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Abstract

Drawing on lectures, course materials, existing textbooks, and other resources, we synthesize and
consolidate the content necessary to offer a successful first exposure to machine learning for stu-
dents with an undergraduate-level background in linear algebra and statistics. The final product
is a textbook for Harvard’s introductory course in machine learning, CS 181.

This work is motivated by a lack of resources for individuals with an undergraduate background in
the areas necessary to succeed in an introductory course in machine learning. Specifically, existing
textbooks are too encyclopedic to be expedient for students seeing the material for the first time,
or they assume mathematical and statistical maturity beyond that of undergraduates. Like other
professors and students have done for several courses at Harvard, we seek to solve this problem
with a properly-scoped textbook following the trajectory of the course.
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Chapter 1

Introduction to Machine Learning

1.1 What is Machine Learning?

There is a great deal of misunderstanding about what machine learning is, fueled by recent success
and at times sensationalist media coverage. While its applications have been and will continue
to be extraordinarily powerful under the right circumstances, it’s important to gain some sense
of where and why the tools presented in this book will be applicable. Broadly, machine learning
is the application of statistical, mathematical, and numerical techniques to derive some form of
knowledge from data. This ‘knowledge’ may afford us some sort of summarization, visualization,
grouping, or even predictive power over data sets.

With all that said, it’s important to emphasize the limitations of machine learning. It is not nor
will it ever be a replacement for critical thought and methodical, procedural work in data science.
Indeed, machine learning can be reasonably characterized a loose collection of disciplines and tools.
Where the lines begin that separate machine learning from statistics or mathematics or probability
theory or any other handful of fields that it draws on are not clear. So while this book is a synopsis
of the basics of machine learning, it might be better understood as a collection of tools that can be
applied to a specific subset of problems.

1.2 What Will This Book Teach Me?

The purpose of this book is to provide you the reader with the following: a framework with which
to approach problems that machine learning learning might help solve. You will hopefully come
away with a sense of the strengths and weaknesses of the tools presented within and, even more
importantly, gain an understanding of how these tools are situated among problems of interest. To
that end, we will aim to develop systems for thinking about the structure of the problems we work
on. That way, as we continue to add new tools and techniques to our repertoire, we will always
have a clear view of the context in which we can expect to use them. This will not only create
a nice categorization of the different practices in machine learning, it will also help motivate why
these techniques exist in the first place.

You will not be an expert in any individual ML concept after reading this text. Rather, you
should come away with three different levels of understanding. First, you should gain a general
contextual awareness of the different problem types that ML techniques may be used to solve.
Second, you should come away with a practical awareness of how different ML techniques operate.
This means that after you have successfully identified an appropriate ML technique for a given
problem, you will also know how that method actually accomplishes the goal at hand. If you only

1
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come away with these two levels of understanding, you will be off to a good start. The third level
of understanding relates to having a derivational awareness of the algorithms and methods we will
make use of. This level of understanding is not strictly necessary to successfully interact with
existing machine learning capabilities, but it will be required if you desire to go further and deepen
existing knowledge. Thus, we will be presenting derivations, but it will be secondary to a high level
understanding of problem types and the practical intuition behind available solutions.

1.3 Our Machine Learning Framework

Let’s consider for the first time what we will call the Machine Learning Cube. The purpose of
this cube is to describe the domain of problems we will encounter, and it will be a useful way to
delineate the techniques we will apply to different types of problems. Understanding the different
facets of the cube will aid you in understanding machine learning as a whole, and can even give you
intuition about techniques that you have never encountered before. Let’s now describe the features
of the cube.

Our cube has three axes. On the first axis we will put the domain of our data. The domain of
our data can take on one of two forms: discrete or continuous. Discrete, or categorical data, is
data that can only fall into one of n specific classes. For example: male or female, integer values
between 1 and 10, or different states in the U.S. are all examples of categorical data. Continuous
data is that which falls on the real number line.

The second axis of the cube is reserved for the statistical nature of the machine learning tech-
nique in question. Specifically, it will fall into one of two broad categories: probabilistic or
non-probabilistic techniques. Probabilistic techniques are those for which we incorporate our
data using some form of statistical distribution or summary. In general, we are then able to dis-
card some or all of our data once we have finished tuning our probabilistic model. In contrast,
non-probabilistic techniques are those that use the data directly to perform some action. A very
common and general example of this is comparing how close a new data point is to other points
in your existing data set. Non-probabilistic techniques potentially make fewer assumptions, but
they do require that you keep around some or all of your data. They are also potentially slower
techniques at runtime because they may require touching all of the data in your dataset to perform
some action. These are a very broad set of guidelines for the distinction between probabilistic and
non-probabilistic techniques - you should expect to see some exceptions and even some techniques
that fit into both of these categories to some degree. Having a sense for their general benefits and
drawbacks is useful, and you will gain more intuition about the distinction as we begin to explore
different techniques.

The third and final axis of the cube describes the type of training we will use. There are
two major classes of machine learning techniques: supervised and unsupervised. In fact, these
two classes of techniques are so important to describing the field of machine learning that we will
roughly divide this textbook into two halves dedicated to techniques found within each of these
categories. A supervised technique is one for which we get to observe a data set of both the inputs
and the outputs ahead of time, to be used for training. For example, we might be given a data
set about weather conditions and crop production over the years. Then, we could train a machine
learning model that learns a relationship between the input data (weather) and output data (crop
production). The implication here is that given new input data, we will be able to predict the
unseen output data. An unsupervised technique is one for which we only get a data set of ‘inputs’
ahead of time. In fact, we don’t even need to consider these as inputs anymore: we can just consider
them to be a set of data points that we wish to summarize or describe. Unsupervised techniques
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revolve around clustering or otherwise describing our data.
We will see examples of all of these as we progress throughout the book, and you will gain an

intuition for where different types of data and techniques fall in our cube. Eventually, given just
the information in the cube for a new technique, you will have a solid idea of how that technique
operates.

1.4 This Book’s Notation

The machine learning community uses a number of different conventions, and learning to decipher
the different versions of those conventions is important to understanding work done in the field.
For this book, we will try to stick to a standard notation that we define here in part. In addition
to mathematical and statistical notation, we will also describe the conventions used in this book
for explaining and breaking up different concepts.

Mathematical and Statistical Notation

We will describe the dimensionality of variables when necessary, but generic variables will often be
sufficient when explaining new techniques. Boldface variables (x) represent vectors, capital boldface
characters (X) represent matrices, and standard typeface variables (x) describe scalars.

Statistical distributions will sometimes be described in terms of their probability density func-

tion (PDF), e.g. Y ∼ 1
σ
√
2π
e−(x−µ)

2/2σ2
. Alternatively, in the case of a well known probability

distribution, we will describe those in terms of their standard notation, e.g. Y ∼ N (µ, σ2)

Textbook Specific Notation

We have also introduced a few conventions to make consumption of this material easier. We have
boxes dedicated to definitions, explaining techniques in the context of the ML Framework Cube,
and for explaining common misconceptions:

Definition 1.4.1 (Definition Explanation): You will find definitions in these dark gray boxes.

Derivation 1.4.1 (Derivation Explanation): You will find derivations in these light gray boxes.

ML Framework Cube: ML Framework Cube

You will find ML Framework Cube explanations in these blue wrapped boxes.

? You will find explanations for subtle or confusing concepts in these red wrapped boxes.



Chapter 2

Regression

A major component of machine learning, the one that most people associate with ML, is dedicated
to making predictions about a target given some inputs, such as predicting how much money an
individual will earn in their lifetime given their demographic information. In this chapter, we’re
going to focus on the case where our prediction is a continuous, real number. When the target is
a real number, we call this prediction procedure regression.

2.1 Defining the Problem

In order to understand regression, let’s start in a more natural place: what types of problems are
we trying to solve? What exactly does it mean to make a prediction that is a continuous, real
number? To build some intuition, here are a few examples of problems that regression could be
used for:

1. Predicting a person’s height given the height of their parents.

2. Predicting the amount of time someone will take to pay back a loan given their credit history.

3. Predicting what time a package will arrive given current weather and traffic conditions.

Hopefully you are starting to see the pattern emerging here. Given some inputs, we need to
produce a prediction for a continuous output. That is exactly the purpose of regression. Notice
that regression isn’t any one technique in particular. It’s just a class of methods that helps us
achieve our overall goal of predicting a continuous output.

Definition 2.1.1 (Regression): A class of techniques that seeks to make predictions about un-
known continuous target variables given observed input variables.

2.2 Solution Options

Now that you understand the type of problems we are trying to solve with regression, we can
start to think at a high level of the different ways we might arrive at a solution. Here is a short,
nonexhaustive list of regression techniques with brief explanations:

4
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2.2.1 K-Nearest-Neighbors

K-Nearest-Neighbors is an extremely intuitive, non-parametric technique for regression or classifi-
cation. It works as follows in the regression case:

1. Identify the K points in our data set that are closest to the new data point. ‘Closest’ is some
measure of distance, usually Euclidean.

2. Average the value of interest for those K data points.

3. Return that averaged value of interest: it is the prediction for our new data point.

? A non-parametric model simply means we don’t make any assumptions about the form of our data. We only need
to use the data itself to make predictions.

2.2.2 Neural Networks

A neural network works by scaling and combining input variables many times. Furthermore, at
each step of scaling and combining inputs, we typically apply some form of nonlinearity over our
data values. The proof is beyond the scope of this textbook, but neural networks are known to be
universal function approximators. This means that given enough scaling and combining steps, we
can approximate any function to an arbitrarily high degree of accuracy using a neural network.

2.2.3 Random Forests

Random forests are what’s known as an ensemble method. This means we average the results of
many smaller regressors known as decision trees to produce a prediction. These decision trees
individually operate by partitioning our original data set with respect to the value of predictive
interest using a subset of the features present in that data set. Each decision tree individually may
not be a reliable regressor; by combining many of them we achieve a model with better performance.

2.2.4 Gradient Boosted Trees

Gradient boosted trees are another technique built on decision trees. Assume we start with a set
of decision trees that together achieve a certain level of performance. Then, we iteratively add new
trees to improve performance on the hardest examples in our data set, and reweight our new set of
decision trees to produce the best level of performance possible.

2.2.5 Turning to Linear Regression

You’ve likely never even heard of some of these preceding techniques - that’s okay. The point is
that we have a number of existing methods that take different approaches to solving regression
problems. Each of these will have their own strengths and weaknesses that contribute to a decision
about whether or not you might use them for a given regression problem. We obviously do not
cover these methods in great detail here; what’s more important is the understanding that there
are a variety of ways to go about solving regression problems. From here on out, we will take a
deeper dive into linear regression. There are several reasons for which we are exploring this specific
technique in greater detail. The two main reasons are that it has been around for a long time
and thus is very well understood, and it also will introduce many concepts and terms that will be
utilized extensively in other machine learning topics.
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2.3 Introduction to Linear Regression

In this chapter, we’re specifically going to focus on linear regression, which means that our goal
is to find some linear combination of the x1, ..., xD input values that predict our target y.

Definition 2.3.1 (Linear Regression): Suppose we have an input x ∈ RD and a continuous
target y ∈ R. Linear regression determines weights wi ∈ R that combine the values of xi to
produce y:

y = w0 + w1x1 + ...+ wDxD (2.1)

? Notice w0 in the expression above, which doesn’t have a corresponding x0 value. This is known as the bias term.
If you consider the definition of a line y = mx + b, the bias term is corresponds to the intercept b. It accounts for
data that has a non-zero mean.

Let’s illustrate how linear regression works using an example, considering the case of 10 year old
Sam. She is curious about how tall she will be when she grows up. She has a data set of parents’
heights and the final heights of their children. The inputs x are:

x1 = height of mother (cm)

x2 = height of father (cm)

Using linear regression, she determines the weights w to be:

w = [34, 0.39, 0.33]

Sam’s mother is 165 cm tall and her father is 185 cm tall. Using the results of the linear regression
solution, Sam solves for her expected height:

Sam’s height = 34 + 0.39(165) + 0.33(185) = 159.4 cm

ML Framework Cube: Linear Regression

Let’s inspect the categories linear regression falls into for our ML framework cube. First, as we’ve
already stated, linear regression deals with a continuous output domain. Second, our goal is
to make predictions on future data points, and to construct something capable of making those
predictions we first need a labeled data set of inputs and outputs. This makes linear regression a
supervised technique. Third and finally, linear regression is non-probabilistic. Note that there
also exist probabilistic interpretations of linear regression which we will discuss later in the chapter.

Domain Training Probabilistic

Continuous Supervised No

2.4 Basic Setup

The most basic form of linear regression is a simple weighted combination of the input variables x,
which you will often see written as:

f(x,w) = w0 + w1x1 + ...+ wDxD (2.2)
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Figure 2.1: Data set with clear trend.

2.4.1 Merging of Bias

We’re going to introduce a common notational trick here for making the bias term, w0, easier to
handle. At the moment w0 is unwieldly because it is not being multiplied by an xi value. A simple
way to make our bias term easier to handle is to simply introduce another variable, x0, that is
always 1 for every data point. For example, considering the case of Sam’s height from above, we
have the height of her parents, x:

x = (165, 185)

We now add a 1 in the first position of the data point to make it:

x’ = (1, 165, 185)

We do this for every point in our data set. This bias trick lets us write:

f(x,w) = wTx = w0x0 + w1x1 + ...+ wDxD (2.3)

This is more compact, easier to reason about, and makes properties of linear algebra nicer for the
calculations we will be performing.

2.4.2 Visualization of Linear Regression

Let’s try to build some intuition about how linear regression works. Our algorithm is given a
collection of data points: inputs x and corresponding targets y. Our goal is to find the best set of
weights w such that given a new data point x, we can accurately predict the true target value y.
This is visualizable in the simple case where x is a 1-dimensional input variable, as in Figure 2.1.

Our eyes are naturally able to detect a very clear trend in this data. If we were given a new
x∗ data point, how would be predict its target value y? We would first fit a line to our data, as in
Figure 2.2, and then find where on that line the new x∗ value sits.

That is the entirety of linear regression! It fits the ‘best’ line to our data, and then uses that
line to make predictions. In 1-D input space, this manifests itself as the simple problem seen above,
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Figure 2.2: Data set with clear trend, best fitting line included.

where we need only find a single bias term w0 (which acts as the intercept of the line) and single
weight w1 (which acts as the slope of the line). However, the same principle applies to higher
dimensional data as well. We’re always fitting the hyperplane that best predicts the data.

? Although our input data points x can take on multiple dimensions, our output data y is always a 1-dimensional
real number when dealing with regression problems.

Now that we have some intuition for what linear regression is, a natural question arises: how
do we find the optimal values for w? That is the remaining focus of this chapter.

2.5 Finding the Best Fitting Line

2.5.1 Objective Functions and Loss

Now that we’ve defined our model as a weighted combination of our input variables, we need some
way to choose our value of w. To do this, we need an objective function.

Definition 2.5.1 (Objective Function): A function that measures the ‘goodness’ of a model.
We can optimize this function to identify the best possible model for our data.

As the definition explains, the purpose of an objective function is to measure how good a specific
model is. We can therefore optimize this function to find a good model. Note that in the case of
linear regression, our ‘model’ is just a setting of our parameters w.

An objective function will sometimes be referred to as loss. Loss actually measures how bad a
model is, and then our goal is to minimize it. It is common to think in terms of loss when discussing
linear regression, and we incur loss when the hyperplane we fit is far away from our data.

So how do we compute the loss for a specific setting of w? To do this, we often use residuals.
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Definition 2.5.2 (Residual): The residual is the difference between the target (y) and predicted
(y(x,w)) value that a model produces:

residual = target− prediction = y − f(x,w) = y −wTx

Commonly, loss is a function of the residuals produced by a model. For example, you can imagine
taking the absolute value of all of the residuals and adding those up to produce a measurement of
loss. This is sometimes referred to as L1 Loss. Or, you might square all of the residuals and then
add those up to produce loss, which is called L2 loss or least squares loss. You might also use some
combination of L1 and L2 loss. For the most part, these are the two most common forms of loss
you will see when discussing linear regression.

When minimized, these distinct measurements of loss will produce solutions for w that have
different properties. For example, L2 loss is not robust to outliers due to the fact that we are
squaring residuals. Furthermore, L2 loss will produce only a single solution while L1 loss can
potentially have many equivalent solutions. Finally, L1 loss produces unstable solutions, meaning
that for small changes in our data set, we may see large changes in our solution w.

Loss is a concept that we will come back to very frequently in the context of supervised machine
learning methods. Before exploring exactly how we use loss to fit a line, let’s consider least squares
loss in greater depth.

2.5.2 Least Squares Loss

As we mentioned above, there are different methods for computing loss. One of the most commonly
used measurements is known as least squares or L2 loss. Least squares, as it is often abbreviated,
says that the loss for a given data point is the square of the difference between the target and
predicted values:

Ln(w) = (y −wTxn)2 (2.4)

? The notation Ln(w) is used to indicate the loss incurred by a model w for a single data point (xn, y). L(w) indicates
the loss incurred for an entire data set by the model w. Be aware that this notation is sometimes inconsistent between
different sources.

There is a satisfying statistical interpretation for using this loss function which we will explain
later in this chapter, but for now it will suffice to discuss some of the properties of this loss function
that make it desirable.

First, notice that it will always take on positive values. This is convenient because we can focus
exclusively on minimizing our loss, and it also allows us to combine the loss incurred from different
data points without worrying about them cancelling out.

A more subtle but enormously important property of this loss function is that we know a lot
about how to efficiently optimize quadratic functions. This is not a textbook about optimization,
but some quick and dirty intuition that we will take advantage of throughout this book is that
we can easily and reliably take the derivative of quadratic functions because they are continuously
differentiable. We also know that optima of a quadrative function will be located at points where
the derivative of the function is equal to 0, as seen in Figure 2.3. In contrast, L1 loss is not
continuously differentiable over the entirety of its domain.
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Figure 2.3: Quadratic function with clear optimum at x = 2, where the derivative of the function
is 0.

2.6 Linear Regression Algorithms

Now that we have our least squares loss function, we can finally begin to fit a line to our data. We
will walk through the derivation of how this is done, in the process revealing the algorithm used
for linear regression.

2.6.1 Optimal Weights via Matrix Differentiation

First, we can define the loss incurred by parameters w over our entire data set X as follows:

L(w) =
1

2

N∑
n=1

(yn −wTxn)2 (2.5)

? Note that we added a constant 1
2

to the beginning of our loss expression. This scales the loss, which will not change
our final result for the optimal parameters. It has the benefit of making our calculations cleaner once we’ve taken
the gradient of the loss.

We now want to solve for the values of w that minimize this expression.

Derivation 2.6.1 (Least Squares Optimal Weights Derivation): We find the optimal
weights w∗ as follows:

Start by taking the gradient of the loss with respect to our parameter w:

∇L(w) =
N∑
n=1

(yn −wTxn)xTn
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Setting this gradient to 0, we have:

0 =

N∑
n=1

ynx
T
n −wT

N∑
n=1

xnx
T
n (2.6)

At this point, it is convenient to rewrite these summations as matrix operations in terms of w
instead of wT . Note that (wT

∑N
n=1 xnx

T
n )T = XTXw and (

∑N
n=1 ynx

T
n )T = XTY. Rewriting:

0 = XTY−XTXw

Solving for w∗:
w∗ = (XTX)−1XTY (2.7)

The quantity (XTX)−1XT in Derivation 2.6.1 has a special name: the Moore-Penrose pseudo
inverse . You can think of it as a generalization of a matrix inversion operation to a non-square
matrix.

2.6.2 Bayesian Solution: Maximum Likelihood Estimation

We’ve thus far been discussing linear regression exclusively in terms of a loss function that helps
us fit a set of weights to our data. In particular, we have been working with least squares, which
has nice properties that make it a reasonable loss function.

In a very satisfying fashion, least squares also has a statistical foundation. In fact, you can
recover the least squares loss function purely from a statistical derivation that we present here.

Consider our data set D = {(xi, yi)}Ni=1, xi ∈ Rm, y ∈ R. Let’s imagine that our data was
generated according to the following process:

yi ∼ N (wTxi, β
−1)

Which can be written equivalently as:

p(yi|xi,w, β) = N (wTxi, β
−1) (2.8)

The interpretation of this is that our target value y is generated according to a linear combination
of our inputs x, but there is also some noise in the data generating process described by the variance
parameter β−1. It’s an acknowledgement that some noise exists naturally in our data.

? It’s common to write variance as an inverse term, such as β−1. The parameter β is then known as the precision,
which is sometimes easier to work with than the variance.

As before, we now ask the question: how do we solve for the optimal weights w? One approach
we can take is to maximize the probability of observing our target data Y. This technique is known
as maximum likelihood estimation.

Derivation 2.6.2 (Maximum Likelihood Estimation for Bayesian Linear Regression):
The likelihood of our data set is given by:

p(Y|X,w, β) =
N∏
n=1

N (wTxn, β
−1)
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We then take the logarithm of the likelihood, and since the logarithm is a strictly increasing,
continuous function, this will not change our optimal weights w:

ln p(Y|X,w, β) =
N∑
n=1

lnN (wTxn, β
−1)

Using the density function of a univariate Gaussian:

ln p(Y|X,w, β) =
N∑
n=1

ln
1√

2πβ−1
e−(yn−w

Txn)2/2β−1

=
N

2
lnβ − N

2
ln (2π)− β

2

N∑
n=1

(yn −wTxn)2

Notice that this is a quadratic function in w, which means that we can solve for it by taking the
derivative with respect to w, setting that expression to 0, and solving for w:

∂ ln p(Y|X,w, β)

∂w
= β

N∑
n=1

(yn −wTxn)xTn

0 = β
N∑
n=1

(yn −wTxn)xTn

0 =
N∑
n=1

ynx
T
n −wT

N∑
n=1

xnx
T
n

Notice that this is exactly the same form as Equation 2.6. Solving for w as before:

w∗ = (XTX)−1XTY (2.9)

Notice that our final solution is exactly the same form as the solution in Equation 2.7, which
we solved for by minimizing the least squares loss! The takeaway here is that minimizing
a least squares loss function is equivalent to maximizing the probability under the
assumption of a linear model with Gaussian noise.

2.6.3 Alternate Interpretation: Linear Regression as Projection

Another common interpretation of linear regression is that of a projection of our targets, Y, onto
the column space of our inputs X. This can be useful for building intuition.

We showed above that the quantity (XTX)−1XT can be thought of as the pseudoinverse for
our inputs X. Let’s now consider the case where X is square and the pseudoinverse is equal to the
true inverse: X−1 = (XTX)−1XT . We have for our optimal w∗:

w∗ = (XTX)−1XTY
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which simplifies as

w∗ = X−1Y

We can recover our target values Y by multiplying either side by X:

Xw∗ = XX−1Y

Xw∗ = Y

We were able to recover our targets Y exactly because X is an invertible tranformation. How-
ever, in the general case where X is not invertible and we have to use the approximate pseudoinverse
(XTX)−1XT , we instead recover Ŷ:

Xw∗ = X(XTX)−1XTY

Xw∗ = Ŷ

where Ŷ can be thought of as the closest projection of Y onto the column space of X.
Furthermore, this motivates the intuition that w∗ is the set of coefficients that best transforms

our input space X into our target values Y.

2.7 Model Flexibility

Occasionally, linear regression will fail to recover a good solution for a data set. While this may
be because our data doesn’t actually have predictive power, it might also just indicate that our
data is provided in a format unsuitable for linear regression. This section explores that problem, in
particular focusing on how we can manipulate the flexibility of our models to make them perform
better.

2.7.1 Basis Functions

There are some situations where linear regression is not the best choice of model for our input data
X. Because linear regression only scales and combines input variables, it is unable to apply more
complex transformations to our data such as a sin or square root function. In those situations where
we need to transform our input variable somehow prior to performing linear regression (which is
known as moving our data into a new basis), we can apply a basis function.

Definition 2.7.1 (Basis Function): Typically denoted by the symbol φ(·), a basis function is
a transformation applied to an input data point x to move our data into a different input basis,
which is another phrase for input domain.

For example, consider our original data point:

x = (x(1), x(2))′

We may choose our basis function φ(x) such that our transformed data point in its new basis is:

φ(x) = (x(1), x(1)
2
, x(2), sin(x(2)))′

Using a basis function is so common that we will sometimes describe our input data points as
φ = (φ(1), φ(2), ..., φ(D))′.
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Figure 2.4: Data with no basis function applied.

? The notation x = (x(1), x(2))′ is a way to describe the dimensions of a single data point x. The term x(1) is the
first dimension of a data point x, while x1 is the first data point in a data set.

Basis functions are very general - they could specify that we just keep our input data the same.
As a result, it’s common to rewrite the least squares loss function from Equation 2.4 for linear
regression in terms of the basis function applied to our input data:

L(w) =
1

2

N∑
n=1

(yn −wTφn)2 (2.10)

To motivate why we might need basis functions for performing linear regression, let’s consider
this graph of 1-dimensional inputs X along with their target outputs Y, presented in Figure 2.4.

As we can see, we’re not going to be able to fit a good line to this data. The best we can hope
to do is something like that of Figure 2.5.

However, if we just apply a simple basis function to our data, in this case the square root
function, φ(x) = (

√
x1)
′, we then have the red line in Figure 2.6. We now see that we can fit a very

good line to our data, thanks to basis functions.
Still, the logical question remains: how can I choose the appropriate basis function? This toy

example had a very obviously good basis function, but in general with high-dimensional, messy
input data, how do we choose the basis function we need?

The answer is that this is not an easy problem to solve. Often, you may have some domain
specific knowledge that tells you to try a certain basis, such as if you’re working with chemical data
and know that an important equation involves a certain function of one of your inputs. However,
more often than not we won’t have this expert knowledge either. Later, in the chapter on neural
networks, we will discuss methods for discovering the best basis functions for our data automatically.

2.7.2 Regularization

When we introduced the idea of basis functions above, you might have wondered why we didn’t
just try adding many basis transformations to our input data to find a good transformation. For
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Figure 2.5: Data with no basis function applied, attempt to fit a line.

Figure 2.6: Data with square root basis function applied.
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Figure 2.7: Data set with a clear trend and Gaussian noise.

example, we might use this large basis function on a D-dimensional data point z:

φ(z) = (z(1), z(1)
2
, ..., z(1)

100
, z(2), z(2)

2
, ..., z(2)

100
, ..., z(D), z(D)2, ..., z(D)100)′

where you can see that we expand the dimensions of the data point to be 100 times its original
size.

Let’s say we have an input data point x that is 1-dimensional, and we apply the basis function
described above, so that after the transformation each data point is represented by 100 values. Say
we have 100 data points on which to perform linear regression, and because our transformed input
space has 100 values, we have 100 parameters to fit. In this case, with one parameter per data
point, it’s possible for us to fit our regression line perfectly to our data so that we have no loss!
But is this a desirable outcome? The answer is no, and we’ll provide a visual example to illustrate
that.

Imagine Figure 2.7 is our data set. There is a very clear trend in this data, and you would likely
draw a line that looks something like that of Figure 2.8 to fit it.

However, imagine we performed a large basis transformation like the one described above. If we
do that, it’s possible for us to fit our line perfectly, threading every data point, like that in Figure
2.9.

Let’s see how both of these would perform on new data points. With our first regression line,
if we have a new data point x = (10)′, we would predict a target value of 14.1, which most people
would agree is a pretty good measurement. However, with the second regression line, we would
predict a value of 9.5, which most people would agree does not describe the general trend in the
data. So how can we handle this problem elegantly?

Examining our loss function, we see that right now we’re only penalizing predictions that are
not correct in training. However, what we ultimately care about is doing well on new data points,
not just our training set. This leads us to the idea of generalization.

Definition 2.7.2 (Generalization): Generalization is the ability of a model to perform well on
new data points outside of the training set.
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Figure 2.8: Natural fit for this data set.

Figure 2.9: Unnatural fit for this data set.
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A convoluted line that matches the noise of our training set exactly isn’t going to generalize
well to new data points that don’t look exactly like those found in our training set. If wish to avoid
recovering a convoluted line as our solution, we should also penalize the total size of our weights
w. The effect of this is to discourage many complex weight values that produce a messy regression
line. By penalizing large weights, we favor simple regression lines like the one in Figure 2.8 that
take advantage of only the most important basis functions.

The concept that we are introducing, penalizing large weights, is an example of what’s known as
regularization, and it’s one that we will see come up often in different machine learning methods.

Definition 2.7.3 (Regularization): Applying penalties to parameters of a model.

There is obviously a tradeoff between how aggressively we regularize our weights and how tightly
our solution fits to our data, and we will formalize this tradeoff in the next section. However, for
now, we will simply introduce a regularization parameter λ to our least squares loss function:

L(w) =
1

2

N∑
n=1

(yn −wTφn)2 +
λ

2
w2 (2.11)

The effect of λ is to penalize large weight parameters. The larger λ is, the more we will favor
simple solutions. In the limit limλ→∞ L(w), we will drive all weights to 0, while with a nonexistant
λ = 0 we will apply no regularization at all. Notice that we’re squaring our weight parameters -
this is known as L2 norm regularization or ridge regression. While L2 norm regularization is
very common, it is just one example of many ways we can perform regularization.

To build some intuition about the effect of this regularization parameter, examine Figure 2.10.
Notice how larger values of λ produce less complex lines, which is the result of applying more
regularization. This is very nice for the problem we started with - needing a way to choose which
basis functions we wanted to use. With regularization, we can select many basis functions, and then
allow regularization to ‘prune’ the ones that aren’t meaningful (by driving their weight parameters
to 0). While this doesn’t mean that we should use as many basis transformations as possible (there
will be computational overhead for doing this), it does allow us to create a much more flexible
linear regression model without creating a convoluted regression line.

2.7.3 Generalizing Regularization

We’ve thus far only discussed one form of regularization: ridge regression. Remember that under
ridge regression, the loss function takes the form:

L(w) =
1

2

N∑
n=1

(yn −wTφn)2 +
λ

2
w2

Where the λ
2w2 term is for the regularization. We can generalize our type of regularization by

writing it as:

L(w) =
1

2

N∑
n=1

(yn −wTφn)2 +
λ

2

∣∣w∣∣h
where h determines the type of regularization we are using and thus the form of the optimal solu-
tion that we recover. The three most commonly used forms of regularization are lasso, ridge, and
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Figure 2.10: Effect of different regularization parameter values on final regression solution.

elastic net.

Ridge Regression
This is the case of h = 2, which we’ve already discussed, but what type of solutions does it tend
to recover? Ridge regression prevents any individual weight from growing too large, providing us
with solutions that are generally moderate.

Lasso Regression
Lasso regression is the case of h = 1. Unlike ridge regression, lasso regression will drive some
parameters wi to zero if they aren’t informative for our final solution. Thus, lasso regression is
good if you wish to recover a sparse solution that will allow you to throw out some of your basis
functions. You can see the forms of ridge and lasso regression functions in Figure 2.11.

Elastic Net
Elastic net is a middle ground between ridge and lasso regression, which it achieves by using a linear
combination of the previous two regularization terms. Depending on how heavily each regulariza-
tion term is weighted, this can produce results on a spectrum between lasso and ridge regression.

2.7.4 Bayesian Regularization

We’ve seen regularization in the context of loss functions, where the goal is to penalize large weight
values. How does the concept of regularization apply to Bayesian linear regression?

The answer is that we can interpret regularizing our weight parameters as adding a prior
distribution over w. Note that this is a different conception of regularization than we saw in the
previous section. In the Bayesian framework, we are averaging over different models specified by
different values of w. Therefore, in this context regularization entails weighting models with smaller
values of w more heavily.
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Figure 2.11: Form of the ridge (blue) and lasso (red) regression functions.

Derivation 2.7.1 (Bayesian Regularization Derivation): Because we wish to shrink our
weight values toward 0 (which is exactly what regularization does), we will select a Normal prior
with mean 0 and variance S−10 :

w ∼ N (0,S−10 I)

Remember from Equation 2.8 that the distribution over our observed data is Normal as well, written
here in terms of our entire data set:

p(Y|X,w, β) = N (Xw, β−1I)

We want to combine the likelihood and the prior to recover the posterior distribution of w, which
follows directly from Bayes’ Theorem:

p(w|X,Y, β)︸ ︷︷ ︸
posterior

∝ p(Y|X,w, β)︸ ︷︷ ︸
likelihood

p(w)︸ ︷︷ ︸
prior

We now wish to find the value of w that maximizes the posterior distribution. We can maximize
the log of the posterior with respect to w, which simplifies the problem slightly:

ln p(w|X,Y, β) ∝ ln p(Y|X,w, β) + ln p(w)

Let’s handle ln p(Y|X,w, β) first:

ln p(Y|X,w, β) = ln
N∏
n=1

N (yn|wTxn, β
−1)

= ln
N∏
n=1

1√
2πβ−1

exp

{
− β

2
(yn −wTxn)2

}

= C− β

2

N∑
n=1

(yn −wTxn)2 +
1√

2πβ−1
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where C collects the constant terms that don’t depend on w. Let’s now handle ln p(w):

ln p(w) = lnN (0,S−10 I)

= ln
1

(|2πS−10 I|)
1
2

exp

{
− S0

2
wTw

}
= C− S0

2
wTw

combining the terms for ln p(Y|X,w, β) and ln p(w):

ln p(w|X,Y, β) = −β
2

N∑
n=1

(yn −wTxn)2 − S0

2
wTw

dividing by a positive constant β:

ln p(w|X,Y, β) = −1

2

N∑
n=1

(yn −wTxn)2 − S0

β

1

2
wTw

Notice that maximizing the posterior probability is equivalent to minimizing the sum of squared
errors (yn −wTxn)2 and the regularization term wTw.

The interpretation of this is that adding a prior over the distribution of our weight
parameters w and then maximizing the resulting posterior distribution is equivalent
to adding a regularization term where λ = S0

β

2.8 Choosing Between Models

2.8.1 Bias-Variance Tradeoff and Decomposition

Now that you know about regularization, you might have some intuition for why we need to find
a balance between complex and simple regression solutions. A complex solution, while it might fit
all of our training data, may not generalize well to future data points. On the other hand, a line
that is too simple might not vary enough to provide good predictions at all. This phenomenon is
not unique to linear regression- it’s actually a very fundamental concept in machine learning that’s
known as the bias-variance tradeoff.

Definition 2.8.1 (Bias-Variance Tradeoff): When constructing machine learning models, we
have a choice somewhere on a spectrum between two extremes: fitting exactly to our training data
or not varying in response to our training data at all. The first extreme, fitting all of our training
data, is a situation of high variance, because our output changes heavily in reponse to our input
data (see the red line in Figure 2.10). At the other extreme, a solution that doesn’t change in
response to our training data at all is a situation of high bias (see the yellow line in Figure 2.10).
This means our model heavily favors a specific form regardless of the training data, so our target
outputs don’t fluctuate between distinct training sets.

Obviously a good solution will fall somewhere in between these two extremes of high variance
and high bias. Indeed, we have techniques like regularization to help us balance the two extremes
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(improving generalization), and we have other techniques like cross-validation that help us deter-
mine when we have found a good balance (measuring generalization).

? In case you are not familiar with the terms bias and variance, we provide their statistical definitions here:

bias(θ) = E[θ]− θ

variance(θ) = E[(θ − E[θ])2]

Before we discuss how to effectively mediate between these opposing forces of error in our models,
we will first show that the bias-variance tradeoff is not only conceptual but also has probabilistic
underpinnings. Specifically, any loss that we incur over our training set using a given model can
be described in terms of bias and variance, as we will demonstrate now.

Derivation 2.8.1 (Bias-Variance Decomposition): Let’s begin by asserting that we have a
model f(·) that makes a prediction of our target y given input data point x. We wish to break
down the squared error of f into terms involving bias and variance.

Start with the expected squared error (MSE), where the expectation is taken with respect to both
our data set D, which is a random variable of (x, y) pairs sample from a distribution F , and our
conditional distribution y|x:

MSE = E[(y − f(x))2]

For reasons that will become clear in a few steps, add and subtract our target mean ȳ, which is the
true conditional mean given by ȳ = Ey|x[y], inside of the squared term:

MSE = E[(y − ȳ + ȳ − f(x))2]

Group together the first two terms and the last two terms:

MSE = E[((y − ȳ) + (ȳ − f(x)))2]

Expanding this expression and using linearity of expectation:

MSE = E[(y − ȳ)2] + E[(ȳ − f(x))2] + 2E[(y − ȳ)(ȳ − f(x))] (2.12)

Let’s examine the last term, 2E[(y − ȳ)(ȳ − f(x))]. Notice that (ȳ − f(x)) does not depend on the
conditional distribution y|x at all. Thus, we are able to move one of those expecations in, which
makes this term:

2E[(y − ȳ)(ȳ − f(x))] = 2ED[Ey|x[(y − ȳ)](ȳ − f(x))]

And note that:

Ey|x[(y − ȳ)] = 0

Which eliminates this last term entirely:

2E[(y − ȳ)(ȳ − f(x))] = 2ED[0 · (ȳ − f(x))] = 0
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We can now write Equation 2.12 as:

MSE = E[(y − ȳ)2] + E[(ȳ − f(x))2] (2.13)

We now have two terms contributing to our squared error. We will ignore the first term E[(y− ȳ)2],
as this is unidentifiable noise in our data set. In other words, our data will randomly deviate
from the mean in ways we cannot predict. On the other hand, we can work with the second term
E[(ȳ − f(x))2] as it involves our model function f(·)

As before, for reasons that will become clear in a few steps, let’s add and subtract our prediction
mean f̄(·) = ED[f(x)], which is the expectation of our model function taken with respect to our
random data set.

E[(ȳ − f(x))2] = E[(ȳ − f̄(x) + f̄(x)− f(x))2]

Expanding this squared term, we have:

E[(ȳ − f(x))2] = (ȳ − f̄(x))2 + E[(f̄(x)− f(x))2] + 2E[(ȳ − f̄(x))(f̄(x)− f(x))]

As before, the third term here is 0:

2E[(ȳ − f̄(x))(f̄(x)− f(x))] = 2(ȳ − f̄(x))E[(f̄(x)− f(x))] = 2(ȳ − f̄(x))(0) = 0

Leaving us with these two terms:

E[(ȳ − f(x))2] = (ȳ − f̄(x))2 + E[(f̄(x)− f(x))2]

Notice the form of these two terms. The first one, (ȳ − f̄(x))2, is the squared bias of our model,
since it is the square of the average difference between our prediction and the true target value.
The second one, E[(f̄(x) − f(x))2], is the variance of our model, since it is the expected squared
difference between our model and its average value. Thus:

E[(y − f(x))2] = bias(f(x))2 + variance(f(x))

Thus, our total squared error, plugging in to Equation 2.13 can be written as:

MSE = noise(x) + bias(f(x))2 + variance(f(x))
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Figure 2.12: Bias and variance both contribute to the overall error of our model.

The key takeaway of the bias-variance decomposition is that the controllable error in our model
is given by the squared bias and variance. Holding our error constant, to decrease bias requires
increasing the variance in our model, and vice-versa. In general, a graph of the source of error in
our model might look something like Figure 2.12.

For a moment, consider what happens on the far left side of this graph. Our variance is very
high, and our bias is very low. In effect, we’re fitting perfectly to all of the data in our data set.
This is exactly why we introduced the idea of regularization from before - we’re fitting a very
convoluted line that is able to pass through all of our data but which doesn’t generalize well to new
data points. There is a name for this: overfitting.

Definition 2.8.2 (Overfitting): A phenomenon where we construct a convoluted model that is
able to predict every point in our data set perfectly but which doesn’t generalize well to new data
points.

The opposite idea, underfitting, is what happens at the far right of the graph: we have high
bias and aren’t responding to the variation in our data set at all.

Definition 2.8.3 (Underfitting): A phenomenon where we construct a model that doesn’t re-
spond to variation in our data.

So you can hopefully now see that the bias-variance tradeoff is important to managing the
problem of overfitting and underfitting. Too much variance in our model and we’ll overfit to our
data set. Too much bias and we won’t account for the trends in our data set at all.

In general, we would like to find a sweet spot of moderate bias and variance that produces
minimal error. In the next section, we will explore how we find this sweet spot.
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2.8.2 Cross-Validation

We’ve seen that in choosing a model, we incur error that can be described in terms of bias and
variance. We’ve also seen that we can regulate the source of error through regularization, where
heavier regularization increases the bias of our model. A natural question then is how do we know
how much regularization to apply to achieve a good balance of bias and variance?

Another way to look at this is that we’ve traded the question of finding the optimal number of
basis functions for finding the optimal value of the regularization parameter λ, which is often an
easier problem in most contexts.

One very general technique for finding the sweet spot of our regularization parameter, other hy-
perparameters, or even for choosing among entirely different models is known as cross-validation.

Definition 2.8.4 (Cross-Validation): A subsampling procedure used over a data set to tune
hyperparameters and avoid over-fitting. Some portion of a data set (10-20% is common) is set aside,
and training is performed on the remaining, larger portion of data. When training is complete,
the smaller portion of data left out of training is used for testing. The larger portion of data is
sometimes referred to as the training set, and the smaller portion is sometimes referred to as the
validation set.

Cross-validation is often performed more than once for a given setting of hyperparameters to
avoid a skewed set of validation data being selected by chance. In K-Folds cross-validation, you
perform cross-validation K times, allocating 1

K of your data for the validation set at each iteration.

Let’s tie this back into finding a good regularization parameter. For a given value of λ, we will
incur a certain amount of error in our model. We can measure this error using cross-validation,
where we train our model on the training set and compute the final error using the validation set.
To find the optimal value for λ, we perform cross-validation using different values of λ, eventually
settling on the value that produces the lowest final error. This will effectively trade off bias and
variance, finding the value of λ that minimizes the total error.

You might wonder why we need to perform cross-validation at all - why can’t we train on the
entire data set and then compute the error over the entire data set as well?

The answer is again overfitting. If we train over the entire data set and then validate our results
on the exact same data set, we are likely to choose a regularization parameter that encourages our
model to conform to the exact variation in our data set instead of finding the generalizable trends.
By training on one set of data, and then validating on a completely different set of data, we
force our model to find good generalizations in our data set. This ultimately allows us to pick
the regularization term λ that finds the sweet spot between bias and variance, overfitting and
underfitting.

2.8.3 Making a Model Choice

Now that we’re aware of overfitting, underfitting, and how those concepts relate to the bias-variance
tradeoff, we still need to come back to the question of how we actually select a model. Intuitively,
we are trying to find the middle ground between bias and variance: picking a model that fits our
data but that is also general enough to perform well on yet unseen data. Furthermore, there is
no such thing as the ‘right’ model choice. Instead, there are only model options that are either
better or worse than others. To that end, it can be best to rely on the techniques presented above,
specifically cross-validation, to make your model selection. Then, although you will not be able to
make any sort of guarantee about your selection being the ‘best’ of all possible models, you can at
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least have confidence your model achieved the best generalizability that could be proven through
cross-validation.

2.8.4 Bayesian Model Averaging

We can also handle model selection using a Bayesian approach. This means we account for our
uncertainty about the true model by averaging over the possible candidate models, weighting each
model by our prior certainty that it is the one producing our data. If we have M models indexed
by m = 1, ...,M , we can write the likelihood of observing our data set X as follows:

p(X) =

M∑
m=1

p(X|m)p(m)

where p(m) is our prior certainty for a given model and p(X|m) is the likelihood of our data set
given that model. The elegance of this approach is that we don’t have to pick any particular model,
instead choosing to marginalize out our uncertainty.

2.9 Linear Regression Extras

With most of linear regression under our belt at this point, it’s useful to drill down on a few concepts
to come to a deeper understanding of how we can use them in the context of linear regression and
beyond.

2.9.1 Predictive Distribution

Remaining in the setting of Bayesian Linear Regression, we may wish to get a distribution over
our weights w instead of a point estimator for it using maximum likelihood. As we saw in Section
2.7.4, we can introduce a prior distribution over w, then together with our observed data, we can
produce a posterior distribution over w as desired.

Derivation 2.9.1 (Posterior Predictive Derivation): For the sake of simplicity and ease of
use, we will select our prior over w to be a Normal distribution with mean µ0 and variance S−10 :

p(w) = N (µ0,S
−1
0 )

Remembering that the observed data is normally distributed, and accounting for Normal-Normal
conjugacy, our posterior distribution will be Normal as well:

p(w|X,Y, β) = N (µN ,S
−1
N )

where

SN = (S−10 + βXTX)−1

µN = SN (S−10 µ0 + βXY)

We now have a posterior distribution over w. However, usually this distribution is not what we
care about. We’re actually interested in making a point prediction for the target y∗ given a new
input x∗. How do we go from a posterior distribution over w to this prediction?
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The answer is using what’s known as the posterior predictive over y∗ given by:

p(y∗|x∗,X,Y) =

∫
w
p(y∗|x∗,w)p(w|X,Y)dw

= N (y∗|wTx∗, β−1)N (w|µN ,S−1N )dw

(2.14)

The idea here is to average the probability of y∗ over all the possible setting of w,
weighting the probabilities by how likely each setting of w is according to its posterior
distribution.

2.10 Conclusion

In this chapter, we looked at a specific tool for handling regression problems known as linear regres-
sion. We’ve seen linear regression described in terms of loss functions, probabilistic expressions,
and geometric projections, which reflects the deep body of knowledge that we have around this
very common technique.

We’ve also discussed many concepts in this chapter that will prove useful in other areas of
machine learning, particularly for other supervised techniques: loss functions, regularization, bias
and variance, over and underfitting, posterior distributions, maximum likelihood estimation, and
cross-validation among others. Spending time to develop an understanding of these concepts now
will pay off going forward.

It may or may not be obvious at this point that we are missing a technique for a very large class
of problems: those where the solution is not just a continuous, real number. How do we handle
situations where we need to make a choice between different discrete options? This is the question
we will turn to in the next chapter.



Chapter 3

Classification

In the last chapter we explored ways of predicting a continuous, real-number target. In this chapter,
we’re going to think about a different problem- one where our target output is discrete-valued. This
type of problem, one where we make a prediction by choosing between finite class options, is known
as classification.

3.1 Defining the Problem

As we did when studying regression, let’s begin by thinking about the type of problems we are
trying to solve. Here are a few examples of classification tasks:

1. Predicting whether a given email is spam.

2. Predicting the type of object in an image.

3. Predicting whether a manufactured good is defective.

The point of classification is hopefully clear: we’re trying to identify the most appropriate class for
an input data point.

Definition 3.1.1 (Classification): A set of problems that seeks to make predictions about un-
observed target classes given observed input variables.

3.2 Solution Options

There are several different means by which we can solve classification problems. We’re going
to discuss three in this chapter: discriminant functions, probabilistic discriminative models (e.g.
logistic regression), and probabilistic generative models. Note that these are not the only methods
for performing classification tasks, but they are similar enough that it makes sense to present
and explore them together. Specifically, these techniques all use some linear combination of input
variables to produce a class prediction. For that reason, we will refer to these techniques as
generalized linear models.

28
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ML Framework Cube: Generalized Linear Models

Since we are using these techniques to perform classification, generalized linear models deal with
a discrete output domain. Second, as with linear regression, our goal is to make predictions on
future data points given an initial set of data to learn from. Thus, generalized linear models are
supervised techniques. Finally, depending on the type of generalized linear model, they can be
either probabilistic or non-probabilistic.

Domain Training Probabilistic

Discrete Supervised Yes / No

3.3 Discriminant Functions

Generalized linear models for classification come in several different flavors. The most straightfor-
ward method carries over very easily from linear regression: discriminant functions. As we will
see, with discriminant functions we are linearly separating the input space into sections belonging
to different target classes. We will explore this method first. One thing to keep in mind is that
it’s generally easiest to initially learn these techniques in the case where we have only two target
classes, but there is typically a generalization that allows us to handle the multi-class case as well.

As with linear regression, discriminant functions h(x,w) seek to find a weighted combination of
our input variables to make a prediction about the target class:

h(x,w) = w(0)x(0) + w(1)x(1) + ...+ w(D)x(D) (3.1)

where we are using the bias trick of appending x(0) = 1 to all of our data points.

3.3.1 Basic Setup: Binary Linear Classification

The simplest use case for a discriminant function is when we only have two classes that we are
trying to decide between. Let’s denote these two classes 1 and -1. Our discriminant function in
Equation 3.1 will then predict class 1 if h(x,w) ≥ 0 and class -1 if h(x,w) < 0:{

1 if h(x,w) ≥ 0

−1 if h(x,w) < 0

Geometrically, the linear separation between these two classes then looks like that of Figure 3.1.
Notice the line where our prediction switches from class 1 to class -1. This is precisely where
h(x,w) = 0, and it is known as the decision boundary.

Definition 3.3.1 (Decision Boundary): The decision boundary is the line that divides the input
space into different target classes. It is learned from an initial data set, and then the target class
of new data points can be predicted based on where they fall relative to the decision boundary. At
the decision boundary, the discriminant function takes on a value of 0.

? You will sometimes see the term decision surface in place of decision boundary, particularly if the input space is
larger than two dimensions.
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Figure 3.1: Clear separation between classes.

3.3.2 Multiple Classes

Now consider the case that we have K > 2 classes C1, C2, ..., CK to choose between. One obvious
approach we might try is to use K different discriminant functions that each determine whether or
not a given input is in that class Ck. This is known as a one-versus-all approach, and it doesn’t work
properly because we end up with ambiguous regions as demonstrated in Figure 3.2. Intuitively,
several of the discriminator functions could claim that a data point is a part of their class, which
is an undesirable result.

Another obvious approach we might employ is to use
(
K
2

)
discriminant functions that each

determine whether a given point is more likely to be in class Cj or class Ck. This is known as a
one-versus-one approach, and it also doesn’t work because we again end up with ambiguous regions
as demonstrated in Figure 3.3.

Instead, we can avoid these ambiguities in the multi-class case by using K different linear
classifiers hk(x,wk), and then assigning new data points to the class Ck for which hk(x,wk) >
hj(x,wj) for all j 6= k. Then, similar to the two-class case, the decision boundaries are described
by the surface along which hk(x,wk) = hj(x,wj).

Now that we’ve explored the multi-class generalization, we can consider how to learn the weights
w that define the optimal discriminant functions. However, prior to solving for w, we need to discuss
how basis transformations apply to classification problems.

3.3.3 Basis Changes in Classification

We initially discussed basis changes in the context of linear regression, and they are equally impor-
tant for classification tasks. For example, consider the data set in Figure 3.4.

It’s obviously not possible for us to use a linear classifier to separate this data set. However, if
we apply a basis change by squaring one of the data points, we instead have Figure 3.5, which is
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Figure 3.2: Ambiguities arise from one-versus-all method.

Figure 3.3: Ambiguities arise from one-versus-one method.
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Figure 3.4: Data set without any basis functions applied, not linearly separable.

now linearly separable by a plane between the two classes. Applying a generic basis change φ(·),
we can write our generalized linear model as:

hk(x,wk) = wT
k φ(x) = wT

kφ (3.2)

For the sake of simplicity in the rest of this chapter, we will leave out any basis changes in our
derivations, but you should recognize that they could be applied to any of our input data to make
the problems more tractable.

? For an input matrix X, there is a matrix generalization of our basis transformed inputs: Φ = φ(X), where Φ is
known as the design matrix.

3.4 Numerical Parameter Optimization and Gradient Descent

Recall from the previous chapter on linear regression that when it comes to optimizing our model’s
weight parameters w, the goal is to minimize our loss function L(w) (also called the objective
function). We did this by taking the derivative of our objective function with respect to w, setting
that expression equal to 0, and solving for w. We were previously able to perform that procedure
with confidence because the least squares loss function was convex with respect to the weight
parameters, which meant it had a global solution we could solve for directly. Thus, the point of
minimization for the objective function would occur where ∇L(w) = 0.

Unfortunately, it’s not always the case that our objective function will be convex with respect
to our weight parameters. In fact, in the next section, we will consider an objective function that
is not convex, and as a result we will need a new way to optimize our parameters. Typically, when
facing a non-convex objective function, we will need to resort to a numerical procedure.
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Figure 3.5: Data set with basis functions applied, now linearly separable.
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Figure 3.6: Step Size in Gradient Descent.

? The terms numerical and analytical procedures come up very frequently in machine learning literature. An analytical
solution typically utilizes a closed form equation that accepts your model and input data and returns a solution in
the form of optimized model parameters. On the other hand, numerical solutions are those that require some
sort of iteration to move toward an ever better solution, eventually stopping once the solution is deemed ‘good
enough’. Analytical solutions are typically more desirable than numerical solutions due to computational efficiency
and performance guarantees, but they often are not possible for complex problems due to non-convexity.

Gradient descent is one such numerical optimization technique.

3.4.1 Gradient Descent

Definition 3.4.1 (Gradient Descent): Gradient descent is a numerical, iterative optimization
technique for finding the minimum of a function. It is often used to fit complex model parameters.

The high level idea behind gradient descent is as follows: to update our parameters, we take
a small step in the opposite direction of the gradient of our objective function with respect to the
weight parameters w(t). Notationally, this looks like the following:

w(t+1) = w(t) − η∇L(w(t)) (3.3)

where w(t) corresponds to the state of the parameters w at time t, L(w(t)) is the gradient of our
objective function, and η > 0 is known as the learning rate. Note that the parameter values at
time t = 0 given by w(0) are often initialized randomly.

? In general, we want a learning rate that is large enough so that we make progress toward reaching a better solution,
but not so large that we take a step that puts us in a worse place in the parameter space than we were at the previous
step. Notice in Figure 3.6 that an appropriately small step size improves our objective function, while a large step
size overshoots the update and leaves us in a worse position.
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Why take a step in the opposite direction of the gradient of the objective function? You can
think of the objective function as a hill, and the current state of our parameters w(t) is our position
on that hill. The gradient tells us the steepest direction of increase in the objective function (i.e.
it specifies the direction that will make our model worse). Since we want to minimize the objective
function, we choose to move away from the direction of the gradient, sending our model down the
hill towards an area of lower error. We typically cease optimization when our updates become
sufficiently small, indicating that we’ve reached a local minimum. Note that it’s a good idea to run
gradient descent multiple times to settle on a final value for w, ideally initializing w(0) to a different
starting value each time, because we are optimizing a function with multiple local minima.

3.4.2 Batch Gradient Descent versus Stochastic Gradient Descent

There are different means by which we can compute the gradient of our objective function at each
step. The first way, often called batch gradient descent, computes the gradient for our objective
function at each step using the entire data set. In contrast, the technique known as stochastic
gradient descent (also known as SGD) utilizes a subset of the data points at each step to compute
the gradient, sometimes just a single data point. Stochastic gradient descent is typically a more
popular technique for several reasons. First, the computation time is often significantly smaller as
you don’t need to pass over the entire data set at each iteration. Furthermore, it’s less likely that
you will get stuck in local minima while running SGD because a point in the parameter space that
is a local minima for the entire data set combined is much less likely to be a local minima for each
data point individually. Finally, SGD lends itself to being used for training online models (meaning
models built on data points that are arriving at regular intervals) as the entirety of the data does
not need to be present in order to train.

3.5 Objectives for Decision Boundaries

Now that we have a high-level understanding of what we’re trying to accomplish with discriminant
functions as well as a grasp on gradient descent, we can consider how to solve for the decision
boundaries that will dictate our classification decisions. Similar to linear regression, we first need
to establish an objective function to optimize. We begin with a very simple objective function
known as 0/1 loss.

3.5.1 0/1 Loss

Recall that a loss function penalizes mistakes made by our model. The idea behind the 0/1 loss
function is very simple: if our model misclassifies a point, we incur a loss of 1, and if our model
classifies it correctly, we incur no loss.

While this is a very intuitive loss function, it does not have a closed form solution like least
squares does, and it is non-convex so it is not easily optimized. Intuitively, because we incur a loss
of 0 or 1 for every prediction, we have no sense of ‘how good’ a given prediction was. For example,
one prediction could be very close to correct, while another could be way off, but they would both
receive an equivalent loss of 1. Formally, because this loss function is not differentiable, we cannot
get gradient information with which to optimize our model parameters w. We will find a way
around this in a moment when we discuss hinge loss, but before we get to that, let’s consider
using least squares loss as we did for linear regression.
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3.5.2 Least Squares Loss

We are already familiar with the least squares loss function from linear regression, and we can
apply it again in this context to find the set of weights w that form the optimal decision boundary
between target classes.

We first need to introduce the idea of one-hot encoding, which simply means that the class
of a given data point is described by a vector with K options that has a 1 in the position that
corresponds to class Ck and 0s everywhere else (note that these classes aren’t usually 0-indexed).
For example, class C1 of 4 classes would be represented by the vector:

1
0
0
0

 (3.4)

While class C2 would be represented by the vector:
0
1
0
0

 (3.5)

and so on. Now that we have the idea of one-hot encoding, we can describe our target classes
for each data point in terms of a one-hot encoded vector, which can then be used in our training
process for least squares.

Each class Ck gets its own linear function with a different set of weights wk:

hk(x,wk) = wT
k x

We can combine the set of weights for each class into a matrix W, which gives us our linear classifier:

h(x,W) = WTx (3.6)

where each row in the weight matrix W corresponds to the linear function of an individual class.
We can use the results derived in the last chapter to find the solution for W that minimizes the
least squares loss function. Assuming a data set of input data points X and one-hot encoded target
vectors Y (where every row is a single target vector), the optimal solution for W is given by:

W∗ = (XTX)−1XTY

which we can then use in our discriminant function h(x,W∗) to make predictions on new data
points.

While least squares gives us an analytic solution for our discriminant function, it also has some
significant limitations. For one, least squares penalizes data points that are ‘too good’, meaning
they fall too far on the correct side of the decision boundary. Furthermore, it is not robust to
outliers, meaning the decision boundary significantly changes with the addition of just a few outlier
data points, as seen in Figure 3.7.

We can help remedy the problems with least squares by using an alternative loss function for
determining our weight parameters.
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Figure 3.7: Outliers significantly impact our decision boundary.

Figure 3.8: Form of the ReLU function.

3.5.3 Hinge Loss

Recall that the problem with 0/1 loss was that we couldn’t use it optimize our model parameters
w. It didn’t produce a closed form solution like least squares loss, and it wasn’t differentiable so
we couldn’t take gradients.

The hinge loss function is a modification of the 0/1 loss function that both provides more fine-
grained information about the ‘goodness’ of a prediction and makes the loss function differentiable.
To understand the hinge loss function, it’s first necessary to introduce the rectified linear activation
unit, known as ReLU, seen in Figure 3.8.

ReLU(z) = max{0, z} (3.7)

We can use the form of this function to our advantage in constructing the hinge loss by recognizing
that we wish to incur error when we’re wrong (which corresponds to z > 0, the right side of
the graph that is continuously increasing), and we wish to incur 0 error if we are correct (which
corresponds to the left side of the graph where z < 0).

Remember from the previous section on least squares that in the two-class case, we classify a
data point x∗ as being from class 1 if h(x∗,w) ≥ 0, and class -1 otherwise. We can combine this
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logic with ReLU by recognizing that −h(x∗,w)y∗ ≥ 0 when there is a classification error, where
y∗ is the true class of data point x∗. This has exactly the properties we described above: we incur
error when we misclassify, and otherwise we do not incur error.

We can then write the entirety of the hinge loss function:

L(w) =
N∑
i=1

ReLU(−h(xi,w)yi) (3.8)

= −
N∑

yi 6=ŷi

h(xi,w)yi (3.9)

= −
N∑

yi 6=ŷi

wTxiyi (3.10)

where ŷi is our class prediction and yi is the true class value. Notice that misclassified examples
contribute positive loss, as desired. We can take the gradient of this loss function, which will allow
us to optimize it using stochastic gradient descent. The gradient of the loss with respect to our
parameters w is as follows:

∂L(w)

∂w
= −

N∑
yi 6=ŷi

xiyi

and then our update equation from time t to time t+ 1 for a single misclassified example and with
learning rate η is given by:

w(t+1) = w(t) − η∂L(w)

∂w
= w(t) + ηxiyi

To sum up, the benefits of the hinge loss function are its differentiability (which allows us to
optimize our weight parameters), the fact that it doesn’t penalize any correctly classified data
points (unlike basic linear classification), and that it penalizes more heavily data points that are
more poorly misclassified.

Using hinge loss with discriminant functions to solve classification tasks (and applying stochastic
gradient descent to optimize the model parameters) is known as the perceptron algorithm. The
perceptron algorithm guarantees that if there is separability between all of our data points and we
run the algorithm for long enough, we will find a setting of parameters that perfectly separates our
data set. The proof for this is beyond the scope of this textbook.

3.6 Probabilistic Methods

Unsurprisingly, we can also cast the problem of classification into a probabilistic context, which
we now turn our attention to. Within this setting, we have a secondary choice to make between
two distinct probabilistic approaches: discriminative or generative. We will explore both of these
options.

3.6.1 Probabilistic Discriminative Models

Ultimately, our classification task can be summarized as follows: given a new data point x∗, can
we accurately predict the target class y∗?



3.6. PROBABILISTIC METHODS 39

Given this problem statement, it makes sense that we might try to model p(y∗|x∗). In fact,
modeling this conditional distribution directly is what’s known as probabilistic discriminative
modeling.

Definition 3.6.1 (Probabilistic Discriminative Modeling): Probabilistic modeling is a clas-
sification technique whereby we choose to directly model the conditional class distribution in order
to make classification predictions.

This means that we will start with the functional form of the generalized linear model described
by Equation 3.2, convert this to a conditional distribution, and then optimize the parameters of
the conditional distribution directly using a maximum likelihood procedure. From here, we will be
able to make predictions on new data points x∗. The key feature of this procedure, which is known
as discriminative training, is that it optimizes the parameters of a conditional distribution directly.
We describe a specific, common example of this type of procedure called logistic regression in
the next section.

Logistic Regression

One problem we need to face in our discriminative modeling paradigm is that the results of our
generalized linear model are not probabilities; they are simply real numbers. This is why in the
previous paragraph we mentioned needing to convert our generalized linear model to a conditional
distribution. That step boils down to somehow squashing the outputs of our generalized linear
model onto the real numbers between 0 and 1, which will then correspond to probabilities. To do
this, we will apply what is known as the logistic sigmoid function, σ(·).

Definition 3.6.2 (Logistic Sigmoid Function, σ(·)): The logistic sigmoid function is commonly
used to compress the real number line down to values between 0 and 1. It is defined functionally
as:

σ(z) =
1

1 + exp (−z)

As you can see in Figure 3.9 where the logistic sigmoid function is graphed, it squashes our output
domain between 0 and 1 as desired for a probability.

? There is a more satisfying derivation for our use of the logistic sigmoid function in logistic regression, but under-
standing its squashing properties as motivation is sufficient for the purposes of this book.

Using the logistic sigmoid function, we now have a means of generating a probability that a new
data point x∗ is part of class y∗. Because we are currently operating in the two-class case, which
in this context will be denoted C1 and C2, we’ll write the probability for each of these classes as:

p(y∗ = C1|x∗) = σ(wTx∗)

p(y∗ = C2|x∗) = 1− p(y∗ = C1|x∗)

Now that we have such functions, we can apply the maximum likelihood procedure to determine
the optimal parameters for our logistic regression model.
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Figure 3.9: Logistic Sigmoid Function.

For a data set {xi, yi} where i = 1..N and yi ∈ {0, 1}, the likelihood for our setting of parameters
w can be written as:

p({yi}Ni=1|w) =

N∏
i=1

ŷyii {1− ŷi}
1−yi (3.11)

where ŷi = p(yi = C1|xi) = σ(wTxi).

In general, we would like to maximize this probability to find the optimal setting of our param-
eters. This is exactly what we intend to do, but with two further simplifications. First, we’re going
to maximize the probability of the logarithm of the likelihood, as in Equation 3.12.

ln(p({yi}Ni=1|w)) =
N∑
i=1

{yi ln ŷi + (1− yi) ln (1− ŷi)} (3.12)

As a monotonically increasing function, maximizing the logarithm of the likelihood (called the
log likelihood) will result in the same optimal setting of parameters as if we had just optimized
the likelihood directly. Furthermore, using the log likelihood has the nice effect of turning what
is currently a product of terms from 1..N to a sum of terms from 1..N , which will make our
calculations nicer.

Second, we will turn our log likelihood into an error function by taking the negative of our log
likelihood expression. Now, instead of maximizing the log likelihood, we will be minimizing the
error function, which will again find us the same setting of parameters.

? It’s worth rereading the above paragraph again to understand the pattern presented there, which we will see several
times throughout this book. Instead of maximizing a likelihood function directly, it is often easier to define an error
function using the negative log likelihood, which we can then minimize to find the optimal setting of parameters for
our model.

After taking the negative logarithm of the likelihood function defined by Equation 3.11, we
are left with the following term, known as the cross-entropy error function, which we will seek to
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minimize:

E(w) = − ln p({yi}|w) = −
N∑
i=1

{yi ln ŷi + (1− yi) ln (1− ŷi)} (3.13)

where as before ŷi = p(yi = C1|xi) = σ(wTxi). Now, to solve for the optimal setting of parameters
using a maximum likelihood approach as we’ve done previously, we start by taking the gradient of
the cross-entropy error function with respect to w:

∇E(w) =
N∑
i=1

(ŷi − yi)xi (3.14)

which we arrive at by recognizing that the derivative of the logistic sigmoid function can be written
in terms of itself as:

∂σ(z)

∂z
= σ(z)(1− σ(z))

Let’s inspect the form of Equation 3.14 for a moment to understand its implications. First, it’s
a summation over all of our data points, as we would expect. Then, for each data point, we are
taking the difference between our predicted value ŷi and the actual value yi, and multiplying that
difference by the input vector xi.

While a closed form solution does not present itself here as it did in the case of linear regression
due to the nonlinearity of the logistic sigmoid function, we can still optimize the parameters w of
our model using an iterative procedure like gradient descent, where the objective function is defined
by Equation 3.13.

Multi-Class Logistic Regression and Softmax

As we saw when working with discriminant functions, we also need to account for multi-class
problems, which are practically speaking more common than the simple two-class scenario.

In the logistic regression setting (which is a form of discriminative modeling, not to be confused
with discriminant functions), we are now working with probabilities, which is why we introduced the
‘probability squashing’ sigmoidal function σ(·). Note that the sigmoidal function is also sometimes
known as the sigmoidal activation function.

Similarly, in the multi-class logistic regression setting, we would like to also have a probabil-
ity squashing function that generalizes beyond two classes. This generalization of the sigmoidal
function is known as softmax.

Definition 3.6.3 (Softmax): Softmax is the multi-class generalization of the sigmoidal activa-
tion function. It accepts a vector of activations (inputs) and returns a vector of probabilities
corresponding to those activations. It is defined as follows:

softmaxk(z) =
exp (zk)∑K
i=1 exp (zi)

, for all k

Multi-class logistic regression uses softmax over a vector of activations to select the most likely
target class for a new data point. It does this by applying softmax and then assigning the new data
point to the class with the highest probability.
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Example 3.1 (Softmax Example): Consider an example that has three classes: C1, C2, C3. Let’s
say we have an activation vector z for our new data point x that we wish to classify, given by:

z = WTx =

4
1
7


where

zj = wT
j x

Then, using our definition of softmax, we have:

softmax(z) =

0.047
0.002
0.950


And therefore, we would assign our new data point x to class C3, which has the largest activation.

As in the two-class logistic regression case, we now need to solve for the parameters W of our
model, also written as {wj}. Assume we have an observed data set {xi,yi} for i = 1..N where yi
are one-hot encoded target vectors. We begin this process by writing the likelihood for our data,
which is only slightly modified here to account for multiple classes:

p({yi}Ni=1|W) =
N∏
i=1

K∏
j=1

p(yi = Ck|xi)yij =
N∏
i=1

K∏
j=1

ŷ
yij
ij (3.15)

where ŷij = softmaxj(Wxi)

We can now take the negative logarithm to get the cross-entropy error function for the multi-
class classification problem:

E(W) = − ln p({yi}Ni=1|W) = −
N∑
i=1

K∑
j=1

yij ln ŷij (3.16)

As in the two-class case, we now take the gradient with respect to one of our weight parameter
vectors wj :

∇wjE(W) =

N∑
i=1

(ŷij − yij)xi (3.17)

which we arrived at by recognizing that the derivative of the softmax function with respect to the
input activations zj can be written in terms of itself:

∂softmaxk(z)

∂zj
= softmaxk(z)(Ikj − softmaxj(z))

where I is the identity matrix.

As in the two-class case, now that we have this gradient expression, we can use an iterative
procedure like gradient descent to optimize our parameters W.



3.6. PROBABILISTIC METHODS 43

3.6.2 Probabilistic Generative Models

With the probabilistic discriminative modeling approach, we elected to directly model the class-
conditional probability p(y∗|x∗). However, there was an alternative option: we could have instead
modeled the joint distribution of the class y∗ and the input data point x∗ together as p(y∗,x∗). This
approach is what’s known as probabilistic generative modeling because we actually model the
process by which the data was generated.

To model the data generating process in classification tasks generally acknowledges that a data
point is produced by first selecting a class y∗ from a categorical class prior p(y∗) and then generating
the data point x∗ itself from the class-conditional distribution p(y∗|x∗), the form of which is problem
specific. This generative approach is a particularly good idea if we want to create more data (by
sampling from the joint distribution) or if we have some sort of expert knowledge about how the
data was generated, which can make our model more powerful than the discriminative approach.

? Notice that with probabilistic generative modeling, we choose a specific distribution for our class-conditional
densities instead of simply using a generalized linear model combined with a sigmoid/softmax function as we did
in the logistic regression setting. This highlights the difference between discriminative and generative modeling: in
the generative setting, we are modeling the production of the data itself instead of simply optimizing the parameters
of a more general model that predicts class membership directly.

Classification in the Generative Setting

Now that we’re situated in the generative setting, we turn our attention to the actual problem of
using our model to predict class membership of new data points x∗.

To perform classification, we will pick the class Ck that maximizes the probability of x∗ being
from that class as defined by p(y∗ = Ck|x∗). We can relate this conditional density to the joint
density p(y∗,x∗) through Bayes’ Rule:

p(y∗ = Ck|x∗) =
p(y∗,x∗)

p(x∗)
=
p(x∗|y∗ = Ck)p(y

∗ = Ck)

p(x∗)
∝ p(x∗|y∗ = Ck)p(y

∗ = Ck)

where p(x∗) is a constant that can be ignored as it will be the same for every conditional probability
p(y∗ = Ck|x∗).

Recall that the class prior p(y) will always be a categorical distribution (the multi-class general-
ization of the Bernoulli distribution), while the class-conditional distribution can be specified using
prior knowledge of the problem domain. Once we have specified this class conditional distribution,
we can solve for the parameters of both that model and the categorical distribution by optimizing
the likelihood function. Let’s now derive that likelihood function.

Derivation 3.6.1 (Probabilistic Generative Model Likelihood Function):
We’re going to derive the likelihood function for the parameters of our probabilistic generative
model in the two-class setting, allowing that the multi-class generalization will be a straightforward
exercise.
Let’s start by assuming a Gaussian conditional distribution for our data p(x|y = Ck). Given a data
set {xi, yi} for i = 1..N , where yi = 1 corresponds to class C1 and yi = 0 corresponds to class C2,
we can construct our maximum likelihood solution. Let’s first specify our class priors:

p(C1) = π

p(C2) = 1− π
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For simplicity, we’ll assume a shared covariance matrix Σ between our two classes. Then, for data
points xi from class C1, we have:

p(xi, C1) = p(C1)p(xi|C1) = πN (xi|µ1,Σ)

And for data points xi from class C2, we have:

p(xi, C2) = p(C2)p(xi|C2) = (1− π)N (xi|µ2,Σ)

Using these two densities, we can construct our likelihood function:

p(π,µ1,µ2,Σ) =
N∏
i=1

(
πN (xi|µ1,Σ)

)yi(
(1− π)N (xi|µ2,Σ)

)1−yi

As usual, we will take the logarithm which is easier to work with:

ln p(π,µ1,µ2,Σ) =
N∑
i=1

yi ln

(
πN (xi|µ1,Σ)

)
+ (1− yi) ln

(
(1− π)N (xi|µ2,Σ)

)

Now that we have specified the log-likelihood function for our model, we can go about optimizing
our model by maximizing this likelihood. One way to do this is with a straightforward maximimum
likelihood estimation approach. We will optimize our parameters π,µ1,µ2, and,Σ separately, using
the usual procedure of taking the derivative, setting equal to 0, and then solving for the parameter
of interest. We write down this MLE solution in the following section.

MLE Solution

Solving for π
Beginning with π, we’ll concern ourselves only with the terms that depend on π which are:

N∑
i=1

yi lnπ + (1− yi) ln (1− π)

Taking the derivative with respect to π, setting equal to 0, rearranging, we get:

π =
1

N

N∑
i=1

yi =
N1

N
=

N1

N1 +N2

where N1 is the number of data points in our data set from class C1, N2 is the number of data
points from class C2, and N is just the total number of data points. This means that the maximum
likelihood solution for π is the fraction of points that are assigned to class C1, a fairly intuitive
solution and one that will be commonly seen when working with maximum likelihood calculations.

Solving for µ
Let’s now perform the maximization for µ1. Start by considering the terms from our log likelihood
involving µ1:

N∑
i=1

yi lnN (xi|µ1,Σ) = −1

2

N∑
i=1

yi(xi − µ1)
TΣ−1(xi − µ1) + c
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where c are constants not involving the µ1 term. Taking the derivative with respect to µ1, setting
equal to 0, and rearranging:

µ1 =
1

N1

N∑
i=1

yixi

which is simply the average of all the data points xi assigned to class C1, a very intuitive result.
By the same derivation, the maximum likelihood solution for µ2 is:

µ2 =
1

N2

N∑
i=1

(1− yi)xi

Solving for Σ
And finally, we can derive the maximum likelihood solution for the shared covariance matrix Σ.
Start by considering the terms in our log likelihood expression involving Σ:

−1

2

N∑
i=1

yi ln |Σ| − 1

2

N∑
i=1

yi(xi − µ1)
TΣ−1(xi − µ1)−

1

2

N∑
i=1

(1− yi) ln |Σ| − 1

2

N∑
i=1

(1− yi)(xi − µ2)
TΣ−1(xi − µ2)

Taking the derivative with respect to Σ:

NΣ−T − 1

2

N∑
i=1

yiΣ
−T (xi − µ1)(xi − µ1)

TΣ−T − 1

2

N∑
i=1

(1− yi)Σ−T (xi − µ2)(xi − µ2)
TΣ−T

Setting equal to 0 and rearranging to solve for Σ:

Σ =
1

N

N∑
i=1

(
yi(xi − µ1)(xi − µ1)

T + (1− yi)(xi − µ2)(xi − µ2)
T

)
which has the intuitive interpretation that the maximum likelihood solution for the shared covari-
ance matrix is the weighted average of the two individual covariance matrices.

It is relatively straightforward to extend these maximum likelihood derivations from their two-
class form to their more general, multi-class form.

Naive Bayes

There exists a further simplification to probabilistic generative modeling in the context of classifi-
cation known as Naive Bayes.

Definition 3.6.4 (Naive Bayes): Naive Bayes is a type of generative model for classification
tasks. It imposes the simplifying rule that for a given class Ck, we assume that each feature of
the data points x generated within that class are independent (hence the descriptor ‘naive’). This
means that the conditional distribution p(x|y = Ck) can be written as:

p(x|y = Ck) =

D∏
i=1

p(xj |y = Ck)
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where D is the number of features in our data point x and Ck is the class. Note that Naive Bayes
does not specify the form of the model p(xj |y = Ck), this decision is left up to us.

This is obviously not a realistic simplification for all scenarios, but it can make our calculations
easier and may actually hold true in certain cases. We can build more intuition for how Naive
Bayes works through an example.

Example 3.2 (Naive Bayes Example): Suppose you are given a biased two-sided coin and two
biased dice. The coin has probabilities as follows:

Heads : 30%

Tails : 70%

The dice have the numbers 1 through 6 on them, but they are biased differently. Die 1 has
probabilities as follows:

1 : 40%

2 : 20%

3 : 10%

4 : 10%

5 : 10%

6 : 10%

Die 2 has probabilities as follows:

1 : 20%

2 : 20%

3 : 10%

4 : 30%

5 : 10%

6 : 10%

Your friend is tasked with doing the following. First, they flip the coin. If it lands Heads, they
select Die 1, otherwise they select Die 2. Then, they roll that die 10 times in a row, recording the
results of the die rolls. After they have completed this, you get to observe the aggregated results
from the die rolls. Using this information (and assuming you know the biases associated with the
coin and dice), you must then classify which die the rolls came from. Assume your friend went
through this procedure and produced the following counts:

1 : 3

2 : 1

3 : 2

4 : 2

5 : 1

6 : 1
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Determine which die this roll count most likely came from.

Solution:
This problem is situated in the Naive Bayes framework: for a given class (dictated by the coin
flip), the outcomes within that class (each die roll) are independent. Making a classification in this
situation is as simple as computing the probability that the selected die produced the given roll
counts. Let’s start by computing the probability for Die 1:

p(Die 1) = p(Coin Flip = Heads) ∗ p(Roll Count = [3, 1, 2, 2, 1, 1])

∝ 0.3 ∗ (0.4)3 ∗ (0.2)1 ∗ (0.1)2 ∗ (0.1)2 ∗ (0.1)1 ∗ (0.1)1

∝ 3.84 ∗ 10−9

Notice that we don’t concern ourselves with the normalization constant for the probability of the
roll count - this will not differ between the choice of dice and we can thus ignore it for simplicity.
Now the probability for Die 2:

p(Die 2) = p(Coin Flip = Tails) ∗ p(Roll Count = [3, 1, 2, 2, 1, 1])

∝ 0.7 ∗ (0.2)3 ∗ (0.2)1 ∗ (0.1)2 ∗ (0.3)2 ∗ (0.1)1 ∗ (0.1)1

∝ 1.008 ∗ 10−8

Therefore, we would classify this roll count as having come from Die 2.

Note that this problem asked us only to make a classification prediction after we already
knew the parameters governing the coin flip and dice rolls. However, given a data set, we could
have also used a maximum likelihood procedure under the Naive Bayes assumption to estimate
the values of the parameters governing the probability of the coin flip and die rolls.

3.7 Conclusion

In this chapter, we looked at different objectives and techniques for solving classification problems,
including discriminant functions, probabilistic discriminative models, and probabilistic generative
models. In particular, we emphasized the distinction between two-class and multi-class problems
as well as the philosophical differences between generative and discriminative modeling.

We also covered several topics that we will make use of in subsequent chapters, including sigmoid
functions and softmax, maximum likelihood solutions, and further use of basis changes.

By now, you have a sound understanding of generative modeling and how it can be applied to
classification tasks. In the next chapter, we will explore how generative modeling is applied to a
still broader class of problems.



Chapter 4

Neural Networks

Despite how seemingly popular neural networks have become recently, they aren’t actually a novel
technique. The first neural networks were described in the early 1940s, and the only reason they
weren’t put into practice shortly thereafter was the fact that we didn’t yet have access to the large
amounts of storage and compute that complex neural network require. Over the last two decades,
and particularly with the advent of cloud computing, we now have more and more access to the
cheap processing power and memory required to make neural networks a viable option for model
building.

As we will come to see in this chapter, neural networks are an extraordinarily flexible class of
models used to solve a variety of different problem types. In fact, this flexibility is both what makes
them so widely applicable and yet so difficult to use properly. We will explore the applications,
underlying theory, and training schemes behind neural networks.

4.1 Motivation

For problems that fall into the category of regression or classification, we’ve already discussed the
utility of basis functions. Sometimes, a problem that is intractable with our raw input data will
be readily solvable with basis-transformed data. We often select these basis changes using expert
knowledge. For example, if we were working with a data set that related to chemical information,
and there were certain equations that a chemist told us to be important for the particular problem
we were trying to solve, we might include a variety of the transformations that are present in those
equations.

However, imagine now that we have a data set with no accompanying expert information. More
often than not, complex problem domains don’t come with a useful set of suggested transformations.
How do we find useful basis functions in these situations? This is exactly the strength of neural
networks - they identify the best basis for a data set!

Neural networks simultaneously solve for our model parameters and the best basis transforma-
tions. This makes them exceedingly flexible. Unfortunately, this flexibility is also the weakness of
neural nets: while it enables us to solve difficult problems, it also creates a host of other complica-
tions. Chief among these complications is the fact that neural networks require a lot of computation
to train. This is a result of the effective model space being so large - to explore it all takes time
and resources. Furthermore, this flexibilty can cause rather severe overfitting if we are not careful.

In summary, neural networks identify good basis transformations for our data, and the strengths
and weaknesses of neural networks stem from the same root cause: model flexibility. It will be our
goal then to appropriately harness these properties to create useful models.

48
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4.1.1 Comparison to Other Methods

In the previous two chapters, we explored two broad problem types: classification and regression,
and it’s natural to wonder where neural networks fit in. The answer is that they are applicable to
both. The flexibility of neural networks even extends to the types of problems they can be made to
handle. Thus, the tasks that we’ve explored over the last two chapters, such as predicting heights
in the regression case or object category in the classification case, can be performed by neural
networks.

Given that neural networks are flexible enough to be used as models for either regression or
classification tasks, this means that every time you’re faced with a problem that falls into one of
these categories, you have a choice to make between the methods we’ve already covered or using
a neural network. Before we’ve explored the specifics of neural networks, how can we discern at a
high level when they will be a good choice for a specific problem?

One simple way to think about this is that if we never needed to use neural networks, we probably
wouldn’t. In other words, if a problem can be solved effectively by one of the techniques we’ve
already described for regression or classification (such as linear regression, discriminant functions,
etc.), we would prefer to use those. The reason is that neural networks are often more memory
and processor intensive than these other techniques, and they are much more complex to train and
debug.

The flip side of this is that hard problems are often too complex or too hard to engineer features
for to use a simple regression or classification technique. Indeed, even if you eventually think you
will need to use a neural network to solve a given problem, it makes sense to try a simple technique
first both to get a baseline of performance and because it may just happen to be good enough.

What is so special about neural networks that they can solve problems that the other techniques
we’ve explored may not be able to? And why are they so expensive to train? These questions will
be explored over the course of the chapter, and a good place to start is with the status of neural
networks as universal function approximators.

4.1.2 Universal Function Approximation

The flexibility of neural networks is a well-established phenomenon. In fact, neural networks are
what are known as universal function approximators. This means that with a large enough network,
it is possible to approximate any function. The proof of this is beyond the scope of this textbook,
but it provides some context for why flexibility is one of the key attributes of neural networks.

ML Framework Cube: Neural Networks

As universal function approximators, neural networks can operate over discrete or continuous out-
puts. We primarily use neural networks to solve regression or classification problems, which involve
training on data sets with example inputs and outputs, making this a supervised technique. Fi-
nally, while there exist probabilistic extensions for neural networks, they primarily operate in the
non-probabilistic setting.

Domain Training Probabilistic

Continuous/Discrete Supervised No
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Figure 4.1: Simple Neural Network.

4.2 Feed-Forward Networks

The feed-forward neural network is the most basic setup for a neural network. Most of the logic
behind neural networks can be explained using a feed-forward network, with additional bells and
whistles typically added to form more complex networks. We will explore this basic neural network
structure first.

4.3 Neural Network Basics and Terminology

Looking at Figure 4.1, we see that a feed-forward neural network is a series of connected layers
that transform an input data point x into an output data point y. Each layer is composed of
nodes, the small black circles. Each node in the input layer corresponds to one dimension of a
single data point x (meaning the first node is x1, the second node x2, etc.). The same is true of the
nodes in the output layer, which represent each dimension of y. The nodes in the hidden layers
are referred to as activations. Let’s zoom in on the first node in hidden layer 1, shown in Figure
4.2, to describe what happens at each node as we transform an input.

Looking at Figure 4.2, notice that every node in the input layer is connected to this first node
in hidden layer 1. Each of the lines is a connection, that has a weight wd associated with it.
We multiply all the nodes in the input layer by their corresponding weight, and then add them all
together to produce the activation a at this first node:

a = x1w1 + x2w2 + x3w3 (4.1)

? Every node in every layer has distinct weights associated with it.

This gives us the activation for the first node in the first hidden layer. Once we’ve done this
for every node in the first hidden layer, we can then move on to computing the activations for the
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Figure 4.2: Zooming in on the inputs and the first node of the first layer.

second hidden layer (which require the activations of the first hidden layer, as indicated by the
network of connections). We keep pushing activation values through the network in this manner
until we have our complete output layer, at which point we are finished.

We’ve skipped over some important details in this high-level overview, but with this general
information about what a neural network looks like and the terminology associated with it, we can
now dig into the details a little deeper.

4.3.1 Adaptive Basis Functions

As we mentioned in the introduction, the strength of neural networks is that we can learn an
effective basis for our problem domain at the same time as we train the parameters of our model.
In fact, learning this basis becomes just another part of our parameter training. Let’s make this
notion of learning a basis more concrete.

Thinking back to our chapter on linear regression, we were training a model that made predic-
tions using a functional form that looked like:

y(x,w) = wφT =

D∑
d=1

wdφd

where φ = φ(x), φ is the basis transformation function, and D is the dimensionality of our data
point.

Typically with this linear regression setup, we are training our model to optimize the parameters
w. With neural networks this is no different - we still train to learn those parameters. However,
the difference in the neural network setting is that the basis transformation function φ is no longer
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fixed. Instead, the transformations are incorporated into the model parameters, and thus learned
at the same time.

This leads to a different functional form for neural networks. A neural network first performs
M linear combinations of an input data point x:

aj =

D∑
d=1

w
(1)
jd xd + w

(1)
j0 ∀j ∈ 1..M (4.2)

Note that Equation 4.2 describes what we’ve already seen in Figure 4.2. The only difference is that
we index each node in the hidden layer (along with its weights) by j. Therefore, there are M nodes
in this first hidden layer, corresponding to the M linear combinations of the input data point x.
The notation w(1) indicates that these weights are part of the first hidden layer of our network.

Notice also that we haven’t applied the ‘bias trick’ of appending a 1 to our data point x. We

will still apply this trick in general, but we’ve left it out here to illustrate that the terms w
(1)
jd are

typically referred to as weights while the term w
(1)
j0 is known as the bias.

As is explained above, the M different values aj that we compute using this equation are what
is known as activations. We then transform these activations with a non-linear activation function
h(·) to give:

zj = h(aj) (4.3)

? Note that we didn’t mention activation functions in the previous section only for the sake of simplicity. These
non-linearities are crucial to the performance of neural networks because they allow for modeling of outcomes that
vary non-linearly with their input variables.

These values zj are what is known as hidden units. The activation function is often the logistic
sigmoid function discussed in the previous chapter, but may also be something like a tanh function
or rectified linear unit (ReLU). These output units zj become the inputs to the next layer in our
network:

aj+1 =
D∑
d=1

w
(2)
(j+1)dzd + w

(2)
(j+1)0 (4.4)

Note we can connect many rounds of basis transformation and linear combination, and the number
of rounds we choose to include will be the number of layers in our network. Eventually, we will reach
the nodes in the output layer of our network, which after being transformed by their activation
function, are typically known as output activations denoted yk. This final activation function may
be the logistic sigmoid function, softmax function, or even just a linear activation (which means
not transforming them at all).

With this additional detail, we can now examine a more complete diagram of a feed-forward
neural network, shown in Figure 4.3. It may be helpful to reread the previous paragraphs and use
the diagram to visualize how a neural network transforms its inputs.

? Different resources choose to count the number of layers in a neural net in different manners. We’ve elected to
count each layer of non-input nodes, thus the two-layer network in Figure 4.3. However, some resources will choose
to count every layer of nodes (three in this case) and still others count only the number of hidden layers (making this
a one hidden layer network).

Combining Figure 4.3 and our preceeding functional description, we can describe the operation
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Figure 4.3: Feed-Forward Neural Network.

performed by a two-layer neural network using a single functional transformation:

yk(x,w) = σ

( M∑
m=1

w
(2)
kmh

( D∑
d=1

w
(1)
mdxd + w

(1)
m0

)
+ w

(2)
k0

)
(4.5)

where we’ve elected to make the final activation function the sigmoidal function σ(·) as we have a
binary output activation layer.

Notice that when written like this, a neural network is simply a non-linear function that trans-
forms an input x into an output y that is controlled by our set of parameters w.

Furthermore, it may be clear by now why this basic variety of neural networks is referred to as
a feed-forward neural network. If you examine Figure 4.3 or Equation 4.5, you’ll notice that we’re
simply feeding our input x forward through the network from the first layer to the last layer, hence
the name. Assuming we have a fully trained network, we can make predictions on new input data
points by propagating them through the network to generate output predictions.

Note that we can also simplify this equation by utilizing the bias trick and appending an x0 = 1
value to each of our data points such that:

yk(x,w) = σ

( M∑
m=1

w
(2)
kmh

( D∑
d=1

w
(1)
mdxd

))

Finally, it’s worth considering that while a neural network is a series of linear combinations, it
is special because of the differentiable non-linearities applied at each of the hidden layers. Without
these non-linearities, the successive application of different network weights would be equivalent to
a single large linear combination.

Now that we understand the basic structure of a neural network, the important question of how
to train our network remains. This is the topic we turn to next.
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4.4 Network Training

Now that we understand the structure of a basic feed-forward neural network and how they can be
used to make predictions, we turn our attention to the training process.

4.4.1 Objective Function

To train our network, it’s first necessary to establish a logical objective function for our parameters
w that we will seek to minimize. Remember that neural networks can be used to solve both
regression and classification problems, which means that our choice of objective will be very much
dependent on the type of problem we are working on as well as the properties we desire from that
function.

As we’ve already discussed, for the case of linear regression, a common objective function (but
certainly not the only possible one) is the least squares loss function:

L(w) =
1

2

N∑
n=1

(
y(xn,w)− tn

)2

(4.6)

For a binary classification problem, which we can model using a sigmoidal nonlinearity in our
output activation unit, we’ll often use the cross-entropy loss function given by:

L(w) = −
N∑
n=1

(
yn ln ŷn + (1− yn)(ln (1− ŷn)

)
(4.7)

And finally, in the multiclass classification setting produced by a softmax function in our output
activation layer, we use the following generalizaton to the cross entropy loss function:

L(w) = −
N∑
n=1

K∑
k=1

ykn ln

(
exp(ak(x,w))∑K
j=1 exp(aj(x,w))

)
(4.8)

? Loss function, objective function, and cost function all refer to the same concept: the function we optimize to train
our model.

4.4.2 Optimizing Parameters

Ultimately, as we’ve seen in the preceding two chapters, it is our goal to select a value for our
model’s weight parameters w that minimizes our objective function. The highly non-linear nature
of neural networks means that this objective function will be non-convex with respect to our weight
parameters, and as a result, we will need to use gradient descent for optimization (refer to the
previous chapter for a refresher on gradient descent).

In order to use gradient descent, we first need to figure out how to compute the gradient of our
objective function with respect to our weights. That is the topic of the next section.

4.4.3 Backpropagation

Considering how our feed-forward neural network works, by propagating activations through our
network to produce a final output, it’s not immediately clear how we can compute gradients for



4.4. NETWORK TRAINING 55

the weights that lie in the middle of our network, as we don’t actually have expected results for
those intermediate values. The solution to this problem is to send errors backwards through our
network in a process known as backpropagation.

Definition 4.4.1 (Backpropagation): Backpropagation is the procedure by which we pass errors
backwards through a feed-forward neural network in order to compute gradients for the weight
parameters of the network.

Backpropagation refers specifically to the portion of neural network training during which we
compute the derivative of the objective function with respect to the weight parameters. This is
done by propagating errors backwards through the network, hence the name.

? Note that we still need to update the value of the weight parameters after computing their derivatives. This is
typically done using gradient descent or some variant of it.

We now explore the details of backpropagation in greater depth.

4.4.4 Computing Derivatives Using Backpropagation

Recall that the activation aj for an arbitrary node in a neural network can be described by the
equation:

aj =

M∑
m=1

wjmzm (4.9)

where there are M incoming nodes z1, ..., zM connected to the node of interest and weighted by
wj1, ..., wjM as we see in Equation 4.4 and Figure 4.3. Recall also that this sum is then transformed
by an arbitrary activation function h(·) (which is typically nonlinear) to give the activation zj :

zj = h(aj) (4.10)

computing these values as we flow through the network constitutes the forward pass through our
network.

We now wish to begin the process of computing derivatives of the objective function with respect
to our weights. For the sake of simplicity, we’ll assume that the current setting of our parameters
w generates a loss of L for a single data point, as though we were performing stochastic gradient
descent.

Let’s consider how we could compute the derivative of L with respect to an individual weight
in our network, wjm:

∂L

∂wjm
(4.11)

We first need to figure out what the dependence of L is on this single weight wjm. This weight
contributes to the final result only via its contribution to the activation aj . This allows us to use
the chain rule to simplify Equation 4.11 as:

∂L

∂wjm
=
∂L

∂aj
· ∂aj
∂wjm

(4.12)

Using Equation 4.9, we have that:
∂aj
∂wjm

= zm
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Figure 4.4: Gradient of the objective function with respect to a weight.

We now introduce the following notation for the sake of simplicity:

δj =
∂L

∂aj
(4.13)

where the values of δj are referred to as errors. Now, we are able to rewrite Equation 4.12 as:

∂L

∂wjm
= δjzm (4.14)

The implications of Equation 4.14 are significant for understanding backpropagation. It indi-
cates that the derivative of the objective function with respect to an arbitrary weight in the network
is equal to the product of the error δ at the output end of that weight and the value z at the input
end of the weight. We can visualize this property in Figure 4.4.

Thus, to compute all the derivatives of the network, we need only to compute the values of δj
for each of the nodes in the network. The values of zm should be saved during the forward pass
through the network to be multiplied by the values of δj .

? We will only have errors δj for the hidden and output units of our network. This is logical because there is no
notion of applying an error to our input data, which we have no control over.

We now need only to consider how we should compute the values of δj , given by Equation 4.13.
For the final layer, also called the output layer, if we’re using least squares loss then the error is
given by:

δj =
∂L

∂aj
=
∂
(
1
2(ŷk − yk)2

)
∂ŷk

= ŷk − yk

which is simply the difference between the output of the network and the known result. We’ve seen
this term, the difference between the expected and actual results, arise in the gradient of our error
expressions for both linear regression and classification in the previous two chapters.

To compute the errors δj for the hidden units, we again make use of the chain rule to decompose
the errors δj as follows:

δj =
∂E

∂aj
=

M∑
m=1

∂E

∂am

∂am
∂aj

(4.15)
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Figure 4.5: Summation over the nodes (blue) to which node j (gold) sends connections (green).

where the summation runs over all of the M nodes to which the node j sends connections as seen
in Figure 4.5.

We can rewrite this expression using Equations 4.13, 4.9, and 4.10:

δj = h′(aj)
M∑
m=1

wmjδm (4.16)

which means that the value of δ for a given node can be computed by passing back (backpropagating)
the errors δ from nodes farther up in the network!

Since we know the values of δ for the final layer of output node, we can recursively apply
Equation 4.16 to compute the values of δ for all the nodes in the network.

Remember that all of these calculations were done for a single input data point that generated
the error E. If we were using stochastic gradient descent, we would perform the same calculation
for each data point in our mini-batch, and then sum the gradients as follows:

∂E

∂wjm
=

N∑
n=1

∂En
∂wjm

(4.17)

To solidify our understanding of the backpropagation algorithm, it can be useful to try a concrete
example.

Example 4.1 (Backpropagation Example): Imagine the case of a simple two layer neural net-
work as in Figure 4.3. We’ll use the standard quadratic loss function on our output layer:

E =
1

2

M∑
m=1

(ŷm − ym)2
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Where M is the number of units in the output layer. To the hidden units, we’ll apply a nonlinear
sigmoidal activation function given by:

σ(z) =
1

1 + exp (−z)

whose derivative is given by:

∂σ(z)

∂z
= σ(z)(1− σ(z))

For our input data point x, we forward propagate through our network to get the activations of
the hidden layer:

aj =

D∑
d=0

w
(1)
jd xd

We then transform this value using our sigmoidal nonlinearity:

zj = σ(aj)

We then propagate these transformed activations forward once more to get our output activations:

ŷm =

J∑
j=0

w
(2)
mjzj

Now that we’ve propagated forward, we can begin to propagate our errors backwards! We start by
computing the errors for the output layer as follows:

δm = ŷm − ym

We then backpropagate these errors back to the hidden units as follows:

δj = (σ(zj)(1− σ(zj)))

M∑
m=1

wmjδm

And now that we have our errors for the hidden and output layers, we can compute the derivative
of the loss with respect to our weights as follows:

∂E

∂w
(1)
jd

= δjxd,
∂E

∂w
(2)
mj

= δmzj

We then use these derivatives along wtih an optimization technique such as gradient descent to
improve our model weights.
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Figure 4.6: Networks with different structures and numbers of internal nodes.

4.5 Choosing a Network Structure

Now that we know the general form of a neural network and how the training process works, we
must step back and consider the question of how we actually arrive at an optimal network structure.
We’ll begin with an idea we’ve already seen before: cross validation.

4.5.1 Cross Validation for Neural Networks

We’ve previously discussed cross validation in the chapter on linear regression. We used it then
to compare the performance of different models, attempting to identify the best model while also
avoiding overfitting. We can use a similar process to identify a reasonable network structure.

First of all, the input and output parameters of a neural network are generally decided for us:
the dimensionality of our input data dictates the number of input units and the dimensionality of
the required output dictates the number of output units. For example, if we have an 8-by-8 pixel
image and need to predict whether it is a ‘0’ or a ‘1’, our input dimensions are fixed at 64 and our
output dimensions are fixed at 2. Depending on whether you wish to perform some sort of pre or
post-processing on the inputs/outputs of your network, this might not actually be the case, but
in general when choosing a network structure we don’t consider the first or last layer of nodes as
being a relevant knob that we can tune.

That leaves us to choose the structure of the hidden layers in our network. Unsurprisingly, the
more hidden layers we have and the more nodes we have in each of those layers, the more variation
we will produce in our results and the closer we will come to overfitting.

Thus, we can use cross validation in the same way we’ve done before: train our model with
differing numbers of internal units and structures (as in Figure 4.6) and then select the model that
performs best on the validation set.

? There are other considerations at play beyond performance when choosing a network structure. For example, the
more internal units you have in your network, the more storage and compute time you will need to train them. If
either training time or response time after training a model is critical, you may need to consider consolidating your
network at the expense of some performace.

4.5.2 Preventing Overfitting

Besides keeping your neural network small, there are other means of preventing it from overfitting.
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Regularization

You can also apply regularization to the weights in your network to help prevent overfitting. For
example, we could introduce a simple quadratic regularizer of the form λ

2wTw to our objective
function. There are other considerations to be made here, for example we would like our regularizer
to be invariant to scaling, meaning that multiplying our input data by a constant would produce
a proportionally equivalent network after training. The quadratic regularizer is not invariant to
scaling, but the basic concept of avoiding extreme weights is the same nonetheless.

Data Augmentation

We can use transformations to augment our data sets, which helps prevent overfitting. This tech-
nique is not specific to neural networks, but often the types of unstructured data for which we use
neural networks can benefit greatly from it.

Definition 4.5.1 (Data Augmentation): Data augmentation refers to the practice of increasing
the size and diversity of your training data by applying transformations to the initial data set.

For example, if we are working with image data, we might choose to rotate or reflect the image,
depending on the type of network we are trying to build and whether or not this would preserve
the integrity of the image. We might also change something like the brightness or density of the
image data. In this way, we can produce more and more varied training points, thus reducing the
likelihood of overfitting.

4.6 Specialized Forms of Neural Networks

Simple neural networks are useful for a general set of tasks, and as universal function approxima-
tors, they could be useful for any task. However, there are certain data types and use cases for
which we’ve developed more specialized forms of neural networks that perform even better in their
respective domains. We will take a high level view of these different flavors of neural networks.

4.6.1 Convolutional Neural Networks (CNNs)

Convolutional neural networks (abbreviated CNNs) are most often used for image data, but their
underlying principles apply in other domains as well.

To understand why a CNN is useful, consider this specific problem: you are trying to determine
whether or not there is a dog in an image. There are two general difficulties we have to deal with
in solving this problem. First, while dogs have a lot of similar features (ears, tails, paws, etc.), we
need some means of breaking an image down into smaller pieces that we can identify as being ears
or tails or paws. Second, what happens if we train on images of dogs that are all in the center of
the photo, and then we try to test our network on an image where the dog is in the upper left hand
corner? It’s going to fail miserably.

CNNs overcome these problems by extracting smaller local features from images via what’s
known as a sliding window. You can imagine this sliding window as a matrix kernel that moves
over every subsection of an image, producing a summary of those subsections that feed into the
next layer in our network. We do this over the entire image, and with several different sliding
windows. Without going into too many details, this solves the two general problems we had above:
our small sliding window can summarize a feature of interest (such as a dog ear) and it is also
location invariant, meaning that we can identify that dog ear anywhere in an image.
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Figure 4.7: Excellent diagram of the structure of a CNN. source:
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-
neural-networks–1489512765771.html

Figure 4.8: Simple example of an RNN.

4.6.2 Recurrent Neural Networks (RNNs)

As with CNNs, recurrent neural networks (abbreviated RNNs) are used to more efficiently solve
a specific problem type. To motivate the structure of an RNN, we will turn again to a specific
example.

Imagine we were building a tool with the goal of predicting what word comes next in a newspaper
article. Obviously, the words that came before the word that we are currently trying to predict
are crucial to predicting the next word. Imagine we propagate the preceding ten words through
our network to predict which word we think will come next. It would also be useful if we could
send some of the information at each layer backwards through the network to help with the next
prediction - since we know the sequence of words matters. In this sense, our network is ‘stateful’
because it’s remembering what came before. We don’t have this ability with a feed-forward network,
which by design only propagates information forward through the network. RNNs add backward
passing of activations into their network structure to improve predictions on data where there is
some temporal dependence on what came previously.
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4.6.3 Bayesian Neural Networks (BNNs)

Up until now, our training process has been one of maximum likelihood estimation, or a maximum
posterior approach if we utilize a regularizer that can be interpreted as introducing a prior.

A Bayesian neural network, or BNN, does exactly what you might imagine: it introduces
a distribution over the parameters of our model, which then requires marginalizing over those
distributions in order to make a prediction. The specifics of how exactly a BNN is constructed
are beyond the scope of this textbook, but the idea behind why we would utilize a BNN is the
same as the reason we utilize Bayesian techniques in other domains, particularly the use of prior
information to aid model performance.



Chapter 5

Support Vector Machines

In this chapter, we will explore what are known as a support vector machines, or SVMs for short.
SVMs are broadly useful for problems in classification and regression, and they are part of a
family of techniques known as margin methods. The defining goal of margin methods, and SVMs
specifically, is to put as much distance as possible between data points and decision boundaries.
We will dig deeper into what exactly this means over the course of the chapter. One of the most
appealing aspects of SVMs is that they decompose into convex optimization problems, for which
we can find a global optimum with relative ease. We will explore the mathematical underpinnings
of SVMs, which can be slightly more challenging than our previous topics, as well as their typical
use cases.

5.1 Motivation

While SVMs can be used for classification or regression, we will reason about them in the classifi-
cation case as it is more straightforward.

The grand idea behind SVMs is that we should construct a linear hyperplane in our feature
space that maximally separates our classes, which means that the different classes should be as
far from that hyperplane as possible. The distance of our data from the hyperplane is known as
margin.

Definition 5.1.1 (Margin): Margin is the distance of the nearest data point from the separating
hyperplane of an SVM model, as seen in Figure 5.1. Larger margins often lead to more generalizable
models.

A larger margin tends to mean that our model will generalize better, since it provides more
wiggle room to correctly classify unseen data.

This idea of margin is quite intuitive for humans. If you were presented with Figure 5.1 and
were asked to separate the two classes, you would likely draw the line that keeps data points as
far from it as possible. SVMs and other margin-based methods will attempt to algorithmically
recreate this intuition.

5.1.1 Max Margin Methods

SVMs are a specific instance of a broader class of model known as max margin methods. Their
name describes them well: they deal with creating a maximum margin between training data and
decision boundary, with the idea that this leads to model generalizability.

63



64 CHAPTER 5. SUPPORT VECTOR MACHINES

Figure 5.1: Hyperplane with margin between different classes.

Other max margin methods are outside the scope of this textbook. Note that these alternative
methods typically differ from SVMs in some non-trivial manner. For example, SVMs do not produce
posterior probability distributions but rather decision rules for handling new data points. If you
needed posterior probabilities for your model, there are other max margin methods better suited
to that task.

ML Framework Cube: Support Vector Machines

SVMs are typically used in settings with discrete outputs. We need labeled training data to identify
the relevant hyperplane in an SVM model. Finally, SVMs operate in a non-probabilistic setting.

Domain Training Probabilistic

Discrete Supervised No

5.1.2 Applications

The theory behind SVMs has been around for quite some time (since 1963), and prior to the rise
of neural networks and other more computationally intensive techniques, SVMs were used quite
extensively for image recognition, object categorization, and other typical machine learning tasks.

In particular, SVMs were and still are widely used for a subset of classification problems known
as anomaly detection.

? The purpose of anomaly detection is to identify unusual data points. For example, if we are manufacturing widgets,
we may wish to inspect and flag any widget that seems atypical with respect to the rest of the widgets we produce.

Anomaly detection can be as simple as a binary classification problem where the data set is
comprised of anomalous and non-anomalous data points. As we will see, an SVM can be con-
structed from this data set to identify future anomalous points very efficiently. SVMs continue to
be competitive in many real-world situations where we can define good features for our data.

5.2 Hard Margin Classifier for Linearly Separable Data

We will learn the theory behind SVMs by starting with a simple two-class classification problem,
as we’ve seen several times in previous chapters. We will constrain the problem even further
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by assuming that the two classes are linearly separable, which is the basis of the hard margin
formulation for SVMs.

? The expression ‘hard margin’ simply means that we don’t allow any data to be classified incorrectly. If it’s not
possible to find a hyperplane that perfectly separates the data based on class, then the hard margin classifier will
return no solution.

5.2.1 Why the Hard Margin

The hard margin constraint, which assumes that our data is linearly separable, is not actually
a requirement for constructing an SVM, but it simplifies the problem initially and makes our
derivations significantly easier. After we’ve established the hard margin formulation, we will extend
the technique to work in situations where our data is not linearly separable.

5.2.2 Deriving our Optimization Problem

Recall that our goal is to define a hyperplane that separates our data points and maintains the
maximum possible distance between the hyperplane and nearest data points on either side of it. To
uncover this hyperplane, we start with a simple linear model for a two-class classification problem:

f(x) = wTφ(x) + w0 (5.1)

where we have N multidimensional data points x1, ...,xN , φ(·) is a standard basis transformation
function, and there is a bias term w0. Each of our data point has a class y1, ..., yN which is either
1 or −1, and we assign new data points to class 1 or −1 according to the sign produced by our
trained model f(x).

By specifying our model this way, we have implicity defined a hyperplane separating our two
classes given by:

wTφ(x) + w0 = 0 (5.2)

Furthermore, we have that w is orthogonal to the hyperplane, which we demonstrate now:

Derivation 5.2.1 (Hyperplane Orthogonal to w): Imagine two data points x1 and x2 on the
hyperplane defined by wTφ(x) + w0 = 0. When we project their difference onto our model w, we
find:

wT (x1 − x2) = wTx1 −wTx2 = −w0 − (−w0) = 0 (5.3)

which means that w is orthogonal to our hyperplane. We can visualize this in Figure 5.2.

Remember that we’re trying to maximize the margin between our training data and the hyper-
plane. The fact that w is orthogonal to our hyperplane will help with this.

To determine the distance between a data point x and the hyperplane, which we denote d, we
need the distance in the direction of w between the point and the hyperplane. We denote x⊥ to
be the projection of x onto the hyperplane, which allows us to decompose x as the following:

x = x⊥ + d
w

||w||
(5.4)

which is simply the sum of the portion of x perpendicular to w and the portion of x that is parallel
to w. From here we can solve for d:
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Figure 5.2: Our weight vector w is orthogonal to the separating hyperplane.

Derivation 5.2.2 (Distance from Hyperplane Derivation): We start by left multiplying
Equation 5.4 with wT .

wTx = wTx⊥ + d
wTw

||w||

Simplifying (note that wTx⊥ = −w0 from Equation 5.3):

wTx = −w0 + d||w||

Rearranging:

d =
wTx + w0

||w||

which means that for each data point x, we now have the signed distance of that data point
from the hyperplane.

To classify a data point correctly, the distance d should be positive for class y = 1, and d should
be negative for class y = −1. For training purposes, we can make the margin positive whenever we
correctly classify data by multiplying y and d. Then, the margin for an individual data point xn is
given by:

yn(wTxn + w0)

||w||
(5.5)

The margin for an entire data set is given by the margin to the closest point in the data set, given
by:

min
n

yn(wTxn + w0)

||w||
(5.6)

Then, it is our goal to maximize this margin with respect to our model parameters w and w0. This
is given by:

arg max
w,w0

{ 1

||w||
min
n
yn(wTxn + w0)

}
(5.7)

This is a hard problem to optimize, but we can make it more tractable by recognizing some im-
portant features of Equation 5.7. First, rescaling w → αw and w0 → βw0 has no impact on the
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relative distance of any data point xn from the hyperplane. We can use this rescaling liberty to
enforce

yn(wTxn + w0) = 1 n, closest (5.8)

for the data point closest to the hyperplane. Thus, all of our data points have a margin that is
greater than or equal to 1:

∀n yn(wTxn + w0) ≥ 1 n, farther (5.9)

which is used as a constraint in the optimization problem of Equation 5.7. Thus our optimization
problem now looks like:

arg max
w,w0

1

||w||
s.t. ∀n yn(wTxn + w0) ≥ 1 (5.10)

Notice that maximizing 1
||w|| is equivalent to minimizing ||w||2. We will also add a constant term

1
2 for convenience, leaving our final optimization problem:

arg min
w,w0

1

2
||w||2 s.t. ∀n yn(wTxn + w0) ≥ 1 (5.11)

Note that Equation 5.11 is now a quadratic programming problem, which means we wish to optimize
a quadratic function subject to a set of linear constraints on our parameters. Arriving at this form
was the motivation for the preceding mathematic manipulations. We will discuss shortly how we
actually optimize this function.

5.2.3 What is a Support Vector

Up until now, we have discussed Support Vector Machines without identifying what a support
vector is. We now have enough information from the previous section to define them.

Definition 5.2.1 (Support Vector): The support vectors in an SVM are the data points closest
to the hyperplane.

In the hard margin case we have constrained the closest data points to being a distance of 1
from the hyperplane, so the support vectors are all d = 1 from the hyperplane. Figure 5.3 shows a
hard margin SVM solution with the corresponding support vectors.

? After we have optimized an SVM in the hard margin case, we must have at least two support vectors with a distance
of 1 from the hyperplane.

5.3 Soft Margin Classifier

Thus far, we’ve been operating under the assumption that our data is linearly separable in feature
space, which afforded us several convenient guarantees in the derivations of the previous section.
For example, given that our data was linearly separable, we could guarantee that every data point
would be on the correct side of the hyperplane, which was part of what allowed us to enforce the
constraint that d = 1 for the points closest to the hyperplane. We now seek to generalize the work
of the previous section to situations where our data is not so nice.
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Hard Margin SVM Example

Figure 5.3: Example of the resulting hyperplane for a hard margin SVM. The filled in data points
are support vectors.

5.3.1 Why the Soft Margin?

What if our data is not linearly separable in transformed feature space? For a real, complex
problem domain, it’s highly unlikely that it would be. Unfortunately, our current hard margin
SVM formulation would be useless with non-linearly separable data. That is why we need the soft
margin SVM.

At a high level, the soft margin SVM allows for some of our data points to be closer to or even
on the incorrect side of the hyperplane. This is desirable if our data set is not linearly separable or
contains outliers, and it is also quite intuitive. Examining Figure 5.4, we see that we have a single
outlier data point. We can still create a good model by just allowing this single data point to be
close to the hyperplane. That is what the soft margin formulation will allow for.

5.3.2 Updated Optimization Problem for Soft Margins

To enable the soft margin formulation, we introduce what are known as slack variables denoted
ξn ≥ 0, which simply relax the constraint from Equation 5.9 that we imposed in the hard margin
formulation. There is a slack variable ξn ≥ 0 for every data point xn, and they take the following
values according to how we classify xn:

ξn =


= 0 if correctly classified

∈ (0, 1] if correctly classified but inside margin

> 1 if incorrectly classified

(5.12)

These slack variable penalize data points on the wrong side of the margin defined by the hyperplane,
but they don’t forbid us from allowing data points to be on the wrong side if it produces the best
model. We now reformulate our optimization problem as:

arg min
w,w0

1

2
||w||2 + C

N∑
n=1

ξn s.t. ∀n yn(wTxn + w0) ≥ 1− ξn, ξn ≥ 0 (5.13)

where C is a regularization parameter that determines how heavily we penalize violations of the
hard margin constraints. A large C penalizes violation of the hard margin constraints more heavily,
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Figure 5.4: An outlier can make the hard margin formulation impossible or unable to generalize
well.

which means our model will follow the data closely and have little regularization. A small C won’t
heavily penalize having data points inside the margin region, relaxing the constraint and allowing
our model to somewhat disregard more of the data. This means more regularization.

? Unlike most regularization parameters we’ve seen thus far, C increases regularization as it gets smaller.

5.3.3 Soft Margin Support Vectors

Under the the hard margin formulation, the support vectors were those data points exactly d = 1
from the hyperplane, and they were also guaranteed to be the points closest to the hyperplane.
Under the soft margin formulation, we no longer have this guarantee since we explicity relaxed it
in the name of creating better, more generalizable models.

The support vectors for the soft margin case are determined by the value of the slack variable
ξn defined in Equation 5.12: data points for which ξn ≥ 0 are the support vectors. Note that these
support vectors are either correctly classified but within/on the margin (ξn ∈ [0, 1]) or incorrectly
classified (ξn > 1). We can visualize this in Figure 5.5.

? Data points for which ξn = 0 are on the margin and are still considered support vectors.

5.4 Conversion to Dual Form

Now that we have the formulation of the optimization problem for SVMs, we need to discuss how
we actually go about optimizing to produce a model solution. This will involve converting to a
dual form of our problem. We will do this in the hard margin case for notational simplicity, but
our solution will apply to the soft margin formulation as well.
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Soft Margin SVM Example

Figure 5.5: Example of the resulting hyperplane for a soft margin SVM. The filled in data points
are support vectors.

? A dual form is simply an equivalent manner of representing some expression, in this case the quadratic programming
problem we need to optimize.

5.4.1 Lagrange Multipliers

Before we get into deriving the dual form, we need to be aware of a critical piece of math that will
enable us to solve our optimization problem: Langrange multipliers.

A Lagrange multiplier is used to find optima of a function subject to certain constraints. This
is exactly what we need to solve the optimization problem described by Equation 5.11.

The underlying theory behind Lagrange multipliers is not overly difficult to understand, but it
is beyond the scope of this textbook. We will simply offer the method by which you can use them
to solve optimization problems.

If you have a function f(x) which you need to optimize (let’s say maximization here to be
concrete, but minimization applies just the same) subject to the constraint that some function
g(x) = 0, you can take the following steps. First, construct the Lagrangian function L(x, λ):

L(x, λ) = f(x) + λg(x) (5.14)

Then, set the derivative of L with respect to both x and λ equal to 0:

∇Lx = 0,
∂L

∂λ
= g(x) = 0

If x is D-dimensional, this will give you a system of D+1 equations. You can solve these equations
for x to find the optimal value of f(x) subject to the constraint g(x).



5.4. CONVERSION TO DUAL FORM 71

You should also be aware of the case where your constraint g(x) is an inequality. If we have
g(x) ≥ 0, we will still have the Lagrangian function given by Equation 5.14. On the other hand, if
the inequality constraint is g(x) ≤ 0, construct your Lagrangian function as follows:

L(x, λ) = f(x)− λg(x)

where only the sign has changed between the f(x) and g(x) terms. We will work in the g(x) ≥ 0
case, which like before we optimize with respect to the parameters x and λ:

∇Lx = 0,
∂L

∂λ
= g(x) ≥ 0

Regardless of the direction of the inequality, we also now optimize subject to the constraints:

λ ≥ 0, λg(x) = 0

? The exact reason for these new constraints when working with inequalities is beyond the scope of this textbook,
but it’s important to remember that they be met.

Finally, note that when you are optimizing a function under many constraints, you simply
introduce a Lagrange multiplier for each constraint.

Example 5.1 (Langrange Multiplier Example): Let’s say we had a function f(x) we wish to
maximize:

f(x) = x21 + 3x22 + 3

subject to the constraint g(x):

g(x) = 4x1 + 4x2 − 6 = 0

We begin by construction our Lagrangian function L(x, λ):

L(x, λ) = x21 + 3x22 + 3 + λ(4x1 + 4x2 − 6)

We then compute ∇Lx and ∂L
∂λ to get a system of equations:

2x1 + 4λ = 0

6x2 + 4λ = 0

4x1 + 4x2 − 6 = 0

Solving these equations for x1, x2, and λ leaves us with the following mazimized solution:

(x∗1, x
∗
2) =

(
9

8
,
3

8

)
; λ∗ = − 9

16

5.4.2 Deriving the Dual Formulation

Now that we understand Lagrange multipliers and how we can use them for constrained optimiza-
tion, we can get back to the hard margin SVM optimization problem:

arg min
w,w0

1

2
||w||2 s.t. ∀n yn(wTxn + w0) ≥ 1 (5.15)
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To satisfy these N constraints, we introduce N Lagrange multipliers λ0, ..., λN−1 ≥ 0. We then
have our Lagrangian function:

L(w, w0,λ) =
1

2
||w||2 −

N∑
n=1

λn(yn(wTxn + w0)− 1) (5.16)

where λ = λ0, ..., λN−1. Using this Lagrangian function, we allow ourselves to switch from solving
Equation 5.15 to instead solving:

arg min
w,w0

max
λ≥0

L(w, w0,λ) (5.17)

? The ‘arg min
w,w0

max
λ≥0

’ in Equation 5.17 may be initially confusing. We introduce the maximum because the values of

λ are free and should be set such that L(w, w0,λ) is as large as possible prior to minimizing with respect to w, w0.

We now wish to convert the objective in Equation 5.17 to a dual objective. Under the sufficient
conditions of strong duality which hold for this problem but whose explanation is beyond the scope
of this textbook, we can reformulate the objective as:

max
λ≥0

arg min
w,w0

L(w, w0,λ) (5.18)

At this point, we can solve for w, w0. Taking the gradient, setting equal to 0, and solving for w:

∇Lw = w−
N∑
n=1

λnynxn = 0

w∗ =

N∑
n=1

λnynxn (5.19)

And now for w0:

∂L

∂w0
= −

N∑
n=1

λnyn = 0

N∑
n=1

λnyn = 0 (5.20)

Now that we have these equations defining the optimal values for w and w0 we plug them back
into our our Lagrangian function:

L(w, w0,λ) =
1

2
||

N∑
n=1

λnynxn||2 −
N∑
n=1

λnyn(

N∑
m=1

λmymxm)Txn −
N∑
n=1

λnynw0 +

N∑
n=1

λn

=
1

2

N∑
n=1

N∑
m=1

λnλmynymxTnxm −
N∑
n=1

N∑
m=1

λnλmynymxTnxm − w0

N∑
n=1

λnyn +

N∑
n=1

λn

=

N∑
n=1

λn −
1

2

N∑
n=1

N∑
m=1

λnλmynymxTnxm

(5.21)
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We’re left with the result of Equation 5.21, which is another quadratic function that we wish to
maximize subject to the constraint λ ≥ 0 and

∑N
n=1 λnyn = 0. We can solve for λ using the same

Langrangian techniques described above.
Why do we wish to solve for the values of λ at all? To see this, we need to understand how to

make predictions on new data points.

5.4.3 Making Predictions

Recall the classification function described by Equation 5.1 at the beginning of this chapter:

f(x) = wTφ(x) + w0

We classifying new data points by looking at the sign produced by this function. Now that we’ve
solved for w, we can rewrite this function as:

f(x) =
N∑
n=1

λnynφ(xn)Tφ(xn) + w0 (5.22)

Data points for which f(x) > 0 are classified as 1, while all other data points are classified as −1.
Remember also that since λ are Lagrange multipliers, we are bound by the constraints:

λn ≥ 0, λn{ynf(xn)− 1} = 0

which means that for every data point summed in the Equation 5.22, we either have that λn = 0 or
ynf(xn) = 1. Any data points where λn = 0 don’t appear in the summation and thus don’t have
any impact on the prediction.

The rest of the data points, for which λn > 0, are known as support vectors, and because
we have that ynf(xn) = 1, these are the data points that lie on the margin of the hyperplane in
Figure 5.5.

This is a major takeaway for the usefulness of SVMs: once we’ve trained our model, we can
discard most of our data. We only need to keep the support vectors to make predictions. This also
illustrates why we need to solve for the values of λ: those values dictate which data points are the
support vectors for our model.

Finally, note that the extension of this solution from the hard margin to the soft margin case is
straightforward. In fact, the Lagrangian function ends up being identical and we only have a few
extra constraints.

5.4.4 Why is the Dual Formulation Necessary?

At this point, you might be wondering what exactly we gained by moving to the dual formulation
of this problem.

First, the complexity of the optimization problem we’re solving changed from one that is depen-
dent on the number of features M in our particular data domain to one that is linearly dependent on
the number of data points N . Thus, our model complexity is now independent of the dimensionality
of the feature space.

Second, in the dual formulation, we have the opportunity to take advantage of what’s known as
the kernel trick to map our data xn into higher dimensions without incurring performance costs.
This works as follows: notice that during our training process and at prediction time through
Equation 5.22, we have the term φ(xn)Tφ(xm). We rewrite this as follows:

k(xn,xm) = φ(xn)Tφ(xm) (5.23)
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where k(xn,xm) is known as the kernel function. Under certain conditions, we can skip the step
of projecting data points xn into the larger basis defined by the transformation φ, instead directly
computing the value of the kernel function. We can use this trick as long as k() is a valid kernel,
which we turn to next.

? This trick can even be used to work in an infinite basis. If that is of interest, you should look into Taylor series
basis expansion.

5.4.5 Kernel Composition

Now that we’ve seen the usefulness of the kernel trick for working in higher dimensional spaces
without incurring performance costs or memory overhead, it’s reasonable to wonder what sort of
valid kernels we can construct.

To be explicit, by ‘kernel’ we mean a function that produces a scalar product from two vectors
in your desired feature space. In other words, when applied to two data points, your kernel should
produce a number. Although it is beyond the scope of this textbook, the condition for a kernel k(·)
to be valid is that the matrix of elements given by k(xn,xm) should be positive semidefinite for all
choices of the data set {xn}.

? The matrix of elements k(xn,xm) is known as the Gram matrix, and is denoted by K.

In practice we care that we can compose valid kernels from smaller valid kernels. To this end,
there exists a set of rules that will preserve the validity of kernels through transformations. These
include such things as scalar multiplication

(
c · k(xn,xm)

)
, exponentiation

(
exp {k(xn,xm)}

)
, and

addition
(
k1(xn,xm)+k2(xn,xm)

)
and multiplication

(
k1(xn,xm) ·k2(xn,xm)

)
of different kernels.

It is always possible to test the validity of a given kernel by demonstrating that its Gram matrix
K is positive semidefinite.



Chapter 6

Clustering

In this chapter, we will explore a technique known as clustering. This represents our first foray into
unsupervised machine learning techniques. Unlike the previous four chapters, where we explored
techniques that assumed a data set of inputs and targets, with the goal of eventually making
predictions over unseen data, our data set will no longer contain explicit targets. Instead, these
techniques are motivated by the goal of uncovering structure in our data. Identifying clusters of
similar data points is a useful and ubiquitous unsupervised technique.

6.1 Motivation

The reasons for using an unsupervised technique like clustering are broad. We often don’t have a
specific task in mind; rather, we are trying to uncover more information about a potentially opaque
data set. For clustering specifically, our unsupervised goal is to group data points that are similar.

There are many reasons why we might separate our data by similarity. For organizational
purposes, it’s convenient to have different classes of data. It can be easier for a human to sift
through data if it’s loosely categorized beforehand. It may be a preprocessing step for an inference
method; for example, by creating additional features for a supervised technique. It can help identify
which features make our data points most distinct from one another. It might even provide some
idea of how many distinct data types we have in our set.

This idea of data being ‘similar’ means that we need some measure of distance between our
data points. While there are a variety of clustering algorithms available, the importance of this
distance measurement is consistent between them.

Distance is meant to capture how ‘different’ two data points are from each other. Then, we can
use these distance measurements to determine which data points are similar, and thus should be
clustered together. A common distance measurement for two data points x and x′ is given by:

||x− x’||L2 =

√√√√ D∑
d=1

(xd − x’d)2 (6.1)

where D is the dimensionality of our data. This is known as L2 or Euclidean distance, and you
can likely see the similarity to L2 regularization.

There are a variety of distance measurements available for data points living in a D-dimensional
Euclidean space, but for other types of data (such as data with discrete features), we would need
to select a different distance metric. Furthermore, the metrics we choose to use will have an impact
on the final results of our clustering.

75
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ML Framework Cube: Clustering

Clustering algorithms can operate on both continuous and discrete feature spaces, are fully unsu-
pervised, and are non-probabilistic for the techniques we explore in this chapter.

Domain Training Probabilistic

Continuous/Discrete Unsupervised No

6.1.1 Applications

Here are a few specific examples of use cases for clustering:

1. Determining the number of phenotypes in a population.

2. Organizing images into folders according to scene similarity.

3. Grouping financial data as a feature for anticipating extreme market events.

4. Identifying similar individuals based on DNA sequences.

As we mentioned above, there are different methods available for clustering. In this chapter, we
will explore two of the most common techniques: K-Means Clustering and Hierarchical Agglomer-
ative Clustering. We also touch on the flavors available within each of these larger techniques.

6.2 K-Means Clustering

The high level procedure behind K-Means Clustering (known informally as k-means) is as follows:

1. Initialize cluster centers by randomly selecting points in our data set.

2. Using a distance metric of your choosing, assign each data point to the closest cluster.

3. Update the cluster centers based on your assignments and distance metric (for example, when
using L2 distance, we update the cluster centers by averaging the data points assigned to each
cluster).

4. Repeat steps 1 and 2 until convergence.

In the case where we are using the L2 distance metric, this is known as Lloyd’s algorithm, which
we derive in the next section.

6.2.1 Lloyd’s Algorithm

Lloyd’s algorithm, named after Stuart P. Lloyd who first suggested the algorithm in 1957, optimizes
our cluster assignments via a technique known as coordinate descent, which we will learn more about
in later chapters.

Derivation 6.2.1 (Lloyd’s Algorithm Derivation):
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We begin by defining the objective used by Lloyd’s algorithm.

Objective
The loss function for our current assignment of data points to clusters is given by:

L(X,
{
µ
}C
c=1

,
{
r
}N
n=1

) =
N∑
n=1

C∑
c=1

rnc(xn − µc)2 (6.2)

where X is our NxD data set (N is the number of data points and D is the dimensionality of

our data),
{
µ
}C
c=1

is the CxD matrix of cluster centers (C is the number of clusters we chose),

and
{
r
}N
n=1

is our NxC matrix of responsibility vectors. These are one-hot encoded vectors (one
per data point), where the 1 is in the position of the cluster to which we assigned the nth data point.

We now define the algorithmic portion of Lloyd’s clustering procedure.

Algorithm
We first adjust our responsibility vectors to minimize each data point’s distance from its cluster
center. Formally:

rnc =

= 1 if c = arg min
c′
||xn − µc′ ||

= 0 otherwise
(6.3)

After updating our responsibility vectors, we now wish to minimize our loss by updating our cluster
centers µc. The cluster centers which minimize our loss can be computed by taking the derivative
of our loss with respect to µc, setting equal to 0, and solving for our new cluster centers µc:

∂L
∂µc

= −2

N∑
n=1

rnc(xn − µc)

µc =

∑N
n=1 rncxn∑N
n=1 rnc

(6.4)

Intuitively, this is the average of all the data points xn assigned to the cluster center µc.

We then update our responsibility vectors based on the new cluster centers, update the cluster
centers again, and continue this cycle until we have converged on a stable set of cluster centers and
responsibility vectors.

Note that while Lloyd’s algorithm is guaranteed to converge, it is only guaranteed to converge
to a locally optimal solution. Finding the globally optimal set of assignments and cluster centers is
an NP-hard problem. As a result, a common strategy is to execute Lloyd’s algorithm several times
with different random initializations of cluster centers, selecting the assignment that minimizes
loss across the different trials. Furthermore, to avoid nonsensical solutions due to scale mismatch
between features (which would throw our Euclidean distance measurements off), it makes sense to
standardize our data in a preprocessing step. This is as easy as subtracting the mean and dividing
by the standard deviation across each feature.
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6.2.2 Example of Lloyd’s

For some more clarity on exactly how Lloyd’s algorithm works, let’s walk through an example.

Example 6.1 (Lloyd’s Algorithm Example): We start with a data set of size N = 6. Each
data point is two-dimensional, with each feature taking on a value between -3 and 3. We also
have a ‘Red’ and ‘Green’ cluster. Here is a table and graph of our data points, labelled A through F:

Coordinates Dist. to Red Dist. to Green Cluster Assgn.

A (-3, -3) n/a n/a n/a
B (-1, -3) n/a n/a n/a
C (3, 0) n/a n/a n/a
D (-2, -1) n/a n/a n/a
E (0, 0) n/a n/a n/a
F (-1, -2) n/a n/a n/a

Let’s say we wish to have 2 cluster centers. We then randomly initialize those cluster centers by
selecting two data points. Let’s say we select B and F. We identify our cluster centers with a red
and green ‘X’ respectively:
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We now begin Lloyd’s algorithm by assigning each data point to its closest cluster center:

Coordinates Dist. to Red Dist. to Green Cluster Assgn.

A (-3, -3) n/a n/a Red
B (-1, -3) n/a n/a Red
C (3, 0) n/a n/a Green
D (-2, -1) n/a n/a Green
E (0, 0) n/a n/a Green
F (-1, -2) n/a n/a Green
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We then update our cluster centers by averaging the data points assigned to each:

Coordinates Dist. to Red Dist. to Green Cluster Assgn.

A (-3, -3) 2.00 2.24 Red
B (-1, -3) 0.00 1.00 Red
C (3, 0) 5.00 4.47 Green
D (-2, -1) 2.24 1.41 Green
E (0, 0) 3.16 2.24 Green
F (-1, -2) 1.00 0.00 Green

We proceed like this, updating our cluster centers and assignments, until convergence. At conver-
gence, we’ve achieved these cluster centers and assignments:
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Coordinates Dist. to Red Dist. to Green Cluster Assgn.

A (-3, -3) 1.46 5.41 Red
B (-1, -3) 1.06 3.91 Red
C (3, 0) 5.26 1.50 Green
D (-2, -1) 1.27 3.64 Red
E (0, 0) 2.85 1.50 Green
F (-1, -2) 0.79 3.20 Red

Where our red cluster is at (-1.75, -2.25) and our green cluster is at (1.5 , 0). Note that for this
random initialization of cluster centers, we deterministically identified the locally optimal set of
assignments and cluster centers. For a specific initialization, running Lloyd’s algorithm will always
identify the same set of assignments and cluster centers. However, different initializations will
produce different results

6.2.3 Number of Clusters

You may have wondered about a crucial, omitted detail: how do we choose the proper number of
clusters for our data set? There doesn’t actually exist a ‘correct’ number of clusters. The fewer
clusters we have, the larger our loss will be, and as we add more clusters, our loss will get strictly
smaller. That being said, there is certainly a tradeoff to be made here.

Having a single cluster is obviously useless - we will group our entire data set into the same
cluster. Having N clusters is equally useless - each data point gets its own cluster.

One popular approach to identifying a good number of clusters is to perform K-Means with a
varying number of clusters, and then to plot the number of clusters against the loss. Typically,
that graph will look like Figure 6.1.

Notice that at x = ... clusters, there appears to be a slight bend in the decrease of our loss.
This is often called the knee, and it is common to choose the number of clusters to be where the
knee occurs.

Intuitively, the idea here is that up to a certain point, adding another cluster significantly
decreases the loss by more properly grouping our data points. However, eventually the benefit of
adding another cluster stops being quite so significant. At this point, we have identified a natural
number of groups for our data set.

6.2.4 Initialization and K-Means++

Up until now, we have assumed that we should randomly initialize our cluster centers and execute
Lloyd’s algorithm until convergence. We also suggested that since Lloyd’s algorithm only produces
a local minimum, it makes sense to perform several random initializations before settling on the
most optimal assignment we’ve identified.

While this is a viable way to perform K-Means, there are other ways of initializing our orig-
inal cluster centers that can help us find more optimal results without needing so many random
initializations. One of those techniques is known as K-Means++.

The idea behind K-Means++ is that our cluster centers will typically be spread out when we’ve
reached convergence. As a result, it might not make sense to initialize those cluster centers in an
entirely random manner. For example, Figure 6.2 would be a poor initialization.
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Figure 6.1: Finding the Knee.

Figure 6.2: Bad Cluster Initialization.
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Figure 6.3: Good Cluster Initialization.

We would much rather start with a random initialization that looks like Figure 6.3.
We can use the hint that we want our cluster centers somewhat spread out to find a better

random initialization. This is where the initialization algorithm presented by K-Means++ comes
in.

For K-Means++, we choose the first cluster center by randomly selecting a point in our data
set, same as before. However, for all subsequent cluster center initializations, we select points in
our data set with probability proportional to the squared distance from their nearest cluster center.
The effect of this is that we end up with a set of initializations that are relatively far from one
another, as in Figure 6.3.

6.2.5 K-Medoids Alternative

Recall that in the cluster center update step (Equation 6.4) presented in the derivation of Lloyd’s
algorithm, we average the data points assigned to each cluster to compute the new cluster centers.
Note that in some cases, this averaging step doesn’t actually make sense (for example, if we have
categorical variables as part of our feature set). In these cases, we can use an alternative algorithm
known as K-Medoids. The idea behind K-Medoids is simple: instead of averaging the data points
assigned to that cluster, update the new cluster center to be the data point assigned to that cluster
which is most like the others.

6.3 Hierarchical Agglomerative Clustering

The motivating idea behind K-Means was that we could use a distance measurement to assign data
points to a fixed number of clusters, iteratively improving our assignments and cluster locations
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Figure 6.4: Dendrogram Example.

until convergence.
Moving on to Hierarchical Agglomerative Clustering (also known as HAC - pronounced ‘hack’),

the motivating idea is instead to group data from the bottom up. This means every data point
starts as its own cluster, and then we merge clusters together based on a distance metric that
we define. This iterative merging allows us to construct a tree over our data set that describes
relationships between our data. These trees are known as dendrograms, with an example found in
Figure 6.4. Notice that the individual data points are the leaves of our tree, and the trunk is the
cluster that contains the entirety of our data set.

We now formally define the HAC algorithm, and in the process, explain how we construct such
a tree.

6.3.1 HAC Algorithm

1. Start with N clusters, one for each data point.

2. Measure the distance between clusters. This will require an inter-cluster distance measure-
ment that we will define shortly.

3. Merge the two ‘closest’ clusters together, reducing the number of clusters by 1. Record the
distance between these two merged clusters.

4. Repeat step 2 until we’re left with only a single cluster.

In the remainder of the chapter, we’ll describe this procedure in greater detail (including how
to measure the distance between clusters), explain the clustering information produced by the tree,
and discuss how HAC differs from K-Means. But first, to make this algorithm a little more clear,
let’s perform HAC one step at a time on a toy data set, constructing the dendrogram as we go.

Example 6.2 (HAC Algorithm Example): Let’s say we have a data set of five points A, B,
C, D, E that we wish to perform HAC on. These points will simply be scalar data that we can
represent on a number line. We start with 5 clusters and no connections at all:
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We find the closest two clusters to merge first. A and B are nearest (it’s actually tied with C and D,
but we can arbitrarily break these ties), so we start by merging them. Notice that we also annotate
the distance between them in the tree, which in this case is 1:

We now have four clusters: (A, B), C, D, and E. We again find the closest two clusters, which in
this case is C and D:

We now have three remaining clusters: (A, B), (C, D), and E. We proceed as before, identifying
the two closest clusters to be (A, B) and (C, D). Merging them:

Finally we are left with two clusters: (A, B, C, D) and E. The remaining two clusters are obviously
the closest together, so we merge them:
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At this point there is only a single cluster. We have constructed our tree and are finished with
HAC.

Notice how the distance between two merged clusters manifests itself through the height of the
dendrogram where they merge (which is why we tracked those distances as we constructed the
tree). Notice also that we now have many layers of clustering: if we’re only only interested in
clusters whose elements are at least k units away from each other, we can ‘cut’ the dendrogram at
that height and examine all the clusters that exist below that cut point.

Finally, we need to handle the important detail of how to compute the distance between clusters.
In the preceding example, we designated the distance between two clusters to be the minimum
distance between any two data points in the clusters. This is what is known as the Min-Linkage
Criterion. However, there are certainly other ways we could have computed the distance between
clusters, and using a different distance measurement can produce different clustering results. We
now turn to these different methods and the properties of clusters they produce.

6.3.2 Linkage Criterion

Here are a few of the most common linkage criteria.

Min-Linkage Criteria

We’ve already seen the Min-Linkage Criterion in action from the previous example. Formally, the
criterion says that the distance dC,C′ between each cluster pair C and C ′ is given by

dC,C′ = min
k,k′
||xk − xk′ || (6.5)

where xk are data points in cluster C and xk′ are data points in cluster C ′. After computing these
pairwise distances, we choose to merge the two clusters that are closest together.

Max-Linkage Criterion

We could also imagine defining the distance dC,C′ between two clusters as being the distance between
the two points that are farthest apart in each cluster. This is known as the Max-Linkage Criterion.
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Figure 6.5: Different Linkage Criteria.

The distance between two clusters is then given by:

dC,C′ = max
k,k′
||xk − xk′ || (6.6)

As with the Min-Linkage Criterion, after computing these pairwise distances, we choose to merge
the two clusters that are closest together.

? Be careful not to confuse the linkage criterion with which clusters we choose to merge. We always merge the clusters
that have the smallest distance between them. How we compute that distance is given by the linkage criterion.

Average-Linkage Criterion

The Average-Linkage Criterion averages the pairwise distance between each point in each cluster.
Formally, this is given by:

dC,C′ =
1

KK ′

K∑
k=1

K′∑
k′=1

||xk − xk′ || (6.7)

Centroid-Linkage Criterion

The Centroid-Linkage Criterion uses the distance between the centroid of each cluster (which is
the average of the data points in a cluster). Formally, this is given by:

dC,C′ = || 1

K

K∑
k=1

xk −
1

K ′

K′∑
k′=1

xk′ || (6.8)

Different Linkage Criteria Produce Different Clusterings

It’s important to note that the linkage criterion you choose to use will influence your final clustering
results. For example, the min-linkage criterion tends to produce ‘stringy’ clusters, while the max-
linkage criterion tends to produce more compact clusters. You can see the difference between the
results of these two linkage criteria in Figure 6.5.
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? You should convince yourself of the different flavors of linkage criteria. For example, when using the min-linkage
criterion, we get these ‘stringy’ results because we’re most inclined to extend existing clusters by grabbing whichever
data points are closest.

6.3.3 How HAC Differs from K-Means

Now that we’re aware of two distinct clustering techniques and their variants, we consider the
differences between the two methods.

First of all, there is a fundamental difference in determinism between HAC and K-Means. In
general, K-Means incurs a certain amount of randomness and needs to be run multiple times to
ensure a good result. On the other hand, once you’ve selected a linkage criterion for HAC, the
clusters you calculate are deterministic. You only need to run HAC a single time.

Another difference between HAC and K-Means comes from the assumptions we make. For K-
Means, we need to specify the number of clusters up front before running our algorithm, potentially
using something like the knee-method to decide on the number of clusters. On the other hand, you
don’t need to assume anything to run HAC, which simplifies its usage. However, the downside for
HAC is that when you wish to present your final clustering results, you need to decide on the max
distance between elements in each cluster (so that you can cut the dendrogram).

The fact that you need to make a decision about where to cut the dendrogram means that
running HAC once gives you several different clustering options. Furthermore, the dendrogram in
and of itself can be a useful tool for visualizing data. We don’t get the same interactivity from
K-Means clustering.

? We often use dendrograms to visualize evolutionary lineage.



Chapter 7

Dimensionality Reduction

In previous chapters covering supervised learning techniques, we often used basis functions to
project our data into higher dimensions prior to applying an inference technique. This allowed us
to construct more expressive models, which ultimately produced better results. While it may seem
counterintuitive, in this chapter we’re going to focus on doing exactly the opposite: reducing the
dimensionality of our data through a technique known as Principle Component Analysis (PCA).
We will also explore why it is useful to reduce the dimensionality of some data sets.

7.1 Motivation

Real-world data is often very high dimensional, and it’s common that our data sets contain infor-
mation we are unfamiliar with because the dimensionality is too large for us to comb through all
the features the by hand.

In these situations, it can be very difficult to manipulate or utilize our data effectively. We
don’t have a sense for which features are ‘important’ and which ones are just noise. Fitting a
model to the data may be computationally expensive, and even if we were to fit some sort of model
to our data, it may be difficult to interpret why we obtain specific results. It’s also hard to gain
intuition about our data through visualization since humans struggle to think in more than three
dimensions. All of these are good reasons that we may wish to reduce the dimensionality of a data
set.

ML Framework Cube: Dimensionality Reduction

Dimensionality reduction operates primarily on continuous feature spaces, is fully unsupervised,
and is non-probabilistic for the techniques we explore in this chapter.

Domain Training Probabilistic

Continuous Unsupervised No

While dimensionality reduction is considered an unsupervised technique, it might also be
thought of as a tool used to make data more manageable prior to taking some other action. In fact,
it’s an important preprocessing step for a host of use cases.

89
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Bear Heights and Weights

Figure 7.1: Graph of bear heights and weights.

7.2 Applications

As described above, we need a tool like dimensionality reduction in situations where high-dimensional
data hinders us. Here are a few specific situations where we would use such a technique:

1. Presenting differences between complex molecules in two dimensions (via a graph).

2. Understanding the results of a credit trustworthiness algorithm.

3. Efficiently training a neural network to predict supermarket sales on a data set with many
input features.

4. Identifying which costly measurements are worth collecting when experimenting with new
chemicals.

With a few of these use cases in mind, we now turn to the math that underpins the dimension-
ality reduction technique known as Priniciple Component Analysis.

7.3 Principle Component Analysis

The main idea behind Principle Component Analysis (PCA) is that we can linearly project our
data set onto a subspace without losing too much information. For example, three-dimensional
data might primarily exist in a subspace that is actually a two-dimensional plane.

One way to think about this is to identify and preserve the features along which there is the
most variance. For example, imagine we had a data set comprised of the heights and weights of
individual bears. As an extreme case, let’s suppose all the bears were exactly the same height but
had a wide range of weights.
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Bear Weights

Figure 7.2: Bear weights.

Converting Between Reduced and Original Data

Figure 7.3: Converting between the reduced data and original data.

To differentiate our data points, we obviously only need to report the weights of the bears. The
variance of the heights is 0, and the variance of the weights is some non-zero number. Intuitively,
the most interesting features from our data sets are those that vary the most.

? In this simple example, the direction of maximal variance occurs exactly along the x1 axis, but in general it will
occur on a plane described by a combination of our input features.

The second way to think about PCA is that we are minimizing the error we incur when we
move from the lower-dimensional representation back to the original representation. This is known
as reconstruction loss. We can consider the meaning of this using our bear example.

Let’s say we project the data set from Figure 7.1 here down to a single dimension by recording
only the weights:

Then, to reconstruct our original graph, we need only to keep track of a slope and bias term
in the form of the familiar equation x2 = mx1 + b. In this case our slope is m = 0 and our bias
b = 3. Note that this storage overhead is constant (just remembering the slope and bias) regardless
of how big our data set gets. Thus we can go from our low-dimensional representation back to our
original data:

It will be our goal to determine a low-dimensional representation of our data that allows us
to return to our high-dimensional data while losing as little information as possible. We wish
to preserve everything salient about the data while discarding as much redundant information as
possible. We now turn to how this can be achieved.

7.3.1 Reconstruction Loss

We identified a key tenet of dimensionality reduction in the previous section: finding subspaces of
our data that preserve as much information as possible. Concretely, this means we want to convert
our original data point xn in D dimensions into a data point x′n in D′ dimensions where D′ < D.
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Data Reconstruction

Figure 7.4: Far left: our original data. Middle: our reduced data in scalar form after the projection
given by x·w. Right: our reconstructed data points given by (x·w)w. Notice that our reconstructed
data points are not the same as our original data.

? We’re going to assume that our data set has been centered such that each feature in xn has mean 0. This will not
affect our results (we can convert back to the uncentered data by adding back the mean of each feature), but will
make our derivations more convenient to work with.

Let’s consider a simple case first: D′ = 1. This means that we’re projecting our D dimensional
data down onto just a single dimension, or in geometric terms, we’re projecting our data points
xn onto a line through the origin. We can define this line as the unit vector w ∈ RD×1, and the
projection is given by the dot product x ·w.

? The unit vector w onto which we project our data is known as a principle component, from which PCA gets its
name.

This projection produces a scalar, and that scalar defines how far our projection x ·w is from
the origin. We can convert this scalar back to D dimensional space by multiplying it with the
unit vector w. This means that (x · w)w is the result of projecting our data point x down into
one-dimension and then converting it to its coordinate location in D dimensions. We refer to these
as our projection vectors, and we can observe what this looks like geometrically in Figure 7.4.

The projection vectors we recover from the expression (x · w)w will be in D dimensions, but
they will obviously not be identical to the original D dimensional vectors (Figure 7.4 demonstrates
why that is the case). This difference between the original and projection vectors can be thought
of as error, since it is information lost from our original data. For a given data point xn and unit
vector w, we can measure this error through the expression:

||xn − (x ·w)w||2 (7.1)

which is known as reconstruction loss because it measures the error incurred when reconstructing
our original data from its projection.

Definition 7.3.1 (Reconstruction Loss): Reconstruction loss is the difference (measured via a
distance metric such as Euclidean distance) between an original data set and its reconstruction from
a lower dimensional representation. It indicates how much information is lost during dimensionality
reduction.

Reconstruction loss is then a metric for evaluating how ‘good’ a subspace in D′ dimensions is
at representing our original data in D dimensions. The better it is, the less information we lose,



7.3. PRINCIPLE COMPONENT ANALYSIS 93

and the reconstruction loss is lower as a result.

7.3.2 Minimizing Reconstruction Loss

We now know that our goal is to find a good subspace to project onto, and we also know that
finding this good subspace is equivalent to minimizing the reconstruction loss it incurs. We can
now formalize this as an optimization problem.

First, we simplify the reconstruction loss for a single data point xn as follows:

||xn − (xn ·w)w||2 = (xn − (xn ·w)w)(xn − (xn ·w)w)

= ||xn||2 − 2(xn ·w)2 + (xn ·w)2||w||2

= ||xn||2 − (xn ·w)2

where ||w||2 = 1 because it is a unit vector. Note that we can define reconstruction loss over our
entire data set as follows:

RL(w) =
1

n

N∑
n=1

||xn||2 − (xn ·w)2 (7.2)

Recall that our goal is to minimize reconstruction loss over our data set by optimizing the subspace
defined by w. Let’s first rewrite Equation 7.2 as:

min
w

RL(w) =
1

n

N∑
n=1

||xn||2 −
1

n

N∑
n=1

(xn ·w)2

where we can see that our optimization will depend only on maximizing the second term:

max
w

1

n

N∑
n=1

(xn ·w)2 (7.3)

since it is the only one involving w. Recall that the sample mean of a data set is given by the
expression 1

n

∑N
n=1 xn, and note that Equation 7.3 is the sample mean of (x · w)2. Using the

definition of variance for a random variable Z (which is given by V ar(Z) = E(Z2) − (E(Z))2), we
can rewrite Equation 7.3 as:

1

n

N∑
n=1

(xn ·w)2 = V ar
[
{xn ·w}Nn=1

]
+
(
E
[
{xn ·w}Nn=1

])2
Recall that we centered our data xn to have mean 0 such that the expression above simplifies to:

1

n

N∑
n=1

(xn ·w)2 = V ar
[
{xn ·w}Nn=1

]
(7.4)

and therefore V ar
[
{xn ·w}Nn=1

]
is the term we wish to maximize. This means that minimizing

the reconstruction loss is equivalent to maximizing the variance of our projections
{xn ·w}Nn=1.
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? Note the intuitiveness of this result. We should like to find a subspace that maintains the spread in our data.

7.3.3 Multiple Principle Components

Up until now, we’ve been considering how we would project onto a single principle component
w ∈ RD×1. This will reduce our data down to one dimension, just a scalar. In general, we will
wish to preserve more of our data than just a single dimension (in order to capture more of the
variance in our data and reduce reconstruction loss), which means that we will need to have multiple
principal components. For now we’ll assume that our principal components are orthogonal (we will
prove this later), which then allows us to describe the projection of our data xn onto this subspace
as the sum of the projections onto D′ orthogonal vectors:

D′∑
d′=1

(xn ·wd′)wd′ (7.5)

7.3.4 Identifying Directions of Maximal Variance in our Data

We now know from the previous section that we find our principle components (and thus the
subspace we will project onto) by identifying the directions of maximum variance in our projected
data set. We know from Equation 7.4 that the variance is equivalent to:

σ2w ≡ V ar
[
{xn ·w}Nn=1

]
=

1

n

N∑
n=1

(xn ·w)2

Rewriting this in terms of matrix notation we have that:

σ2w =
1

n
(Xw)T (Xw)

We can further simplify this:

σ2w =
1

n
wTXTXw

σ2w =
1

n
wTXTXw

σ2w = wT XTX

n
w

σ2w = wTSw

where S = XTX
n is the empirical covariance matrix of our data set.

? Notice that by convention we describe the empirical covariance of a data set with the term S instead of the usual
covariance term Σ.

Our goal is to maximize the term σ2w = V ar
[
{xn ·w}Nn=1

]
with respect to w. Furthermore, w is

a unit vector, so we must optimize subject to the constraint wTw = 1. Recalling the discussion of
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Lagrange multipliers from Chapter 6 on Support Vector Machines, we incorporate this constraint
by reformulating our optimization problem as the Lagrangian equation:

L(w, λ) = wTSw− λ(wTw− 1)

As usual, we proceed by taking the derivative with respect to each parameter:

dL(w, λ)

dw
= 2Sw− 2λw

dL(w, λ)

dλ
= wTw− 1

We can now set these equal to 0 and solve for the optimal values:

Sw = λw

wTw = 1

This result is very significant! As we knew already, we needed w to be a unit vector. However, we
also see that w is an eigenvector of the empirical covariance matrix w. Futhermore, the eigenvector
that will maximize our quantity of interest σ2w = wTSw will be the eigenvector with the largest
eigenvalue λ. Fortunately, linear algebra gives us many tools for finding eigenvectors, and as a result
we can efficiently identify our principal components. Note also that the eigenvectors of a symmetric
matrix are orthogonal, which proves our earlier assumption that our principal components are
orthogonal.

? Each eigenvector is a principle component. The larger the eigenvalue associated with that principle component,
the more variance there is along that principle component.

To recap, we’ve learned that the optimal principal components (meaning the vectors describing
our projection subspace) are the eigenvectors of the empirical covariance matrix of our data set.
The vector preserving the most variance in our data (and thus minimizing the reconstruction loss)
is given by the eigenvector with the largest eigenvalue, followed by the eigenvector with the next
largest eigenvalue, and so on. Furthermore, while it is somewhat outside the scope of this textbook,
we are guaranteed to have D distinct, orthogonal eigenvectors with eigenvalues ≥ 0. This is a result
of linear algebra that hinges on the fact that our empirical covariance matrix S is symmetric and
positive semi-definite.

7.3.5 Choosing the Optimal Number of Principal Components

We now know that the eigenvectors of the empirical covariance matrix S give us the principal
components that form our projection subspace. Note that the exact procedure for finding these
eigenvectors is a topic better suited for a book on linear algebra, but if you are interested, you can
look into a topic known as Singular Value Decomposition (SVD). For our purposes, we will assume
there is a black box that accepts S and returns a list of the D principal components.

Because these principal components are orthogonal, the projections they produce will be entirely
uncorrelated. This means we can project our original data onto each component individually and
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Four Dimensional Iris Data Set in Three Dimensions

Figure 7.5: PCA applied to Fisher’s Iris data set, which is originally in four dimensions. We reduce
it to three dimensions for visualization purposes and label the different flower types. This example
is taken from the sklearn documentation.

then sum those projections to create our lower dimensional data points. Note that it doesn’t make
sense that we would use every one of our D principal components to define our projection subspace,
since that wouldn’t lead to a reduction in the dimensionality of our data at all (the D orthogonal
principal components span the entire D dimensional space of our original data set). We now need
to decide how many principal components we will choose to include, and therefore what subspace
we will be projecting onto.

The ‘right’ number of principal components to use depends on our goals. For example, if we
simply wish to visualize our data, then we would project onto a 2D or 3D space. Therefore, we
would choose the first 2 or 3 principal components, and project our original data onto the subspace
defined by those vectors. This might look something like Figure 7.5.

However, it’s more complicated to choose the optimal number of principal components when our
goal is not simply visualization. We’re now left with the task of trading off how much dimensionality
reduction we wish to achieve with how much information we want to preserve in our data.

One way to do this is similar to the informal ‘elbow’ method described for K-Means clustering.
We graph our reconstruction loss against the number of principal components used, as seen in
Figure 7.6. The idea is to add principal components to our subspace one at a time, calculating
the reconstruction loss as we go. The first few principal components will greatly reduce the recon-
struction loss, before eventually leveling off. We can identify the ‘elbow’ where the reduction in
loss starts to diminish, and choose to use that number of principal components.

Another way to do this is to consider how much variance we wish to preserve in our data. Each
principal component is associated with an eigenvalue λd that indicates what proportion of the
variance that principal component is responsible for in our data set. Then the fraction of variance
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Reconstruction Loss vs. Number of Principal Components

Figure 7.6: Reconstruction loss versus the number of principal components. Notice the similarity
to the ‘elbow’ method of K-Means clustering.

retained from our data set if we choose to keep D′ principal components is given by:

retained variance =

∑D′

d′=1 λd′∑D
d=1 λd

(7.6)

For different applications, there may be different levels of acceptable variance retention, which can
help us decide how many principal components to keep.

Finally, once we have selected our principal components, we have also defined the subspace onto
which we will be projecting our original data. And although this subspace is defined by the basis
given by our principal components, these principal components are not a unique description of that
subspace. We could choose to use any basis after we’ve identified our subspace through the principal
components. The importance of this idea is simply that although our principal components are
unique, they are not the only basis we could use to define the same projection subspace.

7.4 Conclusion

Principal component analysis is useful for visualization purposes, removing redundant informa-
tion, or making a data set more computationally manageable. PCA is also a good tool for data
exploration, particularly when digging into an unfamiliar data set for the first time.

It is not essential that we know by heart the exact derivation for arriving at the principal
components of a data set. The same can be said of the linear algebra machinery needed to compute
principal components. However, it is important to have an intuitve grasp over how variance in
our data set relates to principal components, as well as an understanding of how subspaces in our
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data can provide compact representations of that data set. These are critical concepts for working
effectively with real data, and they will motivate related techniques in machine learning.



Chapter 8

Graphical Models

Mathematics, statistics, physics, and other academic fields have useful notational systems. As a
hybrid of these and other disciplines, machine learning borrows from many of the existing systems.
Notational abstractions are important to enable consistent and efficient communication of ideas, for
both teaching and knowledge creation purposes. Much of machine learning revolves around mod-
eling data processes, and then performing inference over those models to generate useful insights.
In this chapter, we will be introducing a notational system known as the directed graphical model
(DGM) that will help us reason about a broad class of models.

8.1 Motivation

Up until this point, we’ve defined notation on the fly, relied on common statistical concepts, and
used diagrams to convey meaning about the problem setup for different techniques. We’ve built
up enough working knowledge and intuition at this point to switch to a more general abstraction
for defining models: directed graphical models (DGMS). DGMs will allow us to both consolidate
our notation and convey information about arbitrary problem formulations. An example of what
a DGM looks like for a linear regression problem setup is given in Figure 8.1, and over the course
of the chapter, we’ll explain how to interpret the symbols in this diagram.

We need graphical models for a couple of reasons. First, and most importantly, a graphical
model unambiguously conveys a problem setup. This is useful both to share models between
people (communication) and to keep all the information in a specific model clear in your own head
(consolidation). Once we understand the meaning of the symbols in a DGM, it will be far easier to

Figure 8.1: Linear regression model expressed with a DGM.

99



100 CHAPTER 8. GRAPHICAL MODELS

Figure 8.2: Random variables are denoted with an open circle, and it is shaded if the variable is
observed.

Figure 8.3: Deterministic parameters are denoted with a tight, small dot.

examine one of them than it will be to read several sentences describing the type of model we’re
imagining for a specific problem. Another reason we use DGMs is that they help us reason about
independence properties between different parts of our model. For simple problem setups this may
be easy to keep track of in our heads, but as we introduce more complicated models it will be useful
to reason about independence properties simply by examining the DGM describing that model.

Ultimately, directed graphical models are a tool to boost efficiency and clarity. We’ll examine
the core components of a DGM, as well as some of their properties regarding independence and
model complexity. The machinery we develop here will be used heavily in the coming chapters.

8.2 Directed Graphical Models (Bayesian Networks)

There are a few fundamental components to all of the models we’ve examined so far. In fact, we can
model just about everything we’ve discussed to this point using just random variables, deterministic
parameters, and arrows to indicate the relationships between them. Let’s consider linear regression
as a simple but comprehensive example. We have a random variable yn, the object of predictive
interest, which depend on deterministic parameters in the form of data xn and weights w. This
results in the DGM given by Figure 8.1. There are four primary pieces of notation that the linear
regression setup gives rise to, and these four components form the backbone of every DGM we
would like to construct.

First, we have random variables represented by an open circle, shown in Figure 8.2. Note that
if we observe a random variable of a given model, then we shade it in. Otherwise, it’s left open.

Second, we have deterministic parameters represented by a tight, small dot, shown in Figure
8.3.

Third, we have arrows that indicate the dependence relationship between different random
variables and parameters, shown in Figure 8.4. Note that an arrow from X into Y means that Y
depends on X.
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Figure 8.4: Arrows indicate dependence relationships.

Figure 8.5: Plates indicate repeated sets of variables. Often there will be a number in one of the
corners (N in this case) indicating how many times that variable is repeated.
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Figure 8.6: DGM for the joint distribution give by Equation 8.1.

And finally, we have plate notation to indicate that we have repeated sets of variables in our
model setup, shown in Figure 8.5.

With these four simple constructs, we can describe complex model setups with a simple diagram.
We can have an arbitrary number of component with any sort of dependence structure baked in.
DGMs can be useful as a reference while working on a problem, and they also make it easy to
iterate on an existing model setup.

8.2.1 Joint Probability Distributions

We’ll now consider how DGMs simplify the task of reasoning about a joint probability distribution
over multiple random variables. Note that for any joint probability distribution, regardless of our
knowledge about the dependence structure in the model, it’s always valid to write a generic joint
probability distribution as follows:

p(A,B,C)

where in this setup, we are interested in the joint distribution between three random variables
A,B,C. However, this doesn’t tell us anything about the structure of the problem at hand: where
there is independence and how we can use that to simplify our model. For example, if we knew
that B and C were independent and we also knew the conditional distribution of A|B,C then we
would much rather setup our joint probability equation as:

p(A,B,C) = p(B)p(C)p(A|B,C) (8.1)

DGMs assist in this process of identifying the appropriate factorization, as their structure allows
us to read off valid factorizations directly. For example, the joint distribution given by Equation
8.1 can be read from Figure 8.6.

We can move between a DGM and a valid factorized joint distribution by identifying the arrows
indicating dependencies. If a random variable has no dependencies (as neither B nor C do in
this example), they can be written on their own as marginal probabiilties p(B) and p(C). For
random variables with arrows coming into them, indicating dependence, we include them in the
joint factorization conditioned on the variables that they depend on, i.e. P (A|B,C). In this way
we can move back and forth between DGMs and factorized joint distributions with ease.
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Figure 8.7: Example of a generative model.

8.2.2 Generative Models

While DGMs allow us to move quickly between a factorized joint distribution and a corresponding
graphical model, they also show us the process by which data comes into existence (sometimes
referred to as the data generating story or generative process). What this means is that if presented
with a DGM, it is possible for us to identify how the data gets created, and if we have the proper
tools, how we could generate new data ourselves.

Definition 8.2.1 (Generative Models): A generative model describes the entire process by
which data comes into existence. While this is not always necessary if our goal is only to make
predictions or perform some other kind of inference, it does have the added benefit of enabling the
creation of new data by sampling from the generative model.

? Note that we can create graphical models for both generative and discriminative models. Discriminative models
will only model the conditional distribution p(Y |Z), while generative models will model the full joint distribution
p(Z, Y ).

Let’s consider a simple example to see how this works in practice. Consider the flow of in-
formation present in Figure 8.7. First, there is some realization of the random variable Z. Then
conditioned on that value of Z, there is some realization of the random variable Y . Obviously, the
joint factorization for this DGM is given by p(Z)p(Y |Z), but on a more intuitive level, the data is
created by first sampling from Z’s distribution, and then based on that value, sampling from the
conditional distribution of Y .

To make this concrete, we could consider Z to be a random variable that determines a specific
breed of dog, and Y to be the random variable that, conditioned on the breed of dog, determines
the snout length of that type of dog. Notice that we have not specified anything about the specific
distributional form from which Z and Y come, only the story of how they relate to each other.

This story also shows us that if we had some model for Z and Y |Z, we could generate data
points ourselves. Our procedure would simply be to sample from Z and then to sample from
Y conditioned on that value of Z. We could perform this process as many times as we like to
generate new data. This is in contrast to sampling directly from the joint p(Z, Y ), which is difficult
if we don’t know the exact form of the joint distribution (which we often do not) or if the joint



104 CHAPTER 8. GRAPHICAL MODELS

Figure 8.8: Notice we have to sample these in topological order: A, D, B, E, C.

distribution is hard to sample from directly.

The technique of sampling from distributions in the order indicated by their DGM is known as
ancestral sampling, and it is a major benefit of generative models.

Definition 8.2.2 (Ancestral Sampling): Ancestral sampling is a technique used to generate
data from an arbitrary DGM. It works by sampling from the random variables in topological order,
meaning that we first sample from all random variables without any dependence, then from the
random variables that depend on those intially sampled random variables, and so on until all the
random variables have been sampled. This is demonstrated in Figure 8.8.

8.2.3 Generative Modeling vs. Discriminative Modeling

In the previous section, we described generative modeling. You may have wondered if there was
any other type of modeling possible, if not the model that describes how data comes into existence.
There is another type of model known as a discriminative model, and we have already seen several
examples of them.

A discriminitive model skips the step of describing how data was generated (i.e. it doesn’t
model the joint p(Z, Y )), and instead it cuts right to our predictive objective (i.e. it models the
conditional p(Y |Z)). For example, if we wish to predict what value a response variable will take
on, we can consider the input data points to be parameters without an underlying distribution, and
then our model is simply tasked with predicting the response variable based on those parameters.
This is in contrast to a generative model, which would model how all the various data points came
into existence by assigning a distribution to each of them.

Discriminative modeling is exactly what we did with linear and logistic regression, and it’s
commonly what we do with SVMs and neural networks as well. Let’s consider the DGM describing
linear regression again, from Figure 8.1. Notice that the data points xn are not random variables
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Figure 8.9: Linear regression DGM, modeling xn as a random variable.

but merely parameters of the DGM. If we wanted a generative model, we would instead have a
DGM that looks that of Figure 8.9.

The difference between these model setups is significant. The generative model for linear re-
gression would allow us to generate new data points, but it is also significantly more complex to
handle because now instead of having just a single response variable to predict, we also have to
contend with how we model the generation of the data points xn. This may be difficult on both
conceptual and computational levels. This doesn’t mean we’ll never try to do this, but if our goal
is simply to make predictions about the response variable yn, it may be overkill to use a generative
model.

In essence, the distinction between generative and discriminative models comes down to whether
or not the model tries to describe how the data is realized or if the model simply tries to perform
a specific inference task without modeling the entirety of the data generating process. Neither one
is better, they are just different techniques that will apply differently depending on your modeling
and inferential needs.

8.2.4 Understanding Complexity

We’ve already motivated one of the primary uses of DGMs as being the ability to convert a joint
distribution into a factorization. At the heart of that task was recognizing and exploiting indepen-
dence properties in a model over multiple random variables. Another benefit of this process is that
it allows us to easily reason about the size (also called ‘complexity’) of a joint factorization over
discrete random variables. In other words, it allows us to determine how many parameters we will
have to learn to describe the factorization for a given DGM.

Let’s consider an example to make this concept clear. Let’s say we have four categorical random
variables A, B, C, D which take on 2, 4, 8, and 16 values respectively. If we were to assume full
dependence between each of these random variables, then a joint distribution table over all of
these random variables would require (2 ∗ 4 ∗ 8 ∗ 16) − 1 total parameters (where each parameter
corresponds to the probability of a specific permutation of the values A, B, C, D).
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Figure 8.10: Conditioned on A, we have that B, C, and D are independent.

Figure 8.11: The three random variable relationships that will tell us about independence relation-
ships.

? Notice that the number of parameters we need is (2 ∗ 4 ∗ 8 ∗ 16)− 1 and not (2 ∗ 4 ∗ 8 ∗ 16). This is simply because
if we know the first (2 ∗ 4 ∗ 8 ∗ 16)− 1 parameters, we can calculate the value of the final one exactly.

However, if we knew that some of these random variables were conditionally independent, then
the number of parameters would change. For example, consider the joint distribution given by
p(A,B,C,D) = p(A)p(B|A)p(C|A)p(D|A). This would imply that conditioned on A, each of
B,C,D were conditionally independent. This can also be shown by the DGM in Figure 8.10.

In this case, a table of parameters to describe this joint distribution would only require 2∗ ((4−
1) + (8− 1) + (16− 1)) parameters, which is significantly less.

This leads to the natural conclusion that the more conditional independence we can identify
in a given model, the easier it becomes from a modeling and computational perspective. This is
another major benefit of DGMs: it’s possible to visually reason about the independence properties
of a given model. We turn to how this works next.

8.2.5 Independence and D-Separation

We can use the form of a graphical model directly to determine which variables are independent
under specific observation assumptions. We have three base cases for the relationship between
variables from which we can reason about the structure in any arbitrarily complex model. The
three cases look like what’s found in Figure 8.11. For each of these cases, there is a notion of
information either flowing from one random variable to the other or being ‘blocked’ (implying
independence) by an observation. Specifically, case 1 and case 2 have information between nodes A
and C ‘blocked’ by observing node B, and case 3 has information between nodes A and C ‘blocked’
by not observing node B.

Let’s consider each of these cases more carefully, and gain a better notion of what it means
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Figure 8.12: First structure, unobserved.

Figure 8.13: First structure, observed.

for observations to cause information to be blocked. This will lead naturally to an understanding
of independence assumptions between random variables. Considering the first example random
variable structure, shown in Figure 8.12.

We can factorize this as follows:

p(A,B,C) = p(B)p(A|B)p(C|B)

We know that for this case, A and C are not independent (note that we have not observed B).
Therefore, we say that information flows from A to C. However, once we’ve observed B, we have
that A and B are conditionally independent, shown in Figure 8.13.

We now say that the flow of information from A to C is ‘blocked’ by the observation of B. Thus
they are conditionally independent. Intuitively, if we observe A but not B, then we have some
information about what B might be and therefore also what C might be. The same applies in the
other direction: observing C but not B.

Moving on to the second random variable structure, shown in Figure 8.14, we again consider
the unobserved case first.

This allows us to write the joint distribution as:

p(A,B,C) = p(A)p(B|A)p(C|B)

We have that for this case, A and C are not independent if we have not observed C. Information
is flowing from A to B through C. However, once we’ve observed B, then we have that A and C are
again conditionally independent, shown in Figure 8.15.
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Figure 8.14: Second structure, unobserved.

Figure 8.15: Second structure, observed.

We again say that the flow of information from A to C is ‘blocked’ by the observation of B.
Intuitively, if we observed A but not B, we have some information about what B might be and
therefore what C might be as well. The same applies in the other direction: observing C but not
B.

Notice that these first two cases behave in the same manner: observing a random variable
in between two other random variable ‘blocks’ information from flowing between the two outer
random variables. In the third and final case the opposite is true. Not observing data in this case
will ‘block’ information, and we will explain this shift through an idea known as ‘explaining away’.

We have the third and final random variable structure, shown in Figure 8.16. We consider the
unobserved case first.

In this setup, we say that information from A to C is being ‘blocked’ by the unobserved variable

Figure 8.16: Third structure, unobserved.
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Figure 8.17: Third structure, observed.

B. Thus A and C are currently conditionally independent. However, once we’ve observed B, as
shown in Figure 8.17, the information flow changes.

Now, information is flowing between A and C through the observed variable B, and thus A
and C are now conditionally independent. This phenomenon, where the observation of the random
variable in the middle creates conditional dependence is known as explaining away. The idea relies
on the fact that now that we know the value for B, we have some idea of how much A or C may
have contributed to B adopting that value. An example might make this phenomenon more clear.

Let’s consider that the random variable A corresponds to whether or not it rained on a certain
day, the random variable B corresponds to the lawn being wet, and the random variable C corre-
sponds to the sprinkler being on. Let’s say we observe B: the lawn is wet. Let’s say we then observe
variable A: it has not rained today. Intuitively, we would now assume that variable C would have
the value that the sprinkler has been on, because that’s the only way for the lawn to be wet. This is
exactly the phenomenon of explaining away. Observing B unblocks the flow of information between
A and C because we can now use an observation to ‘explain’ how B got its value, and therefore
determine what the other unobserved value might have been.

Notice that we’ve only described three simple cases relating dependence relationships between
random variables in a DGM, but with just these three cases, we can determine the dependence
structure of any arbitrarily complicated DGM. We just have to consider how information flows
from node to node. If information gets ‘blocked’ at any point in our DGM network because of an
observation (or lack thereof), then we gain some knowledge about independence within our model.

Consider the dependence between random variables A and F in Figure 8.18. Initially, before any
observations are made, we can see that A and F are dependent (information flows from A through
B). However, after observing B, A and F become independent (because information blocked at both
the observed B and unobserved D). Finally, after observing D, A and F are once again dependent.
Now we have information that flows from A through D.

? In some other resources, you’ll come upon the idea of ‘D-separation’ or ‘D-connection’. D-separation is simply
applying the principles outlined above to determine if two nodes are independent, or D-separated. On the other
hand, two-nodes that are D-connected are dependent on one another.
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Figure 8.18: Notice how the independence between A and F depends on observations made within
the network.

Figure 8.19: DGM for Naive Bayes problem setup.

8.3 Example: Naive Bayes

Recall from the chapter on classification the Naive Bayes model. As a quick recap, Naive Bayes
makes the assumption that for a single observation coming from a specific class (for example, our
classes could be different dog breeds), the data associated with that observation are independent
(for example, the data could be fur color, snout length, weight, etc.).

We can set up the Naive Bayes problem specification using the DGM form, as we see in Figure
8.19.

Even if we hadn’t heard of Naive Bayes before, we would understand this model and the
implications of the model, simply by an examination of the DGM that describes it. We can
directly read off the factorization described above that is the whole point of Naive Bayes:

p(yn, xn1, ..., xnJ) = p(yn)p(xn1|yn) · · · p(xnJ |yn)

Writing this factorization is facilitated directly by our DGM, even if we’ve never heard of Naive
Bayes before. It provides a common language for us to move fluidly between detailed probability
factorizations and general modeling intuition.
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8.4 Conclusion

Directed graphical models are indispensible for model visualization and effective communication of
modeling ideas. With an understanding of what DGMs are meant to represent, it’s much easier
to dig into more complex probabilistic models. In a lot of ways, this chapter is preparation for
where we head next. The topics of the following chapters will rely heavily on DGMs to explain
their structure, use cases, and interesting variants.



Chapter 9

Mixture Models

The real world often generates observable data that falls into a combination of unseen categories.
For example, at a specific moment in time I could record sound waves on a busy street that come
from a combination of cars, pedestrians, and animals. If I were to try to model my data points, it
would be helpful if I could group them by source, even though I didn’t observe where each sound
wave came from individually.

In this chapter we explore what are known as mixture models. Their purpose is to handle data
generated by a combination of unobserved categories. We would like to discover the properties of
these individual categories and determine how they mix together to produce the data we observe.
We consider the statistical ideas underpinning mixture models, as well as how they can be used in
practice.

9.1 Motivation

Mixture models are used to model data involving latent variables.

Definition 9.1.1 (Latent Variable): A latent variable is a piece of data that is not observed,
but that influences the observed data. We often wish to create models that capture the behavior
of our latent variables.

We are sometimes unable to observe all the data present in a given system. For example,
if we measure the snout length of different animals but only get to see the snout measurements
themselves, the latent variable would be the type of animal we are measuring for each data point.
For most data generating processes, we will only have access to a portion of the data and the rest
will be hidden from us. However, if we can find some way to also model the latent variables, our
model will potentially be much richer, and we will also be able to probe it with more interesting
questions. To build some intuition about latent variable models, we present a simple directed
graphical model with a latent variable zn in Figure 9.1.

One common means of modeling data involving latent variables, and the topic of this chapter,
is known as a mixture model.

Definition 9.1.2 (Mixture Model): A mixture model captures the behavior of data coming from
a combination of different distributions.

At a high level, a mixture model operates under the assumption that our data is generated by
first sampling a discrete class, and then sampling a data point from within that category according

112
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Figure 9.1: Directed graphical model with a latent variable z.

to the distribution for that category. For the example of animal snouts, we would first sample a
species of animal, and then based on the distribution of snout lengths in that species, we would
sample an observation to get a complete data point.

Probabilistically, sampling a class (which is our latent variable, since we don’t actually observe
it) happens according to a Categorical distribution, and we typically refer to the latent variable as
z. Thus:

p(z = Ck;θ) = θk

where Ck is class k, and θ is the parameter to the Categorical distribution that specifies the
probability of drawing each class. Then, once we have a class, we have a distribution for the
observed data point coming from that class:

p(x|z = Ck; w)

? The distribution given by p(x|z = Ck; w) is known as the class-conditional distribution.

This distribution depends on the type of data we are observing, and is parameterized by an
arbitrary parameter w whose form depends on what is chosen as the class-conditional distribution.
For the case of snout lengths, and many other examples, this conditional distribution is often
modeled using a Gaussian distribution, in which case our model is known as a Gaussian Mixture
Model. We will discuss Gaussian Mixture Models in more detail later in the chapter.

If we can effectively model the distribution of our observed data points and the latent variables
responsible for producing the data, we will be able to ask interesting questions of our model. For
example, upon observing a new data point x′ we will be able to produce a probability that it came
from a specific class z′ = Ck using Bayes’ rule and our model parameters:

p(z′ = Ck|x′) =
p(x′|z′ = Ck; w)p(z′ = Ck;θ)∑
k′ p(x

′|z′ = Ck′ ; w)p(z′ = Ck′ ;θ)
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Furthermore, after modeling the generative process, we will be able to generate new data points by
sampling from our categorical class distribution, and then from the class-conditional distribution
for that category:

z ∼ Cat(θ)

x ∼ p(x|z = Ck; w)

Finally, it will also be possible for us to get a sense of the cardinality of z (meaning the number of
classes our data falls into), even if that was not something we were aware of a priori.

ML Framework Cube: Mixture Models

While the classes of data z in a mixture model will typically be discrete, the observed data x can
be either discrete or continuous. Notice also that this is an unsupervised technique: while we have
a data set X of observations, our goal is not to make predictions. Rather, we are trying to model
the generative process of this data by accounting for the latent variables that generated the data
points. Finally, this is a probabilistic model both for the latent variables and for our observed data.

Domain Training Probabilistic

Continuous/Discrete Unsupervised Yes

9.2 Applications

Since much of the data we observe in our world has some sort of unobserved category associated
with it, there are a wide variety of applications for mixture models. Here are just a few:

1. Handwriting image recognition. The categories are given by the characters (letters, numbers,
etc.) and the class-conditional is a distribution over what each of those characters might look
like.

2. Noise classification. The categories are given by the source of a noise (e.g. we could have
different animal noises), and the class-conditional is a distribution over what the sound waves
for each animal noise look like.

3. Vehicle prices. The categories are given by the brand of vehicle (we could alternatively
categorize by size, safety, year, etc.), and the class-conditional is a distribution over the price
of each brand.

9.3 Fitting a Model

We’ve defined the general form of a mixture model: we have a distribution p(z;θ) over our classes
and a distribution p(x|z = Ck; w) as our class-conditional distribution. A natural approach would
be to compute the maximum likelihood values for our parameters θ and w. Let’s consider how me
might go about this for a mixture model.

9.3.1 Maximum Likelihood for Mixture Models

Our goal is to maximize the likelihood of our observed data. Because we don’t actually observe the
latent variables zn which determine the class of each observed data point xn, we can simply sum
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over the possible classes for each of our N data points as follows:

p(X;θ,w) =
N∏
n=1

K∑
k=1

p(xn, zn,k;θ,w)

Taking the logarithm to get our log-likelihood as usual:

log p(X;θ,w) =

N∑
n=1

log

[ K∑
k=1

p(xn, zn,k;θ,w)

]
(9.1)

It may not be immediately obvious, but under this setup, the maximum likelihood calculation for
our parameters θ,w is now intractable. The summation over the K classes of our latent variable zn,
which is required because we don’t actually observe those classes, is inside of the logarithm, which
prevents us from arriving at a closed form solution (it may be helpful to try to solve this yourself,
you’ll realize that consolidating a summation inside of a logarithm is not possible). The rest of this
chapter will deal with how we can optimize our mixture model in the face of this challenge.

9.3.2 Complete-Data Log Likelihood

We have a problem with computing the MLE for our model parameters. If we only knew which
classes our data points came from, we would be able to calculate log p(x, z) with relative ease
because we would no longer require a summation inside the logarithm:

log p(X,Z) =
N∑
n=1

log p(xn, zn;θ,w) (9.2)

=
N∑
n=1

log[p(xn|zn = Ck; w)p(zn = Ck;θ)] (9.3)

=
N∑
n=1

log p(xn|zn = Ck; w) + log p(zn = Ck;θ) (9.4)

(9.5)

Notice that because we’ve now observed zn, we don’t have to marginalize over its possible values.
This motivates an interesting approach that takes advantage of our ability to work with p(x, z) if
we only knew z.

The expression p(x, z) is known as the complete-data because it assumes that we have both our
observation x and the classs z that x came from. Our ability to efficiently calculate the complete-
data log likelihood log p(x, z) is the crucial piece of the algorithm we will present to optimize our
mixture model parameters. This algorithm is known as Expectation-Maximization, or EM for
short.

9.4 Expectation-Maximization (EM)

The motivation for the EM algorithm, as presented in the previous section, is that we do not have
a closed form optimization for our mixture model parameters due to the summation inside of the
logarithm. This summation was required because we didn’t observe a crucial piece of data, the
class z, and therefore we had to sum over its values.
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EM uses an iterative approach to optimize our model parameters. It proposes a value for z using
an expectation calculation, and then based on that proposed value, it maximizes our complete-data
log likelihood with respect to the model parameters θ and w via a standard MLE procedure.

Notice that EM is composed of two distinct steps: taking an expectation over our latent class
variables and performing a maximization over our model parameters. These two steps (expectation
and maximization) obviously give the algorithm its name, but more generally, this type of approach
is also referred to as coordinate ascent. The idea behind coordinate ascent is that we can replace
a hard problem (maximizing the log likelihood for our mixture model directly) with two easier
problems (taking an expectation over our latent variables and maximizing our model parameters
based on the complete-data, which relies on the current setting of our latent variables). We alternate
between the two easier problems, executing each of them until we reach a point of convergence or
decide that we’ve done enough.

We’ll walk through the details of each of these two steps and then tie them together with the
complete algorithm.

? K-Means, an algorithm we discussed in the context of clustering, is also a form of coordinate ascent. K-Means is
a maximization-maximization algorithm because we iteratively maximize our assignments (by assigning each data
point to just a single cluster) and then update our cluster centers to maximize their likelihood with respect to the
new assignments.

9.4.1 Expectation Step

The purpose of the expectation step (sometimes just referred to as the ‘E-step’) in the EM algorithm
is to set the most likely values for our latent variables zn. In an ideal world, we would know what
these classes are, and if we did, we could simply optimize our complete-data log likelihood directly
as we’ve seen above. However, since we don’t get to observe these values, one way we can get
around this is just to compute the expectation of the latent variables. Let’s consider what this
looks like with a concrete example.

Let’s say our data points xn can come from one of three classes. Then, we can represent the
latent variable zn associated with each data point using a one-hot encoded vector. For example, if
zn came from class C1, we would denote this:

zn =

1
0
0


As we’ve already explained, we don’t know the true value of this latent variable. Instead, we will
compute its conditional expectation based on the current setting of our model parameters and our
observed data xn. We denote the expectation of our latent variables as qn, and we calculate them
as follows:

qn = E[zn|xn] =

p(zn = C1|xn;θ,w)
p(zn = C2|xn;θ,w)
p(zn = C3|xn;θ,w)


∝

p(xn|zn = C1; w)p(zn = C1;θ)
p(xn|zn = C2; w)p(zn = C2;θ)
p(xn|zn = C3; w)p(zn = C3;θ)
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Notice that we can switch from proportionality in our qn values to actually probabilities by simply
taking a softmax over the unnormalized values. Then, our qn values will look something like the
following, where a larger number indicates a stronger belief that the data point xn came from that
class:

qn =

0.8
0.1
0.1


There are two important things to note about the expectation step. First, the model parameters θ
and w are held fixed. We’re computing the expectation of our latent variables based on the current
setting of those model parameters. Those parameters are randomly initialized if this is our first
time running the expectation step.

Second, notice that we have a value of qn for every data point xn in our data set. As a result,
qn are sometimes called local parameters, since there is one assigned to each data point. This is
in contrast to our model parameters θ and w, which are considered global parameters. The size of
the global model parameters doesn’t fluctuate based on the size of our data set.

After performing the E-step, we now have an expectation for our latent variables, given by qn.
In the maximization step, which we describe next, we use these qn values to optimize our model
parameters.

9.4.2 Maximization Step

After the expectation step, we have a qn ∈ RK associated with each data point xn, which de-
scribes our belief that the data point came from each class Ck. Now that we have these expected
‘class assignments’, it’s possible for us to maximize the data likelihood with respect to our model
parameters θ and w.

Recall that optimizing our parameters using the complete-data log likelihood is tractable be-
cause we avoid summing over the classes inside of the logarithm. Although we do not have the
actual complete-data (we don’t know the true zn values), we have an estimation of the complete-
data through our qn values! We use these values of qn to make the optimization of our model
parameters tractable.

Notice that our qn values are ‘soft’ assignments - meaning that unlike the zn values, which are
one-hot encodings of assignments to a class, the qn values have a probability that a data point xn
came from each class. Fortunately, this does not affect our maximization, which starts with out
complete-data log likelihood:

log p(X,Z) =

N∑
n=1

log p(xn|zn = Ck; w) + log p(zn = Ck;θ)

Applying the expectation with respect to zn|xn, which will require the qn computed in the expec-
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tation step:

Ezn|xn
[log p(X,Z)] = Ezn|xn

[ N∑
n=1

log p(xn|zn = Ck; w) + log p(zn = Ck;θ)

]
(9.6)

=
N∑
n=1

Ezn|xn

[
log p(xn|zn = Ck; w) + log p(zn = Ck;θ)

]
(9.7)

=
N∑
n=1

K∑
k=1

p(zn = Ck|xn)
(

log p(xn|zn = Ck;w) + log p(zn = Ck;θ)
)

(9.8)

=

N∑
n=1

K∑
k=1

qn,k
(

log p(xn|zn = Ck; w) + log p(zn = Ck;θ)
)

(9.9)

(9.10)

Notice the crucial difference between this summation and that of Equation 9.1: the summation
over the classes is now outside of the logarithm! Recall that using the log-likelihood directly was
intractable precisely because the summation over the classes was inside of the logarithm. This
maximization became possible by taking the expectation over our latent variables (using the values
we computed in the E-step), which moved the summation over the classes outside of the logarithm.

We can now complete the M-step by maximizing the tractable Equation 9.6 with respect to
our model parameters θ and w. We simply take the derivative with respect to the parameter of
interest, set to 0, solve, and update the parameter with the result.

9.4.3 Full EM Algorithm

Now that we have a grasp on the purpose of the EM algorithm, as well as an understanding of
the expectation and maximization steps individually, we are ready to put everything together to
describe the entire EM algorithm.

1. Begin by initializing our model parameters w and θ, which we can do at random. Since
the EM algorithm is performed over a number of iterative steps, we will denote these initial
parameter values w(0) and θ(0). We will increment those values as the algorithm proceeds.

2. E-step: compute the values of qn based on the current setting of our model parameters.

qn = E[zn|xn] =

 p(zn = C1|xn;θ(i),w(i))
...

p(zn = CK |xn;θ(i),w(i))

 ∝
 p(xn|zn = C1; w

(i))p(zn = C1;θ
(i))

...

p(xn|zn = CK ; w(i))p(zn = CK ;θ(i))



3. M-step: compute the values of w and θ that maximize our expected complete-data log like-
lihood for the current setting of the values of qn.

w(i+1),θ(i+1) = arg max
w,θ

Eqn
[log p(X,Z; w,θ)]

4. Return to step 2, repeating this cycle until our likelihood converges. Note that the likelihood
is guaranteed to increase at each step using this procedure.
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9.4.4 Connection to K-Means Clustering

At this point, it’s worth considering the similarity between the EM algorithm and another coordi-
nate ascent algorithm that we considered in the context of clustering: K-Means.

Recall that K-Means proceeds according to a similar iterative algorithm: we first make hard
assignments of data points to existing cluster centers, and then we update the cluster centers based
on the most recent data point assignments.

In fact, the main differences between K-Means clustering and the EM algorithm are that:

1. In the EM setting, we make soft cluster assignments through our qn values, rather than
definitively assigning each data point to only one cluster.

2. The EM algorithm is able to take advantage of arbitrary probability distributions to cap-
ture the behavior of the observed data, whereas K-Means clustering relies only on distance
measurements to make assignments and update cluster centers.

In summary, K-Means is simply a restricted form of the EM algorithm.

9.4.5 Dice Example: Mixture of Multinomials

Consider the following example scenario: we have two biased dice (with 6 faces) and one biased
coin (with 2 sides). Data is generated as follows: first, the biased coin is flipped. If it lands heads,
Dice 1 is rolled. If it lands tails, Dice 2 is rolled. We record the result of the dice roll, but that is
our only observation. For example, our observations may look like:

1, 5, 3, 4, 2, 2, 3, 1, 6

We’re going to try to infer the parameters of each of the dice based on these observation.

Let’s consider how this scenario fits into our idea of a mixture model. First, the latent variable
zn has a natural interpretation as being which dice was rolled for the nth observed data point xn.
We can represent zn using a one-hot vector, so that if the nth data point came from Dice 1, we’d
denote that:

zn =

[
1
0

]

Unsurprisingly, we denote the probability vector associated with the biased coin as θ ∈ R2, with
θ1 being the probability of the biased coin landing heads and θ2 being the probability of the biased
coin landing tails. Furthermore, we need parameters to describe the behavior of our biased dice.
We can use π1,π2 ∈ R6, where each 6-dimensional parameter vector describes the probability that
each dice lands on that face. Notice that we now have our model parameters w = {θ,π1,π2}. Now
that we have our model parameters and an understanding of how this problem fits into the mixture
model paradigm, we can optimize our model parameters using the EM algorithm. We start by
initializing our parameters w(0). Next, we need to compute our qn values (the expectation step).
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Recall that the formula for this is given by:

qn =

[
p(zn = C1|xn;θ(i),w(i))

p(zn = C2|xn;θ(i),w(i))

]
(9.11)

∝
[
p(xn|zn = C1; w

(i))p(zn = C1;θ
(i))

p(xn|zn = C2; w
(i))p(zn = C2;θ

(i))

]
(9.12)

∝
[
(π11)

xn,1(π12)
xn,2(π13)

xn,3(π14)
xn,4(π15)

xn,5(π16)
xn,6θ1

(π21)
xn,1(π22)

xn,2(π23)
xn,3(π24)

xn,4(π25)
xn,5(π26)

xn,6θ2

]
(9.13)

(9.14)

where xn,1, ..., xn,6 denotes what was rolled for the data point xn. After computing the values of
qn, we are ready to perform the maximization step for our model parameters. Recall that we are
maximizing the expected complete-data log likelihood, which takes the form:

Eqn
[log p(X,Z)] = Eqn

[ N∑
n=1

log p(zn) + log p(xn|zn)

]
(9.15)

=

N∑
n=1

Eqn

[
log p(zn) + log p(xn|zn)

]
(9.16)

=

N∑
n=1

2∑
k=1

qn,k

(
log θk +

6∑
j=1

xn,j log πk,j

)
(9.17)

(9.18)

Note that to maximize the expected complete-data log likelihood, it’s necessary to introduce La-
grange multipliers to enforce the constraints

∑
k θk = 1 and

∑
j πk,j = 1. After doing this, we

recover the following update equations for our model parameters:

θ
(i)
k ←

∑N
n=1 qn,k
N

π
(i)
k ←

∑N
n=1 qn,kxn∑N

n=1

∑6
j=1 qn,kxn,j

We now have everything we need to perform EM for this setup. After initializing our parameters
w(0), we perform the E-step by evaluating 9.11. After calculating our values of qn in the E-step, we
update our parameters w = {θ,π1,π2} in the M-step by maximizing 9.15 with respect to θ,π1,π2.
We perform these two steps iteratively, until convergence of our parameters.

9.5 Gaussian Mixture Models (GMM)

Our previous example was a simple but somewhat restricted application of the EM algorithm to
solving a latent variable problem. We now turn to a more practical example, used widely in different
contexts, called a Gaussian Mixture Model (GMM). As you might expect, a GMM consists of a
combination of multiple Gaussian distributions. Among other things, it is useful for modeling
scenarios where the observed data is continuous.
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Let’s go over a more rigorous formulation of the GMM setup. First, we have observed continous
data xn ∈ Rm and latent variables zn which indicate which Gaussian ‘cluster’ our observed data
point was drawn from. In other words:

p(xn|zn = Ck) = N (xn;µk,Σk)

where µk,Σk are the mean and covariance parameters respectively for the kth cluster center.

The data generation process works as follows: we first sample a cluster center from a Categorical
distribution parameterized by θ ∈ RK . Then, based on the sampled cluster center, we sample a
data point xn ∈ Rm, which is the only piece of data that we actually observe. As usual for a mixture
model, it is our goal to use the observed data to determine the cluster means and covariances, as
well as the parameters of the Categorical distribution that selects the cluster centers.

Fortunately, this problem setup is perfectly suited for EM. We can apply the same machinery
we’ve discussed throughout the chapter and used in the previous example.

1. First, we randomly initialize our parameters θ, {µk,Σk}Kk=1.

2. [E-Step] Calculate the posterior distribution over zn given by qn:

qn = E[zn|xn] =

 p(zn = C1|xn; θ1,µ1,Σ1)
...

p(zn = CK |xn; θK ,µK ,ΣK)


∝

 θ1N (xn;µ1,Σ1)
...

θKN (xn;µK ,ΣK)



This is the current expectation for our latent variables zn given our data xn and the current
setting of our model parameters θ, {µk,Σk}Kk=1.

3. [M-Step] Using our values of qn, calculate the expected complete-data log likelihood, and
then use that term to optimize our model parameters:

Eqn
[log p(X,Z)] = Eqn

[ N∑
n=1

ln(p(xn, zn;θ, {µk,Σk}Kk=1))

]

=
N∑
n=1

K∑
k=1

qn,k ln θk + qn,k lnN (xn;µk,Σk)

We can then use this expected complete-data log likelihood to optimize our model parameters
θ, {µk,Σk}Kk=1 by computing the MLE as usual. Using a Lagrange multiplier to enforce
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∑K
k=1 θk = 1, we recover the update equations:

θ
(i+1)
k ←

∑N
n=1 qn,k
N

µ
(i+1)
k ←

∑N
n=1 qn,kxn∑N
n=1 qn,k

Σ
(i+1)
k ←

∑N
n=1 qn,k(xn − µ

(i+1)
k )(xn − µ(i+1)

k )T∑N
n=1 qn,k

4. Return to step 2. Repeat until convergence.

Finally, it’s worth comparing EM and K-Means clustering as applied to GMMs. First, as dis-
cussed previously, EM uses soft assignments of data points to clusters rather than hard assignments.
Second, the standard K-Means algorithm does not estimate the covariance of each cluster. How-
ever, if we enforce as a part of our GMM setup that the covariance matrices of all the clusters are
given by εI, then as ε→ 0, EM and K-Means will in fact produce the same results.

9.6 Admixture Models: Latent Dirichlet Allocation (LDA)

With a grasp on mixture models, it is not too difficult to understand admixture models. In a
sentence: an admixture model is a mixture of mixture models. Latent Dirichlet Allocation (LDA)
is a common form of admixture models, and it is sometimes also referred to as topic modeling, for
reasons that will become apparent shortly. Describing LDA using an example will hopefully make
the idea of an admixture model more concrete.

9.6.1 LDA for Topic Modeling

Consider the following data generating process for a set of text documents. We have a Dirichlet
distribution θ ∼ Dir(α) over the possible topics a document can take on.

? If you haven’t seen the Dirichlet before, it is a distribution over an n-dimensional vector whose components sum to
1. For example, a sample from a dirichlet distribution in 3-dimensions could produce a sample that is the vector0.2

0.5
0.3


.

We sample from that Dirichlet distribution to determine the mixture of topics θn in our docu-
ment Dn:

θn ∼ Dir(α)

Then, for each possible topic, we sample from a Dirichlet distribution to determine the mixture of
words φk in that topic:

φk ∼ Dir(β)
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Then, for each word wn,j in the document Dn, we first sample from a Categorical parameterized
by the topic mixture θn to determine which topic that word will come from:

zn,j ∼ Cat(θn)

Then, now that we have a topic given by zn,j for this word wn,j , we sample from a Categorical
parameterized by that topic’s mixture over words given by φzn,j

:

wn,j ∼ Cat(φzn,j
)

Notice the mixture of mixtures at play here: we have a mixture model over the topics to produce
each document in our corpus, and then for every word in a given document, we have a mixture
over the topics to generate each individual word.

The indexing is particularly confusing because there are several layers of mixtures here, but to
clarify: n ∈ 1..N indexes each document Dn in our corpus, k ∈ 1..K indexes each possible topic,
and j ∈ 1..J indexes each word wn,j in document Dn, and e ∈ 1..E indexes each word in our
dictionary (note that wn,j ∈ RE).

θn specifies the distribution over topics in document Dn, and α is the hyperparameter for the
distribution that produces θn. Similarly, φk specifies the distribution over words for the kth topic,
and β is the hyperparameter for the distribution that produces φk.

9.6.2 Applying EM to LDA

Now that the problem setup and notation are taken care of, let’s consider how we can apply EM
to optimize the parameters θn (the mixture over topics in a document) and φk (the mixture over
words for a topic). Note that we can simplify the problem slightly by considering θn and φk to be
deterministic parameters for optimization (rather than random variables parameterized by α and
β). Then, EM proceeds as follows:

1. First, we randomly initialize our parameters {θn}Nn=1, {φk}Kk=1.

2. [E-Step] Fix the topic distribution of the document given by θn and the word distribution
under a topic given by φk. Calculate the posterior distribution qn,j = p(zn,j |wn,j), and note
that this is the distribution over the possible topics of a word:

qn,j = E[zn,j |wn,j ] =

 p(zn,j = C1|wn,j ;θn,φ1)
...

p(zn,j = CK |wn,j ;θn,φK)


∝

 p(wn,j |zn,j = C1;φ1)p(zn,j = C1;θn)
...

p(wn,j |zn,j = CK ;φK)p(zn,j = CK ;θn)


=

 φ1,wn,j · θn,1
...

φK,wn,j · θn,K
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3. [M-Step] Using our values of qn, calculate the expected complete-data log likelihood (which
marginalizes over the unknown hidden variables zn,j), and then use that expression to optimize
our model parameters θn and φk:

Eqn
[log p(W,Z)] = Eqn

[ N∑
n=1

J∑
j=1

ln(p(wn,j , zn,j ; {θn}Nn=1, {φk}Kk=1

]

=

N∑
n=1

J∑
j=1

K∑
k=1

qn,j,k ln θn,k + qn,j,k lnφk,wn,j

We can then use this expected complete-data log likelihood to optimize our model parameters
{θn}Nn=1, {φk}Kk=1 by computing the MLE as usual. Using Lagrange multipliers to enforce

∀n
∑K

k=1 θn,k = 1 and ∀k
∑E

e=1 φk,e = 1 (where e indexes each word in our dictionary), we
recover the update equations:

θ
(i+1)
n,k ←

∑J
j=1 qn,j,k

J

φ
(i+1)
k,d ←

∑N
n=1

∑J
j=1 qn,j,kwn,j,d∑N

n=1

∑J
j=1 qn,j,k

4. Return to step 2. Repeat until convergence.

The largest headache for applying the EM algorithm to LDA is keeping all of the indices in
order, and this is the result of working with a mixture of mixtures. Once the bookkeeping is sorted
out, the actual updates are straightforward.

9.7 Conclusion

Mixture models are one common way of handling data that we believe is generated through a
combination of unobserved, latent variables. We’ve seen that training these models directly is
intractable (due to the marginalization over the latent variables), and so we turned to a coordinate
ascent based algorithm known as Expectation-Maximization to get around this difficulty. We then
explored a couple of common mixture models, including a multinomial mixture, Gaussian Mixture
Model, and an admixture model known as Latent Dirichlet Allocation. Mixture models are a subset
of a broader range of models known as latent variable models, and the examples seen in this chapter
are just a taste of the many different mixture models available to us. Furthermore, EM is just a
single algorithm for optimizing these models. A good grasp on the fundamentals of mixture models
and the EM algorithm will be useful background for expanding to more complicated, expressive
latent variable models.



Chapter 10

Hidden Markov Models

Many of the techniques we’ve considered so far in this book have been motivated by the types of data
we could expect to work with. For example, the supervised learning techniques (forms of regression,
neural networks, support vector machines, etc.) were motivated by the fact that we had labelled
training data. We ventured into clustering to group unlabelled data and discussed dimensionality
reduction to handle overly high-dimensional data. In the previous chapter, we examined techniques
for managing incomplete data with latent variable models. In this chapter we turn to a technique
for handling data indexed by time.

10.1 Motivation

One major type of data we have not yet paid explicit attention to is time series data. Most of the
information we record comes with some sort of a timestamp. For example, any time we take an
action online, there is a high probability that the database storing that data also tracks it with a
timestamp. Physical sensors in the real world always record timestamps because it would be very
difficult to make sense of their information if it is not indexed by time. When we undergo medical
exams, the results are recorded along with a timestamp. It’s almost inconceivable at this point
that we would record information without also keeping track of when that data was generated, or
at the very least when we saved that data.

There are a variety of reasons to treat time as a special type of data. As we’ve already discussed,
it’s a near-universal feature because we so frequently record timestamp information. It’s difficult
to imagine a data set that couldn’t come with timestamps attached to the individual data points.
Time also encodes a lot of information that we take for granted about the physical and digital
worlds. For example, if the sensors on a plane record the position of the plane at a specific point
in time, we would expect the surrounding data points to be relatively similar, or at least move in a
consistent direction. In a more general sense, we expect that time constrains other aspects of the
data it is attached to in specific ways.

Because we know time posseses these unique properties, it follows that we should exploit them
to create more expressive models. In this chapter, we will focus on one such model known as a
Hidden Markov Model or HMM. At a high level, the goal of an HMM is to model the state
of an entity over time, with the caveat that we never actually observe the state itself. Instead,
we observe a data point xt at each time step (often called an ‘emission’) that is some function of
the true state st. For example, we could model the position of a robot over time given a noisy
estimation of the robot’s current position at each time step. Furthermore, we have some belief
about how one state st transitions to the next state st+1. Graphically, an HMM looks like Figure
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Figure 10.1: The directed graphical model for an HMM.

10.1, which encodes the relationships between emissions and hidden states.

We will probe HMMs in more detail over the course of the chapter, but for now let’s consider
their high-level properties.

ML Framework Cube: Hidden Markov Models

First, HMMs handle discrete states, and for the purpose of this text, we will only consider discrete-
valued emissions as well. Second, since an HMM does not have access to the true states even
at training time, it works on an unsupervised basis to approximate the hidden states. Finally,
it’s most common to probabilistically describe both the relationship between hidden states and
observed emissions as well as the transitions between hidden states.

Domain Training Probabilistic

Discrete Unsupervised Yes

? Models that treat continuous state variables are commonly referred to as dynamical systems.

10.2 Applications

Unsurprisingly, there are many applications for models like HMMs that explicitly account for time
and unobserved states, especially those that relate to the physical world.

1. Robot position when movements are non-deterministic and sensor readings are noisy.

2. Speech recognition.

3. Analyzing sequences that occur in the natural world, such as DNA.
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10.3 HMM Data, Model, and Parameterization

As explained above, HMMs model the state of an entity over time given some noisy observations,
as shown in Figure 10.1.

10.3.1 HMM Data

A complete data point for an HMM consists of the sequence of one-hot encoded states s1, ..., sn
as well as the corresponding sequence of observed emissions x1, ...,xn. Each state corresponds to
one of K possible options, meaning st ∈ RK , and each emission corresponds to one of M possible
options meaning xt ∈ RM . Note that we don’t have access to the complete data points, but only
the observed emissions. It’s our goal to infer the hidden states.

? In general the observed emissions don’t have to be discrete, but for the sake of being explicit, we present the discrete
interpretation here.

Note that a single data point consists of a sequence of n emissions x1, ...,xn. A data set is said
to have N data points, meaning N sequences where each sequence is composed of n emissions. To
summarize:

• A data set consists of N sequences.

• Each sequence is composed of n observed emissions x1, ...,xn.

• It’s our goal to infer the hidden states s1, ..., sn for each sequence.

• Each emission xt takes on one of M possible options.

• Each hidden state st take on one of K possible options.

10.3.2 HMM Model Assumptions

One goal of an HMM is to optimize the joint distribution over hidden states and observed emissions
given by:

p(s1, ..., sn,x1, ...,xn) = p(s1, ..., sn)p(x1, ...,xn|s1, ..., sn) (10.1)

It’s not immediately obvious how we should go about optimizing the model for this complex joint
distribution. Fortunately, HMMs make this problem easier via the following assumptions:

1. State st+1 depends only on the previous state st:

p(st+1|s1, ..., st,x1, ...,xt) = p(st+1|st)

This is the Markov Property, and it means that given information at the previous time step,
we can ignore all earlier time steps.

2. At each time step t, the observed emission xt depends only on the current state st.

p(xt|s1, ..., st,x1, ...,xt−1) = p(xt|st)

? The Markovian assumption for transitions, as well as the fact that we don’t observe the true states, gives rise to
the Hidden Markov Model name.
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Notice that these two assumptions allow us to factorize the large joint distribution given by Equation
10.1 as follows:

p(s1, ..., sn)p(x1, ...,xn|s1, ..., sn) = p(s1)
n−1∏
t=1

p(st+1|st)
n∏
t=1

p(xt|st) (10.2)

This factorization will prove important for making HMM training and inference tractable.

10.3.3 HMM Parameterization

Now that we understand the form of the data as well as the modeling assumptions made by
an HMM, we can specify the model parameterization explicitly. Referencing the factorized joint
distribution from Equation 10.2, it’s clear that we will need three distinct sets of parameters.

1. One set of parameters is for the prior over our initial hidden state p(s1). It will be denoted
θ ∈ RK , such that:

p(s1 = k) = θk

2. Another set of parameters is for the transition probabilities between states p(st+1|st). It will
be denoted T ∈ RK×K , such that:

p(st+1 = j|st = i) = Ti,j

where Ti,j is the probability of transitioning from state i to state j.

3. Finally, we have a set of parameters for the conditional probability of the observed emission
given the hidden state, meaning p(xt|st). It will be denoted π ∈ RK×M , such that:

p(xt = m|s = k) = πk,m

A natural interpretation of the parameter matrix π is that each possible state (of which there
are K options) has an M -dimensional vector describing the probability of an emission given
that state.

In sum, we have three sets of parameters θ ∈ RK , T ∈ RK×K , and π ∈ RK×M that we need to
learn from our data set. Then, using this trained model, we will be able to perform several types
of inference over our hidden states, which are detailed down below.

10.4 EM for HMMs and the Forward-Backward Algorithm

Recall the motivation for the Expectation-Maximization algorithm from the previous chapter: we
had parameters we wished to optimize, but the presence of unobserved variables made direct op-
timization of those parameters intractable. We’re faced with a similar problem in the context of
HMMs.

Given a data set of observed emissions {xi}Ni=1 where each data point xi represents the sequence
(xi1, ...,x

i
n), our goal is to estimate the parameters θ,T,π described in the previous section. If we

knew the hidden states, it would be possible for us to write the joint probability p(si,xi) directly,
and maximizing our parameters would be no issue. However, the true states are latent variables, and
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thus we would need to sum over their possible values, which is what makes the direct maximization
of our parameters intractable.

Instead, we will use the Expectation-Maximization algorithm we developed in the previous
chapter. This amounts to computing the expectation over our hidden states in the E-step, and
then based on those fixed expectations, we can update our parameters via a maximization of the
expected complete-data in the M-step. As usual, we perform these operations iteratively until
convergence.

So far, there is no clear departure from the same exact EM algorithm we saw in the last chapter.
However, before we go about detailing the E and M steps, we need to consider something known
as the Forward-Backward Algorithm.

10.4.1 Forward-Backward Algorithm

Let’s consider what would actually be required of us to perform the E-step for the hidden states of
an HMM. To compute the expected value of state st using the full joint distribution given by:

p(s1, ..., sn,x1, ...,xn) = p(s1)
n−1∏
t=1

p(st+1|st)
n∏
t=1

p(xt|st)

would require marginalizing over all the unobserved states other than st as follows:

E[st|s1, ..., st−1, st+1, ..., sn,x1, ...,xn] = p(st|s1, ..., st−1, st+1, ..., sn,x1, ...,xn) =∑
k(1)∈K

...
∑

k(t−1)∈K

∑
k(t+1)∈K

...
∑

k(n)∈K

p(st|s1 = k(1), ..., st−1 = k(t−1), st+1 = k(t+1), ..., sn = k(n),x1, ...,xn)

If we were to do this naively by marginalizing over all states at each time step, it would be
a very expensive and wasteful computation. For example, computing the expected value of the
state at time step 2 would require summing over all possible states for s1, s3, ..., sn. Then, to get
the expected value of the state at time step 3, we would need to sum over all possible states for
s1, s2, s4, ..., sn. Notice that this approach duplicates a lot of work. Rather than performing these
summations over and over again, we can instead memoize (or reuse) these summations using the
Forward-Backward algorithm.

The Forward-Backward algorithm is an example of a message-passing scheme, which means we
compute information once and then pass it around our model in the form of compact, reusable
messages. The goal is to avoid duplicating work, instead using the messages directly. If you’ve
encounted dynamic programming before, the Forward-Backward Algorithm is an example. Ulti-
mately, the purpose of the Foward-Backward algorithm is to make the expectation step over our
HMM more efficient.

This algorithm passes messages, unsurprisingly, forwards and backwards through ‘time’, mean-
ing up and down the chain shown in the graphical model representation given by Figure 10.1. The
forward messages are defined at each state as αt(st), while the backward messages are defined at
each state as βt(st). Let’s define these α and β values explicitly.

The αt’s represent the joint probability of all our observed emissions from time 1, ..., t as well
as the state exactly at time t:

αt(st) = p(x1, ...,xt, st) (10.3)

Graphically, this means that the αt’s are capturing the portion of the DGM shown in Figure 10.2.
Note that Equation 10.3 is an unfactorized joint probability over observed emissions and a

hidden state. We can factorize this joint probability using what we know about the conditional
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Figure 10.2: αt’s capture the joint probability for the boxed portion of this DGM.

independence properties of HMMs as follows:

αt(st) = p(x1, ...,xt, st) (10.4)

= p(xt|st)
∑
st−1

p(st|st−1)p(x1, ...,xt−1, st−1) (10.5)

= p(xt|st)
∑
st−1

p(st|st−1)αt−1(st−1) (10.6)

Pay careful attention to the last line of Equation 10.4. Notice that our expression for αt(st) actually
includes the expression for αt−1(st−1), which is the α from the previous time step. This is significant
because it means we can define our messages recursively. After we’ve computed the α’s at one time
step, instead of having to recompute those values to get the alphas at the next time step, we can
simply pass them forwards along the chain. In other words, we compute the α at state s1, then
pass that message along to compute the α at state s2, on and on until we’ve reached the end of the
chain and have all the α’s in hand.

? These α values will be useful when performing the expectation step during training, as well as for general inference
once we’ve finished training our HMM.

At this point, we’ve now handled the forward messages, which send information from the be-
ginning to the end of the chain. We also need to send information from the end of the chain back
to the beginning, which constitutes the backwards portion of the algorithm. This is where we will
compute our β values.

The βt’s represent the joint probability over all the observed emissions from time t + 1, ..., n
conditioned on the state at time t:

βt(st) = p(xt+1, ...,xn|st) (10.7)

Graphically, this means that the βt’s are capturing the portion of the DGM shown in Figure 10.3.

We can factorize Equation 10.7 in a similar way to how we factorized the distribution described
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Figure 10.3: βt’s capture the joint probability for the boxed portion of this DGM.

by the α’s:

βt(st) = p(xt+1, ...,xn|st) (10.8)

=
∑
st+1

p(st+1|st)p(xt+1, ...,xn|st+1) (10.9)

=
∑
st+1

p(st+1|st)p(xt+1|st+1)p(xt+2, ...,xn|st+1) (10.10)

=
∑
st+1

p(st+1|st)p(xt+1|st+1)βt+1(st+1) (10.11)

Again, as we saw with our calculation of the α’s, we have our β’s defined recursively. Once again,
this means that we can propagate messages efficiently. In this case, we start at the end of the chain,
and compute our β’s for each state by passing messages back toward the front.

To summarize, the Forward-Backward algorithm is an optimization that will boost efficiency
for the EM algorithm as well as for inference over a trained HMM. We calculate the α and β values
as follows:

αt(st) =

{
p(xt|st)

∑
st−1

p(st|st−1)αt−1(st−1) 1 < t ≤ n
p(x1|s1)p(s1) otherwise

βt(st) =

{∑
st+1

p(st+1|st)p(xt+1|st+1)βt+1(st+1) 1 ≤ t < n

1 otherwise

? Notice that the base case for the β’s is 1. This is just a quirk of our indexing, and it ensures we have valid messages
when we pass messages back from the final state sn.

10.4.2 Using α’s and β’s for Training and Inference

Now that we know how to compute these α and β values, we need to consider how we actually use
them for training and inference within our HMM setup. Indeed, it’s not immediately clear how the
distributions defined by the α’s and β’s are useful.

Let’s begin by assuming we randomly initialized our model parameters θ,T,π, and then used
these to compute all the α and β values by passing messages up and down the chain (using the
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recurrences defined at the end of the last section). We now have α and β values defined at every
time step in our HMM. Consider the product of the α and β value at a specific time t:

αt(st)βt(st) = p(x1, ...,xt, st)p(xt+1, ...,xn|st) = p(x1, ...,xn, st)

which is just the joint distribution over all our observed emissions and the state at time t. Using
this as a building block, there are many distributions over the variables in our HMM that we can
evaluate. For example, we might like to evaluate the joint distribution over our observed emissions.

Joint Distribution Over Emissions

p(x1, ...,xn) =
∑
st∈K

αt(st)βt(st) (10.12)

where we can sum over the possible state values at any time step 1, ..., n.
Another useful distribution is that of the state at time t given all the observed emissions.

This has the name smoothing, which in some contexts means updating our beliefs given observed
evidence.

Smoothing

p(st|x1, ...,xn) ∝ p(x1, ...,xt, st) = αt(st)βt(st) (10.13)

Notice that the proportionality of the smoothing operation means we can normalize to recover
probabilities by taking the softmax over the possible values for the state st.

Another common task is predicting the value of the next emission given the previous emissions.

Prediction

p(xn+1|x1, ...,xn) (10.14)

To compute this we can sum over the final state sn as well as the next state sn+1 as follows:

p(xn+1|x1, ...,xn) ∝
∑
sn

∑
sn+1

p(x1, ...,xn, sn)p(sn+1|sn)p(xn+1|sn+1) (10.15)

∝
∑
sn

∑
sn+1

αn(sn)p(sn+1|sn)p(xn+1|sn+1) (10.16)

Again, we recover a proportional result from this operation. We can use the softmax over the
emissions states to normalize.

Finally, we may wish to approximate the transition probabilities between states st and st+1

given all the observed evidence.

Transition

p(st, st+1|x1, ...,xn) ∝ p(x1, ...,xt, st)p(st+1|st)p(xt+1|st+1)p(xt+2, ...,xn|st+1) (10.17)

∝ αt(st)p(st+1|st)p(xt+1|st+1)βt+1(st+1) (10.18)

(10.19)

where we again have proportionality results that can be normalized if necessary.
Now that we understand how exactly α and β values can be used to evaluate different distribu-

tions of interest for an HMM, we can finally turn to using EM to optimize the parameters of our
model.
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10.4.3 E-Step

Recall that the goal of the expectation step is to compute the expected values of the hidden variables
in our model given a fixed set of parameters. Our parameters are θ,T,π. Note that the α and
β values described in the previous section are exact functions of these parameters, so at the start
of the E-step, we should compute them using the efficient Forward-Backward algorithm. It will
become clear why we need the α and β values as we explain the E-step.

Under the HMM setup, our hidden variables are the states s1, ..., sn. Since we have N emission
sequences xi = (xi1, ...,x

i
n) ∀i ∈ N in our data set, we will end up with N expected sequences

over our hidden states:

qi = E[(si1, ..., s
i
n)|(xi1, ...,xin)] ∀i ∈ N

Where qi ∈ Rn×K , corresponding to the expectation of each state at each time step. Let’s consider
qit,k which is the expectation over a single state value k at a single point in time t. We can write
this as:

qit,k = E[sit,k|(xi1, ...,xin)] (10.20)

= p(sit = k|(xi1, ...,xin)) (10.21)

This calculates the probability of a single state given all of our observed emissions for a single data
point. This is exactly the smoothing operation described in the previous section! That is why we
calculated our α and β values at the beginning of the E-step using our fixed parameters, because
we can now easily use the smoothing operation given by Equation 10.13 to compute our qit values.

Ordinarily, we’d be done with the E-step after computing the expectations of our hidden vari-
ables, but under the HMM setup, we need to take one more expectation before moving on to the
M-step. Recall that we have transition probabilities between our hidden states given by the pa-
rameter matrix T. Because these are transitions between latent variables, we also need to compute
the expectation over the joint distribution between pairs of latent variables next to each other in
time, which we will denote Qi

t,t+1 ∈ RK×K . Formally:

Qi
t,t+1 = E[sit, s

i
t+1|(xi1, ...,xin)] (10.22)

Let’s consider Qit,t+1,k,l which is the transition from state k at time step t to state l at time step
t+ 1:

Qit,t+1,k,l = E[sit = k, sit+1 = l|(xi1, ...,xin)] (10.23)

= p(sit = k, sit+1 = l|(xi1, ...,xin)) (10.24)

(10.25)

This is calculating the probability of a specific latent variable transition at a specific time step,
which is exactly the transition operation described in the previous section. We can directly use our
α and β values in the transition operation given by Equation 10.17.

With our qi and Qi values as expectations over the hidden states and hidden joint states
respectively (with the current setting of our parameters fixed), we are ready to move on to the
maximization step.
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10.4.4 M-Step

The M-step mirrors what we saw in the previous chapter. In the E-step we calculated expectations
over our hidden variables, which allows us to set up our expected complete-data log likelihood for
a single data point:

Eq,Q[log p(xi, si;θ,T,π)] = Eq,Q

[
log p(xi|si;π) + log p(si;θ,T)

]
=

n∑
t=1

K∑
k=1

qit,k

M∑
m=1

log πk,xit,m +
K∑
k=1

qik log θk +
n−1∑
t=1

K∑
k=1

K∑
l=1

Qit,t+1,k,l log Tk,l

Applying the appropriate Lagrange multipliers and maximizing with respect to each of the param-
eters of interest, we recover the following update equations:

θk =

∑N
i=1 q

i
1,k

N
(10.26)

Tk,l =

∑N
i=1

∑n−1
t=1 Q

i
t,t+1,k,l∑N

i=1

∑n−1
t=1 q

i
t,k

(10.27)

πk,m =

∑N
i=1

∑n
t=1 q

i
t,kx

i
t,m∑N

i=1

∑n
t=1 q

i
t,k

(10.28)

After updating our parameter matrices θ,T,π, we switch back to the E-step, continuing in this
way until convergence of our parameters.

10.4.5 From HMM Training to Inference

In the preceding sections, we described the process for training an HMM. In doing so, we’ve actually
built up all the machinery needed to perform inference on our trained HMM for free. Specifically,
we’ve described four types of queries we can execute over a trained HMM:

• Joint Estimation

• Prediction

• Smoothing

• Transition

We analyzed these already because we needed them to train the HMM, but once we’ve completed
training, we can use our optimized parameters along with the α and β values that we compute with
the Forward-Backward algorithm to query our HMM.

10.5 Conclusion

The Hidden Markov Model is a type of latent variable model motivated by the combination of
time series and discrete state space data. We relied on the Expectation-Maximization algorithm
described in the previous chapter, and developed the efficient Forward-Backward algorithm to make
both training and inference feasible for HMMs. Many of the ideas developed in this chapter will
offer good intuition for dynamical systems and other time series models.


