏 is not available. Predicted value 

𝒇𝐭&𝟏 is used instead. 

Most learning tasks use a fixed set of historical data as the training set. In order to 

predict the trend, it makes more sense to include recent data points when they are 

available. We use a fixed set of historical data to train a model only once. The 

hyperparameters in the trained model stay the same, but new data will be added to the 

training data matrix 𝑋 in Equations (3) and (4) when available. For example, in order to 

predict the next day energy demand, today’s observed energy consumption along with the 

observed value of the features will be added to the training matrix. 
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2.4 Forecasting Type 

Whether to add time series features and/or to use a growing training set depends 

on the type of prediction task. As far as the energy demand prediction is concerned, there 

are two types of prediction tasks, baseline prediction and trend prediction.  

In baseline prediction, we use a dataset of one to several years to predict energy 

demand for another long period of time, e.g. 1-2 years. All the features 𝑋 and targets 𝑌 

are observed. The predicted value serves a baseline, in that if all the inputs remain the 

same, the output will be the predicted energy. Baseline prediction is useful for anomaly 

detection. It does not make sense to add time series features or use a growing training set 

for the purpose of baseline prediction. Otherwise, you are not comparing the energy 

consumption with a fixed period of time. 

Predicting the energy demand of next-day, next-30-day or further times in 

advance is a trend prediction task. When predicting tomorrow’s energy demand, some of 

tomorrow’s features 𝑋 are estimated or predicted, for example, weather. The purpose is to 

predict future energy demand and make plans no matter whether the energy consumption 

pattern stays the same. When predicting energy demand of next-30-day energy, a long-

term daily weather forecast is usually unavailable. Therefore, in practice, weather might 

not be included in the feature set. The only features available are time-related features 

and historical energy use. Adding time series features and using a growing training set 

might help improve trend prediction accuracy even when energy use patterns are quite 

different from previous time periods. 
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Chapter III. 

Web Application 

3.1 Application Overview 

The main purpose of the web application is to allow users without programming 

skills to train Gaussian process regression models to predict energy demand. First, users 

need to upload their data in a csv file. The data file needs to follow the format as shown 

in Figure 8. The first row of the csv file must be the names of the features. The first 

column must be the date. The program uses the Python dateutil module to parse 

date/time strings. This module can return a date/time object in Python for various 

common date/time input formats. The settings of the parser in the web application 

interprets the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the month and 

the last value as the year. All the data of features and target need to be numeric. Once the 

file is uploaded, the variable names and their values will be read into the database and fed 

into visualization pages. Then users will be able to view the data, select forecasting type, 

features and training period, as well as view prediction results through interactive 

visualizations. After users submit all the model inputs, the back-end runs the GP 

regression algorithm, trains a model using the features and target specified by users, 

stores the results in the database and outputs the predictive mean, 95% confidence region, 

as well as training and test accuracies. The back-end also calculates the importance of 

each selected feature and presents the information in a bar chart in the front-end. If the 

prediction accuracy is low, users can use interactive visualization to check the data points 

with poor predictions. After some diagnosis, users can re-train the model by trying 

different features and training periods. The current version of the web application 
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implements the baseline and next-day prediction. The next two sections introduce the 

technology choices, back-end implementation and front-end design in detail. 

 

Figure 8 csv data file format 

3.2 Technology Choices 

3.2.1 Python and GPflow 

Python is used to program the back-end, including algorithm implementation and 

web service. Python is widely used in the machine learning community. For example, 

TensorFlow, a popular machine learning library, uses Python. Using Python will allow 
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the web application to incorporate other machine learning models in the future. The 

GPflow package is used to implement the GP regression algorithm (Matthews et al., 

2017). This package uses TensorFlow to handle all gradient computation. GPflow comes 

with many covariance functions (also called kernels), such as constant, linear, white, 

Matern12/32/52, RBF (radial basis function, the one used in this project), cosine and 

periodic kernels. Kernels can be combined and different kernels can be used on different 

feature dimensions.  

3.2.2 Flask 

In order to build a python web application, one needs a web framework to 

implement all the functionality common to most web application, such as mapping URLs 

to Python. There are many Python web frameworks; the most popular two are Django 

and Flask. Django was first released in 2006 and now it has the largest community with 

over 156k StackOverflow questions as of November 2017. Flask is a much younger 

framework which started in mid-2010. There are around 19k StackOverflow questions, 

which is only the one-eighth of Django. On Github, they have a nearly identical number 

of starts with 29.4k for Django and 30.8k for Flask. 

I choose Flask as the web framework for this project since it is great for small 

projects that need a fast way to make simple web sites. Compared with Django, Flask is 

more lightweight and it is easier to figure out for new web developers. In addition, Flask 

lets you decide what components, such as database, to use and how to interact with them. 



 

23 

3.2.3 MongoDB 

I choose MongoDB as the database for this project. MongoDB is a NoSQL 

database. NoSQL databases were developed in late 2000s to deal the limitations of SQL 

databases. NoSQL database allows the insertion of data without a predefined schema. 

Compared with a SQL database, it is easier to make significant application changes in 

real-time to a NoSQL database, which makes development faster. They support auto-

sharding, which means they can natively and automatically spread data across an 

arbitrary number of servers as necessary (MongoDB, 2016).  

The debate about whether NoSQL is superior to SQL database is not over. Today 

SQL seems to be resurging. Google’s globally-distributed data management system 

Spanner transitioned from NoSQL to SQL because “SQL has provided significant 

additional value in expressing more complex data access patterns and pushing 

computation to the data” (Bacon et al., 2017). The main reason I decided to use 

MongoDB is that it makes web application development easier for a small project. 

MongoDB uses JSON-like documents, which is consistent with the data structure used in 

web front-end development. A most appealing feature is that by using MongoDB, 

applications can add new fields to each data document on the fly. Unlike SQL table rows, 

dissimilar data can be stored together. MongoDB’s flexibility is extremely useful for web 

application projects. 

3.2.4 Highcharts.js 

The market of charting tools has become highly competitive. I selected 

Highcharts.js as the main tool to create interactive charts in front-end. Highcharts.js is a 

charting library written in pure JavaScript that was created by a Norway-based company 
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Highsoft. Highcharts.js provides a variety of basic charts, line, area, column, bar, pie, 

scatter and bubble charts. Using the combinations of the basic chart elements, it can also 

generate gauges, heat and tree maps, polar charts, wind roses, vector plots, Sankey 

diagrams and word clouds. Highstock.js, a side product of Highcharts.js, optimizes the 

line charts for financial data visualization and large datasets. The timeline charts in 

Highstock.js, as shown in Figure 9, have sophisticated navigation options including 

preset date ranges, date picker, scrolling and panning, which is ideal to visualize time 

series data such as energy demand in this project.  

 

Figure 9 Time series chart in Highcharts.js 

 

Since its first release in 2009, Highcharts.js has been developed to meet evolving 

needs. The chart tools provided by Highcharts are responsive across devices, touch 

optimized for mobile and screen devices, and ready for big data through their WebGL-

powered Boost module. All the charts are easy to customize and style via JavaScript or 

CSS. Last but not least, Highcahrts is free for non-commercial use. 
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In addition to Highcharts.js, D3.js and Tableau are among the most popular tools 

that produce dynamic and interactive data visualizations. The style of the charts created 

byD3.js is similar to Highcharts.js, but D3.js provides much more variety and flexibility. 

When I show my D3 visualizations to people working in machine learning or big data 

industries, they always ask me, “why not Tableau?” To be honest, I have never used 

Tableau. I have only seen that one of my co-coworkers without programing skills can 

create an interactive chart quite easily. The same chart she created using Tableau will 

take me probably 30~40 hours to develop using D3.js. I have to admit that Tableau is 

easy to learn and easy to use. One can simply create an interactive chart and publish it on 

web by drag and drop. No coding is required. It might take many hours and heavy coding 

to create the same chart in D3. However, Tableau is a closed software package which 

means when you are developing your own web apps, it would be difficult to connect 

charts with back-end. Not to mention that Tableau license is very expensive. D3.js, in 

comparison, is a JavaScript library which uses SVG, HTML5 and CSS standards. 

Without any doubts, D3.js is made for data visualization in web browsers and suitable for 

web apps development. D3.js is free and open. It can satisfy high interactivity and 

customization requisites.  

Since programming is not an issue for me, I prefer tools like D3.js which are open 

source and provide great flexibility. The drawback is that even a standard chart might 

require moderate coding. Although one can copy and paste most of the code from online 

resources, the code will become long and messy. For this thesis project, if I had used 

D3.js, I would have found it difficult to maintain all my HTML and JavaScript code, and 

probably would have soon lost track of them. I like the idea and style of D3.js, but the 
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amount of work required has prohibited me from using it for this project. To make coding 

easier, there are libraries built on top of D3.js, for example C3.js, which could make your 

code shorter and save you some time. However, the chart design is not elegant. I might 

end up spending extra time trying to change chart appearance so it is no use.  

Plotly is another visualization tool built on top of D3.js. Plotly offers several 

products which include (1) Plot.ly, a graphical user interface which adopts drag and drop 

style; (2) Plotly.js, an open source JavaScript library; (3) API libraries for Python, R, 

MATLAB, Node.js and REST API. Coding is manageable using Plotly.js, but it suffers 

the same problem – the style in default charts is not optimal, at least in my opinion. 

I chose Highcharts.js over C3.js or Plotly.js. I like the design of its charts, 

especially the design of time series charts as shown in Figure 9. The navigation options in 

Highcharts.js are more user-friendly than C3.js and Plotly.js. The default time series chart 

of Highcharts.js provides buttons to select pre-configured ranges in the chart, like 1 week, 

1 month, etc. It also provides input boxes where min and max dates can be manually 

input. A small series below the main series displays a view of the entire data set. It allows 

users to zoom in and out on parts of the data as well as pan across the dataset. In 

comparison, the default time series chart of C3.js does not provide any navigation 

options, as shown in Figure 10. The default time series chart of Plotly.js shown in Figure 

11 provides pre-configured date ranges selector and a range slider similar to 

Highcharts.js. However, the choices of default fonts, colors, line styles and chart layouts 

are not as good as Highcharts.js.  
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Compared with D3.js, coding with Highcharts.js is more manageable. Although 

Highcharts.js is not built on top of D3.js, the style is similar. In this project, I used D3.js 

together with Highcarts.js when I needed more customization than Highchart.js provides.   

 

Figure 10 Time series chart in C3.js 

 

Figure 11 Time series chart in Plotly.js 
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No single visualization tool could be a perfect solution. The choice depends on 

many factors including cost and time for development, expertise available or familiarity 

to the tools, dataset volume and features, level of interactivity required and visual appeal 

taste. The visual design of the timeline chart in Highcarts.js is a good fit to visualize 

energy demand data and open source libraries sometimes are ideal. 

3.2.5 Heroku 

Heroku was selected as the cloud platform as a service (PaaS) solution to deploy 

the web application. Platforms as Service (PaaS) remove the need for organizations to 

manage the underlying infrastructure. This helps developers be more efficient as they do 

not need to deal with resource procurement, capacity planning, software maintenance, 

patching, or any of the other undifferentiated heavy lifting involved in running 

applications (Amazon.com, 2017). Heroku, one of the first cloud platforms, was 

established in 2007. Other PaaS choices include Google App Engine and Amazon Web 

Service. Among these PaaS solutions, Heroku probably offers developer the simplest 

path to deploying the web applications online. It can take as short as five minutes and a 

few lines of commands to deploy an app. Heroku provides a free plan ideal for 

experimenting with cloud applications, which allows 512 MB RAM and a monthly pool 

of 1000 free dyno (Heroku’s unit of processing power) hours. This study used this free 

plan for initial web development. If the complexity of this web app evolves in the future, 

512 MB RAM might not be sufficient. 

 3.2.6 Summary 

 Figure 12 summarizes the technology choices used in the web app. 
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Figure 12 Technologies used in the web app 

3.3 Back-end Implementation 

The back-end does three things: (1) uploading data files and storing data in the 

database; (2) querying database and formatting data for RESTful (Representational state 

transfer) web service; (3) implementing algorithms including feature selection, training 

and prediction, and storing results in the database. This section first introduces the 

database design and then discusses the main functions in Flask.  

3.3.1 Database 

In MongoDB, databases hold collections of documents (MongoDB, 2017a). 

Everything is stored in one database in this web application. Each dataset uploaded by 

Back-end

GPflow

Front-end

-- Programing language

-- Algorithm implementation

-- Web framework
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-- Database
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users is stored in a collection. A collection contains 𝑁 documents, where 𝑁 is the number 

of data points. Each document holds one row of data in the csv file shown in Figure 8. 

One dataset only has one GP regression model. The information of all the models is 

stored in a separate collection, which contains 𝑀 documents, where 𝑀 is the number of 

models/datasets. Therefore, the database contains 𝑀 + 1 collections in total. 

When a user uploads a new data file, the database creates a new collection and 

assigns a name of 6 random letters to the collection. The program checks whether the 

newly created collection name already exists. In that case, the program generates a new 

name and checks for uniqueness again until a unique name is generated and assigned to 

the collection. This 6-letter name is called model ID. The model ID is shown at the end of 

the link addresses of the training and result pages. Then the database stores each data 

entry as a BSON document in the collection. A MongoDB document is composed of 

field-and-value pairs. Its structure is the same as a JSON representation or dictionary in 

Python. The value of a field can be any of the BSON data types, including other 

documents, arrays, and arrays of documents (MongoDB, 2017b). In this web application, 

the value of a field is a date, a numeric value or a Boolean value. For each document, 

MongoDB assigns an id. This id is not explicitly used in the web application though. 

“Date” is a required field in the uploaded data file of this web app. As soon as a data file 

is uploaded, the back-end converts the date to several time features including timestamp 

in millisecond, year, month, week of year, day of month, and day of week. Timestamp is 

used as an index, since we need to look up a data entry by its timestamp frequently. This 

speeds up the query process considerably. Timestamp is also used for x-axis values in 

time series charts in Hicharts.js. Year and month are used in calendar chart display. Week 
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of year, day of month, day of week might be useful features in GP model training. The 

values of features and target are also stored in each document. After a GP regression is 

trained, predictions are made for both training and test sets. The predicted mean value 

along with the prediction uncertainty are inserted into each document. If the observed 

value of the target falls out of the 95% confidence region of prediction, then this point 

will be marked as “abnormal” in the database. If a model is re-trained, the predictions 

will be updated. The structure of a collection that stores uploaded data and corresponding 

processed data is illustrated in Figure 13. 

 

Figure 13 Structure of a collection that stores data uploaded by a user and corresponding 

processed data 

 

{
'_id': ObjectId('5910e99c04a32502ebac5973'), 
'timestamp': 1325394000000.0,
'date': '1/1/12', 
'year': 2012,
'month': 1,
'week_of_year': 0, 
'day_of_month': 1, 
'day_of_week': 7,
'cooling degrees': 0.0,
'solar radiation': 95.26086957,
'dehumidification': 0.0,
'occupancy': 0.0, 
'chilledWater-TonDays': 0.961857377,
'predictedStd': 11.807404400418468,
'predictedMean': 0.638604170924417,
'abnormal': False

}

Collection: ‘FeFPNf’

{
'_id': ObjectId('5910e99c04a32502ebac5973'), 
'timestamp': 1325394000000.0,
'date': '1/1/12', 
'year': 2012,
'month': 1,
'week_of_year': 0, 
'day_of_month': 1, 
'day_of_week': 7,
'cooling degrees': 0.0,
'solar radiation': 95.26086957,
'dehumidification': 0.0,
'occupancy': 0.0, 
'chilledWater-TonDays': 0.961857377,
'predictedStd': 11.807404400418468,
'predictedMean': 0.638604170924417,
'abnormal': False

}

{
'_id': ObjectId('5910e99c04a32502ebac5973'), 
'timestamp': 1325394000000.0,
'date': '1/1/12', 
'year': 2012,
'month': 1,
'week_of_year': 0, 
'day_of_month': 1, 
'day_of_week': 7,
'cooling degrees': 0.0,
'solar radiation': 95.26086957,
'dehumidification': 0.0,
'occupancy': 0.0, 
'chilledWater-TonDays': 0.961857377,
'predictedStd': 11.807404400418468,
'predictedMean': 0.638604170924417,
'abnormal': False

}
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A collection called “models” holds documents of model information including the 

model ID assigned to a data file, the split of training and test sets, training and test 𝑅1 

values (called accuracy in the database), as well as the features and target selected by 

users. In MongoDB, a collection does not require its documents to have the same schema. 

The documents in a single collection do not need to have the same set of fields 

(MongoDB, 2017a). Therefore, the same collection can hold all the data for the model. 

However, in order to make queries easier, a separate collection was created to hold the 

information of all models, as shown in Figure 14.  

 

 

Figure 14 Structure of the collection “models” 

 

Collection: ‘models’

{
'_id': ObjectId('599f3e3a04a3250d4190114d'),
'collection': 'PaFfxr', 
'testStart': 1411824415000.0, 
'trainEnd': 1411824415000.0, 
'testEnd': 1467172800000.0, 
'trainStart': 1325376000000.0, 
'training_accuracy': 0.8181357135964854,
'test_accuracy': 0.8633696558815848,
'features': ['cooling degrees', 
'dehumidification', 'solar radiation'], 
'target': 'chilledWater-TonDays’

}

{
'_id': ObjectId('599f3e3a04a3250d4190114d'),
'collection': 'PaFfxr', 
'testStart': 1411824415000.0, 
'trainEnd': 1411824415000.0, 
'testEnd': 1467172800000.0, 
'trainStart': 1325376000000.0, 
'training_accuracy': 0.8181357135964854,
'test_accuracy': 0.8633696558815848,
'features': ['cooling degrees', 
'dehumidification', 'solar radiation'], 
'target': 'chilledWater-TonDays’

}

{
'_id': ObjectId('599f3e3a04a3250d4190114d'),
'collection': 'PaFfxr', 
'testStart': 1411824415000.0,
'trainEnd': 1411824415000.0,
'testEnd': 1467172800000.0,
'trainStart': 1325376000000.0,
'training_accuracy': 0.8181357135964854,
'test_accuracy': 0.8633696558815848,
'features': ['cooling degrees', 
'dehumidification', 'solar radiation'],
'target': 'chilledWater-TonDays’

}
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3.3.2 Functions 

The back-end consists of four types of functions: (1) processing uploaded files; 

(2) querying database; (3) formatting data; (4) implementing algorithms. These four types 

of functions are listed in Table 1 and will be described in detail in the following 

paragraphs. 

Table 1 List of functions and their parameters in back-end 
Category Name Parameters 

Process uploaded files upload_file  

Query database 

get_keys 
collection, 

train_only=False 

get_data 

collection, 

selected_fields=None, 

excluded_fields=None 

get_range collection, field 

get_model collection 

Format data format_data type_, collection 

Implement algorithms 

gp_train X_train, Y_train 

gp_predict X_test, trained_model 

gp_predict_nextDay 
X_train, Y_train, X_test, 

Y_test, trained_model 

gp_get_feature_rank 
trained_model, features, 

X_train 

train_and_predict collection 
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The function upload_file allows users to upload a csv data file or retrieve a 

previous model. This function first checks whether a user intends to retrieve a model 

previously uploaded from the database or to upload a data file. In the former case, it will 

fetch the data and redirect the page to visualize the model if the input model ID exists in 

the database. Otherwise, it will ask the user to either re-enter a model ID or upload a data 

file. If a user uploads a csv file, the function will assign a model ID, read the data, parse 

the date inputs, convert dates to millisecond timestamp, extract time-related features, 

store all the data including processed timestamp and time-related features into the 

database and redirect the page to visualize the data. Figure 15 shows the processes of the 

function upload_file.  
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Figure 15 Flowchart of the function upload_file 

 

A series of functions query the database for training a model in the back-end and 

displaying data in the front-end. The function get_keys gets all the variable names of a 

dataset, which are used as “fields” of a data record in the MongoDB database. The 

function get_data fetches all the data from a model. MongoDB stores data records in 

the format of BSON documents in “collections”. In MongoDB, databases hold 

collections of documents. Each dataset is stored as a collection in this web application. 

Input a model ID?

No

Yes Model ID 
exists?

Yes

Assign a model ID and 
read data

Convert date to millisecond 
timestamp; 
Extract day of week, day of 
month, week of year, year, 
month features

Store data into the 
database;
Assign timestamp as index

Redirect to result page

Redirect to data 
visualization page

Start

No

Model 
trained?

Yes

Redirect to train page

Pass format 
check?

Check whether date column 
exists and whether all values 
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Yes

No



 

36 

By default, this function fetches all the data from a collection in a database. Users can 

select which features to include or exclude. The function get_range returns the 

minimum and maximum data points of the field specified by a user in a collection. The 

function get_model returns a JSON structured data of the detailed information of a 

model including the names of features, target, the start and end dates of the training set 

and test set, training accuracy, test accuracy and train-to-test data size ratio. The 

information is displayed in the front-end. 

 The data returned by the function get_data is used only in the back-end. The 

function format_data converts data to the formats that can be visualized for different 

kind of charts in the front-end. For each chart, the function format_data specifies 

what to display on the x and y axes, the marker type, size and color and returns the data 

in JSON. The function gp_train trains a Gaussian regression model using GPflow. The 

function gp_predict returns the predicted mean value and standard deviation of given 

𝑋 for baseline prediction. The function gp_predict_nextDay returns the prediction 

results for next-day prediction. The function gp_get_feature_rank returns the 

indicator of feature importance according to Equation (5) to (7). This information 

represents the sensitivity of each feature in the GP regression and helps users to select 

features. The function train_and_predict processes user inputs from the front-end, 

calls the function gp_train, gp_predict/gp_predict_nextDay and 

gp_get_feature_rank, as well as stores all the results into the database. 

Figure 16 illustrates the main interactions between uses, front-end and back-end. 

Representational state transfer (RESTful) web services are used for communication 

between client (front-end) and server (back-end). The client obtains formatted data and 
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results of trained models from the server through GET HTTP methods. The client also 

sends information such as model ID, selected features and target, as well as specified 

training and test period to server side through POST method.  

 

Figure 16 Sequence UML diagram of main interactions between users, front-end and 

back-end 

3.4 Front-end Design 

3.4.1 Pages and Layouts 

The front-end mainly consists of three web pages: an upload page, training page 

and result page. The upload page, as shown in Figure 17, allows users to either upload a 

new csv data file or input a Model ID of an existing model.  
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Then the web application will direct users to training page if no trained model 

exists and otherwise to the result page. 

 

Figure 17 Screenshot of the upload page 

 

Figure 18 shows the 2×2 layout of the training page. In the top left is a time 

series plot. Users can view target values in the format of a line chart with dates on the x-

axis. Users can use the range selector and navigator to view data in certain time periods. 

The range selector provides buttons to select preconfigured time ranges in the chart, such 

as 1 month, 3 months and year-to-date (YTD). It also provides input boxes where min 

and max dates can be manually input. The navigator is a small series below the main line 

chart, displaying a view of the entire dataset with tools to zoom in and out on parts of the 

data as well as panning across the dataset. Another important function of the time series 

chart is for users to select time periods for training and testing. Users need to first place 

the slider in the navigator over the time period to be selected, and then click the “Set 

Training Period” or “Set Test Period” button below the navigator. The selected time 

periods for training and testing will be displayed next to the corresponding buttons. The 

remaining time after the training period defaults to be the test period. But users can use 

“Set Test Period” to change that. Below the time series chart is a calendar view. The 
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calendar view is a heat map9 which displays target values in a calendar format. In this 

way, users can easily get an idea of date-related patterns, such as differences between 

weekdays and weekends. To the right of the time series plot is a scatter plot. Users can 

select any two variables to display and explore the relationships between different 

variables, especially between features and target, which might help them to select 

features for model training.  

On the lower right corner is the model setup section. In this section, users can 

specify the target, choose forecasting type (baseline or next-day prediction) and select 

features to be included in model training. When the target is selected, the time series 

chart will update correspondingly to display the selected variable. When the forecasting 

type is chosen, the features will update accordingly. If next-day prediction is chosen, time 

series features 𝑖 and 𝑦t&' will show up. After all the model components are set, users can 

click the “Submit” button to send the information to the back-end. As soon as the model 

training is finished, the web application will redirect to the result page. Baseline 

prediction takes fewer than 30 seconds to train a model and make prediction for a dataset 

of around 1500 points and 4~5 features. Next-day prediction takes at least a few minutes 

for the same size dataset. 

                                                
9 A heat map represents each individual data point contained in a matrix as colors. 
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Figure 18 Screenshot of training page 

 

Figure 19 shows the layout of result page. Compared with the training page, there 

is an additional layer of predicted results on top of the existing time series plot, scatter 

chart and calendar view. In the time series plot, predicted mean values are marked as blue 

circles connected with a line and the 95% confidence region is shown as the light blue 

area. Measured values are marked as blue and orange dots. If a measured point is shown 

in blue, it means that the measured value falls within the 95% confidence region of the 

prediction. If it is orange, it is an outlier either caused by an inaccurate prediction or an 

unexpected energy use. We marked these points as “abnormal” in the database. Similarly, 

in the scatter plot, the abnormal points are highlighted in orange. In the calendar view, the 
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dates with abnormal predictions are highlighted with a red circle. When users click on a 

date in the calendar view, the corresponding data point in time series plot and scatter plot 

will be highlighted in a larger dot with a black border. This may help users to diagnose 

their models. The result page also displays information of the trained model. The 

importance of selected features in GP regression is displayed in a bar chart. Model 

configurations such as the features and target used in the model, the training and test 

period, the ratio of training samples to test samples, as well as training and test accuracy 

are shown in the Model Analysis section. 

 

Figure 19 Screenshot of the result page 



 

42 

3.4.2 Visualization Design 

In this web application, the visualization focuses on the presentation of raw data 

and prediction results. The goal is to design interactive and interlinked charts to help 

discover patterns, improve model training, and interpret results. 

 

Figure 20 Weekly electric energy consumption of a campus building 

 

Discover Patterns 

Even simple charts can help discover interesting patterns in energy consumption. 

Figures 5 and 19 show the hourly and weekly electrical energy consumption of Gund 

respectively, a building of Graduate School of Design. In Figure 5, we can see clear 

differences in electric energy consumption between day and night, as well as weekdays 

and weekends. The accumulated weekly consumption, as shown in Figure 20, reveals 

interesting study patterns of the students in design school. During each semester, 

electricity use ramps up toward a peak at finals, perhaps because the students are working 

day and night during that week. Additionally, the students are working harder and harder 

leading up to finals. Then, there is a dip after semesters end, especially during Christmas 
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vacation. The electric energy consumption is relatively low during January and summer 

terms, and spring break, when campus is relatively empty. The calendar view helps 

identify such patterns easily. The calendar view provides users with an easy way to detect 

patterns related to dates, such as lower energy use in winter/summer recess and higher 

use during the finals. 

Select Features and Training Period 

Figures 5 and 19 not only show the energy use pattern, but also highlight time-

related features. With the academia schedule, this is crucial for the accurate prediction of 

electric energy consumption. Moreover, it is important to use at least one year of training 

data. For example, if one only uses data from January to November in training, then the 

prediction during Christmas week might be poor. For datasets that show periodic 

patterns, it is important to include at least a full period for the training set. The cooling 

energy consumption in Figure 18 shows time-related features do not play a significant 

role while weather plays a dominant role. In the scatter plot, the cooling energy use has a 

strong linear relationship with outdoor temperature. As a result, it is important to include 

data of different seasons in the training set and include outdoor temperature as a training 

feature. 

Interpret Results 

After a model has been trained and tested, the model performance is of critical 

importance. If it predicts some data points poorly, we would like to know which data 

points and why. For example, does the model perform poorly mostly during unoccupied 

hours? Or is it because the features of predictive points are not similar to those of training 

points? These questions can be answered efficiently by interactive and interlinked 
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visualizations. For example, in the calendar view, users can identify date-related issues 

caused by holidays, summer/winter recess and other events (e.g., graduation). During 

holidays or events, occupancy level might be lower or higher than usual. If the unusual 

occupancy level is not reflected in the features, or there is simply not similar historical 

data with similar occupancy levels in the training set, then the predictions may fall out of 

the 95% confidence region of the measured values. Since the “abnormal” predictions are 

marked with a red circle on the calendar, users might be able to immediately realize that 

this is due to weekends or holidays. Additional information such as events can be 

included in the tooltip to help the diagnosis process. When users click a date, the 

corresponding data point will also be enlarged in the time series and scatter plots. The 

charts are designed to be interlinked so that users can use additional information such as 

target measured value, predicted value, predicted confidence region and values of 

features to further diagnose the model. 

 

In summary, the purpose of visualization is mainly to assist model development, 

including pattern discovery, feature selection and model evaluation. Ideally, the 

visualization can help drive the GP in interpreting and understanding the relationship 

between features and targets, and provide tuning capability and insight into the 

prediction. 
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Chapter IV. 

Case Studies 

4.1 A Campus Building 

4.1.1 Dataset 

Both campus-level and building-level energy consumption data of Harvard 

buildings are available through the Energy Witness system10. The highest resolution is 

typically 15-minute but it is different for different buildings and systems. The data can be 

manually downloaded from the website as a csv file, although data access requires a 

HarvardKey login. 

One building, Gund Hall (Graduate School of Design), was selected for this 

study. The total area of this building is 15,067m2. It provides studio and office areas to 

approximately 500 students and more than 100 faculty and staff. There are also lecture 

and seminar rooms, a cafeteria, an auditorium and a library in the building. The HVAC 

(heating, ventilation and air- conditioning) system of this building consists of 9 air 

handling units (AHU), variable air volume (VAV) boxes and fan coil units (FCU) as 

terminal units. Three types of energy use are metered, electric energy, chilled water and 

steam. Electric energy use consists of lighting, plug load, fans and pumps of the HVAC 

system. Chilled water is supplied from the campus chiller plant and it is used for cooling. 

Steam is used for heating and domestic hot water11. Hourly data from Energy Witness for 

this building was downloaded and aggregated to daily energy use. 

                                                
10 https://www.campusservices.harvard.edu/node/1298 
11 Domestic hot water is hot water used for domestic purpose, for example, sanitation and personal hygiene. 
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Weather data is collected from a weather station installed on the roof of the 

building. Dry-bulb air temperature, relative humidity, atmospheric pressure, wind 

direction, wind speed, gust speed and solar radiation are sampled at 5-minute intervals. 

Apart from these directly measured variables, dew-point temperature and specific 

humidity are calculated and included in the potential feature set. Hourly weather features 

are derived from averaging 5-minute samples, and daily values from averaging hourly 

samples. Hourly temperature and humidity were transformed to the following variables 

for cooling and heating forecasting as described below.  

Dehumidification ℎN (kg/kg):  

 ℎN =
ℎ − 0.0087, ℎ > 0.0087

0, ℎ ≤ 0.0087	 (8) 

where ℎ (kg/kg) is humidity. 

Cooling degrees 𝑡} (°C): 

 𝑡} =
𝑡 − 12, 𝑡 > 12

0, 𝑡 ≤ 12	 (9) 

where 𝑡(°C) is outdoor air dry bulb temperature. 

Heating degrees 𝑡~ (°C): 

 𝑡~ =
0, 𝑡 ≥ 15

15 − 𝑡, 𝑡 < 15	 (10) 

The aggregated daily values of these three variables are the sum of hourly values as 

shown in Equation 11, which is different from deriving other daily weather-related 

features.  
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 ℎN = ℎN,%

1Å

%ÇÉ

	 (11) 

where ℎN,% is hourly sample. Please refer to B. Yan et al. (2017) regarding the reasoning 

of transforming 𝑡 to 𝑡} and ℎ to ℎN. 

Time related features, day of week, day of year and week of year are included in 

the feature set. An occupancy factor between 0 and 1 is estimated from the academic 

calendar. For instance, a normal weekday during the semester is assigned as 1, university 

holidays for staff but not for students are assigned as 0.5 and Christmas is assigned as 0 

as the university is completely closed. Note that the value of occupancy is merely an 

estimate based on the academic calendar, which considers winter/summer recess and 

holidays but does not consider events. 

4.1.2 Prediction Accuracy 

Table 2 shows the baseline and trend prediction accuracies of three types of daily 

energy demand. The training period is from 2012 to 2014. The test period is from January 

2015 to June 2016. The base set of features selected for daily prediction is shown in 

Table 3 (B. Yan et al., 2017). Feature selection and the accuracy of baseline prediction 

for this case study has been analyzed in B. Yan et al. (2017)  This section discusses an 

analysis of trend prediction accuracy performed for this thesis project. Please refer to 

Section 2.4 for the terms used in Table 2. 
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Table 2 Baseline and trend prediction accuracies of three types of energy demand 
forecasting  

 Features Training set Forecasting type Test 𝑅1 

base 
set 𝑖 𝑦Ñ&' 𝑓Ñ&' fixed growing base 

line 
next 
day 

30-
day 

ahead 

electric 
energy 

chilled 
water steam 

1 X    X  X   0.52 0.88 0.88 
2 X X   X  X   0.69 0.83 0.77 
3 X     X  X  0.73 0.87 0.95 
4 X X    X  X  0.86 0.81 0.95 
5 X X X   X  X  0.92 0.74 0.96 
6 X     X   X 0.44 0.86 0.92 
7 X X    X   X 0.41 0.85 0.75 
8 X X  X  X   X 0.74 0.52 -1.09 

 

Table 3 Base set features selected for daily prediction 

 Features selected 

Electric energy Day of year, week of year, weekday, occupancy, heating degrees 

Chilled water Cooling degrees, solar radiation, weekday, dehumidification, occupancy 

Steam Day of year, week of year, heating degrees, weekday, occupancy 

 

The accuracy of baseline prediction for electric energy consumption is poor 

because the electric energy use meter was malfunctioning in 2016. The electric energy 

consumption of the investigated building is the sum of readings from two meters. One 

meter stopped functioning for a few days in October and November 2015, and then 

completely stopped. As a result, the metered value is lower than its actual consumption 

and the predicted baseline, as illustrated in Figure 21. This shows that baseline prediction 

is able to detect anomalies in energy consumption. 
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Figure 21 Baseline prediction of electric energy consumption of the Gund building 

 

For electric energy demand prediction, including both feature 𝑖 (the order of the 

data points), and the latest data points available in the training set 𝑦t&', improves 

“prediction accuracy”. In this case, claiming “higher accuracy” might be misleading since 

the one of the two meters stopped logging. On the other hand, a malfunctioning meter is 

to some extent equivalent to a change of pattern in energy consumption. If half of the 

building were unknowingly shut down from a certain point of time, would it be possible 

to predict the energy demand in the next few days? By using 𝑖 as a feature, new data 

points get higher weights in the training set. Since the data points to be predicted deviate 

significantly from old training data points, putting more weight on newer data points 

improves accuracy. The accuracy of 30-day ahead prediction using 𝑓Ñ&' is much higher 

than baseline prediction. Next-day prediction which uses 𝑦Ñ&' yields very “accurate” 

results, as shown in Figure 22. Therefore, the prediction approaches proposed in this 

thesis are both accurate and robust to changes of pattern/behavior in energy demand. 
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Figure 22 Next-day prediction of electric energy consumption of the Gund building 

 

For chilled water use prediction, including feature 𝑖 does not help improve 

prediction accuracy. Including 𝑦Ñ&' in next-day prediction or 𝑓Ñ&' in 30-day ahead 

prediction actually make things much worse. For steam use prediction, next-day 

prediction accuracy is the highest compared to baseline and 30-day ahead prediction, no 

matter whether including 𝑦Ñ&' and 𝑖 or not. In terms of baseline and 30-day ahead steam 

use prediction, including feature 𝑖 decreases the prediction accuracy. The accuracy of 30-

day ahead steam use prediction using 𝑓Ñ&' is low. Here is a possible explanation. Daily 

chilled water and steam use has a strong correlation with weather-related features. Using 

weather-related features as well as some time-related features already yields high 

accuracy. This also means there is no abnormal pattern in daily cooling and heating 
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energy use. As a result, putting more weight on more recent data points does not help 

improve the accuracy of predicting “trend”. On the contrary, this might reduce the weight 

of useful old training data points. When making a prediction, what really matters is 

finding the historical data points with similar weather and occupancy conditions in the 

training set. It does not matter whether these most relevant historical data points are old 

or recent. If we include the order of data points 𝑖 as a feature, the weights of these useful 

training data points may decrease if they are not recent. As a result, including 𝑖 decreases 

prediction accuracies. Including 𝑦Ñ&' might merely add a useless feature. Including 𝑓Ñ&' 

in the feature set is not a good strategy for next-30-day prediction. 𝑓Ñ&' is the prediction 

of the last time step and there is deviation between predictions and actual target values. 

This inaccurate feature leads to an inaccurate prediction of this time step, which is used 

as a feature to predict next time step. In 30-day ahead predictions, the accumulated 

deviation of 𝑓Ñ&' from 𝑦Ñ&' probably causes poor prediction accuracy. Because the 

accuracy of 30-day ahead is poor, it is not implemented in the current version of the web 

app. 

4.2 A High-Tech Industry Area 

4.2.1 Dataset 

The data presented thus far have focused on energy consumption of campus 

buildings. It is meaningful to test the web app with other types of energy demand data. 

The dataset used in this case study is from an energy consumption forecasting 

competition. It consists of daily energy consumption of over 1000 companies in a high-
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tech industry area in Jiangsu Province, China from January 2015 to August 2016. The 

goal of this contest is to forecast the total daily electric energy consumption of the entire 

industry area, which might be useful for demand response in smart grid applications. The 

original dataset only consists of dates and daily energy consumption of 1454 companies. 

Weather data such as daily min and max temperatures can be found online. This case 

study uses the sum of the daily energy consumption of all the companies as the target and 

tests the next-day prediction accuracy with and without weather data. The training period 

is from January 2015 to April 2016; the test period is from May 2016 to August 2016. 

Figure 23 shows a screenshot of the training page of this case study. From the 

time series plot, we can see that the electric energy consumption is constantly around 4 

million (unit unknown) except two dips in February 2015 and 2016, which are the 

Chinese New Year holiday. The calendar view shows that in addition to Chinese New 

Year, the energy consumption during January 1-2, May 1-2 and October 1-3 are 

relatively lower. These dates are all important national holidays in China. The energy 

consumption during March 5 and 6, 2015 is also significantly lower. A possible 

explanation is that National People’s Congress and National Committee of the Chinese 

People’s Political Consultative Conference were held during these dates. It is not unusual 

to adjust industry activities during these two conferences. However, this pattern does not 

repeat in 2016, so the actual reason is unknown. The scatter plot shows the relationship 

between electric energy consumption and minimum daily temperature. When outside 

temperature is high, the energy consumption increases, but the relationship is not linear. 
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Figure 23 Training page of case study 2 

4.2.2 Prediction Accuracy 

In this case, we only evaluate next-day prediction accuracy since the goal is to 

accurately predict future demand, not anomaly detection. Figure 24 shows the prediction 

results without using weather features. The features included in training are month, week 

of year, day of week, day of year, day of month, 𝑖 and 𝑦t&'. The 𝑅1 value of test period is 

0.60. Assume that weather forecast is relatively accurate. Adding weather related features 

daily minimum and maximum temperatures increases 𝑅1 to 0.65. The minimum daily 

temperature ranks as the third most important feature after month and 𝑦t&'. Although the 
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𝑅1 is not ideal in this case study, the mean absolute percentage error 'ÉÉ
Ö

Üá&=á
Üá

Y
%Ç'  is 

only 3.2%. 

 

Figure 24 Prediction results of case study 2 without using weather features 
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Chapter V. 

Conclusion and Future Work 

5.1 Conclusion 

The main contribution of this thesis is a web application for energy demand 

forecasting using algorithm packages and web app development tools including GPflow, 

Flask, Highcharts.js, MongoDB and Heroku. Users without programming skills can 

upload their own time series data, train a Gaussian process regression, and predict 

baseline energy consumption for anomaly detection, or predict next-day energy demand 

for smart grid applications such as demand-response. The web interface mainly consists 

of a time series plot, a scatter plot, and a calendar view. The time series plot shows the 

original data, predicted mean values and predicted confidence range. The scatter plot 

assists feature selection by showing the relationship between the target and the features. 

The calendar view provides users with an easy way to identify patterns related to dates. 

The charts are designed to be interactive and interlinked so that users can combine the 

information from different charts to interpret the results and further diagnose the model. 

The web app also ranks the importance of the selected features in a bar chart. The feature 

ranking is based on the characteristic length-scales derived from GP training. This 

information helps users fine-tune feature selection to improve their models.  

This thesis demonstrates the use of the web app through two case studies: (1) the 

daily electric energy, chilled water and steam consumption of a campus building in U.S. 

and (2) the daily electric energy consumption of a high-tech industry area in China. The 

results show that weather-related features are the most important in chilled water and 

steam consumption predictions, while time-related features are the most important to 



 

56 

electric energy usage prediction. Baseline prediction is able to detect anomalies in energy 

consumption by using the confidence range output by a GP regression.  The next-day 

prediction accuracy is high even when there is an abnormality in energy usage or 

measurements. The prediction accuracy of next-30-day prediction is low and therefore 

not implemented in the web application. 

5.2 Future Work 

There is still a lot of work left to improve the web application. I would like to 

further improve visualization design, extend the web application to allow datasets larger 

than a few thousand points, and include additional machine learning algorithms to better 

compare predictive performance.  

5.2.1 Visualization 

Although the web application is designed for energy demand prediction, the GP 

regression algorithm can be applied to any type of dataset as long as all the data points 

are numeric. Most of the plots are designed to display time series data. Therefore, this 

web app requires the dataset to contain a column of date and time. The time series chart 

can visualize data of any time interval. However, currently the calendar view only allows 

daily energy demand prediction. In the future, the calendar view will need to be 

redesigned for hourly prediction or other time intervals. Moreover, additional feedback 

from more users would be valuable in making the visualization more user-friendly. 
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5.2.2 Large Datasets 

The current version of web application has been tested using approximately 1,700 

data points. The capability and the limitation of the web application for large datasets 

need to be tested. A well-known drawback of GP regression is the expensive computation 

for matrix inversion in training process that scales in Ο 𝑁Å . Prediction for variances 

scales in Ο 𝑁1  and memory requires Ο 𝑁𝐷 + 𝑁1 . In order to work with large datasets, 

we need to adopt sparse Gaussian processes. The underlying idea in this approach is to 

use a subset of the data (Banerjee, Dunson, & Tokdar, 2012) to train a model.  

Data storage also leads to bottlenecks since currently, all the data and prediction 

results are stored in database and the free Heroku plan only allows 500MB for the entire 

web application. This is not a problem for a few thousand data points. But for larger 

datasets, we need to upgrade the Heroku plan or explore other choices. Rendering a large 

number of data points in the visualization might also slow down the web application or 

even cause a problem. Fortunately, the WebGL-powered Boost module in Highcharts.js 

enables fast rendering for millions of data points. It is able to render a line chart with one 

million points in less than 500 milliseconds on a MacBook Pro with an AMD Radeon R9 

M370X GPU (Highcharts, 2018). In case we need to visualization large datasets, we only 

need to update to the newest version of Highcharts.js and add one line of code in 

JavaScript. 

5.2.3 Other Algorithms 

The web application can be further extended to include other algorithms such as a 

deep neural network. Since the back-end is written in Python, it is fairly easy to 
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incorporate TensorFlow for this purpose. It would be ideal to provide other prediction 

algorithms in addition to GP regression. Users can compare different models and even 

use ensemble learning.  
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Appendix 

Web app link12: 

https://calm-falls-41279.herokuapp.com 

 

Demos: 

https://calm-falls-41279.herokuapp.com/train_and_predict/c0G0uL 

https://calm-falls-41279.herokuapp.com/visualize/nnhNaq/chilledWater-TonDays 

 

Video tutorial: 

https://drive.google.com/open?id=1HahVDuf7qxlTobXynRTudYIS5CY8qF-S 

 

Code and data: 

https://github.com/bin-yan/energy-demand-forecasting-app 

  

 

 

 

  

                                                
12 In case the web link changes, I will post updates on Github. 
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