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Abstract

Visual Question Answering (VQA) is an innovative test of artificial intelligence that challenges
machines to answer human-generated questions about everyday images. Over the past several years,
steadily ascending scores on VQA benchmarks have generated the impression of swift progress
towards systems capable of human-level reasoning. However, closer inspection of current VQA
datasets and models reveals serious methodological issues lurking behind the façade of progress.
Many popular VQA datasets contain systematic language biases that enable models to cheat by an-
swering questions “blindly” without considering visual context. Meanwhile, the predominant ap-
proach to VQA relies on black-box neural networks that render this kind of cheating hard to detect,
and even harder to prevent.

In light of these issues, this work presents two sets of original research findings addressing the
twin problems of interpretability and bias in VQA. We first aim to endow VQA models with the
capacity to better explain their decisions by pointing to visual counterexamples. Our experiments
suggest that VQA models overlook key semantic distinctions between visually-similar images, in-
dicating an over-reliance on language biases. Motivated by this result, we introduce a technique
called adversarial regularization that is designed to mitigate the effects of language bias on learning.
We demonstrate that adversarial regularization makes VQA models more robust to latent biases
in the data, and improves their ability to generalize to new domains. Drawing on our findings, we
recommend a set of design principles for future VQA benchmarks to promote the development of
interpretable and bias-free models.
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AI is a very hard problem so as a field we’ve separated

out all of its pieces into separate fields (e.g. NLP, Com-

puter Vision, Control, etc.) and we thought that we

would solve all of them in isolation and then just plug

them together. However, in the recent years the trends

in research have convinced me that this is somewhat of a

false view that will never come to fruition.

—Andrej Karpathy

Director of AI, Tesla 0
Introduction

The hardest problems in Artificial Intelligence are precisely those that ordinary people en-

counter every day. This phenomenon is termed “Moravec’s Paradox,” after the roboticist Hans

Moravec, who observed that our sensorimotor skills are evolution’s oldest and most refined cogni-

tive tricks. As Moravec argued, “Encoded in the large, highly evolved sensory and motor portions of

the human brain is a billion years of experience about the nature of the world and how to survive in

it” (Moravec, 1988). Recognizing faces and emotions, identifying objects, interpreting actions, judg-
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ing the intentions of others, using common sense, paying attention to interesting or relevant stimuli:

all of these capabilities are deeply embedded in our evolutionary past, where they have remained out

of scientific reach... until recently.

From an evolutionary perspective, progress in the field of AI has proceeded in a reverse-chronological

march. Abstract reasoning, which Moravec terms a “new trick,” was the first barrier to fall. In 1944,

Popular Mechanics called the IBM Mark I a “superbrain” in reference to the machine’s ability to ma-

nipulate numbers of up to 23-digits (Windsor, 1944). Fifty years later, IBM’s DeepBlue bested the

world chess champion, the New York Times heralded the victory as “a blow to the collective ego of

humanity” (Weber, 1997). Each of these successive milestones has forced our understanding of intel-

ligence to retreat from tasks involving high-level reasoning, and fall back towards those that involve

routine, subconscious thinking.

With the rise of machine learning, however, efforts to reverse-engineer intelligence have recently

begun to encroach into the territory of our everyday cognitive abilities. In computer vision (CV),

object detection models recognize tennis rackets, mountains, and hot dogs (Caesar et al., 2016; Lin

et al., 2014), while facial recognition models spot anger, disgust, and surprise (Fathallah et al., 2017;

Bazrafkan et al., 2017). Similarly, in natural language processing (NLP), sentiment analysis models

assess the attitudes of tweets and movie reviews (Agarwal & Mittal, 2016; Gautam & Yadav, 2014),

while summarization models distill news articles into short snippets (Paulus et al., 2017), and even

judge their factual accuracy (Oshikawa et al., 2018). Finally, in speech processing, a growing chorus

of voice-powered mobile assistants offer directions, reminders, and weather updates (López et al.,

2017; Hoy, 2018). Each of these systems carves out a piece of human intelligence and brings it firmly
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under the control of algorithms.

Despite these impressive advances, contemporary AI systems are still confined to relatively nar-

row domains. Siri can offer directions, but it cannot look at a photo of a confusing street intersec-

tion in order to provide clarification. Similarly, Facebook’s algorithms can recognize a friend’s face,

and can even tell that she is excited; however, they do not infer from context that the cause of her

happiness is a recent job promotion. These examples illustrate that today’s AI systems lack one of

the hallmarks of human intelligence: the ability to seamlessly integrate information from multiple

different sources (Lake et al., 2017). In order to make progress towards more general AI, we will need

to consider tasks with significantly broader scope.

0.1 AI-Complete Problems

One approach to this endeavor is to focus on designing tasks that are “AI-complete.” This term,

which originated in the 1980s, is used as a stand-in for the ultimate—and perhaps unobtainable—

goals of the field; a sort of holy grail of AI. The 1991 Jargon File (Raymond, 1991), a crowd-sourced

glossary of the early hacker community, contained the following entry:

AI-complete: [MIT, Stanford, by analogy with "NP-complete"]

adj. Used to describe problems or subproblems in AI, to

indicate that the solution presupposes a solution to

the "strong AI problem" (that is, the synthesis of a

human-level intelligence). A problem that is AI-complete

is, in other words, just too hard.

Examples of AI-complete problems are "The Vision Problem,"

building a system that can see as well as a human, and
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"The Natural Language Problem," building a system that

can understand and speak a natural language as well as a

human. These may appear to be modular, but all attempts

so far (1991) to solve them have foundered on the amount

of context information and "intelligence" they seem to

require.

The Jargon File highlights the central importance of vision and language in the quest for AI-completeness.

Conventional wisdom in the AI community has long held that these problems are each AI-complete

on their own. However, with the advent of machine learning, many problems that were once per-

ceived as intractable in both CV and NLP have been solved virtually overnight. Nevertheless, there

remains a general sense in the community that the broader problem of intelligence remains un-

solved. As Andrej Karpathy, a deep learning pioneer, observes (Karpathy, 2016):

AI is a very hard problem so as a field we’ve separated out all of its pieces into separate
fields (e.g. NLP, Computer Vision, Control, etc.) and we thought that we would
solve all of them in isolation and then just plug them together. However, in the recent
years the trends in research have convinced me that this is somewhat of a false view
that will never come to fruition.

How should we proceed when problems that were once thought were “just too hard” suddenly

become not hard enough? The answer, I believe, is to adopt a more holistic approach to AI. Rather

than solve each piece of the puzzle separately, and then attempt to fit them together, our research ef-

forts should dare to span multiple domains of intelligence. The present situation calls for audacious

benchmarks that require models to achieve the kind of flexible, multimodal thinking that humans

perform every day.

Within machine learning in the past several years, a small but growing body of research at the

intersection of vision and language has started to bear fruit. These efforts began around 2014 with
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the development of neural image captioning models capable of producing plausible descriptions

of naturalistic scenes (Kiros et al., 2014; Xu et al., 2015; You et al., 2016). Since then, a small handful

of other multimodal tasks have emerged, including caption-to-image generation (Mansimov et al.,

2015), multimodal translation (Elliott et al., 2017), and visual question answering (Antol et al., 2015;

Goyal et al., 2016; Wu et al., 2017; Gupta, 2017). While most of these other tasks have remained rel-

atively niche, in recent years, visual question answering (VQA) has exploded in popularity. Within

the field, VQA is regularly held up as a new standard for AI-completeness, with many researchers

labeling it a “Visual Turing Test” (Malinowski & Fritz, 2014; Kafle & Kanan, 2017; Chao et al., 2017).

In just a few pages, we will delve deeply into the contemporary state of VQA research, exploring the

triumphs and missteps of this exciting research frontier. However, we will first take a brief historical

detour to elucidate why, in the first place, the field of AI needs a new Turing Test.

0.2 The Turing Test & Jeopardy: Question Answering as an Intelligence Test

The tradition of question answering as a general test of intelligence traces back to the origins of the

field of AI. In his seminal 1950 work, Alan Turing introduced the “imitation game,” in which a com-

puter attempts to convince a human interrogator that it is also a human, as a mechanism for study-

ing machine intelligence. Though Turing placed few constraints on the content of this conversation,

the example dialogues he provided all revolve around question-answering (Machinery, 1950):

Q: Please write me a sonnet on the subject of the Fourth

Bridge.

A: Count me out on this one. I could never write poetry.

Q: Add 34957 to 70764.
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A: (Pause about 30 seconds and then give as answer) 105621.

Q: Do you play chess?

A: Yes.

Q: I have K at my K1, and no other pieces. You have only

K at K6 and R at R1. It is your move. What do you play?

A: (After a pause of 15 seconds) R-R8 mate.

The question of whether successful performance on the Turing Test constitutes proof of intelli-

gence has been the subject of protracted debate in the AI community (Shieber, 2004). Scholars have

raised various objections to the Turing Test and its incarnations in sponsored competitions like the

Loebner Prize (Gunderson, 1964; Apter, 1970; Moor, 1976; Block, 1981; Shieber, 1994, 2004, 2006).

Indeed, the literature on this subject is so rich that further discussion of the Turing Test here risks

venturing into a Pandora’s box.

Nevertheless, for our purposes, two shortcomings of the Turing Test are worth highlighting.

First, as the above dialogue reveals, Turing’s intuitions about the kinds of questions that an ideal

interlocuter should ask fell prey to Moravec’s Paradox. Adding numbers and playing chess are both

examples of high-level symbolic reasoning tasks that are easily solved algorithmically. Meanwhile,

while sonnet-writing has not yet been convincingly “solved,” most ordinary people would also be

hard-pressed to perform this task.1 Prescient as he was about many aspects of modern computing,

Turing would likely be surprised to see that so many of the remaining unsolved problems in AI

center around everyday, as opposed to intellectual, thinking.

It is also instructive to consider a second deficiency in the structure of the Turing Test; namely,

1Indeed, in Turing’s example, the subject passes on this question—perhaps a clever computer might similarly
elect to hide its knowledge of Shakespeare in order to avoid rousing suspicion.
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its reliance on verbal behavior as the sole window into intelligence. Turing’s conception of the imi-

tation game was likely shaped by technological circumstances. In Turing’s time, human-computer

interaction consisted of feeding input into the machine via tape or punch cards, and receiving a

printed readout. In this context, the idea of using images as inputs to a computer would likely have

seemed far-fetched. Indeed, when Turing published “On Computing Machinery and Intelligence,”

the first digital camera, which ushered in the era of digital photography, was still nearly forty years

away (Lloyd & Sasson, 1978). Thus, it is not surprising that Turing based his imitation game on a

modality that was consistent with the technology of his time. Nevertheless, the legacy of the Tur-

ing Test has proved enduring, and its reliance on linguistic interactions has in turn constrained the

modern imagination with respect to the design of tests of machine intelligence.

The shortcomings of the Turing Test outlined above suggest two desiderata for a general test of

machine intelligence.

Criteria for a new Turing Test:

1. The test should involve a broad cross-section of everyday reasoning. Accordingly, it should
not hinge on behaviors typically associated with high levels of intellect (e.g., performing
complex computations, playing chess, etc.).

2. The test should require integrating multimodal information from perceptual, linguistic, and
other sources in the service of this reasoning.

One might contend that the lack of these prerequisites is a particular property of the Turing Test

and its historical context. However, these same two misconceptions about what constitutes a “hard

problem” for AI have continued to drive research long after Turing’s time. When IBM Watson de-
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feated Jeopardy! champions Ken Jennings and Brad Rutter in 2011, the New York Times heralded

this development as “a big step toward a world in which intelligent machines will understand and

respond to humans” (Markoff, 2011). Though Jeopardy! is by no means a trivial problem, it falls on

the wrong side of both criteria outlined above. First, Jeopardy! calls for specific, arcane knowledge;

like sonnet-writing, the average person is not likely to perform particularly well. Second, Jeopardy!

is, for all intents and purposes, a unimodal task; Watson reads in clues as text, and compares them to

a large stored database of information, also represented as text (Ferrucci et al., 2010). As IBM’s Direc-

tor of Research John Kelly III observed following Watson’s Jeopardy! victory (Kelly III & Hamm,

2013),

The Jeopardy! challenge was relatively limited in scope. It was bound by the rules of
the game and the fact that all the information Watson required could be expressed as
words on a page. In the future, Watson will take on more open-ended problems. It
will ultimately be able to interpret images, numbers, voices, and sensory information.

It is no coincidence that Kelly’s vision for the future of the Watson program pointed to open-

ended, multimodal problems as the future waypoints of AI. Unfortunately, the Jeopardy! victory

represented somewhat of a high water mark that IBM has since been unable to overcome. Indeed,

over half a decade later, we are still struggling with the basic questions that govern this new research

domain. These questions include: What constitutes a good multimodal task? Which modalities

should be included in the task? And what role, if any, should question answering play in the design

of such a task?
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Figure 1: Examples from the VQA Challenge v1 dataset (Antol et al., 2015).

0.3 Introduction to Visual Question Answering

Visual Question Answering (VQA) offers one approach to operationalizing the vision of a holistic

test of machine intelligence. Simply put, VQA challenges models to answer natural language ques-

tions about images. VQA satisfies both of the desiderata of a machine intelligence test introduced

above. The VQA datasets used in this work represent a diverse range of everyday scenarios. The data

collection methods employed for both questions and images make extensive use of internet crowd-

sourcing to elicit a variety of commonplace contexts (Lin et al., 2014; Antol et al., 2015). VQA is also

deeply multimodal: successful performance is intended to require skillful integration of visual and

linguistic information. In addition to this information, many VQA questions also require incorpo-
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rating broad-based world knowledge; i.e., “common sense.” Finally, in keeping with longstanding

traditions in AI since Alan Turing, VQA leverages question-answering as a vehicle for examining in-

telligence. Thus, in principle, VQA is well-positioned to serve as a catalyst for many exciting avenues

of AI research.

Yet, like many endeavors that hold much promise in the abstract, the current state of VQA re-

search is plagued by several issues. These problems are endemic not just to today’s popular VQA

datasets, but also to the kinds of models that researchers apply to them. In particular, they arise

from the application of powerful black-box machine learning methods to large, crowdsourced

datasets. In this work, I attempt to delineate, investigate, and ultimately, propose solutions to what

I see as two of the main dilemmas of contemporary VQA research. I call these “The Problem of

Interpretability” and “The Problem of Bias.”

0.3.1 The Problem of Interpretability

Issues of interpretability are not specific to VQA; indeed, they affect the majority of today’s machine

learning systems. Here, we adopt the definition of interpretability from Doshi-Velez & Kim (2017)

as “the ability to explain or to present in understandable terms to a human.” Under this criterion, a

wide class of present-day machine learning models are not interpretable. In particular, in deep neu-

ral networks, reasoning is distributed across millions of parameters. Consequently, it is notoriously

difficult for humans—who are generally accustomed to causal forms of reasoning—to understand

the outputs of deep learning models (Chakraborty et al., 2017). As ML systems increasingly assume

responsibility in many areas of society, from criminal justice to transportation, there is a growing
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need for these systems to be interpretable by humans. Indeed, under the European General Data

Protection Regulation, which went into effect in 2018, individuals in the European Union are en-

titled to a “right to explanation” from any algorithm that makes decisions based on personal data

(Parliament & of the European Union, 2016). As evidenced by the recent DARPA Explainable AI

initiative (Gunning, 2017), interpretability has become one of the hot topics in AI, and serves as a

major catalyst for ongoing research.

In the realm of VQA, the need for interpretability is motivated by both pragmatic and more

philosophical considerations. For many years, researchers have touted the potential role of VQA

models in assisting the visually-impaired (Lasecki et al., 2014; Antol et al., 2015; Gurari et al., 2018).

In order to gain the trust of their users, these systems must be able to account for their decisions

(Goyal et al., 2016). Beyond the potential applications for VQA, however, there is a more funda-

mental argument for interpretability: understanding the underlying process by which VQA models

arrive at their decisions is an important means of ensuring that these models actually learn the kinds

of knowledge that we would like them to learn. As Doshi-Velez & Kim (2017) note, interpretability

is often a prerequisite for confirming other important desiderata of ML systems. In particular, inter-

pretability is useful for ascertaining whether a system is robust to biases that may exist in its training

data. In VQA, researchers have begun to discover that this is not the case, which brings us to our

second dilemma.
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0.3.2 The Problem of Bias

Like interpretability, the Problem of Bias affects many domains in AI. In machine learning, two

semi-distinct notions of bias are at play: social biॷ and statistical biॷ. In their new textbook on ML

fairness, Barocas et al. (2018) define social biases as “demographic disparities in algorithmic systems

that are objectionable for societal reasons.” The effects of social bias in ML range from the acute to

the understated; from systematic racial discrimination in criminal sentencing algorithms (Angwin

et al., 2016; Chouldechova, 2017; Berk et al., 2017) to misrecognition of minority and non-male faces

in vision algorithms (Buolamwini, 2017). These forms of social bias are dangerous because they have

the potential to perpetuate existing societal injustices. Nevertheless, in many cases, models that ex-

hibit social biases may actually be well-fit to the data (Barocas et al., 2018). In contrast, in statistics, a

biased model is one that consistently over- or under- estimates the true value of its target in compari-

son to the empirical distribution (Larson & Larson, 1969). Thus, it is possible to identify and correct

statistical bias purely by improving a model’s fit to the existing data. On the other hand, diagnosing

and addressing social bias often requires examining the data itself to look for trends that clash with

social norms and values.

Recently, the term “bias” has begun to appear in the VQA literature in a way that highlights the

complex and ambiguous relationship between notions of social and statistical bias. The core issue

is that VQA datasets tend to contain superficial regularities that allow models to “cheat” by memo-

rizing relationships between question and answer words. For instance, in one popular VQA dataset,

for questions of the form, “What sport is...?”, the correct answer is “tennis” 41% of the time (Zhang
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et al., 2016). In this example, the source of the bias is the underlying Common Objects in Context

(COCO) image dataset (Lin et al., 2014), which happens to contain a large number of tennis images.

Another source of bias occurs in the question-generation process, which involves human subjects

whose behavior may be unintentionally influenced by subtle psychological factors. One such fac-

tor is the phenomenon of visual priming, which selects for questions with affirmative answers. For

instance, in the same dataset, for questions beginning with “Do you see a...?” the correct answer is

“yes” 87% of the time (Zhang et al., 2016). A growing body of work demonstrates how, by exploiting

these language biases, models can disregard the image and still achieve high performance on VQA

(Agrawal et al., 2016; Zhang et al., 2016; Jabri et al., 2016; Goyal et al., 2016; Chao et al., 2017; Johnson

et al., 2017; Agrawal et al., 2018; Thomason et al., 2018).

On the surface, the Problem of Bias does not match the kinds of AI bias that we are accustomed

to hearing about in the media. The existence of a reliable mapping from question words to answer

words in VQA data is a general phenomenon, and does not appear to encode prejudices against any

particular group. However, a closer examination reveals that the Problem of Bias in VQA is an in-

stance of social, not statistical, bias. Consider that the contents of the images in a VQA dataset may

encapsulate subtle social biases. For instance, while the over-representation of “tennis” images in

the COCO dataset may not necessarily call to mind a specific gender bias, the labeled object “tennis

racket” is much more likely to appear in images containing men. In fact, as Zhao et al. (2017) reveal,

the majority of the objects in COCO reflect gender biases (e.g., “knife,” “fork,” and “spoon” co-

occur more frequently with women, while “snowboard” and “boat” appear more frequently with

men). Similarly, researchers in NLP have noted that word embeddings derived from text corpora
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contain many recognizable social biases (Bolukbasi et al., 2016; Caliskan et al., 2017; Grand et al.,

2018a). Consequently, a VQA model that learns to predict answers “blindly” on language priors is

more likely to make socially-biased decisions than a VQA model that also gives consideration to the

specific visual context.

The social nature of the biases in VQA makes a solution significantly harder to come by. If the

issue were one of statistical bias, then we could simply apply one of many well-established bias cor-

rection methods from statistical inference. However, in VQA, the issue is not that we lack models

that fit the data well—indeed, it is precisely the opposite: existing models overfit to the available

information in the training data. Given the well-known trade-off between bias and variance in statis-

tics (Goodfellow et al., 2016), an ideal solution to the Problem of Bias actually involves increasing

the bias of the model in order to reduce the variance in performance from one dataset to another.

However, in order to successfully perform this trade-off, we will need some way of distinguishing

the kinds of patterns that we would like to learn from those that we wish to avoid generalizing from

one context to another. This is exactly the same problem that researchers face when trying to reduce

learned social biases in ML models. As Barocas et al. (2018) describe,

Some patterns in the training data (smoking is associated with cancer) represent
knowledge that we wish to mine using machine learning, while other patterns (girls
like pink and boys like blue) represent stereotypes that we might wish to avoid learn-
ing. But learning algorithms have no general way to distinguish between these two
types of patterns, because they are the result of social norms and moral judgments.
Absent specific intervention, machine learning will extract stereotypes, including in-
correct and harmful ones, in the same way that it extracts knowledge.

In this light, the Problem of Bias in VQA reduces to the problem of preventing a model from learn-
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ing stereotypes and other harmful social biases. As a result, research in this area has the potential to

yield new methods that are generally applicable to a variety of scenarios in which we seek to mitigate

social biases in ML models.

0.3.3 The Road Ahead

This work examines the current state of VQA research through the dual lenses of interpretability

and bias. It presents findings from two sets of original research that address these respective issues.

Chapter 1 provides a background on contemporary methods in VQA aimed at helping the reader

quickly get up-to-speed on the relevant datasets, models, and techniques.

Chapter 2 examines the Problem of Interpretability by seeking to endow VQA models with the

capacity to better explain their decisions. Specifically, we reformulate VQA as a counterexample pre-

diction task that challenges models to identify pairs of similar images that produce different answers

to a particular question. Although our methods improve the state-of-the-art on this task, we find

that the representations learned by a top-performing VQA architecture do not appear to capture

key semantic distinctions between visually-similar images. This result, which is indicates that VQA

models lack visual grounding, provides motivation for Chapter 3.

Chapter 3 applies a recently-developed adversarial regularization method from the NLP litera-

ture to address the Problem of Bias in VQA. We demonstrate that this method successfully reduces

dependence on language priors, and boosts performance on unseen domains with different priors.

Moreover, we show that the benefits of adversarial regularization are proportional to the amount
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of bias in the training data. These results offer promising support for adversarial regularization as a

general purpose method for building ML models that are robust to learned biases.

Chapter 4 draws on our findings to put forward a set of desiderata for future VQA benchmarks

that promote development of interpretable and bias-free models. It concludes with a presentation

of several new datasets that promise to bring VQA into the real world, and highlights the need for

continued attention to the issues of interpretability and bias in these efforts.
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Algorithms force us to look into a mirror on society as it is.

—Sandra Wachter

Professor, Oxford Internet Institute

1
Visual Question Answering: Datasets and

Models

Contemporary research interest in VQA for everday images began with the release of

DAQUAR, the DAtaset for QUestion Answering on Real-world images (Malinowski & Fritz, 2014).

Since then, at least five other naturalistic VQA benchmarks have been proposed. These include

COCO-VQA (Ren et al., 2015a), FM-IQA (Gao et al., 2015), VisualGenome (Krishna et al., 2017),
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Visual7w (Zhu et al., 2016), and the VQA Challenge datasets (Antol et al., 2015; Goyal et al., 2016).

With the exception of DAQUAR, all of the datasets use include images from the Common Objects

in Context (COCO) dataset (Lin et al., 2014), which contains 330K images sourced from Flickr.

1.1 VQA v1

The eponymous VQA Challenge dataset (hereafter, just “VQA”) was first introduced in Antol et al.

(2015) as more free-form, open-ended VQA benchmark. Previous datasets placed restrictions on

the kinds of questions authored by human annotators (e.g., Visual7w, VisualGenome), or relied on

image captioning models to generate questions (e.g., COCO-VQA). In contrast, the crowdsourc-

ing method employed by Antol et al. (2015) was designed generate a more diverse range of question

types requiring both visual reasoning and common knowledge. However, owing in part to the lack

of constraints on question generation, the original VQA dataset contains several conspicuous bi-

ases. As discussed in Section 0.3.2, for questions beginning with the phrase, “What sport is...”, the

correct answer is “tennis” 41% of the time. Additionally, question generation was impacted by a vi-

sual priming bias, which selected for questions with affirmative answers. For instance, for questions

beginning with “Do you see a...,” the correct answer is “yes” 87% of the time (Zhang et al., 2016).

Models that exploit these biases can achieve high accuracy on VQA without understanding the con-

tent of the accompanying images (Agrawal et al., 2016; Zhang et al., 2016; Jabri et al., 2016; Goyal

et al., 2016; Chao et al., 2017; Johnson et al., 2017; Agrawal et al., 2018; Thomason et al., 2018).
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Figure 1.1: Examples from VQA v2. To increase the heterogeneity of answers, the dataset includes pairs of
complementary images that produce different answers to the same question. (Figure from Goyal et al., 2016)

1.2 VQA v2

In an effort to balance the VQA dataset, Goyal et al. (2016) introduced VQA v2, which is built on

pairs of visually-similar images that result in different answers to the same question. Specifically, for

each image in the original dataset, Goyal et al. (2016) determined the 24 nearest neighbor images

using convolutional image features derived from VGGNet (Simonyan & Zisserman, 2014a). For

each image/question/answer pair in the original VQA dataset, crowd workers were asked to select a

complementary image that produced a different answer to the same question. The most commonly

selected complementary image was then paired with the original question and new answer. These

data were included as new examples in VQA v2, resulting in a dataset that is roughly double the size

of the original. The inclusion of complementary pairs data in VQA v2 also makes it possible to more
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directly examine how models represent distinctions between visually-similar images. We explore this

idea further in Chapter 2.

By several metrics, VQA v2 succeeds at reducing biases in the answer distribution. Goyal et al.

2016 note that the entropy of the answer distributions averaged across various question types (and

weighted by frequency) increases by 56% from VQA v1 to VQA v2. Indeed, in Figure 1.2, we can see

that answers over many question types are more evenly distributed in VQA v2. Additionally, ques-

tions with binary (yes/no) answers exhibit an answer distribution that is closer to 50/50. Goyal et al.

(2016) found that across the board, state-of-the-art VQA architectures for VQA v1 perform worse on

VQA v2. This finding provides strong evidence for the theory that these models succeed primarily

by exploiting answer biases. Finally, VQA models designed to ignore answer biases demonstrate less

of a performance discrepancy between VQA v1 and VQA v2, suggesting that VQA v2 contains fewer

biases for models to exploit (Agrawal et al., 2018; Ramakrishnan et al., 2018).

While VQA v2 represents progress towards the goal of reducing latent biases, several sources of

bias still remain. Although the introduction of complementary pairs results in a near 50/50 balance

for yes/no questions, most questions in the VQA datasets are not binary. For questions with many

possible answers (e.g., “What type...?”; “What sport...?”; “What brand...?” ), VQA v2 method shifts

some probability mass into the tail, but a handful of top answer choices continue to dominate (see

Figure 1.2).

The persistence of answer-class biases in VQA v2 means that models that exploit these biases

can continue to enjoy dominant performance on this task. Indeed, even after the organizers of the

annual VQA Challenge switched to VQA v2 in 2017, many of the high-performing architectures
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Figure 1.2: Comparison of answer distributions for different question types in VQA v1 and v2. The inclusion
of complementary pairs in VQA v2 results in visibly less skewed distributions. This effect is most noticeable
for binary questions (e.g., ”is the”, ”is this”, ”is there”, ”are”, ”does”). (Figure from Goyal et al., 2016)
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from the previous year continued to top the leaderboard.1 Broadly speaking, the switch from VQA

v1 to VQA v2 did not prompt competitors to alter their methods or models to address the issue of

bias. In a paper titled “Tips and Tricks for Visual Question Answering: Learnings from the 2017

Challenge,” the 2017 contest winners detailed the many methods they employed to attain top perfor-

mance (Teney et al., 2017a). These included employing gated tanh activation functions, increasing

the minibatch size, using pretrained output embeddings, and obtaining image features from a more

powerful convolutional neural network. Crucially, the vast majority of these improvements were

orthogonal to the changes in the dataset composition. The only methodological change directly mo-

tivated by VQA v2 was the inclusion of the complementary pairs data in the same minibatch. While

the authors argued that this “smart shuffling” procedure stabilized training, in an ablation study,

they found that it actually led to a slight reduction in overall score (Teney et al. 2017a, Table 1). Thus,

in theory, VQA v2 succeeded in bringing attention to the issue of bias in VQA. However, in prac-

tice, the introduction of the dataset failed to spur corresponding solutions to these issues within the

VQA research community.

1.3 VQA-CP

The Problem of Bias in VQA poses a philosophical dilemma. On the one hand, from the perspective

of designing a naturalistic question answering task, the existence of a few very likely answers is not

inherently a problem. Indeed, certain answers are simply a priori unlikely. For instance, it would be

suboptimal for a question answering system grounded in world knowledge to believe that the sport

1VQA Challenge 2017 leaderboard at http://visualqa.org/roe_2017.html.
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of broomball is just as common as baseball. In this light, it is neither realistic nor desirable for a real-

world VQA dataset to contain uniform distributions over answer classes. On the other hand, the

fact that models can attain top scores on VQA benchmarks by simply learning language biases de-

feats the purpose of visual question answering. Moreover, the resulting inflation in accuracy scores

on VQA threatens to give false impressions about the capabilities of current VQA systems.

Concerns over these issues within the community led to the introduction of a new variant of the

existing VQA datasets, based on the following premise: What if, instead of reducing the bias in the

answer distribution, we simply varied them so as to discourage overfitting? This idea is the basis for

Visual Question Answering under Changing Priors (VQA-CP; Agrawal et al. 2018). In VQA-CP,

for each question type, the prior distribution over answers is designed to differ significantly between

the train and test splits. For instance, the most frequent sport in the train split is “tennis,” while in

the test split it is “skiing.” Figure 1.3 shows how the answer distribution changes between train and

test splits in VQA-CP. Note that VQA-CP is constructed by redoing the train/test splits for the ex-

isting VQA v1 and v2 data; not by collecting additional data. For this reason, there are two versions

of VQA-CP (i.e., VQA-CP v1 and VQA-CP v2). Moreover, because they lack the complementary

pairs data, VQA v1 and VQA-CP v1 both contain more language biases than their v2 counterparts

(Agrawal et al., 2018). In Chapter 3, we will show that regularization methods designed to counter

language biases show larger gains on the more biased VQA-CP v1 dataset.
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Figure 1.3: Distribution of answers per question type for a random sample of 60K examples from VQA-CP v1.
The distribution of answers varies significantly between the train and test splits. (Figure from Agrawal et al.,
2018)

1.4 Problem Formalization

Before proceeding further, it is useful to formalize the VQA problem and lay out the terminology

that will be used throughout this work. A complete glossary of notation is given in the Appendix.

The principal objects in VQA are images, questions, and answers. We can refer to a VQA dataset

as a set of examplesD = {d1, . . . , dN }, where each example is a tuple di = (Ii, Qi, Ai). As is

standard practice in computer vision, images I ∈ (h, w, c) are represented as tensors of fixed height,
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width, and RGB color channels. Similarly, as is standard practice in natural language processing,

questions are represented as sequences of tokens Q = {q1, . . . , qM }, where each qm ∈ {0, 1} |V |

is a one-hot vector representing the index of the token in a fixed-size vocabularyV. In VQA, it is

common to produce vectorized feature representations of images and questions using existing vision

and language models. These representations are usually produced either early in the VQA pipeline,

or as a separate preprocessing step entirely. Thus, when we refer to images and questions, we are

usually dealing with the vectorized versions, which we denote with lowercase v and q.

1.5 VQA Architectures: A Framework

Many current VQA models follow the same abstract architectural pattern. In this section, we cover

the common components of these models.

1.5.1 Image Encoding

In order to reason about the contents of an image, it is necessary to first extract some higher-level

feature representation from the raw pixel data. Convolutional neural networks (CNNs), which are

widely used in contemporary computer vision, provide a powerful and modular solution for feature

extraction. While CNNs are typically trained on image classification or object recognition tasks,

the feature representations they learn are transferable out-of-box to a wide range of domains. For

some applications, finetuning the weights of a pretrained CNN has been shown to improve transfer

(Yosinski et al., 2014). However, in VQA, finetuning is not a common practice; since the images in

the VQA datasets come from COCO (Lin et al., 2014), a widely-used computer vision benchmark, it
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Figure 1.4: Schematic diagram of a common VQA architectural pattern. Images are encoded by a CNN, while
questions are encoded by an RNN. These representations are combined via a multimodal fusion scheme into
a joint embedding. Finally, a fully-connected network predicts a distribution over answer classes.

is easy to obtain CNNs that have already been pretrained on this data.

There are many popular off-the-shelf CNN architectures that are commonly applied to VQA,

including (from oldest to newest): VGG (Simonyan & Zisserman, 2014b), Inception (Szegedy

et al., 2015), ResNet (He et al., 2015b), Faster R-CNN (Ren et al., 2015b), and Mask R-CNN (He

et al., 2017). Over the past several years, CNNs have become both more powerful and more effi-

cient. Moreover, in addition to producing feature representations, models like Faster R-CNN and

Mask R-CNN output object bounding boxes, which can be used to obtain performance benefits

on VQA. Consequently, the choice of CNN can have a significant impact on the performance of a

VQA model. For this reason, one should note the underlying CNN architecture when comparing
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performance across different VQA architectures. In this thesis, direct performance comparisons are

generally made between variants of the same model that, by definition, use the same CNN.

1.5.2 Question Encoding

As with images, it is necessary to extract the contents of the question into a machine-readable for-

mat that encodes its semantics. Unlike an image, however, a question is sequential in nature, and its

meaning depends on the relative ordering of its component words. In natural language processing,

recurrent neural networks (RNNs) have emerged as the method of choice for dealing with linguistic

data. In particular, a class of RNNs called long short-term memory networks (LSTMs; Hochreiter

& Schmidhuber 1997), which are adept at learning long-term dependencies in sequences, is now

standard-issue for many NLP tasks, including language modeling (Peters et al., 2018), machine trans-

lation (Sutskever et al., 2014; Bahdanau et al., 2014), and summarization (Nallapati et al., 2016; Kryś-

ciński et al., 2018).

Unlike CNNs, of which there are many different architectural variations, RNN implementa-

tions for sequence modeling are fairly standardized. Only a few iterations on these models have been

proposed. Most notably, the gated recurrent unit (GRU; Chung et al. 2014) has emerged as a more

efficient alternative to the LSTM cell. Nevertheless, performance performance between LSTMs and

GRUs is comparable across many tasks (Chung et al., 2014). For the purposes of VQA, therefore,

the choice of RNN for question encoding is less relevant to performance than the choice of CNN

for image encoding.
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1.5.3 Multimodal Fusion

In order to perform VQA optimally, a model must integrate both visual and linguistic data. Given

that the image and question features are typically encoded using separate pipelines, the integration

of these representations is a key methodological concern in VQA. Abstractly, we can represent mul-

timodal fusion as a function z = f (I, Q)mapping the image and question to a multimodal represen-

tation z. Early approaches combined the vectors I and Q via an elementwise sum f (I, Q) = I + Q

or product f (I, Q) = I ⊙ Q, or alternatively, by simple concatenation; i.e., f (I, Q) = [I, Q]

(Zhou et al., 2015; Lu et al., 2015; Kim et al., 2016a; Antol et al., 2015). While these naive approaches

have been shown to work surprisingly well, subsequent work has explored more expressive fusion

schemes through parametrized bilinear interaction; i.e., f (I, Q) = W [I ⊗ Q], where ⊗ denotes the

outer product (Fukui et al., 2016; Kim et al., 2016b; Ben-younes et al., 2017; Duke & Taylor, 2018).

Finally, a separate line of research has used multi-step attention mechanisms as a means for fusing

image and question representations (Yang et al., 2016; Lu et al., 2016; Anderson et al., 2018). In many

cases, these novel fusion mechanisms have been shown to result in significant performance gains.

Thus, the design of mechanisms for multimodal fusion is an active area of ongoing research.

1.5.4 Answer Prediction

Given a multimodal representation z, the end goal of any VQA model is to predict answers as out-

puts. The final module of many VQA models is a classifier network consisting of one or more fully-

connected layers, which maps z to a distribution P(A |I, Q) over possible answers in a fixed answer
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Figure 1.5: Frequency distribution over answersA in VQA v1. Models typically truncateA to the 1000 (red
line) or more most common answers. This approach ignores the majority of answers, such as “cucumber,”
that fall in the long tail. (Figure from Ma et al., 2017)

vocabularyA. Because answers in VQA are open-ended and may consist of multiple words, the

most natural approach to this task would treat it as a sequence generation problem akin to image

captioning (Xu et al., 2015; You et al., 2016). However, as discussed, the distribution over answers has

a very long tail, meaning that many answers will only occur a handful of times in the dataset. Conse-

quently, the vast majority of competitive VQA models truncateA to the top few thousand answers,

and treat VQA as a large multiclass classification problem (see Wu et al. 2017 for a breakdown of

different VQA approaches, including classification vs. generation).

By formulating VQA as a classification problem, these models sacrifice accuracy on the long

tail of answers in exchange for higher performance on the most common answers. Given the over-
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whelming prevalence of this approach, we treat this design decision as a fact of the current state of

the VQA research space. Ultimately, however, the fact that the existing VQA datasets promote this

kind of hack could be considered a serious shortcoming. A potential remedy to this problem is dis-

cussed in Chapter 4.

1.6 Selected VQA Models

The experiments presented in this thesis were performed by extending two existing VQA model

implementations. The experiments presented in Chapter 2 were based on a model from a paper

titled Multimodal Tucker Fusion for Visual Question Answering (MUTAN, Ben-younes et al. 2017).

Meanwhile, the experiments presented in Chapter 3 were based on a more recent implementation

of a model from Bottom-Up and Top-Down Attention for Image Captioning and Visual Question

Answering (Bottom-Up/Top-Down; Anderson et al. 2018). In the next two sections, we cover each

of these models in more depth.

The switch from MUTAN to Bottom-Up/Top-Down was motivated by performance and engi-

neering considerations that reflect the fast pace of research progress in VQA. In March 2018, when

the experiments for Chapter 2 were performed, MUTAN’s reported 58.2% overall accuracy on VQA

v2 was on par with the state-of-the-art (Ben-younes et al., 2017). However, at the Conference on

Computer Vision and Pattern Recognition (CVPR) in June 2018, it was announced that a team at

Facebook AI Research had won the VQA 2018 Challenge (Jiang et al., 2018b) with 70.01% single-

model accuracy. The following month, the group released Pythia, a PyTorch-based VQA framework
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based on the Bottom-Up/Top-Down model (Jiang et al., 2018a). In addition to achieving signifi-

cantly higher performance, the Pythia code is also more efficient. (We found that Pythia takes less

than 2 hours to train to peak accuracy on a Tesla V100 GPU, compared with approx. 8 hours for

MUTAN). Since rapid testing cycles are crucial for maintaining research velocity, we decided to

switch from MUTAN to Pythia for the experiments in Chapter 3. Thus, while the findings from

Chapters 2 and 3 are intended to be considered in a mutual context as part of this broader narrative

of this thesis, any comparison of absolute accuracy numbers between these two chapters should be

taken in light of the difference in baseline models.

In addition to achieving different levels of performance, MUTAN and Bottom-Up/Top-Down

differ architecturally. While both models adhere to the general framework outlined in Section 1.5,

they differ in the choice of fusion mechanism. In particular, MUTAN uses a parametrized bilinear

interaction for multimodal fusion, while Bottom-Up/Top-Down relies on attention to perform the

fusion. Indeed, these two models happen to be representative of the two schools of thought on fu-

sion mechanisms presented in Section 1.5.3. In the discussion of these two models in the following

sections, special focus is given to the role of the fusion mechanism as a defining aspect of the respec-

tive VQA architectures.

1.6.1 MUTAN

MUTAN (Ben-younes et al., 2017) uses a ResNet-152 CNN to encode images and a GRU-based

SkipThoughts RNN (Kiros et al., 2015) to encode questions. The core of MUTAN is a multimodal

fusion scheme based on the Tucker decomposition (Tucker, 1966). The goal of this setup is to model
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Figure 1.6: MUTAN model architecture. The bilinear interactionT is factorized via Tucker decomposition
into a smaller core tensorTc and three matrices, dramatically reducing the number of parameters. (Figure
from Ben-younes et al., 2017)

a bilinear interaction between the image and question features:

z = T ×1 Q ×2 I (1.1)

Here,T ∈ R |Q |× |I |× |A | is a 3D tensor, and ×i is the i-mode tensor product, which involves

slicing along the ith dimension ofT . This bilinear approach is powerful because, unlike elemen-

twise multiplication, it allows a multiplicative interaction between all elements of both Q and I

(Fukui et al., 2016). However, it suffers from significant dimensionality issues, since the size ofT

grows exponentially with the size of Q and I . In practice, Ben-younes et al. (2017) use |Q| = 2400,

|I | = 2048, and |A| = 2000. To use the fullT in this scenario would introduce some 9.83 bil-

lion parameters into the model. This number of parameters is many orders of magnitude larger than

today’s biggest neural networks.2 For this reason, it is impractical to explicitly model a full bilinear

interaction betweenQ and I in the network.

To overcome this obstacle, various fusion mechanisms have been proposed that approximate a

2ResNet-152, for instance, contains on the order of 60million parameters (He et al., 2015a; Chandrasekhar
et al., 2017)

32



bilinear interaction, but with a significantly reduced number of parameters. Fukui et al. (2016) intro-

duced a popular Multimodal Compact Bilinear (MCB) pooling model, which randomly projects Q

and I into a higher-dimensional embedding space, and then convolves both vectors in the Fourier

space. Similarly, Kim et al. (2016b) proposed a Multimodal Low-rank Bilinear (MLB) pooling

model, which constrains the tensorT to be of low rank in order to limit the number of free pa-

rameters. However, both MCB and MLB introduce constraints that limit the expressiveness of

the bilinear interaction. In MUTAN, Ben-younes et al. generalize these approaches by leverag-

ing the Tucker decomposition (Tucker, 1966). The Tucker decomposition factorizes the full bi-

linear interaction into a product of a small core tensorTc ∈ Rtq×tv×to with three factor matrices

Wq ∈ Rdq×tq ,Wv ∈ Rdv×tv ,Wo ∈ R |A |×to :

T = ((Tc ×1 (QTWq)) ×2 (ITWv)) ×3 Wo (1.2)

Notably, the Tucker composition fully captures the expressivity of the bilinear interaction, while the

other approaches discussed do not. In this way, MUTAN is able to surpass the performance of MCB

and MLB, while limiting the number of trainable parameters to a reasonable 4.9million.

1.6.2 Bottom-Up / Top-Down Attention

Visual attention is one of the most successful ideas to emerge from computer vision in the past

decade. Attention mechanisms, which allow a network to direct additional processing resources

to salient image regions, have been successfully employed in both image captioning (Xu et al., 2015;

Lu et al., 2017) and VQA (Lu et al., 2016; Xu & Saenko, 2016; Yang et al., 2016). The concept of vi-
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Figure 1.7: Bottom-Up / Top-Down Attention model architecture. The model uses attention to combine
visual and linguistic information into a joint embedding. (Figure from Anderson et al., 2018)

sual attention is loosely-inspired by human biology. As Anderson et al. (2018) note, neuroscientists

have long hypothesized the existence of two distinct attentional mechanisms. While “top-down”

attention is directed volitionally towards task-relevant stimuli, “bottom-up” attention is driven by

unexpected, novel, or salient stimuli in an automatic manner (Buschman & Miller, 2007; Corbetta

& Shulman, 2002).

In a typical VQA model, the image encoding module consists of feed-forward CNN, which

provides a high-level feature representation of the image. These networks operate in a bottom-up

manner, learning to focus on image regions that are generally relevant across many contexts. In

their Bottom-Up / Top-Down Attention model, Anderson et al. (2018) introduce an additional

top-down attention mechanism, which uses task-specific context to further direct visual attention.

Figure 1.7 outlines the architecture of the Bottom-Up / Top-Down network. First, Faster R-CNN

(Ren et al., 2015b) is used to compute a set of variable-sized bounding boxes corresponding to recog-

nized objects in the image. Feature vectors corresponding to these regions of interest are extracted

with ResNet-101 (He et al., 2015a). A mean-pooled representation of these bottom-up image features

is fed as auxiliary input into an LSTM, which encodes the question in light of the overall content
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of the image. However, at each timestep, the question encoder also produces a top-down attention

distribution over the image features. Finally, the question and attention-weighted image features

are combined via element-wise product. In summary: bottom-up image features into the question

encoder, which in turn predicts a top-down attention distribution over these features. In this way,

the Bottom-Up / Top-Down Attention model uses attention as a vehicle for combining visual and

linguistic information into a multimodal representation.
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The key to artificial intelligence has always been the

representation.

—Jeff Hawkins

Neuroscientist and Founder, Numenta

Der Teufel steckt im Detail. (The devil is in the details.)

—German proverb, c. 1800s

2
On the Flip Side: Identifying

Counterexamples in VQA

The ability to distinguish between perceptually-similar stimuli is a hallmark of intelligence. In

the face of similar-looking objects, children as young as three years make valid inferences based on

discrete categorical properties (Markman & Hutchinson, 1984; Gelman & Markman, 1987). Thus,

it is naturally desirable that a computational model for visual reasoning should be able to make such
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distinctions.

As discussed in the introduction, VQA is often framed as a general test of visual-semantic reason-

ing (Antol et al., 2015; Kafle & Kanan, 2017; Chao et al., 2017). However, researchers have recently

begun to question whether existing state-of-the-art models actually learn to make meaningful se-

mantic distinctions between visually-similar images (Goyal et al., 2016; Agrawal et al., 2018; Johnson

et al., 2017; Thomason et al., 2018). In this chapter, we explore a reformulation of the VQA task that

more directly evaluates a model’s capacity to reason about the underlying concepts encoded in im-

ages. Under the standard VQA task, given the question “What color is the fire hydrant?” and an

image of a street scene, a model might answer “red.” Under the alternative task, the model must pro-

duce a counterexample; e.g., an image of a fire hydrant that is not red. Successful performance on

the visual counterexample prediction task (abbreviated VQA-CX) requires reasoning about how

subtle visual differences between images affect the high-level semantics of a scene.

The VQA-CX task was originally proposed in Goyal et al. (2016) as a useful explanation modality

for VQA models. However, despite its applicability as a powerful tool for model introspection, this

idea has remained largely under-explored by the research community. To our knowledge, this work

represents the first follow-up attempt to operationalize the VQA-CX paradigm originally proposed

by Goyal et al. (2016).

We introduce two plug-and-play approaches for evaluating the performance of existing, pre-

trained VQA models on VQA-CX. The first method is an unsupervised model that requires no

training and works out-of-box with a pretrained VQA model. The second method is a supervised

0Chapter 2 is adapted from Grand et al. (2018b).
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neural model that can be used with or without a pretrained VQA model. The unsupervised model

outperforms the baselines proposed in Goyal et al. (2016). Meanwhile, the supervised model outper-

forms all existing unsupervised and supervised methods for counterexample prediction.

Crucially, while we use a state-of-the-art VQA model to facilitate counterexample prediction,

we find that our methods perform almost as well without receiving any information from this

model. In other words, the multimodal representation learned by the VQA model contributes only

marginally (approximately 2%) to performance on VQA-CX. These results challenge the assump-

tion that successful performance on VQA is indicative of more general visual-semantic reasoning

abilities.

2.1 Approach

We treat VQA-CX as a supervised learning problem, which can be formalized as follows. For each

image, question, and answer (I, Q,A) in the original VQA task, the model is presented with the the

K = 24 nearest neighbor images INN = {I ′1, . . . , I ′K } of the original image. The model assigns

scores S = S(I ′1), . . . , S(I
′
K ) to each candidate counterexample. The crowd-selected counterexample

I∗ ∈ INN serves as ground truth. For notational clarity, we distinguish between raw images I and

convolutional image features v. Additionally, we use prime notation (I ′, A′) to denote candidate

counterexamples, asterisk notation to denote the ground truth counterexample (I∗, A∗), and no

superscript when referring to the original example (I, A). We do not use any superscripts for Q,

since the question is the same in all cases.
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Figure 2.1: The goal of VQA-CX is to identify a counterexample (green border) that results in a different
answer to the question from a set of 24 visually-similar images.

Both of our VQA-CX models use an existing VQA model as a submodule. While there exist

many diverse models for VQA (Wu et al., 2017), we mostly treat the VQA model as a black box that

can be expressed as a function of its inputs. We make only two assumptions about the architecture.

First, we assume the model outputs a distribution P(A|I, Q) over a discrete number of answer

classes.1 Second, we assume the model internally combines its inputs into some multimodal repre-

sentation z, which we can access. (Note that this second assumption, which violates the black box

1As discussed in Section 1.5.4, while most models treat VQA as a classification task, some adopt a generative
approach (e.g., Wu et al. (2016); Zhu et al. (2015); Wang et al. (2017)), which is not compatible with this
assumption.
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principle, is only used optionally in the NeuralCX model.) We therefore treat a VQA model as a

function VQA(I, Q) = P(A|I, Q), z.

In order to establish a basis for comparison with Goyal et al. (2016), we began by reproducing

their baselines, described in the following section. We then developed two architectures for VQA-

CX. Both models can be used in conjunction with any VQA model that meets the above two criteria.

The first architecture, which we call the Embedding Model, compares the semantic similarity be-

tween candidate answers in an embedding space, weighing different answers by P(A|I, Q). Since

the Embedding Model relies solely on a pretrained VQA model and a pretrained answer embedding,

it is fully unsupervised and requires no training. The second architecture is a straightforward mul-

tilayer perceptron that takes as input features related to I , I ′, Q, andA, including the outputs of a

VQA model, and returns a score S(I ′). This NeuralCX model is trained in a pairwise fashion using

standard supervised learning methods.

2.2 Models

2.2.1 Prior Work

To our knowledge, the only previous work on VQA-CX was carried out by the authors of the VQA

v2 dataset. Goyal et al. (2016) present a two-headed model that simultaneously answers questions

and predicts counterexamples. The model consists of three components:
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Shared base: Produces a joint embedding of the question and image via pointwise multiplication.

z = CNN(I) ⊙ LSTM(Q)

During a single inference step, a total ofK + 1 images (the original image and its KNNs) are passed

through this component.

Answering head: Predicts a probability distribution over answer classes.

P(A|Z) = σ(Woutz + bout)

Only the z corresponding to the original image is used in the answering head.

Explaining head: Predicts counterexample scores for each ofK nearest neighbor images.

S(I ′i ) = (Wzdzi + bzd) · (WadA + bad)

This component can be seen as computing vector alignment between a candidate counterexam-

ple and the ground truth answer. To allow for the dot product computation, zi andA are both

projected into a common embedding space of dimensionality d. Note that in the final layer of the

network, allK scores S = S(I ′1), . . . , S(I
′
K ) are passed through aK × K fully-connected layer.

Presumably, this layer is intended to allow the model to learn the distribution over the rank of I∗

within INN. However, as we note in Section 2.5, this layer functions as a bottleneck that limits the

expressivity of the model outputs.
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The two-headed model is trained on a joint loss that combines supervision signals from both

heads.

L(S) = − logP(A|I, Q) + λ
∑
I ′i,I∗

max(0,M − (S(I∗ − I ′i )))

The answer loss is simply the cross entropy loss induced by the ground truth answerA ∈ A.

Meanwhile, the explanation loss is a pairwise hinge ranking loss (Chopra et al., 2005), which encour-

ages the model to assign the ground-truth counterexample I∗ a higher score than the other candi-

dates.

2.2.2 Baselines

In addition to their counterexample model, Goyal et al. (2016) introduce three key baselines for

VQA-CX:

• Random Baseline: Rank INN randomly.

• Distance Baseline: Rank INN by L2 distance from I . Closer images are assigned higher scores.

• Hard Negative Mining: For each I ′i ∈ INN, determine the probability of the original answer
P(A)i = VQA(I ′i , Q) using a pretrained VQA model. Rank the I ′i according to negative
probability −P(A)i. In other words, choose counterexamples for which the VQA model
assigns low probability to the original answer.

2.2.3 Unsupervised Embedding Model

Successful performance on VQA-CX requires reasoning about a complex semantic relationship

between answers. While the counterexample answerA∗ is distinct from the original answerA, the

two are often close neighbors in semantic space. For example, for the question-answer pair (Q =
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“What animal is in the tree?”;A =“cat”), the counterexample answer is more likely to be “dog” than

“meatball,” even though the semantic distance between “cat” and “meatball” is greater. Ideally, a

VQA-CX model should capture this nuanced relationship between complementary pairs of answers.

The Embedding Model balances the goal of identifying a semantically-similar counterexample an-

swer with the requirement that the answer not be identical to the original. The model uses answer-

class predictions P(A|I ′, Q) from a pretrained VQA model, and answer embeddingsWA from a

pretrained Skip-Thoughts model (Kiros et al., 2015) to assign a score to each nearest neighbor image:

S(I ′i ) = λ
∑
a∈A;
a,A

cossim (a,A)P(a|I ′i , Q) − (1 − λ) logP(A |I ′i , Q) (2.1)

The term to the left of the subtraction encourages the model to select counterexamples that pro-

duce answers similar to the original. Meanwhile, the term to the right discourages the model from

selecting the exact same answer as the original. The λ hyperparameter, chosen empirically, deter-

mines the relative weight of these terms.

2.2.4 Supervised NeuralCX Model

NeuralCX is a fully-connected network that takes as input 10 features derived from I , I ′, Q, andA.

Some of these features, such as v, q, and a, are feature representations of the original image, question,

and answer. Others, such as z and P(A′), are computed by a VQA model. Table 2.1 summarizes the

input features.

All features are concatenated into a single input vector and passed through a series of hidden
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Figure 2.2: Diagram of NeuralCX architecture. The model is a fully-connected neural network that takes
visual, question, answer, and multimodal features as input and produces a score indicating the relevance of I ′
as a counterexample.

layers, where the size h and numberN of layers are hyperparameters. All layers share the same h

and use ReLU activation. The output of the last hidden layer is projected to an unnormalized scalar

score S(I ′). Figure 2.2 depicts the NeuralCX architecture.

A single training iteration for NeuralCX consists ofK forward passes of the network to produce

a score for each candidate I ′i ∈ INN. We compute the cross-entropy loss for the ground truth I∗, and

optimize the parameters of the network via backpropagation.
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Feature Definition Size Origin

v CNN(I) 2048 CNN
v′ CNN(I ′) 2048 CNN
vM v ⊙ v′ 2048 Computed
vD | |v′ − v| | 1 Computed
Rank onehot(i) 24 Computed

q LSTM(Q) 2400 LSTM
a WAA 2400 Aemb
a′ (WA)TP(A′) 2400 Aemb, VQA

z VQA(I, Q) 360 VQA
z′ VQA(I ′, Q) 360 VQA

Table 2.1: Full set of features input to NeuralCX model.

2.3 Methods

Our VQA-CX dataset consists of 211k training examples and 118k test examples, of which 10k

were reserved as a validation set. A single example in our dataset consists of the original VQA v2

example (I, Q,A), and the 24 nearest neighbor images INN. One of these neighbors is guaranteed to

contain the ground truth counterexample I∗ ∈ INN and its corresponding answerA∗.

Our train and test data are, by necessity, proper subsets of the VQA v2 training and validation

datasets, respectively. To construct our trainset, we first identified the examples for which the im-

age I had a corresponding I∗. Approximately 22% of the images in VQA v2 do not have a labeled

complement.2 Next, we filtered out examples for which I∗ did not appear in INN. Since we used the

nearest neighbors data provided by Goyal et al. (2016), I∗ should theoretically always appear in INN.

2These images correspond to instances in which crowd workers indicated that it was not possible to select a
counterexample from among INN (Goyal et al., 2016).
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However, because the KNN relation is not symmetric (i.e., I1 ∈ I2NN ⇏ I2 ∈ I1NN), we found that in

certain cases, I∗ < INN. After filtering, we were left with 211, 626/433, 757 training examples and

118, 499/214, 354 validation examples. Note that while Goyal et al. (2016) also collected labeled

counterexamples for the VQA v2 test split, this data is not public. As a result, we did not make use

of the VQA v2 test set, instead testing on the VQA v2 validation set.

We implemented our models and experiments in Pytorch (Paszke et al., 2017).3 For all experi-

ments involving VQA models, we used the MUTAN model presented in Section 1.6.1 (Ben-younes

et al., 2017). We pretrained MUTAN separately on VQA v2 for 100 epochs with early stopping to a

peak test accuracy of 47.70. Unfortunately, because we needed to train the model on only the VQA

v2 training set (and not the validation set), this accuracy is considerably lower than the 58.16 single-

model accuracy obtained by Ben-younes et al. (2017). Additionally, since the VQA-CX task requires

us to load all 24 VNN features into memory simultaneously, we opted use a no-attention variant

of MUTAN that is more space-efficient, but lower-performing. We used a pretrained ResNet-152

model (He et al., 2015a) to precompute visual features for all images, and a pretrained Skip-Thoughts

model (Kiros et al., 2015) to compute question and answer embeddings. We also utilized framework

code from the vqa.pytorch Github repository.4

For all experiments with the NeuralCX model, we trained for a maximum of 20 epochs with early

stopping. We optimized the model parameters with standard stochastic gradient descent methods,

using the Pytorch library implementation of Adam (Kingma & Ba, 2014) with learning rate 0.0001

3Code for this project is available at https://github.com/gabegrand/VQA-Counterexamples.
4https://github.com/Cadene/vqa.pytorch
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and batch size 64. We also employed dropout regularization (p = 0.25) between hidden layers

(Srivastava et al., 2014).

We experimented with different numbers of hidden layersN = 1, 2, 3 and hidden units h =

256, 512, 1024, but found that larger architectures resulted in substantial training time increases

with negligible performance gains. We therefore used a moderate-sized architecture ofN = 2, h =

512 for all reported results. This model takes about 35 minutes to train to peak performance on a

single Tesla K80 GPU.

We evaluate the performance of our models and baselines with recall@k, which measures the

percentage of the ground truth counterexamples that the model ranks in the top k out of the 24

candidate counterexamples. Results on the test set for the NeuralCX Model, Embedding Model,

and baseline models are reported in Table 2.2. To better understand the relative importance of the

different inputs to the NeuralCX model, we selectively ablated different features by replacing them

with noise vectors drawn randomly from a uniform distribution. We chose to randomize inputs,

rather than remove them entirely, so as to keep the model architecture constant across experiments.

In each ablation experiment, the model was fully retrained. Results from these experiments are

reported in Table 2.3.

2.4 Results

We began by reimplementing the baselines presented by Goyal et al. (2016) and comparing our re-

sults with theirs. As expected, the Random Baseline performed approximately at chance (recall@5
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Our Results Goyal et al.
CX Model VQA Model Recall@1 Recall@5 Recall@5

Random Baseline - 4.20 20.85 20.79
Hard Negative Mining untrained 4.06 20.73 -
Hard Negative Mining pretrained 4.34 22.06 21.65
Embedding Model untrained 4.20 21.02 -
Embedding Model pretrained 7.77 30.26 -
Distance Baseline - 11.51 44.48 42.84

Two-headed CX trainable - - 43.39
NeuralCX untrained 16.30 52.48 -
NeuralCX pretrained 18.27 54.87 -
NeuralCX trainable 18.47 55.14 -

Table 2.2: Results of VQA-CX models and baselines. Where applicable, we compare our results with those re-
ported in Goyal et al. (2016). The midline separates unsupervised models (above), which were evaluated with-
out training on VQA-CX, with those that were trained on VQA-CX (below). We also distinguish how the
underlying VQA model was trained: “untrained” denotes that the VQA model parameters were randomly-
initialized and immutable; “pretrained” denotes parameters that were learned on the VQA task and then
made immutable; and “trainable” denotes parameters that were first learned on VQA, and then fine-tuned on
VQA-CX.

≈ 5
24 or 0.2083). Our Distance Baseline was comparable with, but slightly higher than, the result

reported by Goyal et al. This discrepancy indicates that it is possible that the distribution over the

rank of the ground-truth counterexample is more skewed in our dataset than in the one used by

Goyal et al. Notably, in both cases, the strategy of ranking counterexample images based on distance

in feature space is more than two times better than chance, and serves as a strong baseline.

As in Goyal et al. (2016), we found Hard Negative Mining to be a relatively under-performing ap-

proach. Since we used a different VQA model from Goyal et al., our results on this baseline are not

directly comparable. Nevertheless, in both cases, Hard Negative Mining performed only marginally

above chance (+1.21% points in our case, and+0.86 points in theirs). To isolate the impact of the
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VQA model, we computed the Hard Negative Mining baseline using an untrained (randomly initial-

ized) VQA model. After this change, the performance dropped to random.

The Embedding Model performed between Hard Negative Mining and the Distance Baseline. In-

terestingly, the value of λ that maximized performance was 1.0, meaning that integrating the overt

probability ofA under the VQA model only hurt accuracy. We observed a smooth increase in per-

formance as we varied λ between 0 and 1. Clearly, there is some signal in the relative position of the

candidate answer embeddings around the ground truth answer, but not enough to improve on the

information captured in the visual feature distance.

The NeuralCX model significantly outperformed both the Distance Baseline and the two-headed

model from Goyal et al. (2016). To quantify the impact of the VQA model on the performance

of NeuralCX, we tested three conditions for the underlying VQA model: untrained, pretrained,

and trainable. In the untrained condition, we initialized NeuralCX with an untrained VQA model.

In the pretrained condition, we initialized NeuralCX with a pretrained VQA model, which was

frozen during VQA-CX training. In the trainable condition, we allowed gradients generated by the

loss layer of NeuralCX to backpropagate through the VQA model. We found that fine-tuning the

VQA model in this manner produced small gains over the pretrained model. Meanwhile, with an

untrained VQA model, the recall@5 of NeuralCX was only 2.39% points lower than with a trained

model.

In the NeuralCX ablation experiments (Table 2.3), we found that visual features were crucial to

strong performance. Without any visual features, recall fell below the Distance Baseline. Both v and

the rank embedding appear to be especially important to the task. Intriguingly, these features also
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Figure 2.3: Qualitative results on the counterexample prediction task. Left: The original image and ground
truth counterexample from VQA v2, along with the question and ground truth answers. Right: the top 5
counterexamples selected by NeuralCX, with the top 3 answers (as scored by a VQA model) underneath. In
the top 4 rows, NeuralCX correctly identifies the correct counterexample (green outline), while in the bottom
4 rows, it fails. See Section 2.5 for a discussion of common failure modes.
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Performance Ablated Features
R@5 R@1 v vM vD Rank q a z

43.05 12.33 6 6 6 6

44.48 11.42 6

44.48 11.51 6 6 6

44.48 11.52 6 6 6 6 6 6

44.55 13.17 6

47.09 13.29 6 6 6

52.18 16.48 6

54.87 18.27 6

54.87 18.27 6

54.87 18.27

Table 2.3: Selective ablation of NeuralCX inputs. Features that are marked 6 are replaced with noise. Abla-
tions are sorted from top to bottom in order of disruptiveness, with the bottom row showing results from an
unablated model. The different features are defined in Table 2.1.

appear to be interdependent; ablating either v or the rank embedding was almost as disruptive as

ablating both. Meanwhile, we found that ablating the non-visual features produced a much smaller

impact. While ablating a resulted in a small performance drop, ablating q and z did not affect perfor-

mance at all.

2.5 Discussion

Our results highlight both promises and challenges associated with VQA. On the one hand, the

fact that NeuralCX outperforms the methods from Goyal et al. (2016) demonstrates that the data

contain enough signal to support supervised learning. This result is especially important in light of

the pronounced skew in the distribution over the rank of I∗ in the dataset, which makes approaches

based merely on image distance unreasonably dominant. Given that the supervised neural model
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from Goyal et al. (2016) barely surpasses the Distance Baseline, it seems likely that this model overfits

to the I∗ rank distribution. Indeed, theK × K fully-connected layer of this model severely limits

the information that can pass through to the output. Due to this bottleneck, it is unlikely that this

network learns anything other than the optimal activation biases of theK output units.

In contrast, we observed that NeuralCX effectively leverages both visual and semantic informa-

tion. When provided with only visual features, the recall@5 for NeuralCX was 7.78% points lower

than when the model was provided with both visual and semantic features (Table 2.3). In particu-

lar, the answer embedding provides information about the semantic similarity betweenA′ andA,

which we hypothesize allows the model to select counterexamples that are semantically distinct from

the original example. The strong performance of the Embedding Model—which bases its predic-

tions solely on answer similarity, and does not model image distance—also supports this hypothesis.

Thus, while visual similarity remains a crucial feature for VQA-CX, our findings demonstrate that

in order to achieve peak performance on this task, a model must also leverage semantic information.

While our results indicate that the answer embeddings encode task-relevant information, the

same cannot be said for the multimodal embeddings z produced by the VQA model. In our abla-

tion experiments, we found that replacing z and z ′ with noise did not affect the performance of

NeuralCX. Since z is, by definition, a joint embedding of q and v, it is possible that z encodes re-

dundant information. However, if this were the case, we would expect z to help the model in cases

where visual features are not available. Instead, we see a significant drop in accuracy when we ablate

the visual features but leave z, indicating that z does not support the recovery of visual features.

Our experiments with untrained VQA models suggest that the representations learned by the
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VQA model do not contain useful information for identifying counterexamples. Replacing the pre-

trained VQA model with an untrained version results in a decrease of only 2.39% recall@5. (Based

on our ablation experiments, this performance hit is not due to the loss of z, but rather, the loss of

the distribution over the counterexample answer P(A′), which is used to weight the embedding

representation ofA′). One could argue that it is unfair to expect the VQA model to provide use-

ful information for VQA-CX, since it was not trained on this task. However, when we co-train the

VQA model with NeuralCX, we find only a small performance improvement compared to the pre-

trained model. This result holds regardless of whether the VQA model is initialized from pretrained

weights when trained on VQA-CX.

This transfer failure raises questions about the extent to which models that perform well on the

VQA dataset actually learn semantic distinctions between visually-similar images. In our qualitative

analysis, we found that while the VQA model often produces the correct answer, it also assigns high

probability to semantically-opposite answers. For instance, when answering “yes,” the model’s other

top guesses are almost always “no” and “unsure.” Similarly, counting questions, the VQA model of-

ten hedges by guessing a range of numbers; e.g., “1, 2, 3” (see Figure A.3). While this strategy may be

optimal for the VQA task, it suggests that the VQA model is effectively memorizing what types of

answers are likely to result from questions. In other words, it is unclear from these results whether

the VQA model can actually distinguish between the correct answer and other answers with oppo-

site meanings.

While our results expose issues with existing approaches to VQA, it is important to consider two

external failure modes that also affect performance on VQA-CX. First, in some cases, NeuralCX
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fails to fully utilize information from the VQA model. Even when the VQA model correctly identi-

fies a particular I ′ as producing the same answer as the original, NeuralCX still sometimes chooses

I ′ as the counterexample. In other cases, NeuralCX incorrectly assigns high scores to images for

whichA′ ≈ A; e.g., an image of children “playing” was selected as a counterexample to an image

of children “playing game.” These failures indicate that NeuralCX does not optimally leverage the

semantic information provided by the VQA model.

The second failure mode arises from issues with the data itself. While the complementary pairs

data in VQA v2 makes it possible to formalize counterexample prediction as its own machine learn-

ing task, several idiosyncrasies in the data make VQA-CX a partially ill-posed problem.

• There may be multiple images in INN that could plausibly serve as counterexamples. This is
particularly evident for questions that involve counting (e.g., forQ = “How many windows
does the house have?” the majority of images in INN are likely to contain a different number
of windows than the original image.) In many cases, our models identified valid counterex-
amples that were scored as incorrect, since only a single I∗ ∈ INN is labeled as the ground
truth.

• For approximately 9% of the examples, the counterexample answerA∗ is the same asA. This
irregularity is due to the fact that the tasks of identifying counterexamples and assigning
answer labels were assigned to different groups of crowd workers (Goyal et al., 2016). In ad-
dition to potential inter-group disagreement, the later group had no way of knowing the
intentions of the former. This discontinuity resulted in a subset of degenerate ground truth
counterexamples.

• The distribution over the rank of I∗ within INN is not uniform; there is a strong bias to-
wards closer nearest neighbors. In the training set, I∗ falls within the top 5 nearest neighbors
roughly 44% of the time.

• Certain questions require common knowledge that VQA models are unlikely to possess (e.g.,
“Is this a common animal to ride in the US?”; “Does this vehicle require gasoline?”).
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• Other questions require specialized visual reasoning skills that, while within reach for current
machine learning methods, are unlikely to be learned by general VQA architectures (e.g.,
“What is the second word on the sign?” or “What time is on the clock?”)

• Finally, a small portion of the questions in VQA v2 simply do not admit to the counterexam-
ple task. For instance, given the question, “Do zebras have horses as ancestors?” it is impossi-
ble to select an image, zebra or otherwise, that reverses biological fact.

While these idiosyncrasies in the data complicate the task of counterexample prediction, we

nevertheless view work on VQA-CX as crucial to the broader goals of representation learning. As

leaderboard-based competitions like the VQA Challenge continue to steer research efforts towards

singular objectives, auxiliary tasks like VQA-CX present a useful opportunities to sanity-check our

progress. In this case, our results suggest that the representations learned by current VQA models

may not capture key semantic distinctions between visually-similar images. These findings, which

coincide with a growing both of work that shows that VQA models over-rely on superficial patterns

in the data, call for further efforts to improve visual grounding in VQA models.
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We must learn actually not to have enemies, but only

confused adversaries who are ourselves in disguise.

—Alice Walker

American Poet, Pulitzer Prize Winner

3
Adversarial Regularization: Reducing

Language Bias in VQA

In light of the evidence presented so far, learned bias stands as a significant obstacle to future

research progress in VQA. Chapter 1 established that language priors are a pervasive and inevitable

component of any naturalistic VQA dataset. Meanwhile, Chapter 2 demonstrated that the multi-

modal representations learned by high-performing VQA models do not necessarily encode key se-
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mantic distinctions between visually-similar images. Thus, while VQA v2 is a step towards “making

the V in VQA matter” (Goyal et al., 2016), the inclusion of negative examples in the data is not suf-

ficient to wean VQA models off their dependence on language priors. For all intents and purposes,

contemporary VQA models remain “hooked on phonics.”

While we may not be able to rid the VQA datasets of their omnipresent language priors, perhaps

we can inoculate our models against the toxic influence of these biases. In this chapter, we explore

one possible rehabilitation method, which we call “adversarial regularization.” Section 3.1 begins by

developing an understanding of regularization and adversarial methods in statistical machine learn-

ing. Combining these concepts, Section 3.2 introduces our approach to adversarial regularization.

Sections 3.3 and 3.4 present our experiments and results, which demonstrate that adversarial regular-

ization successfully reduces dependence on language biases in VQA models. Finally, in Section 3.5,

we conclude with a discussion of the key questions raised by our findings.

3.1 Background

3.1.1 Regularization in Statistical Machine Learning

One of the central goals of machine learning is to produce models that will generalize well to unseen

data. Regularization is an important tool for achieving this aim. Goodfellow et al. (2016) define

regularization as “any modification we make to a learning algorithm that is intended to reduce its

generalization error but not its training error.” In other words, regularization methods are designed

to achieve lower test error, but may come at the expense of increased training error. This trade-off is
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a fundamental aspect of regularization.

A broad class of regularization methods are in practice today. Many of these involve imposing

constraints on a model’s behavior through the addition of an extra loss term.

L̃(Θ, X, y) = L(Θ, X, y) + λR(Ψ) (3.1)

Here, λ is a hyperparameter that controls the weight of the regularization penalty R(Ψ) relative to

the loss termL(Θ, X, y). Meanwhile,Ψ can stand in for many different metrics that we may wish

to regulate. For instance, a common form of regularization setsΨ = |Θ|, imposing a penalty on

the norm of a model’s parameters so as to discourage the model from learning large parameter val-

ues. Another approach is to setΨ = h, so as to enforce sparsity constraints on the internal repre-

sentations h learned by the model. Finally, a prominent regularization technique called “dropout”

enforces sparsity at the level of a model’s layer-wise activation functionsΨ = f (h), randomly zero-

ing the outputs of a certain fraction of the model’s hidden units (Srivastava et al., 2014). While these

techniques each affect different components of the model, they all serve to reduce over-fitting by

encouraging the model to be more robust to variation in the data.

3.1.2 Adversarial Methods

In the previous section, we demonstrated how the addition of an extra loss term λR(Ψ) captures

many common forms of regularization in machine learning. In the methods presented above,Ψ

stands in for some intrinsic component of the model that we wish to regulate. However, it is also

possible for R(Ψ) to reflect metrics associated with a different model.
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The concept of Generative Adversarial Networks (GANs), first introduced in Goodfellow et al.

(2014), can be viewed as a regularization framework in which two models mutually regulate one

another’s behavior. In its classical formulation, adversarial learning involves a two-player minimax

game between two opponent networksG andD, which are co-trained to optimize the following loss

function (Goodfellow et al., 2014):

min
G

max
D

L(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))] (3.2)

In the original context,G is a generator, whose goal is to produce synthetic samples that reflect the

data distribution. Meanwhile,D is a discriminator, whose goal is to ascertain whether a particular

example came from the original data, or fromG. Informally, the discriminator can be seen as a reg-

ularizer for the generator: whenD is able to accurately distinguish the samples produced byG, the

loss value of Equation 3.2 is high forG. However, as Goodfellow et al. note, GANs are not, strictly

speaking, a form of regularization, since the competition between the networks is the sole training

criterion. Nevertheless, this style of adversarial approach, in which successful discrimination by an

adversary is used as a negative signal for a main network, is highly applicable to other, non-generative

tasks in machine learning.
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3.2 Adversarial Regularization

3.2.1 Domain-Adversarial Training

We come now to the proper intersection between regularization and adversarial methods. In their

paper, “Domain-Adversarial Training of Neural Networks” (2016), Ganin et al. lay out a framework

for leveraging adversarial methods to assist in domain adaptation. The goal of domain adaptation

is to improve the performance of a model when trained and tested on data that come from distribu-

tions with different characteristics. Theoretical work on domain adaptation suggests that, in order

for a representation to transfer successfully from a source domainDS to a target domainDT , it

must not depend on features that are particular to either domain (Ben-David et al., 2007, 2010).

To operationalize this idea, Ganin et al. introduce Domain Adversarial Neural Networks (DANNs),

which consist of three components (see Figure 3.1). The feature extractor networkGf produces fea-

ture representations of examples x. The label predictor networkGy takes these representations as

input, and predicts the class label y associated with x. Finally, the feature representations are also

fed to the domain classifier networkGd , which attempts to infer whether x came from the source or

target domain.

During training, the main networkGy(Gf (x; Θf );Θy) is trained on labeled examples from the

source domain x ∈ DS in the usual manner, using backpropagation via stochastic gradient descent.

Simultaneously, the domain classifier networkGd(Gf (x; Θf );Θd) is trained on both labeled exam-

ples x ∈ DS and unlabeled examples x ∈ DT . The parameters of the domain classifierΘd are up-
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Figure 3.1: Architecture of a Domain Adversarial Neural Network. Inputs are processed by a shared feature
extractor (green). The label predictor (blue) performs the main inference task, while the domain classifier
(pink) attempts to infer whether the sample came from the source or target domain. A gradient reversal layer
is used to negate updates from the domain classifier during backpropagation. (Figure from Ganin et al., 2016)

dated via gradient descent to minimize the network’s cross entropy loss on the binary classification

task. However, before backpropagation reachesGf , the gradients fromGd pass through a gradient

reversal layer GRLλ (Ganin et al., 2016):

GRLλ(x) = x (3.3)

∂GRLλ

∂x
= −λGRLI (3.4)

During the forward pass, the GRL acts as the identity function, leaving the input untransformed.

Meanwhile, during the backward pass, the GRL negates the gradients and scales them by a hyper-

parameter λGRL, which controls the magnitude of the gradients passed toGf . In practice, the GRL
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can be written in a few lines of code, and implementations exist already in PyTorch1 and Caffe.2 Re-

versing the gradients passed fromGd toGf encourages the feature extractor network to learn more

robust representations that do not encode distinctions between the source and target domains. In-

deed, Ganin et al. (2016) found that DANNs improved domain adaptation performance on image

classification and document sentiment analysis tasks.

While domain-adversarial training is an effective method for adapting machine learning mod-

els from one domain to another, it requires training on data from the target domain. Even though

the target domain data need not be labeled, this requirement is still problematic for both practical

and philosophical reasons. From a practical perspective, in many cases, examples from the target

domain may be in short supply, or else we may not have knowledge of the target domain at all. In-

deed, data scarcity is a major issue in many applied machine learning domains, such as medicine and

materials science (Hutchinson et al., 2017; Shaikhina & Khovanova, 2017). Moreover, even when

we do have access to plentiful examples from both source and target domains, we may deliberately

wish to avoid training on the target domain. For instance, while we could hypothetically perform

domain-adversarial training on the VQA-CP train and test splits, there is a sense in which this ap-

proach defeats the purpose of the VQA-CP benchmark. In VQA, we are not be interested in adapt-

ing the model to the particular answer-class biases contained in the VQA-CP test split, so much as

improving transfer to any such target domain with different language biases from the source. In

other words, the purpose of the VQA-CP test split is to assess transfer performance on an unseen
1GRL in Pytorch: https://discuss.pytorch.org/t/solved-reverse-gradients-in-backward-pass/3589
2GRL in Caffe: https://github.com/ddtm/caffe/tree/grl
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domain with novel biases. Thus, in the interest of learning maximally-transferable models, it is de-

sirable that our regularization scheme should not require access to training data from the target

domain.

3.2.2 Adversarial Training in Natural Language Inference

While VQA reveals a number of drawbacks associated with domain-adversarial regularization, these

issues are not isolated to VQA. Recently, a number of follow-up ideas on adversarial regularization

have emerged from the NLP literature in the context of a task called Natural Language Inference

(NLI). The goal of NLI is to determine whether a given premise (e.g., “A young family enjoys feeling

ocean waves lap at their feet”) supports a particular hypothesis (e.g., “A family is at the beach”).

As in VQA, a growing body of work points to the existence of pervasive “biases” or “annotation

artifacts” in benchmark NLI datasets (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018;

Belinkov et al., 2019). These biases make it possible for models to infer the answer to the entailment

problem from the hypothesis alone. Much like in the VQA setting, these “hypothesis-only” models

appear to pick up on keywords in the input that reliably predict the answer. While many of these

keywords are clearly associated with the corresponding answer class, for others, the link is much less

obvious. In their analysis of the SNLI (Bowman et al., 2015) dataset, Poliak et al. (2018) found that

universal negation words like “no,” “nobody,” “alone,” and “empty” were strongly associated with

contradictory hypotheses. However, the words “sleeping,” “sleeps,” and “asleep” were also found

to be highly predictive of contradiction. By way of explanation, the authors noted that, since many

SNLI premises deal with activities (e.g., “A woman is riding a bicycle”), an easy way for “lazy” crowd-
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workers to construct a contradictory premise is to negate the agency of the subject (e.g., “A woman is

sleeping”) (Poliak et al., 2018). This example reveals how idiosyncrasies in the data collection process

can give way to peculiar biases in ML benchmarks.

The literature on NLI offers useful methodological insights on how to improve model robust-

ness when training on biased datasets. Belinkov et al. (2019) introduce a variant of the domain-

adversarial technique that does not require training on examples from the target domain. In place

of the domain classifier from Ganin et al. (2016), the authors use an “adversarial classifier”GH, which

attempts to infer entailment from the hypothesis alone. Successful performance byGH is used as

a regularization signal for the main networkGNLI. Specifically,GH andGNLI share a hypothesis

encoder module fH , and the two networks are trained in tandem. Gradients fromGH are backprop-

agated through a gradient reversal layer before entering fH . This method discourages fH from en-

coding biases or other artifacts that facilitate successful hypothesis-only NLI performance. Belinkov

et al. (2019) demonstrate that adversarial training improves transfer performance on 9 out of 12 NLI

datasets.

3.2.3 Application to VQA

While their study is limited to NLI, Belinkov et al. (2019) note that their method is broadly applica-

ble to problems that require understanding the relationship between multiple different sources of

input data. In this work, we apply this adversarial training scheme to VQA. While VQA incorpo-

rates images in addition to text, the structure of the task is analogous to NLI; here, the image corre-

sponds to the premise, and the question corresponds to the hypothesis. At the time we began this
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research, our work was, to our knowledge, the only existing attempt to employ adversarial regular-

ization methods in a VQA setting. However, in October 2018, Ramakrishnan et al. (2018) published

a paper demonstrating the successful application of adversarial training to VQA. These develop-

ments, which demonstrate the fast pace of VQA research, provide a useful point of comparison to

our work.

3.3 Methods

3.3.1 Approach

We operationalize the adversarial training method from Belinkov et al. (2019) for bias removal in

the VQA setting. We consider a base VQA model with the following four component modules,

corresponding to the framework from Section 1.5:

• fv(I) Image feature extractor network

• fq(Q)Question feature extractor network

• fz(v, q)Multimodal fusion module

• gVQA(z)Answer classifier

Composing the four components, we obtain the following general expression for the base VQA

model. This model is trained to minimize the cross entropy loss with respect to the ground truth

answer agt .

PVQA(A|I, Q) = gVQA(fz(fv(I), fq(Q))) (3.5)

LVQA = − 1

|D|
∑
d∈D

∑
a∈A

a(d)gt logPVQA(a|I, Q) (3.6)
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Figure 3.2: Schematic diagram of adversarial VQA architecture. Right and left arrows represent forward and
backward propagation of gradients through the network, respectively. The red arrow indicates the gradient
reversal layer.

We also introduce a question-only adversarial classifier gADV(q), which attempts to infer the cor-

rect answer from only the question information. The adversary shares the same question feature

extractor fq as the base VQA model. However, fq and gADV(q) are separated by a gradient reversal

layer (Eq. 3.3 and 3.4). As above, this model is trained to minimize cross entropy loss with respect to

the ground truth answer.

PADV(A|Q) = gADV(GRLλ(fq(Q))) (3.7)

LADV = − 1

|D|
∑
d∈D

∑
a∈A

a(d)gt logPADV(a|Q) (3.8)
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We can now express the adversarial relationship between the main model and the adversary in a

manner analogous to Eq. 3.2:

min
VQA

max
ADV

L = LVQA − λADVLADV (3.9)

Here, the regularization coefficient λADV ≥ 0 controls the trade-off between performance on

VQA and robustness to language bias. Additionally, the hyperparameter λGRL ≥ 0 (from the

gradient reversal layer in Eq. 3.7) controls the scaling factor of the gradient reversal. These two

hyperparameters, which are the focus of our tuning experiments, perform related, but different

functions. Setting either or both to zero disables the regularization, since fq receives no gradients

from the adversary. This combination is equivalent to the baseline VQA model. Meanwhile, set-

ting λADV > 0, λGRL > 0 enables adversarial regularization. This setting is the main focus of our

experiments.

3.3.2 Implementation

Our experimental setup is implemented as an extension to the Bottom-Up / Top-Down model de-

scribed in Section 1.6.2.3 Unless otherwise noted, we use the default hyperparameters from Pythia.

The adversarial classifier gADV is implemented as a two-layer fully-connected network with 512 hid-

den units and ReLU activation.4 Both the adversary and the base VQA model are randomly initial-

3Code for this project is available at https://github.com/gabegrand/adversarial-vqa. Note that we base our
work on the recent Pythia implementation of the Bottom-Up / Top-Down model from Facebook AI Re-
search (Jiang et al., 2018a), as opposed to an earlier implementation that is popular on Github.
4As in Chapter 2, we experimented with different numbers of hidden layersN = 1, 2, 3 and hidden units
h = 256, 512, 1024, 2048 in the adversarial classifier. We found the details of the adversary architecture to
have little impact on performance, with the exception that adversaries withN > 1 hidden layers were more
effective regularizers than one-layer adversaries.
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ized with a fixed seed at the start of training. We co-train the networks for 16k iterations with two

separate PyTorch Adamax optimizers with batch size 512 and learning rate 0.001. Note that Jiang

et al. (2018b) use a handcrafted learning rate schedule, which consists of a 1k linear warm-up phase,

after which point the learning rate is dropped by a factor of 0.1 at iterations 5k, 7k, 9k, and 11k. To

minimize the possibility of gradient scaling mismatch between the base model and the adversary, we

keep the learning rate fixed throughout training. While this modification causes the performance of

the baseline VQA model to drop 1.1% points, it greatly improves stability and convergence during

adversarial training.

The main goal of our experiments was to study the effects of adversarial regularization on our

model’s ability to generalize to new domains with different language priors. In our primary exper-

iments, we train on the train split of VQA-CP v1 / v2, and evaluate generalization performance on

the respective test split. By construction, the train and test splits have radically different language

priors, so performance on VQA-CP test is a good measure of robustness to bias. As discussed in

Section 3.1, regularization methods offer a trade-off between train and test accuracy. To assess this

trade-off, we report the performance of our models on both splits of VQA-CP. Moreover, to under-

stand how these models perform in their original context, we also retrain these models with the same

hyperparameter settings on the regular VQA v1 and v2 datasets.

3.3.3 A Note on Validation in VQA-CP

One of the main methodological hurdles we encountered in working with VQA-CP relates to the

issue of validation. In most machine learning settings, a small portion of the data is held out as a val-
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idation set, which allows for an unbiased evaluation of the model’s performance without running

the model on the test set. Unfortunately, VQA-CP does not provide a validation set. While Agrawal

et al. (2018) do not offer rationale for this decision, follow-up work co-authored by Agrawal notes,

“VQA-CP does not have a validation set and generating such a split is complicated by the need for

it to contain priors different from both the training and test sets in order to be an accurate estimate

of generalization under changing priors – an ill-defined notion for binary questions” (Ramakrish-

nan et al., 2018). The authors explain that, in place of early stopping, they train their models “until

convergence” on the training set.

Ramakrishnan et al. are correct in noting that the nonstandard structure of VQA-CP makes val-

idation tricky. However, we take issue with the idea of training until convergence as an acceptable

replacement for early stopping, for the reason that this practice is essentially guaranteed to result

in overfitting for the baseline VQA model. Indeed, one of our first findings was that the baseline

model quickly and severely overfits to the VQA-CP train set (see the top right plot in Figure 3.3 in

the following section). This behavior is not surprising, since we expect that an unregularized model

will overfit to the strong language priors in VQA-CP. However, it is important to note that, regard-

less of the biases inherent in the data, neural networks that are trained for a long time will tend to

overfit to the specific examples contained in the training set. Indeed, as Figure 3.3 shows, train loss

continues to decrease throughout the duration of training, reaching 90%+ accuracy, long after the

test performance peaks. Therefore, if we wait until convergence, we are all but certain to end up

with a baseline model that is unnecessarily overfit. This finding is problematic, since it suggests that

training until convergence may artificially lower the performance of our baseline.
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In order to address this issue, we must have some mechanism for distinguishing between over-

fitting to language priors in the training data, and overfitting to the training data more generally.

Our solution is to randomly sample 10% of the examples in the VQA-CP train split to form a new

VQA-CP validation split. In all our experiments on VQA-CP, we train models on the remaining

90% of the examples, and use the val split for early stopping. Performance on the val split will stop

improving when the model begins to overfit to the specific training data. However, because the val

split shares the same language biases as the train split, the val split cannot be used to assess how well

the model will transfer to the test split. In this way, our methods correct for the issues associated

with training until convergence, while preserving our ability to remain agnostic to the distribution

of priors in the test set.

While dividing the trainset into train and val splits allows us to perform early stopping, some

validation-related challenges still remain. In addition to early stopping, it is standard practice to use

validation performance for model selection; i.e., choosing the best hyperparameter combination to

run on the testset. However, since the new valset contains different biases from the testset, valida-

tion performance does not forecast how the model will perform on the testset. In the case of early

stopping, we are content for the valset to be “blind” to test performance, since we care only about

overfitting in the context of the training domain. In contrast, for model selection, we want to be

able to identify regularization coefficients that facilitate good transfer performance. However, since

regularization tends to reduce training accuracy, choosing models that perform well on the valset

will tend to select for models that are underregularized.

We do not currently have a satisfying resolution to the issue of model selection on VQA-CP. As
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Ramakrishnan et al. observe, a true validation set for VQA-CP would need to contain priors that are

different from those in both train and test. However, the methods used by Agrawal et al. (2018) to

construct the VQA-CP splits are fairly involved, and we do not have access to the underlying code.

Moreover, even with the code, as Ramakrishnan et al. note, for questions with binary answers, it is

unclear how we might achieve the notion of “changing priors” across three different splits. In the ab-

sence of a true validation set, one possible interim solution that we considered be to create a second

valset derived from VQA-CP test. However, this approach compromises our ability to remain agnos-

tic to the testset. Therefore, instead of introducing additional methodological complexity, we elect

to bite the bullet; as in the work of Ramakrishnan et al. (2018), we perform model selection based on

results on VQA-CP test. However, rather than selectively present our best-performing model, we

report results across a broad range of hyperparameters. We hope that in the future, recognition of

these challenges will prompt the introduction of a proper validation set for VQA-CP.

3.3.4 Experiments

We perform all of our experiments in parallel on VQA-CP v1 and VQA-CP v2. In adversarial reg-

ularization, the main experimental challenge is to identify a combination of λADV and λGRL that

achieves good regularization performance. As discussed in Section 3.3.1, the interaction of these two

hyperparameters controls the strength of the regularization. Because of the novelty of this method,

we have little prior insight as to what values to assign to these hyperparameters. Therefore, we per-

form a series of grid searches in order to hone in on the optimal values. We exhaustively report the

test performance of all hyperparameter combinations on our grid search so as to maximize the trans-
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parency of our results.

To improve gradient stability during the early stages of training, we experiment with a novel

scheduling regime for the gradient reversal layer. GRL scheduling has two components: delay and

warmup. During the first µ iterations of training, we set λGRL = 0, which allows the question

encoder to receive clean gradients from the VQA model. Next, we have a warmup phase for w it-

erations, in which we increase λGRL linearly from 0 to some constant c. The following equation

summarizes our GRL scheduling implementation, where t refers to the current training iteration:

λGRL(t) =



0 t ≤ µ

t−µ
w−µ µ ≤ t ≤ µ+ w

c t > µ+ w

(3.10)

GRL scheduling introduces two new hyperparameters µ and w. We performed separate grid searches

for VQA-CP v1 and v2 to identify optimal values for each dataset. We also report the results of these

experiments in the following section.
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3.4 Results

Adversarial regularization significantly reduces overfitting on VQA-CP. Figure 3.3 highlights the

impact of adversarial regularization on model performance. Models that are not regularized exhibit

characteristics of severe overfitting on both VQA-CP v1 val and test. Note that overfitting begins

much earlier on the test set (around 2000 iterations) as the model begins to over-rely on language

priors. In contrast, overfitting on the val set appears later, around 3500 iterations. This pattern holds

for both VQA-CP v1 and v2.

Figure 3.3: Performance comparison of [R]egularized (red) and [B]aseline (blue) models on VQA-CP v1 train,
val, and test splits.5The baseline model exhibits severe overfitting on both the val and test splits. In contrast, in
the regularized model, overfitting appears later in training, and is much less pronounced. Regularization bol-
sters the model’s robustness to language biases, resulting in improved performance on the test set. However,
these gains come at the cost of significantly reduced performance on the training domain.

5Note that, while Figure 3.3 shows loss on the set throughout the course of training, we assume this metric
would be unavailable in a real-world setting. Therefore, we base early stopping only on the validation loss
only.
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Models (V1) λADV λGRL VQA-CP v1 (test) VQA-CP v1 (val) VQA v1 (val)

Baseline 0 0 37.87 65.79 62.68
+ AdvReg 0.1 0.01 45.69 46.94 46.34

Models (V2) λADV λGRL VQA-CP v2 (test) VQA-CP v2 (val) VQA v2 (val)

Baseline 0 0 38.80 67.76 63.27
+ AdvReg 0.005 1 36.33 50.63 48.78
+ GRL Sch 0.005 1 42.33 56.90 51.92

Table 3.1: Performance comparison of baseline and adversarially-trained models on VQA(-CP) v1 and v2
datasets using the best-performing hyperparameters. Adversarial regularization markedly increases perfor-
mance on VQA-CP test, indicating improved generalization to out-of-domain examples. However, these
gains come at the cost of substantially reduced performance on in-domain data on the VQA-CP and VQA
validation sets.

Adversarial regularization improves test performance on VQA-CP v1. In general, adversarial reg-

ularization works well out-of-box on VQA-CP v1. Many of the hyperparameter combinations we

tested (Figure 3.4) outperform the baseline on VQA-CP v1 test, with the strongest one improving on

the baseline by 7.82% points (Table 3.1). The key to successful regularization appears to be balancing

λADV and λGRL. As Figure 3.4 reveals, large values of λADV perform better with small values of λGRL,

and vice-versa. However, when λADV is too small, adversarial regularization fails to yield any perfor-

mance improvements; none of the models we tested with λADV = 0.001 outperformed the baseline.

On the other hand, when λADV is too large, training becomes unstable; for λADV > 1, we observed

that many training runs failed to converge due to exploding gradient values.

Out-of-box adversarial regularization fails to improve test performance on VQA-CP v2. As Fig-

ure 3.4 shows, none of the hyperparameter combinations we tested outperformed the baseline on

VQA-CP v2 test. Section 3.5 features a discussion of this discrepancy and its potential causes. One
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Figure 3.4: Hyperparameter tuning curves on VQA-CP v1 and v2 test. Each line represents a different setting
of λADV; lighter red indicates less regularization, while darker red indicates more. λGRL is varied along the
x-axis. The blue dashed line shows the performance of the baseline model. On VQA-CP v1, many hyperpa-
rameter combinations outperform the baseline; these successful combinations tend to balance high values of
λADV with low values of λGRL, or vice versa. In contrast, on VQA-CP v2, none of the hyperparameter combi-
nations tested outperform the baseline. For values of λGRL > 1, training diverges due to exploding gradients.

possible relates to the substantial amount of noise that the adversary inserts into the gradient up-

dates for the question encoder. This phenomenon, which is readily observable by recording gradient

norms throughout training, is most evident in the first 2000-4000 iterations, and is especially pro-

nounced for VQA-CP v2 (see Figure 3.5). We hypothesized that this instability interferes with the

early stages of optimization, causing training to converge to a suboptimal area of the global param-

eter space. In order to test this hypothesis, we ran a series of experiments with the GRL schedule

described in Section 3.3.4, which yielded the following findings.

With GRL scheduling, adversarial regularization outperforms the VQA-CP v2 baseline. Fig-

ure 3.6 shows the results from the various schedules that were tested. For VQA-CP v2, several of

these schedules improve performance over the baseline. In the highest-performing of these sched-

ules, regularization is delayed until µ = 2000 iterations, and slowly warms up for the following

w = 4000 steps. This schedule results in a 6.00% point performance increase compared to using
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Figure 3.5: Left: Norm of gradient updates to the question encoder during adversarial training (gray) com-
pared to baseline (magenta). Adversarial training introduces significant noise into the updates. Right: Com-
parison of loss plots illustrating how GRL scheduling helps to overcome gradient instability during training
on VQA-CP v2. The baseline model (orange) begins to overfit around iteration 4000. Adversarial regulariza-
tion (blue) helps to reduce overfitting, but the regularized model never recovers from the higher loss values
early in training. When training under a GRL schedule (magenta), learning proceeds uninterrupted for the
first µ iterations. When regularization is first enabled at µ = 2000, there is a small bump in the loss curve.
Nevertheless, the loss quickly recovers, and converges to a lower value than the baseline.

the same regularization coefficients without GRL scheduling, and a 3.53% point improvement over

the baseline (see Table 3.1). Figure 3.5 helps to illustrate how GRL scheduling allows the model to

converge to lower loss values during training.

GRL scheduling does not yield improvements on VQA-CP v1. Despite improving performance

on VQA-CP v2, when applied to VQA-CP v1, we did not find any gains from GRL scheduling.

Note that the baseline model begins to overfit roughly twice as quickly on VQA-CP v1 than on

VQA-CP v2 (compare Figure 3.3 with 3.5); accordingly, we use accelerated GRL schedules for VQA-

CP v1. Figure 3.6 shows the results of running adversarial training with various GRL schedules on

VQA-CP v1. While five of the runs outperformed the baseline, three of these were with no start de-

lay. Moreover, all of the runs with GRL scheduling performed worse than a model with the same

regularization coefficients with static λGRL. Finally, many of the runs on VQA-CP v1, and especially

those with fewer warm-up iterations, diverged due to exploding gradients.
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Figure 3.6: Effects of gradient reversal layer (GRL) schedules on performance on VQA-CP v1 and v2 test. Reg-
ularization is delayed until the start iteration µ, indicated on the x-axis, after which point λGRL is increased
linearly from 0 to a constant value c over the course of w steps. Each line represents a different value of the
warmup duration w. The blue dashed line shows the performance of the baseline model. Missing points indi-
cate instances where training diverged due to exploding gradients.

Figure 3.7: Trade-off between in-domain and out-of-domain performance on VQA-CP v1. Improvements on
the test set were moderately correlated (r2 = 0.355, p = 0.014) with reduced performance on the validation
set.

Adversarial regularization consistently diminishes performance on the original VQA v1 and v2

datasets. Across all hyperparameter settings tested on VQA-CP v1, increases in test performance

were moderately correlated (r2 = 0.355, p = 0.014) with decreases in validation performance

(see Figure 3.7). In general, score on the validation split of VQA-CP was a good predictor of per-

formance on the original VQA datasets. Table 3.1 shows the results from the best-performing reg-
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ularized models on VQA-CP test. Compared to the baseline, these models experienced significant

reductions in performance when trained on the original VQA datasets (−16.34% points on VQA v1

and −11.35% points on VQA v2). Thus, while the gains due to regularization on VQA-CP test were

more significant on v1 as compared to v2, the losses were also greater on the original versions of these

datasets.

Adversarial regularization visibly reduces the presence of language priors in the posterior distribu-

tion. Figure 3.8 compares outputs of the baseline and regularized models for various question types.

In all of these cases, the baseline model posterior shares significant overlap with the training prior.

In contrast, the regularized model is able to correctly predict answers that have low prior probability

in the training set. This effect is most apparent in questions with binary (i.e., yes/no) answers. In

VQA-CP v1 train, the answer to more than 90% of the questions that begin with “Is there a...?” is

“no,” while the opposite is true on VQA-CP v1 test. Consequently, the baseline model almost always

predicts “no” for questions in the test set of this type. In contrast, the regularized model answers

roughly 71% of these questions with “yes.” The regularized model also demonstrates the ability

to make inferences that contradict real-world language priors; i.e., the regularized model correctly

identifies the double-decker bus in Figure 3.8 as pink, while the baseline model thinks the bus is red.6

6In this case, red also happens to be the dominant color in the training prior.
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Figure 3.8: Visualization of dataset priors and model scores for different question types on VQA-CP v1 test.
In each example, the leftmost two bars show the prior distribution over answers for the given question type
(in bold) for the train and test sets.7The rightmost two bars show the scores assigned to different answers by
the baseline and regularized models for a particular example of the given type. The baseline model frequently
assigns high probability to incorrect answers that are prominent in the training distribution. In contrast, the
regularized model is able to make correct inferences in cases where the ground truth answer has low prior
probability.
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While qualitative inspection of model outputs finds many success cases for adversarial regulariza-

tion, it also reveals a handful of idiosyncratic side-effects. Figure A.3 in the Appendix highlights the

common failure modes of regularized models. Unsurprisingly, the regularized model struggles on

questions that rely heavily on language priors (e.g., “What color is mustard?”). However, in many

cases, the regularized model also ignores linguistic cues that constrain the expected form of the an-

swer. For instance, when presented with image of horses on a beach, and the question “What animal

is pictured?” the model’s top answer was “beach.” Salient visual features, such as the bright colors of

a parrot’s feathers, also appear to distract the model from the correct answer. Finally, in cases where

the answer is difficult to deduce, the baseline tends to fall back on the language priors from the train-

ing set; meanwhile, the regularized model instead predicts visual features from the current image

that may or not be relevant to the question at hand.

3.5 Discussion

Our findings provide clear support for adversarial regularization as a general method for reducing

dependence on language priors in VQA models. Regularization leads to marked improvements

on VQA-CP test for both v1 (+7.82% points) and v2 (+3.53% points), indicating improved gen-

eralization to environments with novel priors. On both these datasets, regularized models exhibit

significantly less overfitting, as seen in the validation and test loss curves during training. Our use of

7In Figure 3.8, we show the VQA-CP test priors for different question types to facilitate comparison with the
train priors. However, the reader should take care not to construe the test priors as “target” distributions for
the models, since the baseline and regularized scores reflect model predictions for the specific examplॸ in the
figure. Moreover, since the models are not trained on the test domain, they have no means of learning the test
priors.
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separate validation sets on VQA-CP helps to establish that this phenomenon is specifically related

to reduced overfitting to language priors. Furthermore, an inspection of the model outputs con-

firms that compared to the baseline model, regularized models rely much less on the strong language

priors present in questions like “What sport is...?” and “Is there a...?” Additionally, their answers

demonstrate more grounding in the image and its salient visual features. Taken as a whole, these re-

sults show clear promise for adversarial regularization as a method for improving the robustness of

VQA models to latent biases in the data.

Though we find adversarial regularization to be effective in combating language bias, one key

concern is that the pendulum may have swung too far: there are both qualitative and quantitative

signs that our models may actually be over-regularized. Qualitatively, we observe that regularized

models often ignore linguistic cues in the question, and are heavily swayed by salient visual features

(see Figure A.3). These findings suggest an under-utilization of useful language priors as well as

specific information in the question. Meanwhile, quantitatively, the performance of our regularized

models suffers dramatically on in-domain examples, as seen through the substantial drops in score

on the original VQA datasets.

In response to these results, it is natural to ask whether impaired in-domain performance is a

necessary evil of adversarial regularization. Our aggregate correlation analysis on VQA-CP v1 (Fig-

ure 3.7) suggests that the trade-off between validation and test performance is pervasive across all

hyperparameter settings tested in this work. This phenomenon makes intuitive sense, given that, by

design, adversarial regularization censors information that is useful for in-domain inferences. Based

on this evidence, we feel it is reasonable to expect that adversarial regularization will necessarily di-
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minish performance on the original VQA datasets.

Despite these findings, it bears noting that in their work, which uses similar methods, Ramakr-

ishnan et al. (2018) reported that their adversarially regularized VQA model only minimally under-

performed their baseline model on VQA v2 (see Table 3.2 for a comparison their results with ours).

In our comparison study, we attempted to replicate the methods of this study as closely as possi-

ble, despite lacking access to their code.8 This included using the same hyperparameter settings and

learning rate schedule. However, while both studies use the Bottom-Up / Top-Down VQA archi-

tecture from Anderson et al. (2018), we use the more modern Pythia implementation (Jiang et al.,

2018a) in place of an earlier implementation that is popular on Github.9 An unfortunate reality of

ML research is that implementation details can sometimes have outsized impact on the effectiveness

of a particular method. Therefore, is entirely possible that the difference in our findings is due to

some small methodological discrepancy. Nevertheless, in order for adversarial regularization to gain

broader adoption in the ML community, it is necessary that this technique not hinge on specific im-

plementation details. Consequently, we feel our findings showing the steep costs of regularization

on in-domain examples offers an important counter-narrative to the results presented by Ramakrish-

nan et al. (2018).

Setting aside these considerations, there is one interesting difference between our approach and

that of Ramakrishnan et al. that may at least partially explain the deviation in our findings. In addi-

8At the time of writing, the code from Ramakrishnan et al. was not publicly available. We attempt to recapit-
ulate the same hyperparameters and methods used in the study for comparison purposes. However, without
looking at the code we cannot be sure that we are not missing some key implementation detail. Neverthe-
less, the authors indicated to us that they were planning to release this code in the future, at which point a
replication of their exact methods will be possible.
9https://github.com/hengyuan-hu/bottom-up-attention-vqa
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Ours Ramakrishnan et al.
VQA-CP v2 (test) VQA v2 (val) VQA-CP v2 (test) VQA v2 (val)

Baseline 38.80 63.27 39.74 63.48
+AdvReg 36.33 48.78 40.08 60.53
+DoE – – 41.17 62.75
+GRL Sch 42.33 51.92 – –

Table 3.2: Comparison of our results with those of Ramakrishnan et al. (2018) on VQA(-CP) v2.10Our best
model outperforms that of Ramakrishnan et al. on VQA-CP v2 test by 1.16% points, despite starting at a
lower baseline due our holding out 10% of the training examples. However, while Ramakrishnan et al. report
only a minimal reduction (−0.73% points) in performance on VQA v2 due to regularization, we observe a
substantially greater reduction (−11.35% points). Ramakrishnan et al. introduce an additional difference of
entropies regularizer (denoted DoE) that improves both in-domain and out-of-domain accuracy.

tion to their adversarial regularizer, Ramakrishnan et al. introduce a second regularizer that consid-

ers the difference of entropies (DoE) between the output distributions of the main and adversarial

models. Specifically, the DoE regularizer minimizes the entropy of the main VQA model’s posterior

distribution, while maximizing the entropy of the adversarial classifier’s posterior distribution. In-

tuitively, this regularization technique seeks to ensure that the image, which only the main model

has access to, significantly increases certainty about the answer. Indeed, Ramakrishnan et al. find

that the addition of the DoE regularizer increases out-of-domain performance on VQA-CP v2 test

by 1.09% points. Moreover, they also find that DoE increases in-domain performance on VQA v2

val by 2.22% points. In their discussion, the authors suggest that DoE helps the main model to re-

tain discriminative information in the question encoding. In fact, they show that with DoE, λADV

can be increased to higher values without losing performance. These results suggest that DoE reg-

ularization or a similar technique may be useful for countering the negative effects of adversarial

10In Table 3.2, we compare on VQA(-CP) v2, since Ramakrishnan et al. do not report results for their Bottom-
Up / Top-Down model on VQA(-CP) v1.
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regularization.

While entropy difference regularization is an intriguing concept that merits further exploration,

the need for a second regularizer to counter the original regularization technique is something of an

oxymoron. Moreover, part of the appeal of adversarial regularization is its simplicity; thus, the intro-

duction of yet another regularizer creates methodological complications that may hinder adoption

of this technique. Our work offers an alternative solution in the form of GRL scheduling. GRL

scheduling is a simple technique akin to other widely-employed forms of incremental scheduling in

ML, such as learning rate decay and curriculum learning. Moreover, there is ample precedent in the

literature that, when training on an auxiliary objective, it is necessary to gradually introduce this ob-

jective over the course of training. For instance, Ranzato et al. (2015) demonstrated that training se-

quence models on reward signals derived from non-differentiable test metrics (e.g., BLEU, ROUGE)

using reinforcement learning improved performance over traditional cross entropy based training.

However, they found that incremental integration of this secondary signal over the course of train-

ing was crucial to achieving performance gains; without scheduling, model performance did not

improve beyond random chance (Ranzato et al., 2015). Since the underlying ideas are well-grounded

in existing work—and will be instantly familiar to anyone with an ML background—GRL schedul-

ing offers a practical contribution to the adversarial training literature.

In our case, given the gradient instability that adversarial training introduces, we found GRL

scheduling to be a useful tool for improving the convergence properties of this technique. Indeed,

we found that GRL scheduling was crucial for improving on the baseline score on VQA-CP v2 test.

This result suggests that GRL scheduling counters the most acute negative effects of adversarial
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regularization by allowing the main model to learn unencumbered early in training. Furthermore,

because VQA v2 contains measurably less language bias than VQA v1, it is possible that adversarial

regularization only becomes helpful later in training, when the model begins to overfit to these bi-

ases. Nevertheless, GRL scheduling is not the solution to all of the issues associated with adversarial

training. In particular, even with GRL scheduling, we found that adversarial regularization signif-

icantly diminished performance on VQA v2. More research is necessary to form more principled

theories of when and how GRL scheduling will be helpful. An interesting area for further explo-

ration would be to develop an automated method of adjusting λGRL during training. This research

idea, which is similar to the adaptive learning rate techniques widely in use in ML today (Zeiler,

2012; Kingma & Ba, 2014), has the potential to lead to a more theoretically-grounded understanding

of adversarial training methods.

Regardless of whether we use GRL scheduling, difference of entropy, or some other technique,

it is clear that the tendency of adversarial training to over-regularize is a significant drawback of this

method. In particular, our qualitative inspection of common failure modes (see Figure A.3) reveals

that adversarially-regularized models tend to ignore important linguistic cues in the question. These

findings suggest the need to develop more targeted regularization techniques. Our current approach

regularizes the entire question representation v. One possible improvement would be to use an

attention-weighting scheme to apply different amounts of regularization to different words in the

question. In this way, regularization could be focused only on the first few words of the question

(e.g., “Is there a...”) that encode answer-distribution biases, while preserving other important linguis-

tic information, such as common knowledge.
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The poor interpretability/explainability of deep neural

networks and other state-of-the-art AI techniques is

primarily due to cultural factors, rather than technical

limitations. We can and should fix this by refocusing

our research priorities as a community.

—Arvind Narayanan

Professor of Computer Science, Princeton University

4
Conclusion

The current moment in AI research is one of collective reckoning. The wildly-successful

marriage of black box inference models and big data has allowed us to broach problems that seemed

intractable just a decade ago. However, this pairing has given rise to a unique set of headaches that

researchers are only now beginning to confront. The brief history of VQA research perfectly encap-

sulates the dawning of this realization. The early VQA literature from 2014-2016 was characterized

by a certain gung-ho optimism: simply apply existing methods from computer vision and natural
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language processing, combine, and “voilà!” Over the following years, however, researchers seeking

to interpret the behavior of these models began to uncover the extent to which they internalize spu-

rious patterns in the data. In this way, the twin problems of interpretability and bias have forced

VQA researchers to appreciate the limitations of our current end-to-end learning approaches.

Though VQA research currently faces many hurdles, perhaps the greatest obstacle is not techni-

cal, but cultural. The majority of VQA research is aimed at improving accuracy on big-ticket bench-

marks, chief among these being the VQA Challenge datasets discussed in this work. While com-

petitive benchmarks offer a convenient way for researchers to compare performance metrics, they

also cause VQA research as a whole to “overfit” to these particular datasets. As ML bias researcher

Arvind Narayanan puts it:

ML has an “accuracy fetish” — comparing algorithms and models based on a single
performance number on a benchmark dataset, such as ImageNet. This has certainly
had benefits and led to rapid progress in some areas. But when the whole field is en-
gaged in one-dimensional, competitive pursuits, it becomes culturally hard to work
on mitigating bias. And if the benchmark datasets we use themselves encode our his-
toric biases, only biased models can “win”.1

As Narayanan argues, these cultural obstacles can be overcome by “refocusing our research priorities

as a community” to promote work that addresses issues of interpretability and bias in ML. Indeed,

since 2016, a growing group of researchers have begun to tackle these questions in VQA. These ef-

forts, which dovetail with the work presented in this thesis, offer exciting glimpses of a future gener-

ation of models capable of offering both accurate and transparent answers to multimodal questions.

1Narayanan, Arvind (@random_walker), Twitter, Dec. 21, 2017. https://twitter.com/random_walker/status/
943922485594075136
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4.1 Towards Interpretable VQA

One of the principal objectives of interpretable ML research is to create models capable of explain-

ing their internal reasoning processes. This goal requires translating a model’s internal representa-

tions into output that can be understood by a human. Pointing to counterexamples is one way for

a model to provide clues about its reasoning. Ultimately, however, we would like for models to be

able to divulge their entire reasoning process from start to finish. Unfortunately, the relative sim-

plicity of many naturalistic VQA queries allows models to make educated guesses without taking

into account the physical and conceptual relationships between objects in the image. For this rea-

son, VQA models can often get by with pattern-matching between words in the question and visual

features in the image. The absence of structured reasoning in current VQA models presents a signifi-

cant obstacle to the goal of providing human-interpretable explanations.

One method of cracking down on this kind of behavior is to constrain the VQA task to require

more advanced forms of compositional reasoning. Synthetic VQA datasets like SHAPES (Andreas

et al., 2016) and CLEVR (Johnson et al., 2017) replace natural scenes with procedurally-rendered

images of geometric objects with different spatial orientations and physical properties. By using a

functional-style programming language to generate both questions and images, this approach allows

for complex, hierarchical questions; e.g, “There is a sphere with the same size as the metal cube; is it

made of the same material as the small red sphere?” (Johnson et al., 2017) These benchmarks have

given rise to new class of VQA architectures called Neural Module Networks (NMNs) (Andreas

et al., 2016; Hu et al., 2017; Johnson et al., 2017; Mascharka et al., 2018). NMNs consist of a set of
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Figure 4.1: Examples of neural module networks, which segment reasoning into a sequence of human-
interpretable operations. Left: End-to-end Module Networks generate instance-specific network structures
composed of learnable modules. (Figure from Hu et al. 2017). Right: Transparency by Design networks uti-
lize a set of visual reasoning primitives that produce human-interpretable attention maps, offering useful
insight into the model’s reasoning process. (Figure from Mascharka et al. 2018).

modules that learn to perform discrete visual reasoning tasks (e.g., find, relocate, and, or,

filter, count, etc.). During inference, a generator network composes a sequence of modules on-

the-fly to answer the question (see Figure 4.2). In this way, NMNs provide significantly more insight

into their internal reasoning processes than black-box neural models. Moreover, NMNs have been

successfully extended from synthetic datasets to naturalistic VQA, though they do not perform as

well as black-box models on the latter (Andreas et al., 2016; Chandu et al., 2018).

Another exciting approach to interpretable VQA leverages graph-based representations to facil-

itate novel forms of inference. Much of this work utilizes Graph Convolutional Networks (GCNs;

Kipf & Welling 2016), which have recently emerged as a popular method of knowledge mining for

graph-structured data. Since the early days of VQA, an interesting sub-literature has focused on the

use of relational databases to augment VQA models with external knowledge (Wang et al., 2015; Wu

et al., 2016; Teney et al., 2017b; Lu et al., 2018). Recently, Narasimhan et al. (2018) introduced a VQA

model that utilizes GCNs to support its inferences with human-interpretable relational facts mined

89



Figure 4.2: Graph Convolutional Networks (GCNs) facilitate novel forms of interpretable inference in VQA.
Left: GCNs allow models to support their inferences with relational data stored as knowledge graphs. (Figure
from Narasimhan et al. 2018) Right: GCNs learn complex, query-dependent relationships between detected
objects in the image. (Figure from Norcliffe-Brown et al. 2018).

from a knowledge graph. Taking this idea a step further, Norcliffe-Brown et al. (2018) noted that

objects in the image also implicitly define a relational graph. Based on this insight, they proposed an

approach that uses GCNs to learn complex, query-dependent relationships between the objects in

images, without the aid of an external database. As both of these approaches demonstrate, graph-

based methods offer interesting and creative ways to construct more interpretable VQA models.

4.2 Towards Bias-Free VQA

With respect to the Problem of Bias, there is much cause for optimism. Growing awareness of bias-

related issues in the ML community has spawned a broad range of solutions. As the work presented

in Chapter 3 demonstrates, adversarial regularization is an effective technique for mitigating learned

bias in VQA models, with many promising avenues for further research. While our work puts for-

ward one method for dealing with bias in models, it will ultimately fall on the VQA community to

address these issues at the dataset level. In particular, in light of our finding that adversarial regular-

ization reduces in-domain accuracy, it is not likely that researchers will sacrifice precious points to
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reduce bias unless the benchmark itself requires it. In other words, in order to solve the Problem of

Bias, unbiased learning must be the dominant strategy on competitive VQA benchmarks.

To this end, it is useful to consider how we might go about designing a next-generation VQA v3

dataset for the VQA Challenge. Our work on the existing VQA Challenge datasets offers a number

of insights.

• If you can’t beat ’em, join ’em. As discussed in Section 1.3, it is neither realistic nor desirable
for a real-world VQA dataset to be perfectly “unbiased”; i.e., to contain uniform distribu-
tions over answer classes. Instead, VQA v3 should explicitly score models on their ability
to generalize to new domains with different priors. This “generalization score” could be
measured on an additional VQA-CP style test set with priors that differ from the main train-
ing/testing domain.

• Provide standard methods for evaluating generalization performance. As we note in Sec-
tion 3.3.3, the lack of a proper validation set on VQA-CP makes it difficult to perform model
selection in a principled manner. One solution would be to create a validation set that con-
tains priors that are different from both the train and test sets. However, as Ramakrishnan
et al. (2018) observe, the existence of binary questions complicates this prospect. Instead,
we suggest a method similar to that of Agrawal et al. (2018), who in their paper introduc-
ing VQA-CP note that they actually created four different sets of VQA-CP v2 splits using
different random seeds (however, they only make one of these splits publicly available). By
reserving a subset of these splits for test, and making the rest available for development, VQA
v3 could provide researchers with a convenient way of evaluating generalization performance
without using the test set.

• Encourage submission of question-only and image-only baselines. For the 2018 VQA Chal-
lenge, the organizers submitted question-only and prior-only baselines to the competition
leaderboard.2 While this is a start, these baselines tend to get buried at the bottom of the
leaderboard as submissions with more powerful models accumulate. Therefore, competitors
should also be asked to submit question-only and image-only baselines for their own mod-
els. To facilitate this best-practice, VQA v3 should provide unique test splits in which the

2http://www.visualqa.org/roe.html
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questions and images, respectively, are omitted. Researchers could then run their models on
these unimodal splits to obtain baseline scores. Due to the difficulty of verifying what data a
model is run on, submission of these baseline scores should be optional, but encouraged.

• Switch to multiple choice answer format. In contrast to open-ended VQA, which places no
constraints on the possible answer set, multiple choice VQA offers a fixed number of answer
choices for each example. Many popular VQA datasets, including COCO-VQA (Ren et al.,
2015a), Visual7w (Zhu et al., 2016), and Visual Genome (Krishna et al., 2017), are multiple
choice format. (In VQA v1, Antol et al. (2015) also included a multiple choice variant, but
this less-popular format was abandoned in VQA v2.) Multiple choice format promises to
help dataset authors reduce bias by facilitating fine-grained control over the statistical prop-
erties of the answer distribution. In their recent paper titled, “Being Negative but Construc-
tively: Lessons Learnt from Creating Better Visual Question Answering Datasets,” Chao
et al. (2017) demonstrate that careful selection of the decoy (non-target) answers in multiple
choice VQA can dramatically reduce dataset biases. In particular, they argue that the decoys
should be both question-only and image-only unresolvable, meaning that the answer cannot
be inferred from the question or image alone. To enforce these constraints, VQA v3 should
involve a validation crowd test that screens for examples where humans are able to resolve the
answer without access to either the question or image. Additionally, in accordance with the
“neutrality” principle described by Chao et al. (2017), all possible answers to a given example
in VQA v3 should be equally likely a priori. Enforcing this global constraint is only possible
with multiple choice answers.

• Treat answers as inputs, not outputs. While VQA v1 and v2 are theoretically open-ended, as
discussed in Section 1.5.4, the vast majority of competitive models adopt a classification ap-
proach that considers only the top several thousand answers. This practice, which disregards
the low-frequency answers that make up the majority of the answer vocabulary, results in
brittle models that depend on the distributional statistics of the training domain. An elegant
solution is to include the answer in the input; i.e., feed tuples (I, Q,A1), (I, Q,A2), . . . (I, Q,AN )

as inputs, and have the model assign likelihood scores as outputs. This approach, which
was first introduced in Jabri et al. (2016), means that any answer in the vocabulary, includ-
ing low-frequency ones, can be scored by the model. Furthermore, this method would al-
low the model to score unseen answers through open-vocabulary techniques that are well-
documented in the neural machine translation literature (Luong & Manning, 2016; Zhao
et al., 2018a). Because of the impracticality of scoring every possible answer in the vocabulary,
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this approach is best-suited to the multiple choice format. Technically speaking, the decision
to treat answers as inputs is a property of the model design, not the dataset. However, by
explicitly marking the answers as “inputs,” VQA v3 could induce a strong prior on model
designs to encourage this practice.

• Weight score by inverse answer frequency. Even with the improvements suggested above, any
skew in the answer frequency distribution will bias models towards more frequent answers.
To counter this effect, VQA v3 should weight example scores by inverse answer frequency. In
this way, VQA v3 can encourage robust performance on low-frequency answers.

• Source examples from geographically-diverse areas. In their paper, “No Classification with-
out Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing
World,” Shankar et al. (2017) demonstrate that ImageNet and Open Images contain Western-
centric biases that harm classification performance of models deployed to the developing
world. Their introduction of the Google Inclusive Images Dataset3 offers an exemplary stan-
dard for promoting culturally equitable ML. In VQA v3, it is important to source both
images and questions from geographically heterogeneous areas to reduce cultural bias, and
encourage the development of VQA models that work for everyone.

By enacting these reforms, the authors of the next generation of VQA datasets have the opportu-

nity to shape the direction of the future of VQA research. Given that scientific progress occurs in a

cultural context, dataset designers have both a scientific and moral imperative to treat bias as a first-

class consideration. As legal scholar Cass Sunstein argues, “A choice architect has the responsibility

for organizing the context in which people make decisions... The first misconception is that it is pos-

sible to avoid influencing people’s choices.” (Sunstein, 2014). While Sunstein’s comments refer to

the design of social policy, they apply equally well to the design of ML benchmarks. Indeed, if VQA

is to fill the shoes of a general-purpose test of machine intelligence, then we must embrace our role as

policymakers in the design of fair and equitable benchmarks.

3https://ai.googleblog.com/2018/09/introducing-inclusive-images-competition.html
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Figure 4.3: Example queries from visually impaired users in the VizWiz Grand Challenge dataset. VizWiz
models must either answer the query (top row), or determine that it is unresolvable (bottom row). (Figure
from Gurari et al., 2018)

4.3 VQA in the Real World

In this thesis, we have considered VQA in the context of pre-generated text queries for static images.

However, the field of VQA is rapidly expanding in directions that push at the boundaries of the

existing task formulation. This final section highlights a few exciting areas of research that promise

to redefine visual question answering in the coming years.

One of the main areas of practical application for VQA systems is in assisting the visually im-

paired. In 2010, Bigham et al. (2010) proposed a mobile app called VizWiz that allowed blind users

to snap photos and receive answers to queries from online crowd workers. While this innovative

system was effective in helping blind users understand visual aspects of their surroundings, it often

required users to wait minutes before receiving a response from crowd workers. With the advent of
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VQA systems powered by ML, it is now becoming possible for this task to be automated, allowing

instantaneous response times. In the coming years, the recently-announced VizWiz Grand Chal-

lenge (Gurari et al., 2018) promises to catalyze significant progress towards building VQA systems

for visually impaired users. However, in order for VQA systems to function in an assistive capacity,

they must be able to unpack their reasoning to users. Telling a user that they are holding a 10 Euro

note is a clear value-add, but only if the system can explain that it spotted a “10” on the bill. More-

over, users must be confident that these systems are basing their judgments in reality; when asked,

“Are these my blue pills or my red pills?” a reliance on color priors spells disaster.

With VizWiz, real-time VQA has now begun to enter into the realm of technological possibility.

However, while responses from automated VQA systems may be instantaneous, they are still frozen

in a particular instant in time. There is a growing consensus that VQA on static images fails to cap-

ture the dynamic, changing nature of everyday situations. Recently, a handful of researchers have

started to take on the ambitious task of video question answering (Zeng et al., 2017; Ye et al., 2017;

Lei et al., 2018; Zhao et al., 2018b). Generally speaking, video QA systems seek to answer questions

about short video segments (generally, 10 - 180s, though Zhao et al. (2018b) consider clips up to 10

minutes in length).

Because the domain is so new, there is no single established video QA benchmark; instead, re-

searchers have tended to create their own video QA datasets on a per-paper basis. While these cir-

cumstances have promoted use of a diversity of video content for research, leaving content selec-

tion up to individual researchers threatens to exacerbate issues of bias. In their work on video QA,

Lei et al. (2018) introduce a dataset called TVQA that is composed of clips from six popular tele-
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Figure 4.4: Example from the TVQA dataset containing questions about a one-minute clip from Friends.
Sitcoms, which capture myriad sociocultural biases, are uncharted territory for machine learning. (Figure
from Lei et al., 2018)

vision shows (The Big Bang Theory,How I Met Your Mother, Friends,Grey’s Anatomy,House,

and Castle). For decades, media scholars have studied how questions of bias and representation in

popular film and television have affected the perception of marginalized groups in society (Rawles,

1975; Bechdel, 1986; Hamamoto, 1994; Benshoff, 2009; Holtzman & Sharpe, 2014; Mastro, 2017).

While these issues appear far removed from the day-to-day concerns of computer scientists, further

work on video QA means that a collision of worlds is imminent. In TVQA, for example, the “top

unique nouns” associated with Bernadette, a female scientist on The Big Bang Theory are: song,

sweater, wedding, child, husband, everyone, necklace, stripper,

weekend, airport; meanwhile, top nouns associated with other female characters include

boyfriend, sex, bathroom, pink, ring, purse, dress, kitchen, and

bedroom (Lei et al., 2018). As a discipline, computer science is not well-equipped to handle issues

of intersectionality. To wade further into this quagmire without adequate preparation is both irre-
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sponsible and unnecessary. By educating themselves about the issues of bias, and consulting with

peers in the social sciences, ML researchers can avoid introducing accidental biases into video QA

datasets.

Work on video QA represents an attempt to bring multimodal reasoning into the realm of the

real world by considering dynamic scenes that change over time. However, in video QA, the AI

system still remains a passive observer to the scenes that unfold in front of it. Moreover, as discussed,

real-world footage is often laden with sociocultural biases that are difficult to control for. Amusingly,

the concerns with video QA are reminiscent of the kinds of concerns parents often raise about kids

watching too much TV. In this scenario, the classic directive to “go outside and play” applies equally

well to VQA. Recent years have seen the the emergence of ‘interactive” or “embodied” VQA tasks

that challenge agents to navigate and answer questions in simulated environments (Gordon et al.,

2017; Das et al., 2018). Because these tasks involve non-trivial path planning, approaches typically

integrate reinforcement learning techniques with existing vision and language models. In this way,

this new generation of embodied QA (EQA) benchmarks offer a new way for AI researchers to

explore the “embodiment hypothesis,” which is “the idea that intelligence emerges in the interaction

of an agent with an environment and as a result of sensorimotor activity” (Smith & Gasser, 2005).

Since learning in EQA occurs in simulated environments, researchers have full control over the

kinds of biases that are available for models to learn from. While this scenario compares favorably

to video QA, there is still the potential for latent biases to artificially inflate our estimation of model

capabilities. Recent work by Thomason et al. (2018) shows that image-only and question-only base-

lines significantly outperform the published majority class baseline that accompanies the EQA task
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Figure 4.5: In Embodied QA, an agent must navigate through a simulated environment in order to answer a
query. (Figure from Das et al., 2018)

(Das et al., 2018). The image-only baseline succeeds at identifying salient colors and objects that al-

low it to make educated guesses about the answer in the absence of the question. Meanwhile, the

question-only baseline is able to exploit world knowledge priors to produce correct answers nearly

50% of the time (e.g., the answer to “What color is the bathtub?” is almost always gray). These base-

lines paint the achievements of existing EQA models in a much less flattering light. Das et al. (2018)

report that their EQA model outperforms the majority class baseline by 44.2%. However, when

considered against the unimodal baseline from Thomason et al. (2018), this margin shrinks to 15.2%.

These stark findings highlight the need for broader recognition of the Problem of Bias across the

spectrum of VQA research, as well as adoption of best practices that serve to curb it.

As VQA systems graduate to the real world, the issues discussed in this thesis concerning inter-

pretability and bias become of foremost importance. If we are to trust these systems to assist the
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blind, analyze visual media, and navigate in the physical world—to operate in our reality—then we

must be certain that their reasoning is, in fact, grounded in reality. Given the media’s growing at-

tention to AI, failure to take this message to heart risks misleading the public about the capabilities

of current methods. Such a scenario is reminiscent of an incident that occurred in the early twenti-

eth century involving Clever Hans, a horse that was professed to be capable of arithmetic, reading,

and other cognitive feats. After much spectacle, it was revealed that the Clever Hans had simply

learned to pick up on spurious cues based on the body language of his trainer (Pfungst, 1911). To-

day’s trainers of ML models can learn a lesson from this episode. In the face of a remarkable display

of intelligence, we must retain a healthy sense of scientific skepticism. To this end, it is helpful to re-

member the wisdom of another clever Hans, who first noted the paradoxical elusiveness of everyday

intelligence. For the forseeable future, at least, visually-grounded reasoning remains what Dr. Hans

Moravec would call, “a hard problem.”
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A.1 Glossary of Notation

VQA Datasets

I Image
Q Question
A Answer
di = (I, Q,A) VQA example
D = {d1, . . . , dN } VQA dataset

Counterexample Prediction

INN = {I ′1, . . . , I ′K } k-nearest neighbors to image I
{I ′, A′} Candidate counterexample
{I∗, A∗} Ground truth counterexample
di = (Ii, Qi, Ai, I ′i , A

′
i) VQA-CX example

VQA Model Components

P(A|I, Q) = VQA(I, Q) Overall VQA model posterior
v = fv(I) Image embedding
q = fq(Q) Question embedding
z = fz(v, q) Multimodal embedding
P(A|I, Q) = gVQA(z) Answer classification

Adversarial Training

P(A |Q) = gADV(q) Adversarial classification
λADV Regularization coefficient for adversarial loss
λGRL Gradient reversal layer scaling factor
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A.2 Visualizations

Figure A.1: Qualitative results on the counterexample prediction task. Left: The original image and ground
truth counterexample from VQA v2, along with the question and ground truth answers. Right: the top 5
counterexamples selected by NeuralCX, with the top 3 answers (as scored by a VQA model) underneath. In
the top 4 rows, NeuralCX correctly identifies the correct counterexample (green outline), while in the bottom
4 rows, it fails. See Section 2.5 for a discussion of common failure modes.

Figure A.2: Visualization of dataset priors and model scores for different question types on VQA-CP v1 test.
In each example, the leftmost two bars show the prior distribution over answers for the given question type
(in bold) for the train and test sets. The rightmost two bars show the scores assigned to different answers by
the baseline and regularized models for a particular example of the given type. The baseline model frequently
assigns high probability to incorrect answers that are prominent in the training distribution. In contrast, the
regularized model is able to make correct inferences in cases where the ground truth answer has low prior
probability.

Figure A.3: Common failure modes of adversarial regularization. First row: the regularized model fails to infer
the correct form of the answer from the question, answering “beach” and “wedding” to questions that entail
animal answers. Second row: the regularized model struggles with questions that rely on real-world language
priors; i.e., mustard is yellow, sunset is orange. Third row: salient colors in the image distract the regularized
model from attending to the correct image regions. Fourth row: both the baseline and regularized models
perform poorly on questions where the answer relates to a localized image region (i.e., inside a TV) as opposed
to the global image. In these cases, the regularized model relies on generic visual features in the image in its
inferences, while the baseline model relies on language priors.
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