
Predicting Building Energy Consumption Using
Gaussian Process Regression: Algorithms,
Visualization and Web Applications

Citation
Yan, Bin. 2018. Predicting Building Energy Consumption Using Gaussian Process Regression:
Algorithms, Visualization and Web Applications. Master's thesis, Harvard Extension School.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364548

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364548
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Predicting%20Building%20Energy%20Consumption%20Using%20Gaussian%20Process%20Regression:%20Algorithms,%20Visualization%20and%20Web%20Applications&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=ee01d15e20094735420321b029aa52bf&departmentMathematics%20and%20Computation
https://dash.harvard.edu/pages/accessibility

Bin Yan

A Thesis in the Field of Information Technology

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

March 2018

Predicting Building Energy Consumption Using Gaussian Process Regression:

Algorithms, Visualization and Web Applications

Copyright 2018 [Bin Yan]

Abstract

Growing attention has been drawn to energy use forecasting for smart grid

applications. Among different modeling methods of predicting building energy use,

Gaussian process (GP) regression has its advantages since it not only outputs the mean

value of the prediction, but also the confidence range. In this study, I have developed a

web application that allows users without programming skills to predict and visualize

energy demand through GP regression. The web application implements both baseline

prediction and next-day prediction. This study also explores the visualization techniques

that facilitate the analysis of energy consumption patterns and transform the data into

informative insights. This thesis presents two case studies to demonstrate the use of the

web application and discusses the prediction accuracy. The first case study predicts

electric energy, chilled water and steam consumption of a campus building. The second

case study predicts the next-day electric energy demand of a high-tech industry area.

Acknowledgments

I would first like to thank my thesis advisor Dr. Peter V. Henstock who

generously put his time and efforts to help me through the thesis process. He encouraged

me to develop a web application so that my research can have more impact and he

provided detailed and valuable guidance from technology choices to writing. I really

enjoyed this process and have learned a lot. Thank you for all the guidance.

I would also like to acknowledge Dr. Jeff Parker at Harvard Extension School,

who helped me with my proposal and provided assistance throughout the thesis process. I

am grateful to the staff at the Harvard Extension School who provided administrative

assistance. I want to thank my supervisor Prof. Ali Malkawi at Harvard Center for Green

Buildings and Cities. I chose a topic related to my full-time research job and Prof.

Malkawi has always been supportive of my personal pursuits and career.

Finally, I must express my gratitude to my husband Vilhelm Sjoeberg, who is a

computer science research scientist at Yale University. It is a privilege to have a coding

expert that I can always turn to for help. For example, he figured out some Heroku issues

I had trouble with. Thank you.

Table of Contents

Acknowledgments .. iv	

List of Tables ... viii	

List of Figures .. ix	

Chapter I. Introduction ...1	

1.1 Background ..1	

1.2 Literature Review ...2	

1.3 Prior Work ...4	

1.4 Contribution ...11	

1.5 Outline ..11	

Chapter II. Algorithm ...13	

2.1 Standard Gaussian Process Regression ..13	

2.2 Feature Selection ..15	

2.3 Time Series Prediction ...17	

2.4 Forecasting Type ..19	

Chapter III. Web Application ..20	

3.1 Application Overview ..20	

3.2 Technology Choices ...21	

3.2.1 Python and GPflow ...21	

3.2.2 Flask ..22	

3.2.3 MongoDB ...23	

3.2.4 Highcharts.js ...23	

3.2.5 Heroku ...28	

3.2.6 Summary ...28	

3.3 Back-end Implementation ..29	

3.3.1 Database ..29	

3.3.2 Functions ...33	

3.4 Front-end Design ...37	

3.4.1 Pages and Layouts ...37	

3.4.2 Visualization Design ...42	

Discover Patterns ...42	

Select Features and Training Period ..43	

Interpret Results ...43	

Chapter IV. Case Studies ...45	

4.1 A Campus Building ...45	

4.1.1 Dataset ...45	

4.1.2 Prediction Accuracy ..47	

4.2 A High-Tech Industry Area ...51	

4.2.1 Dataset ...51	

4.2.2 Prediction Accuracy ..53	

Chapter V. Conclusion and Future Work ..55	

5.1 Conclusion ...55	

5.2 Future Work ...56	

5.2.1 Visualization ...56	

5.2.2 Large Datasets ...57	

5.2.3 Other Algorithms ..57	

Appendix ..59	

References ..60	

List of Tables

Table 1 List of functions and their parameters in back-end .. 33	

Table 2 Baseline and trend prediction accuracies of three types of energy demand

forecasting ... 48	

Table 3 Base set features selected for daily prediction ... 48	

List of Figures

Figure 1 Illustration of 24-hour prediction of chilled water and steam use5	

Figure 2 Comparison of 𝑹𝟐 values of Gaussian processes and neural networks5	

Figure 3 Accuracy comparison of different machine learning methods for hourly and

daily prediction ..6	

Figure 4 Visualization of Gaussian process prediction implemented in Matplotlib Python

module ..7	

Figure 5 Visualization of electric energy consumption pattern ...8	

Figure 6 Google analytics statistics of CS109 final project website visits8	

Figure 7 Diagram of Gaussian process regression ...14	

Figure 8 csv data file format ..21	

Figure 9 Time series chart in Highcharts.js ...24	

Figure 10 Time series chart in C3.js ..27	

Figure 11 Time series chart in Plotly.js ...27	

Figure 12 Technologies used in the web app ...29	

Figure 13 Structure of a collection that stores data uploaded by a user and corresponding

processed data ..31	

Figure 14 Structure of the collection “models” ...32	

Figure 15 Flowchart of the function upload_file ...35	

Figure 16 Sequence UML diagram of main interactions between users, front-end and

back-end ...37	

Figure 17 Screenshot of the upload page ...38	

Figure 18 Screenshot of training page ...40	

Figure 19 Screenshot of the result page ...41	

Figure 20 Weekly electric energy consumption of a campus building42	

Figure 21 Baseline prediction of electric energy consumption of the Gund building49	

Figure 22 Next-day prediction of electric energy consumption of the Gund building50	

Figure 23 Training page of case study 2 ..53	

Figure 24 Prediction results of case study 2 without using weather features54	

Chapter I.

Introduction

1.1 Background

There is growing attention drawn to forecasting building energy usage as it can be

applied to fault detection and diagnosis1, operation optimization and demand response in

a smart grid. Energy use forecasting has been widely used in building commissioning to

determine retrofit savings (Cohen & Krarti, 1995; Kissock, Reddy, & Claridge, 1998). It

is also essential in fault detection since a baseline prediction is necessary to detect

abnormalities in energy consumption (B. Yan & Malkawi, 2013). The ability to

accurately forecast demand-side loads plays a critical role in electric power systems,

especially since the future power grid is expected to provide unprecedented flexibility in

how energy is generated, distributed and managed (Burger & Moura, 2015; Jetcheva,

Majidpour, & Chen, 2014). Power plant level forecasting is crucial to the planning and

operation of utility companies, while building-level load forecasting is crucial to building

owners to reduce the electricity charges by optimizing electricity purchase strategies.

Forecasting both levels is important for design of microgirds and intelligent distribution

systems as well as the implementation of demand response (Kwac, Flora, & Rajagopal,

2014).

1 Fault detection and diagnosis is a process of monitoring a system, determining whether a fault has occurred
and which fault occurred or the cause of the observed out-of-control status. (Chiang, Leo H., Richard D.
Braatz, and Evan L. Russell. Fault detection and diagnosis in industrial systems. Springer Science & Business
Media, 2001.)

2

1.2 Literature Review

The literature is rich with forecasting methods for grid-level and building-level

loads. Perhaps the most attention has been given to the approaches such as artificial

neural networks (ANN), Support Vector Regression (SVR) and Autoregressive Integrated

Moving Average (ARIMA) models (Burger & Moura, 2015). Multiple Linear

Regression, Fuzzy Logic, Decision Trees, and k-Nearest Neighbors (k-NN) methods are

also widely used (Burger & Moura, 2015; Majidpour, Qiu, Chu, Gadh, & Pota, 2015).

There has been a surge of interest in Gaussian process (GP) modeling following recent

advances in the machine learning community (Neal, 1995; Rasmussen, 1996). Gaussian

Processes have been successful in solving many real-word data modeling problems

(MacKay, 1997). Recently, Gaussian process modeling has been adopted to forecast

thermal dynamics and energy consumption in buildings (Kim, Ahn, Park, & Kim, 2013;

Manfren, Aste, & Moshksar, 2013; J. Yan, Kim, Ahn, & Park, 2013).

Leith, Heidl, and Ringwood (2004) examined models based on GP priors for

electrical load forecasting. In their GP models, the features are the order of the data point

𝑖 and the electrical load of the previous time step 𝑦%&'. The covariance functions account

for trend, seasonal component, autocorrelation and noise in the data. They compared the

prediction accuracy of using Basic Structural Models (BSM) and Seasonal Auto-

Regressive Integrated (SARI) models with GP models for weekly electrical demand from

a mixture of domestic, commercial and industrial users in Ireland. The GP results were

better than BSM and SARI models.

Gray and Schmidt (2016) developed a GP regression model to predict the day-

ahead hourly zone temperature in a building. Their study uses synthetic data simulated by

3

TRNSYS (A TRaNsient SYstems Simulation Program2). The input variables include

ambient temperature, solar gains, heating medium mass flow, number of occupants, hour

of day, day of week, heating schedule and calculated zone temperature of previous days.

There are 18 weeks of data for training and 10 for testing. The study compares models

with different training periods: 72-hour (three days), 168-hour (one week), 504-hour

(three weeks) and 1008-hour (six weeks). Longer training periods lead to lower day-

ahead prediction errors. The study also compares GP regression with a grey-box model.

The grey-box model is a series of partial differential equations that describe thermal

dynamics. It is based on physical principles but simplifies the mathematical system

description by lumping certain parameters. When using a training period of three weeks

or longer to predict the day-ahead zone temperature during occupied hours, GP achieves

a lower prediction error than the grey-box model. However, in their case study, the grey-

box model has a lower total prediction error, requires less training and is less sensitive to

input data not present in the training dataset than GP. The sensitivity to unknown data is a

limiting factor for GP prediction, especially when a reduced amount of training data is

available.

Heo, Choudhary, and Augenbroe (2012) presented a Bayesian approach, which

involves GP regression, to calibrate normative energy models. The mathematical model

is based on the work of Kennedy and O'Hagan (2001). The GP formulation is used to

compute the likelihoods 𝑝 of observations 𝑦 given model parameters	𝜽, 𝑝(𝑦|𝜽). In their

case study, 𝜽 includes window opening, indoor temperature during heating, infiltration

rate and discharge coefficient. The 𝑦 variable to be calibrated is monthly gas

2 http://sel.me.wisc.edu/trnsys/

4

consumption in their study. Later Heo and Zavala (2012) developed a Gaussian process

modeling framework to determine energy savings in measurement and verification

(M&V) practices. Burkhart, Heo, and Zavala (2014) extended the Heo and Zavala (2012)

research by incorporating input uncertainty using a Monte Carlo expectation

maximization (MCEM) framework.

1.3 Prior Work

In my PhD dissertation work, I predicted building energy consumption using GP

regression (B. Yan, 2013; B. Yan & Malkawi, 2013) with a 90-day building energy

demand and weather dataset. The targets were hourly chilled water use rate (W/m2) and

hourly steam use (W/m2). The input features included outside air dry-bulb temperature

(°C), humidity ratio (kg/kg) and hour of day which is represented by sin 12∙hour
14

 and

cos 12∙hour
14

. The outcomes consisted of predictive mean and uncertainty range in the

form of 95% confidence region, as shown in Figure 1. I also compared the accuracy of

GP regression and neural networks. The results of ten-fold cross validations of different

predicting period are shown in Figure 2. My PhD thesis also explored GP prediction with

uncertain predictive input noise and the use of GP prediction as a baseline in fault

detection. However, the work in my PhD thesis was preliminary and the dataset was

limited. The study mostly relied on EnergyPlus3 simulation to generate synthetic data.

There was no visualization component involved to help discover underlying patterns of

data. No web application tools were developed in my PhD thesis.

3 EnergyPlus™ is a whole building energy simulation program that engineers, architects, and researchers use
to model energy consumption. The models in EnergyPlus are physics-based. More details can be found here:
https://energyplus.net/

5

Figure 1 Illustration of 24-hour prediction of chilled water and steam use

Figure 2 Comparison of 𝑹𝟐 values of Gaussian processes and neural networks

0 6 12 18 24
150

200

250

300

350

Hour

Ch
ille

d
W

at
er

 U
se

 (W
/m

2)

0 6 12 18 24
50

60

70

80

90

100

Hour

St
ea

m
 U

se
 (W

/m
2)

95% confidence region
Predictive mean
Observed value

0.70

0.75

0.80

0.85

0.90

0.95

1.00

24-hour 72-hour 9-day

R2 Steam Use

Neural Network

0.70

0.75

0.80

0.85

0.90

0.95

1.00

24-hour 72-hour 9-day

R2 Chilled Water Use

Gaussian Process

6

Figure 3 Accuracy comparison of different machine learning methods for hourly and

daily prediction

During my course work for this MLA degree, I analyzed the Gund Hall (Harvard

Graduate School of Design) data with other two teammates for CS109 (Data Science)

final project4. Using the energy consumption data from 07/01/2011 to 10/31/2014, we

trained different models to predict daily and hourly energy consumption using linear

regression, support vector regression, GP regression, random forests and k-nearest

4 http://cs109-energy.github.io/

7

neighbours. Figure 3 shows the prediction accuracy of different machine learning

methods in this case study. The results of the comparison cannot be readily generalized to

other cases without further research. Figures 4 and 5 show some preliminary exploration

in visualization. My CS-E81 (Machine Learning) final project explored the prediction of

campus-level electric energy consumption using random forests and GP regression. We

used data from July 2014 to February 2015, approximately 7 months (one month missing)

data as the training set, and March 2015 to May 2015 approximately 3 months data as the

testing set. The training R2 score is 0.95 and the prediction R2 score is 0.74 ± 0.16 for

random forests and 0.77 ± 0.12 for GP regression. We have a website hosted on Github

for CS109 final project. After launching the website, I received several inquiries from

students and researchers who would like to know more about this project. According to

Google Analytics shown in Figure 6, there have been almost 10,000 page views from 10

countries in the past two years.

Figure 4 Visualization of Gaussian process prediction implemented in Matplotlib Python

module

8

Figure 5 Visualization of electric energy consumption pattern

Figure 6 Google analytics statistics of CS109 final project website visits

9

There are still several limitations in our final projects of CS109 and CS-E81 due

to the time constraint. The limitations are in the follow aspects:

1. Algorithm: GP regression could be a useful tool for engineers to forecast building

energy demand. The engineers in building or energy industry might not be

machine learning experts. Therefore, a guideline on the workflow including how

to select features would be helpful. In our CS109 and CS-E81 projects, I didn’t

perform feature selection but only tried several different feature combinations

based on my own domain knowledge. In my PhD and Postdoc projects, I did not

investigate the feasibility of adopting time series modeling methods, either.

2. Implementation: For my PhD thesis, I implemented GP regression through a

Matlab toolbox developed by Rasmussen and Nickisch (2015). In our CS109 and

CS-E81 projects, I switched to a Python module, Scikit-learn5. Since the data

wrangling is done in Python, it is much easier to use the same programming

language for GP regression, but there are downsides. The GP regression in Scikit-

learn module is less recognized than the Matlab toolbox developed by Rasmussen

and Nickisch (2015), because the work of Rasmussen (2006) is much more

frequently cited. The implementation of GP regression in the Scikit-learn module

is based on a translation of the DACE Matlab toolbox (Lophaven, Nielsen, &

Sondergaard, 2002). Users need to specify the lower and upper bounds of

hyperparameters in GP regression, which requires manual tuning and additional

cross-validation. I recently found a Python library for GP regression called

5 http://scikit-learn.org/stable/

10

GPflow6. GPflow uses Google TensorFlow7 to search for the hyperparameters in

GP regression. Its implementation seems to be similar to Rasmussen and Nickisch

(2015)’s Matlab toolbox.

3. Visualization: This can help users find underlying patterns in data and thus help

with model development. The visualization implemented in Python Matplotlib for

CS109 was static. There was no user interaction. The visualization was hard-

coded and therefore users will not be able to use that to view their own data such

as energy demand patterns and trends unless they change the code.

Inspired by the considerable attention our website of CS 109 project has drawn, I

have continued to work on this topic for my MLA thesis. According to my knowledge of

the existing research and my experience of two previous projects, there are three areas in

which I could make some contributions. First, the existing research about using GP in

building energy demand prediction is still very limited compared with that of using other

widely used machine learning techniques such as ANN and SVR. A workflow including

feature selection is yet to be developed. Second, for users without programming

experience, a web application will enable them to develop GP regression models without

coding. GP toolboxes in Matlab, Python, R, C and C++ are available (Rasmussen, 2011),

but they all require programming to some extent. A user-friendly web application

implemented with recent technologies is still lacking. Last, there is no discussion about

effective visualization methods that could assist in discovering energy consumption

patterns and understanding prediction outcomes.

6 http://gpflow.readthedocs.io/en/latest/
7 https://www.tensorflow.org/

11

1.4 Contribution

The main contribution of this thesis is a web application that allows users to

predict and visualize energy demand through Gaussian process regression. Although the

web application is designed for energy demand prediction, it can be applied to any time

series data with a single output. The prediction types implemented in the web application

include baseline prediction8 and next-day prediction. The web application highlights

visualization techniques designed for pattern discovery and model tuning. It also utilizes

popular technologies including Tensorflow. This allows the possibilities of integrating

other machine learning models, such as a deep neural network into the app in the future.

This thesis advances my prior work by using new technologies to improve the

design and the performance of a prediction tool. I also explore the visualization

techniques that facilitate the analysis of energy consumption patterns and transform the

data into informative insights. In terms of algorithms, the web application adds next-day

prediction.

1.5 Outline

Chapter 2 first reviews the mathematical form of Gaussian process regression.

Then it discusses how to deal with feature selection and time series predictions in

Gaussian process regression. Chapter 3 shift the attention to the web application, which is

the core of this thesis. It first presents the overall functions of the web app, then discusses

the technology choices. Section 3.3 introduces the implementation details, front-end and

back-end design. Chapter 4 illustrates the use of the web application through two case

8 See Section 2.4 for the definition of baseline prediction.

12

studies. Finally, Chapter 5 concludes this thesis with a discussion on interesting future

directions for the web application as well as the algorithm development.

Chapter II.

Algorithm

This chapter reviews the basic mathematical form of Gaussian process regression

and discusses how to deal with feature selection and time series predictions. Section 2.1

describes the GP regression based on existing studies. Section 2.2 is from a publication of

my Postdoc work (B. Yan, Li, Shi, Zhang, & Malkawi, 2017) and therefore is not part of

the work of this thesis. It is here because the equations and process in Section 2.1 and 2.2

are used in the web application. Section 2.3 introduces the method of time series

prediction used in this thesis and Section 2.4 discusses the difference of two types of

predictions in the web application.

2.1 Standard Gaussian Process Regression

The Gaussian process regression models used in this thesis are based on the work

of Rasmussen & Williams (2006). A Gaussian process is specified by a mean function

and a covariance function 𝑘(𝐱%, 𝐱:). The choice of mean function in this study is the zero

function, and the covariance function is a squared exponential kernel,

𝑘(𝐱%, 𝐱:) = 𝜎=1 exp −
1
2 𝐱% − 𝐱:

D𝑊&' 𝐱% − 𝐱: (1)

where

 𝑊 = diag 𝑤'1, 𝑤11, … , 𝑤K1 (2)

14

with parameter 𝑤 defining the characteristic length-scale in covariance function. 𝐷 in

Equation 2 is the number of features. The characteristic length-scales roughly define how

far apart the input values 𝑥%,N and 𝑥:,N can be for the response values to become

uncorrelated, where 𝑥%,N is the value of the 𝑑th feature of the 𝑖th data point . Inputs that

are judged to be close by the covariance function are likely to have similar outputs. A

prediction is made by considering the covariance between the predictive case and all the

training cases 𝐤 𝑋, 𝐱∗ (Rasmussen, 1996). For a noise-free input 𝐱∗, predictive posterior

mean and variance are (Rasmussen & Williams, 2006)

 𝔼 𝑓∗	|	𝑋, 𝐲, 𝐱∗ = 𝐤 𝑋, 𝐱∗ D(𝐾 + σY1𝐼)&'𝐲 (3)

 𝕍 𝑓∗	|	𝑋, 𝐲, 𝐱∗ = 𝑘 𝐱∗, 𝐱∗ − 𝐤 𝑋, 𝐱∗ D(𝐾 + σY1𝐼)&'	𝐤 𝑋, 𝐱∗ 	 (4)

𝐾 is an 𝑁×𝑁 matrix of covariance functions between each pair of training inputs. σY1

denotes the variance of Gaussian noise in training targets 𝐲, 𝐼 is an 𝑁×𝑁 identity matrix.

𝜎=, σY and 𝑤',𝑤1 …𝑤K are hyperparameters to be trained through gradient descent

optimization algorithm. Figure 7 describes the relationships between inputs and output, as

well as the ones between training points and the points to be predicted in a GP regression.

Figure 7 Diagram of Gaussian process regression

15

A distinguished feature of Gaussian Processes is that the outcomes come in the

form of probability distributions, which take uncertainty in the modeling process into

account. The variance of a prediction (Equation 4) automatically includes two types of

uncertainties. The first type of uncertainty is noise in the targets 𝐲. The noise might come

from measurement noise. The process to be modeled itself is stochastic, and thus there

are random elements in 𝐲. The features in an existing model might not fully explain the

variance in training targets. There might be some other important features that affect

outputs. The second type of uncertainty is interpolation uncertainty. The distance

between the inputs associated with a prediction and training inputs affects the magnitude

of the variance. GP modeling is an interpolation method. If a new input point lies beyond

the scope of the training input domain, the variance will be large in the prediction.

2.2 Feature Selection

Successful feature selection will improve prediction performance, reduce

computational cost and provide a better understanding of the underlying prediction

process. Feature selection is especially helpful for high-dimensional problems such as

text processing of internet documents and gene expression array analysis (Guyon &

Elisseeff, 2003). Although energy prediction is not a high-dimensional problem, if there

are more than a few thousand training points, the covariance matrix gets large and

computational cost could be high. For instance, hourly prediction using one-year

historical data requires feature selection in order to reduce computational cost.

There are feature selection methods based on entropy (Che & Wang, 2014; Zheng

& Kwoh, 2011). Following the Che and Wang (2014) method, we have tested feature

16

selection based on correlation coefficients and mutual information for GP regression.

However, these algorithm-independent feature selection methods might not be applicable

to GP regression or energy demand forecasting discussed in this thesis. Here, we use an

alternative approach of feature selection specifically targeting GP regression, which has

been discussed in (B. Yan et al., 2017). The idea is to use the hyperparameters which a

GP regression learns. Here are the implementation steps.

1. Normalize all features and the target to [-1, 1].

2. Divide the dataset into training, validation and test sets. Use training and

validation sets for feature selection. If the dataset is large and computational cost

is a concern, select smaller training and validation sets for the purpose of feature

selection.

3. Include all the features to train a GP regression and derive the characteristic

length-scale 𝑤 that corresponds to each feature from the training set.

4. Calculate the indicator of each feature as

 𝑔 𝐱N =
𝑤N

std 𝐱N
	 (5)

where 𝐱N is the input vector of a certain feature, 𝑑 = 1,2, …𝐷 and D is the

number of features. The indicator 𝑔 𝐱N is defined as the characteristic length-

scale of a feature divided by the standard deviation of all inputs on that feature

dimension. As mentioned in the Modeling Methods section, the characteristic

length-scale determines how close two points have to be to influence each other.

As the characteristic length-scale is normalized by the variation of the training

inputs on that feature dimension, it indicates how significant that feature is. If

17

𝑔 𝐱N is small, it means small changes in input value of a certain feature will

have a significant impact on output value. Therefore, a relatively small 𝑔 𝐱N

indicates that the corresponding feature is important in GP regression.

5. Select 𝐱('), 𝐱(1), … 𝐱(K∗) as

 𝐱(') = argmin
c

𝑔 𝐱N 	 (6)

𝐱(1) = arg min
c&{𝐱(e)}

𝑔 𝐱N

⋮

𝐱(K∗) = arg min
c&{𝐱 e ,𝐱 h ,…𝐱 i∗je ,}

𝑔 𝐱%

(7)

where (1), (2) and (𝐷∗) denote the rank of features, and 𝑋 denotes the entire

feature sets. The feature with the smallest 𝑔 𝐱N is the first feature to select. The

number of the features 𝐷∗ depends on training and validation accuracies, as well

as computational cost. In general, if the training and/or validation accuracy of

using the selected feature(s) is much lower than the accuracy of using all features,

one should include more features in the model. Otherwise, test with fewer features

to further reduce computational time.

2.3 Time Series Prediction

Energy demand forecasting appears to be a typical time series modeling problem.

Each data point is associated with a timestamp and energy demand at each time step is

strongly related to the previous one. For buildings, the energy consumption for heating

and cooling at different time steps is not independent due to thermal inertia of buildings.

18

Such dependencies due to thermal inertia may be more obvious when time intervals are

shorter than an hour.

In order to use GP regression for time series prediction, we can continue to use a

modification of Equations (1) to (4). To use GP regression for time series prediction adds

a few time series features and uses a modified training matrix. This study examines the

effect of adding a few time series features and growing training matrix for time series

prediction. The time series features tested in this study include:

𝒊: the order of data points. By using 𝒊, more recent training data points get higher

weights. The prediction will be more influenced by recent data points.

𝒚𝐭&𝟏: measured value of the target at the previous time step. When predicting

next-day energy demand, we will use yesterday’s measured energy use as a

feature.

𝒇𝐭&𝟏: predicted value of the target at the previous time step. When performing 𝑋-

day ahead (𝑋 ≥ 2) predictions, measured 𝒚𝐭&𝟏 is not available. Predicted value

𝒇𝐭&𝟏 is used instead.

Most learning tasks use a fixed set of historical data as the training set. In order to

predict the trend, it makes more sense to include recent data points when they are

available. We use a fixed set of historical data to train a model only once. The

hyperparameters in the trained model stay the same, but new data will be added to the

training data matrix 𝑋 in Equations (3) and (4) when available. For example, in order to

predict the next day energy demand, today’s observed energy consumption along with the

observed value of the features will be added to the training matrix.

19

2.4 Forecasting Type

Whether to add time series features and/or to use a growing training set depends

on the type of prediction task. As far as the energy demand prediction is concerned, there

are two types of prediction tasks, baseline prediction and trend prediction.

In baseline prediction, we use a dataset of one to several years to predict energy

demand for another long period of time, e.g. 1-2 years. All the features 𝑋 and targets 𝑌

are observed. The predicted value serves a baseline, in that if all the inputs remain the

same, the output will be the predicted energy. Baseline prediction is useful for anomaly

detection. It does not make sense to add time series features or use a growing training set

for the purpose of baseline prediction. Otherwise, you are not comparing the energy

consumption with a fixed period of time.

Predicting the energy demand of next-day, next-30-day or further times in

advance is a trend prediction task. When predicting tomorrow’s energy demand, some of

tomorrow’s features 𝑋 are estimated or predicted, for example, weather. The purpose is to

predict future energy demand and make plans no matter whether the energy consumption

pattern stays the same. When predicting energy demand of next-30-day energy, a long-

term daily weather forecast is usually unavailable. Therefore, in practice, weather might

not be included in the feature set. The only features available are time-related features

and historical energy use. Adding time series features and using a growing training set

might help improve trend prediction accuracy even when energy use patterns are quite

different from previous time periods.

20

Chapter III.

Web Application

3.1 Application Overview

The main purpose of the web application is to allow users without programming

skills to train Gaussian process regression models to predict energy demand. First, users

need to upload their data in a csv file. The data file needs to follow the format as shown

in Figure 8. The first row of the csv file must be the names of the features. The first

column must be the date. The program uses the Python dateutil module to parse

date/time strings. This module can return a date/time object in Python for various

common date/time input formats. The settings of the parser in the web application

interprets the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the month and

the last value as the year. All the data of features and target need to be numeric. Once the

file is uploaded, the variable names and their values will be read into the database and fed

into visualization pages. Then users will be able to view the data, select forecasting type,

features and training period, as well as view prediction results through interactive

visualizations. After users submit all the model inputs, the back-end runs the GP

regression algorithm, trains a model using the features and target specified by users,

stores the results in the database and outputs the predictive mean, 95% confidence region,

as well as training and test accuracies. The back-end also calculates the importance of

each selected feature and presents the information in a bar chart in the front-end. If the

prediction accuracy is low, users can use interactive visualization to check the data points

with poor predictions. After some diagnosis, users can re-train the model by trying

different features and training periods. The current version of the web application

21

implements the baseline and next-day prediction. The next two sections introduce the

technology choices, back-end implementation and front-end design in detail.

Figure 8 csv data file format

3.2 Technology Choices

3.2.1 Python and GPflow

Python is used to program the back-end, including algorithm implementation and

web service. Python is widely used in the machine learning community. For example,

TensorFlow, a popular machine learning library, uses Python. Using Python will allow

22

the web application to incorporate other machine learning models in the future. The

GPflow package is used to implement the GP regression algorithm (Matthews et al.,

2017). This package uses TensorFlow to handle all gradient computation. GPflow comes

with many covariance functions (also called kernels), such as constant, linear, white,

Matern12/32/52, RBF (radial basis function, the one used in this project), cosine and

periodic kernels. Kernels can be combined and different kernels can be used on different

feature dimensions.

3.2.2 Flask

In order to build a python web application, one needs a web framework to

implement all the functionality common to most web application, such as mapping URLs

to Python. There are many Python web frameworks; the most popular two are Django

and Flask. Django was first released in 2006 and now it has the largest community with

over 156k StackOverflow questions as of November 2017. Flask is a much younger

framework which started in mid-2010. There are around 19k StackOverflow questions,

which is only the one-eighth of Django. On Github, they have a nearly identical number

of starts with 29.4k for Django and 30.8k for Flask.

I choose Flask as the web framework for this project since it is great for small

projects that need a fast way to make simple web sites. Compared with Django, Flask is

more lightweight and it is easier to figure out for new web developers. In addition, Flask

lets you decide what components, such as database, to use and how to interact with them.

23

3.2.3 MongoDB

I choose MongoDB as the database for this project. MongoDB is a NoSQL

database. NoSQL databases were developed in late 2000s to deal the limitations of SQL

databases. NoSQL database allows the insertion of data without a predefined schema.

Compared with a SQL database, it is easier to make significant application changes in

real-time to a NoSQL database, which makes development faster. They support auto-

sharding, which means they can natively and automatically spread data across an

arbitrary number of servers as necessary (MongoDB, 2016).

The debate about whether NoSQL is superior to SQL database is not over. Today

SQL seems to be resurging. Google’s globally-distributed data management system

Spanner transitioned from NoSQL to SQL because “SQL has provided significant

additional value in expressing more complex data access patterns and pushing

computation to the data” (Bacon et al., 2017). The main reason I decided to use

MongoDB is that it makes web application development easier for a small project.

MongoDB uses JSON-like documents, which is consistent with the data structure used in

web front-end development. A most appealing feature is that by using MongoDB,

applications can add new fields to each data document on the fly. Unlike SQL table rows,

dissimilar data can be stored together. MongoDB’s flexibility is extremely useful for web

application projects.

3.2.4 Highcharts.js

The market of charting tools has become highly competitive. I selected

Highcharts.js as the main tool to create interactive charts in front-end. Highcharts.js is a

charting library written in pure JavaScript that was created by a Norway-based company

24

Highsoft. Highcharts.js provides a variety of basic charts, line, area, column, bar, pie,

scatter and bubble charts. Using the combinations of the basic chart elements, it can also

generate gauges, heat and tree maps, polar charts, wind roses, vector plots, Sankey

diagrams and word clouds. Highstock.js, a side product of Highcharts.js, optimizes the

line charts for financial data visualization and large datasets. The timeline charts in

Highstock.js, as shown in Figure 9, have sophisticated navigation options including

preset date ranges, date picker, scrolling and panning, which is ideal to visualize time

series data such as energy demand in this project.

Figure 9 Time series chart in Highcharts.js

Since its first release in 2009, Highcharts.js has been developed to meet evolving

needs. The chart tools provided by Highcharts are responsive across devices, touch

optimized for mobile and screen devices, and ready for big data through their WebGL-

powered Boost module. All the charts are easy to customize and style via JavaScript or

CSS. Last but not least, Highcahrts is free for non-commercial use.

25

In addition to Highcharts.js, D3.js and Tableau are among the most popular tools

that produce dynamic and interactive data visualizations. The style of the charts created

byD3.js is similar to Highcharts.js, but D3.js provides much more variety and flexibility.

When I show my D3 visualizations to people working in machine learning or big data

industries, they always ask me, “why not Tableau?” To be honest, I have never used

Tableau. I have only seen that one of my co-coworkers without programing skills can

create an interactive chart quite easily. The same chart she created using Tableau will

take me probably 30~40 hours to develop using D3.js. I have to admit that Tableau is

easy to learn and easy to use. One can simply create an interactive chart and publish it on

web by drag and drop. No coding is required. It might take many hours and heavy coding

to create the same chart in D3. However, Tableau is a closed software package which

means when you are developing your own web apps, it would be difficult to connect

charts with back-end. Not to mention that Tableau license is very expensive. D3.js, in

comparison, is a JavaScript library which uses SVG, HTML5 and CSS standards.

Without any doubts, D3.js is made for data visualization in web browsers and suitable for

web apps development. D3.js is free and open. It can satisfy high interactivity and

customization requisites.

Since programming is not an issue for me, I prefer tools like D3.js which are open

source and provide great flexibility. The drawback is that even a standard chart might

require moderate coding. Although one can copy and paste most of the code from online

resources, the code will become long and messy. For this thesis project, if I had used

D3.js, I would have found it difficult to maintain all my HTML and JavaScript code, and

probably would have soon lost track of them. I like the idea and style of D3.js, but the

26

amount of work required has prohibited me from using it for this project. To make coding

easier, there are libraries built on top of D3.js, for example C3.js, which could make your

code shorter and save you some time. However, the chart design is not elegant. I might

end up spending extra time trying to change chart appearance so it is no use.

Plotly is another visualization tool built on top of D3.js. Plotly offers several

products which include (1) Plot.ly, a graphical user interface which adopts drag and drop

style; (2) Plotly.js, an open source JavaScript library; (3) API libraries for Python, R,

MATLAB, Node.js and REST API. Coding is manageable using Plotly.js, but it suffers

the same problem – the style in default charts is not optimal, at least in my opinion.

I chose Highcharts.js over C3.js or Plotly.js. I like the design of its charts,

especially the design of time series charts as shown in Figure 9. The navigation options in

Highcharts.js are more user-friendly than C3.js and Plotly.js. The default time series chart

of Highcharts.js provides buttons to select pre-configured ranges in the chart, like 1 week,

1 month, etc. It also provides input boxes where min and max dates can be manually

input. A small series below the main series displays a view of the entire data set. It allows

users to zoom in and out on parts of the data as well as pan across the dataset. In

comparison, the default time series chart of C3.js does not provide any navigation

options, as shown in Figure 10. The default time series chart of Plotly.js shown in Figure

11 provides pre-configured date ranges selector and a range slider similar to

Highcharts.js. However, the choices of default fonts, colors, line styles and chart layouts

are not as good as Highcharts.js.

27

Compared with D3.js, coding with Highcharts.js is more manageable. Although

Highcharts.js is not built on top of D3.js, the style is similar. In this project, I used D3.js

together with Highcarts.js when I needed more customization than Highchart.js provides.

Figure 10 Time series chart in C3.js

Figure 11 Time series chart in Plotly.js

28

No single visualization tool could be a perfect solution. The choice depends on

many factors including cost and time for development, expertise available or familiarity

to the tools, dataset volume and features, level of interactivity required and visual appeal

taste. The visual design of the timeline chart in Highcarts.js is a good fit to visualize

energy demand data and open source libraries sometimes are ideal.

3.2.5 Heroku

Heroku was selected as the cloud platform as a service (PaaS) solution to deploy

the web application. Platforms as Service (PaaS) remove the need for organizations to

manage the underlying infrastructure. This helps developers be more efficient as they do

not need to deal with resource procurement, capacity planning, software maintenance,

patching, or any of the other undifferentiated heavy lifting involved in running

applications (Amazon.com, 2017). Heroku, one of the first cloud platforms, was

established in 2007. Other PaaS choices include Google App Engine and Amazon Web

Service. Among these PaaS solutions, Heroku probably offers developer the simplest

path to deploying the web applications online. It can take as short as five minutes and a

few lines of commands to deploy an app. Heroku provides a free plan ideal for

experimenting with cloud applications, which allows 512 MB RAM and a monthly pool

of 1000 free dyno (Heroku’s unit of processing power) hours. This study used this free

plan for initial web development. If the complexity of this web app evolves in the future,

512 MB RAM might not be sufficient.

 3.2.6 Summary

 Figure 12 summarizes the technology choices used in the web app.

29

Figure 12 Technologies used in the web app

3.3 Back-end Implementation

The back-end does three things: (1) uploading data files and storing data in the

database; (2) querying database and formatting data for RESTful (Representational state

transfer) web service; (3) implementing algorithms including feature selection, training

and prediction, and storing results in the database. This section first introduces the

database design and then discusses the main functions in Flask.

3.3.1 Database

In MongoDB, databases hold collections of documents (MongoDB, 2017a).

Everything is stored in one database in this web application. Each dataset uploaded by

Back-end

GPflow

Front-end

-- Programing language

-- Algorithm implementation

-- Web framework

-- Database

-- Database

30

users is stored in a collection. A collection contains 𝑁 documents, where 𝑁 is the number

of data points. Each document holds one row of data in the csv file shown in Figure 8.

One dataset only has one GP regression model. The information of all the models is

stored in a separate collection, which contains 𝑀 documents, where 𝑀 is the number of

models/datasets. Therefore, the database contains 𝑀 + 1 collections in total.

When a user uploads a new data file, the database creates a new collection and

assigns a name of 6 random letters to the collection. The program checks whether the

newly created collection name already exists. In that case, the program generates a new

name and checks for uniqueness again until a unique name is generated and assigned to

the collection. This 6-letter name is called model ID. The model ID is shown at the end of

the link addresses of the training and result pages. Then the database stores each data

entry as a BSON document in the collection. A MongoDB document is composed of

field-and-value pairs. Its structure is the same as a JSON representation or dictionary in

Python. The value of a field can be any of the BSON data types, including other

documents, arrays, and arrays of documents (MongoDB, 2017b). In this web application,

the value of a field is a date, a numeric value or a Boolean value. For each document,

MongoDB assigns an id. This id is not explicitly used in the web application though.

“Date” is a required field in the uploaded data file of this web app. As soon as a data file

is uploaded, the back-end converts the date to several time features including timestamp

in millisecond, year, month, week of year, day of month, and day of week. Timestamp is

used as an index, since we need to look up a data entry by its timestamp frequently. This

speeds up the query process considerably. Timestamp is also used for x-axis values in

time series charts in Hicharts.js. Year and month are used in calendar chart display. Week

31

of year, day of month, day of week might be useful features in GP model training. The

values of features and target are also stored in each document. After a GP regression is

trained, predictions are made for both training and test sets. The predicted mean value

along with the prediction uncertainty are inserted into each document. If the observed

value of the target falls out of the 95% confidence region of prediction, then this point

will be marked as “abnormal” in the database. If a model is re-trained, the predictions

will be updated. The structure of a collection that stores uploaded data and corresponding

processed data is illustrated in Figure 13.

Figure 13 Structure of a collection that stores data uploaded by a user and corresponding

processed data

{
'_id': ObjectId('5910e99c04a32502ebac5973'),
'timestamp': 1325394000000.0,
'date': '1/1/12',
'year': 2012,
'month': 1,
'week_of_year': 0,
'day_of_month': 1,
'day_of_week': 7,
'cooling degrees': 0.0,
'solar radiation': 95.26086957,
'dehumidification': 0.0,
'occupancy': 0.0,
'chilledWater-TonDays': 0.961857377,
'predictedStd': 11.807404400418468,
'predictedMean': 0.638604170924417,
'abnormal': False

}

Collection: ‘FeFPNf’

{
'_id': ObjectId('5910e99c04a32502ebac5973'),
'timestamp': 1325394000000.0,
'date': '1/1/12',
'year': 2012,
'month': 1,
'week_of_year': 0,
'day_of_month': 1,
'day_of_week': 7,
'cooling degrees': 0.0,
'solar radiation': 95.26086957,
'dehumidification': 0.0,
'occupancy': 0.0,
'chilledWater-TonDays': 0.961857377,
'predictedStd': 11.807404400418468,
'predictedMean': 0.638604170924417,
'abnormal': False

}

{
'_id': ObjectId('5910e99c04a32502ebac5973'),
'timestamp': 1325394000000.0,
'date': '1/1/12',
'year': 2012,
'month': 1,
'week_of_year': 0,
'day_of_month': 1,
'day_of_week': 7,
'cooling degrees': 0.0,
'solar radiation': 95.26086957,
'dehumidification': 0.0,
'occupancy': 0.0,
'chilledWater-TonDays': 0.961857377,
'predictedStd': 11.807404400418468,
'predictedMean': 0.638604170924417,
'abnormal': False

}

32

A collection called “models” holds documents of model information including the

model ID assigned to a data file, the split of training and test sets, training and test 𝑅1

values (called accuracy in the database), as well as the features and target selected by

users. In MongoDB, a collection does not require its documents to have the same schema.

The documents in a single collection do not need to have the same set of fields

(MongoDB, 2017a). Therefore, the same collection can hold all the data for the model.

However, in order to make queries easier, a separate collection was created to hold the

information of all models, as shown in Figure 14.

Figure 14 Structure of the collection “models”

Collection: ‘models’

{
'_id': ObjectId('599f3e3a04a3250d4190114d'),
'collection': 'PaFfxr',
'testStart': 1411824415000.0,
'trainEnd': 1411824415000.0,
'testEnd': 1467172800000.0,
'trainStart': 1325376000000.0,
'training_accuracy': 0.8181357135964854,
'test_accuracy': 0.8633696558815848,
'features': ['cooling degrees',
'dehumidification', 'solar radiation'],
'target': 'chilledWater-TonDays’

}

{
'_id': ObjectId('599f3e3a04a3250d4190114d'),
'collection': 'PaFfxr',
'testStart': 1411824415000.0,
'trainEnd': 1411824415000.0,
'testEnd': 1467172800000.0,
'trainStart': 1325376000000.0,
'training_accuracy': 0.8181357135964854,
'test_accuracy': 0.8633696558815848,
'features': ['cooling degrees',
'dehumidification', 'solar radiation'],
'target': 'chilledWater-TonDays’

}

{
'_id': ObjectId('599f3e3a04a3250d4190114d'),
'collection': 'PaFfxr',
'testStart': 1411824415000.0,
'trainEnd': 1411824415000.0,
'testEnd': 1467172800000.0,
'trainStart': 1325376000000.0,
'training_accuracy': 0.8181357135964854,
'test_accuracy': 0.8633696558815848,
'features': ['cooling degrees',
'dehumidification', 'solar radiation'],
'target': 'chilledWater-TonDays’

}

33

3.3.2 Functions

The back-end consists of four types of functions: (1) processing uploaded files;

(2) querying database; (3) formatting data; (4) implementing algorithms. These four types

of functions are listed in Table 1 and will be described in detail in the following

paragraphs.

Table 1 List of functions and their parameters in back-end
Category Name Parameters

Process uploaded files upload_file

Query database

get_keys
collection,

train_only=False

get_data

collection,

selected_fields=None,

excluded_fields=None

get_range collection, field

get_model collection

Format data format_data type_, collection

Implement algorithms

gp_train X_train, Y_train

gp_predict X_test, trained_model

gp_predict_nextDay
X_train, Y_train, X_test,

Y_test, trained_model

gp_get_feature_rank
trained_model, features,

X_train

train_and_predict collection

34

The function upload_file allows users to upload a csv data file or retrieve a

previous model. This function first checks whether a user intends to retrieve a model

previously uploaded from the database or to upload a data file. In the former case, it will

fetch the data and redirect the page to visualize the model if the input model ID exists in

the database. Otherwise, it will ask the user to either re-enter a model ID or upload a data

file. If a user uploads a csv file, the function will assign a model ID, read the data, parse

the date inputs, convert dates to millisecond timestamp, extract time-related features,

store all the data including processed timestamp and time-related features into the

database and redirect the page to visualize the data. Figure 15 shows the processes of the

function upload_file.

35

Figure 15 Flowchart of the function upload_file

A series of functions query the database for training a model in the back-end and

displaying data in the front-end. The function get_keys gets all the variable names of a

dataset, which are used as “fields” of a data record in the MongoDB database. The

function get_data fetches all the data from a model. MongoDB stores data records in

the format of BSON documents in “collections”. In MongoDB, databases hold

collections of documents. Each dataset is stored as a collection in this web application.

Input a model ID?

No

Yes Model ID
exists?

Yes

Assign a model ID and
read data

Convert date to millisecond
timestamp;
Extract day of week, day of
month, week of year, year,
month features

Store data into the
database;
Assign timestamp as index

Redirect to result page

Redirect to data
visualization page

Start

No

Model
trained?

Yes

Redirect to train page

Pass format
check?

Check whether date column
exists and whether all values

are numeric

Yes

No

36

By default, this function fetches all the data from a collection in a database. Users can

select which features to include or exclude. The function get_range returns the

minimum and maximum data points of the field specified by a user in a collection. The

function get_model returns a JSON structured data of the detailed information of a

model including the names of features, target, the start and end dates of the training set

and test set, training accuracy, test accuracy and train-to-test data size ratio. The

information is displayed in the front-end.

 The data returned by the function get_data is used only in the back-end. The

function format_data converts data to the formats that can be visualized for different

kind of charts in the front-end. For each chart, the function format_data specifies

what to display on the x and y axes, the marker type, size and color and returns the data

in JSON. The function gp_train trains a Gaussian regression model using GPflow. The

function gp_predict returns the predicted mean value and standard deviation of given

𝑋 for baseline prediction. The function gp_predict_nextDay returns the prediction

results for next-day prediction. The function gp_get_feature_rank returns the

indicator of feature importance according to Equation (5) to (7). This information

represents the sensitivity of each feature in the GP regression and helps users to select

features. The function train_and_predict processes user inputs from the front-end,

calls the function gp_train, gp_predict/gp_predict_nextDay and

gp_get_feature_rank, as well as stores all the results into the database.

Figure 16 illustrates the main interactions between uses, front-end and back-end.

Representational state transfer (RESTful) web services are used for communication

between client (front-end) and server (back-end). The client obtains formatted data and

37

results of trained models from the server through GET HTTP methods. The client also

sends information such as model ID, selected features and target, as well as specified

training and test period to server side through POST method.

Figure 16 Sequence UML diagram of main interactions between users, front-end and

back-end

3.4 Front-end Design

3.4.1 Pages and Layouts

The front-end mainly consists of three web pages: an upload page, training page

and result page. The upload page, as shown in Figure 17, allows users to either upload a

new csv data file or input a Model ID of an existing model.

User

Front-end Flask Database

Upload a dataset
upload()

get_keys(),
get_date(),
get_range()

format_data()
Select target, forecasting
type, features, training &
test periods, submit

<<ajax: POST>>

<<ajax: GET>>

<<ajax: POST>>

train_and_predict()

get_keys(),
get_date(),
get_range()

format_data()

<<ajax: GET>>

Up
loa

d p
ag

e
Tr

ain
 pa

ge
Re

su
lt p

ag
e

Back-end

38

Then the web application will direct users to training page if no trained model

exists and otherwise to the result page.

Figure 17 Screenshot of the upload page

Figure 18 shows the 2×2 layout of the training page. In the top left is a time

series plot. Users can view target values in the format of a line chart with dates on the x-

axis. Users can use the range selector and navigator to view data in certain time periods.

The range selector provides buttons to select preconfigured time ranges in the chart, such

as 1 month, 3 months and year-to-date (YTD). It also provides input boxes where min

and max dates can be manually input. The navigator is a small series below the main line

chart, displaying a view of the entire dataset with tools to zoom in and out on parts of the

data as well as panning across the dataset. Another important function of the time series

chart is for users to select time periods for training and testing. Users need to first place

the slider in the navigator over the time period to be selected, and then click the “Set

Training Period” or “Set Test Period” button below the navigator. The selected time

periods for training and testing will be displayed next to the corresponding buttons. The

remaining time after the training period defaults to be the test period. But users can use

“Set Test Period” to change that. Below the time series chart is a calendar view. The

39

calendar view is a heat map9 which displays target values in a calendar format. In this

way, users can easily get an idea of date-related patterns, such as differences between

weekdays and weekends. To the right of the time series plot is a scatter plot. Users can

select any two variables to display and explore the relationships between different

variables, especially between features and target, which might help them to select

features for model training.

On the lower right corner is the model setup section. In this section, users can

specify the target, choose forecasting type (baseline or next-day prediction) and select

features to be included in model training. When the target is selected, the time series

chart will update correspondingly to display the selected variable. When the forecasting

type is chosen, the features will update accordingly. If next-day prediction is chosen, time

series features 𝑖 and 𝑦t&' will show up. After all the model components are set, users can

click the “Submit” button to send the information to the back-end. As soon as the model

training is finished, the web application will redirect to the result page. Baseline

prediction takes fewer than 30 seconds to train a model and make prediction for a dataset

of around 1500 points and 4~5 features. Next-day prediction takes at least a few minutes

for the same size dataset.

9 A heat map represents each individual data point contained in a matrix as colors.

40

Figure 18 Screenshot of training page

Figure 19 shows the layout of result page. Compared with the training page, there

is an additional layer of predicted results on top of the existing time series plot, scatter

chart and calendar view. In the time series plot, predicted mean values are marked as blue

circles connected with a line and the 95% confidence region is shown as the light blue

area. Measured values are marked as blue and orange dots. If a measured point is shown

in blue, it means that the measured value falls within the 95% confidence region of the

prediction. If it is orange, it is an outlier either caused by an inaccurate prediction or an

unexpected energy use. We marked these points as “abnormal” in the database. Similarly,

in the scatter plot, the abnormal points are highlighted in orange. In the calendar view, the

41

dates with abnormal predictions are highlighted with a red circle. When users click on a

date in the calendar view, the corresponding data point in time series plot and scatter plot

will be highlighted in a larger dot with a black border. This may help users to diagnose

their models. The result page also displays information of the trained model. The

importance of selected features in GP regression is displayed in a bar chart. Model

configurations such as the features and target used in the model, the training and test

period, the ratio of training samples to test samples, as well as training and test accuracy

are shown in the Model Analysis section.

Figure 19 Screenshot of the result page

42

3.4.2 Visualization Design

In this web application, the visualization focuses on the presentation of raw data

and prediction results. The goal is to design interactive and interlinked charts to help

discover patterns, improve model training, and interpret results.

Figure 20 Weekly electric energy consumption of a campus building

Discover Patterns

Even simple charts can help discover interesting patterns in energy consumption.

Figures 5 and 19 show the hourly and weekly electrical energy consumption of Gund

respectively, a building of Graduate School of Design. In Figure 5, we can see clear

differences in electric energy consumption between day and night, as well as weekdays

and weekends. The accumulated weekly consumption, as shown in Figure 20, reveals

interesting study patterns of the students in design school. During each semester,

electricity use ramps up toward a peak at finals, perhaps because the students are working

day and night during that week. Additionally, the students are working harder and harder

leading up to finals. Then, there is a dip after semesters end, especially during Christmas

43

vacation. The electric energy consumption is relatively low during January and summer

terms, and spring break, when campus is relatively empty. The calendar view helps

identify such patterns easily. The calendar view provides users with an easy way to detect

patterns related to dates, such as lower energy use in winter/summer recess and higher

use during the finals.

Select Features and Training Period

Figures 5 and 19 not only show the energy use pattern, but also highlight time-

related features. With the academia schedule, this is crucial for the accurate prediction of

electric energy consumption. Moreover, it is important to use at least one year of training

data. For example, if one only uses data from January to November in training, then the

prediction during Christmas week might be poor. For datasets that show periodic

patterns, it is important to include at least a full period for the training set. The cooling

energy consumption in Figure 18 shows time-related features do not play a significant

role while weather plays a dominant role. In the scatter plot, the cooling energy use has a

strong linear relationship with outdoor temperature. As a result, it is important to include

data of different seasons in the training set and include outdoor temperature as a training

feature.

Interpret Results

After a model has been trained and tested, the model performance is of critical

importance. If it predicts some data points poorly, we would like to know which data

points and why. For example, does the model perform poorly mostly during unoccupied

hours? Or is it because the features of predictive points are not similar to those of training

points? These questions can be answered efficiently by interactive and interlinked

44

visualizations. For example, in the calendar view, users can identify date-related issues

caused by holidays, summer/winter recess and other events (e.g., graduation). During

holidays or events, occupancy level might be lower or higher than usual. If the unusual

occupancy level is not reflected in the features, or there is simply not similar historical

data with similar occupancy levels in the training set, then the predictions may fall out of

the 95% confidence region of the measured values. Since the “abnormal” predictions are

marked with a red circle on the calendar, users might be able to immediately realize that

this is due to weekends or holidays. Additional information such as events can be

included in the tooltip to help the diagnosis process. When users click a date, the

corresponding data point will also be enlarged in the time series and scatter plots. The

charts are designed to be interlinked so that users can use additional information such as

target measured value, predicted value, predicted confidence region and values of

features to further diagnose the model.

In summary, the purpose of visualization is mainly to assist model development,

including pattern discovery, feature selection and model evaluation. Ideally, the

visualization can help drive the GP in interpreting and understanding the relationship

between features and targets, and provide tuning capability and insight into the

prediction.

45

Chapter IV.

Case Studies

4.1 A Campus Building

4.1.1 Dataset

Both campus-level and building-level energy consumption data of Harvard

buildings are available through the Energy Witness system10. The highest resolution is

typically 15-minute but it is different for different buildings and systems. The data can be

manually downloaded from the website as a csv file, although data access requires a

HarvardKey login.

One building, Gund Hall (Graduate School of Design), was selected for this

study. The total area of this building is 15,067m2. It provides studio and office areas to

approximately 500 students and more than 100 faculty and staff. There are also lecture

and seminar rooms, a cafeteria, an auditorium and a library in the building. The HVAC

(heating, ventilation and air- conditioning) system of this building consists of 9 air

handling units (AHU), variable air volume (VAV) boxes and fan coil units (FCU) as

terminal units. Three types of energy use are metered, electric energy, chilled water and

steam. Electric energy use consists of lighting, plug load, fans and pumps of the HVAC

system. Chilled water is supplied from the campus chiller plant and it is used for cooling.

Steam is used for heating and domestic hot water11. Hourly data from Energy Witness for

this building was downloaded and aggregated to daily energy use.

10 https://www.campusservices.harvard.edu/node/1298
11 Domestic hot water is hot water used for domestic purpose, for example, sanitation and personal hygiene.

46

Weather data is collected from a weather station installed on the roof of the

building. Dry-bulb air temperature, relative humidity, atmospheric pressure, wind

direction, wind speed, gust speed and solar radiation are sampled at 5-minute intervals.

Apart from these directly measured variables, dew-point temperature and specific

humidity are calculated and included in the potential feature set. Hourly weather features

are derived from averaging 5-minute samples, and daily values from averaging hourly

samples. Hourly temperature and humidity were transformed to the following variables

for cooling and heating forecasting as described below.

Dehumidification ℎN (kg/kg):

 ℎN =
ℎ − 0.0087, ℎ > 0.0087

0, ℎ ≤ 0.0087	 (8)

where ℎ (kg/kg) is humidity.

Cooling degrees 𝑡} (°C):

 𝑡} =
𝑡 − 12, 𝑡 > 12

0, 𝑡 ≤ 12	 (9)

where 𝑡(°C) is outdoor air dry bulb temperature.

Heating degrees 𝑡~ (°C):

 𝑡~ =
0, 𝑡 ≥ 15

15 − 𝑡, 𝑡 < 15	 (10)

The aggregated daily values of these three variables are the sum of hourly values as

shown in Equation 11, which is different from deriving other daily weather-related

features.

47

 ℎN = ℎN,%

1Å

%ÇÉ

	 (11)

where ℎN,% is hourly sample. Please refer to B. Yan et al. (2017) regarding the reasoning

of transforming 𝑡 to 𝑡} and ℎ to ℎN.

Time related features, day of week, day of year and week of year are included in

the feature set. An occupancy factor between 0 and 1 is estimated from the academic

calendar. For instance, a normal weekday during the semester is assigned as 1, university

holidays for staff but not for students are assigned as 0.5 and Christmas is assigned as 0

as the university is completely closed. Note that the value of occupancy is merely an

estimate based on the academic calendar, which considers winter/summer recess and

holidays but does not consider events.

4.1.2 Prediction Accuracy

Table 2 shows the baseline and trend prediction accuracies of three types of daily

energy demand. The training period is from 2012 to 2014. The test period is from January

2015 to June 2016. The base set of features selected for daily prediction is shown in

Table 3 (B. Yan et al., 2017). Feature selection and the accuracy of baseline prediction

for this case study has been analyzed in B. Yan et al. (2017) This section discusses an

analysis of trend prediction accuracy performed for this thesis project. Please refer to

Section 2.4 for the terms used in Table 2.

48

Table 2 Baseline and trend prediction accuracies of three types of energy demand
forecasting

 Features Training set Forecasting type Test 𝑅1

base
set 𝑖 𝑦Ñ&' 𝑓Ñ&' fixed growing base

line
next
day

30-
day

ahead

electric
energy

chilled
water steam

1 X X X 0.52 0.88 0.88
2 X X X X 0.69 0.83 0.77
3 X X X 0.73 0.87 0.95
4 X X X X 0.86 0.81 0.95
5 X X X X X 0.92 0.74 0.96
6 X X X 0.44 0.86 0.92
7 X X X X 0.41 0.85 0.75
8 X X X X X 0.74 0.52 -1.09

Table 3 Base set features selected for daily prediction

 Features selected

Electric energy Day of year, week of year, weekday, occupancy, heating degrees

Chilled water Cooling degrees, solar radiation, weekday, dehumidification, occupancy

Steam Day of year, week of year, heating degrees, weekday, occupancy

The accuracy of baseline prediction for electric energy consumption is poor

because the electric energy use meter was malfunctioning in 2016. The electric energy

consumption of the investigated building is the sum of readings from two meters. One

meter stopped functioning for a few days in October and November 2015, and then

completely stopped. As a result, the metered value is lower than its actual consumption

and the predicted baseline, as illustrated in Figure 21. This shows that baseline prediction

is able to detect anomalies in energy consumption.

49

Figure 21 Baseline prediction of electric energy consumption of the Gund building

For electric energy demand prediction, including both feature 𝑖 (the order of the

data points), and the latest data points available in the training set 𝑦t&', improves

“prediction accuracy”. In this case, claiming “higher accuracy” might be misleading since

the one of the two meters stopped logging. On the other hand, a malfunctioning meter is

to some extent equivalent to a change of pattern in energy consumption. If half of the

building were unknowingly shut down from a certain point of time, would it be possible

to predict the energy demand in the next few days? By using 𝑖 as a feature, new data

points get higher weights in the training set. Since the data points to be predicted deviate

significantly from old training data points, putting more weight on newer data points

improves accuracy. The accuracy of 30-day ahead prediction using 𝑓Ñ&' is much higher

than baseline prediction. Next-day prediction which uses 𝑦Ñ&' yields very “accurate”

results, as shown in Figure 22. Therefore, the prediction approaches proposed in this

thesis are both accurate and robust to changes of pattern/behavior in energy demand.

50

Figure 22 Next-day prediction of electric energy consumption of the Gund building

For chilled water use prediction, including feature 𝑖 does not help improve

prediction accuracy. Including 𝑦Ñ&' in next-day prediction or 𝑓Ñ&' in 30-day ahead

prediction actually make things much worse. For steam use prediction, next-day

prediction accuracy is the highest compared to baseline and 30-day ahead prediction, no

matter whether including 𝑦Ñ&' and 𝑖 or not. In terms of baseline and 30-day ahead steam

use prediction, including feature 𝑖 decreases the prediction accuracy. The accuracy of 30-

day ahead steam use prediction using 𝑓Ñ&' is low. Here is a possible explanation. Daily

chilled water and steam use has a strong correlation with weather-related features. Using

weather-related features as well as some time-related features already yields high

accuracy. This also means there is no abnormal pattern in daily cooling and heating

51

energy use. As a result, putting more weight on more recent data points does not help

improve the accuracy of predicting “trend”. On the contrary, this might reduce the weight

of useful old training data points. When making a prediction, what really matters is

finding the historical data points with similar weather and occupancy conditions in the

training set. It does not matter whether these most relevant historical data points are old

or recent. If we include the order of data points 𝑖 as a feature, the weights of these useful

training data points may decrease if they are not recent. As a result, including 𝑖 decreases

prediction accuracies. Including 𝑦Ñ&' might merely add a useless feature. Including 𝑓Ñ&'

in the feature set is not a good strategy for next-30-day prediction. 𝑓Ñ&' is the prediction

of the last time step and there is deviation between predictions and actual target values.

This inaccurate feature leads to an inaccurate prediction of this time step, which is used

as a feature to predict next time step. In 30-day ahead predictions, the accumulated

deviation of 𝑓Ñ&' from 𝑦Ñ&' probably causes poor prediction accuracy. Because the

accuracy of 30-day ahead is poor, it is not implemented in the current version of the web

app.

4.2 A High-Tech Industry Area

4.2.1 Dataset

The data presented thus far have focused on energy consumption of campus

buildings. It is meaningful to test the web app with other types of energy demand data.

The dataset used in this case study is from an energy consumption forecasting

competition. It consists of daily energy consumption of over 1000 companies in a high-

52

tech industry area in Jiangsu Province, China from January 2015 to August 2016. The

goal of this contest is to forecast the total daily electric energy consumption of the entire

industry area, which might be useful for demand response in smart grid applications. The

original dataset only consists of dates and daily energy consumption of 1454 companies.

Weather data such as daily min and max temperatures can be found online. This case

study uses the sum of the daily energy consumption of all the companies as the target and

tests the next-day prediction accuracy with and without weather data. The training period

is from January 2015 to April 2016; the test period is from May 2016 to August 2016.

Figure 23 shows a screenshot of the training page of this case study. From the

time series plot, we can see that the electric energy consumption is constantly around 4

million (unit unknown) except two dips in February 2015 and 2016, which are the

Chinese New Year holiday. The calendar view shows that in addition to Chinese New

Year, the energy consumption during January 1-2, May 1-2 and October 1-3 are

relatively lower. These dates are all important national holidays in China. The energy

consumption during March 5 and 6, 2015 is also significantly lower. A possible

explanation is that National People’s Congress and National Committee of the Chinese

People’s Political Consultative Conference were held during these dates. It is not unusual

to adjust industry activities during these two conferences. However, this pattern does not

repeat in 2016, so the actual reason is unknown. The scatter plot shows the relationship

between electric energy consumption and minimum daily temperature. When outside

temperature is high, the energy consumption increases, but the relationship is not linear.

53

Figure 23 Training page of case study 2

4.2.2 Prediction Accuracy

In this case, we only evaluate next-day prediction accuracy since the goal is to

accurately predict future demand, not anomaly detection. Figure 24 shows the prediction

results without using weather features. The features included in training are month, week

of year, day of week, day of year, day of month, 𝑖 and 𝑦t&'. The 𝑅1 value of test period is

0.60. Assume that weather forecast is relatively accurate. Adding weather related features

daily minimum and maximum temperatures increases 𝑅1 to 0.65. The minimum daily

temperature ranks as the third most important feature after month and 𝑦t&'. Although the

54

𝑅1 is not ideal in this case study, the mean absolute percentage error 'ÉÉ
Ö

Üá&=á
Üá

Y
%Ç' is

only 3.2%.

Figure 24 Prediction results of case study 2 without using weather features

55

Chapter V.

Conclusion and Future Work

5.1 Conclusion

The main contribution of this thesis is a web application for energy demand

forecasting using algorithm packages and web app development tools including GPflow,

Flask, Highcharts.js, MongoDB and Heroku. Users without programming skills can

upload their own time series data, train a Gaussian process regression, and predict

baseline energy consumption for anomaly detection, or predict next-day energy demand

for smart grid applications such as demand-response. The web interface mainly consists

of a time series plot, a scatter plot, and a calendar view. The time series plot shows the

original data, predicted mean values and predicted confidence range. The scatter plot

assists feature selection by showing the relationship between the target and the features.

The calendar view provides users with an easy way to identify patterns related to dates.

The charts are designed to be interactive and interlinked so that users can combine the

information from different charts to interpret the results and further diagnose the model.

The web app also ranks the importance of the selected features in a bar chart. The feature

ranking is based on the characteristic length-scales derived from GP training. This

information helps users fine-tune feature selection to improve their models.

This thesis demonstrates the use of the web app through two case studies: (1) the

daily electric energy, chilled water and steam consumption of a campus building in U.S.

and (2) the daily electric energy consumption of a high-tech industry area in China. The

results show that weather-related features are the most important in chilled water and

steam consumption predictions, while time-related features are the most important to

56

electric energy usage prediction. Baseline prediction is able to detect anomalies in energy

consumption by using the confidence range output by a GP regression. The next-day

prediction accuracy is high even when there is an abnormality in energy usage or

measurements. The prediction accuracy of next-30-day prediction is low and therefore

not implemented in the web application.

5.2 Future Work

There is still a lot of work left to improve the web application. I would like to

further improve visualization design, extend the web application to allow datasets larger

than a few thousand points, and include additional machine learning algorithms to better

compare predictive performance.

5.2.1 Visualization

Although the web application is designed for energy demand prediction, the GP

regression algorithm can be applied to any type of dataset as long as all the data points

are numeric. Most of the plots are designed to display time series data. Therefore, this

web app requires the dataset to contain a column of date and time. The time series chart

can visualize data of any time interval. However, currently the calendar view only allows

daily energy demand prediction. In the future, the calendar view will need to be

redesigned for hourly prediction or other time intervals. Moreover, additional feedback

from more users would be valuable in making the visualization more user-friendly.

57

5.2.2 Large Datasets

The current version of web application has been tested using approximately 1,700

data points. The capability and the limitation of the web application for large datasets

need to be tested. A well-known drawback of GP regression is the expensive computation

for matrix inversion in training process that scales in Ο 𝑁Å . Prediction for variances

scales in Ο 𝑁1 and memory requires Ο 𝑁𝐷 + 𝑁1 . In order to work with large datasets,

we need to adopt sparse Gaussian processes. The underlying idea in this approach is to

use a subset of the data (Banerjee, Dunson, & Tokdar, 2012) to train a model.

Data storage also leads to bottlenecks since currently, all the data and prediction

results are stored in database and the free Heroku plan only allows 500MB for the entire

web application. This is not a problem for a few thousand data points. But for larger

datasets, we need to upgrade the Heroku plan or explore other choices. Rendering a large

number of data points in the visualization might also slow down the web application or

even cause a problem. Fortunately, the WebGL-powered Boost module in Highcharts.js

enables fast rendering for millions of data points. It is able to render a line chart with one

million points in less than 500 milliseconds on a MacBook Pro with an AMD Radeon R9

M370X GPU (Highcharts, 2018). In case we need to visualization large datasets, we only

need to update to the newest version of Highcharts.js and add one line of code in

JavaScript.

5.2.3 Other Algorithms

The web application can be further extended to include other algorithms such as a

deep neural network. Since the back-end is written in Python, it is fairly easy to

58

incorporate TensorFlow for this purpose. It would be ideal to provide other prediction

algorithms in addition to GP regression. Users can compare different models and even

use ensemble learning.

59

Appendix

Web app link12:

https://calm-falls-41279.herokuapp.com

Demos:

https://calm-falls-41279.herokuapp.com/train_and_predict/c0G0uL

https://calm-falls-41279.herokuapp.com/visualize/nnhNaq/chilledWater-TonDays

Video tutorial:

https://drive.google.com/open?id=1HahVDuf7qxlTobXynRTudYIS5CY8qF-S

Code and data:

https://github.com/bin-yan/energy-demand-forecasting-app

12 In case the web link changes, I will post updates on Github.

60

References

Amazon.com. (2017). Retrieved December 06, 2017, from

https://aws.amazon.com/types-of-cloud-computing/

Bacon, D. F., Bales, N., Bruno, N., Cooper, B. F., Dickinson, A., Fikes, A., . . . Kogan, E.

(2017). Spanner: Becoming a SQL System. Paper presented at the Proceedings of

the 2017 ACM International Conference on Management of Data.

Banerjee, A., Dunson, D. B., & Tokdar, S. T. (2012). Efficient Gaussian process

regression for large datasets. Biometrika, 100(1), 75-89.

Burger, E. M., & Moura, S. J. (2015). Gated ensemble learning method for demand-side

electricity load forecasting. Energy and Buildings, 109, 23-34.

Burkhart, M. C., Heo, Y., & Zavala, V. M. (2014). Measurement and verification of

building systems under uncertain data: A Gaussian process modeling approach.

Energy and Buildings, 75, 189-198.

Che, J., & Wang, J. (2014). Short-term load forecasting using a kernel-based support

vector regression combination model. Applied Energy, 132, 602-609.

Cohen, D., & Krarti, M. (1995). A neural network modeling approach applied to energy

conservation retrofits. Paper presented at the Building Simulation Fourth

International Conference.

Gray, F. M., & Schmidt, M. (2016). Thermal building modelling using Gaussian

processes. Energy and Buildings, 119, 119-128.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3(Mar), 1157-1182.

Heo, Y., Choudhary, R., & Augenbroe, G. (2012). Calibration of building energy models

for retrofit analysis under uncertainty. Energy and Buildings, 47, 550-560.

Heo, Y., & Zavala, V. M. (2012). Gaussian process modeling for measurement and

verification of building energy savings. Energy and Buildings, 53, 7-18.

Highcharts. (2018). Render millions of chart points with the Boost Module. Retrieved

January 2, 2018, from https://www.highcharts.com/blog/news/higcharts-boost-

module/

61

Jetcheva, J. G., Majidpour, M., & Chen, W.-P. (2014). Neural network model ensembles

for building-level electricity load forecasts. Energy and Buildings, 84, 214-223.

Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3),

425-464.

Kim, Y.-J., Ahn, K.-U., Park, C., & Kim, I.-H. (2013). Gaussian emulator for stochastic

optimal design of a double glazing system. Paper presented at the Proceedings of

the 13th IBPSA Conference, August.

Kissock, J. K., Reddy, T. A., & Claridge, D. E. (1998). Ambient-temperature regression

analysis for estimating retrofit savings in commercial buildings. Journal of Solar

Energy Engineering, 120(3), 168-176.

Kwac, J., Flora, J., & Rajagopal, R. (2014). Household energy consumption segmentation

using hourly data. IEEE Transactions on Smart Grid, 5(1), 420-430.

Leith, D. J., Heidl, M., & Ringwood, J. V. (2004). Gaussian process prior models for

electrical load forecasting. Paper presented at the Probabilistic Methods Applied

to Power Systems, 2004 International Conference on.

Lophaven, S. N., Nielsen, H. B., & Sondergaard, J. (2002). DACE A MATLAB Kriging

Toolbox (Technical Report IMM-TR-2002-12). Retrieved from Denmark:

MacKay, D. J. (1997). Gaussian processes-a replacement for supervised neural networks?

Tutorial lecture notes for NIPS 1997.

Majidpour, M., Qiu, C., Chu, P., Gadh, R., & Pota, H. R. (2015). Fast prediction for

sparse time series: Demand forecast of EV charging stations for cell phone

applications. IEEE Transactions on Industrial Informatics, 11(1), 242-250.

Manfren, M., Aste, N., & Moshksar, R. (2013). Calibration and uncertainty analysis for

computer models–a meta-model based approach for integrated building energy

simulation. Applied Energy, 103, 627-641.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-

Villagrá, P., . . . Hensman, J. (2017). GPflow: A Gaussian process library using

TensorFlow. Journal of Machine Learning Research, 18(40), 1-6.

MongoDB, I. (2016). Top 5 Considerations When Evaluating NoSQL Databases.

Retrieved December 20, 2017, from https://www.mongodb.com/nosql-explained

62

MongoDB, I. (2017a). MongoDB Manual: Databases and Collections. Retrieved

December 20, 2017, from https://docs.mongodb.com/v3.2/core/databases-and-

collections/.

MongoDB, I. (2017b). MongoDB Manual: Documents. Retrieved December 20, 2017,

from https://docs.mongodb.com/v3.2/core/document/.

Neal, R. M. (1995). Bayesian learning for neural networks. (PhD PhD thesis), University

of Toronto.

Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for non-

linear regression. (PhD PhD thesis), University of Toronto.

Rasmussen, C. E. (2006). Gaussian processes for machine learning. Cambridge: MIT

Press.

Rasmussen, C. E. (2011). The Gaussian Process Web Site: Software. Retrieved

November 10, 2017, from http://www.gaussianprocess.org/ - code

Rasmussen, C. E., & Nickisch, H. (2015). Gaussian Process Regression and

Classification Toolbox version 3.6. Retrieved November 10, 2017, from

http://www.gaussianprocess.org/gpml/code/matlab/doc/

Yan, B. (2013). A Bayesian approach for predicting building cooling and heating

consumption and applications in fault detection. (PhD PhD thesis).

Yan, B., Li, X., Shi, W., Zhang, X., & Malkawi, A. (2017). Forecasting Building Energy

Demand under Uncertainty Using Gaussian Process Regression: Feature

Selection, Baseline Prediction, Parametric Analysis and a Web-based Tool. Paper

presented at the the 15th International Building Performance Simulation

Association Conference, San Francisco.

Yan, B., & Malkawi, A. M. (2013). A Bayesian approach for predicting building cooling

and heating consumption. Paper presented at the 13th International Building

Performance Simulation Association Conference.

Yan, J., Kim, Y.-J., Ahn, K.-U., & Park, C.-S. (2013). Gaussian process emulator for

optimal operation of a high rise office building. Paper presented at the

Proceedings of 13th International Building Performance Simulation Association

Conference.

63

Zheng, Y., & Kwoh, C. K. (2011). A feature subset selection method based on high-

dimensional mutual information. Entropy, 13(4), 860-901.

