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Abstract

In this work we study the problems of common randomness generation (CRG) and secret key
generation (SKG). In the CRG problem, two parties, Alice and Bob, receive samples X and Y ,
respectively, from some joint source distribution µ. The two parties wish to agree on a key consisting
of many bits of randomness, by exchanging messages that depend on each party’s respective input
and the previous messages. The SKG problem is the same as CRG, except that an eavesdropper
who observes the messages must not be able to determine much information about the key. We
study the tradeoff between the minimum total length of all messages for a protocol generating a
given number of bits of randomness and the minimum possible number of rounds in such a protocol.
We construct a source distribution µr,n,`, parametrized by r, n, ` ∈ N, achieving such a tradeoff in
a strong sense: when Alice and Bob can use r + 2 rounds of communication and ` ≥ n, they can
agree on ` bits of entropy by communicating only O(log n) bits, but when they are restricted to r
rounds of communication, they require communication of Ω(

√
n/ poly log n) bits to agree on ` bits

of entropy. We also prove an analogous result for the setting in which Alice and Bob can amortize,
meaning that they receive N i.i.d. samples of (X,Y ) ∼ µ, and the communication and key length,
respectively, are measured by the ratio of the actual number of bits communicated and the actual
key length, respectively, to N .
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Figure 1: Common randomness generation.

1 Preface

1.1 Common randomness and secret key generation

In this work we study the problems of common randomness generation and secret key generation,
which play a central role in information theory and cryptography. In each of these problems (Figure
1), there are two parties, Alice and Bob, who receive correlated random strings of bits, X and Y .
For instance, X may be a string of n uniform and independent bits, and Y may be the string
obtained by flipping each bit of X independently with probability 1/3. (This source distribution
is an example of a binary symmetric source.) In the problem of common randomness generation,
Alice and Bob have a goal of agreeing on a common random string K, also known as a key, with
high probability. They do so by interacting in several rounds of communication: in the first round,
Alice sends Bob a string of bits, also called a message, that depends on her input X and possibly
some random coin flips Alice performs. In each round thereafter, each of Alice and Bob alternates
sending the other party a string of bits that depends on his/her input, the previous messages, and
possibly some random coin flips. After some number r of rounds, Alice and Bob compute keys KA

and KB, respectively, belonging to some key set K. The key KA (KB, respectively) is a function of
Alice’s (Bob’s, respectively) input and the collection of all messages exchanged. That Alice and
Bob agree on the key K means that KA = KB = K with high probability.

Without further requirements on K, the problem of common randomness generation is trivial
(i.e., requires no communication), since Alice and Bob can set K to be a constant and always set
KA = KB = K. In order for K to represent “useful” common randomness, we therefore require that
K is distributed uniformly over the set K of possible keys. The problem of secret key generation
is the same as that of common randomness generation, except that there is an additional secrecy
requirement on K: an eavesdropper Eve that observes the messages that Alice and Bob exchange
in the protocol but not the parties’ inputs X,Y can only know a negligible amount of information
about K at the conclusion of the protocol.

In this thesis we are concerned primarily with resource-limited common randomness and secret
key generation. There are two resources in particular that are very natural to study: (1) the total
number of bits Alice and Bob communicate throughout the execution of the protocol, called the
communication cost of the protocol, and (2) the number of messages Alice and Bob exchange, i.e.,
the number of rounds of the protocol. From a practical perspective there are clear motivations to
limit utilization of each of these resources: a communication channel with low bandwidth will take
a long time to transmit an excessively long string of bits, whereas high latencies over a network
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imply that protocols with large numbers of rounds will take a long time to terminate. The theme
of this thesis is the natural question regarding the relationship between the number of rounds and
the communication cost of a protocol for common randomness generation:

Is there some sort of tradeoff between the minimum number of rounds and the minimum
communication cost of a protocol for common randomness generation from a given input
distribution (X,Y )?

In the different (though related) setting of computing functions via communication protocols, it is
well-known [NW93] that the answer to the above question is the affirmative. In particular, there are
functions f such that if Alice and Bob wish to compute the value of f(X,Y ) ∈ {0, 1}, then they can
do so by communicating few bits over many rounds, but if they are restricted to a smaller number
of rounds, computing the value of f(X,Y ) requires communicating many bits.1 Remarkably, until
the work of this thesis, the corresponding problem remained nearly entirely open for common
randomness and secret key generation. In fact, some recent work on common randomness and
secret key generation [LCV17, Tya13] has exhibited that for many natural distributions over Alice’s
and Bob’s inputs X,Y , including the binary symmetric source mentioned above, there is no such
tradeoff: in particular, there is a protocol with the minimum possible amount of communication for
generating common randomness that also has only 1 round. However, our main result is that such
a tradeoff does exist in general for the problems of common randomness and secret key generation.
We construct an explicit family of distributions over inputs X,Y that achieves such a tradeoff,
and prove that the resulting tradeoff is very strong: the difference in communication cost between
the most efficient (i.e., lowest-communication) protocols with many rounds and the most efficient
protocols with few rounds is an exponential-sized gap.

1.2 Motivation

One of the principal motivations for studying common randomness generation and secret key gen-
eration, and in particular the latter, is in cryptography. A fundamental problem in cryptography
is that of developing algorithms for two parties, Alice and Bob, to securely communicate a mes-
sage when their communication channel can be eavesdropped by an adversary. There are efficient
algorithms for the two parties to communicate securely when they can first agree on a secret key
K that the adversary does not know (which in practice, is usually a string of a few hundred bits).
However, agreeing on a secret key in the first place is nontrivial, and is also important in providing
authentication, which in turn is necessary when the adversary can tamper with messages Alice and
Bob send to each other.

The celebrated Diffie-Hellman key exchange algorithm [DH76] and the RSA public-key cryp-
tosystem [RSA78] have been enormously successful in providing for secure key agreement and
authentication over the internet. However, their security rests on unproven computational assump-
tions. Moreover, it is known [Sho97] that Diffie-Hellman and RSA are insecure against quantum
adversaries, which will increasingly become a threat over the next few decades. Therefore, it is
useful to study secret key agreement from an information theoretic point of view and to derive
results that do not depend on assumptions on the computational power of an adversary. Such was

1Notice that a trivial way to compute f(X,Y ) is for Alice to send Bob her entire input X, and for Bob, having
Y , to then compute f(X,Y ) directly. When Alice and Bob are restricted to few rounds, the aforementioned result
[NW93] states that this strategy is near-optimal.
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the motivation for Maurer [Mau91, Mau92, Mau93] and Ahlswede and Csiszár [AC93] to introduce
the framework of (information theoretic) secret key generation we study in this thesis.

Similar ideas to those in [Mau91, Mau92, Mau93, AC93] are also needed to implement quantum
key agreement [BBB+92, HAD+95]. In particular, a quantum key agreement protocol between
Alice and Bob proceeds via Alice sending Bob a stream of photons encoding a key K. However, the
stream Bob receives may be corrupted by channel noise or by an eavesdropper Eve purposefully
tampering with some of the photons. Such tampering also may give Eve information about some
bits of K. To recover a secret key K ′ upon which Alice and Bob agree exactly and which Eve
knows essentially nothing about, Alice and Bob must communicate over a public channel that Eve
can observe. This is exactly the problem considered in [Mau91, Mau92, Mau93, AC93], and indeed,
many of the techniques (such as privacy amplification) in those works are also used for quantum
key agreement.

Shared randomness also plays a central role in identification capacity: typically, if Alice transfers
N bits over a noisy channel to Bob, she can encode exponentially many (i.e., 2rN , for a constant
r) different messages so that the probability of Bob recovering the correct message is very close
to 1. Using common randomness as a resource, Ahlswede and Dueck [AD89b, AD89a] showed
the following remarkable result: by transmitting N bits over the channel, Alice can encode doubly
exponentially many (i.e., 22rN , for a constant r) different messages, so that for any particular
message m, Bob can determine with high probability whether Alice originally transmitted m.

More broadly, common random bits are an extremely valuable resource for communication pro-
tocols between two parties, in which each party receives some input and they want to compute some
joint function of their inputs by communicating as few bits as possible. In particular, for many
such functions, the parties can compute it exponentially more efficiently if they can use common
random bits as a resource. (See Section 2 for a formal definition of communication complexity.) An
interesting question [CGMS17, GKS15, GS17, BGI14] is then how many additional bits must be
communicated if the parties only share their randomness imperfectly (e.g., if each shared random
bit is corrupted with some small probability). If the parties can generate perfectly shared ran-
domness efficiently from the imperfectly shared randomness, then sharing randomness imperfectly
(as opposed to perfectly) does not significantly increase the number of bits necessary to commu-
nicate. Thus the communication complexity of generating shared randomness becomes central
to the question of efficiency of communication in the presence of imperfectly shared randomness
[CGMS17].

Common randomness has further applications in locality-sensitive hashing [GJ18] and in coding
theory [BBT60, CN91].

2 Introduction

In this section we formally define the problems of common randomness generation (CRG) and secret
key generation (SKG). In particular, we will define the rate regions for each of these tasks, which
make precise, for a given distribution of the parties’ inputs, the relationship between the amount
of communication needed to agree on a common random string (or secret key) and the entropy of
the key, using a given number of rounds of communication.
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2.1 Notation

We first describe some of the basic notational conventions we use throughout the paper. We use
capital script font, such as S,X ,Y, to denote sets, and capital letters, such as X,Y, Z, to denote
random variables. We will occasionally have sets that are random variables, and in this case, we
will use capital (non-script) leters. We typically use the letters µ, ν,D to denote distributions. If
X is distributed according to a distribution µ on a sample space X , then we will write X ∼ µ. We
use lower case letters to denote specific instantiaions of random variables; e.g., for x ∈ X , we may
write Pµ[X = x] to denote the probability that X = x under X ∼ µ.

If E ⊂ X is some event, then we will write 1[X ∈ E ] to denote the random variable that is 1
if X ∈ E , and 0 otherwise. We will slightly abuse notation, e.g., if (X,Y ) ∼ ν then 1[X = Y ] is
1 when X = Y and 0 otherwise. If f : X → R, then Eµ[f(X)] denotes the expectation of f(X)
when X is distributed according to µ. For E ⊂ X , Pµ[E ] := Eµ[1[X ∈ E ]] is the probability that
X ∈ E when X ∼ µ. This notation extends naturally to conditional expectations: if (X,Y ) ∼ ν,
and f : X → R, let Xy be the random variable supported on X distributed as P[Xy = x] = P[X =
x, Y = y]/P[Y = y]. Then Eν [f(X)|Y = y] = E[f(Xy)], and Eν [f(X)|Y ] = EY∼ν [Eν [f(X)|Y = y]].

For random variables X,X ′ distributed according to µ, µ′, respectively, on a finite set X ,
∆(µ, µ′) := 1

2

∑
x∈X |Pµ[X = x] − Pµ′ [X ′ = x]| denotes the total variational distance between

X and x′. It is well-known that ∆(µ, µ′) = maxE⊂X (Pµ[E ] − Pµ′ [E ]). The entropy of X is
denoted by H(X) :=

∑
x∈X P[X = x] log(1/P[X = x]). The min-entropy of X is denoted by

H∞(X) := minx∈X {log(1/P[X = x])}.
Now suppose (X,Y ) are random variables with X ∈ X , Y ∈ Y jointly distributed according to

some distribution ν. Recalling our notation Xy from above, then H(X|Y = y) := H(Xy). Then the
conditional entropy H(X|Y ) is given by H(X|Y ) =: Ey∼ν [H(X|Y = y)]. The mutual information
is given by I(X;Y ) := H(X) − H(X|Y ); it is well-known that I(X;Y ) = H(Y ) − H(Y |X).
If (X,Y, Z) are jointly distributed according to some distribution, then the conditional mutual
information I(X;Y |Z) is given by I(X;Y |Z) := H(X|Z)−H(X|Y,Z).

For distributions µ and ν supported on a set X , the KL divergence between µ, ν, denoted
KL(µ||ν), is defined as follows: for X ∼ µ, Y ∼ ν, we have KL(µ||ν) :=

∑
x∈X P[X = x] ·

log
(
P[X=x]
P[Y=x]

)
. For random variables (X,Y ) ∼ µ distributed jointly, with X ∈ X , Y ∈ Y , we will

often write XY ∈ X ×Y to denote the pair. The marginals X ∼ µX , Y ∼ µY are the distributions
on X and Y respectively, given by PX∼µX [X = x] := PXY∼µ[X = x], and similarly for µY . Then
X ⊗Y ∈ X ×Y denotes the random variable distributed according to the product of the marginals
µX ⊗ µY . It is well known that for (X,Y ) ∼ µ, we have I(X;Y ) = KL(µ||µX ⊗ µY ). We will
often abuse notation when denoting KL divergences or total variation distances: for X ∼ µ, Y ∼ ν
supported on a set X , we will write ∆(X,Y ) = ∆(µ, ν) and KL(X||Y ) = KL(µ||ν).

For a sequence of random variables X1, X2, . . . , Xi, . . ., for any j ≥ 1, we let Xj denote the

tuple (X1, . . . , Xj), and for 1 ≤ j ≤ j′, let Xj′

j denote the tuple (Xj , Xj+1, . . . , Xj′). One common
usage of this notation is as follows: for N ∈ N, and a distribution Z ∼ µ, the random variable
distributed according to N i.i.d. copies of µ is denoted as ZN = (Z1, . . . , ZN ).

We say that jointly distributed random variables X,Y, Z form a Markov chain if X ⊥ Z|Y (i.e.,
if X and Z are conditionally independent given Y ). We will write this condition as X − Y − Z.

We denote by {0, 1}∗ = ∪n∈N{0, 1}n the set of all strings of bits. For a string x ∈ {0, 1}∗, we
denote by |x| ∈ N the length of x, i.e., the unique n such that x ∈ {0, 1}n.

For jointly distributed random variables X,Y such that X is a deterministic function of Y , we

7



will often denote this deterministic function by X, i.e., X = X(Y ). To reduce clutter in notation,
for random variables X,Y that are jointly distributed, we will often abbreviate the tuple (X,Y ) as
XY . For a positive integer r, let [r] = {1, 2, . . . , r}. Let Or denote the odd integers in [r] and Er
denote the even integers in [r]. Let Sn denote the set of all permutations on [n].

2.2 Common Randomness and Secret Key Generation

We now formally introduce the problems of common randomness and secret key generation. We
first introduce interactive communication protocols, which were first studied by Yao [Yao79].

2.2.1 Communication Protocols

There are two parties, Alice and Bob, and finite sets X ,Y. Alice receives an element X ∈ X , and
Bob receives an element Y ∈ Y . The pair (X,Y ) is referred to as the input of the protocol. We
will usually assume that (X,Y ) are random variables distributed jointly on X × Y according to
some distribution µ. In the setting of common randomness or secret key generation, µ is called the
source (distribution).

Depending on the setting, Alice and Bob may additionally have access to private coins RA, RB,
respectively, and public coins RPub. Formally, RA, RB, RPub may be interpreted as infinite strings of
independently and uniformly distributed random bits. Alice can see RA, RPub (if they are available),
while Bob can see RB, RPub (if they are available). A protocol in which Alice and Bob have access
to the public coins RPub is known as a public-coin protocol, and a protocol in which Alice and Bob
have access to the private coins RA, RB, respectively, but not to RPub, is known as a private-coin
protocol. Finally, a protocol in which Alice and Bob do not have access to any of RA, RB, RPub is
known as a deterministic protocol.

An interactive r-round protocol Π consists of a sequence of r messages, Π1, . . . ,Πr ∈ {0, 1}∗
(i.e., each message is a finite string of bits). The messages Π1, . . . ,Πr are also referred to as the
rounds of the protocol, and each message is a deterministic function of the previous messages,
one party’s input, and any randomness (public and/or private) available to that party; in other
words, each message is a randomized function of the previous messages and one party’s input. We
assume that Alice always starts by sending the message Π1 to Bob, where Π1 = Π1(X,RA, RPub),
meaning that Π1 is a deterministic function of X,RA, RPub. (If the protocol is only allowed to use
private coins, then Π1 = Π1(X,RA), and if it is not allowed to use either public or private coins
then Π1 = Π1(X).) Bob responds with the message Π2 = Π2(Y,RB, RPub,Π1), with analogous
modifications if the protocol is not allowed to use public or private coins. In general, for 1 ≤ t ≤ r,
recalling our notation Πt := (Π1, . . . ,Πt), the t-th message Πt is given by

Πt = Πt(X,RA, RPub,Π
t−1)

if t is odd and
Πt = Πt(Y,RB, RPub,Π

t−1)

if t is even (with the obvious modifications if the randomness used by the protocol is restricted).
Moreover, for each t and each instantiation of Πt−1, the set of possible values of Πt (over all
possible instantiations of X,Y,RA, RB, RPub) must be prefix-free.2 The communication cost of Π,

2This technical condition is required so that Alice or Bob knows when to “start speaking” when the other player
finishes sending his or her previous message.
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denoted by CC(Π), is the maximum of
∑r

t=1 |Πt|, taken over all inputs X ∈ X , Y ∈ Y , and all
settings of the random coins RA, RB, RPub (if applicable). In other words, the communication cost
is the maximum number of bits that Alice and Bob will communicate when executing Π. The
tuple consisting of all the messages, i.e., Πr = (Π1, . . . ,Πr), is referred to as the transcript of the
protocol Π. In general, protocols Π need not have a constant number of rounds (i.e., the number
of rounds may depend on the inputs and values of the public and private randomness). In such a
case, we refer to the number of rounds r of Π as the maximum number of messages Πt sent over all
instiations of X,Y,RA, RB, RPub (we will also say that Π has a maximum of r rounds). If, for certain
instantiations of X,Y,RA, RB, RPub, Alice and Bob only communicate r′ messages Π1, . . . ,Πr′ in an
r-round protocol, with r > r′, we consider Πt = ∅ for r′+1 ≤ t ≤ r. We will often use the following
basic facts (Propositions 2.1 and 2.2) about the structure of r-round protocols:

Proposition 2.1. Suppose (X,Y ) ∼ µ, and that Π1, . . . ,Πr are random variables distributed on
finite sets. Then Π1, . . . ,Πr are the random variables representing the messages in some r-round
communication protocol Π = (Π1, . . . ,Πr) if and only if the following Markov conditions hold:

Πt −XΠt−1 − Y, t ∈ Or X − YΠt−1 −Πt, t ∈ Er.

In such a case, we will call Π the communication protocol induced by the random variables Π1, . . . ,Πr.

The Markov condition Πt − XΠt−1 − Y means that Πt is a randomized function of XΠt−1.
The proof of the “if” direction of the above proposition proceeds by having Alice use her random
bits RA to implement this randomized function of X,Πt−1 (and similarly for Bob). The “only if”
direction follows immediately from the definitions.

Proposition 2.2 (Moniticity of correlation [STW19]). If Π = (Π1, . . . ,Πr) is a communication
protocol with inputs (X,Y ) ∼ µ, then

Iµ(X;Y |Πr) ≤ Iµ(X;Y ).

In particular, if X,Y are independent, then they remain so after conditioning on the transcript
of any protocol.

Typically [KN97] communication protocols are introduced in the context of computing func-
tions. In particular, for a function f : X ×Y → {0, 1}, we say that a deterministic protocol Π (i.e.,
one with no private or public random bits) as above computes f if for all X ∈ X , Y ∈ Y, the last bit
of the transcript of Π equals f(X,Y ). The deterministic communication complexity of a function
f , denoted D(f), is the minimum of CC(Π) over all protocols Π that compute f . A randomized
protocol Π (i.e., one with private and/or public random bits) computes f with probability 1−ε if for
all X ∈ X , Y ∈ Y , the probability (over the random bits) that the last bit of the transcript equals
f(X,Y ) is at least 1 − ε. The private-coin randomized communication complexity of a function
f , denoted Rε(f), for ε ∈ (0, 1), is the minimum of CC(Π) over all private-coin protocols Π that
compute f with probability 1 − ε. The public-coin randomized communication compelxity of f ,
denoted Rpub

ε (f), is defined similarly except the protocols Π are also allowed to use public coins.
Newman’s theorem [KN97] states for all f, ε > 0, δ > 0, Rε+δ(f) ≤ Rpub

ε (f) +O(log n/δ).
Finally, if µ is a distribution on X × Y and ε ∈ (0, 1), then the distributional communication

complexity of f over µ, denoted Dµ,ε(f), is the minimum of CC(Π) over all protocols that compute
f with probability at least 1 − ε, where the probability is additionally over (X,Y ) ∼ µ. It is
easy to see by an averaging argument that it is in fact sufficient to consider only deterministic
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protocols when computing Dµ,ε(f). It follows from the von Neumann minimax theorem [KN97]
that supµ Dµ,ε(f) = Rε(f), where the supremum is over all distributions µ on X × Y .

Although protocols for computing functions will show up in our proofs, our main focus will be
on protocols that perform the tasks of common randomness generation and secret key generation.
Roughly speaking, there are two settings of common randomness and secret key generation to
consider: the amortized setting and the non-amortized setting. In both settings, we do not allow
the parties access to public randomness, so the protocols will be private-coin or deterministic
protocols; notice that if the parties had access to public randomness, then there would be no need
to generate a shared common string.

2.2.2 Amortized Setting

We begin by describing the amortized setting, which was introduced independently by Maurer
[Mau91, Mau92, Mau93] and by Ahlswede and Csiszár [AC93, AC98] and has since received much
attention in the information theory community [GK73, Wyn75, CN00, CN04, ZC11, Tya13, LCV15,
Liu16, LCV17, Ye05, GA10a, GA10b]. In amortized CRG, Alice and Bob receive some large number
N of copies (X,Y ) from the source, are allowed to communicate some number of bits that grows
linearly with N , and must agree upon a key whose entropy grows linearly with N with probability
tending to 1 as N →∞. The word “amortized” refers to the fact that the communication and key
entropy both grow linearly with N . There are two different ways [AC98, LCV17, GJ18] to precisely
define achievable rates for amortized CRG. Definition 2.1 follows the exposition of [LCV17]; an
alternative definition, which turns out to be equivalent, can be found in [AC98, GJ18], and is also
presented in Appendix A.

Definition 2.1 (Amortized common randomness generation (CRG)). We say that a tuple (C,L)
is r-achievable for CRG for a source distribution (X,Y ) ∼ ν if for every N ∈ N, there is some εN
with εN → 0 as N →∞, a key set KN , and a private-coin protocol3 Π = Π(N) that takes as input
(XN , Y N ) ∼ ν⊗N , such that if Π(N)t ∈ {0, 1}∗ denotes the message sent in the t-th round of Π(N),
1 ≤ t ≤ r, and KA = KA(N),KB = KB(N) ∈ KN denote the output keys of Alice and Bob for the
protocol Π(N), then:

1. lim supN→∞
1
N · CC(Π(N)) ≤ C.

2. lim infN→∞
1
N log |KN | ≥ L.

3. Letting KN be the random variable that is uniformly distributed on KN , then

∆((KA(N)KB(N)), (KNKN )) ≤ εN .

In particular, there exists a coupling of KA(N)KB(N) with KNKN such that P[KA(N) =
KB(N) = KN ] ≥ 1 − εN → 1 as N → ∞. (To be clear, KNKN denotes the tuple (KN ,KN )
which is distributed uniformly on the set {(k, k) : k ∈ KN}.)

We denote the subset of pairs (C,L) ⊂ R2
≥0 that are r-achievable from the source (X,Y ) ∼ ν by

Tr(X,Y ); this set Tr(X,Y ) is known as the achievable rate region for r-round CRG (or simply
rate region, with r and the task of CRG implicit) for the source µ. Notice that C denotes the
communication of the protocols Π = Π(N), whereas L denotes the entropy of the key produced
(approximately).

3That is, Π can use private but not public coins.
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Corresponding to Definition 2.1 for CRG we have the following Definition 2.2 for SKG in the
amortized setting:

Definition 2.2 (Amortized SKG). A tuple (C,L) is r-achievable for SKG for a distribution ν if
there is some choice of a sequence εN → 0 such that the following holds: for each N ∈ N there is
some choice of private coin protocol4 Π = Π(N) such that, first, conditions (1) – (4) of Definition
2.1 are satisfied for these εN ,Π(N), N , and, second,

∆(KA(N)KB(N)Π(N)r,KA(N)KB(N)⊗Π(N)r) ≤ εN . (1)

We denote the set of pairs (C,L) that are r-achievable for SKG from ν by Sr(X,Y ).

It is clear from the definition that r-achievability for SKG is a stronger requirement than r-
achievability for CRG; that is, for every source (X,Y ) ∼ ν, we have Sr(X,Y ) ⊂ Tr(X,Y ). It is
also well-known [LCV17, Han03] that both Tr(X,Y ) and Sr(X,Y ) are closed.

In Definition 2.2 we require an upper bound of ε on the total variational distance between
KAKBΠ(N)r and the product distribution KAKB ⊗ Π(N)r when the key is independent of the
transcript. This choice is known as strong security, which is commonly used today in applications
to cryptography [STW19]. Notice that it does not make sense to have the upper bound depend
on N (i.e., as in Nε) since variational distance is always bounded above by 1 and N can grow
arbitrarily large. In the past weak security (e.g., [AC93], Equation (2.5)), in which (1) is replaced
by the rquirement that I(KAKB; Π(N)r) ≤ Nε, which a priori is weaker than (1). However, in our
setting (and many others) these two notions of strong and weak security turn out to be equivalent
(i.e., lead to equivalent rate regions) [MW00, MW99].

2.2.3 Non-Amortized Setting

The non-amortized setting is similar to the amortized setting, in that Alice and Bob receive arbi-
trarily many i.i.d. samples of (X,Y ) ∼ µ, except the entropy of their key and their communication
no longer grow linearly with the number of samples. In fact, the keys lie in some fixed set K,
and the goal is to use as little communication (and rounds) as possible to generate a single key
uniformly distributed in K. Moreover, whereas the agreement probability 1 − εN in the amortized
case was assumed to approach 1 asymptotically, in the non-amortized case, it is often of interest
to study settings in which the parties may disagree with some probability that is bounded away
from 0. In fact, this probability of disagreement may be arbitrarily close to 1. The non-amortized
setting has recently received much attention among the theoretical computer science community
[BM11, CGMS17, GR16, GJ18, BGGS19], where it is also known as the agreement distillation
problem.

In the below definition we assume that (X,Y ) ∼ ν and ν is supported on a set X × Y .

Definition 2.3 (Non-amortized common randomness generation). For r, C ∈ N, and L, ε ∈ R≥0,
we say that the tuple (C,L, ε) is r-achievable from the source ν (for CRG) if there is some N ∈ N
and an r-round protocol Π with private randomness that takes as input (XN , Y N ) ∼ ν⊗N , such
that at the end of Π, Alice and Bob output keys KA,KB ∈ K given by deterministic functions
KA = KA(X

N , RA,Π
r), KB = KB(Y

N , RB,Π
r), such that:

1. CC(Π) ≤ C.

4As for CRG, the protocol Π cannot use public coins.
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2. |K| ≥ 2L.

3. There is a random variable K uniformly distributed on K such that Pν [K = KA = KB] ≥ 1−ε.

As in the amortized case, for tuples (C,L, ε), observe that C denotes communication and L
denotes entropy.

Definition 2.3 differs slightly from the definition of achievable rates for non-amortized CRG in
[BM11, CGMS17, GR16, GJ18, BGGS19], which do not limit the size of the key space K, but rather
require a lower bound on the min-entropy of each of KA,KB. We present this latter definition in
Appendix A (Definition A.3) and show that it is essentially equivalent to Definition 2.3.

As in the amortized setting, in the non-amortized setting secret key generation is the same as
common randomness generation except the key is additionally required to be “almost independent”
from the transcript of the protocol:

Definition 2.4 (Non-amortized secret key generation). For r, C ∈ N and L ∈ R≥0, ε, δ ∈ [0, 1), we
say that the tuple (C,L, ε, δ) is r-achievable from the source ν (for SKG) if the tuple (C,L, ε) is
r-achievable for CRG from the source ν, and if there exists a protocol Π = (Π1, . . . ,Πr) achieving
the tuple such that

I(Πr;KAKB) ≤ δ. (2)

Notice that condition (2) is quite strong: it implies, for instance, that ∆(ΠrKAKB,Π
r⊗KAKB) ≤√

δ/2, by Pinsker’s inequality.

2.3 Limiting behavior of achievable rate regions

The requirement for amortized CRG that both the communication of the protocol and the entropy
of the key grow linearly with the number of samples N may seem somewhat restrictive. Therefore,
one may try to relax this condition; the correct way to do so turns out to be to focus on the ratio
of the entropy of the key, log |K|, and the communication of Π:

Definition 2.5 (Common random bits per r-round interaction bit (r-round CBIB)). Consider a
source (X,Y ) ∼ µ. For ε ∈ [0, 1], the ε-common randomness per bit of r-round communication,
Γcr
r,ε(X,Y ), is the maximum real number Γ ≥ 0 such that there is a sequence εN → 0, of key sets KN ,

and of r-round protocols Π = Π(N) = (Π(N)1, . . . ,Π(N)r) that take as inputs (XN , Y N ) ∼ µ⊗N ,
such that the following conditions are satisfied:

1. lim infN→∞
log |KN |

CC(Π(N)) ≥ Γ.

2. limN→∞ log |KN | =∞.

3. If KN denotes the random variable that is uniformly distributed on KN , then

∆(KA(N)KB(N),KNKN ) ≤ ε.

The common random bits per r-round interaction bit (CBIB) is then defined as:

Γcr
r (X,Y ) := inf

ε>0
Γcr
r,ε(X,Y ).
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Definition 2.6 (Secret key bits per r-round interaction bit (r-round KBIB)). For ε ∈ [0, 1], the
ε-secret key per bit of r-round communication, Γsk

r,ε(X,Y ) is defined identically to Γcr
r,ε(X,Y ) in

Definition 2.5 except that item (3) is replaced with the requirement that

∆(KA(N)KB(N)Π(N)r,KA(N)KB(N)⊗Π(N)r) ≤ ε.

Then the secret key bits per r-round interaction bit (KBIB) is defined as:

Γsk
r (X,Y ) := inf

ε>0
Γsk
r,ε(X,Y ).

Intuitively, the r-round CBIB (KBIB, respectively) can be roughly interpreted as the maximum
number of additional bits of common randomness (secret key, respectively) that Alice and Bob can
obtain by communicating an additional bit, where the maximum is over “all protocols and any
communication rate”.

For a given source (X,Y ) ∼ µ, the r-round CBIB and KBIB can be determined from the
achievable rate regions T (X,Y ) and S(X,Y ), respectively:

Theorem 2.3 ([LCV17], Corollary 2). For a source (X,Y ) ∼ µ and r ∈ N, we have:

Γcr
r (X,Y ) = sup

{
L

C
: (C,L) ∈ Tr(X,Y ), C > 0

}
and

Γsk
r (X,Y ) = sup

{
L

C
: (C,L) ∈ Sr(X,Y ), C > 0

}
.

Moreover, whenever Γsk
r (X,Y ) or Γcr

r (X,Y ) is finite, we have Γcr
r (X,Y ) = 1 + Γsk

r (X,Y ).

Notice that Γcr
r (X,Y ) and Γsk

r (X,Y ) can be infinite, if, for instance, there are functions fA :
X → {0, 1} and fB : Y → {0, 1} such that Pµ[fA(X) = fB(Y )] = 1 and H(fA(X)) = H(fB(Y )) > 0.
In such a case, Alice and Bob can generate infinitely many bits of entropy with perfect agreement
and 0 communication by setting their keys to be (fA(X1), . . . , fA(XN )) = (fB(Y1), . . . , fB(YN )), for
any N ∈ N.

Remark 2.7. It follows from Theorem 2.3 and Lemma 3.13 that Γcr
r (X,Y ) is the derivative of the

function C 7→ supL:(C,L)∈Tr(X,Y ){L} at C = 0.

The r-round CBIB and KBIB describe the maximum possible achievable rates if samples
(X,Y ) ∼ µ are abundant and communication is restricted: in particular, by maximizing the ratio

log |KN |
CC(Π(N)) , as in Definition 2.5, we only focus on the “part of the input (X,Y )” that yields the

maximum key rate per bit of communication. For instance, consider the source (X,Y ), where
X = (X0, X1) ∈ {0, 1}2, Y = (Y0, Y1) ∈ {0, 1}2 are each two bits, the marginals of X,Y are uniform
in {0, 1}2, (X0, Y0) and (X1, Y1) are independent, and the following hold:

P[X0 = Y0] = 1, P[X1 = Y1] = 2/3.

By the observation following Theorem 2.3, Γcr
1 (X,Y ) is infinite, as Alice and Bob can set their keys

to be XN
0 = Y N

0 given N i.i.d. samples (XN , Y N ). However, doing so does not “squeeze all possible
common randomness” out of the samples: in particular, the second bits of each pair, (X1, Y1), are
still correlated, though it requires some communication in order to distill keys from these bits which
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are equal with probability tending to 1. The ratio of additional key length to communication in
such a distillation procedure is certainly less than ∞ = Γcr

1 (X,Y ).
One can then ask what occurs for the opposite setting, in which samples (X,Y ) ∼ µ are not

so abundant and communication is not as restricted. The following classical result states that if
communication is not restricted at all, then the maximum key length per sample (X,Y ) ∼ µ is
exactly given by I(X;Y ):

Theorem 2.4 ([AC93]). If (X,Y ) ∼ µ, then

sup
(C,L)∈Sr(X,Y )

{L} = I(X;Y ).

Even if we care about maximizing the key rate L more than minimizing communication C, it is
natural, as a second-order concern, to avoid “wasting” communication: we may want to determine
the minimum communication C achieving the maximum key rate L = I(X;Y ). Formally, we define:

Definition 2.8. Suppose (X,Y ) ∼ µ is a source and r ≥ 1. Then define the minimum r-round
interactive rate for achieving the maximum key rate (i.e., the r-round MIMK) by

Ir(X;Y ) := inf
(C,I(X;Y ))∈Sr(X,Y )

{C}.

2.4 Some common sources

In this brief section we introduce some source distributions that will be mentioned in passing at
later points.

Definition 2.9 (Binary symmetric source). For a parameter p ∈ [0, 1], the binary symmetric source
BSSp is the distribution over bits X,Y ∈ {0, 1} defined by:

PBSSp [X = 0, Y = 0] = PBSSp [X = 1, Y = 1] = (1− p)/2,

and
PBSSp [X = 0, Y = 1] = PBSSp [X = 1, Y = 0] = p/2.

Definition 2.10 (Binary gaussian source). For a parameter ρ ∈ [−1, 1], the binary gaussian source
BGSρ is the distribution over real numbers X,Y ∈ R such that the marginal of each of X,Y is a
standard gaussian and EBGSρ [XY ] = ρ.

Definition 2.11 (Binary erasure source). For a pararmeter p ∈ [0, 1], the binary erasure source
BESp is the distribution over elements X,Y ∈ {0, 1, ?} defined by:

PBESp [X = 0, Y = 0] = PBESp [X = 1, Y = 1] = (1− p)/2,

and
PBESp [X = 0, Y =?] = PBESp [X = 1, Y =?] = p/2.

Compare the binary erasure source, in which Bob always knows if the bit Y is corrupted (i.e.,
not equal to the bit X), to the binary symmetric source, in which Bob does not know if this is the
case.
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2.5 Overview of Main Results

2.5.1 Does Interaction Help?

Curiously, for many of the distributions under which CRG and SKG has been studied, including
the binary symmetric source (BSS) and the binary Gaussian source (BGS), the “optimal” protocols
turn out to have only a single round of communication. We stress that optimality, with respect
to a certain measure of efficiency of communication (such as CBIB), holds over all protocols, i.e.,
those with arbitrarily many rounds. For instance, in the amortized setting, [LCV17] showed that
the r-round CBIB and the r-round KBIB (Definitions 2.5 and 2.6) are equal to the 1-round CBIB
and 1-round KBIB, respectively, when (X,Y ) are distributed according to the binary symmetric
source BSSp with any parameter p ∈ (0, 1), or the binary gaussian source BGSρ for any correlation
ρ ∈ [−1, 1].

Moreover, [Tya13] showed that for any binary symmetric source BSSp, the r-round MIMK does
not depend on r, the number of rounds. In other words, there is a 1-round protocol that achieves
the minimum communication cost for generating a key of rate IBSSp(X;Y ) = (1 − 2p)2, where
the minimum is taken over protocols with arbitrarily many rounds. Notice how Theorem 2.3 and
Definition 2.8 present the r-round CBIB, KBIB, and MIMK as certain geometric properties of
the rate regions Sr(X,Y ) and Tr(X,Y ). The following stronger result regarding BSSp has been
conjectured [LCV17, Conjecture 1]: for any r ≥ 1, p ∈ [0, 1], when (X,Y ) ∼ BSSp for any p,
S1(X,Y ) = Sr(X,Y ). That is, increasing the number of rounds of interaction does not increase
the size of the rate region at all for the binary symmetric source.

The story for non-amortized CRG is similar. (We remark that work in the non-amortized
setting has mostly focused on CRG as opposed to SKG). [GR16] showed that for any p ∈ [0, 1],
and µ = BSSp or µ = BESp, for a given disagreement probability 1 − ε and communication C, the
maximum L such that (C,L, ε) is r-achievable does not depend on the number of rounds r (up to
lower order terms).5 This result builds on earlier work of [CGMS17], which proved similar, but
looser bounds.

The results mentioned above naturally point to the following question, which is the main focus
of this thesis:

Question 2.12 (Informal). Are there some distributions µ for which additional interaction (i.e.,
rounds) does help? More precisely:

(1) For a given communication rate C (and error rate ε, in the non-amortized setting), can the
maximum achievable rate L (i.e., the entropy) of a common random string or secret key
increase if we allow Alice and Bob to use additional rounds of communication?

(2) In particular, in the amortized setting, can having additional rounds of communication lead to
a strictly larger CBIB or KBIB, or a strictly smaller MIMK? (Notice that MIMK is measured
as a minimum amount of communication of a protocol achieving the maximum key rate, hence
it will only decrease if we increase the number of allowed rounds.)

(3) Moreover, if any of the above questions have answers in the affirmative, then by how much
can the relevant quantity increase or decrease as we increase the number of rounds?

5We remark that this result only holds for a somewhat restricted class of protocols, namely those in which Alice’s
key depends only on her input, while Bob’s key can depend on an r-round transcript between Alice and Bob.
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Very little was known about Question 2.12 prior to our work. Tyagi [Tya13] constructed a
source for which the 2-round MIMK is smaller than the 1-round MIMK by a (small) constant
factor. Orlitsky [Orl90, Orl91] studied a slightly different version of CRG in which the key K is
required to be equal to Alice’s input X; thus the problem becomes that of Bob learning Alice’s
input. Orlitsky showed that 2-round protocols can require exponentially less communication than
1-round protocols. However, for any r > 2, r-round protocols can save on communication cost over
2-round protocols by at most a factor of 4.

2.5.2 Main Results: Analogue of Pointer-Chasing Separations for CRG & SKG

The main results presented in this thesis include those in the SODA 2019 paper co-authored by the
author [BGGS19]. This thesis also contains further results that solve open problems of [BGGS19].

Question 2.12 was considered in [BGGS19] for the non-amortized setting, where the following
partial answer was given, establishing a separation in communication cost between (r + 2)-round
and b(r + 1)/2c-round protocols, for any r ∈ N:

Theorem 4.1 (Thms. 1.1 & 1.2 of [BGGS19]). For each r ∈ N, ε ∈ [0, 1), there exists η > 0,
β < ∞, n0 ∈ N such that for any n ≥ n0 and any ` ∈ N, there is a source µr,n,` such that, in the
non-amortized setting:

1. The tuple (O(log n), `, 0) is (r + 2)-achievable for SKG from µr,n,` (and thus (O(log n), `) is
(r + 2)-achievable for CRG).

2. For any L ∈ N and C ≤ O(min{L, n/ poly log n}), the tuple (C,L, ε) is not b(r + 1)/2c-
achievable for CRG (and thus the tuple (C,L, ε, δ) is not b(r+1)/2c-achievable for all δ ≥ 0).

To interpret the above theorem, fix any r ∈ N, ε ∈ [0, 1), and consider parameters ` = n→∞.
Then with only O(log n) communication, ` bits of entropy can be generated in r + 2 rounds,
but if we have only roughly have half as many rounds (i.e., b(r + 1)/2c rounds) then generating
` bits of entropy takes at least n/ poly log n communication, which is exponentially larger than
log n. Moreover, this exponential-sized gap in communication complexity is essentially optimal for
b(r+1)/2c ≥ 2, as any protocol with communication cost C can be simulated by a 2-round protocol
with communication cost at most 2C+2.6

Theorem 4.1 leaves two immediate open problems, solutions to which would present an affir-
mative answer to parts (1) and (3) of Question 2.12:

Problem 2.13. In the context of Theorem 4.1:

6To see this claim, first note that any round protocol with communication cost C and fixed inputs X = x, Y = y,
can be viewed as a binary tree. Each node in the tree is owned by a single party, where the owner does not depend
on X,Y . The 2 edges from each node to its children are labeled by real numbers in [0, 1] that sum to 1. We say
that those edges are also owned by the party owning v, and the labels of the edges owned by Alice (Bob, resp.)
must only depend on X (Y , resp.). The protocol proceeds as follows: at each node v, the party owning that node
chooses one of its children with probability given by the edges from v to the child, and transmits a 0 or 1 to Bob to
communicate which child was chosen. Then the party owning the chosen child of v communicates the next bit, and
so on. To simulate this protocol with a 2-round protocol, Alice can perform, for each of the nodes owned by Alice
(of which there are at most 2C+1), the coin flips to determine which child she would choose at that node, and then
send Bob the resulting at most 2C+1 bits. Bob can do the same for the nodes owned by him, and then both parties
can simulate the protocol.
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(1) Can the gap between r + 2 and b(r + 1)/2c rounds of communication be improved to, say,
r + 2 and r + 1 rounds?

(2) Can the source µr,n,` be used to obtain an analogous separation of the rate regions for (r+2)-
round and b(r + 1)/2c-round (or even (r + 2)-round and (r + 1)-round) protocols in the
amortized setting?

In this thesis, we solve both of these problems and in fact obtain a close-to-optimal answer to
nearly all parts of Question 2.12. Below we present informally our main results:

Theorem 4.2 (Tighter round dependence than Thms. 1.1 & 1.2 of [BGGS19] for non-amortized
setting; informal). For each r ∈ N, ε ∈ [0, 1), there are sufficiently large n such that for any `, there
is a source µr,n,` such that, in the non-amortized setting:

1. The tuple (O(log n), `, 0) is (r + 2)-achievable for SKG from µr,n,` (and thus (O(log n), `) is
(r + 2)-achievable for CRG).

2. For any L ∈ N, C ≤ O (min{L,
√
n/ poly log n}), the tuple (C,L, ε) is not r-achievable for

CRG from µr,n,` (and thus for any δ ≥ 0, the tuple (C,L, ε, δ) is not r-achievable for SKG).

Theorem 5.1 (Amortized setting; informal). For each r ∈ N, γ ∈ (0, 1), there are sufficiently large
n such that for any `, there is a source µr,n,` such that:

1. The tuple (O(log n), `) is (r + 2)-achievable for SKG (and thus for CRG) from µr,n,`.

2. Set ` = n. For any L > γn and C ≤ O(n/ poly log n), the tuple (C,L) is not b(r + 1)/2c-
achievable for CRG (and thus for SKG) from µr,n,n.

3. Again set ` = n. For any L > γn and C ≤ O(
√
n/ poly log n), the tuple (C,L) is not

r-achievable for CRG (and thus for SKG) from µr,n,n.

Remark 2.14. Theorem 5.1 shows the existence of separations between Tr+2(X,Y ) and Tr(X,Y )
(i.e., the existence of tuples (C,L) ∈ Tr+2(X,Y ) but that are not in Tr(X,Y )). In Theorem 5.9 we
show how these separations imply corresponding separations between Ir+2(X;Y ) and Ir(X;Y ),
thus giving a partial answer to the second part of Question 2.12. We are not quite able to use
Theorem 5.1 to derive analogous separations between Γcr

r+2(X,Y ) and Γcr
r (X,Y ) (or even between

Γcr
r+2(X,Y ) and Γcr

b(r+1)/2c(X,Y )), and leave this problem for future woek (Problem 5.1).

The source µr,n,` referred to in Theorems 4.2 and 5.1 is a variant of the well-known pointer
chasing distribution from communication complexity [NW93, DGS84, PS82]. This distribution was
introduced to show a similar type of rounds/communication tradeoff as in the above theorems,
except for the task of computing functions rather than generating a shared string. (Recall the
definition of communication complexity of functions in Section 2.2.1.)

A typical example of such a pointer chasing function is as follows: for an integer n and odd
r, Alice receives functions indexed by even integers Σ1,Σ3, . . . ,Σr : [n] → [n], and Bob receives
functions indexed by odd integers Σ2,Σ4, . . . ,Σr−1 : [n] → [n], as well as an integer I0 ∈ [n]. The
goal is to compute Σr ◦Σr−1 ◦ · · ·Σ1(I0) ∈ [n].7 If they can communicate in r+ 2 rounds, then Bob

7In our pointer chasing variants (e.g., Definition 4.1), the Σ1, . . . ,Σr will actually taken to be permutations on [n]
for technical reasons.
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can send Alice I0 when he first speaks, Alice can then send Bob Σ1(I0) ∈ [n], Bob can respond with
Σ2(Σ1(I0)) ∈ [n], and so on, until they compute Σr ◦Σr−1 ◦ · · ·Σ1(I0) ∈ [n] in the last round, which
takes (r log n) bits of communication. However, computing this value in fewer than r + 2 rounds
seems to be difficult with O(log n) (or even o(n)) communication. This intuition is formalized by
[NW93], who show that any r-round protocol computing Σr ◦ · · · ◦Σ1(I0) must communicate Ω(n)
bits (in contrast to the (r+ 2)-round protocol we discussed with communication cost r log n). This
“round hierarchy result” has spawned a great number of follow-up papers presenting generalizations
and extensions (e.g., [DJS96, CCM16, PRV01, GM08, GM09, Yeh16]), and has also found diverse
applications such as proving bounds on monotone circuit depth [NW93] and establishing lower
bounds for graph streaming problems [GO16].

Our Theorems 4.2 and 5.1 (and the earlier results in [BGGS19]) then can be interpreted as
establishing an analogous “round hierarchy” for the settings of common randomness and secret
key generation. In light of this interpretation, it is natural to ask whether such results for CRG
and SKG can be derived as a consequence (in a black-box manner) of the functional versions in
[NW93, DGS84]. The achievability of the rates (O(log n), `), representing a protocol with O(log n)
communication cost that outputs keys with ` bits of entropy, follows in a trivial way nearly identical
to that of the functional problem discussed above. Therefore, the main content to Theorems 4.1,
4.2, and 5.1 is the lower bound establishing that certain tuples are not achievable, i.e., item (2) of
each statement. However, it does not seem to be possible to derive these lower bounds as a black-
box consequence of the corresponding lower bounds of [NW93]. This results from the following two
facts: first, to generate common randomness or a secret key from a pointer chasing distribution, it
is not clear that Alice and Bob have to compute a version of the pointer chasing function in the
first place. Second, suppose that we could overcome the first difficulty and show that Alice and
Bob do in fact have to compute such a pointer chasing function; this is essentially the first step in
the proof of Theorem 4.1, presented in Proposition 4.5 and Theorem 4.6. But then it turns out
that we need some lower bound on the distributional communication complexity of such a pointer
chasing function for a very particular distribution in which Alice’s and Bob’s inputs are correlated.
Such a result does not appear to exist in the literature: typically lower bounds are proven for the
distributional communication complexity of a distribution in which Alice’s and Bob’s inputs are
independent, which greatly simplifies the analysis. Indeed, the bulk of the proof of Theorem 4.1
rests in the proof of Theorem 4.10, which presents such a distributional communication complexity
lower bound for a certain pointer chasing function.

However, once the distributional complexity lower bound on a pointer chasing function is estab-
lished in Theorem 4.10, it turns out that we can use this lower bound as a black box to establish
Theorems 4.2 and 5.1, thus solving both parts of Problem 2.13.

3 History

In this section we review some of the relevant history on work studying the CRG and SKG problems.

3.1 Non-amortized CRG and SKG

Some of the earliest work on common randomness generation was in the zero-communication case,
in which the problem is known as non-interactive correlation distillation. Witsenhausen [Wit75] and
Gács and Körner [GK73] studied the following question: suppose N pairs (Xi, Yi) ∼ µ are drawn
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i.i.d., and Alice and Bob wish to compute functions fN (X1, . . . , XN ) ∈ {0, 1} and gN (Y1, . . . , YN ) ∈
{0, 1}, respectively, such that P[fN (X1, . . . , XN ) = 1] and P[gN (Y1, . . . , YN ) = 1] remain bounded
away from 0 and 1 as N →∞, but that P[fN (X1, . . . , XN ) 6= gN (Y1, . . . , YN )]→ 0. In other words,
Alice and Bob wish to agree with probability bounded away from 0 on a single bit with positive
entropy. [GK73, Wit75] show that this is possible if and only if the Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation of X,Y , defined below, is equal to 1:

Definition 3.1 (HGR Maximal correlation). The maximal correlation of (X,Y ) ∼ µ is defined as

ρ2
m(X,Y ) := sup

(f(X),g(Y ))
Eµ[f(X)g(Y )],

where the supremum is over all real-valued measurable functions f(X), g(Y ), such that Eµ[f(X)] =
Eµ[g(Y )] = 0 and Eµ[f(X)2] = Eµ[g(Y )2] = 1.

It is also shown in [GK73, Wit75] that ρ2
m(X,Y ) = 1 if and only if the distribution (X,Y ) ∼ µ is

decomposable in the following sense: there exist subsets A ⊂ X ,B ⊂ Y such that P[X ∈ A],P[X ∈
X\B],P[Y ∈ B],P[Y ∈ Y\B] are all positive, yet

P[X ∈ A, Y ∈ B] = P[X ∈ X\A, Y ∈ Y\B] = 0.

(Notice that the “if” direction here is immediate.)
The generalization of this problem of non-interactive correlation distillation to the case where

there are multiple parties and they all wish to agree on a bit was studied in [MO05, MOR+06]. In
particular, these works consider the case where the distribution µ is over a bit, and each party’s bit
is flipped with some probability p. Yang [Yan07] considers a related problem for the 2-party case,
and also allows the parties to communicate a single bit.

Bogdanov and Mossel [BM11] study common randomness generation in the zero-communication
setting: for some p ∈ [0, 1] and N ∈ N, suppose Alice and Bob receive N copies of a binary sym-
metric source BSSp, denoted (Xi, Yi) (so P[Xi 6= Yi] = p for 1 ≤ i ≤ N). For some k ∈ N, without
communicating, they wish to output approximately uniform strings of length k, KA,KB ∈ {0, 1}k,
such that KA = KB with high probability. It is shown in [BM11] that the maximum probability
of agreement is approximately 2−kp/(1−p). A follow-up work [CMN14] considers a generalization
of the BSS to larger alphabets in the context of this problem: the source µ is now over pairs
(X,Y ) ∼ [s], for s ∈ N, where X is uniform over [s], Y = X with probability 1 − p, and otherwise
Y is uniform over [s]\{X}. [CMN14] shows that for some function δ(s) → 0 as s → ∞, the best
possible agreement probability is at most (1 − ε+ ε/s)k · (1 + δ(s))k.

As discussed briefly in Section 2.5.1, [CGMS17, GR16] consider CRG from the binary sym-
metric source (BSS) and the binary erasure channel (BEC). Notice that for the binary symmetric
source, this is the same problem as that considered by Bogdanov and Mossel [BM11], except that
communication is allowed. [GR16] showed that for the source µ = BSSp, letting α = 4p(1−p), and
γ ∈ (0, 1), the tuple

(k(α(1− γ)− 2
√
α(1− α)γ), k, 2−γk−O(log k)) (3)

is achievable by a 1-round protocol, and this is essentially optimal. They showed an analogous
result for the BEC. In a follow-up work, Ghazi and Jayram [GJ18] showed that the protocols
of [GR16] could be made sample-efficient, meaning that essentially the same rate (3) could be
obtained, though with an explicitly-defined protocol that uses only poly(k) samples (X,Y ) from
BSSp.
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3.2 Single-letter Characterization of Rate Regions for Amortized CRG and
SKG

The r-round rate region for amortized CRG and SKG is completely characterized by, for each
communication rate C, the maximum real number L, known as the capacity, such that (C,L) is
r-achievable for CRG or SKG:

Definition 3.2 (CR & SK capacity). Suppose a source (X,Y ) ∼ µ is fixed. Then for r ∈ N, C ∈
R+, define the CR capacity with communication C to be

C am-cr
r (C) := sup

(C,L)∈Tr(X,Y )
L,

and the SK capacity with communication C to be

C am-sk
r (C) := sup

(C,L)∈Sr(X,Y )
L.

(Recall the definitions of Tr(X,Y ) and Sr(X,Y ) in Definitions 2.1 and 2.2.) When we want to
emphasize dependence of C am-cr

r (·),C am-sk
r (·) on µ, we write C am-cr

r (C|µ) and C am-sk
r (C|µ), respec-

tively.

In their seminal work on CRG in the amortized setting, Ahlwede and Csiszár [AC98] computed
the following single-letter characterization8 of C am-cr

1 (C), or equivalently, of T1(X,Y ):

Theorem 3.1 ([AC98]). The 1-round CR capacity is given by:

C am-cr
1 (C) =

{
maxU {I(U ;X) : I(U ;X)− I(U ;Y ) ≤ C} : C ≤ H(X|Y )

C + I(X;Y ) : C > H(X|Y ),

where the maximum in the first case is over all random variables U on a set U of size |U| ≤ |X |,
satisfying the Markov condition U −X − Y .

Moreover, if we replace all definitions (i.e., of Tr(X,Y ) and C am-cr
1 (C)) with the corresponding

ones where the protocols are not allowed to use private random bits, then the CR capacity at
communication C simply becomes:

max
U
{I(U ;X) : I(U ;X)− I(U ;Y ) ≤ C} , (4)

where the maximum is over the same random variables U as before.

The expression given in (4) deserves some additional discussion. Notice that a random variable
U ∈ U with |U| finite and that satisfies the Markov condition U −X − Y may be interpreted as a
one-round private coin randomized protocol between Alice and Bob whose message (sent by Alice)
is simply given by Π1 = U (which can be viewed as a string in {0, 1}dlog |U|e); see Proposition 2.1.
We make two observations about the quantities involving mutual information in (4):

8The term “single-letter characterization” is used relatively loosely in the information theory literature. Following
[CK81], for any k ∈ N and a closed subset S ⊂ Rk, we call a characterization of S a single-letter characterization if it
implies, for any η > 0, the existence of an algorithm that decides whether a point x ∈ Rk is of Euclidean distance at
most η to S. Moreover, this algorithm must run in time at most TS(η), for some function TS : R+ → N. For instance,
for the characterization given in Theorem 3.1, the set S is given by T1(X,Y ), and the algorithm iterates through all
possible conditional distributions of U |X where U is supported on some set U of size |U| ≤ |X |, with a sufficiently
small granularity (depending on η). Correctness follows by the continuity of the Shannon entropy.
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1. As I(U ;Y |X) = 0 by the Markov condition, the quantity being maximized in (4), namely
I(U ;X), is equal to I(U ;XY ).

2. As I(U ;X)−I(U ;Y ) = I(U ;X|Y ), the constrained quantity in (4), namely I(U ;X)−I(U ;Y )
is equal to I(U ;X|Y ) + I(U ;Y |X).

These two quantities, namely I(U ;XY ) and I(U ;X|Y ) + I(U ;Y |X), have independently found
many applications in the computer science community [BBCR13, BR11, BRWY13, BGPW13,
Bra12], where they are referred to as the external information cost and internal information cost,
respectively, of the protocol induced by Π1 = U . More generally, the external information cost of
a (multiple-round) protocol Π describes how much information Π reveals about the inputs X,Y to
an external observer who only sees the transcript of the protocol, while the internal information
cost describes how much information Alice and Bob reveal to each other about their own inputs:

Definition 3.3 (External and internal information costs). Given any communication protocol Π
with a maximum of r rounds, public randomness RPub, and a distribution (X,Y ) ∼ µ of inputs,
the external information cost ICext

µ (Π) is given by:

ICext
µ (Π) := I(Πr, RPub;X,Y ).

If Π does not use public randomness, then ICext
µ (Π) := I(Πr;X,Y ).

The internal information cost ICint
µ (Π) is given by

ICint
µ (Π) := I(Πr, RPub;X|Y ) + I(Πr, RPub;Y |X).

If Π does not use public randomness, then ICint
µ (Π) := I(Πr;X|Y ) + I(Πr;Y |X).

The original motivation behind the introduction of internal and external information costs in
the computer science community was to understand the possibility of proving direct sum results for
communication complexity [CSWY01, JRS03, HJMR07, BBCR13]. Such a direct sum result would
state that the communication complexity of computing N independent copies of a function (i.e.,
with N independent pairs of inputs (Xi, Yi)) is roughly N times the communication complexity of
computing a single copy of the function. This problem was initially considered in [KRW95], where a
direct sum result for deterministic communication complexity was conjectured for a certain relation,
and it was shown that a proof of this conjecture would imply P 6⊆ NC1. A (weak) direct sum result
was shown for the deterministic communication complexity of computing functions [FNKN95],
where it was proven that if the deterministic communication complexity of computing f is C, then
the deterministic communication complexity of computing n copies of f is Ω(

√
Cn). For the case

of randomized and distributional communication complexity, it is known that no tight direct sum
theorem (i.e., one that states that the complexity of computing n copies of any function f , each
correctly with probability 2/3, is Ω(Cn)) holds [GKR14, GKR16, RS18], but the possibility of a
weak direct sum result still remains open [BGKR18].

In light of the connection with direct sum results, the fact that internal and external information
costs appear in characterizations for amortized CRG and SKG is not too surprising. In particular,
the amortized CRG and SKG problems can be viewed as the task of solving N independent instances
of CRG or SKG from a source µ, with an additional requirement that each of Alice’s N output
strings must agree with each of Bob’s N output strings simultaneously with high probability. In
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fact, the proof of our Theorem 5.1 will involve many of the same tools that have been used to prove
direct sum results for certain subclasses of functions [BR11].

Returning to our discussion of Theorem 3.1, which motivated our introduction of internal
and external information complexities, we now work towards a statement of a generalization of
it to the case of r-round protocols. It is useful to first consider the possible values for the pairs
(ICint

µ (Π), ICext
µ (Π)), for a given source µ, as Π ranges over all r-round protocols:

Definition 3.4. For a source (X,Y ) ∼ µ, denote by T d
r (X,Y ) the set of pairs (C,L) for which

there exists an r-tuple (Π1, . . . ,Πr) of random variables taking values in finite sets, satisfying the
Markov conditions,

Πt −XΠt−1 − Y, t ∈ Or X − YΠt−1 −Πt, t ∈ Er, (5)

such that, letting Π = (Π1, . . . ,Πr) denote the protocol induced by the random variables Π1, . . . ,Πr,
ICint

µ (Π) ≤ C and ICext
µ (Π) ≥ L. (See Proposition 2.1.)

Lemma 3.2. T d
r (X,Y ) is closed.

Proof. By the support lemma [CK81, Lemma 15.4], we can restrict our attention to protocols
Π = (Π1, . . . ,Πr) such that Πt, 1 ≤ t ≤ r, falls in a finite set of size Ut at most |X ||Y|

∏t−1
t′=1 |Ut′ |+1.

For each odd t, the space of all possible Πt is the |X | ·
∏t−1
t′=1 |Ut′ |-fold product of all probability

distributions on Ut (as Πt specifies a probability distribution on Ut for each possible value of
XΠt−1), which is compact, and in fact homeomorphic to a closed ball in some RK . We have an
analogous statement for even t, and therefore the space of all possible Π is compact. Since the
functions Π 7→ ICint

µ (Π) and Π 7→ ICext
µ (Π) are continuous, it follows that the set of all possible

(ICint
µ (Π), ICext

µ (Π)) ∈ R2
≥0, over all r-round protocols Π, is compact (and in particular closed).

Thus T d
r (X,Y ) is closed as well.

The reason for the similarity of notation between T d
r (X,Y ) and Tr(X,Y ) is as follows: recall

(Definition 2.1) that Tr(X,Y ) is the set of pairs (C,L) which are r-achievable by a protocol with
private randomness. It turns out (Theorem 3.4) that T d

r (X,Y ) is the set of pairs (C,L) which are
r-achievable by a protocol with no randomness, i.e., a deterministic protocol.

Recall the definition of the minimum r-round interaction for achieving the maximum key rate
(r-round MIMK; Definition 2.8). The following theorem provides a single letter characterization of
the r-round MIMK in terms of T d

r (X,Y ).

Theorem 3.3 ([Tya13], Theorem 4). Suppose we are given a source (X,Y ) ∼ µ. Then for r ∈ N,
C ∈ R+, the minimum interaction for maximum key rate is

Ir(X;Y ) = inf
{
L− I(X;Y ) : (L− I(X;Y ), L) ∈ T d

r (X;Y )
}
. (6)

Theorem 3.3 is proved by relating Ir(X;Y ) to a generalization of Wyner’s common information
[Wyn75].

Notice that for all r, Ir(X;Y ) ≤ H(X|Y ), since the 1-round protocol Π in which Alice sends
her input X = Π1 satisfies ICint(Π) = I(X;X|Y ) = H(X|Y ) and ICext(Π) = I(X;XY ) = H(X),
and thus ICext(Π) − ICint(Π) = I(X;Y ). It follows similarly that for r ≥ 2, Ir(X;Y ) ≤
min{H(X|Y ), H(Y |X)}.

Using Theorem 3.3, we come to the desired generalization of the single-letter characterization
of Theorem 3.1 to multi-round protocols. It is stated most precisely in [STW19], but similar results
are shown in [LCV17, GJ18, Liu16, Ye05, GA10a, GA10b].

22



Theorem 3.4 ([STW19], Theorem III.2). We have:

(1) For a source (X,Y ) ∼ µ, the r-round CR capacity is given by

C am-cr
r (C) =

{
sup(C,L)∈T d

r (X,Y ){L} : C ≤ Ir(X;Y )

I(X;Y ) + C : C > Ir(X;Y ).
(7)

(2) The region T d
r (X,Y ) ⊂ Tr(X,Y ) is exactly the set of tuples (C,L) that are achievable by

deterministic protocols Π.

(3) C am-sk
r (C) = C am-cr

r (C)− C.

Remark 3.5. We briefly explain how Theorem 3.4 does in fact provide a single-letter character-
ization for Tr(X,Y ) = {(C,L) : C ≥ 0, L ≤ C am-cr

r (C)}, and thus for Sr(X,Y ). It follows from
the support lemma [CK81, Lemma 15.4] that the protocols Π = (Π1, . . . ,Πr) in the definition
of T d

r (X,Y ) can be restricted to the class of protocols where Πt, 1 ≤ t ≤ r, falls in a finite set
of size Ut at most |X ||Y|

∏t−1
t′=1 |Ut′ | + 1. Then by iterating through all possible distributions of

Πt|Πt−1X, for t ∈ Or, and Πt|Πt−1Y , for t ∈ Er, at a sufficiently small granularity, we can approx-
imate sup(C,L)∈T d

r (X,Y ){L} to any given precision. By Theorem 3.3, similar considerations apply

regarding the computation of Ir(X;Y ) (which is expressed in (6) entirely in terms of T d
r (X,Y )).

When C ≤ Ir(X;Y ), C am-cr
r (C) may equivalently be written as:

sup
Π=(Π1,...,Πr):IC

int
µ (Π)≤C

{ICext
µ (Π)},

where in the supremum Π = (Π1, . . . ,Πr) represents any r-round private-coin protocol.
Let C̃ am-cr

r (C) be the right-hand side of (7), so that part (1) of Theorem 3.4 states that
C am-cr
r (C) = C̃ am-cr

r (C). The proof of part (1) of the theorem consists of two parts: first, the
proof of achievability, namely that C am-cr

r (C) ≥ C̃ am-cr
r (C), which states that for each pair (C,L)

with L < C̃ am-cr
r (C), there is some r-round protocol achieving the rate (C,L). Second, one must

prove the converse direction, that C am-cr
r (C) ≤ C̃ am-cr

r (C), which states that for each pair (C,L)
with L > C̃ am-cr

r (C), there is no r-round protocol achieving the rate (C,L). We prove the converse
direction in Section 3.4; notice that this is the only direction needed to establish Corollary 3.5
below, which is in turn the only consequence of Theorem 3.4 we use in the proofs of our results.
The proof of achievability uses the likelihood encoder of Song et al. [SCP16] and can be found in
[LCV17] (The proof of achievability in the special case for 1-round communication, Theorem 3.1,
can also proceed by using standard machinery of jointly typical sequences [CT12, AC98].)

We remark that part (1) of Theorem 3.4 has the following immediate consequence:

Corollary 3.5. For each tuple (C,L) ∈ Tr(X,Y ) with L < I(X;Y ), there is some protocol Π =
(Π1, . . . ,Πr) such that ICint

µ (Π) ≤ C and ICext
µ (Π) ≥ L.

Proof. First suppose that C ≤ Ir(X;Y ). Then the existence of the r-round protocol Π follows
from (7) and Definition 3.4.

Next suppose C > Ir(X;Y ). Notice that (Ir(X;Y ), I(X;Y )) ∈ Tr(X,Y ), since C am-cr
r (Ir(X;Y )) =

I(X;Y ) + Ir(X;Y ). Therefore, the case C ≤ Ir(X;Y ) gives that there is an r-round protocol Π
such that ICint

µ (Π) ≤ Ir(X;Y ) < C and ICext
µ (Π) ≥ I(X;Y ) > L, as desired.
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3.3 Strong Data Processing Constant, Hypercontractivity

In this section we discuss some connections between properties of the rate regions Tr(X,Y ),Sr(X,Y ),
such as the r-round CBIB and KBIB (Definitions 2.5 and 2.6), and other quantities considered in
probability and information theory. The results discussed in this section give an alternate interpre-
tation to some of our main results, but are not used directly in our proofs, so this section can be
skipped.

3.3.1 1-round protocols

We begin with the one-round case, r = 1. The strong data processing constant, s∗1(X,Y ), plays a
key role in many of these connections; it is defined as follows:

s∗1(X,Y ) := sup
U :U−X−Y

I(U ;Y )

I(U ;X)
, (8)

where the supremum is over all random variables U such that the given Markov condition holds.
Notice that by the data processing inequality, s∗1(X,Y ) ≤ 1; thus, s∗1(X,Y ) can be viewed as
determining “how much stronger” the data processing inequality can be made for Markov chains
U −X − Y , where the distribution of (X,Y ) is fixed.

By comparing with Theorems 2.3 and 3.4, it follows easily that

s∗1(X,Y ) =
Γsk

1 (X,Y )

Γsk
1 (X,Y ) + 1

=
Γcr

1 (X,Y )− 1

Γcr
1 (X,Y )

.

Thus determining s∗1(X,Y ) is equivalent to determining the 1-round CBIB and KBIB for the source
(X,Y ) ∼ µ.

In turn, Ahlswede and Gács [AG76] showed a characterization of the strong data processing con-
stant (SDPC) s∗1(X,Y ) in terms of hypercontractivity properties of the Markov operator associated
to the source (X,Y ) ∼ µ. We first define the Markov operator: if F (X ),F (Y) denote the real-
valued functions defined on X and Y, respectively9, then the Markov operator Tµ : F (Y)→ F (X )
is defined by:

(Tµg)(x) := Eµ[g(Y )|X = x].

We now define the hypercontractivity ribbon associated with the Markov operator Tµ.

Definition 3.6 (Hypercontractivity ribbon). Fix a distribution (X,Y ) ∼ µ. For p ≥ 1, define

q∗X,Y (p) := inf {q : ‖Tµg(X)‖p ≤ ‖g(Y )‖q∀g ∈ F (Y)} .

(Recall that for a random variable Z, and p > 0, we define ‖Z‖p = (E[|Z|p])1/p.) It follows by
Jensen’s inequality that q∗X,Y (p) ≤ p, i.e., that ‖Tµg(X)‖p ≤ ‖g(Y )‖p for all p ≥ 1. Then the
hypercontractivity ribbon is defined by {(q, p) : q∗X,Y (p) ≤ q ≤ p}.

The hypercontractivity ribbon, which is defined in a purely probabilistic manner, characterizes
the strong data processing constant, which is defined information theoretically:

Theorem 3.6 ([AG76, AGKN13]). The following assertions hold for p > 1:

9Here recall that we take X ,Y to be finite sets, which is the setting considered in [AG76].
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1. q∗X,Y (1) = 1.

2. s∗1(X,Y ) = limp→∞
q∗X,Y (p)−1

p−1 .

3. s∗1(Y,X) = limp↓1
q∗X,Y (p)−1

p−1 .

The above characterization states that the SDPC s∗1(X,Y ) is given by the limit of the lower
chordal slope of the hypercontractivity ribbon (i.e., of the slope of the line connecting (1, 1) and
(p, q∗X,Y (p)), as p→∞).

It is also known [AG76] that for all p,
q∗X,Y (p)−1

p−1 ≥ ρ2
m(X,Y ), which implies that min{s∗1(X,Y ), s∗1(Y,X)} ≥

ρ2
m(X,Y ); moreover, equality does not always hold.

3.3.2 Multi-round protocols; concave envelopes

Next we turn to the case of protocols with an arbitrary number r of rounds, which is of greater
interest in interpreting our results. First we note that the notion of SDPC generalizes: the r-round
strong data processing constant (SDPC) is defined as

s∗r(X,Y ) :=
Γcr
r (X,Y )− 1

Γcr
r (X,Y )

= sup
Π satisfying (5)

∑
t∈Or I(Πt;Y |Πt−1) +

∑
t∈Er I(Πt;X|Πt−1)∑

t∈Or I(Πt;X|Πt−1) +
∑

t∈Er I(Πt;Y |Πt−1)
.

We have written out the entire expression for s∗r(X,Y ) to emphasize the similarity with the defini-
tion of s∗1(X,Y ) given in (8).

There does not seem to be a generalization of the hypercontractivity ribbon that allows an
anlogue of Theorem 3.6 to r-round protocols, but there is an alternate characterization of the r-
round SDPC in terms of convex geometry due to Liu et al [LCV17]. To simplify notation in this
section, for a distribution µ on a finite set X , we write µ(x) = PX∼µ[X = x]. Now, for distributions
ν, µ, on a finite set X , ν is absolutely continuous with respect to µ if there is a bounded function
f : X → R such that ν(x) = f(x)µ(x) (i.e., µ(x) = 0 implies ν(x) = 0). The following definition
generalizes this notion of absolute continuity to the case of distributions over a product of sets
S × Y .

Definition 3.7 (X, Y , XY -absolute continuity [LCV17]). Consider distributions µ, ν defined on
X × Y . We say that ν is X-absolutely continuous with respect to µ, denoted ν �X µ, if there is a
bounded function f such that for all (x, y) ∈ X ×Y , ν(x, y) = f(x)µ(x, y). Y -absolutely continuity
is defined similarly. Finally, ν is XY -absolutely continuous with respect to µ, denoted ν �XY µ, if
there are bounded functions f, g such that ν(x, y) = f(x)g(y)µ(x, y).

It is immediate that if ν �XY µ, then there is a distribution θ such that ν �X θ �Y µ.
Let D be a set of distributions on X ×Y . A function σ : D → R is X-concave if for all ν1, ν2 ∈ D,

α ∈ [0, 1] such that µ := αν1 + (1 − α)ν2 �X νi for i ∈ {1, 2}, σ(µ) ≥ ασ(ν1) + (1 − α)σ(ν2). Y -
concavity and XY -concavity are defined similarly. Finally, the concave envelope of σ is the “smallest
concave function σ′ on D that dominates σ”:

Definition 3.8 (Concave envelope, [LCV17]). For σ : D → R as above, the X-concave envelope σ′

of σ, denoted σ′ := envX(σ), is the unique function σ′ : D → R that is X-concave and such that
for all µ ∈ D, σ′′ : D → R that are X-concave, σ(µ) ≤ σ′(µ) ≤ σ′′(µ). The Y -concave envelope and
XY -concave envelope are defined similarly.
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Let D denote the set of all distributions on X ×Y , λ ∈ R+, and define a functional ωλ0 : D → R,
by

ωλ0 (µ) := λH(X,Y )− I(X;Y ),

where (X,Y ) ∼ µ. For r odd, let ωλr = envX ω
λ
r−1, and for r even, let ωλr = envY ω

λ
r−1. The

following theorem relates the value of the concave envelopes ωλr evaluated at a source µ, to the
achievable rate region Tr(X,Y ):

Theorem 3.7 ([LCV17], Theorem 2). Fix a source µ. Then for all r ≥ 1, λ > 0,

ωλr (µ) = λH(X,Y )− I(X;Y ) + sup
(C,L)∈Tr(X,Y )

{L(1− λ)− C},

where (X,Y ) ∼ µ.

Since C am-cr
r (C) is concave and strictly increasing (Lemma 3.13), Theorem 3.7 implies that the

values of ωλr (µ), λ > 0, completely characterize Tr(X,Y ). (In particular, ωλr (µ) determines the
maximum Euclidean inner product of a tuple in Tr(X,Y ) with (−1, (1 − λ)), and the values of
these for 0 < λ < 1 completely determine the curve C 7→ C am-cr

r (C), which in turn completely
determines Tr(X,Y ).)

Using straightforward manipulations, the following characterizations (Theorems 3.8 and 3.9)
of the r-round SDPC (which in turn determines the r-round CBIB and KBIB), and the r-round
MIMK follow from Theorems 3.7 and 3.4.

Theorem 3.8 ([LCV17]). For a source (X,Y ) ∼ µ and r ≥ 1, s∗r(X,Y ) is the infimum of all λ > 0
such that ωλr (µ) = ωλ0 (µ).

It is easy to see that for all λ′ > s∗r(X,Y ), ωλ
′
r (µ) = ωλ

′
0 (µ).

Theorem 3.9 ([LCV17], Theorem 8). For a source (X,Y ) ∼ µ and r ≥ 1,

Ir(X;Y ) = H(X|Y ) +H(Y |X)− lim
λ↓0

1

λ
ωλr (µ).

Notice that Theorem 3.9 describes the r-round MIMK in terms of ωλr (µ) when λ is very small;
in contrast, Theorem 3.8 describes the r-round SDPC (and thus CBIB and KBIB) in terms of
ωλr (µ) when λ is large (in fact, as large as possible so that ωλr (µ) is not “trivial”, i.e., not equal to
ωλ0 (µ) = λH(X,Y )− I(X;Y )).

In Section 5.3, we describe how the above theorems lead to an alternate interpretation of our
main results (i.e., an interpretation in terms of the concave envelopes ωλr (·) as opposed to the
interpretation in terms of achievable rates for protocols that we have mostly focused on).

3.4 Proof of the Converse Direction of Theorem 3.4

Recall our definition of

C̃ am-cr
r (C) :=

{
sup(C,L)∈T d

r (X,Y ) L : C ≤ Ir(X;Y )

I(X;Y ) + C : C > Ir(X;Y ).

Then point (1) of Theorem 3.4 states that C am-cr
r (C) = C̃ am-cr

r (C). Our goal in this section is to
establish the following:
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Theorem 3.10 (Converse direction of Theorem 3.4). C am-cr
r (C) ≤ C̃ am-cr

r (C).

Theorem 3.10 essentially states that any (private-coin) protocol Π for CRG can be converted
into a (private-coin) protocol whose internal and external information costs are related to the
communication and common randomness rates of Π in a particular way. We prove Theorem 3.10
by first establishing such a statement for deterministic protocols in Lemma 3.11 and Lemma 3.12
below. We will then use certain properties of C̃ am-cr

r (C) to “upgrade” this statement to apply to
randomized protocols.

Lemma 3.11. Suppose (X,Y ) ∼ µ for some source µ, and that the tuple (C,L), for C,L ∈ R+ is
achievable by an r-round deterministic protocol (in the sense of Definition 2.1; that is, all properties
of Definition 2.1 hold verbatim, except Π is not allowed to use private random coins). Then for
any L′ < L,C ′ > C, there is some N0 such that for all N ≥ N0, there is an r-round deterministic
protocol Π′ with inputs (XN , Y N ) ∼ µ⊗N such that

(1) ICext
µ⊗N (Π′) ≥ L′N .

(2) ICint
µ⊗N (Π′) ≤ C ′N .

Proof. Choose C ′′ with C ′ > C ′′ > C and L′′ with L′ < L′′ < L. By Definition 2.1, there is
some N0 so that for each N ≥ N0, there is an r-round protocol Π taking inputs from µ⊗N and
producing keys KA,KB in some set KN with |KN | ≥ L′N so that CC(Π) =

∑r
t=1 |Πt| ≤ C ′′N and

∆(KAKB,KK) ≤ εN for some

εN < min

{
C ′ − C ′′ − 2/N

L′
,
L′′ − L′ − 1/N

L′′

}
.

(Here K ∈ KN denotes the random variable uniformly distributed on KN .) By truncating the keys
we may assume without loss of generality that |KN | ≤ 2dL

′Ne. It follows from ∆(KAKB,KK) ≤ εN
that P[KA 6= KB] ≤ εN . Moreover, using Lemma 6.4, we obtain

min{H(KA), H(KB)} ≥ log |KN | − (h(εN ) + εN · log |KN |) ≥ (1− εN )L′′N − 1 ≥ L′N, (9)

where we have used εN ≤ L′′−L′−1/N
L′′ .

Now let Π′ be the following protocol:

1. Alice and Bob first simulate Π, i.e., they exchange the messages Π1, . . . ,Πr.

2. Then the last person to speak in Π outputs their key (i.e., if it is Alice, then she outputs KA

and if it is Bob then he outputs KB).

Suppose for simplicity that r is odd, so that Alice is the last person to speak in Π (the case r even
is nearly identical). Then since Π is deterministic, KA,Π

r is a deterministic function of X,Y , so
H(KA,Π

r|X,Y ) = 0. Noting the transcript of Π′ is given by (Π1, . . . ,Πr−1, (Πr,KA)), it follows
that

ICext(Π′) = I(KA,Π
r;X,Y ) = H(KA,Π

r)−H(KA,Π
r|X,Y ) ≥ H(KA,Π

r) ≥ H(KA) ≥ L′N,

where the last inequality uses (9).
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To upper bound ICint(Π′), notice that

ICint
µ⊗N (Π′) = I(Πr,KA;X

N |Y N ) + I(Πr,KA;Y
N |XN )

= I(Πr;XN |Y N ) + I(KA;X
N |Πr, Y N ) + I(Πr;Y N |XN )

= ICint
µ⊗N (Π) + I(KA;X

N |Πr, Y N )

≤ CC(Π) +H(KA|Πr, Y N )

≤ C ′′N + εNdL′Ne+ 1

≤ C ′N,

where we have used Fano’s inequality, the fact that P[KA 6= KB] ≤ εN , and that KB is a deterministic

function of ΠR, Y N . Moreover, the last inequality uses εN < C′−C′′−2/N
L′ .

The next lemma, which states that the internal and external information complexities tensorize
(i.e., they satisfy a direct sum property), was proved in [GJ18].

Lemma 3.12 ([GJ18], Lemma 14). Suppose that Π is an r-round private-coin protocol with inputs
(XN , Y N ) ∼ ν⊗N . Then there is an r-round private-coin protocol Π′ with only private randomness,
inputs (X,Y ) ∼ ν, such that:

(1) ICint
ν⊗N (Π) = N · ICint

ν (Π′).

(2) ICext
ν⊗N (Π) ≤ N · ICext

ν (Π′).

We only sketch the proof of Lemma 3.12, so as to explain how the protocol Π′ is constructed,
and defer to [GJ18] for a full proof.

Proof sketch. We note the following properties of Π = (Π1, . . . ,Πr):

(1) By the definition of a communication protocol, for every t ∈ Or, I(Y N ; Πt|XNΠt−1) =
I(XN ; Πt+1|Y NΠt) = 0.

(2) For all j ∈ [N ] and t ∈ Or, I(Yj ; Πt|XjY N
j+1Πt−1) = I(Xj ; Πt+1|Xj−1Y N

j Πt) = 0, which
follows by considering the graphical model corresponding to the distribution ν⊗n and the
protocol Π and noting that the nodes Yj and Πt (Xj and Πt+1, resp.) are D-separated by
the conditioning set XjY N

j+1Πt−1 (Xj−1Y N
j Πt, resp.).

Now the protocol Π′ works as follows: first Alice uses private randomness to generate J ∈ [N ]
uniformly at random, as well as XJ−1, Y N

J+1 (uniform in their respective domains), and sends them
to Bob. (This is equivalent to using public randomness to generate J,XJ−1, Y N

J+1.) Alice and
Bob then use their private randomness to generate XN

J+1 and Y J−1 conditioned on J,XJ−1, Y N
J+1,

respectively.
Alice and Bob then simulate Π using the inputs as generated above. In particular, the dis-

tribution of the (simulated) messages (Π1, . . . ,ΠN ) under Π′ when (X,Y ) ∼ ν is identical to the
distribution of the messages (Π1, . . . ,ΠN ) under Π when (X,Y ) ∼ ν⊗n. This follows since each
pair (Xj , Yj) (1 ≤ j ≤ N) is distributed according to ν, and all of the pairs (Xj , Yj) are distributed
independently.

It was shown in [GJ18] using properties (1) and (2) above that ICint
ν⊗N (Π) = N · ICint

ν (Π′) and
N · ICext

ν (Π′) ≥ ICext
ν⊗N (Π), which verifies properties (1) and (2) in the lemma.
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Lemmas 3.11 and 3.12 are sufficient to prove the converse direction of Theorem 3.4 for deter-
ministic protocols. In particular, they establish the direction of point (2) of Theorem 3.4 stating
that any tuple (C,L) ∈ Tr(X,Y ) achievable by a deterministic protocol in fact lies in T d

r (X,Y ).
To prove the converse direction for randomized protocols (i.e., Theorem 3.10), we first need to
establish some properties of C̃ am-cr

r (C) in Lemma 3.13 below.

Lemma 3.13. For each fixed r ∈ N, C̃ am-cr
r (·) is a nondecreasing concave function on R≥0. In

particular, it is continuous, and dC̃ am-cr
r (C)
dC ≥ 1 for all C ≥ 0.

Proof. First we suppose C ′ < C ≤ Ir(X;Y ). That C̃ am-cr
r (C) is non-decreasing for C in this range

is immediate from the definition. To show concavity, we use a simple time-sharing argument. In
particular, pick any L < C̃ am-cr

r (C) and L′ < C̃ am-cr
r (C ′), and suppose some r-round protocol Π =

(Π1, . . . ,Πr) has ICext
µ (Π) ≥ L, ICint

µ (Π) ≤ C, and that some r-round protocol Π′ = (Π′1, . . . ,Π
′
r)

has ICext
µ (Π′) ≥ L′ and ICint

µ (Π′) ≤ C ′. For any 0 < δ < 1, construct a protocol Π′′ in which Alice,
using her private randomness, generates a bit B which is 1 with probability δ, and sends it to Bob
as part of the first message. If B = 0, Alice and Bob run the protocol Π′, and if B = 1, then Alice
and Bob run the protocol Π. Formally, we write:

Π′′i :=


(B,Πi) : i = 1, B = 1

(B,Π′i) : i = 1, B = 0

Πi : i > 1, B = 1

Π′i : i > 1, B = 0.

Then by linearity of expectation,

I(Π′′1;X|Y ) = I(B;X|Y ) + I(Π′′1;X|Y B) = I(Π′′1;X|Y B) = δ · I(Π1;X|Y ) + (1− δ) · I(Π′1;X|Y ).

and
I(Π′′1;XY ) = I(B;XY ) + I(Π′′1;XY |B) = δ · I(Π1;XY ) + (1− δ) · I(Π′1;XY ).

It follows in an even simpler manner that for all i,

I(Π′′i ;XY |(Π′′)i−1) = δ · I(Πi;XY |Πi−1) + (1− δ) · I(Π′i;XY |(Π′)i−1),

that for i ∈ Or,

I(Π′′i ;X|Y (Π′′)i−1) = δ · I(Πi;X|YΠi−1) + (1− δ) · I(Π′i;X|Y (Π′)i−1),

and for i ∈ Er,

I(Π′′i ;Y |X(Π′′)i−1) = δ · I(Πi;Y |XΠi−1) + (1− δ) · I(Π′i;Y |X(Π′)i−1).

Thus ICint
µ (Π′′) = δ · ICint

µ (Π) + (1− δ) · ICint
µ (Π′) and ICext

µ (Π′′) = δ · ICext
µ (Π) + (1− δ) · ICext

µ (Π′).
In particular,

C̃ am-cr
r (δC+(1−δ)C ′) ≥ C̃ am-cr

r (δICint
µ (Π)+(1−δ)ICint

µ (Π′)) ≥ δICext
µ (Π)+(1−δ)ICext

µ (Π′) ≥ δL+(1−δ)L′,

and taking L → C̃ am-cr
r (C) and L′ → C̃ am-cr

r (C ′) gives C̃ am-cr
r (δC + (1 − δ)C ′) ≥ δ · C̃ am-cr

r (C) +
(1− δ) · C̃ am-cr

r (C ′), establishing that C̃ am-cr
r (·) is convex on [0,Ir(X;Y )].
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To copmlete the proof of the lemma it suffices to show that (1) C̃ am-cr
r (Ir(X;Y )) = Ir(X;Y )+

I(X;Y ), and (2) that the left-sided derivative of C̃ am-cr
r (C) at C = Ir(X;Y ) with respect to C

is at least 1. For the first statement, by Lemma 3.2 and the definition of Ir(X;Y ), we have that
(Ir(X;Y ) + I(X;Y ),Ir(X : Y )) ∈ T d

r (X,Y ), so we must have C̃ am-cr
r (Ir(X;Y )) ≥ Ir(X;Y ) +

I(X;Y ). To see that C̃ am-cr
r (Ir(X;Y )) ≤ Ir(X;Y ) + I(X;Y ), we note that for any protocol Π,

ICext
µ (Π) ≤ ICint

µ (Π) + I(X;Y ) by the data processing inequality.

For the second statement, consider any C < Ir(X;Y ), which implies that C̃ am-cr
r (C) < C +

I(X;Y ). Let Π = (Π1, . . . ,Πr) be any protocol with ICint
µ (Π) = C and L := ICext

µ (Π) arbitrarily

close to C̃ am-cr
r (C). For any 0 ≤ δ ≤ 1, consider the protocol Π′ in which Alice uses private

randomness to generate a bit B ∈ {0, 1} that is 1 with probability δ and otherwise 0 and sends it to
Bob. Then, if B = 1, Alice sends Bob X and the protocol terminates (for a total of 1 ≤ r rounds),
and if B = 0, Alice and Bob simulate Π. In a similar manner as above, it is easy to see that

ICint
µ (Π′) = (1− δ)C + δ ·H(X|Y )

ICext
µ (Π′) = (1− δ)L+ δ ·H(X).

Since C < Ir(X;Y ) ≤ H(X|Y ), there is some δ ∈ (0, 1], which we denote by δ′, such that
(1 − δ)C + δ · H(X|Y ) = Ir(X;Y ). Then (1 − δ′)L + δ′ · H(X) ≤ C̃ am-cr

r (Ir(X;Y )). Then the
secant line of the graph of C̃ am-cr

r (·) between the points C and Ir(X;Y ) has slope at least

(1− δ′)L+ δ′ ·H(X)− L
(1− δ′)C + δ′ ·H(X|Y )− C

=
H(X)− L
H(X|Y )− C

> 1,

where the last inequality follows since I(X;Y ) > L− C by assumption that C < Ir(X;Y ).

The case r = 1 of the next lemma was proven as part of the proof of Theorem 4.1 in [AC98]. It
is also stated without proof in [STW19].

Lemma 3.14. Suppose that ν is a distribution with samples (XQA, Y QB) ∼ ν, where QA, QB

are uniform and independent infinite strings of bits that are independent of (X,Y ). Denote the
marginal distribution of (X,Y ) by µ. Suppose that Π is an r-round private-coin protocol with
inputs (XQA, Y QB) ∼ ν, and write I int = ICint

ν (Π), Iext = ICext
ν (Π). Then there is a non-negative

real number α and a protocol Π′ with inputs (X,Y ) ∼ µ such that

ICext
µ (Π′) = Iext − α (10)

ICint
µ (Π′) = I int − α. (11)

Proof. The protocol Π′ proceeds as follows: given inputs (X,Y ) ∼ µ, Alice uses her private random-
ness to generate a uniform infinite string QA independent of X and Bob does the same to generate
a uniform infinite string QB. Then certainly the resulting pair (XQA, Y QB) are distributed accord-
ing to ν. Then Alice and Bob simply run the protocol Π. Notice that the joint distribution of
((Π′)r, (QAX,QB, Y )) is identical to the joint distribution of (Πr, (QAX,QBY )).

That Π is a randomized (private-coin) protocol with inputs (XQA, Y QB) means that the follow-
ing Markov conditions hold:

Πi −QAXΠi−1 −QBY ∀i ∈ Or (12)

QAX −QBYΠi−1 −Πi ∀i ∈ Er. (13)
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It follows immediately from (12) and (13) and the fact that QA, QB, and (X,Y ) are all inde-
pendent that the following Markov conditions also hold:

Πi −XΠi−1 − Y ∀i ∈ Or (14)

X − YΠi−1 −Πi ∀i ∈ Er. (15)

It follows from (12) and (13) and the chain rule that

ICext
ν (Π) =

∑
i∈Or

I(Πi;QAXQBY |Πi−1) +
∑
i∈Er

I(Πi;QAXQBY |Πi−1)

=
∑
i∈Or

I(Πi;QAX|Πi−1) +
∑
i∈Er

I(Πi;QBY |Πi−1). (16)

In a similar manner, it follows from (14) and (15) that

ICext
µ (Π) =

∑
i∈Or

I(Πi;X|Πi−1) +
∑
i∈Er

I(Πi;Y |Πi−1). (17)

Thus, from (16) and (17),

ICext
ν (Π)− ICext

µ (Π) =
∑
i∈Or

I(Πi;QA|Πi−1X) +
∑
i∈Er

I(Πi;QB|Πi−1Y ). (18)

As for internal information cost, from (12) and (13) we have

ICint
ν (Π) =

∑
i∈Or

I(Πi;QAX|Πi−1)− I(Πi;QBY |Πi−1) +
∑
i∈Er

I(Πi;QBY |Πi−1)− I(Πi;QAX|Πi−1),

(19)
and from (14) and (15), we have

ICint
µ (Π) =

∑
i∈Or

I(Πi;X|Πi−1)− I(Πi;Y |Πi−1) +
∑
i∈Er

I(Πi;Y |Πi−1)− I(Πi;X|Πi−1), (20)

Thus, from (19) and (20),

ICint
ν (Π)− ICint

µ (Π) =
∑
i∈Or

I(Πi;QA|Πi−1X)− I(Πi;QB|Πi−1Y )

+
∑
i∈Er

I(Πi;QB|Πi−1Y )− I(Πi;QA|Πi−1X).

Next we claim that for all i ∈ Or, I(Πi;QB|YΠi−1) = 0 and for all i ∈ Er, I(Πi;QA|XΠi−1) = 0.
For i ∈ Or, we have

I(Πi;QB|Y,Πi−1)− I(Πi;QB|Y,Πi−1, X,QA)

= H(QB|Y,Πi−1)−H(QB|Y,Πi)−H(QB|Y,Πi−1, X,QA) +H(QB|Y,Πi, X,QA)

= I(QB;X,QA|Y,Πi−1)− I(QB;X,QA|Y,Πi).

Thus

I(Πi;QB|Y,Πi−1) = I(Πi;QB|Y,Πi−1, X,QA) + I(QB;X,QA|Y,Πi−1)− I(QB;X,QA|Y,Πi)(21)

= 0,
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where the first term of (21) is 0 by (12), and the second and third terms are 0 since QB ⊥ (X,QA)
and by the monotinicity of correlation property of communication protocols (Proposition 2.2).

It follows in a similar manner that for i ∈ Er, I(Πi : QA|YΠi−1) = 0. Therefore, we obtain from
(18) and (21) that

α = ICext
ν (Π)− ICext

µ (Π) = ICint
ν (Π)− ICint

µ (Π) =
∑
i∈Or

I(Πi;QA|Πi−1X) +
∑
i∈Er

I(Πi;QB|Πi−1Y ).

Now we may prove the converse direction of Theorem 3.4, i.e., Theorem 3.10.

Proof of Theorem 3.10. Fix a source (X,Y ) ∼ µ and any C ≥ 0. By definition of C am-cr
r (·), for

any L < C am-cr
r (C), we have that (C,L) ∈ Tr(X,Y ), i.e., there is a private-coin r-round protocol Π

that achieves the rate (C,L). As in Lemma 3.14, we interpret Π as a deterministic protocol with
respect to the tuple (XRA, Y RB) (and denote the corresponding joint distribution by ν).

Then by Lemma 3.11, for any C ′ > C and L′ < C am-cr
r (C), there is some N such that there

is an r-round protocol Π with inputs (XNRNA , Y
NRNB ) ∼ ν⊗N such that ICext

µ⊗N (Π) ≥ L′N and

ICint
µ⊗N (Π) ≤ C ′N . Then by Lemma 3.12, there is an r-round private-coin protocol Π′ for the

inputs (XRA, Y RB) ∼ ν such that ICint
ν (Π′) ≤ C ′ and ICext

ν (Π′) ≥ L′. It follows from Lemma 3.14
with QA = RA, QB = RB that there is an r-round private-coin protocol Π′′ for the inputs (X,Y ) ∼ µ
such that ICint

µ (Π′′) ≤ C ′ − α and ICext
µ (Π′′) ≥ L′ − α, for some α ≥ 0.

By definition of T d
r (X,Y ), it follows that (C ′−α,L′−α) ∈ T d

r (X,Y ); in particular, C̃ am-cr
r (C ′−

α) ≥ L′ − α. By Lemma 3.13, it follows that C̃ am-cr
r (C ′) ≥ L′, or that for any L′′ < L, (C ′, L′′) ∈

T d
r (X,Y ). By taking C ′ → C,L′ → C am-cr

r (C), it follows by continuity of C̃ am-cr
r (C) (Lemma

3.13) that C̃ am-cr
r (C) ≥ L. Since L < C am-cr

r (C) is arbitrary, we get C̃ am-cr
r (C) ≥ C am-cr

r (C), as
desired.

4 Rounds-Communication Tradeoffs in Non-Amortized Setting

In this section, our main goal is to prove Theorems 4.1 and 4.2, which establish tradeoffs between
the communication cost and number of rounds of CRG and SKG prtocols from the source µr,n,`
in the non-amortized setting. To see the difference between the theorems, we focus on CRG for
simplicity, and note that for constant r, the tuple (O(log n), `) is r-achievable from the source µr,n,`
(recall that this means that there is a protocol with communication O(log n) and which agrees on
common random strings of entropy `). Theorem 4.1 implies that if the protocol is only allowed to
use b(r+1)/2c rounds, then in order to agree on common random strings of entropy `, the protocol
must communicate at least Ω̃(min{`, n}) bits total. Theorem 4.2 gives a tighter dependence on the
number of rounds, but a weaker dependence on communication: it implies that if the protocol is
allowed to use up to r rounds, then it must communicate at least Ω̃(min{`,

√
n}) bits to agree on

common randomness of entropy `.

Theorem 4.1 (Thms. 1.1 & 1.2 of [BGGS19]). For each r ∈ N, ε ∈ [0, 1), there exists η > 0,
β < ∞, n0 ∈ N such that for any n ≥ n0 and any ` ∈ N, there is a source µr,n,` such that, in the
non-amortized setting:
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1. The tuple ((r + 2)dlog ne, `, 0) is (r + 2)-achievable for SKG from µr,n,` (and thus ((r +
2)dlog ne, `) is (r + 2)-achievable for CRG).

2. For any L ∈ N and C ≤ min{ηL−β, n/ logβ n}, the tuple (C,L, ε) is not b(r+1)/2c-achievable
for CRG (and thus the tuple (C,L, ε, δ) is not b(r + 1)/2c-achievable for SKG for all δ ≥ 0).

Theorem 4.2 (Tighter round dependence than Theorem 4.1). For each r ∈ N, ε ∈ [0, 1), there
exists η > 0, β <∞, n0 ∈ N such that for any n ≥ n0 and any ` ∈ N, there is a source µr,n,` such
that, in the non-amortized setting:

1. The tuple ((r + 2)dlog ne, `, 0) is (r + 2)-achievable for SKG from µr,n,` (and thus ((r +
2)dlog ne, `) is r-achievable for CRG).

2. For any L ∈ N, C ≤ min{ηL−β,
√
n/ logβ n}, the tuple (C,L, ε) is not r-achievable for CRG

from µr,n,` (and thus for any δ ≥ 0, the tuple (C,L, ε, δ) is not r-achievable for SKG).

4.1 Pointer chasing source

Next we define the source µr,n,` referred to in Theorems 4.1 and 4.2; we refer to it as the pointer
chasing source due to its similarity to the distributions used in [NW93] to prove round hierarchy
results for the communication complexity of functional problems.

Definition 4.1 (The Pointer Chasing Source µr,n,`, [BGGS19]). For positive integers r, n and

`, the support of µ = µr,n,` is (Sdr/2en × {0, 1}n`) × ([n] × Sbr/2cn × {0, 1}n`). Denoting X =
(Σ1,Σ3, . . . ,Σ2dr/2e−1, A1, . . . , An) and Y = (I,Σ2,Σ4, . . . ,Σ2br/2c, B1, . . . , Bn), a sample (X,Y ) ∼
µ is drawn as follows:

• I ∈ [n] and Σ1, . . . ,Σr ∈ Sn are sampled uniformly and independently.

• Let J = Σr(Σr−1(· · ·Σ1(I) · · · )) ∈ [n].

• AJ = BJ ∈ {0, 1}` is sampled uniformly and independently of I and Σ’s.

• For every k 6= J , Ak ∈ {0, 1}` and Bk ∈ {0, 1}` are sampled uniformly and independently.

See also Figure 2.

We use the following notation convention for samples (X,Y ) ∼ µr,n,`. We write I0 := I, and
for 1 ≤ t ≤ r, It := Σt(It−1). Similarly, we write J0 := J , and for 1 ≤ t ≤ r, Jt−1 = Σ−1

t (Jt). Over
the distribution µr,n,`, we thus have It = Jr−t for 0 ≤ t ≤ r with probability 1.

We establish the following basic property of the pointer chasing source µr,n,` for future reference:

Lemma 4.3. When (X,Y ) ∼ µr,n,`, I(X;Y ) = `.

Proof. Notice that H(X) = r log(n!) + n` since Σ1,Σ3, . . . ,Σ2dr/2e−1 are uniformly random in Sn
and A1, . . . , An are uniformly random in {0, 1}`. Moreover,

H(X|Y ) = H(Σ1,Σ3, . . . ,Σ2dr/2e−1, A1, . . . , An|Y )

= H(Σ1, . . . ,Σ2dr/2e−1|Y ) +H(A1, . . . , An|Y,Σ1, . . . ,Σ2dr/2e−1)

= r log(n!) + (n− 1)`.
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Figure 2: The pointer chasing source µr,n,` of Definition 4.1

It is immediate from the definition of µr,n,` that part (1) (i.e., the upper bound) of both Theo-
rems 4.1 and 4.2 holds:

Lemma 4.4 (Upper bound for Theorems 4.1 & 4.2). For every r, n, `, the tuple ((r+2)dlog ne, `, 0)
is (r+2)-achievable for SKG (and thus ((r+2)dlog ne, `) is (r+2)-achievable for CRG) from µr,n,`.

Proof. Consider the protocol in which Alice sends Bob an arbitrary bit in the first round, and in
round t + 1, for 1 ≤ t ≤ r, the next party to speak sends over It = Σt(It−1) ∈ [n], which takes
log n bits. Then Alice outputs AIr as her key and Bob outputs BIr (which is equal to AIr with
probability 1 over µr,n,`) as his key. By construction of µr,n,`, AIr = BIr is independent of I1, . . . , Ir,
which is the transcript of the protocol.

The main content of Theorems 4.1 and 4.2 is then in part (2) (i.e., the lower bound) of each; its
proof, for both theorems, proceeds via arguments about indistinguishbility of inputs to protocols,
which we now define:

Definition 4.2 ((r, C) protocols). For r, C ∈ R+, we say that a communication protocol Π is an
(r, C) protocol if Π has at most brc rounds and communication cost at most bCc.

Definition 4.3 (Indistinguishability). Let 0 ≤ ε ≤ 1. Two distributions µ1, µ2 on pairs (X,Y ) are
ε-distinguishable to a protocol Π if the distribution of the transcript Πr when (X,Y ) ∼ µ1 has total
variation distance at most ε from the distribution of Πr when (X,Y ) ∼ µ2.

Two distributions µ1, µ2 are (ε, C, r)-indistinguishable if they are ε-indistinguishable to ev-
ery (r, C) protocol. The distributions µ1, µ2 are (ε, C, r)-distinguishable if they are not (ε, C, r)-
indistinguishable. If Π is a protocol such that the total variation distance of the transcript between
inputs (X,Y ) ∼ µ1 and inputs (X,Y ) ∼ µ2 is at least ε, then we say that Π distinguishes between
µ1 and µ2 with advantage ε.

34



Proposition 4.5 reduces the problem of showing that certain tuples (C,L) are not achievable for
CRG from µr,n,` to that of showing indistinguishability of µr,n,` from the product of its marginals
(µr,n,`)X ⊗ (µr,n,`)Y .

Proposition 4.5 ([BGGS19], Propositions 3.3 & 3.4). There are positive constants η, ξ such that
the following holds. Suppose ρ, C, L ∈ N and 0 < γ < 1. Suppose that C < ηL − 3/2 · log 1/γ − ξ
and that the tuple (C,L, 1− γ) is ρ-achievable for CRG from the source µr,n,`. Then there is some
N ∈ N such that µr,n,N` and (µr,n,N`)X ⊗ (µr,n,N`)Y are (γ/10, C + ξ log 1/γ, ρ+ 1)-distinguishable.

Proof sketch. The crucial ingredient in the proof of Proposition 4.5 is the fact [CGMS17, Theorem
2.6] that there is a constant η > 0 such that for any ρ, L ∈ N and ε ∈ [0, 1), the tuple (ηL −
3/2 log(1/(1 − ε)) − O(1), L, ε) is not ρ-achievable from any product source distribution, so in
particular from the source (µr,n,`)X ⊗ (µr,n,`)Y . Using the assumption in the proposition about
achievable tuples from µr,n,`, Alice and Bob can distinguish µr,n,N` from the product of its marginals
by running the protocol for CRG from the source µr,n,` and checking whether the resulting keys
agree and have high entropy (i.e., represent valid CRG). If so, then the parties decide that the
source is µr,n,N`, and if not, then the parties decide that the source is (µr,n,N`)X ⊗ (µr,n,N`)Y . The
details (including the role of N) are unimportant and we refer the reader to [BGGS19] for a full
proof.

Using Proposition 4.5, the proofs of Theorems 4.1 and 4.2, respectively, follow from Theorems
4.6 and 4.7 below:

Theorem 4.6 ([BGGS19], Lemma 4.5). For every ε > 0 and odd r there exists β, n0 such that
for every n ≥ n0 and `, the distributions µ = µr,n,` and µX ⊗ µY are (ε, (r + 3)/2, n/ logβ n)-
indistinguishable.

Theorem 4.7. For every ε > 0 and r ∈ N there exists β, n0 such that for every n ≥ n0 and `, the
distributions µ = µr,n,` and µX ⊗ µY are (ε, r + 1,

√
n/ logβ n)-indistinguishable.

We present the proof of Theorem 4.2 below; the proof of Theorem 4.1 is omitted since it is very
similar, and can be found in [BGGS19].

Proof of Theorem 4.2. Recall that item (1) of Theorem 4.2 was shown in Lemma 4.4, so we only
have to prove item (2).

Fix ε > 0 and r ∈ N. Let ξ, η be the constants from Proposition 4.5. Also let β0 be the constant
β from Theorem 4.7 with (1− ε)/20 as the variational distance parameter. Also let β be a constant
such that β > max{β0, 3/2 · log 1/(1−ε)+ξ} and

√
n/ logβ n+ξ log 1/(1−ε) ≤

√
n/ logβ0 n, which is

possible for sufficiently large n. Suppose for purpose of contradiction that for some L > 0, the tuple
(min{ηL−β,

√
n/ logβ n}, L, ε) were r-achievable for CRG from µr,n,`. Since β > 3/2 log 1/(1−ε)+ξ,

it follows from Proposition 4.5 that for some N ∈ N, µr,n,`N and (µr,n,`N )X ⊗ (µr,n,`N )Y are
((1− ε)/10,

√
n/ logβ0 n, r + 1)-distinguishable. But this contradictions Theorem 4.7, which states

that (µr,n,`N )X ⊗ (µr,n,`N )Y are ((1− ε)/20,
√
n/ logβ0 n, r + 1)-indistinguishable.

4.2 Proving indistinguishability of µr,n,` and (µr,n,`)X ⊗ (µr,n,`)Y

Next we work towards the proofs of Theorems 4.6 and 4.7. The proofs proceed by eliminating each
of two possible strategies Alice and Bob can use to distinguish µr,n,` and (µr,n,`)X ⊗ (µr,n,`)Y : first,
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they can try to follow the chain of pointers, compute Ir, and check if AIr = BIr (which is true with
probability 1 under µr,n,` but only with probability 1/2` under (µr,n,`)X ⊗ (µr,n,`)Y ). Computing
Ir, however, with fewer than r+ 2 rounds requires communication Ω(n) by standard results for the
pointer chasing problem [NW93]. Alternatively, Alice and Bob can ignore the chain of pointers and
try to determine if there is any i such that Ai = Bi (under the product distribution the probability
that such an i exists is at most n/2` � 1). Determining the existence of such an i is no easier
than solving the set disjointness problem [Raz92], which requires communcation Ω(n), as we show
below. However, combining the pointer chasing and set disjointness lower bounds takes some care.
We begin by recalling the Ω(n) lower bound on the communication complexity of disjointness:

Theorem 4.8 ([Raz92]). For every ε > 0 there exists δ > 0 such that for all n the following holds.
Let DisjY = DisjYn (respectively, DisjN = DisjNn ) denote the uniform distribution on pairs (U, V )
with U, V ⊆ [n] and |U | = |V | = n/4 such that |U ∩ V | = 1 (respectively, |U ∩ V | = 0). Then if
Alice gets U and Bob gets V as inputs, DisjY and DisjN are (ε, δn, δn)-indistinguishable to Alice
and Bob.

For Theorem 4.7 we will need the following corollary.

Corollary 4.9. For every ε > 0 there exists δ > 0 such that for all n the following holds. Let
DisjYn,

√
n (respectively, DisjNn,

√
n) denote the uniform distribution on pairs (U, V ) with U, V ⊆ [n]

and |U | = |V | = n/4 such that |U ∩ V | = b
√
nc (respectively, |U ∩ V | = 0). Then if Alice gets U

and Bob gets V as inputs, DisjYn,
√
n and DisjNn,

√
n are (ε, δ

√
n, δ
√
n)-indistinguishable to Alice and

Bob.

Proof. A protocol Π that distinguishes DisjYn2,n and DisjNn2,n with communication C may be con-

verted into a protocol Π′ with communication C that distinguishes DisjYn and DisjNn with advantage
ε. In particular, the protocol Π′ proceeds as follows: given inputs (U, V ), |U | = n/4, |V | = n/4, Al-
ice and Bob construct an instance (U ′, V ′), that is distributed according to DisjYn2,n if (U, V ) ∼ DisjYn
and that is distributed according to DisjNn2,n if (U, V ) ∼ DisjNn . In particular, Alice and Bob first

construct sets (Ũ, Ṽ ) as follows: for each u ∈ U ⊂ [n], Alice places the elements (u − 1)n + j, for
1 ≤ j ≤ n} in Ũ , and Bob constructs Ṽ in an analogous fashion. Then, using public randomness,
they randomly permute the elements of Ũ, Ṽ (according to the same permutation) to obtain sets
U ′, V ′. It is clear that |Ũ | = |Ṽ | = |U ′| = |V ′| = n · |U | = n2/4. Moreover, if |U ∩ V | = 0, then
|Ũ ∩ Ṽ | = |U ′ ∩ V ′| = 0, and if |U ∩ V | = 1, then |U ′ ∩ V ′| = n =

√
n2.

By Theorem 4.8, for any ε > 0, there is δ > 0 such that the protocol Π′ must have communication
at least δn. Thus the protocol Π must have communication at least δn =

√
δ2n2.

It follows in a similar manner as the above argument that any protocol Π distinguishing DisjY
n′,n

and DisjNn′,n with n2 ≤ n′ < (n + 1)2 with communication C may be converted into a protocol Π′

with communication C that distinguishes DisjYn and DisjNn with advantage ε. This completes the
proof of the corollary even for non-perfect squares n.

Next we state the second main ingredient in the proof of Theorems 4.7 and 4.6, which is a
hardness result for a certain version of the pointer chasing problem. We call this problem the
pointer verification (PV) problem. The main difference with pointer chasing is that Alice and Bob
receive as inputs a final pointer J0 in addition to the initial pointer I0, and the goal is to determine
if Σr ◦ · · ·Σ1(I0) = J0. We define a distinguishability version of this problem below:
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Definition 4.4 ([BGGS19]). Let r, n ∈ N with r odd. Then the distributions DY
PV = DY

PV(r, n)

and DN
PV = DN

PV(r, n) are both supported on ((Sdr/2n )× ([n]2 × Sbr/2cn ), and are defined as follows:

• DN
PV is the uniform distribution on ((Sdr/2n )× ([n]2 × Sbr/2cn ).

• (X,Y ) ∼ DY
PV, with X = (Σ1,Σ3, . . . ,Σr), Y = (I0, J0,Σ2,Σ4, . . . ,Σr−1) is sampled by let-

ting Σ1,Σ2, . . . ,Σr be independent and uniform over Sn, letting I0 ∈ [n] be uniform and
independent of the Σt, and setting J0 = Σr ◦ · · · ◦ Σ1(I0).

Notice that with (r+5)/2 rounds of communication, by communicating at most 1+(r+1)dlog ne
bits, Alice and Bob can distinguish between DY

PV(r, n) and DN
PV(r, n) with advantage 1 − 1/n. In

particular, Alice sends Bob an arbitrary bit in the first round, Bob sends I0, J0 in the second round,
Alice responds with I1 = Σ1(I0) and J1 = Σ−1

r (J0), Bob responds with I2 and J2, and so on. After
(r + 3)/2 rounds either Alice or Bob will know both I(r−1)/2 and J(r−1)/2, and this person sends

1[Σ(r+1)/2(I(r−1)/2) = J(r−1)/2] (which is 1 with probability 1 under DY
PV and only with probability

1/n under DN
PV) as the final bit. Therefore, PV with r permutations is easier than the standard

pointer chasing problem, which requires r rounds for a protocol with communication cost O(log n).
Theorem 4.10 states that if Alice and Bob are only allowed 1 fewer round, then they must

communicate exponentially more bits to distinguish DY
PV and DN

PV:

Theorem 4.10 ([BGGS19], Theorem 4.2). For every ε > 0 and odd r there exists β, n0 such for
every n ≥ n0, DY

PV(r, n) and DN
PV(r, n) are (ε, (r + 3)/2, n/ logβ n)-indistinguishable.

Using Theorem 4.10 and Corollary 4.9, we now prove Theorem 4.7.

Proof of Theorem 4.7. We introduce a new distribution, which we denote by µ̂ (or µ̂r,n,` when we

want to emphasize dependence on r, n, `); µ̂ is a distribution supported on (Sdr/2en × ({0, 1}`)n ×
(Sbr/2cn × [n]× ({0, 1}`)n). We denote a sample from µ̂ by (X,Y ), with

X = (Σ1,Σ3, . . . ,Σ2dr/2e−1, A1, . . . , An), Y = (i,Σ2,Σ4, . . . ,Σ2br/2c, B1, . . . , Bn),

which is distributed as follows:

• I0 ∈ [n] and Σ1, . . . ,Σr ∈ Sn are sampled uniformly and independently. Let Ir = Σr ◦ · · · ◦
Σ1(I0).

• Let P ⊂ [n] be a uniformly random subset of size b
√
nc, conditioned on the event that it

contains Ir.

• For every j ∈ P , Aj = Bj ∈ {0, 1}L is sampled uniformly and independently of i, Σ’s, and P .

• For every j 6∈ P , Aj , Bj ∈ {0, 1}L are sampled uniformly and independently (and indepen-
dently of all Σ’s, j, and P ).

Claim 4.11. For every ε > 0, there exists δ > 0 such that the distributions µr,n,` and µ̂r,n,` are
(ε, δ
√
n, δ
√
n)-indistinguishable.
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Proof of Claim 4.11. We show that any protocol Π with CC(Π) ≤ C distinguishing µ = µr,n,` and
µ̂ = µ̂r,n,` with advantage ε can be converted into a protocol Π′ with CC(Π′) ≤ C and which
distinguishes DisjYn,

√
n and DisjNn,

√
n (as in Corollary 4.9) with advantage ε.

The protocol Π′ proceeds as follows: suppose Alice and Bob are given sets U, V , respectively,
with U, V ⊆ [n]. Let m = (b

√
nc+ 1)2. Using public randomness, Alice and Bob sample a random

injective function τ : [n] → [m], and set U ′ = {τ(u) : u ∈ U}, V ′ = {τ(v) : v ∈ V }. Let J0 ∈ [m]
denote the sole index not in the image of τ . Using public randomness, Alice and Bob sample r
permutations Σ1, . . . ,Σr ∈ Sm uniformly and independently, and let I0 = (Σr◦· · ·◦π1)−1(J0). They
also sample 3m strings A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cm ∈ {0, 1}` uniformly and independently
using public randomness. Then for 1 ≤ u ≤ m, Alice sets:

A′u :=

{
Au : u 6∈ U ′

Cu : u ∈ U ′,

and Bob sets:

B′u :=

{
Bu : u 6∈ U ′

Cu : u ∈ U ′.

It is now clear that the tuple

((Σ1,Σ3, . . . ,Σr, A
′
1, A

′
2, . . . , A

′
m), (I0,Σ2,Σ4, . . . ,Σr−1, B

′
1, B

′
2, . . . , B

′
m)) (22)

is distributed according to µr,m,` if (U, V ) ∼ DisjNn,
√
n and is distributed according to µ̂r,m,` if

(U, V ) ∼ DisjYn,
√
n. Now Alice and Bob run the protocol Π with their inputs as in (22).

By Corollary 4.9, for each ε > 0, there exists δ > 0 such that µr,m,` and µ̂r,m,` are (ε, δ
√
n, δ
√
n)-

indistinguishable. Using that
√
m−

√
n = O(1), the lemma statement follows.

Next, notice that the two distributions (µr,n,`)X⊗(µr,n,`)Y and (µ̂r,n,`)X⊗(µ̂r,n,`)Y are identical.
Thus by Claim 4.11 and the triangle inequality for total variation distance, Theorem 4.7 will follow
from the following claim:

Claim 4.12. For every ε > 0 and r ∈ N there exists β, n0 such that for every n ≥ n0 and `, the
distributions µ̂ = µ̂r,n,` and µ̂X ⊗ µ̂Y are (2ε, r + 1,

√
n/ logβ n)-indistinguishable.

We next introduce a distribution µmid = µmid
r,n,`, which is the same as µ̂r,n,`, except the distribu-

tion of the uniformly random subset P ⊂ [n] with |P | = b
√
nc is not conditioned on the event that

it contains Ir (i.e. it is drawn uniformly at random from the set of all
√
n-element sets, independent

of I0,Σ1, . . . ,Σr). Thus, with probability at least 1 − 1/
√
n, Ir 6∈ P under µmid. Now Claim 4.12

follows directly from the triangle inequality and Claims 4.13 and 4.14 below.

Claim 4.13. For every ε > 0 and r ∈ N there exists β, n0 ∈ R+ such that for all integers n ≥ n0

and `, the distributions µ̂r,n,` and µmid
r,n,` are (ε, r + 1,

√
n/ logβ n)-indistinguishable.

Claim 4.14. For every ε > 0, there exists δ > 0 such that µmid
r,n,` and (µ̂r,n,`)X ⊗ (µ̂r,n,`)Y are

(ε, δ
√
n, δ
√
n)-indistinguishable for all n ∈ N.

Now we prove each of Claims 4.13 and 4.14 in turn.
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Proof of Claim 4.13. We first prove the statement of the claim for the case that n is a perfect
square. Fix r, n, `, and suppose that Π is a ρ-round protocol (ρ ∈ N) with communication at most
C that distinguishes between µ̂r,n2,` from µmid

r,n2,` with advantage ε. (Notice that we are replacing n

with n2 in the notation.)
We now construct a protocol Π′ with the same number of rounds and communication as Π and

which distinguishes between DY
PV(2r− 1, n) and DN

PV(2r− 1, n) with advantage at least ε. Suppose
Alice and Bob are given inputs X = (Σ1,Σ3, . . . ,Σ2r−1) and Y = (I0, J0,Σ2,Σ4, . . . ,Σ2r−2), respec-
tively, which are distributed according to DY

PV(2r−1, n) or DN
PV(2r−1, n). Next, for 1 ≤ t ≤ r−1,

let Σ′t = Σt, and for r + 2 ≤ t ≤ 2r, let Σ′t = Σt−1. Finally let Σ′r,Σ
′
r+1 ∈ Sn be uniformly random

conditioned on Σ′r+1◦Σ′r = Σr. Notice that each Σ′t, 1 ≤ t ≤ 2r may be computed by either Alice or
Bob. Next, interpret [n2] ' [n]× [n], so that any pair σ, τ ∈ Sn of permutations on [n] determines
a permutation on [n2], which we denote by σ||τ , so that (σ||τ)((i, j)) = (σ(i), τ(j)). (Note that the
vast majority of permutations on [n2] cannot be obtained in this manner, however.) The protocol
Π′ proceeds as follows:

1. Alice and Bob use their common randomness to generate uniformly random permutations
τ0, τ1, . . . , τr ∈ Sn2 and uniformly random strings A1, . . . , An2−n, B1, . . . , Bn2−n, C1, . . . , Cn ∈
{0, 1}`.

2. Bob computes Î0 := τ1((I0, J0)) ∈ [n]× [n] ' [n2].

3. For t = 1, 3, . . . , 2b(r + 1)/2c, Alice computes Σ̂t := τt ◦ (Σ′t||(Σ′2r+1−t)
−1) ◦ τ−1

t−1 ∈ Sn2 .

4. For t = 2, 4, . . . , 2br/2c, Bob computes Σ̂t := τt ◦ (Σ′t||(Σ′2r+1−t)
−1) ◦ τ−1

t−1 ∈ Sn2 .

5. For 1 ≤ i ≤ n, Alice and Bob set Âτr((i,i)) = B̂τr((i,i)) = Ci.

6. For the n2−n pairs (i, j) ∈ [n]× [n] with i 6= j, Alice sets Â(i,j) to be equal to one of the Ak,

1 ≤ k ≤ n2 − n so that each Ak is used once. Bob does the same with B̂(i,j) with respect to
the Bk.

7. Alice and Bob now run the protocol Π on the inputs X̂ := (Σ̂1, Σ̂3, . . . , Σ̂2b(r+1)/2c, Â1, . . . , Ân2)

and Ŷ := (Î0, Σ̂2, Σ̂4, . . . , Σ̂2br/2c, B̂1, . . . , B̂n2).

Certainly the communication cost and number of rounds of Π′ are both the same as the communi-
cation cost and number of rounds, respectively, of Π.

We will show that (1) if (X,Y ) ∼ DY
PV(2r − 1, n), then (X̂, Ŷ ) ∼ µ̂r,n2,`, and (2) if (X,Y ) ∼

DN
PV(2r − 1, n), then (X̂, Ŷ ) ∼ µmid

r,n2,`.

We first prove (1). Suppose (X,Y ) ∼ DY
PV(2r − 1, n). That is, X,Y are uniformly random

conditioned on Σ2r−1 ◦ · · · ◦ Σ1(I0) = J0; therefore,

Σ′1,Σ
′
2, . . . ,Σ

′
2r, I0, J0

are uniformly random conditioned on Σ′2r ◦ · · · ◦ Σ′1(I0) = J0. For 0 ≤ t ≤ 2r, set I ′t = Σ′t ◦ Σ′t−1 ◦
· · · ◦ Σ′1(I0) (so that, in particular, I ′0 = I0). Then the distribution of Σ′1, . . . ,Σ

′
2r, I0, J0 may be

expressed equivalently as follows: X,Y are chosen as follows: Σ′1, . . . ,Σ
′
2r are first drawn uniformly

and independently form Sn, an index I ′r ∈ [n] is chosen uniformly in [n] independent of Σ′1, . . . ,Σ
′
2r,

and then we set J0 = Σ′2r ◦ · · · ◦ Σ′r+1(I ′r) and I0 = (Σ′1)−1 ◦ · · · ◦ (Σ′r)
−1(I ′r).
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Notice that the set P := {τr((i, i)) : i ∈ [n]} is a uniformly random set of size n in [n2] ' [n]×[n].
Next, note that if π is any distribution on Sn2 and τ is distributed uniformly on Sn2 , then π ◦ τ
is distributed uniformly on Sn2 . It follows from this fact Σ̂1, . . . , Σ̂r are distributed uniformly and
independently in Sn2 , all independent of the set P = {τr((i, i)) : i ∈ [n]}. Next, we have that

Σ̂r ◦ · · · ◦ Σ̂1(Î0) = τr ◦ (Σ′r||(Σ′r+1)−1) ◦ τ−1
r−1 ◦ τr−1 ◦ · · · ◦ τ−1

1 ◦ τ1 ◦ (Σ′1||(Σ′2r)−1) ◦ τ−1
0 ◦ τ0((I0, J0))

= τr ◦ (Σ′r||(Σ′r+1)−1) ◦ · · · ◦ ((Σ′1)||(Σ′2r)−1)((I0, J0))

= τr((Σ
′
r ◦ · · · ◦ Σ′1(I0), (Σ′r+1)−1 ◦ · · · ◦ (Σ′2r)

−1(J0)))

= τr((I
′
r, I
′
r)),

where we have used the fact that (X,Y ) ∼ DY
PV(2r − 1, n) in the last line. Recall from the

discussion above that I ′r is independent of Σ′1, . . . ,Σ
′
2r, τ0, . . . , τr, and therefore τr((I

′
r, I
′
r)) is a

uniformly random element of the set P = {τr((i, i)) : i ∈ [n]}, independent of Σ̂1, . . . , Σ̂r, P .
Therefore, Î0 is a uniformly random element of [2n], independent of P, Σ̂1, . . . , Σ̂r, conditioned on
the event Σ̂r ◦ · · · ◦ Σ̂1(Î0) ∈ P . This establishes that (X̂, Ŷ ) ∼ µ̂r,n2,`, finishing the proof of point
(1).

We next prove (2); suppose that (X,Y ) ∼ DN
PV(2r − 1, n). Then all of the random variables

Σ′1, . . . ,Σ
′
2r ∈ Sn2 , and I0, J0 ∈ [n] are uniform and independent on their respective domains.

Moreover, the set P := {τr((i, i)) : i ∈ [n]} is a uniformly random set of size n in [n2] ' [n] × [n].
Thus Σ̂1, . . . , Σ̂r ∈ Sn2 are uniform and independent in Sn2 , independent of P , and Î0 ∈ [n2] is
uniform, independent of P, Σ̂1, . . . , Σ̂r. This establishes that in this case (X̂, Ŷ ) ∼ µmid

r,n2,`.

Thus the distribution of the transcript of Π′ (excluding the additional public randomness used
by Π′ in the simulation above) when run on DY

PV (respectively, DN
PV) is the same as the distribution

of the transcript of Π when run on µ̂r,n2,` (respectively, µmid
r,n2,`). It then follows from Theorem 4.10

and the fact that ((2r − 1) + 3)/2 = r + 1 that for every ε > 0, there exists β, n0 ∈ R+ such that
for all ` ∈ N and perfect squares n ≥ n0, the distributions µ̂r,n,` and µmid

r,n,` are (ε, r+ 1,
√
n/ logβ n)-

indistinguishable.
The case that n is not a perfect square follows immediately: in particular, given a sample

(X,Y ) from either µ̂r,n,` or µmid
r,n,`, let m denote the smallest perfect square greater than n. Notice

that by viewing [n] as a subset of [m] and using public randomness Alice and Bob can create a
sample (X ′, Y ′) that is sampled from µ̂r,m,` if (X,Y ) ∼ µ̂r,n,` and that is sampled from µmid

r,m,` if

(X,Y ) ∼ µmid
r,n,` with no communication.

Next, Claim 4.14 follows as a simple corollary of Corollary 4.9.

Proof of Claim 4.14. The proof is similar to that of Claim 4.11. We reduce the task of distinguishing
µmid
r,n,` and (µ̂r,n,`)X ⊗ (µ̂r,n,`)Y to the task of distinguishing DisjYn,

√
n and DisjNn,

√
n (See Corollary

4.9).
In particular, suppose Alice and Bob are given U, V ⊆ [n]. Alice and Bob share common random

uniform strings Z1, . . . , Zn ∈ {0, 1}`. Given U ⊂ [n], Alice sets Au = Zu for u ∈ U and samples
Au ∈ {0, 1}` uniformly and independently for all u ∈ [n]\U . Similarly, for V ⊂ [n], Bob sets
Bv = Zv for v ∈ V , and samples Bv ∈ {0, 1}` uniformly and independently for all v ∈ [n]\V . Alice
also samples Σ1,Σ3, . . . ,Σr ∈ Sn uniformly and independently and Bob samples Σ2,Σ4, . . . ,Σr−1 ∈
Sn, I, J ∈ [n] uniformly and independently. Letting X = (Σ1,Σ3, . . . ,Σr, A1, . . . , An) and Y =
(I, J,Σ2,Σ4, . . . ,Σr−1, B1, . . . , Bn), it is easy to see that (X,Y ) ∼ µmid

r,n,` if (U, V ) ∼ DisjYn,
√
n and

40



that (X,Y ) ∼ (µ̂r,n,`)X⊗(µ̂r,n,`)Y if (U, V ) ∼ DisjNn,
√
n. It follows from Corollary 4.9 that for any ε >

0 there exists δ > 0 such that µmid
r,n,` and (µ̂r,n,`)X ⊗ (µ̂r,n,`)Y are (ε, δ

√
n, δ
√
n)-indistinguishble.

We have now verified Claims 4.13, 4.14, which establishes Claim 4.12, which completes the proof
of Theorem 4.7.

The proof of Theorem 4.6 is similar to that of Theorem 4.7. The two main ingredeints are
(1) the standard Ω(n) lower bound for disjointness, Theorem 4.7, and (2) Theorem 4.10 on the
hardness of pointer verification. We omit the details, which can be found in [BGGS19].

4.3 Proof of Theorem 4.10

In this section we prove Theorem 4.10. The exposition nearly exactly follows that of Sections 5.2
– 5.5 of the author’s paper [BGGS19].

In this section we state Lemma 4.15 which is a slight reformulation of Theorem 4.10 and then
show how Theorem 4.10 follows from Lemma 4.15. The remaining subsections will then be devoted
to the proof of Lemma 4.15.

We first introduce some additional notation for the pointer verification problem. For s < t, let
Σt
s = Σt ◦Σt−1 ◦· · ·Σs and (Σ−1)st = Σ−1

s ◦· · ·◦Σ−1
t . Also recall from before that Is := Σs

1(I0), Js :=
(Σ−1)r−s+1

r (J0). Then over the distribution DY
PV, Jr = I0 and Ir = J0 with probability 1. We also

write ΣA = (Σ1,Σ3, . . . ,Σr) and ΣB = (Σ2,Σ4, . . . ,Σr−1). Recall that Alice holds the permutations
ΣA while Bob holds the permutations ΣB. For technical reasons, in this section, we consider protocols
that get inputs sampled from a single “mixed” distribution, DMix

PV = 1
2(DY

PV + DN
PV) and outputs

a bit (last bit of the transcript) that aims to guess whether the input is a YES input to Pointer
Verification (Σr

1(I0) = J0) or a NO input (Σr
1(I0) 6= J0). The success of a protocol is the probability

with which this bit is guessed correctly. These terms are formally defined below.

Definition 4.5. For any odd integer r and any integer n, the distribution DMix
PV = DMix

PV (r, n) is

supported on (Sdr/2en ) × ([n]2 × Sbr/2cn ), and is defined by drawing DN
PV(r, n) with probability 1/2

and drawing DY
PV(r, n) with probability 1/2.

A protocol Π is said to achieve success on a pair of inputs drawn from DMix
PV if the last bit of

the transcript of Π, which we take as the output bit, is 1 if and only if Σr
1(I0) = J0.

In Lemma 4.15 we show that Alice and Bob cannot achieve success with probability significantly
greater than 1/2 when their inputs are drawn from DMix

PV . Theorem 4.10 follows fairly easily from
Lemma 4.15.

Lemma 4.15. For every ε > 0 and every odd r, there exists β, n0 such that for every n ≥ n0 the
following holds: Every ((r + 3)/2, n/ logβ(n)) protocol on DMix

PV achieves success with probability at
most 1/2 + ε.

We defer the proof of Lemma 4.15 but first show how Theorem 4.10 follows from it.

Proof of Theorem 4.10. Lemma 4.15 gives that there exists β, n0 such that for every n ≥ n0, no
((r + 3)/2, n/ logβ(n)) protocol Π on DMix

PV (r, n) achieves success with probability greater than
1/2 + ε/4. Suppose for the purpose of contradiction that there were an ((r + 3)/2, n/ logβ(n)− 1)
protocol that ε-distinguishes DY

PV(r, n) and DN
PV(r, n). Then by the definition of ε-distinguishability,

by modifying this protocol to output an extra bit (which we interpret as the output bit), we get
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an ((r + 3)/2, n/ logβ(n)) protocol Π′ which outputs 1 with probability pY when the inputs are
drawn from DY

PV(r, n) and which outputs 1 with probability pN when the inputs are drawn from
DN

PV(r, n), where pY ≥ pN + ε. Therefore, Π′ has probability of success of at least 1/2 + ε/2 when
the inputs are drawn from DMix

PV (r, n), which contradicts Lemma 4.15.

4.4 Proof of Lemma 4.15: Setting up the Induction

Our approach to the proof of Lemma 4.15 is based on the “round-elimination” approach of [NW93].
Roughly, given inputs drawn from DMix

PV (r, n), the approach here is to show that after a single
message Π = Π(ΣA) from Alice to Bob, Alice and Bob are still left with essentially a problem
from DMix

PV (r− 2, n) (with their roles reversed). Note that the distribution of (Σ2, . . . ,Σr−1; I1, J1),
where I1 = Σ1(I0) and J1 = Σ−1

r (J0), is exactly DMix
PV (r − 2, n) (with the roles of Alice and Bob

switched). The crux of the [NW93] approach is to show that this roughly remains the case even
when conditioned on the message Π = Π(ΣA) sent in the first round. If implemented correctly,
this would lead to an inductive strategy for proving the lower bound, with the induction asserting
that an additional (r − 2)/2 rounds of communication do not lead to non-trivially high success
probability. Of course the distributions of the inputs after conditioning on m are not exactly
the same as DMix

PV (r − 2, n). Bob can definitely learn a lot of information about Alice’s input ΣA

from M . So the inductive hypothesis needs to deal with distributions that retain some of the
features of DMix

PV (r, n) while allowing Alice and Bob to have a fair amount of information about
each others inputs. In Definition 4.6 we present the exact class of distributions with which we
work. While most of the properties are similar to those used in [NW93] the exact definition is not
immediate since we need to ensure that the bit “Is Σr

1(I0) = J0” is not determinable even after a
few rounds of communication. (In our definition, Item 3 in particular is the non-trivial ingredient.)
In Lemma 4.17 we then show that this definition supports induction on the number of rounds of
communication. Finally in Lemma 4.18 we show that the base-case of the induction with r = 1
does not achieve non-trivial success probability. The proofs of Lemma 4.18 and Lemma 4.17 are
deferred to Subsection 4.5 and Subsection 4.6 respectively. We conclude the current section with a
proof of Lemma 4.15 assuming these two lemmas.

We start with our definition of the class of “noisy” distributions, containing DMix
PV . In particular,

for n, r, δ, C satisfying 0 ≤ δ < 1 and 0 ≤ C < n, we define the class of distributions DMix
PV (r, n, δ, C)

in Definition 4.6 below.

Definition 4.6. The set of noisy distributions, denoted DMix
PV (r, n, δ, C), consists of those distribu-

tions D supported on ((Sdr/2en )× ([n]2 ×Sbr/2cn ), satisfying the following properties. If we denote a
sample from D as (I0, J0,Σ1, . . . ,Σr), then

1. (a) H(I0|Σ1, . . . ,Σr) ≥ log(n)− δ
(b) H(J0|Σ1, . . . ,Σr) ≥ log(n)− δ.

2. H(Σ1, . . . ,Σr) ≥ r log(n!)− C.

3. (a) H(1[Σr
1(I0) = J0]|I0,Σ1, . . . ,Σr) ≥ 1− δ.

(b) H(1[Σr
1(I0) = J0]|J0,Σ1, . . . ,Σr) ≥ 1− δ.

4. (a) H(J0|I0,Σ1, . . . ,Σr,Σ
r
1(I0) 6= J0) ≥ log(n)− δ.
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(b) H(I0|J0,Σ1, . . . ,Σr,Σ
r
1(I0) 6= J0) ≥ log(n)− δ.

5. For all odd 1 ≤ t ≤ r, the following conditional independence properties hold. For all
i0, . . . , it, j0, . . . , jt ∈ [n], σt+2, σt+4, . . . , σr−t−1 ∈ Sn,

ΣA ∩ (Σ1, . . . ,Σt,Σr−t+1, . . . ,Σr) ⊥ ΣB | (I0, . . . , It) = (i0, . . . , it), (J0, . . . , Jt) = (j0, . . . , jt),

(Σt+2,Σt+4, . . . ,Σr−t−1) = (σt+2, σt+4, . . . , σr−t−1).

and for all even t, 0 ≤ t ≤ r, i0, i1, . . . , it, j0, j1, . . . , jt ∈ [n], σt+2, σt+4, . . . , σr−t−1 ∈ Sn,

ΣB ∩ (Σ2, . . . ,Σt,Σr−t+1, . . . ,Σr−1) ⊥ ΣA | (I0, . . . , It) = (i0, . . . , it), (J0, . . . , Jt) = (j0, . . . , jt),

(Σt+2,Σt+4, . . . ,Σr−t−1) = (σt+2, σt+4, . . . , σr−t−1).

The set of noisy-on-average distributions, DMix +
PV (r, n, δ, C), consists of those distributions D+ sup-

ported on ((Sdr/2en )×([n]2×Sbr/2cn )×Z where Z is some finite set and a sample (I0, J0,Σ1, . . . ,Σr, Z) ∼
D+ satisfies Properties (1)-(5) when all quantities above are additionally conditioned on Z. (In
particular the conditional entropies are additionally conditioned on Z and the independences hold
when conditioned on Z.)

We first state a version of Lemma 4.15 for every distribution D ∈ DMix
PV (r, n, δ, C), for sufficiently

small δ, C. We also show that DMix
PV belongs to this set for the permissible δ, C, and thus Lemma

4.16 implies Lemma 4.15.

Lemma 4.16. For every ε > 0 and odd r, there exists β and n0 such that for every n ≥ n0, and
every D ∈ DMix

PV (r, n, 1/ logβ n, n/ logβ n) it is the case that every ((r + 3)/2, n/ logβ(n))-protocol
achieves success with probability at most 1/2 + ε on D.

Remark 4.7. In the lemma statement we have suppressed the dependence of β on r. (The
dependence of β on ε is minimal. Essentially only n0 is affected by ε.) A careful analysis (based on
the remarks after Lemma 4.18 and Lemma 4.17) yields that β grows exponentially in r, though we
omit the simple but tedious bookkeeping.

The proof of Lemma 4.16 is via induction on r; the below lemma gives the main inductive step,
which says that if one cannot solve the pointer verification problem with r − 2 permutations then
one cannot hope to solve the problem on r permutations even with an additional round of (not too
long) communication.

Lemma 4.17 (Inductive step). For every ε1 > ε2 > 0, odd r and β2 there exists β1 and n0 such
that for every n ≥ n0 the following holds: Suppose there exists D ∈ DMix

PV (r, n, 1/ logβ1 n, n/ logβ1 n)
and an ((r + 3)/2, n/ logβ1 n)-protocol Π that achieves success 1/2 + ε1 on D. Then there exists
D̃ ∈ DMix

PV (r − 2, n, 1/ logβ2 n, n/ logβ2 n) and an ((r + 1)/2, n/ logβ2 n)-protocol Π̃ that achieves
success 1/2 + ε2 on D̃.

Remark 4.8. A careful analysis of the proof yields that β2 grows linearly with β1 with some mild
conditions on n0 and ε1 − ε2.

The proof of Lemma 4.16 proceeds by using Lemma 4.17 repeatedly, to reduce the case with
general r to the case with r = 1. In the case r = 1, Alice is given one permutation Σ1, Bob is given
indices I0, J0, and Alice can communicate one message to Bob, who has to then decide whether
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Σ1(I0) = J0 or not. The next lemma, Lemma 4.18, asserts that the pointer verification problem
with r = 1 cannot be solved in one round with less than n/ logO(1)(n) communication. In fact the
lemma is a stronger one, where we show that if all the statements hold conditioned on a random
variable Z, then the entropy of the indicator of the outcome is large even when conditioned on Z.
Setting Z to be a constant immediately yields the base case of the induction with r = 1, as noted
in Corollary 4.19. (We note that we need the stronger version stated in the lemma, i.e., with a
general random variable Z, in the proof of Lemma 4.17.)

Lemma 4.18 (Base case). There exists 0 < ε∗1 < 1 and ε∗2 such that for every β̃ there is n0 such
that the following holds for every n ≥ n0. Let β = (β̃ + ε∗2)/ε∗1, δ = 1/ logβ n and C,C ′ = n/ logβ n.
Suppose (I, J,Σ, Z) are drawn from a distribution D, where Z is a random variable that takes on
finitely many values, such that the following properties hold:

1. H(I|Σ, Z) ≥ log(n)− δ.

2. H(Σ|Z) ≥ log(n!)− C.

3. H(1[Σ(I) = J ]|Σ, I, Z) ≥ 1− δ.

4. H(J |Σ, I,1[Σ(I) 6= J ], Z) ≥ log(n)− δ.

Then for every deterministic function Π1 = Π1(Σ, Z) with Π1 ∈ {0, 1}C
′

we have the following:

H(Σ(I)|I,Π1, Z) ≥ log n− 1/ logβ̃ n (23)

and H(1[Σ(I) = J ]|Π1, I, J, Z) ≥ 1− 1/ logβ̃ n. (24)

Remark 4.9. The proof shows that β grows linearly with β̃ provided that n0 is sufficiently large
(as a function of β̃).

Corollary 4.19. For every ε > 0, there exists β0 and n0 such that for every n ≥ n0, and every D ∈
DMix

PV (1, n, 1/ logβ0 n, n/ logβ0 n) it is the case that every (2, n/ logβ0(n))-protocol achieves success
with probability at most 1/2 + ε on D.

Proof. Recall that a 1-round distribution D ∈ DMix
PV (1, n, δ, C) is supported on triples (Σ, I, J) and

the goal is to determine if Σ(I) = J . We apply Lemma 4.18 with Z = 0 (i.e., a constant). Given
ε > 0 we let β̃ = 1 and let β be as given by Lemma 4.18. Further let n′0 denote the lower bound
on n returned by Lemma 4.18. Let ε′ be such that a binary variable of entropy at least 1 − ε′ is
Bernoulli with bias in the range [1/2− ε, 1/2+ ε] (ε′ = O(ε2) works). We prove the claim for β0 = β

and n0 = max{n′0, 21/(ε′)} (so that logβ̃ n ≤ ε′ for all n ≥ n0).
By definition of DMix

PV (1, n, 1/ logβ0 n, n/ logβ0 n), we have that for (Σ, i, j) ∼ D, the conditions
(1)-(4) of Lemma 4.18 hold for (Σ, i, j, Z) (where Z is simply the constant 0). Thus Lemma 4.18

asserts that H(1[Σ(I) = J ]|Π1, I, J, Z) ≥ 1 − 1/ logβ̃ n ≥ 1 − ε′ for any message Π1 = Π1(Σ) ∈
{0, 1}C′ sent by Alice. Let Π2(Π1, I, J) denote the output bit of the protocol output by Bob.
Since this is a deterministic function of Π1, I, J we have, by the data processing inequality, that
H(1[Σ1(I) = J ]|Π2(Π1, I, J)) ≥ 1− ε′. By the choice of ε′ and Jensen’s inequality (to average over
the conditioning on Π2(Π1, I, J)) we have that

P [1[Σ(I) = J ] = Π2(Π1, I, J)] ≤ 1/2 + ε,

which verifies that the success probability of the protocol Π is at most 1/2 + ε as asserted.
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Armed with Lemma 4.17 and Corollary 4.19 we are now ready to prove Lemma 4.16.

Proof of Lemma 4.16. We prove the lemma by induction on r. If r = 1, then Corollary 4.19 gives
us the lemma. Assume now that the lemma holds for all odd r′ < r. In particular, let βr−2 and
n0,r−2 be the parameters given by the lemma for r − 2 rounds and parameter ε/2. We now apply
Lemma 4.17 with parameters ε1 = ε, ε2 = ε/2, r rounds and β2 = βr−2. Let n′0 and β1 be the
parameters given to exist by Lemma 4.17. We verify the inductive step with n0,r = max{n0,r−2, n

′
0}

and βr = β1. Fix D ∈ DMix
PV (r, n, 1/ logβr n, n/ logβr n) and assume for contradiction that an

((r + 3)/2, n/ logβr n)-protocol achieves success 1/2 + ε on D. Then by Lemma 4.17 we have that
there exists D̃ ∈ DMix

PV (r−2, n, 1/ logβr−2 n, n/ logβr−2 n) and an ((r+ 1)/2, n/ logβr−2 n)-protocol Π̃
that achieves success 1/2 + ε/2 on D̃, which contradicts the inductive hypothesis.

We finally show how Lemma 4.15 follows from Lemma 4.16 (which amounts to verifying the
DMix

PV satisfies the requirements of membership in DMix
PV for appropriate choice of parameters).

Proof of Lemma 4.15. We claim that for each odd integer r, DMix
PV (r, n) ∈ DMix

PV (r, n, 2/n, 0) for
sufficiently large n. To verify this, note that if (Σ1, . . . ,Σr, I0, J0) are drawn from DMix

PV (r, n), then

1. H(I0|Σ1, . . . ,Σr) = H(J0|Σ1, . . . ,Σr) = log(n).

2. H(Σ1, . . . ,Σr) = r · log(n!).

3. H(1[Σr
1(I0) = J0]|I0,Σ1, . . . ,Σr) = H(1[Σr

1(I0) = J0]|J0,Σ1, . . . ,Σr) = h(1/2 + 1/(2n)) ≥
1− 1/n2.

4. H(J0|I0,Σ1, . . . ,Σr,Σ
r
1(I0) 6= J0) = H(I0|J0,Σ1, . . . ,Σr,Σ

r
1(I0) 6= J0) = log(n−1) ≥ log(n)−

2/n, for sufficiently large values of n.

5. To verify the conditional independence properties (5) from Definition 4.6, first fix any odd t
such that 1 ≤ t ≤ r, and pick any i0, . . . , it, j0, . . . , jt ∈ [n] and σt+2, σt+4, . . . , σr−t−2 ∈ Sn.
Given that

{(I0, . . . , It) = (i0, . . . , it), (J0, . . . , Jt) = (j0, . . . , jt), (Σt+2,Σt+4, . . . ,Σr−t−1) = (σt+2, σt+4, . . . , σr−t−1)},

and regardless of the choice of ΣB, note that the permutations in ΣA∩(Σ1, . . . ,Σt,Σr−t−1, . . . ,Σr)
are uniformly random subject to Σs(is−1) = is for s ∈ {1, 3, . . . , t} and Σ−1

r−s+1(js) = js−1 for
s ∈ {1, 3, . . . , t}. A similar argument verifies the analogous statement for even t.

In particular, it follows that for every β > 0 and every odd r, for sufficiently large n, we have
that DMix

PV (r, n) ∈ DMix
PV (r, n, 1/ logβ(n), n/ logβ(n)), and in particular this holds for the parameter

β guaranteed to exist by Lemma 4.16. The lemma now follows immediately from the conclusion
of Lemma 4.16, which asserts that every ((r + 3)/2, n/ logβ(n))-protocol achieves success with
probability at most 1/2 + ε on D.

Thus the main lemma is proved assuming Lemma 4.18 and Lemma 4.17. In the rest of this
section we prove these two lemmas.
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4.5 The Base Case: Proof of Lemma 4.18

In the following we will fix β and argue that if β̃ ≤ ε∗1 · β − ε∗2 then the conditions (23) and (24) of
Lemma 4.18 hold. Specifically we will prove (23) first and then derive (24) as a consequence. For
(23), we will first bound H(Σ(I)|I) when Σ is a nearly uniform function instead of a nearly random
permutation, and then extend it to case that Σ is a nearly uniform permutation. Then using this
result, we will bound H(Σ(I)|I,Π), where Π is a short message that depends on Σ.

In the below Lemma 4.20, we will take I ∈ [k] and Σ : [k] → [n] to be a nearly uniformly
random function. We allow that k 6= n in order to deal with the case that Σ is a nearly uniformly
random permutation later on (in our application we will always have k ≤ n).

Lemma 4.20. For every k, n ∈ Z+ and every δ, C ∈ R+ the following holds: Suppose (I,Σ) are
drawn from a distribution D such that the resulting random variables, I ∈ [k],Σ : [k] → [n] have
the following properties:

1. H(I|Σ) ≥ log(k)− δ, with δ ∈ [1/n, 1/8).

2. H(Σ) ≥ k log n− C, with C ≤ k.

Then

H(Σ(I)|I) ≥ log(n)− C

k
− 2
√

2δ log(n).

Proof. Let D be the joint distribution on (Σ, I) that satisfies (1),(2) and let DI , DΣ be its marginals
on I and Σ respectively. Unless specified, all the following probability statements are with respect
to D. Let Uk denote the random variable that is uniform on [k].

We will first make a few observations and then bound H(Σ(I)|I). Firstly, since H(I) ≥ log k−δ,
by Pinsker’s inequality, we have that,

∆(DI , Uk) =
1

2

k∑
i=1

|P[I = i]− 1/k| ≤
√
δ/2. (25)

Let DΣ ⊗DI denote the joint distribution over (Σ, I), where Σ and I are independently drawn
from their marginals DΣ and DI respectively. By Pinsker’s inequality, we have that,

∆(D,DΣ ⊗DI) ≤
√
I(Σ; I)/2 ≤

√
δ/2.

It then follows that, ∑
i∈[k],j∈[n]

|P[Σ(i) = j, I = i]− P[Σ(i) = j] · P[I = i]| ≤
√

2δ. (26)

Now, for each i ∈ [k], define,

εi =
∑
j∈[n]

|P[Σ(i) = j, I = i]− P[Σ(i) = j] · P[I = i]| ,

so that
∑

i∈[k] εi ≤
√

2δ. We get that

∆((Σ(i)|I = i),Σ(i)) =
1

2

∑
j∈[n]

|P[Σ(i) = j|I = i]− P[Σ(i) = j]| = εi
2P[I = i]

,
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which by Lemma 6.4 then gives,

|H(Σ(i)|I = i)−H(Σ(i))| ≤ h
(

εi
2P[I = i]

)
+

(
εi

2P[I = i]

)
log(n− 1) := βi. (27)

We have that

H(Σ(I)|I) =
∑
i∈[k]

P[I = i] ·H(Σ(I)|I = i)

≥
∑
i

P[I = i](H(Σ(i))− βi) (28)

≥
∑
i

1

k
H(Σ(i))−

√
δ/2 log n−

∑
i

P[I = i]βi, (29)

where (28) follows from (27), and (29) follows from (25) and the fact that H(Σ(i)) ≤ log n.
Using the chain rule for entropy we get that

log n− C/k ≤ 1

k
H(Σ) =

1

k

k∑
i=1

H(Σ(i)|Σ({1, . . . , i− 1})) ≤ 1

k

k∑
i=1

H(Σ(i)). (30)

Recall that
∑

i εi ≤
√

2δ and we have that h(
∑

i εi) ≤ h(
√

2δ), since δ < 1/8. Since the binary
entropy function h(·) is concave, by Jensen’s inequality, we have that,

k∑
i=1

P[I = i]βi =
∑
i

P[I = i]h

(
εi

2P[I = i]

)
+
∑
i

P[I = i]

(
εi

2P[I = i]

)
log(n− 1)

≤ h

(∑
i

P[I = i] · εi
2P[I = i]

)
+
√
δ/2 log n

≤ h
(√

δ/2
)

+
√
δ/2 log n. (31)

Note that h(x) ≤ 2x log(1/x) for x→ 0, so h(
√
δ/2) ≤

√
2δ log n. Using this, and plugging (30)

and (31) into (29), we get that

H(Σ(I)|I) ≥ log n− C

k
− 2
√
δ/2 log n ≥ log(n)− C

k
− 2
√

2δ log(n).

Now we are ready to prove an analogous lemma for random permutations instead of random
functions. We note that we cannot replicate the proof above since for a typical i the conditional
entropy H(Σ(i)|Σ({1, . . . , i − 1})) is actually log n − Θ(1) and this Θ(1) loss is too much for us.
In the proof below we condition instead on I being contained in some smaller set S ⊆ [n], with
|S| = k = o(n), where S itself is randomly chosen. This “conditioning” turns out to help with the
application of the chain rule and this allows us to reproduce a bound that is roughly as strong as
the bound above.

Lemma 4.21. There exists constants ε∗1 > 0, ε∗2 such that for every β there exists n0 such that for
all n ≥ n0 the following holds: Suppose I ∈ [n], Σ ∈ Sn are random variables such that:
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1. H(I|Σ) ≥ log(n)− δ, with δ ∈ [1/n, 1/ logβ n].

2. H(Σ) ≥ log(n!)− C, with C ≤ n/ logβ(n).

Then
H(Σ(I)|I) ≥ log n− 1/ logβ̃ n,

where β̃ = ε∗1 · β − ε∗2.

Proof. We will prove the lemma with ε∗1 = 1/16, ε∗2 = 4. Note that for β ≤ 8, β̃ = ε∗1β − ε∗2 ≤ −3,
so by non-negativity of entropy, the lemma statement follows immediately. We therefore assume
β > 8 for the remainder of the proof.

Let D be the distribution of (Σ, I) given in the lemma statement, where DΣ, DI are its marginals
on I,Σ respectively. Let k be a parameter to be fixed later. We start by defining a joint distribution
D′ on triples (Σ, I, S) with Σ ∈ Sn and I ∈ S ⊂ [n], |S| = k that satisfies the condition that its
marginal on (Σ, I) equals D while at the same time the distribution of (Σ, I) conditioned on S = S′

when (Σ, I, S) ∼ D′ is the same as the distribution of (Σ, I) ∼ D conditioned on I ∈ S′. D′ is
defined as follows:

Let DS be the distribution of (Σ, I), conditioned on I ∈ S. Now let E be the distribution over

subsets S ⊂ [n] of size k where the probability of PS∼E [S = S′] =
∑
i∈S′ PD[I=i]

(n−1
k−1)

. Now define the

joint distribution D′ of (Σ, I, S) of σ ∈ Sn, i ∈ S′ ⊂ [n], |S′| = k so that

PD′ [Σ = σ, I = i, S = S′] = PE [S = S′] · PD[Σ = σ, I = i|I ∈ S′]
= PE [S = S′] · PDS′ [Σ = σ, I = i].

We claim that the marginal distribution of (Σ, I), where (Σ, I, S) ∼ D′, is equal to D. To see this,

PD′ [Σ = σ, I = i] =
∑

S′⊂[n],|S′|=k,S′3i

PE [S = S′] · PD[Σ = σ, I = i|I ∈ S′]

=
∑

S′⊂[n],|S′|=k,S′3i

(∑
i′∈S′

PD[I = i′](
n−1
k−1

) )
· PD[Σ = σ, I = i]

PD[I ∈ S′]

=
1(
n−1
k−1

) · ∑
S′⊂[n],|S′|=k,S′3i

PD[Σ = σ, I = i]

= PD[Σ = σ, I = i].

Recall we wish to lower bound HD(Σ(I)|I). But notice that

HD(Σ(I)|I) = HD′(Σ(I)|I) ≥ HD′(Σ(I)|I, S) = ES′∼E [HD′(Σ(I)|I, S = S′)].

Hence it suffices to show that for every set S′, |S′| = k, HD′(Σ(I)|I, S = S′) ≥ log n− log(ε∗2−βε∗1) n
and we do so below.

Fix a subset S′ ⊂ [n], of size k, where k also satisfies

δ1/4 · n/k ≤
√

2− 1, δ1/4n log n/k ≤ 1/10, nC/k2 ≤ 1/10, k ≤ n/10. (32)

We remark that for each β > 4, there is some n0 such that for n ≥ n0, such a k satisfying (32)
always exists. (Recall our assumption above that β > 8.)
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We will specify the exact value of k below, but for now we note that our argument holds for
any k satisfying (32). By the definition of D′, we have that HD′(Σ(I)|I, S = S′) = HDS′ (Σ(I)|I).
We show below that (Σ(S′), I) where (Σ, I) ∼ DS′ satisfies the preconditions of Lemma 4.20. To
show this, we need to choose γ(n, k, δ) ∈ [1/n, 1/8) and Γ(n, k, δ, C) ≤ k satisfying the following:

1. HDS′ (I|Σ) = HD(I|Σ, I ∈ S′) ≥ log k − γ(n, k, δ).

2. HDS′ (Σ(S′)) = HD(Σ(S′)|I ∈ S′) ≥ k log n− Γ(n, k, δ, C).

The following claim helps with the choice of γ(n, k, δ).

Claim 4.22. Suppose that I ∈ [n] is a random variable such that H(I) ≥ log n− τ with n
√
τ/k ≤√

2− 1. Then HD(I|I ∈ S′) ≥ log k − n
√
τ

k log
(

k2

n
√
τ

)
.

Proof of Claim 4.22. Let Un denote the uniform distribution on [n]. By Pinsker’s inequality we
have that, ∆(DI , Un) ≤

√
τ/2, which in turn implies that |PDI [I ∈ S′]− k/n| ≤

√
τ/2. Let US′ be

the uniform distribution over S′. We have that

∆((DI |I ∈ S′), US′) ≤
√
τ/2 · 1

k/n−
√
τ/2
≤ n
√
τ

k
,

since n
√
τ/k ≤

√
2− 1. By Theorem 6.5, we get that,

HD(I|I ∈ S′) ≥ log k − n
√
τ

k
log

(
k

(n
√
τ/k)

)
= log k − n

√
τ

k
log

(
k2

n
√
τ

)

By Markov’s inequality, with probability at least 1−
√
δ when σ ∼ DΣ, we have H(I|Σ = σ) ≥

log k −
√
δ. For such σ, by Claim 4.22 applied to the distribution I|Σ = σ and τ =

√
δ (note that

the condition nδ1/4/k = n
√
τ/k ≤ 1− 1/

√
2 holds by the conditions on k), we obtain

HD(I|I ∈ S′,Σ = σ) ≥ log k − nδ1/4

k
log

(
k2

δ1/4n

)
≥ log k − nδ1/4

k
log

(
k

δ1/4

)
.

Hence

HD(I|I ∈ S′,Σ) ≥ (1−
√
δ)

(
log k − nδ1/4

k
log

(
k

δ1/4

))
≥ log k − γ(n, k, δ),

where γ(n, k, δ) =
√
δ log n+ nδ1/4

k log(n2), where we have used k ≤ n and δ ≥ 1/n.
Now we turn to determining Γ(n, k, δ, C) such that HDS′ (π(S′)) ≥ k log n− Γ(n, k, δ, C). Note

that H(π|1[i ∈ S′]) ≥ log n! − C − 1. Applying Pinsker’s inequality to the condition H(i) ≥
H(i|π) ≥ log n− δ yields that ∆(i, Un) ≤

√
δ/2, meaning that |k/n− PD[i ∈ S′]| ≤

√
δ/2. Hence

HD(Σ|I ∈ S′) ≥
log(n!) · (k/n−

√
δ/2)− C − 1

k/n+
√
δ/2

= log(n!) ·
1−

√
δ/2n/k

1 +
√
δ/2n/k

− C + 1

k/n+
√
δ/2

≥ log(n!) · (1−
√

2δ · n/k)− C + 1

k/n+
√
δ/2

≥ log(n!)− n ·
(√

2δ · n log(n)/k + 2C/k
)
,
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where we have used that n! ≤ nn. But since π is a permutation,

HD(Σ(S′)|I ∈ S′) = HD(Σ|I ∈ S′)−HD(Σ([n]\S′)|I ∈ S′,Σ(S′))

≥ log(n!)− n ·
(√

2δ · n log(n)/k + 2C/k
)
− log((n− k)!)

≥ k log(n− k)− n ·
(√

2δ · n log(n)/k + 2C/k
)

≥ k log n− k ·
(√

2δ · n2 log(n)/k2 + 2nC/k2 +
2k

n

)
,

where we have used that log(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2, as well as k ≤ n/2. Hence with

Γ = Γ(n, k, δ, C) = k ·
(√

2δ · n2 log(n)/k2 + 2nC/k2 + 2k
n

)
≤ k (by our assumption (32)), we have

that H(π(S′)|i ∈ S′) ≥ k log(n)− Γ. It follows from Lemma 4.20 that, writing γ = γ(n, k, δ),

HDS′ (Σ(I)|I) = HD(Σ(I)|I, I ∈ S′) ≥ log n− Γ

k
− 2
√

2γ · log n. (33)

Therefore,

HD(Σ(I)|I) ≥ ES∼E [HDS (Σ(I)|m, I)] ≥ log n− Γ

k
− 2
√

2γ · log n, (34)

since the inequality is true for each value S′ ⊂ [n], |S′| = k, by (33).
It is now easily verified that for each β > 8, for k = n · log−β/8(n), there is some n0, depending

only on β, so that (32) is satisfied for n ≥ n0. Moreover, for such k,

Γ/k + 2
√

2γ · log n

≤
√

2 log(−β/2+1+2β/8) n+ 2 log(−β+2β/8) n+ 2 log(−β/8) n+ 2
√

2 ·
(

log(−β/4+3/2) n+ 2 log(−β/8+3/2+β/16) n
)

≤ 100 log(3/2−β/16) n

≤ log(4−β/16) n,

where the last inequality holds for sufficiently large n. By (34) this implies that for each β > 8,
there is some n0 such that for n ≥ n0, HD(Σ(I)|I) ≥ log(n) − log(4−β/16) n, which completes the
proof.

Now we are ready to lower bound the entropy H(Σ(I)|Π, I, Z), that proves Lemma 4.18: Equa-
tion (23), via the following lemma.

Lemma 4.23. There exists constants ε∗1 > 0, ε∗2 such that for every β > 0 there exists n0 such that
for all n ≥ n0 the following holds: Let δ = 1/ logβ n, C = C ′ = δn, and β̃ = ε∗1 · β − ε∗2. Suppose
(I, J,Σ, Z) are drawn from a distribution D, with Z taking on finitely many values, such that the
following properties hold:

1. H(I|Σ, Z) ≥ log(n)− δ.

2. H(Σ|Z) ≥ log(n!)− C.

Then, for every deterministic function Π = Π(Σ, Z) with Π ∈ {0, 1}C′, we have

H(Σ(I)|I,Π, Z) ≥ log(n)− 1/ logβ̃ n.
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Proof. In Lemma 4.21 we proved a lower bound on H(Σ(I)|I), given the conditions that H(I|Σ) ≥
log n− δ and H(Σ) ≥ log n!− C. We would now like to prove a bound on H(Σ(I)|I,Π, Z), where
Π = Π(Σ, Z) is a message of length ≤ C ′ and Z is the random variable in the lemma statement.
Since |Π| ≤ C ′, (1) and (2) in the lemma hypothesis, along with the data processing inequality,
imply that,

1. H(I|Σ,Π, Z) ≥ log n− δ.

2. H(Σ|Π, Z) ≥ log n!− C − C ′.

Let γ = (C +C ′)/n, so that γ ≤ 2/ logβ(n). By Markov’s inequality (and the facts that I takes
on at most n values and Σ takes on at most n! values), we have the following, for every ε > 0:

• With probability at least 1−
√
δ over the choice of (π, z) ∼ (Π, Z), we have that H(I|Σ,Π =

π, Z = z) ≥ log(n)−
√
δ.

• With probability at least 1 − √γ over the choice of (π, z) ∼ (Π, Z), we have that H(Σ|Π =
π, Z = z) ≥ log(n!)− n · √γ.

Let α = max{δ, γ}. For sufficiently large n we have that
√
α ≤ 1/ log(β/3) n. Then by Lemma 4.21,

there is some n0, depending only on β, such that for all (π, z) belonging to some set of measure at
least 1−2

√
α, for n ≥ n0 we have that H(Σ(I)|I,Π = π, Z = z) ≥ log n−η, where η = logµ

∗
2−βµ∗1 n,

for absolute constants µ∗1, µ
∗
2. Then there are suitable absolute constants ε∗1 ∈ (0, 1), ε∗2 > 0 and n′0

(depending only on β) such that for n ≥ n0,

H(Σ(I)|I,Π, Z) = E(π,z)∼(Π,Z)[H(Σ(I)|I,Π = π, Z = z)]

≥ (1− 2
√
α) · (log(n)− η)

≥ log(n)− log(ε∗2−βε∗1) n.

Next we work towards the proof of (24) in Lemma 4.18. The main difficulty in proving this
inequality is to reason about the conditional entropy of the indicator random variable 1[Σ(I) = J ],
conditioned on the random variable J . Roughly speaking, Lemma 4.24 below allows us to infer
a statement such as H(1[Σ(I) = J ]|J) ≥ 1 − o(1) from an analogous statement of the form
H(1[Σ(I) = J ]|Σ(I)) ≥ 1 − o(1), if Σ(I), J ∈ [n] satisfy certain regularity conditions. This same
argument is needed in the inductive step presented in Lemma 4.17. In these applications we need
to additionally condition all entropies on some random variable Z.

Lemma 4.24. There are absolute constants ε∗1 > 0, ε∗2, n0 such that the following holds for every
n ≥ n0: Let X,Y, Z be random variables with X,Y ∈ [n] and Z takes on finitely many values. Let
J = 1[X = Y ]. If there is some constant β > 0 such that δ ≤ 1/ logβ n, and

1. H(X|Z) ≥ log(n)− δ.

2. H(J |X,Z) ≥ 1− δ.

3. H(Y |X,Z, J = 0) ≥ log(n)− δ

Then H(J |Y,Z) ≥ 1− log(ε∗2−βε∗1) n.
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Proof. We will first prove the above statement assuming that H(Z) = 0 and then use Markov’s
inequality and a union bound to prove the lemma statement for general Z. That is, we first prove
that if conditions (1), (2), (3) hold without the conditioning on Z then, H(J |Y ) ≥ 1− o(1).

We have that H(X), H(Y ) ≤ log n since X,Y ∈ [n] and H(J) ≤ 1. Also note that, by Pinsker’s
inequality,

P[J = 0],P[J = 1] ∈ [1/2−
√
δ/2, 1/2 +

√
δ/2].

We also have that

H(J |Y ) = H(J) +H(Y |J)−H(Y )

≥ (1− δ) +H(Y |J)− log(n)

≥ (1− δ) + P[J = 0] ·H(Y |J = 0) + P[J = 1] ·H(Y |J = 1)− log n

≥ (1− δ) + (1/2−
√
δ/2)(log n− δ +H(Y |J = 1))− log n (35)

But notice that H(Y |J = 1) = H(Y |X = Y ) = H(X|J = 1), so it suffices to bound the latter.
From the lemma hypothesis we get that

H(X|J) = H(X) +H(J |X)−H(J) ≥ (log n− δ) + (1− δ)− 1 ≥ log n− 2δ.

On the other hand we have that

H(X|J) = P[J = 0] ·H(X|J = 0) + P[J = 1] ·H(X|J = 1)

≤ (1/2 +
√
δ/2) · (log n+H(X|J = 1)). (36)

Combining the upper and lower bounds on H(X|J), we get that

H(X|J = 1) ≥ log(n)− 2δ

1/2 +
√
δ/2
− log n ≥ log(n)− 4δ −

√
8δ log n.

Plugging the above into (35), we get that,

H(J |Y ) ≥ 1− 7δ

2
− 2
√
δ log n.

To get the lower bound while conditioning on Z, we use Markov’s inequality and a union bound
(in the same manner as Lemma 4.23) to get that

H(J |Y,Z) ≥ (1− 3
√
δ)

(
1− 7

√
δ

2
− 2δ1/4 log n

)
≥ 1− 7

√
δ − 2δ1/4 log n

≥ 1− 9δ1/4 log n

≥ 1− 9 log(1−β/4) n

≥ 1− log(ε∗2−βε∗1) n,

where the final inequality holds for ε∗1 = 1/4, ε∗2 = 2 and n0 = 29 (so that log n ≥ 9).

The proof of Lemma 4.18: Equation (24) follows as a consequence of Lemmas 4.23 and 4.24
above.
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Proof of Lemma 4.18. We show that there exist ε∗1 > 0 and ε∗2 such that if β ≥ (β̃ + ε∗2)/ε∗1 (or
equivalently, if β̃ ≤ ε∗1 · β − ε∗2) then Equations (23) and (24) of Lemma 4.18 hold for every n ≥ n0

where n0 = max{n0,1, n0,2} and n0,1 = n0,1(β) is as given by Lemma 4.23 and n0,2 = n0,2(β) is
the constant given by Lemma 4.24. For this choice Lemma 4.23 already gives us (23), that is,
H(Σ(I)|I,m) ≥ log(n) − log(µ∗2−βµ∗1) n for some absolute constants µ∗1 ∈ (0, 1), µ∗2 > 0. Note in
particular that this implies that for every ε∗2 ≥ µ∗2 and for every ε∗1 ≤ µ∗1 we have H(Σ(I)|I,Π) ≥
log(n)− log(ε∗2−βε∗1) n and we will make such a choice below.

We next apply Lemma 4.24 with Z∗ = (Π, I, Z), X = Σ(I), Y = J , and J = 1[Σ(I) = J ], where
Z∗ refers to the random variable in Lemma 4.24 and Z refers to the one in Lemma 4.18. We verify
that each of the pre-conditions is met.

1. X,Y ∈ [n], J ∈ {0, 1} and Z∗ takes finitely many values.

2. H(X|Z∗) = H(Σ(I)|I,Π, Z) ≥ log(n)− log(µ∗2−µ∗1β) n, by (23).

3. H(J |X,Z∗) = H(1[Σ(I) = J ]|Σ(I),Π, I, Z) ≥ H(1[Σ(I) = J ]|Σ, I, Z) ≥ 1 − δ, by assump-
tion.

4. H(Y |X,Z∗, J = 0) = H(J |Σ(I),Π, I, Z,1[Σ(I) = J ]) ≥ H(J |Σ, I, Z,1[Σ(I) = J ]) ≥ 1 − δ,
by assumption.

Then by Lemma 4.24, we have that for n ≥ n0,

H(1[Σ(I) = J ]|Π, I, J, Z) = H(J |Y,Z∗) ≥ 1− log(ν∗2−(µ∗2−βµ∗1)ν∗1 ) n,

where ν∗1 , ν
∗
2 denote the absolute constants of Lemma 4.24. Thus again we have that if ε∗2 ≥

ν∗2 − µ∗2ν∗1 and ε∗1 ≤ µ∗1ν
∗
1 then we have that H(1[Σ(I) = J ]|Π, I, J, Z) ≥ 1 − log(ε∗2−βε∗1) n. Setting

ε∗1 = min{µ∗1, µ∗1ν∗1} and ε∗2 = max{µ∗2, ν∗2 − µ∗2ν∗1} thus ensures that both conditions of the lemma
are satisfied.

4.6 The Inductive Step: Proof of Lemma 4.17

We will prove the inductive step via a simulation argument. That is, we show that if Alice and
Bob were able to succeed on D ∈ DMix

PV (r, n, δ, C) with non-negligible probability, then they would
also succeed on some D̃ ∈ DMix

PV (r − 2, n, δ′, C ′) by simulating the protocol for D given an instance
from D̃.

Given a distribution D on which Alice and Bob can succeed with non-negligible probability, we
consider the distribution D̃ on the resulting “inner inputs” (i.e. the original inputs minus Σ1,Σr)
after Alice sends a short message to Bob. More precisely, the distribution D̃ is the distribution
of (I1, J1,Σ2, . . . ,Σr−1) conditioned on Alice’s first message Π1 and Bob’s indices (I0, J0), where
(I1, J1) = (Σ1(I0),Σ−1

r (J0)). Moreover, the inputs of D̃ are given to the players as follows: Alice
holds (I1, J1,Σ3,Σ5, . . . ,Σr−2), Bob holds (Σ2,Σ4, . . . ,Σr−1), and it is Bob’s turn to send the next
message. Therefore, this corresponds to an instance of an (r−2)-Pointer Verification Problem with
Alice and Bob’s roles flipped. We will show in Lemma 4.27 that D̃ ∈ DMix

PV (r−2, n, δ′, C ′), for some
δ′, C ′ not too much larger than δ, C, respectively. Then using the protocol for D, we will construct
a protocol that succeeds when the inputs are drawn from D̃, with not much loss in the success
probability. We will now prove two simple lemmas that will be used to prove Lemma 4.27.
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Lemma 4.25. There exists ε∗1 > 0 and ε∗2 such that for every β there exists n0 such that for all
n ≥ n0 the following holds: Suppose I, J, τ1, τ2, Z are random variables, where I, J ∈ [n], τ1, τ2 ∈ Sn
and Z takes on finitely many values, satisfying the following conditions:

1. H(I|τ1, τ2, Z) ≥ log(n)− δ, with δ ≤ 1/ logβ n.

2. H(τ1, τ2|Z) ≥ 2 log(n!)− C, with C ≤ n/ logβ n.

3. For each z for which the event {Z = z} has positive probability, there is a permutation
fz : [n]→ [n], such that fz(τ1(I)) = τ2(J) (which implies that τ1(I) = f−1

z (τ2(J)).

Suppose further that Π = Π(τ1, τ2, Z) is a deterministic function and Π ∈ {0, 1}C′, with C ′ ≤
n/ logβ n. Then H(τ1(I)|I, J,Π, Z) ≥ log n− log(ε∗2−βε∗1) n.

Proof. Let us write Z ′ = (τ−1
2 ◦ fZ ◦ τ1, Z). Then

1. H(I|τ1, Z
′) = H(I|τ1, τ

−1
2 ◦ fZ ◦ τ1, Z) = H(I|τ1, τ2, Z) ≥ log(n)− δ.

2. H(τ1|Z ′) = H(τ1|τ−1
2 ◦ fZ ◦ τ1, Z) ≥ log(n!) − C, where the last inequality follows from the

following:

2 log(n!)− C ≤ H(τ1, τ2|Z)

= H(τ−1
2 ◦ fZ ◦ τ1, τ2|Z)

= H(τ−1
2 ◦ fZ ◦ τ1|Z) +H(τ1|τ−1

2 ◦ fZ ◦ τ1, Z)

≤ log(n!) +H(τ1|τ−1
2 ◦ fZ ◦ τ1, Z).

Then by Lemma 4.23, H(τ1(I)|I,Π, Z ′) = H(τ1(I)|I,Π, τ−1
2 ◦ fZ ◦ τ1, Z) ≥ log n− log(ε∗2−βε∗1) n, for

absolute constants ε∗1, ε
∗
2 and for n sufficiently large as a function of β. But since J = τ−1

2 ◦fZ ◦τ1(I),
we obtain that

H(τ1(I)|I, J,Π, τ−1
2 ◦ fZ ◦ τ1, Z) ≥ log n− logε

∗
2−βε∗1 n.

Then the desired result follows since conditioning decreases entropy.

Lemma 4.26. Suppose A,B,C are random variables with finite ranges such that A ⊥ B | C. Let
ΩA denote the domain of A, and f : ΩA → {0, 1}∗ be a function. It follows that

A ⊥ B | {C, f(A)}.

Proof. Pick any x ∈ {0, 1}∗, a ∈ ΩA, b ∈ ΩB, c ∈ ΩC . We have that

P[A = a,B = b|C = c, f(A) = x]

=
P[A = a,B = b, f(A) = x|C = c]

P[f(A) = x|C = c]
. (37)

If f(a) 6= x, then the above is 0, and also

P[A = a|C = c, f(A) = x] · P[B = b|C = c, f(A) = x] = 0
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as well. If f(a) = x, then (37) is equal to

P[A = a,B = b|C = c]

P[f(A) = x|C = c]
=

P[A = a|C = c]

P[f(A) = x|C = c]
· P[B = b|C = c]

=
P[A = a, f(A) = x|C = c]

P[f(A) = x|C = c]
· P[B = b|f(A) = x,C = c]

= P[A = a|f(A) = x,C = c] · P[B = b|C = c, f(A) = x],

where the second-to-last inequality follows since

P[B = b|C = c] = P[B = b|f(A) = x,C = c],

as B is conditionally independent of A given C.

Given a distribution D ∈ DMix
PV (r, n, δ, C) and a deterministic function Π = Π(ΣA) we define a

distribution D̃+ on the r−2 permutation pointer verification problem with some auxiliary random-
ness Z as follows: To generate a sample (Σ2, . . . ,Σr−2, I1, J1;Y ) according to D̃+ we first sample
(Σ1, . . . ,Σr, I0, J0) ∼ D and let I1 = Σ1(I0), J1 = Σ−1

r (J0) and Y = (Π1(ΣA), I0, J0).
D̃+ as defined above is a candidate “noisy-on-average’ (i.e., noisy when averaged over Y — see

last paragraph of Definition 4.6) distribution on r − 2 permutations, and the lemma below asserts
that this is indeed the case for slightly larger values of δ and C provided |Π| is small. Recall that
ΣA = (Σ1,Σ3, . . . ,Σr),ΣB = (Σ2,Σ4, . . . ,Σr−1).

Lemma 4.27. There exist constants ε∗1 > 0, ε∗2 such that for every odd r ≥ 3 and β > 0 there
exists n0 such that for every n ≥ n0 the following holds: Suppose D ∈ DMix

PV (r, n, δ, C), for some
δ ≤ 1/ logβ n and C ≤ n/ logβ n. Also suppose that C ′ ≤ n/ logβ n, and that Π = Π(ΣA) is
a deterministic function of ΣA such that |Π| ≤ C ′. Then for δ′ = log(ε∗2−ε∗1·β) n we have D̃+ ∈
DMix +

PV (r − 2, n, δ′, δ′n).

Proof of Lemma 4.27. We need to verify statements (1) – (5) of Definition 4.6 in order to show
that D̃+ ∈ DMix +

PV (r − 2, n, δ′, δ′n), for an appropriate choice of ε∗1, ε
∗
2 and for sufficiently large n

(depending only on β). We will show that statement (5) (which does not depend on δ′) holds for
all n ∈ N. To verify statements (1) – (4), we will show that for each of these statements, there
are some absolute constants ε̂∗1, ε̂

∗
2 and some n̂0 (depending only on β) such that for n ≥ n̂0, the

statement holds with δ′ = log(ε̂∗2−ε̂∗1β) n. The proof of the lemma will follow by choosing ε∗2 to be
the maximum of the individual ε̂∗2, ε∗1 to be the minimum of the individual ε̂∗1, and n0 to be the
maximum of the individual n̂0.

We now proceed to verify each of the statements (1) – (5). We remark that the values of
ε̂∗1, ε̂

∗
2, n̂0 may change from line to line.

1. We first verify that H(I1|I0, J0,Σ2, . . . ,Σr−1,Π) ≥ log(n)−δ′. Since conditioning can only re-
duce entropy, it suffices to find a lower bound on H(I1|1[Σr

1(I0) = J0], I0, J0,Σ2, . . . ,Σr−1,Π),
and in particular, it suffices to find a lower bound on H(I1|Σr

1(I0) 6= J0, I0, J0,Σ2, . . . ,Σr−1,Π)
and on H(I1|Σr

1(I0) = J0, I0, J0,Σ2, . . . ,Σr−1,Π).

We first bound the former. Consider the distribution of I0, J0,Σ1,Σ2, . . . ,Σr conditioned on
the event Σr

1(I0) 6= J0, and let Z = (Σ2,Σ3, . . . ,Σr−1,Σr). We will now use Lemma 4.23 with
I = I0, π = Σ1, and with the distribution being D conditioned on Σr

1(I0) 6= J0. To apply this
lemma, we first verify its preconditions:
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(a) H(I0|Σ1, Z,Σ
r
1(I0) 6= J0) ≥ log(n) − 5δ as long as n is large enough so that δ ≤ 1/50.

To see this, conditions (1a) and (3a) of the distribution D ∈ DMix
PV (r, n, δ, C) (recall

Definition 4.6) imply that

H((I0,1[Σr
1(I0) = J0])|Σ1,Σ2, . . . ,Σr) ≥ 1 + log(n)− 2δ,

meaning that

H(I0|1[Σr
1(I0) = J0],Σ1,Σ2, . . . ,Σr)

= P[Σr
1(I0) = J0] ·H(I0|Σr

1(I0) = J0,Σ1, . . . ,Σr)

+P[Σr
1(I0) 6= J0] ·H(I0|Σr

1(I0) 6= J0,Σ1, . . . ,Σr)

≥ log(n)− 2δ.

By Pinsker’s inequality and condition (3a) of D we have that |P[Σr
1(I0) = J0]− 1/2| ≤√

δ/2, so for sufficiently small δ (in particular, such that
√
δ/2 ≤ 1/10), it follows that

min {H(I0|Σr
1(I0) = J0,Σ1, . . . ,Σr), H(I0|Σr

1(I0) 6= J0,Σ1, . . . ,Σr)} ≥ log(n)−5δ. (38)

(b) H(Σ1|Z,Σr
1(I0) 6= J0) ≥ log(n!)− 3C − 3δ as long as n is large enough so that δ ≤ 1/18.

The proof is similar to (a) above. In particular, condition (2) of the distribution D
implies that

H(Σ1|Σ2,Σ3, . . . ,Σr) ≥ log(n!)− C.

Since conditioning can only reduce entropy, condition (3a) of the distribution D implies
that

H((Σ1,1[Σr
1(I0) = J0])|Σ2, . . . ,Σr) ≥ 1 + log(n!)− C − δ,

meaning that

H(Σ1|1[Σr
1(I0) = J0],Σ2, . . . ,Σr)

= P[Σr
1(I0) = J0] ·H(Σ1|Σr

1(I0) = J0,Σ2, . . . ,Σr) + P[Σr
1(I0) 6= J0] ·H(Σ1|Σr

1(I0) 6= J0,Σ2, . . . ,Σr)

≥ log(n!)− C − δ.

By Pinsker’s inequality and condition (3a) of D we have that |P[Σr
1(I0) = J0]− 1/2| ≤√

δ/2, so for sufficiently small δ (in particular, such that
√
δ/2 ≤ 1/6), it follows that

min{H(Σ1|Σr
1(I0) = J0,Σ2, . . . ,Σr), H(Σ1|Σr

1(I0) 6= J0,Σ2, . . . ,Σr)} ≥ log(n!)−3C−3δ.
(39)

Note also that indeed Π is a deterministic function of (π, Z) = (Σ1,Σ2, . . . ,Σr). Therefore,
by Lemma 4.23, we obtain that there are absolute constants ε̂∗1, ε̂

∗
2, such that for some n̂0

depending only on β, if n ≥ n̂0,

H(I1|I0,Σ2, . . . ,Σr,Π,Σ
r
1(I0) 6= J0) ≥ log(n)− log(ε̂∗2−βε̂∗1) n.

Condition (4a) of the distribution D implies that

H(J0|I0,Σ1,Σ2, . . . ,Σr,Σ
r
1(I0) 6= J0) = H(J0|I0, I1,Π,Σ1,Σ2, . . . ,Σr,Σ

r
1(I0) 6= J0) ≥ log(n)−δ.
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Since conditioning can only reduce entropy we have from the two above equations that

H((I1, J0)|I0,Π,Σ2,Σ3, . . . ,Σr,Σ
r
1(I0) 6= J0) ≥ 2 log(n)− log(ε̂∗2−βε̂∗1) n− δ,

so
H(I1|I0, J0,Π,Σ2,Σ3, . . . ,Σr,Σ

r
1(I0) 6= J0) ≥ log(n)− log(ε̂∗2−βε̂∗1) n− δ,

as desired.

Next we lower bound H(I1|Σr
1(I0) = J0, I0, J0,Σ2, . . . ,Σr−1,Π) using Lemma 4.25 with Z =

(Σ2,Σ3, . . . ,Σr−1), τ1 = Σ1, τ2 = Σ−1
r , and with the distribution being D conditioned on

Σr
1(I0) = J0. We first verify that the lemma’s preconditions hold:

(a) The fact that H(I0|Σ1,Σr, Z,Σ
r
1(I0) = J0) ≥ log(n) − 5δ for δ ≤ 1/50 was proven in

(38).

(b) To verify that H(Σ1,Σr|Z,Σr
1(I0) = J0) ≥ log(n)−3C−3δ for δ ≤ 1/18, we may exactly

mirror the proof of (39) except for replacing Σ1 with (Σ1,Σr) (and removing Σr from
the random variables being conditioned on). We omit the details.

(c) Since we are conditioning on Σr
1(I0) = J0, we have that Σ−1

r (J0) = Σr−1(· · ·Σ2(Σ1(I0))),
which means that we may take fZ = Σr−1 ◦ · · · ◦ Σ2.

Note also that indeed Π is a deterministic function of (τ1, τ2, Z) = (Σ1,Σ2, . . . ,Σr−1,Σ
−1
r ).

Then by Lemma 4.25, it follows that for some absolute constants ε̂∗1, ε̂
∗
2, there is some n̂0 (de-

pending only on β) such that for n ≥ n̂0, H(I1|I0, J0,Π, Z,Σ
r
1(I0) = J0) ≥ log n−log(ε̂∗2−βε̂∗1) n.

By the previous discussion, it then follows that for some absolute constants ε̂∗1, ε̂
∗
2, there

is some n̂0 (depending only on β) such that for n ≥ n̂0, H(I1|I0, J0,Π,Σ2, . . . ,Σr−1) ≥
log n− log(ε̂∗2−βε̂∗1) n.

In an identical manner, using conditions (1b), (2), (3b), (4b) of the distribution D ∈ DMix
PV (r, n, δ, C),

we obtain that for the same ε̂∗1, ε̂
∗
2, n̂0, if n ≥ n0 then H(J1|I0, J0,Π,Σ2, . . . ,Σr) ≥ log(n) −

log(ε̂∗2−βε̂∗1) n.

2. To prove statement (2) we claim that H(Σ2, . . . ,Σr−1|Π, I0, J0) ≥ (r − 2) log(n!)− C − C ′ −
2 log(n); to see this note that

H(Σ2, . . . ,Σr−1|Π, I0, J0) = H(Σ2, . . . ,Σr−1) +H(Π, I0, J0|Σ2, . . . ,Σr−1)−H(Π, I0, J0)

≥ H(Σ2, . . . ,Σr−1)−H(Π, I0, J0)

≥ (r − 2) log(n!)− C − C ′ − 2 log(n),

since |Π| ≤ C ′. It readily follows that there exist absolute constants ε̂∗1, ε̂
∗
2 and some n̂0

(depending only on β) such that for n ≥ n̂0, H(Σ2, . . . ,Σr−1|Π, I0, J0) ≥ (r − 2) log(n!) −
n log(ε̂∗2−ε̂∗1β) n.

3. We will next prove that 3(b) holds by applying Lemma 4.18, with I = I0, J = Jr−1,Σ =
Σ1, Z = (Σ2, . . . ,Σr) (recall that Jr−1 = Σ−1

2 ◦ · · · ◦ Σ−1
r (J0)). We will first verify that the

preconditions of Lemma 4.18 hold:

(a) H(I|Σ, Z) = H(I0|Σ1,Σ2, . . . ,Σr) ≥ log(n)− δ, by condition (1) of the distribution D.

(b) H(Σ|Z) = H(Σ1|Σ2, . . . ,Σr) ≥ log n!− C, by condition (2) of the distribution D.
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(c) H(1[Σ(I) = J ]|Σ, I, Z) = H(1[Σ1(I0) = Jr−1]|Σ1, I0,Σ2, . . . ,Σr)

= H(1[Σr
1(I0) = J0]|I0,Σ1,Σ2, . . . ,Σr)

≥ 1− δ,
by condition (3) of the distribution D.

(d) H(J |Σ, I,Σ(I) 6= J, Z) = H(Jr−1|Σ1, I0,Σ1(I0) 6= Jr−1,Σ2, . . . ,Σr)

= H(J0|I0,Σ1, . . . ,Σr,Σ
r
1(I0) 6= J0)

≥ log(n)− δ,
by condition (4) of the distribution D,

where by assumption, there exists β > 0 such that δ, C,C ′ are such that max{δ, C/n,C ′/n} ≤
1/ logβ(n). Moreover, Π is a deterministic function of (Σ, Z) = (Σ1, . . . ,Σr). Therefore by
Lemma 4.18 we get that, for some absolute constants ε̂∗1, ε̂

∗
2, and for some n̂0 (depending only

on β),

H(1[Σ1(I0) = Jr−1]|Σ2, . . . ,Σr,Π, I0, Jr−1) = H(1[Σ(I) = J ]|Π, I, J, Z) (40)

≥ 1− log(ε̂∗2−βε̂∗1) n, (41)

Since J0 = Σr ◦· · ·◦Σ2(Jr−1) and J1 = Σr−1◦· · ·◦Σ2(Jr−1), by the data processing inequality,
we get that for n ≥ n̂0,

H(1[Σr−2
2 (I1) = J1]|J1,Σ2, . . . ,Σr−1,Π, I0, J0) ≥ H(1[Σ1(I0) = Jr−1]|Σ2, . . . ,Σr,Π, I0, Jr−1)

≥ 1− log(ε̂∗2−βε̂∗1) n.

The proof of 3(a) (with the same ε̂∗1, ε̂
∗
2, n̂0) follows in a symmetric manner.

4. Next we lower bound H(J1|I1,Σ2, . . . ,Σr−1,Σ
r
1(I0) 6= J0,Π, I0, J0). We apply Lemma 4.23

with Z = (I0,Σ1,Σ2, . . . ,Σr−1), I = J0, Σ = Σ−1
r , with the distribution given by D condi-

tioned on Σr
1(I0) 6= J0. We first verify that the preconditions are met:

(a) H(J0|Σr, Z,Σ
r
1(I0) 6= J0) = H(J0|I0,Σ1,Σ2, . . . ,Σr,Σ

r
1(I0) 6= J0) ≥ log(n) − δ, by con-

dition (4a) of the distribution D.

(b) As long as n is large enough so that δ ≤ 1/18,

H(Σr|Z,Σr
1(I0) 6= J0) = H(Σr|I0,Σ1,Σ2, . . . ,Σr−1,Σ

r
1(I0) 6= J0) ≥ log(n!)−3C−3δ−log n,

by an argument identical to that used to prove (39), as well as the fact that I0 ∈ [n],
meaning that its entropy is at most log n.

Moreover, Π is a deterministic function of (Σ, Z) = (Σ1,Σ2, . . . ,Σr, I0). Then by Lemma 4.23,
it follows that there are absolute constants ε̂∗1, ε̂

∗
2 and some n̂0 (depending only on β) such

that for n ≥ n̂0,

H(J1|I0,Σ1,Σ2, . . . ,Σr−1, J0,Π,Σ
r
1(I0) 6= J0)

= H(J1|I1,Σ1,Σ2, . . . ,Σr−1,Π, I0, J0,Σ
r
1(I0) 6= J0)

≥ log(n)− log(ε̂∗2−βε̂∗1) n,

which proves the desired statement since conditioning can only reduce entropy. Similarly, con-
ditions (2), (3b), (4b) of D imply in a symmetric manner that for n ≥ n̂0, H(I1|J1,Σ2,Σ3, . . . ,Σr−1,Σ

r
1(I0) 6=

J0,Π, I0, J0) ≥ log(n)− log(ε̂∗2−βε̂∗1) n.
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5. To prove statement (5), first take t odd, and letX = ΣA∩(Σ1,Σ2, . . . ,Σt,Σr−t+1, . . . ,Σr−1,Σr),
Y = ΣB, and note that condition (5) of the distribution D states that conditioned on:

E := {(I0, . . . , It) = (i0, . . . , it), (J0, . . . , Jt) = (j0, . . . , jt), (Σt+2,Σt+4, . . . ,Σr−t−1) = (σt+2, σt+4, . . . , σr−t−1)},

we have that X is independent of Y . Note that conditioned on E, Π = Π(Σ1,Σ3, . . . ,Σr) is a
deterministic function of (Σ1,Σ3, . . . ,Σt,Σr−t+1,Σr−t+3, . . . ,Σr) = X. It follows by Lemma
4.26 that X ⊥ Y |E,Π = π, which implies that

ΣA ∩ (Σ2, . . . ,Σt,Σr−t+1, . . . ,Σr−1) ⊥ ΣB|E,Π = π.

Next take t even, take X = ΣA, Y = ΣB ∩ (Σ1,Σ2, . . . ,Σt,Σr−t+1, . . . ,Σr), and conditioned
on:

E := {(I0, . . . , It) = (i0, . . . , it), (J0, . . . , Jt) = (j0, . . . , jt), (Σt+2,Σt+4, . . . ,Σr−t−1) = (σt+2, πt+4, . . . , σr−t−1)},

X is independent of Y . Note that conditioned on E, Π = Π(Σ1,Σ3, . . . ,Σr) is a deterministic
function of X. It follows by Lemma 4.26 that X ⊥ Y |E,Π = π, which implies that

ΣB ∩ (Σ2, . . . ,Σt,Σr−t+1, . . . ,Σr−1) ⊥ ΣA|E,Π = π.

Lemma 4.27 establishes that the “inner input” (after removing the Σ1 and Σr and pushing
pointers inwards) is from a noisy distribution (according to Definition 4.6) when averaged over the
auxiliary variable Y . Intuitively this should imply that the pointer verification problem remains as
hard (with one fewer round of communication), but this needs to be shown formally. In particular,
Alice and Bob do have additional information such as Σ1,Σr, I0, J0,Π and all of this might help
determine 1[Σr−1

2 (I1) = J1].
In Lemma 4.17 we formalize this intuition by creating an (r + 1)/2 round protocol for a noisy

distribution D̃ on r − 2 permutations, using an (r + 3)/2 round protocol for a related noisy dis-
tribution D solving the pointer verification problem on r permutations. This argument makes use
of Property (5) of Definition 4.6, which we have not really used yet (except to argue that it holds
inductively).

Proof of Lemma 4.17. Let ε∗1, ε
∗
2 be the absolute constants from Lemma 4.27. We will show that

we can take β1 = max
{
β2,

2β2+ε∗2
ε∗1

}
.

Let D ∈ DMix
PV (r, n, 1/ logβ1 n, n/ logβ1 n) and let Π be a protocol for D with communica-

tion at most n/ logβ1 n. For sufficiently large n, we will give a distribution D̃ ∈ DMix
PV (r −

2, n, 1/ logβ2 n, n/ logβ2 n), and will construct a protocol Π̃ for D̃, which uses no more commu-
nication than Π, and crucially uses one less round of communication than Π.

Definition of D̃. We denote the messages in each round of Π by Π1, . . . ,Π(r+3)/2. Recall
that Alice sends Π1 = Π1(Σ1,Σ3, . . . ,Σr), Bob sends Π2 = Π2(Π1, I0, J0,Σ2,Σ4, . . . ,Σr−1), Al-
ice sends Π3 = Π3(Π1,Π2,Σ1,Σ3, . . .), and so on. Let (π1, i0, j0) be a fixed instantiation of
the random variables (Π1, I0, J0). Given the distribution D on (I0, I1, J0, J1,Σ1, . . . ,Σr), con-
sider the conditional distribution Dπ1,i0,j0 := D|(Π1 = π1, I0 = i0, J0 = j0) on (I1, J1,Σ1, . . . ,Σr).
Furthermore, let D̃π1,i0,j0 denote the marginal distribution of Dπ1,i0,j0 on the inner inputs, that
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is, (I1, J1,Σ2, . . . ,Σr−1). One can interpret D̃π1,i0,j0 , as an (r − 2)-PV problem, and we will
show how, for each tuple (π1, i0, j0), Alice and Bob can simulate the protocol Π, given an in-
stance from D̃π1,i0,j0 . We will then show how it follows that for some tuple (π1, i0, j0) this sim-
ulation will have success probability at least 1/2 + ε2 and moreover for this tuple D̃π1,i0,j0 ∈
DMix

PV (r − 2, n, 1/ logβ2 n, n/ logβ2 n).

The protocol Π̃. Consider any tuple (π1, i0, j0), and an instance of (r − 2)-PV drawn from
D̃ = D̃π1,i0,j0 . We use the symbol˜for the random variables drawn from D̃. We label the r− 2 per-
mutations drawn from D̃ as Σ̃2, . . . , Σ̃r−1 (instead of Σ1, . . . ,Σr−2), the initial indices as (Ĩ1, J̃1) (in-
stead of (I0, J0)). The roles of Alice and Bob are also flipped, in that Bob receives Σ̃2, Σ̃4, . . . , Σ̃r−1,
and Alice receives Ĩ1, J̃1, Σ̃3, . . . , Σ̃r−2. The goal is to determine whether Σ̃r−1

2 (Ĩ1) = J̃1. The pro-
tocol Π̃ for D̃ is constructed as follows:

1. Bob sends the first message Π̃2 := Π2(π1, i0, j0, Σ̃2, . . . , Σ̃r−1). Recall that Π2 was the second
message of the protocol Π.

2. Alice then draws (Σ̃1, Σ̃r) from its marginal in Dπ1,i0,j0 , conditioned on the event {I1 =
Ĩ1, J1 = J̃1,Σ3 = Σ̃3,Σ5 = Σ̃5, . . . ,Σr−2 = Σ̃r−2}, using private randomness. That is,

(Σ̃1, Σ̃r) ∼ [(Σ1,Σr)Dπ1,i0,j0
|{I1 = Ĩ1, J1 = J̃1,Σ3 = Σ̃3,Σ5 = Σ̃5, . . . ,Σr−2 = Σ̃r−2}]. (42)

3. After receiving Π̃2 from Bob, Alice then sends Π̃3 := Π3(π1, Π̃2, Σ̃1, Σ̃3, . . . , Σ̃r). Starting with
Alice’s Π̃3, Alice and Bob just simulate the remaining (r + 3)/2 − 2 rounds of the protocol
Π (incuding the output bit at the end of the last message), where Alice takes as her input
Σ̃1, Σ̃3, . . . , Σ̃r−2, Σ̃r and Bob takes as his input i0, j0, Σ̃2, . . . , Σ̃r−1.

Since the messages of Π̃ are given by Π2,Π3, . . . ,Π(r+3)/2 for appropriate inputs of Π, Π̃ has

(r + 1)/2 rounds, and the communication cost of Π̃ is no greater than the communication cost of
Π, namely n/ logβ1 n.

Success Probability. Now we will prove that for each tuple (i0, j0, π1), the success probability of
Π̃ when inputs are drawn from D̃i0,j0,π1 is equal to the success probability of Π on the distribution D
conditioned on {Π1 = π1, I0 = i0, J0 = j0}. This will ultimately allow us to choose an appropriate
tuple (π1, i0, j0) for which Π̃ achieves success probability at least 1/2 + ε2 on D̃π1,i0,j0 .

Notice that the protocol Π̃ induces a distribution on (Σ̃1, . . . , Σ̃r, Ĩ1, J̃1), which we will denote
by D̃Π, where (Ĩ1, J̃1, Σ̃2, . . . , Σ̃r−1) is drawn from D̃π1,i0,j0 and Alice draws (Σ̃1, Σ̃r) from the
conditional distribution specified in step (2) above, using private randomness.

We claim that the distribution of (Ĩ1, J̃1, Σ̃1, . . . , Σ̃r) under D̃Π is the same as the distribution
of (I1, J1,Σ1, . . . ,Σr) under Dπ1,i0,j0 . One can think of drawing (I1, J1,Σ1, . . . ,Σr) from Dπ1,i0,j0

as first drawing (I1, J1,Σ2, . . . ,Σr−1) from its marginal distribution D̃π1,i0,j0 and then drawing
(Σ1,Σr) from Dπ1,i0,j0 |{(I1, J1,Σ2,Σ3, . . . ,Σr−1)}. By construction, the marginal distribution of
(Ĩ1, J̃1, Σ̃2, . . . , Σ̃r−1) under D̃Π is the same as the marginal distribution of (I1, J1,Σ2, . . . ,Σr−1)
under Dπ1,i0,j0 . Formally, for i1, j1 ∈ [n], σ2, . . . , σr−1 ∈ Sn,

PD̃Π

[
Ĩ1 = i1, J̃1 = j1, Σ̃2 = σ2, . . . , Σ̃r−1 = σr−1

]
= PDπ1,i0,j0

[I1 = i1, J1 = j1,Σ2 = σ2, . . . ,Σr−1 = σr−1] .

(43)
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It is not clear a priori that the conditional distributions of (Σ1,Σr) underDπ1,i0,j0 and of (Σ̃1, Σ̃r) un-
der D̃Π are the same, since in D̃Π, Alice draws (Σ̃1, Σ̃r) with knowledge of only (Ĩ1, J̃1, Σ̃3, Σ̃5, . . . , Σ̃r−2),
whereas under Dπ1,i0,j0 , (Σ1,Σr) is drawn from the conditional distribution with knowledge of all
the permutations (Σ2,Σ3, . . . ,Σr−1). Nevertheless we will show that these two distributions are
the same. More formally, for any σ1, . . . , σr ∈ Sn, i1, j1 ∈ [n],

PDπ1,i0,j0
[Σ1 = σ1,Σr = σr|I1 = i1, J1 = j1,Σ2 = σ2,Σ3 = σ3, . . . ,Σr−1 = σr−1]

= PDπ1,i0,j0
[Σ1 = σ1,Σr = σr|I1 = i1, J1 = j1,Σ3 = σ3,Σ5 = σ5, . . . ,Σr−2 = σr−2] (44)

= PD̃Π
[Σ̃1 = σ1, Σ̃r = σr|Ĩ1 = i1, J̃1 = j1, Σ̃3 = σ̃3, Σ̃5 = σ5, . . . , Σ̃r−2 = σr−2], (45)

where the second equality follows from construction (i.e., (42)), and the first equality follows from
property (5) of the distribution D ∈ DMix

PV (r, n, 1/ logβ1 n, n/ logβ1 n) with t = 1. That is, under the
distribution D, for all π1, i0, j0, σ3, . . . , σr−2,

(Σ1,Σr) ⊥ (Σ2,Σ4, . . . ,Σr−1)|{Π1 = π1, I0 = i0, J0 = j0, I1 = i1, J1 = j1,Σ3 = σ3,Σ5 = σ5, . . . ,Σr−2 = σr−2}.

As a consequence, under the distribution Dπ1,i0,j0 ,

(Σ1,Σr) ⊥ (Σ2,Σ4, . . . ,Σr−1)|{I1 = i1, J1 = j1,Σ3 = σ3,Σ5 = σ5, . . . ,Σr−2 = σr−2},

which verifies (44) and therefore our claim that the distribution of (Ĩ1, J̃1, Σ̃1, . . . , Σ̃r) under D̃Π is
the same as the distribution of (I1, J1,Σ1, . . . ,Σr) under Dπ1,i0,j0 .

It follows that for each tuple (i0, j0, π1), Π̃ is a protocol for the (r−2)-PV problem with success
probability equal to:

PD̃π1,i0,j0
[Π̃(Ĩ1, J̃1, Σ̃2, Σ̃3, . . . , Σ̃r−1) = 1[Σ̃r−1

2 (Ĩ1) = J̃1]]

= PD[Π(i0, j0,Σ1,Σ2, . . . ,Σr) = 1[Σr
1(I0) = J0]|I0 = i0, J0 = j0,Π1 = π1]. (46)

(In the above expression, for a protocol Π with inputs X,Y , we use Π(X,Y ) to denote the output
bit of Π, which is the same as the last bit of the transcript of Π.)

Membership in DMix
PV (r − 2, n, 1/ logβ2 n, n/ logβ2 n). By hypothesis, we have that

D ∈ DMix
PV (r, n, 1/ logβ1 n, n/ logβ1 n),

and that |Π1| ≤ n/ logβ1 n. By Lemma 4.27, for some n0 that depends only on β1 (which in turn
depends only on β2), for n ≥ n0,

D̃+ ∈ DMix +
PV (r, n, log(ε∗2−ε∗1β1) n, n log(ε∗2−ε∗1β1) n).

By definition of β1, we have that
ε∗1β1−ε∗2

2 ≥ β2, so

√
log(ε∗2−ε∗1β1) n ≤ 1/ logβ2 n. We call the tuple

(i0, j0, π1) good if the distribution of (I1, J1,Σ2, . . . ,Σr−1) under D̃π1,i0,j0 belongs to DMix
PV (r −

2, n, 1/ logβ2 n, n/ logβ2 n). Recall that this means that

1. H(I1|Σ2, . . . ,Σr−1,Π1 = π1, I0 = i0, J0 = j0) ≥ log(n)− 1/ logβ2 n.

2. H(Σ2, . . . ,Σr−1|Π1 = π1, I0 = i0, J0 = j0) ≥ (r − 2) log(n!)− n/ logβ2 n.
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3. H(1[Σr
1(I1) = J1]|I1,Σ2, . . . ,Σr−1,Π1 = π1, I0 = i0, J0 = j0) ≥ 1− 1/ logβ2 n.

4. H(J1|I1,Σ2, . . . ,Σr−1,Σ
r
1(I0) 6= J0,Π1 = π1, I0 = i0, J0 = j0) ≥ log(n)− 1/ logβ2 n,

and analogously the (b) statements in the definition of DMix
PV (r, n, 1/ logβ2 n, n/ logβ2 n) (Definition

4.6) hold as well.
By Lemma 4.27, Markov’s inequality, and a union bound, if n ≥ n0, with probability at least

1− 7/ logβ2 n over the tuple (I0, J0,Π1) drawn from its marginal in D, (I0, J0,Π1) is good. (Notice
that there is a coefficient of 7, as opposed to 8, since there is no (b) statement for item (2) above.)

Choosing a good tuple (i0, j0, π1). Now we will use (46) to choose a good tuple (i0, j0, π1) for

which Π̃ also achieves success probability at least 1/2+ε2, for all n > max
{
n0, 2

(7/(ε1−ε2))1/β2
}

. For

each tuple (i0, j0, π1), we have constructed above a protocol Π̃ for (r− 2)-PV, with communication
at most n/ logβ1 n ≤ n/ logβ2 n, and where Alice and Bob use (r + 1)/2 rounds of communication.
If moreover (i0, j0, π1) is good, then the distribution of (I1, J1,Σ2, . . . ,Σr−1) under D̃i0,j0,π1 belongs
to DMix

PV (r − 2, n, 1/ logβ2 n, n/ logβ2 n).
Now suppose for the purpose of contradiction that the probability of success of all ((r +

1)/2, n/ logβ2 n) protocols on any distribution D̃ ∈ DMix
PV (r − 2, n, 1/ logβ2 n, n/ logβ2 n) were at

most 1/2 + ε2. In particular, for any good tuple (i0, j0, π1), the probability of success of Π̃ on the
distribution D̃π1,i0,j0 is at most 1/2 + ε2. Then by (46) and since n ≥ n0, the probability of success
of Π would be at most

7/ logβ2 n+ (1− 7/ logβ2 n) · (1/2 + ε2) ≤ 1/2 + 7/ logβ2 n+ ε2.

Since we also have n > 2(7/(ε1−ε2))1/β2 , it follows that

ε2 + 7/ logβ2 n < ε1,

which is a contradiction and thus completes the proof of Lemma 4.17.

5 Rounds-Communication Tradeoffs in Amortized Setting

In this section, our main goal is to prove the following theorem stating, roughly, that for the source
µr,n,`, there is an efficient protocol (i.e., one with little communication) for CRG and SKG with
many rounds, but that there is no efficient protocol with few rounds.

Theorem 5.1. For each r ∈ N, γ ∈ (0, 1), there is a constant c0 > 0 such that for n ≥ c0, there is
a source µr,n,`, such that:

1. The tuple ((r + 2)dlog ne, `) is (r + 2)-achievable for SKG (and thus CRG) from µr,n,`.

2. Set ` = n. For any C,L ∈ R with C ≤ n/ logc0 n and L > γ`, the tuple (C,L) is not
b(r + 1)/2c-achievable for CRG (and thus for SKG) from µr,n,n.

3. Again set ` = n. For any C,L ∈ R with C ≤
√
n/ logc0 n and L > γ`, the tuple (C,L) is not

r-achievable for CRG (and thus for SKG) from µr,n,n.
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5.1 Using the Compression of Information to Communication

We will prove Theorem 5.1 by reducing to the non-amortized setting; in particular, we will use
Theorems 4.6 and 4.7 as a black-box. A crucial technical ingredient in doing so is the use of an
“compression of internal information cost to communication” result for bounded round protocols,
saying that for any protocol with a fixed number r of rounds and internal information cost I, there
is another protocol with the same number r of rounds and communication cost not much larger than
I. As we discussed in Section 2, these types of theorems were originally proved in order to establish
direct sum and direct product results for communication complexity. Our use of these compression
results may be interpreted as a roughly analogous approach for the setting of amortized CRG and
SKG, which can be thought of as the “direct sum version of non-amortized CRG and SKG”.

Theorem 5.2 (Lemma 3.4, [JPY12]). Suppose that (X,Y ) ∼ ν are inputs to an r-round com-
munication protocol Π with public randomness RPub (and which may use private coins as well.
Then for every ε > 0, there is a public coin protocol L with r rounds and communication at most
ICint
µ (Π)+5r

ε +O(r log(1/ε)) such that at the end of the protocol each party possesses a random variable

(Π̂1, . . . , Π̂r) representing a transcript for Π, which satisfies

∆((RPub, X, Y,Π1, . . . ,Πr), (RPub, X, Y, Π̂1, . . . , Π̂r)) ≤ 6εr.

Our first lemma, Lemma 5.3, uses Theorem 5.2 to show that for any protocol Π which satisfies
ICext

µ (Π) � ICint
µ (Π) then there exists another protocol Π with communication cost not much

greater than ICint
µ (Π) and which satisfies some additional properties:

Lemma 5.3. Fix any r, n, ` ∈ N, and let µ = µr,n,`. Suppose ρ ∈ N and C,L ∈ R+. Suppose Π is
a ρ-round protocol with ICext

µ (Π) = L and ICint
µ (Π) = C and public randomness RPub (and which

may use private randomness as well). Then for every ε > 0 there is some ρ-round protocol Π′ with
inputs (X,Y ) ∼ µ, public randomness RPub, with communication at most C+5ρ

ε + O(ρ log 1/ε) and
which outputs keys K ′A,K

′
B, such that

1. Pµ[K ′A = K ′B] = 1.

2. When inputs (X,Y ) are drawn from µ, I(K ′A;BIr) = I(K ′A;AIr) ≥ L−(C+1+2 log n+36ερ`).

3. When inputs (X,Y ) are drawn from µX ⊗ µY ,

IµX⊗µY (K ′A, RPub, (Π
′)ρ;B1, . . . , Bn) ≤ C + 5ρ

ε
+O(ρ log 1/ε) (47)

and

IµX⊗µY (K ′B, RPub, (Π
′)ρ;A1, . . . , An) ≤ C + 5ρ

ε
+O(ρ log 1/ε). (48)

Proof. Let Π′ be the protocol given by Theorem 5.2 for the protocol Π and the given ε. Then the
communication of Π′ is at most C+5ρ

ε +O(ρ log 1/ε)). At the end of Π′, Alice and Bob each possess

a random variable (Π̂1, . . . , Π̂ρ), such that, when (X,Y ) ∼ µ,

∆((RPub, X, Y, Π̂1, . . . , Π̂ρ), (RPub, X, Y,Π1, . . . ,Πρ)) ≤ 6ερ. (49)

(Notice that Π̂ρ = (Π̂1, . . . , Π̂ρ) is different from the transcript (Π′)ρ = (Π′1, . . . ,Π
′
ρ) of Π′.) Now

set K ′A = K ′B = (Π̂1, . . . , Π̂ρ), which immediately establishes item (1) of the lemma.
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To establish point (2), we will first argue that it holds for Π; in particular we show that when
(X,Y ) ∼ µ,

H(BIr |Πρ) ≤ `+ C − L+ 2 log n. (50)

(Since H(Bir) = ` it will follow from (50) that Iµ(Πρ;BIr) ≥ L − C − 2 log n, though we will not
use this directly.) To see this, first notice that10

I(X;Y |Πρ) = I(Y ;X,Πρ)− I(Πρ;Y )

= I(X;Y ) + I(Πρ;Y |X) + I(Πρ;X|Y )− I(Πρ;X,Y )

= I(X;Y ) + ICint
µ (Π)− ICext

µ (Π) (51)

≤ `+ C − L.

Recalling the notation Ir = Σr ◦ · · · ◦Σ1(I0), we observe by Lemma 6.2 and the data processing
inequality that

I(X;Y |Πρ) ≥ I(X;Y |Πρ, Ir)− log n

≥ I(AIr ;BIr |Πρ, Ir)− log n

≥ I(AIr ;BIr |Πρ)− 2 log n

= H(AIr |Πρ)− 2 log n = H(BIr |Πρ)− 2 log n,

since H(AIr |BIr ,Πρ) = H(AIr |BIr) = 0 as AIr = BIr for all inputs in the support of µ. It then
follows that H(BIr |Πρ, RPub) ≤ `+ C − L+ 2 log n, establishing (50).

Next, (49) and the data processing inequality give us that ∆((RPub, BIr ,Π
ρ), (RPub, BIr , Π̂

ρ)) ≤
6ερ. Corollary 6.6 and (50) then give that

H(BIr |Π̂ρ, RPub) ≤ H(BIr |Π̂ρ) ≤ `+ C − L+ 2 log n+ 36ερ`+ 1.

Since K ′A = Π̂ρ, we get that

I(BIr ;K
′
A) ≥ L− (C + 1 + 2 log n+ 36ερ`),

which establishes point (2).
Finally, to establish point (3), first notice that some inputs (X,Y ) ∼ µX⊗µY may not be in the

support of µ. We may extend the protocol Π′ to be defined for all pairs of inputs (X,Y ) ∈ X×Y , by
choosing an arbitrary behavior (e.g., terminating immediately) whenever there is a partial transcript
(Π′)t−1 for which the distribution of the next message Π′t has not been defined.

Recall that (Π′1, . . . ,Π
′
ρ) denotes the transcript of communication of Π′ and RPub is the public

randomness of Π′, so that when (X,Y ) ∼ µX ⊗ µY ,

IµX⊗µY ((Π′)ρ, X,RPub;Y ) = IµX⊗µY ((Π′)ρ;Y |X,RPub) ≤ HµX⊗µY ((Π′)ρ) ≤ C + 5ρ

ε
+O(ρ log 1/ε).

Recalling that K ′A = Π̂ρ, by construction of Π′ (and Π̂) from Theorem 5.2, it follows that

(K ′A, RPub, (Π
′)ρ)− (X, (Π′)ρ, RPub)− Y

10We remark that the equality of I(X;Y |Πρ) to (51) also played a crucial role in [LCV17] which derived a charac-
terization of the achievable rate region in terms of the convex envelope of a functional on source distributions.
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is a Markov chain. It then follows from the data processing inequality that

IµX⊗µY (K ′A, RPub, (Π
′)ρ;B1, . . . , Bn) ≤ IµX⊗µY (K̂A

′, RPub, (Π
′)ρ;Y ) ≤ C + 5ρ

ε
+O(ρ log 1/ε),

which gives (47); (48) follows in a similar manner.

Roughly speaking, the next lemma, Lemma 5.4, shows how the protocol Π′ constructed in
Lemma 5.3 can use the properties (2) and (3) of Lemma 5.3 to distinguish between the distributions
µ (ν1 in the below statement) and µX ⊗µY (ν2 in the below statement). This, in combination with
the result from Theorem 4.7 stating that µ and µX ⊗ µY are indistinguishable to protocols with
little communication, will ultimately complete the proof of Theorem 5.1.

Lemma 5.4. Suppose ν1, ν2 are distributions over tuples of random variables (Z1, . . . , Zn, I,K, K̃),
where Z1, . . . , Zn ∈ {0, 1}`, I ∈ [n], and K ∈ K, where K is a finite set. Suppose that the marginal
distribution of Z1, . . . , Zn, I over each of ν1, ν2 is uniform over {0, 1}n` × [n]. Finally suppose that

0 < ξ < 1 and C satisfy log n ≤ C ≤ (1−ξ)3`
1620 as well as:

1. Iν1(K;Z1, . . . , Zn) ≤ C.

2. Iν2(K;ZI) ≥ `(1− ξ).

3. Pν2 [K = K̃] = 1, and Pν1 [K = K̃] ≥ 1− (1− ξ)2/36.

Then there is some function f : K × {0, 1}n` → {0, 1} such that∣∣∣Eν1 [f(K̃, Z1, . . . , Zn)]− Eν2 [f(K̃, Z1, . . . , Zn)]
∣∣∣ ≥ p/2,

where p = (1− ξ)2/18.

We first establish some basic lemmas before proving Lemma 5.4.

Lemma 5.5. Suppose W ∈ {0, 1}` is a random varaible, and H(W ) = c. For any δ ∈ (0, 1] there
is some set S ⊂ {0, 1}` such that |S| ≤ 2c/δ and P[W 6∈ S] ≤ δ.

Proof. Set
S = {w ∈ {0, 1}` : P[W = w] ≥ 2−c/δ}.

We know that c = H(W ) = Ew∼W [log(1/P[W = w])], so the probability that P[W = w] < 2−c/δ,
i.e. that log(1/P[W = w]) > c/δ, over w ∼ W is at most δ. Thus P[W 6∈ S] ≤ δ. Clearly, by the
definition of S, we have that |S| ≤ 2c/δ.

Lemma 5.6. Suppose that random variables I, Z1, . . . , Zn are distributed jointly so that the marginal
of Z1, . . . , Zn ∈ {0, 1}` is uniform on {0, 1}n`. Then H(ZI) ≥ `− log n.

Proof. Notice that

H(ZI , ZI+1, . . . , ZI+n−1) ≥ H(ZI , . . . , ZI+n−1|I)

= Ei∼I [H(Zi, . . . , Zi+n−1|I = i)]

= Ei∼I [H(Z1, . . . , Zn|I = i)]

= H(Z1, . . . , Zn|I)

≥ `n− log n, (52)
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where addition of subscripts is taken modulo n. Since (ZI+1, . . . , ZI+n−1) ∈ {0, 1}`n−`, we get that

H(ZI) ≥ H(ZI |ZI+1, . . . , ZI+n−1) ≥ H(ZI , . . . , ZI+n−1)− (`n− `) ≥ `− log n,

as desired.

Lemma 5.7. Suppose that W ∈ {0, 1}` is a random variable with H(W ) = h ≤ `. Let S ⊂ {0, 1}`
be a subset with size |S| ≤ 2c, for some c < `. Then P[W ∈ S] ≤ `+1−h

`−c .

Proof. Write p = P[W ∈ S]. Let J = 1[W ∈ S]. Then pc + (1 − p)` ≥ pc + (1 − p) log(2` − 2c) ≥
H(W |J) ≥ H(W )− 1 = h− 1. Hence p(c− `) ≥ h− 1− `, so p ≤ `+1−h

`−c .

Now we prove Lemma 5.4.

Proof of Lemma 5.4. We will first define f and determine a lower bound on Eν2 [f(K,Z1, . . . , Zn)].
By assumption, Hν2(ZI) = `, so Hν2(ZI |K) ≤ ξ`. For each k ∈ K, let γk = H(ZI |K = k)/`,
so that Ek∼K [γk] ≤ ξ. Pick some η > 1, ζ > 1 to be specified later. By Lemma 5.5, for each
k ∈ K, there is a set Tk ⊂ {0, 1}` of size at most 2ηγk` such that Pν2 [ZI 6∈ Tk|K = k] ≤ 1/η.
Next, set S = {k ∈ K : γk ≤ ζξ}. By Markov’s inequality, Pν2 [K ∈ S] ≥ 1 − 1/ζ. Thus
Pν2 [K ∈ S] · Pν2 [ZI ∈ TK |K ∈ S] ≥ (1− 1/ζ) · (1− 1/η), and for all k ∈ S, |Tk| ≤ 2ηζξ` < 2ηζ`.

We now set

f(K,Z1, . . . , Zn) =

{∨
i∈[n] 1[Zi ∈ TK ] : K ∈ S

0 : else.

Since P[K ∈ S] · P[ZI ∈ TK |K ∈ S] ≤ E
[
∨i∈[n]1[Zi ∈ TK ]

]
,

Eν2 [f(K,Z1, . . . , Zn)] ≥ (1− 1/η) · (1− 1/ζ).

Next we determine an upper bound on Eν1 [f(K,Z1, . . . , Zn)]. Define a random variable Î =
Î(Z1, . . . , Zn,K), by Î = min{i : Zi ∈ TK}, if the set {i : Zi ∈ TK} is nonempty, else Î = 1.
Thus H(Î) ≤ log n. Consider the random variable ZÎ ∈ {0, 1}

`. It follows that f(K,Z1, . . . , Zn) ≤
1[ZÎ ∈ TK ]. By Lemma 6.2 and the data processing inequality, we have that

Iν1(K;ZÎ)− log n ≤ Iν1(K;ZÎ |Î) ≤ Iν1(K;Z1, . . . , Zn|Î) ≤ Iν1(K;Z1, . . . , Zn) + log n ≤ C + log n.

Lemma 5.6 gives that Hν1(ZÎ) ≥ ` − log n, so Hν1(ZÎ |K) ≥ ` − C − 3 log n. For each k ∈ K, let
hk = Hν1(ZÎ |K = k), so that Eν1 [hK ] ≥ ` − C − 3 log n. By Lemma 5.7, for each k ∈ K with

ηγk < 1, P[ZÎ ∈ TK |K = k] ≤ `+1−hk
`(1−ηγk) , by our upper bound |Tk| ≤ 2ηγk`.

Recall that Eν2 [γk] ≤ ξ. For i ∈ {1, 2}, let Kνi be the marginal distribution of K according
to νi. We must have that ∆(Kν2 ,Kν1) < p, else we could choose f to be a function of only K
and would get that |Eν1 [f ] − Eν2 [f ]| ≥ p. Thus 1 − 1/ζ − p ≤ Pν1 [K ∈ S] ≤ 1. Next notice that
Eν1 [`−hK ] ≤ C + 3 log n, and that `−hK ≥ 0 with probability 1. Therefore, Eν1 [`−hK |K ∈ S] ≤
C+3 log n
1−1/ζ−p . Since γk ≤ ζξ for all k ∈ S, it follows that

Eν1 [f(K,Z1, . . . , Zn)] ≤ Eν1 [f(K,Z1, . . . , Zn)|K ∈ S]

≤ Pν1 [ZÎ ∈ TK |K ∈ S]

≤
1 + C+3 log n

1−1/ζ−p

`(1− ηζξ)
.
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Thus

Eν2 [f(K,Z1, . . . , Zn)]− Eν1 [f(K,Z1, . . . , Zn)] ≥ (1− 1/ζ) ·

(
(1− 1/η)− 1

1− 1/ζ
·

1 + C+3 log n
1−1/ζ−p

`(1− ηζξ)

)
.

Now, choose η = ζ = ξ−1/3, and let ξ′ = 1 − ξ, so that p ≤ ξ′/6 ≤ 1−(1−ξ′)1/3

2 = 1−1/ζ
2 . Using the

inequality ax ≤ 1− (1− x)a ≤ x for 0 < a < 1, x ∈ [0, 1] and C ≥ log n gives

Eν2 [f(K,Z1, . . . , Zn)]− Eν1 [f(K,Z1, . . . , Zn)] ≥ ξ′/3 ·
(
ξ′/3− 1

(1− 1/ζ)(1− 1/ζ − p)
· 15C

ξ′`

)
≥ ξ′/3 ·

(
ξ′/3− 270C

(ξ′)2`

)
≥ (ξ′)2/18 = p,

where the last inequality follows from C ≤ (ξ′)3`
1620 .

Since K = K̃ over ν2 and are only nonequal with probability at most p/2 over ν1, it follows
that

Eν2 [f(K̃, Z1, . . . , Zn)]− Eν1 [f(K̃, Z1, . . . , Zn)] ≥ p/2,

as desired.

5.2 Proof of Theorem 5.1

Using Lemmas 5.3, 5.4, and Theorem 3.4, we now may prove Theorem 5.1:

Proof of Theorem 5.1. The first part of Theorem 5.1 follows directly from Lemma 4.4.
To prove the second part of Theorem 5.1, first suppose r is odd. We take µ = µr,n,` and set

ε = γ/(54(r + 1)).
We argue by contradiction. Suppose the theorem statement is false: namely, that for some

C ≤ n/ logc0 n and L > γ`, the tuple (C,L) is b(r + 1)/2c-achievable from µ. We can assume
without loss of generality that L < `. By Theorem 3.4 (and in particular, Corollary 3.5), since
Iµ(X;Y ) = ` > L, there is a b(r+1)/2c-round protocol Π such that ICint

µ (Π) ≤ C and ICext
µ (Π) ≥ L.

By Lemma 5.3, there is an b(r+1)/2c-round public-coin protocol Π′ with inputs (X,Y ) ∼ µ and

communication at most C+3+5r/2
ε +O(r log 1/ε) such that at the end of Π′ with inputs (X,Y ) ∼ µ,

Alice and Bob output keys K ′A = K ′B, respectively, which satisfy Iµ(K ′B;BIr) ≥ L−(C+1+2 log n+
18ε(r + 1)`). Moreover, when (X,Y ) ∼ µX ⊗ µY ,

max{IµX⊗µY (K ′A;B1, . . . , Bn), IµX⊗µY (K ′B;A1, . . . , An)} ≤ C + 3 + 5r/2

ε
+O(r log 1/ε).

Next, let Π′′ be the protocol where the parties run Π′, and the last party (suppose it is Alice, for
concreteness) to speak in Π′ sends over a random hash h(K ′A) of length O(log 1/γ), so that for any
K ′A 6= K ′B, Ph[h(K ′A) = h(K ′B)] ≤ γ2/648, and the other party, Bob, outputs a final bit equal to
1[h(K ′A) = h(K ′B)]. For sufficiently large n, we have that

CC(Π′′) ≤ C + 3 + 5r/2

ε
+O(r log 1/ε) +O(log 1/γ) ≤ n/ log(c0−1) n. (53)
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Claim 5.8. Π′′ distinguishes µ and µX ⊗ µY with advantage at least γ2/324.

Proof. To prove Claim 5.8, we consider two cases.
The first case is that PµX⊗µY [K ′A 6= K ′B] ≥ γ2/324. In this case, the last bit output by Bob will

be 0 with probability at least γ2/648 when (X,Y ) ∼ µX ⊗ µY . Since K ′A = K ′B with probability 1
when (X,Y ) ∼ µ, it follows that Π′′ distinguishes between the two distributions with advantage at
least γ2/648 in this case.

The second case is that PµX⊗µY [K ′A 6= K ′B] ≤ γ2/324. Here we will use Lemma 5.4. Since
18ε(r + 1) ≤ γ/3, and since for sufficiently large n, C + 1 + 2 log n ≤ γn/3 = γ`/3, we see that
Iµ(K ′B;BIr) ≥ γ`− 2γ`/3 = γ`/3.

We apply Lemma 5.4, with (Z1, . . . , Zn) = (B1, . . . , Bn), I = Ir,K = K ′A, K̃ = K ′B, ν1 = µX ⊗
µY , ν2 = µ, ξ = 1 − γ/3 and L = n/ log(c0−1) n. Here we use that n/ log(c0−1) n ≤ (γ/3)3n

1620 for
sufficiently large n (depending on γ), as well as PµX⊗µY [K ′A 6= K ′B] ≤ γ2/324 = (1 − ξ)2/36. Then
Lemma 5.4 gives that Bob can output a bit as a deterministic function of K ′B, B1, . . . , Bn (all of
which Bob holds at the conclusion of Π′), that distinguishes µ and µX⊗µY with advantage at least
γ2/324.

By Theorem 4.6, with ε = γ2/324, and as long as c0 is large enough so that the right-hand side
of (53) holds for n ≥ c0, and such that c0 − 1 ≥ β (where β is chosen from Theorem 4.6, given
ε = γ2/325), we arrive at a contradiction.

For even r, we use the distribution µ = µr−1,n,`. Part (1) of the theorem still follows from
Lemma 4.4 (in fact, we even have (r+ 1)-achievability). For part (2), the argument above applies,
except now the lower bound on round complexity is d((r − 1) + 1)/2e = dr/2e = r/2.

Finally, to prove part (3) of Theorem 5.1, an argument virtually identical to the one for part
(2) applies, except that the protocols Π and Π′ have r rounds, the protocol Π′′ has r + 1 rounds,

and the upper bound in (53) is
√
n/ log(c0−1) n, which needs to be less than (γ/3)3n

1620 = (γ/3)3`
1620 (which

it is, for sufficiently large n. In the last step fo the proof, we use Theorem 4.7 (instead of Theorem
4.6), which establishes that µ and µX ⊗ µY are (ε, r + 1,

√
n/ poly log n)-indistinguishable for any

constant ε > 0.

5.3 Separations in MIMK, CBIB, and KBIB

In this section we use Theorem 5.1 and the results of Section 2.3 to derive separations in the MIMK
for the pointer chasing source µr,n,`. The below Theorem 5.9 generalizes a result of Tyagi [Tya13],
which established a constant-factor separation in the MIMK for 2-round and 1-round protocols for
a certain source.

Theorem 5.9. For each r ∈ N, there is a c0 such that for each n ≥ c0, the pointer chasing source
µr,n,n satisfies:

1. Ir+2(X;Y ) ≤ (r + 2)dlog ne.

2. Ib(r+1)/2c(X;Y ) > n/ logc0 n.

3. Ir(X;Y ) >
√
n/ logc0 n.

Proof. Let the constant c0 be that given by Theorem 5.1 for an arbitrary γ.
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The first item follows from the definition of Ir(X;Y ) in Definition 2.8, the fact that Iµr,n,n(X;Y ) =
n (Lemma 4.3), and the first item of Theorem 5.1 stating that the tuple ((r+2)dlog ne, n) is (r+2)-
achievable for SKG from the source µr,n,n.

To see the second item, suppose that Ib(r+1)/2c(X;Y ) ≤ n/ logc0 n. Then the tuple (n/ logc0 n, `)
is b(r + 1)/2c-achievable from the source µr,n,n, contradicting the second item of Theorem 5.1.

Similarly, for the third item, if Ir(X;Y ) ≤
√
n/ logc0 n, then the tuple (

√
n/ logc0 n, `) would

be r-achievable from the source µr,n,n, contradicting the third item of Theorem 5.1.

Using Theorem 3.9, Theorem 5.9 immediately gives an analogous round separation for limλ↓0
ωλρ (µr,n,n)

λ ,
between ρ = r + 2 and ρ = r (or ρ = b(r + 1)/2c). We can, however, use the stronger nature of
Theorem 5.1 to obtain some information about ωλρ (µr,n,n), for all λ that are bounded away from 1:

Corollary 5.10. Fix any r ∈ N, γ ∈ (0, 1). Then:

1. For all λ ∈ (0, 1), n ∈ N, ωλr+2(µr,n,n) ≥ λH(X,Y )− λn+ (r + 2)dlog ne.

2. Let c0 be the constant from Theorem 5.1 for γ = 1/2. Then for all λ ∈ (0, 1− 2/ logc0 n) and
n ≥ c0,

ωλb(r+1)/2c(µr,n,n) ≤ λH(X,Y )− λn− n/ logc0 n. (54)

Thus, in particular,

ωλb(r+1)/2c(µr,n,n) ≤ ωλr (µr,n,n)− n/ logc0 n+O(log n).

Proof. The first part follows immediately from Theorem 3.7 and the fact that ((r + 2)dlog ne, `) ∈
Tr+2(X,Y ).

For the second part, fix λ ∈ (0, 1), and let c0 be the constant from Theorem 5.1 given the value
γ = 1/2. Suppose for the sake of contradiction that (54) does not hold. Then by Theorem 3.7, for
some (C,L) ∈ Tr(X,Y ), we have

L(1− λ)− C ≥ n− λn− n/ logc0 n. (55)

We may assume without loss of generality that L ≤ I(X;Y ) = n, since for any α > 0 such that
L− α ≥ I(X;Y ), (C − α,L− α) ∈ Tr(X,Y ) as well.

But (55) gives L ≥ n− n/ logc0 n
1−λ ≥ n/2. By Theorem 5.1, it follows that C > n/ logc0 n, which

contradicts (55) since L ≤ n.

Next we would like to derive similar separations for the r-round interactive CBIB (Definition
2.5) and KBIB (Definition 2.6). Notice that from the first item of Theorem 5.1 we have immediately
that Γcr

r+2(X,Y ) ≥ n
(r+2)dlogne . We might hope to use Theorem 2.3 as well as the second and third

items of Theorem 5.1 to derive upper bounds on Γcr
b(r+1)/2c(X,Y ) and Γcr

r (X,Y ) that grow as logc0 n

and
√
n logc0 n, respectively. However, such upper bounds do not immediately follow from Theorem

5.1 since Theorem 5.1 requires a lower bound on L in order to show that certain tuples (C,L) are not
achievable. In particular, Theorem 5.1 leaves open the possibility that tuples such as (log n,

√
n), or

even (2−n, 1) are b(r+1)/2c-achievable for CRG from µr,n,n. This limitation of Theorem 5.1 results
from the fact that Lemmas 5.3 and 5.4 give vacuous bounds on the disintuishability of µ = µr,n,n
and µX ⊗ µY when the tuple (C,L) is such that L is small compared to n. We leave the problem
of remedying this issue for future work:
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Problem 5.1. For each r ∈ N, show (perhaps using Theorem 5.1) that there is a c0, such that for
each n ≥ c0, the pointer chasing source (X,Y ) ∼ µr,n,n satisfies:

1. Γcr
b(r+1)/2c(X,Y ) ≤ logc0 n.

2. Γcr
r (X,Y ) ≤

√
n logc0 n.

It seems that in fact the even stronger result Γcr
r+1(X,Y ) ≤ O(1) holds.

A proof of the last sentence of Problem 5.1 would imply a corresponding separation between
the (r + 2)-round and (r + 1)-round strong data processing constants for the source µr,n,n: while
trivially we have s∗r+2(X,Y ) ≥ 1− Õ(1/n), Γcr

r+1(X,Y ) ≤ O(1) is equivalent to s∗r+1(X,Y ) ≤ 1− c
for some constant c. In view of Theorem 2.3, an answer to Problem 5.1 would imply similar types
of separations for the concave enelopes ωλρ as well.

6 Information Theoretic Lemmas

In this section we collect several information theoretic lemmas which are used throughout the paper.
The data processing inequality states that if X,Y are jointly distributed random variables,

and then we compute some randomized function Z of Y (i.e., we “process Y ”), then the mutual
information between X and Z can be no greater than the mutual information between X and Y .

Proposition 6.1 (Data processing inequality). If X − Y − Z is a Markov chain, then I(X;Z) ≤
I(X;Y ).

Lemma 6.2 ([HMO+18], Lemma 2.9). For random variables X,Y, Z,W , we have that

I(X;W |Y, Z) ≥ I(X;Y |W,Z)− I(X;Y |Z) ≥ −I(X;W |Z).

In particular,
H(W ) ≥ I(X;Y |W,Z)− I(X;Y |Z) ≥ −H(W ).

Proof. Using the definition of mutual information, we observe

I(X;W |Y,Z)− I(X;W |Z)

= H(X|Y,Z)−H(X|W,Y,Z)−H(X|Z) +H(X|W,Z)

= I(X;Y |W,Z)− I(X;Y |Z).

The claimed equalities hold by non-negativity of the mutual information.

Pinsker’s inequality gives an upper bound on total variation distance in terms of the KL diver-
gence between two distributions.

Proposition 6.3 (Pinsker’s inequality). Let µ, ν be two distributions supported on a set X . Then

∆(µ, ν) ≤
√

KL(µ||ν)

2
.

The following lemma implies that the entropy functional H(·) is continuous on the set of dis-
tributions on a finite X set with respect to the topology induced by total variation distance.
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Lemma 6.4 ([HY10], Theorem 6). Suppose X1, X2 are random variables whose distributions are

supported on a set X , and let δ = ∆(X1, X2). If 0 ≤ δ ≤ |X |−1
|X | , then

|H(X1)−H(X2)| ≤ h(δ) + δ log(|X | − 1).

Remark 6.1. When X1 is uniform, H(X1)−H(X2) = log |X |−H(X2) is equal to the KL divergence
KL(X||UX ) between X and the uniform distribution UX on X . In this regime, Lemma 6.4 can be
interpreted as a reverse Pinsker inequality. This interpretation is particularly useful in Section 4.

The following theorem is a slightly weaker version of Lemma 6.4.

Theorem 6.5 ([CT12], Theorem 17.3.3). Suppose that µ, ν are distributions on [m] and ∆(µ, ν) ≤
ε ≤ 1/2. Then, letting X ∼ µ, Y ∼ ν,

|H(X)−H(Y )| ≤ ε · log
(m
ε

)
.

Corollary 6.6 derives a conditional version of Lemma 6.4.

Corollary 6.6. Suppose that X1, X2 are random variables whose distributions are supported on
a set X , and that Y1, Y2 are random variables whose distributions are supported on a set Y. Let
δ = ∆(X1Y1, X2Y2). Then

|H(X1|Y1)−H(X2|Y2)| ≤ 1 + 6δ log |X |.

Proof. For x ∈ X , y ∈ Y, write pX1Y1(x, y) for the probability of the event {X1 = x, Y1 = y}, and
similarly pX2Y2(x, y), pY1(y), pY2(y), pX1|Y1

(x|y), pX2|Y2
(x|y), and so on. For any y not in the support

of Y2, and any x ∈ X , let pX2|Y2
(x|y) = 0 (and similarly for pX1|Y1

(x|y) for y not in the support of

Y1). Choose an arbitrary element ∗ ∈ X , and define a random variable X̃2 with support in X that
is jointly distributed with Y1 as follows. For y in the support of Y2, let pX̃2|Y1

(x|y) = pX2|Y2
(x|y),

for x ∈ X . For y not in the support of Y2, let pX̃2|Y1
(·|y) have all its mass on ∗ ∈ X .

By the data processing inequality, ∆(Y1, Y2) ≤ δ, so

∆(X1Y1, X2Y2) =
1

2

∑
x∈X ,y∈Y

|pX1Y1(x, y)− pX2Y2(x, y)|

=
1

2

∑
x∈X ,y∈Y

|pX1|Y1
(x|y)pY1(y)− pX2|Y2

(x|y)pY2(y)|

≥ −δ +
1

2

∑
x∈X ,y∈Y

pY1(y) · |pX1|Y1
(x|y)− pX̃2|Y1

(x|y)|.

For y ∈ Y, write δy = 1
2

∑
x∈X |pX1|Y1

(x|y)− pX̃2|Y1
(x|y)|, so that the above gives Ey∼Y1 [δy] ≤ 2δ.

Write supp(Z) for the support of a (discrete) random variable Z. Next, notice that by Hölder’s
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inequality,

|H(X1|Y1)−H(X2|Y2)| = |Ey1∼Y1 [H(X1|Y1 = y1)]− Ey2∼Y2 [H(X2|Y2 = y2)]|

≤

∣∣∣∣∣∣
∑

y1∈supp(Y1)∩supp(Y2)

pY1(y1) (H(X1|Y1 = y1)−H(X2|Y2 = y1))

∣∣∣∣∣∣+ 2δ · log |X |

=

∣∣∣∣∣∣
∑

y1∈supp(Y1)

pY1(y1)(H(X1|Y1 = y1)−H(X̃2|Y1 = y1))

∣∣∣∣∣∣+ 2δ · log |X |

≤ Ey1∼Y1

[
|H(X1|Y1 = y1)−H(X̃2|Y1 = y1)|

]
.

For each y ∈ supp(Y1), we have from Lemma 6.4 that |H(X1|Y1 = y) −H(X̃2|Y1 = y)| ≤ h(δy) +

δy log |X | as long as δy ≤ |X |−1
|X | , which happens with probability at least 1 − 4δ by Markov’s

inequality. Thus,

|H(X1|Y1)−H(X2|Y2)| ≤ Ey∼Y1 [h(δy) + δy log |X |] + 4δ log |X |
≤ 1 + 6δ log |X |.
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A Alternate Definitions of Rate Regions

In this section we discussed the atlernate (though equivalent) definitions of rate regions for amor-
tized and non-amortized CRG mentioned in Section 2.

A.1 Amortized CRG

The below definition was introduced in [AC93] for the case of 1-round and 2-round protocols, and
the straightforward extension to r-round protocols has been referenced in several places, such as
[GJ18]:

Definition A.1 (Amortized CRG (alternate definition to Definition 2.1)). A tuple (C,L) is r-quasi-
achievable for CRG for a distribution ν if for each N ∈ N, there is some εN ∈ R with limN→∞ εN →
0, a key set KN , and an r-round private coin protocol Π = Π(N) = (Π(N)1, . . . ,Π(N)r) ∈ ({0, 1}∗)r
that takes as input (XN , Y N ) ∼ ν⊗N , with output keys KA = KA(N),KB = KB(N) ∈ KN , such
that

1. lim supN→∞
1
N · CC(Π(N)) ≤ C.

2. lim infN→∞
1
N ·min{H(KA(N)), H(KB(N))} ≥ L.

3. log |KN | ≤ cN , for some absolute constant c that is independent of N (but which may depend
on C,L).

4. P[KA(N) 6= KB(N)] ≤ εN .

We denote the set of pairs (C,L) that are r-quasi-achievable from (X,Y ) ∼ ν by T̃r(X,Y ).

We remark that it is immediate that r-quasi-achievability (i.e., as in Definition A.1), at least
for c = L, is stronger than r-achievability (i.e., as in Definition 2.1) in that any family of protocols
Π satisfying the conditions of Definition A.1 and attaining a tuple (C,L) attains the same tuple
and satisfies the conditions of Definition 2.1:

Proposition A.1. Suppose Π r-quasi-achieves a tuple (C,L) according to Definition A.1 with
c = L. Then it r-achieves the same tuple according to Definition 2.1.

Proof. For any N ∈ N, consider the r-round protocol from Definition A.1. Then condition (1) of
that definition is the same as condition (1) of Definition 2.1, for the same εN . Since KA ∈ KN ,
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condition (2) of Definition A.1 gives lim infN→∞ log |KN | ≥ lim infN→∞H(KA) ≥ L (in fact equality
holds since c = L), thus verifying condition (2) of Definition 2.1. Pinsker’s inequality now gives

∆(KK,KAKB) ≤ P[KA 6= KB] + ∆(K,KA) ≤ εN +
√

KL(K||KA)/2 = εN +
√

(L−H(KA))/2,

which tends to 0 as N →∞ by condition (2) of Definition A.1.

In fact, it turns out that the rate regions Tr(X,Y ) and T̃r(X,Y ), for any source (X,Y ) ∼ ν,
are equal:

Theorem A.2 ([LCV17]). For any source (X,Y ) ∼ ν, Tr(X,Y ) = T̃r(X,Y ).

In light of Theorem A.2, we will simply refer to tuples (C,L) ∈ Tr(X,Y ) = T̃r(X,Y ) as r-
achievable, and will always use Tr(X,Y ) to denote this region.

A.2 Amortized SKG

We can also use the conditions of Definiton A.1 instead of those of Definiiton 2.1 in the definition
of r-achievability for SKG:

Definition A.2 (Amortized SKG (alternate definition to Definition 2.2)). A tuple (C,L) is r-
quasi-achievable for SKG for a distribution ν if there is some choice of a sequence εN → 0 such
that the following holds: for each N ∈ N, there is some choice of private-coin protocol Π such that,
first, conditions (1) – (3) of Definition A.1 are satisfied for these εN ,Π, N , and, second,

∆(KAKBΠ
r,KAKB ⊗Πr) ≤ εN . (56)

We denote the set of pairs (C,L) that are r-quasi-achievable for SKG from ν by S̃r(X,Y ).

As with CRG, quasi-achievability (i.e., Definition A.2) is equivalent to achievability (i.e., Defi-
nition 2.2), and we will never use the prefix “quasi” nor the tilde S̃r(·, ·) in the rate regions:

Theorem A.3 ([LCV17]). For any source (X,Y ) ∼ ν, Sr(X,Y ) = S̃r(X,Y ).

A.3 Non-amortized CRG

As opposed to Definition 2.3, much of the literature on the non-amortized CRG problem [BM11,
CGMS17, GR16, GJ18] has used the following definition, which only guarantees that the agreed-
upon key is “close to uniform over a set of size 2L”, in the sense that it has min-entropy at least
L:

Definition A.3 (Non-amortized CRG (alternate definition to Definition 2.3)). For r, C ∈ N, and
L, ε ∈ R≥0, we say that the tuple (C,L, ε) is r-quasi-achievable from the source ν (for CRG) if
there is some N ∈ N and an r-round protocol Π with private randomness that takes as input
(XN , Y N ) ∼ ν⊗N , such that at the end of Π, Alice and Bob output keys KA,KB ∈ K, given by
deterministic functions KA = KA(X

N , RA,Π
r), KB = KB(Y

N , RB,Π
r), such that:

1. CC(Π) ≤ C.

2. min{H∞(KA), H∞(KB)} ≥ L.
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3. Pν [KA = KB] ≥ 1− ε.

It is instructive to consider what would result if we were to change the second item in Definition
A.3 to the requirement that min{H(KA), H(KB)} ≥ L: for any L, ε > 0 and any source µ, the tuple
(1, L, ε) would be 1-achievable from the source µ. In other words, under this alternative definition,
Alice and Bob would be able to generate arbitrarily large amounts of common randomness with
only 1 bit of communication. To see this claim, consider the protocol where Alice uses private
randomness to generate a random bit B ∈ {0, 1} that is 1 with probability ε, and 0 otherwise.
Alice then sends B to Bob. Then the keys, which are elements of K := {0, 1}dL/εe, are given as
follows: if B = 0, then Alice and Bob both output the string of all 0s as the key. If B = 1, then
Alice and Bob each use private randomness to choose a random element of K, and output their
respective elements as KA,KB, respectively. The probability of agreement is at least 1− ε (as Alice
and Bob agree whenever B = 0), and the entropy of each of KA,KB is at least ε · dL/εe ≥ L.

Next we verify the simple fact that Definitions 2.3 and A.3 are essentially equivalent:

Proposition A.4. The following two statements hold:

• Suppose that Π is an r-round protocol that achieves the tuple (C,L, ε) according to Definition
2.3, for some r, C, L, ε. Then there is an r-round protocol Π′ that quasi-achieves the tuple
(C,L, 3ε) in the sense of Definition A.3.

• Suppose that Π is an r-round protocol that quasi-achieves the tuple (C,L, ε) according to
Definition A.3, for some r, C, L, ε. Then for any δ > 0, there is an r-round protocol Π′ that
achieves the tuple (C, bL− 2 log 1/δc, ε+ δ) in the sen of Definition 2.3.

Proof. First suppose that Π is an r-round protocol achieving the tuple (C,L, ε) in the sense of
Definition 2.3. Definition 2.3 gives that if KA,KB denote the parties’ keys from the protocol Π,
and if K denotes a uniformly distributed key on K, a set of size at least 2L, then ∆(KA,K) ≤ ε
and ∆(KB,K) ≤ ε. Therefore, there are randomized functions gA : K → K and gB : K → K such
that gA(KA) and gB(KB) are distributed uniformly on K, and such that P[KA 6= gA(KA)] ≤ ε and
P[KB 6= gB(KB)] ≤ ε. By the union bound, it follows that P[gA(KA) 6= gB(KB)] ≤ 3ε. Certainly
H∞(gA(KA)) = H∞(gB(KB)) = L. Therefore, the protocol Π′ in which Alice and Bob run Π but
then output gA(KA), gB(KB) as their keys, respectively, quasi-achieves the tuple (C,L, 3ε) in the
sense of Definition A.3.

Next suppose that Π is an r-round protocol that quasi-achieves the tuple (C,L, ε) in the sense
of Definition A.3. Letting KA,KB be Alice’s and Bob’s keys at the conclusion of Π, we have that
min{H∞(KA), H∞(KB)} ≥ L. We need the below lemma before continuing:

Lemma A.5. Suppose L > 0 and 0 < δ < 1. Suppose a random variable K is distributed on a set
K so that H∞(K) ≥ L. Let K′ be a set of size b2L−log 1/δc = bδ2Lc. Then there is a deterministic
function f : K → K′ such that H(f(K)) ≥ H∞(f(K)) ≥ (log |K′|)− δ.

Proof. Pick some ordering on K, and for each k ∈ K according to this ordering, set f(k) to be the
element in K′ which has minimal probability mass assigned to it already under the distribution
of f(K). After this procedure, let k′∗ ∈ K′ have maximum probability under the distribution of
f(K), and suppose the last k ∈ K for which we set f(k) = k′ is denoted k∗. It must be the case
that P[K ∈ {k ∈ K : k 6= k∗, f(k) = k′∗}] ≤ 1/|K′| since before setting f(k) = k′∗ we had that k′∗
had minimal probability mass under all k′ ∈ K′. Since P[K = k∗] ≤ 2−L ≤ δ/|K′|, it follows that
P[f(K) = k′∗] ≤ (1 + δ)/|K′|, and so H∞(f(K)) ≥ (log |K′|)− log(1 + δ) ≥ (log |K′|)− δ.
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Let K′ be a set of size b2L−log 1/δc, as in Lemma A.5. Notice that |K′| ≥ 2bL−log 1/δc. By
Lemma A.5, there is a deterministic function, fA : K → K′ such that H(fA(KA)) ≥ |K′| − δ. By
Pinsker’s inequality, it follows that if K ′ denotes the random variable that is uniformly distributed
on K′, then ∆(K ′, fA(KA)) ≤

√
δ/2. In particular, there is a coupling of K ′, fA(KA) such that

P[K ′ 6= fA(KA)] ≤
√
δ/2. Now, the protocol Π′ proceeds as follows: Alice and Bob first simulate

Π, and then output fA(KA) and fA(KB) as their keys, respectively. Since P[KA 6= KB] ≤ ε, we
have P[fA(KA) 6= fA(KB)] ≤ ε and P[K ′ 6= fA(KA)] ≤

√
δ/2, it follows by the union bound that

P[fA(KA) = fA(KB) = K ′] ≥ 1−ε−
√
δ/2. It follows that Π′ achieves the tuple (C, bL−log 1/δc,

√
δ)

in the sense of Definition 2.3; the statement of the proposition then follows by replacing δ with
δ2.
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