
Suprema of Stochastic Processes a Survery in
Estimating Frequency Moments of Streams

Citation
Spataru, Stefan. 2019. Suprema of Stochastic Processes a Survery in Estimating Frequency
Moments of Streams. Bachelor's thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364592

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364592
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Suprema%20of%20Stochastic%20Processes%20a%20Survery%20in%20Estimating%20Frequency%20Moments%20of%20Streams&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=c39e36b5219b4203769778b6bcd031e5&departmentComputer%20Science
https://dash.harvard.edu/pages/accessibility

Suprema of stochastic processes
A survery in estimating frequency moments of streams

Ştefan Spătaru

A thesis submitted in partial fulfillment of the requirements for the degree of
Bachelor of Arts in Mathematics and Computer Science

Harvard University
Cambridge, MA
March 25th 2019

Contents

1. Acknowledgements 2
2. Introduction 3
2.1. Frequency moments 3
2.2. Distinct elements 3
2.3. ε-approximation 4
2.4. Tracking 4
3. Bounding tails of random variables 5
3.1. Negative association 6
3.2. Bounded independence 6
4. Distributions 7
4.1. Throwing balls into bins 7
4.2. Small number of bins regime 10
4.3. Stable distributions 12
4.4. Bounded independence 13
5. Stochastic processes under bounded independence 14
5.1. Martingales 14
5.2. Maximum inner product 20
6. Number of distinct elements 23
6.1. Constant-factor approximation with constant failure probability 23
6.2. Arbitrary accuracy-small F0 26
6.3. High probability 33
6.4. Accurate approximation; Low failure probability 37
6.5. Tracking in the high probability regime 39
7. Frequency moments 40
7.1. p ∈ (0, 2) 40
7.2. p = 2 43
References 46

1

1. Acknowledgements

I would like to thank Professor Jelani Nelson for the suggestion of the topic,
references, and for the guidance throughout the thesis writing process. I would
like to thank Jaroslaw Blasiok for helpful conversations about many of the results
presented in this paper.

2

Abstract: In this presentation, we will explore the topic of streaming algorithms.
In essence, streaming algorithms are just algorithm that provide low memory ap-
proximations for a variety of problems. In this presentation, I will be focusing on
2 related problems: the distinct elements problem and the problem of frequency
moment estimation. We will start by providing the mathematical work underlying
all of these results, and later delve into the specifics of the algorithms.

2. Introduction

The space of problems we will approach refers to insertion streams. Intuitively,
an insertion stream is a data structure data supports insertion of elements, but
does not support deletion of elements once they have been inserted. More for-
mally, insertion streams can be seen as sequences of elements over a finite space,
i.e., a1, ..., am ∈ {1, ..., n}. One is interested in computing functions f(a1, ..., am).
In general, computing these functions takes linear space in either the number of
elements in the stream or the number of states in the finite space. Consequently, for
memory efficiency purposes, one is interested in algorithms that achieve approxima-
tions to f(a1, ..., am) and that can fail with certain probabilities. In this presentation,
we will be focusing on such algorithms. In particular, we will be interested in low-
memory approximation algorithms for the frequency moment estimation problems
and the distinct elements problems.

2.1. Frequency moments.

Definition 1. Given a stream of m integers ai in the set {1, ..., n}, one can define
the frequencies of the elements in the state space {1, ..., n} as fi = |{j | xj = i}|.
The kth frequency moment of stream a is defined as lk = (

∑n
i=1 f

k
i))

1
k , i.e. the k-th

moment of the frequency vector.

Example 2. A few examples worth mentioning are:

(1) k = 1. This is always m, as this counts the number of elements, with
multiplicities, seen in the stream.

(2) k = ∞. This is just the problem of detecting the maximum frequency
element.

2.2. Distinct elements. The problem will be formally defined as seeing a stream
of integers i1, ..., im ∈ [1, n]. One’s goal is to obtain the value of F0 = |{i1, ..., im}|.
Given that an exact algorithm requires linear space [1], the problem one is trying
to solve is finding an algorithm that approximates F0 with high probability.

2.2.1. Relation to frequency moments. There is a nice relation between the norms
lk and F0. Remark that when one lets Fk = lkk, then F0 = lim

k→0
Fk. While interesting

enough, it is unclear how having estimation algorithms for Fk would translate in the
limit to F0.

3

2.3. ε-approximation.

Definition 3. Say that algorithm A provides an ε-approximation for f if the output
s of the algorithm satisfies |s − f(a1, ..., am)| ≤ ε|f(a1, ..., am)|. Furthermore, say
that algorithm A provides an ε-approximation with failure probability δ for f if the
output s of the algorithm satisfies P (|s− f(a1, ..., am)| ≤ ε|f(a1, ..., am)|) ≥ 1− δ

Many of the algorithms we will provide are in fact ε-approximations with certain
failure probability of the functions we presented. This is because often these

2.4. Tracking. Recently, there has been interest in the ”tracking” aspect of stream-
ing algorithms. Intuitively, one is interested in providing accurate answers to each
one of f(x1), ..., f(x1, ..., xT). More formally, we will use the following definitions of
weak and strong tracking:

Definition 4. Say that algorithm A provides ε-weak tracking for f with failure
probability δ if the outputs st at time step t ≤ T of the algorithm satisfy

P
(
∃t ≤ T | |st − f(a1, ..., at)| ≤ εmax

i≤T
|f(a1, ..., ai)|

)
≤ δ

Furthermore, say that algorithm A provides ε-strong tracking for f with failure
probability δ if the outputs st at time step t of the algorithm satisfy

P
(
∃t ≤ T | |st − f(a1, ..., at)| ≤ εmax

i≤T
|f(a1, ..., ai)|

)
≤ δ

Remark. Since we will be working with increasing functions, (frequency moments),
maxi≤T |f(a1, ..., ai)| will just be |f(x1, ..., xT)| in the presented applications. For
increasing functions, weak-tracking and strong-tracking are in fact related up to
factors of accuracy. The following result summarizes the relationship:

Theorem 5. [5]
Let f be a positive function that is non-decreasing in t, i.e. f(a1, ..., at+1) ≥ f(a1, ..., at).
Suppose A provides ε-weak tracking with failure probability δ. Then, A provides 2ε-

strong tracking for f with failure probability δ ·
(

2 + log2
f(a1,...,aT)
f(a1)

)
.

Proof:
Define a sequence ti inductively. Let t0 = 1 and let ti be the first point at

which f(a1, ..., ati) ≥ 2f(a1, ..., ati−1
). Let ti = T if not such i exists and stop

the process. Suppose this finds t0 < t1 ≤ ... < tk Then, t0 = 1, and clearly

k ≤
(

1 + log2
f(a1,...,aT)
f(a1)

)
.

Let st be the output of A at time t. By weak tracking,

P(∃t ≤ ti − 1; |f(a1, ..., at)− st| ≥ ε|f(a1, ..., ati−1)|) ≤ δ

By union bound,
4

P (∃1 ≤ i ≤ k; ∃t ≤ ti − 1; |f(a1, ..., at)− st| ≥ ε|f(a1, ..., ati−1)|) ≤ kδ

Let E be the event ∃i ≤ k; ∃t ≤ ti; One has that for ti−1 < t ≤ ti, |f(a1, ..., ati−1
)| ≤

|f(a1, ..., at)| and for every t < T , there exists 1 ≤ i ≤ k such that ti−1 ≤ t < ti.
Remark that under E, for any t < T , E implies that

|f(a1, ..., at)− st| ≤ ε|f(a1, ..., ati+1−1)|
≤ 2ε|f(a1, ..., ati)| by the choice of ti

≤ 2ε|f(a1, ..., at)| by the monotonicity of f

(1)

Now, P(|f(a1, ..., aT) − sT | ≥ ε|f(a1, ..., aT)|) < δ and thus by union bound and
the statement above, E ∪ (|f(a1, ..., aT)− sT | ≥ ε|f(a1, ..., aT)|) cover the cases in
which f does not provide 2ε-strong tracking. Thus, probability of failure is at most

(k + 1)δ ≤
(

2 + log2
f(a1,...,aT)
f(a1)

)
.

Next, given that | x
lp
− 1| = Θ(| xp

Fp
− 1|), one can deduce the following:

Proposition 6. Any guarantee obtained for lp tracking translates to a guarantee
for Fp tracking up to an increase in ε by a constant factor.

3. Bounding tails of random variables

In general, bounding tails of random variables is well-understood. For the simple
case of X = X1+...+Xn, where Xi are independent identically distributed variables,
methods to bound these variables are well-understood. The most common way to
bound the tails of this distribution is through a Chernoff-bound. As such, P(X ≥
λ) ≤ E(etX1)n

etλ
, for any t. One can parameterize t to obtain different bounds on this.

The most common application of Chernoff bounds has the following statement:

Theorem 7. Chernoff bound. [11]. Let (Xi)i=1,n be a family of independent random
variables, each having values between 0 and 1. Furthermore, let X =

∑n
i=1 Xi and

let µ = E(X). Then,

(a)

P(|
n∑
i=1

Xi − µ| ≥ γµ) ≤ e−Ω(min(γ,γ2)µ)

(b)

P(|
n∑
i=1

Xi − µ| ≥ a) ≤ e−Ω(min(a
2

µ
,a))

But similar results to Chernoff bounds hold in more general contexts.
5

3.1. Negative association. We will talk about the theory of negative association
developed in [10].

Definition 8. Random variables X1, ..., Xn are said to be negatively associated if
and only if for any disjoint sets I, J of {1, ..., n} and any functions f : R|I| → R,
g : R|J | → R component-wise increasing or decreasing on the support of vector X
spanned by coordinates |I| and |J | , the following inequality holds:

E(f(Xi)g(Xj)) ≤ E(f(Xi))E(g(Xj))

Corollary 9. If f is an increasing positive function, and X1, ..., Xn are negatively-
associated random variables, then

E(
n∏
i=1

f(Xi)) ≤
n∏
i=1

E(f(Xi))

Proof: Follows by induction from the definition of negatively associated random
variables.

3.2. Bounded independence.

Definition 10. Say that random variables X1, ..., Xn are k-independent if for any
k distinct indices 1 ≤ i1 < ... < ik ≤ n, Xi1 , ..., Xik are independent.

In the Chernoff bound, the variables are completely independent. There are cases
in which one wants to consider variables that are k-independent for some k. The
motivation for this type of processes comes from computer science. While generating
k-independent hash-functions from set U to set V can be done using a seed of length
O(k(logU + log V)) as done in [7], generating classes of fully independent hash-
functions is more costly in terms of the space needed to store the seed. (as they
require O(n(logU + log V)) bits of space to store the seed. The methods of proofs
for such results will be based of a simple principle: For a degree k polynomial, P
in variables X1, ..., Xn, P (X1, ..., Xn) has the same distribution for k-independent
X1, ..., Xn as it does for fully independent X1, ..., Xn, as long as the 2 families of
distributions share the same marginal distributions.

The following result gives exponentially bounded tails for r-independent random
variables.

Result 11. [3] Let {Xi}ni=1 be r-independent random variables such that 0 < Xi < 1.
Then, if µ = E(X),

P (|X − µ| ≥ A) ≤ tO(1) ·

((
t

A

)t
+

(
tµ

A2

) t
2

)
Proof:
The proof will be based off the fact that if Y = Y1 +Y2 + ...+Yn, where the Yi are

fully independent and have the same marginal distributions as Xi, the t-th moment
|Y − µ|t is the same as |X − µ|t. Now, remark that

6

P(|X − µ|t ≥ r) = P(|X − µ| ≥ r
1
t) ≤ e−Ω(min(r

2/t

µ
,r

1
t) = O(e−Ω(r

1
t) + e−Ω(e

r2/t
µ))

Thus,

E(|X − µ|t) ≤ O
(∫ ∞

0

e−Ω(r
1
t)dr

)
+O

(∫ ∞
0

e−Ω(e
r2/t
µ)

)
= tO

(∫ ∞
0

e−Ω(x)xt−1dx

)
+O

(
µ
t
2 · t

2
·
∫ ∞

0

xt/2−1 · e−Ω(x)

)

= tO(1) · O
(

Γ(t) + µ
t
2 · Γ(t/2)

)
(2)

, where Γ just stands for the well-known Gamma function, i.e. Γ(x) =
∫∞

0
e−ttx−1dt.

Thus,

P(|X − µ| ≥ A) ≤
tO(1) · O

(
Γ(t) + µ

t
2 · Γ(t/2)

)
At

≤ tO(1) ·

((
t

A

)t
+

(
tµ

A2

) t
2

)(3)

Corollary 12. In the same setup of 11,

P (|X − µ| ≥ γµ) ≤ e−Ω(t) + e−Ω(λ2µ)

and for λ ≥ 2,

P (|X − µ| ≥ γµ) ≤ e−Ω(t log λ) + e−Ω(µλ log λ) ≤ e−Ω(min(t,λµ) log λ)

4. Distributions

4.1. Throwing balls into bins. Some of the distributions that will come up in
the discussions will be the distributions related to throwing balls into bins.

Definition 13. The distribution N (A, I) of non-empty-bins is the distribution of
bins that have no balls when throwing A balls into I bins. For this distirbution,
one will let X1, ..., XA be the result of the A balls thrown, and N be the number of
non-empty bins after the throws are finalized. We will begin this section with a few
preliminary properties of these distributions:

Property 14. E(N (A, I)) = I(1− (1− 1
I
)A) ≥ I(1−e−AI). We will let this function

be ΦI(A) in further applications. We will state a few useful properties of ΦA.

Property 15. The function ΦA defined above verifies the following:
7

(1) ΦI has Lipschitz properties for 0 ≤ A ≤ I
20

. In particular, 1
2
· |x − y| ≤

|ΦA(x)− ΦA(y)| ≤ |x− y|.
(2) The inverse of ΦA is

ln(1− x
A)

ln(1−1/A)
.

Property 16. V ar(N (A, I)) = I · (1 − 1
I
)A) ·

(
1− (1− 1

I
)A
)

+ 2
(
I
2

)
· ((1 − 1

2I
)A −

(1− 1
I
)2A).

Property 17. Let X1, ..., XI be random Bernoulli variables, where Xi is tracking
whether box i is non-empty when throwing A balls into I bins uniformly at random.
Then, X1, ..., XI are negatively associated.

Proof: One needs to show that for disjoints sets U, V , and non-decreasing functions
f, g

E(f(XU)g(XV)) ≤ E(f(XU))E(g(XV))

, given that the non-increasing case follows from the non-decreasing one, from
the fact that the inequalities are equivalent for the pairs of functions (f, g) and
(−f,−g). For notation, let fi(Xa) be the value of f(Y), where Y is a vector equal
to XU , where the i-th position has been changed to 1 if it was 0. Make it analogous
for j.

One will proceed by induction on A for all values of increasing f, g.

For 0 balls, the statement is voidly true, as both f and g are constants.

For the induction step, one can compute both the RHS and LHS in terms of the
values obtained when throwing A− 1 balls into I bins. Expectations below are over
the process with A− 1 balls.

LHS =
1

A

(∑
i∈U

E(fi(XU)g(XV)) +
∑
j∈V

E(f(XU)gj(XV)) + (A− |U | − |V |)E(f(XU)g(XV))

)

RHS =
1

A2

(
(A− |V |)

∑
i∈U

E(fi(XU))E(g(XV)) + (A− |U |)
∑
j∈V

E(f(XU)gj(XV))

)

+
1

A2

(∑
i∈A

∑
j∈B

E(f(XU))E(g(XV)) + (A− |U |)(A− |V |)E(f(XU))E(g(XV))

)

A simple calculation shows that
8

RHS =
1

A

(∑
i∈U

E(fi(XU))E(g(XV)) +
∑
j∈V

E(f(XU))E(gj(XV))

)

+
1

A
((A− |U | − |V |)E(f(XU))E(g(XV)))

+
1

A2

∑
i∈U

∑
j∈V

(E(fi(XU))− E(f(XU)))(E(gj(XV))− E(g(XV))

(4)

To finish the proof, remark that fi, gj are increasing. Also, by definition fi ≥ f ,
gj ≥ g and thus

RHS ≥ 1

A

(∑
i∈U

E(fi(XU))E(g(XV)) +
∑
j∈V

E(f(XU))E(gj(XV))

)
+

1

A
(A− |U | − |V |)E(f(XU))E(g(XV))

(5)

and by the induction hypothesis

RHS ≥ LHS

as every term in the RHS is bigger than the one in the LHS from the induction
hypothesis.

Property 18. Upper tail bound: Let X be drawn over N (A, I). Then, for α ≤ 1,

P(X − E(X) ≥ αE(X)) ≤ e−
α2

3
E(X)

Proof: Let Ni be indicators as before. Then, from 17,

P(X − E(X) ≥ αE(X)) ≤ E(et(X−E(X)))

et·αE(X)
=

E(etX)

et(1+α)E(X)

and thus

P(X − E(X) ≥ αE(X)) ≤ e−
ε2E(X)

3

, where the last step can be obtained through a method similar to the Chernoff
bound. Analogously, one obtains an analogous bound for the lower tail. Thus, one
obtains the following bound:

Corollary 19. For X distributed on N (A, I), the following holds:

P(|X − E(X)| ≥ αE(X)) ≤ 2e−
α2

3
E(X)

9

4.1.1. Limited independence. One can imagine a family of distribution in which
throwing bins into balls is no longer independent, but only k-independent, for some
k. This has relevance to streaming algorithms, as k-independent hashing maps are
less expensive to store, when compared to maps that are completely independent.
One is thus interested in tail bounds of the balls into bins problem when the throws
are only k-independent.

Definition 20. Let Nk(A, I) denote the family of distribution of non-empty bins
when one throws A balls into I-bins and any k throws are independent. The most
important result refers to the fact that the expectation of any distribution D ∈
Nk(A, I) is very close to N (A, I) in expectation and variance.

Notation 21. [4]

One will let polynomial Id(x) = 1−
∑d

i=0(−1)i
(
x
i

)
Proposition 22. The polynomial Id has the following properties:

(a) Id(0) = 0
(b) Id(x) = 1 for x between 1 and d.
(c) |Id(x)| ≤ O

((
x+1
d

))
Proof:
The first 2 claims follow immediately from binomial coefficients identities. More

specifically, they follow from the fact that the alternate sign sum of binomial co-
efficients is 0 for all numbers bigger than 0 and 1 for 0. For the third claim, one
needs to remark that the sum

∑k
i=0(−1)i

(
x
i

)
switches signs from k to k + 1, which

is exactly what we wanted to prove.

4.2. Small number of bins regime. In computer science, one is particular inter-
ested in the regime where the number of balls is small relative to the number of
bins. This is because if one wants to create a family of hash functions for example,
properties such as small number of collisions are very important and obtained in the
regime of small relative number of bins. In the literature, this is taken as I ≥ 20A.
We will list the most important properties of this regime.

Property 23. Under the I ≥ 20A regime, N (A, I) has the following properties:

(a)

E(N (A, I)) ≥ 39

40
A

(b)

V ar(N (A, I)) = O(
A2

I
)

Proof:

(a)

E(N (A, I)) ≥ I(1− e−A/I) ≥ I(A/I − A2

2I2
) ≥ 39

40
A

10

(b) By Lagrange’s theorem,

V ar(N (A, I)) ≤ I

(
1− (1− 1

I
)A
)
− (I2 − I) · 1

I2
· A · (1− x)A

, where x is between 2/I and 2/I − 1
I2 . Thus,

V ar(N (A, I)) ≤ I

(
1− (1− 1

I
)A
)
− (I2 − I) · 1

I2
· A ·

(
1− 2

I

)A
Because

(
1− 1

I

)A
= 1 − A

I
+ O(A

2

I2), then one has that V ar(N (A, I)) ≤
O(A

2

I
)

Proposition 24. [12] Let X ′ be drawn over D ∈ N(k+1)(A, I) and X drawn over

N (A, I). Then, in the regime I ≤ A
20

there exists c such that for k =
c log 1

ε

log log 1
ε

|E(X ′)− E(X)| ≤ εE(X)

Proof:
One uses the polynomial Id(x). Remark that Ni = Id(Ai) +O(

(
Ai
k+1

)
).

E(X −X ′) =
I∑
i=1

O
(
E
((

Ai
k + 1

)))
Now, E(

(
Ai
k+1

)
) is the expected number of ways to choose k+ 1 numbers is bin Ai.

But this is exactly
(
A
k+1

)
·
(

1
I

)k+1 ≤ A
I
· (e

20(k+1)
)−k = A

I
· e−k·(log(20)+log(k+1)).

Now, by appropriately choosing c, one can make this smaller than A
K
· ε2 for small

enough ε. Adding up all of the I bins gives one the bound |E(X −X ′)| ≤ O(ε2A),
which can be made smaller than εE(X) for ε small enough, since E(X) = Θ(A).

Proposition 25. [12]

There exists c such that for k = O(
c log K

ε

log log K
ε

), |V ar(X ′)− V ar(X)| ≤ ε2, when X ′

is drawn over N2(k+1)(A, I) and X is drawn over the full independent family.

Proof:
Remark that for a 2k-independent family, by a similar argument as above,

XiXj = (1− Id(Ai))(1− Id(Aj)) +O
((

Ai
K

)
+

(
Aj
K

)
+

(
Ai
K

)
·
(
Aj
K

))
We already know how to bound

(
Ai
K

)
,
(
Aj
K

)
in expectation from the previous part.

Now, the part that is left is bounding the term E
((
Ai
K

)
·
(
Aj
K

))
. This is just

(
A

k+1,k+1

)
I−2(k+1) ≤(

eA
I(k+1)

)k+1

.

Now, one has that
11

|V ar(X ′)−V ar(X)| ≤ 2
n∑
i=1

n∑
j=i+1

|E(X ′iX
′
j
′)−E(XiXj)|+|E(X−X ′)|+|E(X2)−E(X ′

2
)|

, which can be bounded by O(ε3) and thus can be made smaller than ε2 for small
enough ε.

Corollary 26. [12]

For ε small enough, if X ′ ∼ Nk(A, I), X ∼ N (A, I) for I = 1
ε2

, k = log 1/ε
log log 1/ε

for

any δ > 0,

P(|X ′ − E(X)| ≥ O(εE(X))) ≤ δ

Property 27. [4]
Let M be the distribution of the maximum number of balls in any of the bins

from a Nk(A, I) distribution under the I ≥ 20A regime. Then,

P(M ≥ λ) ≤ elog I−Ω(min(λµ,k) log λ)

Proof: One can union bound

P(M ≥ λ) ≤
I∑
i=1

P(Xi ≥ λ) ≤ Ie−Ω(min(λ,k) log λ

as a result of 11

4.3. Stable distributions.

Definition 28. A distribution is called stable if X, Y are independent variables
that follow this distribution, then for any constants a, b, there exist constants c, d
such that aX+bY−d

c
follows the same distribution.

Example 29. Examples of stable distributions include normal distributions, as well
as the Cauchy distribution.

Remark. Stability is maintained for a distribution under scaling and translation.

The most important result about stable distributions is summarized below. It
concerns the existence of certain distributions.

Theorem 30. [16]
For any p > 0, there exists a distribution Dp will the following properties:

(1) Dp is stable, symmetric around 0, and, moreover, if X1, ..., Xk are indepen-

dent variables drawn off Dp and a = (a1, ..., ak), then
∑k

i=1 aiXi ∼ |a|p ·X,
where X is drawn off Dp.

(2) The distribution has polynomial decreasing tails. More formally,

P(|Z| ≥ λ) = O(
1

λp
)

12

Example 31. The most common examples of p-stable distributions are the follow-
ing:

(1) The Cauchy distribution given by probability density function f(x) = 1
π(1+x2)

is 1-stable.
(2) The Gaussian distribution is 2-stable.

Remark. One can see that the bounds on the tails of this distributions are much
weaker than the bounds one obtains on more known distribution such as the normal
distribution or exponential distribution. Indeed, the tails of p-stable distributions
are much less well-behaved. In fact, the 1-stable distribution is the Cauchy distri-
bution, whose tails are not well-behaved. In fact, the Cauchy distribution does not
even have a mean!

The relevance of the stable distribution actually lies in its ability to model heavy-
tailed data, and, in streaming, Indyk’s p-stable sketch [9]. We will delve into the
specifics later in this presentation.

Remark that if Dp is p-stable, then aDp is p-stable too for a constant a. To
normalize, we will consider Dp to be the distribution Z such that P(|Z| ≥ 1) = 1

2
.

4.4. Bounded independence. Just like in the case of throwing balls into bins, we
will again be interested in drawing from families of Dp distributions that are not
fully independent, but k-independent for some k. One is interested in a result in
the fashion of 50. Very similar to 24 and 25, the following results hold true:

Theorem 32. [13]
Let ε > 0. Let X1, ..., Xn be k-independent random variables drawn off Dp and let

Y1, ..., Yn be fully independent random variables drawn off Dp. Let a < b ∈ R. Let
Z be a vector of length n. Then,

|P(〈X,Z〉 ∈ (a, b))− P(〈Y, Z〉 ∈ (a, b))| ≤ O(k−
1
p)

, where the O term can hide dependency on p, but does not depend on k, a, b.

Remark. Unlike the throwing balls into bins distribution, the p-stable distribution
is not as well behaved. Thus, one can’t obtain bounds on the deviation of the
k-independent model from the fully independent model through Chebyshev type
inequalities, since expectancy and variance are not even guaranteed. Thus, one
needs to give the direct bound above to control the loss given by k-independence.

Proposition 33. [5]
Let Zi, i = 1, k be drawn off Dp, and assume they are k-independent. Then,

P
(∑

xiZ
2
i ≥ λ||x||2p

)
≤ O(λ−

p
2) +O(k−

1
p)

, where the constant in the second O term can contain a dependency on p.

Proof:
Remark that every entry Zi can be written as |Zi| · σi. Now, conditional on |Zi|,

one has that
13

Eσ
(

(
∑

xi|Zi|σi)2 | |Z1|, ..., |Zn|
)

=
∑

xiZ
2
i

since the σi are k-wise independent and thus pairwise independent. Now, let E
be the event that

∑n
i=1 xiZ

2
i ≥ λ||x||2p. Then,

Pσ(|(
∑

xi|Zi|σi)| ≥
√

2

3
λ||x||p) ≥

1E
27

, where 1E is an indicator variable for E. This follows from the Paley-Zigmund
inequality [17]:

P(Z ≥ αE(Z)) ≥ (1− α)2 · E(Z)2

E(Z2)

and the fact that Eσ(|(
∑
xi|Zi|σi)|4) < 3 (Eσ(|(

∑
xi|Zi|σi)|2))

2
. Thus,

P(E) ≤ 27 · P(|
∑

xiZi| ≥
√

2

3
λ||x||p) = P(||x||p · Z ≥ sqrt

2

3
λ||x||p) +O(k−

1
p)

P(E) ≤ 27 · P(|
∑

xiZi| ≥
√

2

3
λ||x||p)

= P(||x||p · Z ≥
√

2

3
λ||x||p) +O(k−

1
p) from 32

= O(
1

λp
) +O(k−

1
p) from 30

(6)

Similar to 50, one is interested in looking at the process 〈vi, X〉, where X vi are
increasing vectors component-wise and X is a k-wise independent vector of entries
drawn off Dp.

5. Stochastic processes under bounded independence

5.1. Martingales.

Definition 34. A martingale is a sequence of variables X1, ..., Xn such that for
2 ≤ k ≤ n, E(Xk | X1, ..., Xk−1) = Xk−1

Definition 35. A sub-martingale is a sequence of variables X1, ..., Xn such that
for 2 ≤ k ≤ n, E(Xk | X1, ..., Xk−1) ≥ Xk−1

Definition 36. [15]
A Doob martingale is based off a sequence of random variables X1, ..., Xn :

Ω → R and a function f : Rn → R. Then, for a draw of X1, ..., Xn from Ω, define
Ai = EXi+1,...,Xn(f(X1, ..., Xn) | X1, ..., Xi)

14

One is interested in general, for a martingale X1, ..., Xn, in bounding the tails of
the quantity supt≤T |Xi|. A few well-known results describe bound the tails of this
distribution.

A particular class of stochastic processes that one is interested in is the case of
the partial sums of a number of random variables of mean 0. When the variables
are independent, the process is a martingale and methods to bound the tails of this
distribution are well-known. A related type of problems refers to the case in which
the variables Xi are not fully independent, but show k-wise independent for certain
k.

5.1.1. Inequalities under independence.

Result 37. (Doob martingale inequality) Let (Xn)1≤n≤T be a sub-martingale, where
Xi can only take non-negative values. Then,

P(sup
i≤T

Xi ≥ λ) ≤ E(XT)

λ

A corollary of this result gives right tail bounds on the supremum of a martingale

Corollary 38. (Kolmogorov’s inequality)
Let (Yi)1≤i≤T be a sequence of independent random variables of mean 0. Let

Xt =
∑t

i=1 Yi Then,

P(sup
i≤T
|Xi| ≥ λ) ≤ E(Y 2

T)

λ2

Proof:
By Jensen’s inequality, X2

t is a sub-martingale when Xi are independent, since Xi

is a martingale. Consequently, the statement follows from 37 for the non-negative
sub-martingale Yi.

Another interesting result under independence is given in [2].

Theorem 39. Azuma-Hoeffding inequality
Let S1, ..., Sn correspond to a Doob’s martingale for a function f(X1, ..., Xn), for

independent X1, ..., Xn. Moreover, let si = sup |Xi −Xi−1|. Then,

P(|Sn − S0| ≥ λ) ≤ 2e
− λ2∑n

i=1
c2
i

Remark. While in general this does not say anything about the supremum of the
process, this can be obtained through a union bound. As such,

P(sup
t≤n
|St − S0| ≥ λ) ≤

n∑
i=1

2e
− λ2∑i

j=1
c2
j

15

5.1.2. 4-wise independence.

Result 40. [4]
Let (Yi)1≤i≤T be a sequence of 4-wise independent random variables such that

E(Yi) = 0 and E(Y 2
i) = 1. Let Xi =

∑i
j=1 Yj. Then,

P(sup
i≤T
|Xi| ≥ λ) = O(

T

λ2
)

Remark. Remark that when the variables are only 4-wise independent, the process
Xi is no longer a martingale. The new method of proof gives bounds that fall short
of the bound obtained under independence by just a constant factor.

Proof:
For k ≤ T , consider the quantity (Xi − Xi−k)

2 · (Xi+k − Xi)
2. Remark that

this quantity is a weighted sum of degree 4 polynomials in Xi−k+1, ..., Xi+k. By
4-independence of Yi, all of these sums will be 0 unless the term is of the form Y 2

a Y
2
b

or Y 4
a . There are k2 terms of the first kind and 0 of the second and thus

E
(
(Xi −Xi−k)

2 · (Xi+k −Xi)
2
)

= k2

This implies the probability bound

P(min(|Xt −Xt−k|, |Xt+k −Xt|) ≥ λ
√
k) ≤ E ((Xi −Xi−k)

2 · (Xi+k −Xi)
2)

(λ
√
k)4

=
1

λ4

Now, remark that one can assume WLOG that T = 2t is a power of 2, since
increasing the length T of the random walk can only increase the supremum. Now,
let Ei,s, for i ≤ t, 1 ≤ s ≤ 2t−i−1 be the event that min(|Xt−Xt−2s |, |Xt+2s−Xt|) ≥
γ · 2 s

2 · 2 t−s
3 . From the previous remark, P(Ei,s) ≤ 1

γ4·2
4(t−s)

3

and thus

P(∃i | Ei,s) ≤
1

γ4 · 2 t−s
3

from union bound. Thus,

P(∃i, s | Ei,s) ≤
t∑
i=0

1

γ4 · 2 t−s
3

≤
∞∑
i=0

1

γ4 · 2 t
3

= O(
1

γ4
)

Now, if no Ei,s happens, then

sup
i≤T
|Xi| ≤ |Sn|+ γ

t∑
s=0

γ2
s
2 · 2

t−s
3

To see why this is true, remark that if all Ei,t are true, at any point i, consider its
level l to be the biggest power of 2 that divides i. Remark that one can reach the
next level i+ 1 by a cost of at most γ2

s
2 · 2 t−s

3 to |Xi|, since Ei,l holds. Now, the last
16

number can be either 0 or 2t and since X0 = 0, we have that max(|X0|, |Xn|) = |Xn|,
hence the inequality. Now,

T∑
s=0

2
s
2 · 2

t−s
3 =

T∑
s=0

2
t−s

2 · 2
s
3 =
√
n ·

T∑
s=0

2−
s
6 = O(

√
n)

Now, P(|Xn| ≥ γ
√
n) ≤ E(S2

n)
nγ2 = 1

γ2

Thus,

P
(

sup
i≤n
|Xi| ≥ 2γO(

√
n)

)
≤ P

(
|Xn| ≥ γO(

√
n)
)

+ P(∃i, s | Ei,s) ≤ O(
1

γ2
) +O(

1

γ4
)

and the result is proven.

Remark. One can remark that the 4-wise independence condition is one of the con-
ditions that make this proof work. Another one that could work is E((Si−Sj))4) ≤
O((i− j)2). This is because the inequality

E
(
(Xi −Xi−k)

2 · (Xi+k −Xi)
2
)

= k2

can be obtained up to a constant factor from the Cauchy-Schwarz inequality.

5.1.3. Doob’s martingale on thrown balls. We are coming back to the process of
throwing balls into bins under I ≥ 20A regime. While we were able to provide tight
bounds on the tails of the distribution, one can see the process as dynamic, with
the throws X1, ..., XA being observed one after the other. In such a case, one is
interested in the Doob’s martingale associated with the number of non-empty bins.
As such, if D1, ..., DA is the Doob’s martingale, then one is interested in bound-
ing supi≤A |Di − ΦI(i)|. In the case of completely independent variables, Doob’s
martingale inequality for the martingale Di − ΦI (i) would give:

P
(

sup
i≤A
|Di − ΦI (i)| ≥ λ) ≤ V ar(N)

λ2

One is interested in a similar result in the case of k-independent throws. The
rest of the section will be dedicated to proving that one can achieve the bound
supi≤A |Di − ΦI (i)| = O(

√
A) with probability > 1

2
for some k = poly((logA)2).

The general strategy is to express X1, ..., XA using log I bits, and create a polynomial
on these bits of degree at most k that closely approximates the number of non-empty
bins. The motivation behind this is that working with a polynomial of degree at
most k over X1, ..., XA is the same as working with independent X1, ..., XA.

Proposition 41. [4]
For any k, and any p ∈ {0, 1}k there exists a degree k polynomial in variables

X1, ..., Xk such that f(q) = 0 for q ∈ {0, 1}k r {p} in {0, 1} not all equal to 0 and
f(p) = 1.

17

Proof:
Consider the polynomial f(X1, ..., Xk) =

∏k
i=1(−1)pi · (Xi − pi). We will let this

polynomial be EQp.

Proposition 42. [4]
There exists a polynomial Pr on log(I) · A bits of degree O((logP)2) such that

there exists k = poly(log I), such that

||Pr(X1, ..., XI)−N ||q = o(1)

for all q ≤ r, where ||x||p stands for E(|X|p)
1
p .

Proof:

One looks at the polynomial P =
∑I

i=1 Id

(∑A
j=1 EQj

)
. Then, remark that

P = N as long as M(v) ≤ d. Now, if M ≥ d, then

|P −N | ≤ A

(
M

d

)
≤ O

(
A

(
eM

d

)d)
Thus,

||P−N ||q ≤
∑
r≥log d

P(X ≥ 2r)·O

(
I ·
(
e2r

d

)d)q

≤
∑
r≥log d

eΩ(q log I+qd log 2r

d
)−Ω(min(2r,k)2r)

Thus, one can pick r = poly(d) so that the exponents are exponentially decreasing
in r. Thus, the sum would be eΩ(q log I+qd)−Ω(d log d)

And since q is fixed, one can choose d such that the above is e−Ω(d log d), which
finishes the proof since one can choose d = O(logP).

Now, the degree of the polynomial is log P · d = O((logP)2) indeed.

Notation 43. We will let Si to be the stochastic process given by Si = E(N(X1, ..., XA) |
X1, ..., Xi−1). Similarly, let Bi = E(P4(X1, ..., XA) | X1, ..., Xi−1)

Proposition 44. [4]

PX1,...,Xt (Si − Bi ≥ λ) ≤ O
(

1

λ2

)
, where O(1) does not depend on t.

Proof: Remark that
18

PX1,...,Xt (Si − Bi ≥ λ) ≤ EX1,...,Xt (|Si − Bi|2)

λ2
by Chebyshev

≤
EX1,...,Xt

(
EXt+1,...,XA |(N − P2)|2 | X1, ..., Xt

)
λ2

by Cauchy-Schwarz

= ||N − P2| |2

≤ O
(

1

λ2

)
by 42

(7)

In turn, union bound over the last inequality can use non-dependence on t to
give a bound on the probability that at any point in time the expected difference
between the polynomial P2 and the number of non-empty bins is ever greater than
some λ

Corollary 45.

P
(

sup
t
|St − Bt| ≥ λ

)
≤ O(

A

λ2
)

Proposition 46. [4]
If X1, ..., XA are at least 4deg(P4) independent, then

P
(

sup
t
|Bt − B0|

)
≤ O

(
A

λ2

)
Proof
One considers ∆t = Bt+1 − Bt. We are planning to use the Azuma-Hoeffding in-

equality. As such, remark that changing the result of one throw can change the result
by at most 1. Further remark that the direct use does not lead to a good bound,
since we are interested in the regime λ = Θ(

√
A), the union bound is rendered use-

less. Remark that using the Azuma-Hoeffding inequality would be in order, as one
can assume that the throws are independent, as one only deals with polynomials of
degree at most the degree of independence of the throws.

However, Azuma-Hoeffding gives that |Bi−Bj| has sub-Gaussian tails with vari-
ance at most O(

√
i− j)). Consequently, E(|Si − Sj|4) ≤ (i− j)2 and one can apply

the results from 40 to achieve the bound.

Proposition 47. [4]
One has that

P(sup
t≤T
|St − S0| ≥ λ) ≤ O

(
1

λ2

)
Proof: By the triangle inequality,

sup |St−S0| ≤ |B0−S0| sup |Bt−B0|+sup |St−Bt| ≤ sup |Bt−B0|+2 sup |St−Bt|
19

For the event to hold, one needs either sup |St − Bt| ≥ λ
3

or | suptBt − B0| ≥ λ
3
,

both of which are O(1
λ2) events.

We will end this section with the following theorem:

Theorem 48. [4]
For any δ > 0, one has that with probability at least 1− δ,

sup
t≤T
||X1,t| − Φ(t)| ≤ O(

√
A)

, where the O(
√
R) is allowed to have dependencies on δ.

Proof:
Based on 47, one can say that with probability 1 − δ,

sup |EXt+1,...,XA |X1,A| − Φ(A)| ≤ O(
√
A)

Conditional on this for any t ≤ T

Φ−1(|EXt+1,...,XA |X1,A||)− A = O(
√
A)

Φ−1(Φ(Φ−1(|X1,t)|+ A− t)) = O(
√
A)

|X1,t| = Φ(t) +O(
√
A)

which is what we wanted to prove.

5.2. Maximum inner product. The general setup we will have in this section
refers to a set of component-wise increasing vectors in Rn, with 0 = v0 ≤ v1 ≤ ... ≤
vn, where in this context ≤ means component-wise increasing. If σ is a vector taken
from a certain distribution, one is interested in bounding the tails of the distribution
supi≤n〈vi, σ〉. The motivation for such processes is given by insertion only streams.
In such streams, the frequency vector is always component-wise increasing.

5.2.1. ε-net. The main ideas of proof are ε-nets. Here is a definition and the main
result.

Definition 49. For a set S endowed with a metric d, Sε is called an ε-net of the
set S if for any s ∈ S, there exists t ∈ Sε such that d(s, t) < ε.

We will be interested in finding small ε-nets of finite sets

Proposition 50. Particular case of p = 2 proved in [5]
If v0, v1, ..., vn are components increasing vectors in Rn, then there exists an ε-net

of this set of size at most
|vn−v0|pp

εp
+ 1, when Rn is endowed with the || · ||p distance

metric for p ≥ 1.
20

Proof:
Consider the sequence ti given by t0 = 0, and ti = min{j ≥ ti | |vj − vti | ≥ ε}.

Stop whenever ti can’t be defined, i.e. the last number defined is k. Now, T = {ti}
is an ε-net. Moreover, because vi are component-wise increasing,

k−1∑
i=0

|vti+1
− vti |pp ≤ |vn − v0|pp

and thus given that |vti+1
− vti |2 ≥ ε, k ≤ |vn−v0|22

εp
. Since |T | = k + 1, the result is

proven.

5.2.2. Bounded independent Rademachers. The first case we will treat will be the
case of σ being a set of Rademachers (random sign variable that is 1 with probability
1
2

and −1 with probability 1
2
) that have bounded independence.

Proposition 51. (Weaker bound given in [5])
Let 0 = v0 ≤ v1 ≤ ... ≤ vn. Let Z ∈ {−1, 1}n be a 4-wise independent vector of

signs. Then,

P(sup
i=1,n
〈vi, σ〉 ≥ λ|vn|2) ≤ O(

1

λ4
)

To prove this, first remark that E(〈Z, x〉) ≤ C|x|42. Moreover, consider Sk to be
|vn|2
2k

nets of V = {v1, ..., vn} under the Euclidian norm. For a point x, let x(k) be

a point of distance at most |vn|2
2k

from x in S 1

2k
. Remark that the first net S0 just

contains 0. Now, if one looks at the possible values of x(k) − x(k−1), remark that

for any |x(k) − x(k−1)| ≤ |x(k) − x| + |x(k−1) − x| ≤ 3|vn|2
2k

. Now, once x(k) is fixed,

x(k−1) is of distance at most 3
2k

from this. Now, take s and t to be the smallest

number in V smaller and bigger than x(k) of distance at most 3|vn|2
2k

. Now, since

vi are increasing, there are at most 3 choices for x(k−1) once x(k) is fixed. Thus,
Dk = |{x(k) − x(k−1) | x ∈ S}| ≤ 3 · |Sk| = O(22k) from 50.

Now,

〈Z, x〉 = lim
k→∞

M∑
k=1

〈Z, x(k−1) − x(k)〉

Now, for a set S, let X = supx∈S |〈Z, x〉|. Then,

P(|X| ≥ λ) ≤
∑
x∈S

P(|〈Z, x〉| ≥ λ) by union bound

≤
∑
x∈S

E((〈Z, x〉)4)

λ4

= O(|S| · supx∈S |x|42
λ4

) by Khintchine’s inequality [14]

(8)

21

Let Xk be the variable X corresponding to Dk. Then, P(Xk ≥ λ

2
k
3

) = O(2
−2k

3

λ4),

given that |Dk| ≤ O(22k), supx∈Dk |x|
4
2 = O(2−4k).

Now,

P(sup
v∈V
|〈vi, Z〉| ≥ λ) ≤

∞∑
k=0

P(sup
v∈Dk
|〈vi, Z〉| ≥ Cλ2−

k
3) =

∞∑
k=0

O(
2−

2k
3

λ4
) = O(

1

λ4
)

for the constant C = 1∑∞
k=0 2−k/3

and the result is proven.

5.2.3. Matrix norms. One other context in which one obtains bounds is using matrix
norms. There are 2 very common norms that one uses for the metrics on n × n
matrices:

(a) The first one is the Euclidian metric, treating the vector as an n×n matrix,
also called the Frobenius norm. We will let this be ||·||F . The analysis for the
Frobenius norm is identical to the one done for the vector case in Euclidian
space, since there is a vector space isomoprhism between Rn×n and Rn2

.
(b) The second norm will be the spectral norm, i.e. the value of the largest

eigenvalue of the matrix. Remark that the spectral norm is always smaller
than the Frobenius norm - this is because if λi are the eigenvalues of a matrix
A, then

||A|| = max |λi| ≤
√∑

λ2
i =

√
Tr(ATA) = ||A||F

This gives the following corollary:

Corollary 52. If S is an ε-net for a set V under || · ||F , then it is an ε-net
under || · ||.

5.2.4. Stable distribution. The next similar inequality we will be interested in will
be the case of a stable distribution. Here a rigurous statement of our claim:

Proposition 53. [5]
Let v0, v1, ..., vn be vectors with the property that 0 = v0 ≤ v1 ≤ ... ≤ vn. Then,

if Z is an n-vector with k-independent entries and Dp marginal distribution, then

P(sup
i=1,n
|〈Z, vi〉| ≥ λ||vn||p) ≤ O

(
λ−

2p
2+p

)
+O

(
k−

1
p

)
Proof: The proof combines 50 and 33. One can again use the trick of seeing

Zi = |Zi| · σi. Now, if one defines v′i to be a vector whose j-th component is the jth
component of vi times Zi, then 〈Z, vi〉 = 〈σ, v′i〉. Now, for any β,

22

P
(

sup
i=1,n
|〈Z, vi〉| ≥ λ||vn||p

)
≤ P

(
n∑
i=1

v2
i,nZ

2
i ≥ β||vn||p

)
+ P

(
sup
i=1,n
|〈Z, vi〉| ≥

λ

β
||v′n||2

)
= O

(
1

βp

)
+O

(
k−

1
p

)
+O

(
β2

λ2

)
from 50 and 33

= O
(

1

λ
2p
p+2

)
+O

(
k−

1
p

)
by chooosing β = Θ(λ

2
p+2)

(9)

6. Number of distinct elements

6.1. Constant-factor approximation with constant failure probability. The
first step towards a solution is finding a constant-factor approximation. The follow-
ing subroutine and analysis is due to [12], which they call RoughEstimator. The
most important subroutine is presented below. It depends on the values of ϕ,m.

We will let Hk(A,B) denote a family of k-independent hash functions from A to
B.

Algorithm 1 Rough-estimator(φ,m)

Initializing:
Take constant K = max(m, logn

log logn
)

Take constants C1, C2, ..., CK initialized to −1.
Pick hash functions h1 ∈ H2([n], [0, n−1]), h2 ∈ H2([n], [0, K3]), h3 ∈ H2K(K3, K)
Update step:
for i = 1, K do

Ch3(h2(i) ← max(Ch3(h2(j)), lsb(h1(i))
Estimator:
Define Tr = {i | Ci ≥ r}. Consider r∗ the largest r for which Tr ≥ ϕK. Return
−1 if no r is found and 2r

∗ ·K.

Notation 54. Let F0(t) be the value of F0 at point t in the stream. Let Ir(t) be the
elements i in the value space [1, n] that verify lsb(h1(i)) ≥ r.

The proof will use a few observations.

Proposition 55. For r < s, Ir(t) ⊆ Is(t).

Proof: Follows immediately from the definition of the sets Ir(t).

Proposition 56. Informally, Ir(t) sub-samples F0(t) by a factor of 2r. More for-

mally, E(|Ir|) = F0(t)
2r

, V ar(Ir(t)) = F0(t)
2r
− F0(t)

22r . In particular V ar(Ir(t)) ≤ E(Ir(t)).

Proof: Every element that is seen in the stream is hashed to a value with lsb ≥ r
with probability 1

2r
. The result follows from linearity of expectations. The variance

is computed in a similar way, using the 2-independence of the hashing map.
23

Corollary 57. From Chebyshev’s inequality, and given that V ar(Ir(t)) ≤ E(Ir(t))
one can deduce that

P(|Ir(t)−
F0(t)

2r
| ≥ c · F0(t)

2r
) ≤ 1

c2
· 1
F0(t)

2r

Proposition 58. Now, from a discrete continuity argument, one can find r′ such
that E(Ir′(t)) is between K

2
and K. (as long as F0(t) ≥ K The next step is to provide

a high probability inequality for Ir′(t) being around K and not only in expectation.
Consider the event E that Ir′(t) is between K

3
and 4K

3
. P(E) = 1−O(1

K
).

Analogously, one has upper bounds on |Ir′+2(t)|. In particular, just as in [12], let
E ′ be the event that |Ir′+2(t)| ≥ 7

24
K. P(E ′) = 1−O(1

K
)

Proof: Follows from 57

Next step in the solution requires looking at the hashing map h2.

Proposition 59. Let A be the event the hashing map h2 will create no collisions
on Ir′(t)). Then, P(A) = 1−O(1

K
)

Proof: With probability 1 − O(1
K

), there are at most O(K) elements in Ir′(t)

and thus there are O(K2) pairs and by union bound there is at most an 1 − O(1
K

)
probability there exists no collision. Also, one can remark that because of 55, as
long as A holds, there are no collisions of elements in Ir(t) for r ≥ r′.

Proposition 60. In the event that both E and A hold, Tr(t) is distributed as the
distribution 13, when throwing |Ir′(t)| balls into K bins.

Explanation: This is because when E holds, Ir′(t) has size less than 2K, which
is the degree of independence of h3. Now, since h2 has no collisions, Tr is indeed
distributed as said. This also means that

E(Tr′(t) | E ∧ A) = K(1− (1− 1

K
)|Ir′ (t)|)

Similarly,

E(Tr′′(t) | E ′ ∧ A) = K(1− (1− 1

K
)|Ir′′ (t)|)

Just as before, one wants to obtain tail bounds of the Tr′ and Tr′′ distributions.

Proposition 61.

P(|Tr′ − E(Tr′ | E ∧ A)| ≥ εE(Tr′ | E ∧ A)) | E ∧ A) ≤ 2e−ε
2 E(Tr′ |E∧A)

3

Proof:
This follows from 19

Notation 62. Let F be the event that Tr′(t) ≥ ϕK. Let F ′ be the event that
Tr(t) ≤ ϕK for r ≥ r′ + 2.

24

Now, remark that conditional on E , |Ir′(t)| ≤ K
3

and thus

E(|Tr′(t)| | E ∧ A) ≥ (1− e−
1
3) ·K

and thus a natural choice for ϕ becomes ϕ = (1− ε) · (1− e− 1
3) for some small ε.

Now, for ε small enough, 61 will give

P(F | E ∧ A) ≥ 1− eΩ(E(Tr′ |E∧A))

Now, E(|Tr′(t)| | E ∧ A) = Ω(K) and thus

P(F | E ∧ A) ≥ 1− e−Ω(K)

Proposition 63.

P(F ′ | E ′ ∧ A) ≥ 1− e−Ω(K)

Proof:

For n ≥ 8, E(Ir′+2(t)) ≤ .99
(

1− e− 1
3

)
as long as m ≥ 8, and thus by the

concentration bound developed earlier, the result follows.

Proposition 64.

P(F ∧ F ′) = 1−O(
1

K
)

Proof

P(F) = P(F | E ,A) · P(A | E) · P(E) ≥ 1−O(
1

K
)

Absolutely similarly, P(F ′) ≥ 1−O(1
K

) and thus from P(F∧F ′) ≥ P(F)+P(F ′)−
1, one gets that P(F ∧ F ′) ≥ 1−O(1

K
).

Corollary 65. An implication of this result is that Rough-estimator outputs the
correct result with probability 1−O(1

K
), given that when F ∧F ′ holds, r∗ will be on

of r′ and r′ + 1, both of which will make the estimator 2r · |Tr| between F0 and 4F0.

Notation 66. Consider the algorithm 3-Rough-estimator, which runs Rough-estimator
3 times where the hashing maps are created independently and outputs the median
result of the 3 runs.

Proposition 67. 3-Rough-estimator outputs a value V between F0(t) and 4F0(t)
with probability 1− 1

K
.

Proof: 3-Rough-estimator outputs a number between F0(t) and 4F0(t) if and only
if 2 of the Rough-estimator runs are. Thus, probability of failure is O(1

K2).

Proposition 68. 3-Rough-Estimator can be made to estimate F0(t) to a factor of

8, an any point F0(t) ≥ K with probability 1−O((log log n)2

logn
). From 67, one gets the

result.
25

Proof:
One can union bound over all the positions ti at which F0 grows by a factor 2. In

between the intervals, one can keep the estimator. Thus, one has to union bound
over log n positions for this to be true

Proposition 69. The estimate given by 3-Rough-estimator is non-decreasing.

Proof: Because K in the 3-Rough-estimator is not changed by updates, remark
that Ci are non-decreasing functions on the number of updates, and thus |Ti| are
non-decreasing in the number of items seen. Consequently, the r∗ is never decreasing,
and thus the estimate is non-decreasing.

Proof: With probability 1− O(1
K2), 3-Rough-Estimator outputs F0(tr) correctly,

where tr is the first point F0 is at least 2r. Then, between tr and tr+1, F0 can increase
by at most a factor of 2, while the estimate from the algorithm only increases. Thus,
doubling the estimate by 2 would give one a number that is between F0(t) and 8F0(t)
for all times t as long as it is so for powers of 2. But the probability it holds for

powers of 2, by a union bound, is at least 1−O(logn
K2) = 1−O((log logn)2

logn
)

Proposition 70. The estimate from an instance of 3-Rough-estimator can only
increase by a multiplication of a power of 2.

Proof: The estimate is give by 2r
∗ ·K, which always has the same prime factors

other that 2. Thus, the estimator can only increase by a number of factors of 2.

Proposition 71. 3-Rough-estimator uses log(n)/ log log n bits of space, in addition
to O(log n) random bits for seeds to the hash functions.

Proof: The hash functions require O(log n) random bits from [7]. Maintaining
the counters takes O(logn

log logn
) bits of space.

6.2. Arbitrary accuracy-small F0. This algorithms are attributed to [12]. Unless
otherwise noted, the analysis is attributed to [12] too. We will first deal with the
case of small F0. We will first analyze the following algorithm.

Algorithm 2 Accurate-estimator under small F0

Initializing:
Take constant K = 1/ε2

Take k = Ω(
log 1

ε

log log 1
ε

)

Take constants B1, B2, ..., B2K initialized to 0.
Pick hash functions h1 ∈ H2([n], [0, K3]), h2 ∈ Hk(K

3, 2K)
Update step(i):
Bh2(h1(i) ← 1
Estimator:

Define T = {j | Bj = 1}. Estimate F0 by
ln(1− T

2K
)

ln(1− 1
2K

)
= Φ−1

2K(T).

26

Proposition 72. For any δ > 0, there exists a threshold t0 with F0(t0) ≥ 1
16ε2

such
that for large enough ε, with failure probability at most δ, for any fixed t ≤ t0, 6.2
outputs a value that is F0(t)(1 +O(ε)) with probability at least 1− δ.

Proof:
Let t̃ be the first time F0 breaks 1

16ε2
. If this doesn’t happen, let t̃ be the end of

the stream. Remark that the algorithm places at time t, F0(t) elements into one
of the K3 buckets. Thus, as long as F0(t) ≤ K

16
, probability of collision between K

16

elements while put in K3 buckets is at most
((K16)

2

)
·
(

1
K3

)
= O(1

K
). Denote this event

by E .
Now, for a fixed t ≤ t̃, T is the number of bins hit when throwing F0(t) into 2K

bins. Now, remark that every distinct element represent a ball. Thus, the estimate
only changes when new elements are seen, and, moreover, they represent additional
balls thrown into bins. Thus, it would be enough to prove that the number of balls
thrown into bins stays close to F0(t) and the difference never gets bigger than εF0(t).
Thus, for sufficiently small ε, this will be true from 26.

Proposition 73. For any δ > 0, there exists a threshold t0 with F0(t0) ≥ 1
16ε2

such
that for large enough ε, with failure probability at most δ, 6.2 output a value that
is F0(t)±O(1

ε
) for all t with probability at least 1− δ.

Proof:
The proof is analogous to the one for the proposition above. Now, one can use

48 to obtain that for any fixed δ > 0, one can have that the algorithm output F0(t)
with an error of at most O(1

ε
) at all times, given that with probability 1 − δ the

number of non-empty bins differs from its expectation by at most O(
√
K) = O(1

ε
).

Corollary 74. There exists a subroutine CheckBig that with probability 1 − δ cor-
rectly determines whether F0 at some point t is at least 1

16ε2
and that used O(1

ε2
) bits

of space.

6.2.1. Large F0. In the case of arbitrary accuracy, we will use a slightly modified
subroutine. Assume that one wants an algorithm that produces a number between
(1− ε)F0 and (1 + ε)F0. For this,

Intuition: The algorithm is in essence very similar to RoughEstimator. A few
changes are the appearance of the variables b, est,A.

(1) est is used such that 2est is an approximation of F0 at all times when F0 is
high enough.

(2) At point t, b holds a value such that F0(t)/2b is Ω(K).
(3) A is an algorithm that gives strong tracking constant factor approximation

of F0. More formally, we will assume that:

• A outputs a number e at time step t that has the properties that F
(t)
0 ≤

e ≤ 2l · F (t)
0 with probability at least p, as long as F

(t)
0 ≥ K

32
. This event

will be denoted by E .
• We will also assume that the output A is increasing in the timestep t.

27

Algorithm 3 Accurate-estimator(A)

Initializing:
Take constant K = 1/ε2

Take k = Ω(
log 1

ε

log log 1
ε

)

Take constants C1, C2, ..., CK initialized to −1.
Pick hash functions h1 ∈ H2([n], [0, n− 1]), h2 ∈ H2([n], [0, K3]), h3 ∈ Hk(K

3, K)
Initialize b, est = 0.
Initialize a A P .
Update step:
Ch3(h2(i) ← max(Ch3(h2(i)), h1(i)− b)
Update P with i.
Estimate F0 from P . Let the estimate be R.
if R > 2est then

est← log(R)
btemp ← max(0, est− log(K/32))
for j = 1, K do

Cj ← max(−1, Cj + b− btemp)
b← btemp

Estimator:

Define T = {j | Cj ≥ 0}. Estimate F0 by 2b · ln(1− T
K

)

ln(1− 1
K

))
= 2b · Φ−1

K (T).

• We will also assume that the estimate can only increase in power of 2
increments.

The final goal of this algorithm would be a proof that there exists an
ε-approximation algorithm for F0 with < 1

2
failure probability that runs in

spaceO(1
ε2

+log n). Under such conditions, remark that is enough to consider

the ”small” ε-case, i.e. one can choose a constant C such that ε ≤
√
C log n

and only consider this case. This is because for large ε, the 1
ε2

terms is

dominated by the log n factor. Thus, logn+l
K

can be made arbitrarily small
assymptotically.

Proposition 75. Conditional on E , the estimate 2b · ln(1− T
K

)

ln(1− 1
K

)
is (1 ± O(ε))F0 with

probability more than 7
9
.

Proof:
The most important part is looking at Ib(T), denoted for convenience by Ib.

E(Ib) = F0

2b
and V ar(Ib) ≤ E(Ib). Conditional on E , E(Ib) is between K

256
and K

32
.

Then, Chebyshev inequality implies, similarly to the proof of 58 that:

P(
K

300
< |Ib| <

K

20
) = 1−O(

1

K
)

28

Similar to the proof of 59, conditional on the previous event, h2 will have no
collisions on Ib with probability 1−O(1

K
).

Just as in the rough estimator case, T is the number of non-empty bins when

throwing |Ib| balls into K bins with limited independence of k =
log K

ε

log log K
ε

.

Now, let T ′ be the same number when the |Ib| balls thrown into K bins do not
have limited independence but are in fact fully independent. Now, from 24 and 25,
one can bound the tails of the distribution. In particular, with 4

5
probability,

1− T/K = (1− 1

K
)|Ib| ±O

(
ε(1− (1− 1

K
)|Ib|)

)
Thus, for small enough ε, the above gives ln(1 − T

K
) = |Ib| ln(1 − 1

K
) + O(ε) and

thus the estimate P of this algorithm verifies the bound P = |Ib| · 2b +O(ε · 2b ·K).
Now, since 2b ·K ≥ 300F0, it means that P = |Ib| · 2b +O(εF0). Since |Ib| · 2b is F0

in expectancy, and since Chebyshev inequality implies bounds under E of

P(||Ib| − E(|Ib|) ≥
c√
K

) ≤ O(
1

c2
)

Now, if ||Ib|−E(|Ib|) ≥ c√
K

holds, together with E and the 2 previous events, then

the output of the algorithm is an ε-approximation. Thus, remark that the probability
of the answer being correct is 4

5
− O(1

K
) − 16

c2
. This can be made arbitrarily close

to 4
5

for sufficiently large K, since one has choice over c. For example, this can be

made at least 7
9

as desired.

Corollary 76. The algorithm succeeds with probability 7
9
−κ for t with the property

that F0(t) ≥ 1
32ε2

, where κ is the failure probability of the oracle A. In particular,

the algorithm succeeds with probability at least 3
4

when F0(t) ≥ K
32

, when one chooses
the instance A to be 3RE.

After the correctness is established, one needs to bound the amount of space the
algorithm uses (in addition to the random bits required to store the hash function).

Notation 77. Let Ftemp(t) be the 3RE estimator at time t. Let Xi(t) = max(0, lsb(h1(i))−
b). Let A(t) be the amount of space used by the algorithm at point t, without consid-
ering the amount of space required to store the keys to hash function h1,2,3. Similarly
define Ci(t). Let ti be the points at which the estimate from 3RE increases.

Proof:
In the regime F0(t) ≥ K

32
, E holds with probability 1 − o(1) by the fact that 1

ε2

can be chosen at least logn
log logn

, and thus 7
9
− κ can be made at least 7

9
.

Proposition 78. A(x) = A(x+ 1) for x 6= ti.

Proof of proposition If x 6= ti, then the algorithm does not enter the last loop and
thus b and Ci remain constant. Thus, A, the storage space remains constant.

29

Proposition 79.

P(X(t) ≥ 2K) ≤
F0(t)

2b

(2K − F0

2b
)2

Proof: The first observation to make is that the distribution of lsb(h1(i)) is that
it equals k with probability 1

2k+1 for 0 ≤ k < log n − 1 and 1
n

otherwise. Thus, the

distribution of Xi is that it equals s with probability 1
2s+b+1 for 0 ≤ s < log n − b,

equals log n − b with probability 1
n

and has an additional mass at 0 for the rest of

the mass, i.e. a mass of 1− 1
2b

.
Now, define Yi to be a random variable that is equal to Xi when Xi ≤ log n,

and draws a number off a geometric distribution of parameter 1
2
, to which it adds

log n−b when the Xi = log n−b. Then, Yi ≥ Xi and the distribution of Yi is a mass
of 1− 1

2b
at 0, and a draw from a geometric distribution of parameter 1

2
otherwise.

Now, E(Yi) = 1
2b

, as the mean of the geometric distribution of parameter 1
2

is 1.

E(Y 2
i) = 0+ 1

22b ·2 = 1
22b−1 and thus V ar(Y 2

i) = 1
22b and thus V ar(Yi) ≤ E(Yi). Now,

one can bound the tail of the distribution.

P(X(t) ≥ 2K) = P(
∑
i∈I(t)

Xi ≥ 2K) ≤ P(
∑
i∈I(t)

Yi ≥ 2K)

and since Xi are independent, Yi are too and thus
∑

i∈I(t) Yi has sum |I(t)|
2b

and
variance at most that. Thus, Chebyshev implies

P(
∑
i∈I(t)

Yi ≥ 2K) ≤ P(
∑
i∈I(t)

|Yi −
|I(t)|

2b
| ≥ 2K − |I(t)|

2b
) ≤

F0(t)
2b

(2K − F0(t)
2b

)2

and this is exactly what we wanted to prove.

Proposition 80. The probability that the space A(t) required by the algorithm

ever exceeds 3K is at most (log n+ l) ·
F0(t)

2b

(2K−F0(t)

2b
)2

Proof:

A(t) =
K∑
i=1

dlog(Ci + 2)e ≤ K +
K∑
i=1

log
Ci + 2

K
≤ K

(
1 + log

(
2 +

∑K
i=1 Ci
K

))
from Jensen’s inequality and thus from 81 and one has that

A(t) ≤ K

(
1 + log

(
2 +

∑
i∈I(t) Xi

K

))
and thus

30

P(A(t) ≥ 3K) ≤ P

∑
i∈I(t)

Xi ≥ 2K

 ≤ F0(t)
2b

(2K − F0(t)
2b

)2

from the tail bound obtained in 79. Now, union bound gives:

P(∃t;A(t) ≥ 3K) ≤ (log n+ l)P

∑
i∈I(t)

Xi ≥ 2K

 ≤ (log n+ l)
F0(t)

2b

(2K − F0(t)
2b

)2

Proposition 81.

K∑
i=1

Ci(t) ≤
∑
i∈I(t)

Xi(t)

Proof: Each of the indices i seen at time t can contribute to one of the counters.
Remark that if for j = 1, K, there exists i ∈ I(t) with h1(i) = j, then Ci(t) ≤
maxj∈I(t)|h1(j)=iXi(t) ≤ maxj∈I(t)|h1(j)=iXi(t), given that Xi are positive. Given
that Cj = −1 ≤ 0 for a class j that is not the hash of anything, the inequality is
established.

Notation 82. Let S be the event that the algorithm fails because of space.

Proposition 83.

P(∃t | A(t) ≥ 3K) ≤ 1

32

Proof:

P(∃t | A(t) ≥ 3K) = P(∃i | A(ti) ≥ 3K) ≤ (log n+l)·
F0(t)

2b(
2K − F0(t)

2b

)2 ≤
log n+ l

32K
≤ 1

32

for sufficiently small ε.

Proposition 84. [4]
Conditional on the success of the constant-factor estimator, A(t) has narrower

tails for large λ. More formally, for fixed t,

P(A(t) ≥ λK) ≤ e−Ω(eΩ(λ))

Proof:
31

P(A(t) ≥ λK) ≤ P (∃s≤K logdCs + 2e ≥ λ)

≤ P
(
∃t′ ≤ t; lsb(h1(t′))− b(t) ≥ 2λt

)
≤ F0(t) · 2−Ω(2λ)

= F0(t) · P(lsb(h1(1))− b(t) ≥ 2λt)

≤ F0(t) · 2−2λt−b(t) ≤ 2−2λt+l+5

ε2

(10)

We conclude this section with the following result:

Proposition 85. [4]
If t2 ≥ t1 such that F0(t2) ≤ 2F0(t1), then A(t1) ≤ A(t2) +O

(
1
ε2

)
, conditional on

the success of the constant factor estimator.

Proof of the proposition:
The space to keep all of the counters is given by

∑
dCi(t1) + 2e. Remark that

from t1 to t2, the counters increase up to the change in b. Thus, the only decrease
can come from an increase in b, which is at most constant.

Proposition 86. [4]
There exists a constant C such that at the expense of an 8-independent hash

function h1,

P(A(t) ≥ C

ε2
) ≤ 1

ε4

The main idea in the proof is to look at Xi, and Ti = Xi − E(Xi). Now, one is
interested in bounding the tails of X1 + ...+Xn. One also assumes full-independence
of the hashing map, as we will only work with polynomials of degree at most 8.
The proof has 2 steps, when one starts with a number p and assumes Ti are 8-
independent:

(1) The first step involves remarking that ||
∑
Xi||p ≤ E(Xi) + ||Ti||p.

(2) The second step involves remarking that ||
∑
Ti||p ≤ O(

√
||
∑
S2
i ||p/2). To

see this, remark that if one takes σi to be a vector of signs, then:

||
∑

Ti||p ≤ 2||
∑

εiTi||p ≤ O(
√
||
∑

T 2
i ||p/2) ≤ O(

√
||
∑

X2
i ||p/2)

and by induction this gives that for 8-independent signs,

||
∑

Ti||8 ≤
1

ε4

as long as
∑
||Xi||p ≤ O(1

ε2
) for p ≤ 8. The last holds true, and thus

P(
∑

Ti ≥
λ

ε2
) ≤ O(

1

λ8
· 1

ε4
)

32

which finishes the claim.

Theorem 87. [12] [4]
For any κ > 0, there exists an algorithm that, when given a stream a1, ..., aT ∈ [n],

it output a number t that with probability at least 7
9
−κ, t is an ε-approximation to the

number of distinct elements in a. The algorithm requires access to O(log n+ log 1
ε
)

random bits and uses A(t) additional bits of memory at time t, where A satisfies the
following conditions:

(1)

P(A(t) ≥ 3

ε2
) ≤ ε2

(2)

P(A(t) ≥ C1

ε2
) ≤ ε4

for some constant C1.
(3)

P(A(t) ≥ λ

ε2
) ≤ e−Ω(λ)

(4) If t2 ≥ t1 such that F0(t2) ≤ 2F0(t1), then

A(t1) ≤ A(t2) +O
(

1

ε2

)
6.3. High probability. This subsection is attributed to [4].

6.3.1. Naive amplification. The first idea in solving this question would be a naive
amplification. As such, one can consider Θ(1

δ
) independent runs of this algorithm,

and consider the median. By a Chernoff-bound, probability of failure will be O(δ).
As such, since these runs are independent, they will independently provide approx-
imations to F0 with p > 1

2
probability. In the constant factor approximation case,

this leads to a space of O
(

log n · 1
log δ

)
, and in the ε-approximation case a space of

O
(

(log n+ 1
ε2

) · 1
log δ

)
. This section is dedicated to improving these bounds.

6.3.2. Constant factor approximation. The first important sub-routine is presented
below. This allows low-memory representation of multiple runs of F0 estimation
through a number of trials.

Remark. By a similar analysis to 3-Rough-Estimator, one can show that the algo-
rithm returns a constant factor approximation with probability ≥ 2

3
.

Definition 88. [4] On a finite universe U , define a positive function f doubly
exponential tailed if X is a uniform distributed variable on U , then P(f(X) ≥ λ) ≤
2−2Ω(λ)

33

Algorithm 4 Space-efficient storage of independent runs (hi, i = 1, N pairwise
independent hash functions

Pick a family [N] of pairwise independent hash-functions hi : [n]→ [n].
Update(i):

Use estimator B
(t)
j = maxs∈I(t) lsb(hj(t)). Update it after every move.

Update the median of Bj

Store B
(t)
j −medianwi=1(B

(t)
j) and update after move.

Store the amount of bits necessary to store the data.
Estimator :
Compute the median m. Return 2m.

Definition 89. [4] On a finite universe M , endowed with functions f1, ..., fR that are
doubly exponential tailed, a sequence S ∈M∗ is said to be C-small if

∑
x∈S fi(S) ≤

C|S|

The main purpose of a C-small sequence comes from the following low-representability
result:

Theorem 90. [4]

There exists a universal constant C such that for any R,M , and any w ≥ Θ(
√
R)

and w ≥ (logM)Ω(1), there exist w1, w2 such that w1w2 = O(w), w2 = Θ(logw)
s = O(w + logM) and a function G : {0, 1}s × [w1] → [M]w2 such that for any
g1, ..., gR with doubly exponential bounds,

PU∼Unif({0,1}s(|k | {G(U, k) is C-small} > w1

2
) ≥ 1− e−Ω(w)

Call such a G a sampler for R,M

This algorithm is based of [4]. G in the algorithm below is taken to be a sampler for
R = log n and M a space of seeds of pairwise independent hash functions [n]→ [n].
Then, logM = Θ(log n) If M is a universe for seeds for hash function w1, then
G(s, k) gives w2 seeds of pairwise independent hash-functions, for a seed string
U ∈ {0, 1}s and k ∈ [w1].

For the analysis of this algorithm one consider ti to be a sequence of elements
such that ti is the first point when the number of elements becomes 2i.

Notation 91. Denote by e
(t)
j the deviation of the number of bits B

(t)
j from the answer

log |I(t)|, i.e. e
(t)
j = B

(t)
j − logF0(t)

Proposition 92.

P(|e(t)
j | ≥ λ) ≤ 21−λ

Proof:

Consider the set S
(t)
k,i = {a ≤ t&hi(xt) ≤ k}. Then, E(|S(t)

k,i|) = F0(t)
2k

and because of

the fact that h1 is an independent has, V ar(|S(t)
k,i|) = F0(t) · 1

2k
· (1− 1

2k
) ≤ E(|S(t)

k,i|).
34

Algorithm 5 High accuracy estimator(s, C2)

Initialization
Pick a seed string s. Pick G a sampler corresponding to s. Initialize w1 structures
ES[w1] of type space efficient storage. Initialize the hash maps as the ones given
by the seeds given by G(s, k).
Update:
for t ∈ [w1] do

Run update in ES[t]. If for some t, the amount of storage necessary for that
group is ≥ C2w2, free the memory of that group and disregard it moving on.

Estimation: Return the median of the estimators of the numbers still alive.

Now, for k = logF0(t) − λ, E(|S(t)
k,i|) = 2λ and thus, P(|S(t)

k,i| = 0) ≤ 1
2λ

from
Chebyshev’s inequality. One has that

P(e
(t)
j ≥ λ) = P(|S(t)

k,i| = 0) ≤ 1

2λ

Similarly, from Markov’s inequality, one has:

P(e
(t)
j ≤ −λ) = P(|S(t)

logF0(t)+λ,i| ≥ 1) ≤ E(S
(t)
logF0(t)+λ,i) = 2−λ

and the lower and upper tail bounds give a proof to the proposition.

As we move on, endow our universe with the functions

gk(i) = Z
(tk)
i = log(2 + logB

(tk)
i − logF

(tk)
0)

, and so we now have a context for the use of the sampler G, as well as a definition
for C-smallness. In what it will follow, C-small refers to a sequence with respect to
the functions gi. Remark that it has double exponential-tails up to constants. The
interpretation for the function gi is that it is proportional to the space necessary to
write down the deviations.

Proposition 93. If H is a C-small group, then | logF0(t)−logmediani∈HY
tk
i | ≤ C3,

where C3 is a universal constant.

Proof: Because the set is C-small, Ei∼Unif(H)(Z
(tk)
i) < C, which means by Markov’s

inequality that

Pi∼Unif(H)(Z
(tk)
i ≥ 3C) ≥ 2

3
which implies that

Pi∼Unif(H)(e
tk
i ≥ 23C) ≥ 2

3
and thus Pi∼Unif(H)(e

tk
i ≥ 23C) ≥ 2

3

Now, this implies that | logF0(t)− logmediani∈HY
tk
i | ≤ 23C

35

Proposition 94. To store the deviations in a C-small group H at time tk O(w2)
bits are enough.

Proof: The space cost comes from 2 sources - one of them is storing the median
itself. This takes O(log log n) bits. The other one is keeping track of the deviations.

To bound that, remark that this space is given by
∑

i∈H log(2 + |Y (tk)
i −M(tk)|),

where M(tk) is the median in group H at time tk. Now,

∑
i∈H

log(2+|Y (tk)
i −M(tk)|) ≤

∑
i∈H

log(2+|Y (tk)
i −logF0(tk)|+

∑
i∈H

log(1+| logF0(tk)−M(tk)|)

≤ C|H|+ 23C · |H| = O(|H|) = O(w2)

Proposition 95. 94 holds for all times t.

Proof: Pick t between tk and tk+1. Now, because Yi is a maximum over numbers
seen by time t, it is increasing in t. Consequently, M(t) is increasing in t. Then,
one has for every i ∈ H

|Y (t)
i −M(t)| ≤ |Y (tk+1)

i −M(tk)|+ |Y (tk)
i −M(tk+1)|

≤ |Y tk
i −M(tk)|+ |Y tk+1

i −M(tk+1)|+ 2|M(tk)−M(tk+1)|
and thus

∑
i∈H

log(2+ |Y (t)
i −M(t)|) ≤

∑
i∈H

log(2+ |Y tk
i −M(tk)|)+

∑
i∈H

log(2+ |Y tk+1

i −M(tk+1)|)

+2
∑
i∈H

log(1 + |M(tk)−M(tk+1)|)

and it is clear that the first 2 terms are O(w2). For the last term, trinagle
inequality gives

|M(tk)−M(tk+1)| ≤ |M(tk)−F (tk)
0 |+ |M(tk+1)−F (tk+1)

0 |+ |F (tk+1)
0 −F (tk)

0 | = O(1)

, which concludes that the deviations are O(w2) at all times t.

Proposition 96. The total storage necessary for this algorithm is O(log n+ log 1
δ
).

Proof:
There are at most w1 groups at any point, each of which takes O(w2) space

to store, so this is O(w) = O(log + 1
log δ

). In addition, the seed necessary for the

construction takes O(s+ logN) = O(log n+ log 1
δ

+ log poly(n)) = O(log n+ 1
δ
).

36

6.4. Accurate approximation; Low failure probability. The goal of this sec-
tion will be to provide an algorithm for streaming that uses O(log n+ 1

ε2
· 1

log δ
).

Definition 97. [18]
A function Γ : {0, 1}s × [w]→ [M] is an (ε, δ) average sampler if for any function

f : [M]→ [0, 1], when one lets Yi = f(U, i), and µ = E(
∑

i Yi), then

P(|
∑
i

f(Yi)− wµ| ≥ εw) < δ

Theorem 98. [18]
For constant ε, there exists a (ε, δ) average sampler with w = O(log 1

δ
) and seed

length s = O(w + logM + log 1
δ
), where the notation can hide dependency on ε.

Algorithm 6 Accurate approximation algorithm in the high probability
regime(Γ, G)

if ε < C1(1
logn

)
1
4 then

Pick a (ε, δ) average sampler Γ.
for i = 1, w do

Run 87 with seeds given by Γ(i). While running these, keep track of the
space used and stop the process as long as the space becomes used ever becomes
larger than C2

ε2
, for some constant C4. Keep track of the reported estimators.

Report the median estimate from all of these.
else

for i = 1, w1 do
Run 87 with seeds given by G(i). Consider the median.
Keep track of the memory usage in every group.
Discard a group if the memory usage becomes ≥ C3

ε2
.

Report the median

Report the median of all the groups still standing.

One needs to specify conditions for Γ and G. The conditions are listed below:

(a) Γ needs to be a (1
10
, γ) sampler.

(b) Consider w = Ω(log 1
δ

+ log n). Then, let G be an explicit sampler for R =
log n+1, and M a space of seeds for an algorithm as in 87. logM = Θ(log n).

(c) Consider gi = ε2

C
· A(ti)

m for i = 1, R. Consider gR to be a function that is 0
on instantiations m that give 1 + ε approximations and a large constant C0

otherwise. If C0 is high enough, given that the algorihtm succeeds with prob-
ability 5

6
, naive amplification can make the algorithm fail with probability

c0, for some arbitrarily small constant c0 maintaining the same asymptotic
guarantees. Once c0 is small enough, gR will be doubly exponential bounded.
From 87, gi are also doubly exponential bounded.

37

First, remark that this is the exact opposite of the constant failure case in terms
of assumptions on parameters. This is because one can assume 1

ε2
≤ C log n, since

if not, the naive amplification provides an asymptotically correct bound.

Proposition 99. (Correctness for small ε case.) In the ε < (1
logn

)1/4 case described

above, with probability O(δ) at least w
2

of the seeds Γs(i) will give ε-approximations
to F0.

Proof:
First, remark that in this regime of parameters, one can assume log 1

δ
≥ 1√

logn
.

This is because otherwise, we can work with a larger δ, and the term log n is domi-
nating the term 1

ε2
· log 1

δ
.

For i = 1, w, let Qk be the estimator given by the algorithm when supplied seed k.
Then, one can consider the function f(k) = 1|Qk−F (T)

0 |≥εF (T)
0

. One is guaranteed that∑
i∈M f(i) ≥ 5

6
M . Let µ =

∑M
i=1 f(i)

M
≥ 5

6
. Because Γ is a (1

10
, δ) average sampler,

one has that

P(|
w∑
i=1

f(Γ(i))− (
7

9
+ κ)w| ≤ w

6
) ≤ δ

By the triangle inequality, this means that

w∑
i=1

f(Γ(i)) ≥ 2

3
w

Now, denote the events |QΓ(i) − F
(T)
0 | ≤ εF

(T)
0 by Ek. Now, at least 2

3
w out of

the w Ek happen and thus the median will lead to an ε-approximation, with failure
probability δ. One needs to take care of the groups that get finished because of space
usage. Remark that every instance of 87, when instantiated with 8-independent h1,
verifies that at any position, the space usage is smaller than O(1

ε2
) with probability

1
ε4
≤ κ

logn
, where κ can be made arbitrarily small based on log n. Now, consider a

sequence ti of indices such that F0(ti) = 2i. Then, there are log n such indices. By
union bound, there are at most log n of these and thus probability of failure at some
point ti is at most κ. Thus, probability of failing at any point is at most κ, just
by enlarging the term O(1

ε2
). Thus, with probability 1 − κ, the space consumption

at any point is at most C2/ε
2 with probability 1 − κ. Now, let g be an indicator

of whether the instations uses more than C2

ε2
space. It will follow that at most

(1
10

+κ)w of the instatiations would have this property. Consequently, the algorithm’s

corectness will be proven, since at most (1
10

+ κ)w of these groups die, and so at

least (2
3
− 1

10
− κ)w > w

2
for sufficiently large κ of the seeds survive and provide

ε-approximations.
Thus, the failure of this algorithm is at most 2δ, which can be fixed by re-scaling

to start with.
38

Proposition 100. (Space for the small ε case)
The space usage of this algorithm is O(log n+ 1

ε2
· log 1

δ
) with probability O(δ).

Proof:
There are log 1

δ
seeds, and each of them requires O(1

ε2
) space. The seed requires

O(log n+ log 1
δ
) bits to store, which finishes the result.

Proposition 101. (Correctness for the large ε case.)
For any i, if G(U, i) is C-small, the median estimator in the group is a (1 + ε)

approximation to F0.

Proof: One needs to pay attention to the function gR+1. Applying the C-small
condition for the gR+1 function will give that at most C

C0
of the elements in a C-small

group are not 1 + ε approximation. Choosing C0 ≥ 2C will give at least half of the
elements in each group the property that is a 1+ε approximation to F0, which shows
the property.

Proposition 102. A C-small group does not use more than O(1
ε2

) bits of space.

One needs a seed s = O(w + log n), and clearly we need w = O(log 1
δ
).

Proof:
One needs to show that a C-small group occupies space O(1

ε2
) at any point in

time. First, remark that this is guaranteed at steps t1, ..., tR from the C-smallness
condition applied to g1, ..., gR. But now one can remark that the space usage verifies
the condition that the diffference between points where F0 at most doubles is at most
O(1

ε2
), which means that the space consumptions is O(1

ε2
). Thus, for a sufficiently

large C, the space consumption is at most C3
1
ε2

for some constant C3.

Now, the total space consumption is O
(

1
ε2
· log 1

δ

)
for the instantiations of 87 and

O(log n+ log 1
δ
) for the random seed to the R + 1,M sampler.

6.5. Tracking in the high probability regime.

6.5.1. Naive amplification. The first idea would be naive amplification. Remark
that because (1 + ε)2−1 = O(ε), it is enough to provide approximations at points ti
in the stream at which the number of distinct elements breaks (1 + ε)i for the first
time. But there are logn

log(1+ε)
such indices. Thus, dropping the probability of failure

to δ · log(1+ε)
logn

would guarantee by a union bound an O(ε) approximation at any point.

This algorithm would run in space O(log n+
log 1

δ

ε2
+ log logn

ε2
+

log 1
ε

ε2
). The goal of the

following would be to provide a better bound. In particular, we will prove one can

get rid of the
log 1

ε

ε2
.

6.5.2. Tracking. For the high probability regime, one will need the following result,
that is an improvement of 75. We will return to analyzing 87

Proposition 103. 87 as described above is able to provide an approximation to F0

at all points t. More formally, the algorithm provides an estimate that is at most
εF0(T) away from the actual answer with probability 7

10
for all t simultaneously.

39

Proof:
First of all, denote Ib(t) to be the set of elements i with lsb(h1(i)) ≥ b. One

can clearly restrict the analysis to the times t when an element is added. Consider
Yk = 2b|Ib(t)| − 2b|Ib−1(t − 1)|. Now, Yk are 4-wise independent and have variance
O(2b) and thus from 11,

P
(
∃t ≤ T such that |2b · |Ib(t)| − t| ≥ O (ε|F0(T)|)

)
≤ 9

10

which means from the Lipschitz properties of Φ implies that the approximations
2b · Φ−1(T (t)) are all accurate.

Now, at point t, the result would be the number of Ib balls thrown independently
into 1

ε2
bins, as h2 contains no collisions with high probability. Now, consider T (t)

to be the T from the algorithm at time t. Then, |h3(h2(T))| = Φ 1
ε2

(|Ib(t)|)±O(εK)

with 9
10

probability from 48 at all times t. From the Lipschitz properties of Φ 1
ε2

), one

will have that Φ−1
1
ε2

)
(T) stays closer to F0 than O(εF0(T)) at all times with probability

at least 7
10

.

Theorem 104. [4]

There exists an ε-strong tracking algorithm for F0 that uses O(
log logn+log 1

δ

ε2
+log n)

bits of space.

Without going into the details of the analysis, an amplification method using
average samplers similar to the one done for the one timestamp approximation
can be analogously applied here. As such, one can use an amplification to δ

logn
to

ensure, after a union bound, can ensure the above is true for any b ≤ log n (i.e.
union bounding at points tk at which F0 increases by a factor of 2). Thus, since the

space consumption for the regular algorithm is O
(

log n+
log 1

δ

ε2

)
, the result follows.

7. Frequency moments

7.1. p ∈ (0, 2). We will be interested in tracking the p-th frequency norm of the
stream. We will give bounds for both weak and strong tracking. The algorithm is
attributed to [9]. The analysis is attributed to [5].

7.1.1. Weak tracking.

Proposition 105. Correctness of the algorithm above
One can choose s = Θ (ε−p), r = Θ

(
log 1

ε
+ log 1

δ

)
, d = Θ

(
1
ε2

(log 1
δ

+ log 1
ε
)
)

such
that if the estimator return mt at time t, then

P
(
∃t ≤ T ; |mt − |x(t)|| ≥ ε|x(T)|

)
≤ ε||x(T)||p

Proof:
40

Algorithm 7 Weak tracking of the pth moment of the frequency vector

Pick Π a d×n matrix with r-independent rows and s-independent entries on every
row.
Initialize sketch r of size d to the 0 vector.
Update(i):
Update the sketch r = r + Π(ai), where Π(ai) is the column corresponding to ai.
Estimator:
At point t in the stream, estimate the norm by considering the median entry in
the sketch r.

Just as in the case of the distinct elements problem, one will be looking at a
sequence of ti. Consider S to be a set of indices 0 = t0 < t1 < ... < tk such that

||xti − xti−1
||p ≥ ε

4
p · ||xT ||p. One can break into cases:

(1) If p ≥ 1, then ti just constitutes the construction of an ε
4
p -net described in

part 1 for the metric given by d(x, y) = ||x− y||p. By 50, k ≤ ε−4.
(2) If p ≤ 1, then

||x(T)||pp = ||
q−1∑
i=0

x(i+1) − x(i)||pp||
q−1∑
i=0

x(i+1) − x(i)||pp

≥ qp−1

q−1∑
i=0

||x(i+1) − x(i)||pp by Holder’s inequality

≥ qp−1 · q · ε4||x(T)||pp

(11)

and thus q ≤ ε−
4
p .

For an individual row πi, and an individual frequency vector x(t), remark that
if γ is a vector of length n of independent Dp distributions, then 〈γ, x(t)〉 has a
distribution of ||x(t)|| · Dp.

The first step in the proof would be to prove that one can choose d, s, r as stated
and the probability of failure at points ti is O(δ). The strategy involves breaking
the failure event into 2 cases - failure because the algorithm returns a number that
is too high is too low or failure because the answer 32 implies that

P(|〈πi, x(t)〉| − ||x(t)||p ≥ ε||x(T)||p) = P(||〈γ, x(t)〉| − ||x(t)||p| ≥ ε||x(T)||p) +O(s−
1
p)

= P(|Z| ≥ 1− ε) +O(s−
1
p) where Z is sampled off Dp

=
1

2
− Ω(ε) +O(s−

1
p)

=
1

2
− Ω(ε) for a correct dependence of s on ε−p

(12)

41

Absolutely similarly, P(|〈πi, x(t)〉| − ||x(t)||p ≤ −ε||x(T)||p) = 1− Ω(ε)
Let Uj be a random Bernoulli variable tracking whether |〈πi, x(t)〉| − ||x(t)||p ≥

ε||x(T)||p and Lj be a random Bernoulli variable tracking whether |〈πi, x(t)〉| −
||x(t)||p ≤ −ε||x(T)||p. Then, E

(∑d
i=1 Lj

)
= d

2
− Ω(dε) ≤ d

2
− Cd for some con-

stant c. Then, by 11,

P

(
d∑
i=1

Lj ≥
d

2
− C

2
d

)
≤ O

(
e−Ω(dε2)

)
+ e−Ω(r)

Thus, one can choose d = Θ(ε−2(log 1
ε

+ log 1
δ
)), r = Θ(log 1

δ
+ log 1

ε
) such that the

above is O
(
δε

8
p

)
. A similar bound holds true for Uj. By a union bound, remark

that

P

(
∃i≤k

d∑
i=1

Lj ≥
d

2
− C

2
d or

d∑
i=1

Uj ≥
d

2
− C

2
d at tk

)
= O(δ)

Now, let Fi,j be the indicator of the event that ∃t ∈ [tj, tj+1−1] | |〈x(t)−x(tj), πi〉 ≥
ε||x(T)||p. Remark that 0 = x(tj) − x(tj) ≤ x(tj+1) − x(tj) ≤ ... ≤ x(tj+1−1) − x(tj), and

||xtj+1−1−x(tj)|| ≤ ε
4
p · ||x(T)||p. Thus, 53 implies E(Fi,j) ≤ O(

(
ε

ε
4
p

)− 2p
2+p

)+O(s−
1
p) =

O
(
ε

2(4−p)
2+p

)
= O(ε) which can be made at most C

4
ε for an appropriate choice of d

and s. Thus, for fixed j,
∑d

i=1 P(Fi,j) ≤ C
4
dε. Now, by 11, one can obtain again

that:

P(
n∑
i=1

Fij ≥
C

2
dε) ≤ e−Ω(dε) + e−Ω(r) ≤ δε−

8
p = O(

δ

q
)

for an appropriate choice of d and r. Now, this implies that

P(∃j
∑

Fij ≤
C

2
dε) ≤ O(δ)

Assume that neither of
(
∃i≤k

∑d
i=1 Lj ≥

d
2
− C

2
d or

∑d
i=1 Uj ≥

d
2
− C

2
d at tk

)
or(

∃j
∑
Fij ≤ C

2
dε
)

holds. This happens with probability 1 − O(δ). Fix some i.

Then, by the triangle inequality, |〈πi, x(t)〉| ≤ |〈πi, x(tj)〉|+ |〈πi, x(tj)−x(t)〉|, where tj
is the last element in the sequence t encountered before t. Now, this is smaller than
|x(tj)|p + 2ε|x(T)| for more than d

2
of i ∈ d. Similarly, is is bigger than |x(tj)|p− 2ε for

at least half of them. Thus, the median estimator will return a number st between

|x(tj)|p±2ε|x(T)|p. But now |x(t)−x(tj)|p ≤ ε
4
p |x(tj)| by construction. Up to constants

depending on p, |x(t) − x(tj)|p ≥ Ω(|x(t)|p − |x(tj)|p
)
, which proves that given p ≤ 2,

one has that:

|st − ||x(t)||p| ≤ O(ε) · ||x(T)||p
42

which proves the weak tracking claim.

Theorem 106. The above algorithm can be implemented using O(ε−2 log T (log 1
ε

+

log 1
δ
)) for the sketch and O(ε−p(log 1

ε
+ log 1

δ
)(log T + log n)) for maintaining the

matrix d. In paricular, one needs space O(ε−2(log T +log n)(log 1
ε
+log 1

δ
)) for weak-

tracking of Fp of a stream.

The main ingredient in proving this result is sampling off a distribution nearby
this one that only requires τ = O(logmε−1) random bits to be described.

Theorem 107. One can achieve strong tracking guarantees in space
O
(
ε−2(log T + log n)(log 1

ε
+ log 1

δ
+ log log T)

)
Proof: Remark that f(a1) ≥ 1, and f(a1, ..., aT) ≤ T 2, as the biggest norm one

can see clearly happens for p = 2, and for p = 2 the norm is concave is the frequency
vector, which means it is maximized when one of the frequency elements is T and
the others are 0. 5 implies the result.

7.2. p = 2. The results in and guarantee F2 approximation bounds for similar as-
ymptotic dependencies. This section will be dedicated to improving these bounds.

Theorem 108. [1]
There exists an algorithm A that uses O(ε−2(logm+log n) log 1

δ
) bits of space that

provides an ε-approximation to F2 with fialure probability δ.

Proof:
We will first go to describe the original [1] method and an improvement suggested

in [6] for F2 estimation of a stream.

Algorithm 8 Sketch given in [1]

Initialization
Pick a matrix Π of size k × n matrix for d = Θ(1

ε2
) which is composed of 8-wise

independent variables that are ±1 each with probability 1
2
.

Initialize a sketch vector v = 0 of dimension d.
Update step(t):
Make v = v + Π(at), where at is the element seen at time step t, and Π(at) is the
column corresponding to at.
Evaluation
Return the average F2 estimator given by the above.

A stronger result was proven in [6].

Theorem 109. [6]
The algorithm in this section can be implemented in O

(
ε−2(log n+ log T) log 1

δ

)
to provide ε-weak tracking to F2 with failure probability δ, at the cost of making
entries in every row in Π 8-wise independent. That is by amplifying the algorithm
log(1

δ
) times and taking the median for amplifying accuracy.

43

Theorem 110. The algorithm in this section can be implemented in
O
(
ε−2(log n+ log T)(log 1

δ
+ log log T)

)
to provide ε-strong tracking for F2 with

failure probability δ, at the cost of making entries in every row in Π 8-wise indepen-
dent. This guarantees strong tracking for l2 in the same assymptotic time.

Proof: Follows as a corollary to 109 and 5. We will now give a proof to 109.

Proof of 109:
First, let l2(t) be the l2 norm at time t. First, consider the sequence of frequency

vectors f1, ..., fT . Let v1, ..., vT be the normalized version i.e, fi = fi
|fT |

. Then,

v0 = 0 and |vT | = 1. The first thing to note is that the sketch that is loaded
in memory is Πx(t), where x(t) is the frequency vector at time t. One can remark
that Πx(t) can be dually represented by A(t)Π̃, where Π̃ is vectorizing the matrix Π,
and A is a d × (nd) matrix, that has blocks of the vector x(t) on the rows . Thus,√
k|Πx(t)| = |A(t)Z|. Now, define B(t) = 1

k
(A(t))TA(t). Then the estimator is given by

pt(Z) = ZT (A(t))TA(t)Z = ZTB(t)Z. Remark that E(pt(Z)) = l2(t)2. Consequently,

one is interested in bounding the quanity P(supt≤T |
√
pt(Z) − l2(t)| ≥ λl2(T)) to

obtain tracking guarantees. For this, it would be sufficient to provide a bound of
the form

P
(

sup
v∈V
|Z(t)TBvZ

(t) − E(Z(t)TBvZ
(t))| ≥ ελ

)
= o(1)

, when one looks at the dependency on λ.
Now, the Cauchy-Schwarz inequality, for vectors x, y of n elements and norm at

most 1, the following holds true:

||xTx− yTy||F ≤ 4|x− y|2
Now, let El be a 1

2l
-net for the set of vectors vi. Let Tl = {Bv | v ∈ Tl}. Then, by

the inequality, above, Tl is a 4√
k·2l net in || · ||F and thus in || · || as well. Now, given a

sample Z of 8-wise independent signs, consider γ(B) = |Z(t)TBZ(t)−E(Z(t)TBZ(t)).
Now, very similar to the proof of 51, one will consider x(l) to be the closest point to
x inside the net El. Then, |x− x(l)| ≤ 1

2l
and thus ||Bx−Bx(l) ||F ≤ 4√

k·2l . Let Dl be

the set of differences Bx(l+1) − Bx(l) for v ∈ V . Then, |Dl| = O(22l) Now, for some
constant c

P(sup
v∈V

γ(Bv) ≥ cλ) ≤
∑

P(sup
B∈Dl

γ(B) ≥ λ

2i/3
)

To finish, we will use the following corollary of the Hanson-Writght inequality:

Theorem 111. [6]
If Zi is a sequence of independent Rademachers, then

||ZTAZ − E(ZTAZ)||p = O(||B||F)
44

, where the constant is allowed to dependent on p.

Remark. For integers p, remark that Z does not need to be independent, but could
as well be just 2p-independent, since it only concerns a polynomial of degree 2p in
Zi.

Given, this, for p = 4, remark that

P(sup
v∈Ei

γ(v) ≥ λ

2i/3
) ≤ O(|Di|·

maxA∈Dl E(|ZTAZ − E(ZTAZ)|4)
λ4

24i/3

) = O(
1√
k · λ4

·2−2i/3)

and thus we get that P(sup γ(Bv) ≥ Ω(λ)) = O(1√
k·λ4). Now, given that we take

k = Θ(1
ε2

), the result is proven.

To finish the result, remark that one can take Θ(log 1
δ
) independent runs of this

algorithm. By a Chernoff bound, probability of failure will be bounded by δ. The
space usage follows immediately.

45

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of approximating
the frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing (STOC ’96). ACM, New York, NY, USA, 20-29.

[2] K. Azuma, “Weighted sums of certain dependent random variables,” Tohoku Mathematical
Journal, vol. 19, pp. 357–367

[3] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In Proceedings of
the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 276–287,
1994.

[4] Jaros law B lasiok. Optimal streaming and tracking distinct elements with high probability.
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. 2018,
2432-2448

[5] Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of p norms in data
streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages 32:1–
32:13, 2017

[6] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P. Woodruff. BPTree: an 2 heavy hitters algorithm using constant memory. In Proceedings
of the 36th SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
2017.

[7] Carter, and Wegman. “Universal Classes of Hash Functions.” Journal of Computer and System
Sciences, vol. 18, no. 2, 1979, pp. 143–154.

[8] Doob, J. L. Notes on Martingale Theory. Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to
Probability Theory, 95–102, University of California Press, Berkeley, Calif., 1961.
https://projecteuclid.org/euclid.bsmsp/1200512595

[9] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, May 2006.

[10] Joag-Dev, Kumar, and Frank Proschan. “Negative Association of Random Variables with
Applications.” The Annals of Statistics, vol. 11, no. 1, 1983, pp. 286–295.

[11] Hoeffding, W. (1963). ”Probability inequalities for sums of bounded random variables”. Jour-
nal of the American Statistical Association. 58 (301): 13–30

[12] Kane, Daniel M., Nelson Jelani, Woodruff P. David. “An optimal algorithm for the distinct
elements problem.” PODS (2010).

[13] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1161–1178, 2010.

[14] U. Haagerup. The best constants in the Khintchine inequality. Studia Math., 70(3):231–283,
1982.

[15] McDiarmid, Colin (1989). ”On the Method of Bounded Differences”. Surveys in Combina-
torics. 141: 148–188.

[16] J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston, 2017.
In progress, Chapter 1 online at http://fs2.american.edu/jpnolan/www/stable/stable.html.

[17] R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc.
Camb. Phil. Soc. 28 (1932), 266–272

[18] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Sci-
ence, 7(1-3):1–336, 2012.

46

	1. Acknowledgements
	2. Introduction
	2.1. Frequency moments
	2.2. Distinct elements
	2.3. -approximation
	2.4. Tracking

	3. Bounding tails of random variables
	3.1. Negative association
	3.2. Bounded independence

	4. Distributions
	4.1. Throwing balls into bins
	4.2. Small number of bins regime
	4.3. Stable distributions
	4.4. Bounded independence

	5. Stochastic processes under bounded independence
	5.1. Martingales
	5.2. Maximum inner product

	6. Number of distinct elements
	6.1. Constant-factor approximation with constant failure probability
	6.2. Arbitrary accuracy-small F0
	6.3. High probability
	6.4. Accurate approximation; Low failure probability
	6.5. Tracking in the high probability regime

	7. Frequency moments
	7.1. p (0,2)
	7.2. p = 2

	References

