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Abstract 
 

Evaluating market response to information is difficult in traditional financial 

markets due to their complex pricing problem. Sports betting markets greatly simplify this 

process. Therefore, I use moneyline data from over 88,000 Major League Baseball (MLB) 

games to explore the evolution of efficiency in the MLB betting market from 1977 to 2018, 

analyzing the manner in which it assimilates information. By comparing forecasting 

accuracy across years, I find that improving precision is driving a convergence between 

forecasts and outcomes over time, spurred specifically by changes occurring from the late 

1990s to early 2000s. This period corresponds to improvements in information quality, 

quantity, and accessibility in the market. I then show that information assimilation within 

each season, through the incorporation of current-season performance, leads to an increase 

in accuracy. By comparing daily opening and closing lines, I find that larger relative line 

movements are on average less accurate, suggesting exaggerated market reactions to new 

information and highlighting the importance of information processing time on efficiency. 

In addition, I offer suggestive evidence of informed bettor presence but am unable to fully 

disentangle the relationships between betting volume, better composition, and accuracy.  
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I. Introduction 
 

As proposed by Fama (1970), the efficient market hypothesis (EMH) states that the 

price of an asset fully reflects all available information related to its intrinsic value. This 

implies that participants are not able to use publicly available information to consistently 

generate excess returns relative to the market. While Fama (1970) finds that the EMH 

performs exceptionally well in the vast majority of securities markets, research in 

subsequent decades reveals anomalous, profitable trading strategies and criticizes the 

assumption of market efficiency (Rozeff and Kinney 1976, French 1980, Banz 1981). 

However, following the publication of such strategies like the January or Small Firm 

Effects, their profitability gradually vanishes from the market, arbitraged away by informed 

investors (Horowitz et al. 2000, Malkiel 2003, Szakmary and Keifer 2004).1 These findings 

highlight a fundamental assumption of efficient markets – that prices not only reflect 

existing information but also respond to new information. The new information of 

potentially profitable trading strategies diffuses throughout the market, and prices adjust to 

eliminate them. As a result, there is considerable economic interest to better understand 

how markets incorporate information. In this paper, I use the Major League Baseball 

(MLB) betting market as a testing grounds to study the impact of information, in regard to 

its assimilation, quality, and quantity, on efficiency. 

Study of the MLB betting market has distinct advantages, especially relative to 

capital markets. Not only does it represent a simplified financial market with a vastly 

simplified pricing problem, but also the true, underlying value of the asset (the bet) is 

                                                
1 The January Effect is the tendency for the price of stocks to rise more in January than in other months, while 
the Small Firm Effect is the tendency for smaller firms to have higher risk adjusted returns, on average, than 
large firms (Rozeff and Kinney 1976, Banz 1981).  
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known with certainty after the conclusion of a game (Sauer 1998, Levitt 2004). 

Furthermore, it is a major source of economic activity, generating an annual $55 billion in 

both legal and illegal bets (Purdum 2016). Although half the size of the NFL betting 

market, the MLB betting market has a vast edge in regard to its volume of events. Whereas 

the NFL regular season consists of only 256 games, the MLB regular season has a total of 

2,430 games, yielding far larger sample sizes for analysis. The final research advantage of 

the MLB betting market concerns its relationship with information – more so than any 

other sport, MLB has seen an explosion in the amount and quality of information available 

to it. Online databases contain statistics going back to the 1800s, and there is even a 

dedicated field of research, known as sabermetrics, that empirically analyzes statistics to 

predict performance. Newer developments like Statcast quantify more aspects of the game 

than ever before, enabling novel insights and analyses that are publicly available.2 

 In this context, I exploit a dataset of over 88,000 MLB games’ gambling lines to 

study the evolution of the baseball betting market’s efficiency from 1977 to 2018, 

particularly as it relates to information responses. I first compare the market’s forecasts 

against actual outcomes across years, using a series of weighted least squares regressions 

in order to test their accuracy and precision and identify periods of substantial shifts in 

market dynamics. I proceed to adopt a more granular view, looking at within-season 

dynamics of information assimilation by examining forecasting errors on a weekly basis. 

Lastly, I consider information assimilation on an even more granular scale, estimating the 

information content of daily line changes by studying their impact on prediction error. 

                                                
2 Statcast, released in 2015, records vast amounts of data related to every aspect of baseball performance, 
including pitching, hitting, fielding, and baserunning, for every pitch and play of every game. The public can 
access all of these data.  
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I find that the dominant market dynamic is increasing forecast precision, enabling 

consistent prediction accuracy. I show that this trend is driven by changes in the late 1990s 

to early 2000s, and I proceed to offer plausible explanations in terms of both the quality 

and quantity of information available to the market. I also find that market forecasting 

accuracy significantly improves over the course of a season - out of 80 similarly priced 

games, the market correctly predicts game outcomes toward the end of the season on 

average 4.29 more times compared to the start of the season. The beginning of the National 

Football League (NFL) season alters this trend and decreases overall accuracy. The market 

correctly predicts the favorite 2.66 more times on average in an 80-game week if the week 

occurs just prior to the start of the NFL season compared to after. However, the rate at 

which this information assimilation occurs has not accelerated over time. Finally, I find 

that, on average, larger line movements lead to larger prediction errors: a 1% increase in 

magnitude of the percent change of a line leads to incorrectly predicting the favorite 2.53 

more times on average out of 1000 games. While the results suggest that oddsmakers bias 

their lines and informed bettors take advantage of these biases, I am unable to arrive at 

conclusive results.  

The remainder of the paper proceeds as follows. Section II discusses the related 

literature, while Section III presents the data. Section IV describes the empirical strategy. 

Sections V and VI report the results and their implications, respectively. Section VII 

concludes. 
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II. Literature Review 
 

Information is crucial for market functionality. The EMH assumes that prices 

reflect all current information, but prices also must respond to incorporate the release of 

new information. Several studies analyze this concept in the stock market, demonstrating 

that prices respond in the expected direction after news events such as stock splits, though 

the speed of response varies (Fama et al. 1969, De Bondt and Thaler 1995, Campbell et al. 

1997). However, it is the study of commodity markets that provides the most substantive 

analyses showing the impact of information, particularly in terms of its accessibility, on 

market functionality. Jensen (2007) finds that the introduction of mobile phones to the 

Indian fisheries sector lowered barriers to information access and led to near perfect market 

efficiency, the elimination of waste, and overall consumer and producer welfare increases. 

Studying the cotton industry, Steinwender (2018) demonstrates similar efficiency 

improvements due to enhanced access to information. She finds that the introduction of the 

telegraph reduced data acquisition barriers in the market to such an extent that there was a 

welfare gain equivalent to the abolishment of a 6% ad valorem tariff. In addition, the grain 

and livestock markets saw gains in efficiency with the release of information via production 

and breeding reports (Larson 1960, Miller 1979). 

 The literature has also studied the relationship between information and efficiency 

through the lens of betting markets. The reason is that betting markets have the distinct 

advantage that the true, underlying value of the asset (the bet) is much easier to ascertain. 

In fact, it is known with certainty after the outcome of the event of interest. Overall, betting 

markets represent simplified financial markets with a vastly simplified pricing problem 

(Sauer 1998, Levitt 2004). Uncertainty initially surrounds the outcomes, and the large 
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number of participants have extensive, yet incomplete, information that they utilize to 

determine the market clearing prices, or odds. Additionally, while the market is primarily 

composed of individual bettors and price information is widely available, there are 

professional gamblers who try to exploit mispricing or sell their picks, much like traders 

and fund managers (Avery and Chevalier 1999). Comparisons between ex ante measures, 

represented by odds, and ex post measures, known with certainty after the gambling event 

occurs, provide insight into efficiency and enable analysis of market response to 

information. 

 To date, the majority of economic research in wagering markets focuses on race-

track, American football, and European football betting due to the size and popularity of 

these sports (Snyder 1978, Asch et al. 1984, Gray and Gray 1997, Gil and Levitt 2007). 

For instance, over $100 billion is legally bet on horse-racing every year, while the 

American and European football betting markets take in over $300 billion annually, legally 

and illegally (Keogh and Rose 2013, Purdum 2016, The Jockey Club 2016). These markets 

are major sources of economic activity, with large amounts of money at stake (Levitt 2004). 

Although small relative to other sports, valued at approximately $55 billion, the use of the 

MLB betting market provides distinct research advantages, particularly in regard to its 

large volume of events (Purdum 2016). Additionally, the study of the MLB betting market 

provides nuance to existing NFL literature, especially in terms of the rate and effectiveness 

of information incorporation since the time frame for market adjustments is very different. 

Specifically, NFL opening odds come out one week before the game, whereas sportsbooks 

release MLB opening odds the day before a game. 
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 Similar to other sports wagering research, prevailing literature related to the MLB 

betting market has sought to test efficiency by searching for profitable betting strategies 

that depend only on publicly available information at the time of the wager. The primary 

focus of these studies is the closing line, which is the final value of the betting line at game 

time and is regarded as the most accurate forecast of actual outcomes, as it reflects broader 

market sentiments and contains more information (Gandar et al. 1988, Norheim 2017). 

Woodland and Woodland (1994) find that the market is highly efficient in the sense that 

objective win proportions correspond closely to subjective win probabilities (proxied by 

closing lines), with a slight, but not exploitable, reverse favorite longshot bias.3 While later 

studies contest the existence of this bias, they nevertheless also find a high degree of market 

efficiency (Gandar et al. 2002, Gandar and Zuber 2004, Paul et al. 2009, Ryan et al. 2012). 

A limitation to these studies, however, is that they only consider efficiency cross-

sectionally, aggregating and evaluating prediction accuracy in one time period. In this 

paper, I expand on this literature by examining the evolution of accuracy and efficiency in 

the market across time. This enables a better understanding of how the market achieves 

and maintains efficiency. 

Just as market efficiency can change across years, it can also change within a year. 

This is especially relevant for sports betting markets, because as the season progresses team 

performance reveals more and more information about underlying ability. Thus, individual 

seasons are natural testing grounds for information incorporation: at the beginning of a 

season, the market has limited information on a team’s true ability in the current season 

                                                
3 The favorite longshot bias is the tendency of bettors to overbet underdogs (longshots) and underbet 
favorites. It is most common in horseracing, but the reverse of the bias has been documented in both the MLB 
and NHL betting markets (Woodland and Woodland 2010). 
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and relies on previous seasons’ information in its forecasts. As teams play more games, 

current season information resolves the uncertainty concerning team performance, and as 

a result, teams originally expected to perform poorly may become very successful or vice 

versa. To the best of my knowledge, the only paper that explores this is Ryan et al. (2012), 

which considers the timing within the season when bets are placed and finds that betting 

on underdogs in April would have generated positive profits from 2001-2010. As with the 

revelation of profitable trading strategies in the stock market, Ryan and Celestin (2018) 

show that the profitability of this strategy disappears in the years following its release, 

providing evidence of market response to information between seasons. Whereas these 

studies only consider wagering strategies dependent on month of the season, I provide a 

more nuanced view by studying the relationship between weekly prediction accuracy and 

the number of games played in a season up to that week. This enables an estimate of the 

rate at which the market incorporates in-season performance information and allows for a 

comparison of these rates over time.  

The market can also incorporate information on a more granular scale – on a daily 

basis for each game throughout the betting window. Bookmakers release their opening 

lines up to a day before a game and can change the lines prior to game time due to betting 

imbalances or the release of new information such as line-up changes, injury reports, or 

weather forecasts.4 Most line movement research uses the NBA and NFL point spread 

markets as their testing grounds, finding that line changes carry information that improves 

                                                
4 See the Appendix for a slightly more in-depth description of lines, including definitions of the opening and 
closing lines. By “line,” I am referring to the moneyline. I use the terms interchangeably throughout the 
paper. 
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accuracy and demonstrate the presence of informed, influential traders in the market 

(Gandar et al. 1998, Gandar et al. 2000).   

On the other hand, analysis of MLB line movements is far more limited and 

inconclusive, with only Paul and Weinbach (2008) examining line movements in the MLB 

moneyline market. They find offshore sportsbooks to be highly efficient in the sense that 

no profitable wagering strategies exist based off of general line movements. Interestingly, 

they find betting against first movements to favorites is profitable for a smaller Las Vegas 

sportsbook. However, they only use one year’s worth of data, so their conclusions might 

not be externally valid. Rather than search for the existence of profitable wagering 

strategies, I instead expand the MLB line movement literature by estimating the impact of 

line movement direction and magnitude on prediction accuracy. 

III. Data 
 
This paper relies on two datasets - the first includes the closing moneylines and 

outcomes for 88,306 Major League Baseball games from the years 1977 – 2018, and the 

second consists of opening and closing moneylines and outcomes for 11,863 games from 

the 2013 – 2018 seasons. The first dataset comes from two sources: the 1977 – 2000 

seasons are from Computer Sports World (CSW) and the 2001 – 2018 seasons are from 

Covers.com, an established offshore sports betting site.5 These sources are consistent with 

prior literature (Woodland and Woodland 1994, Gandar et al. 2002, Paul and Weinbach 

2008, Ryan et al. 2012). The combination of these two sources provides the largest MLB 

moneyline dataset analyzed to date, spanning 42 seasons. While the use of two distinct 

                                                
5 Vegas Insider acquired Computer Sports World in the early 2000s and has since stopped providing archived 
odds information. I am thankful to Professor Bill Dare at Oklahoma State University and Professor Andrew 
Weinbach at Coastal Carolina University for providing me with their 1977 – 1999 CSW data. 
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sources could confound results, since moneylines and forecasting ability vary by 

oddsmakers, a comparison of two seasons of overlap reveals that the two sources are 

extremely similar, with a mean difference between lines of just 0.03 points. Appendix A.2 

contains further figures and descriptions that compare these two sources.  

Across all games in the aggregate dataset, there are 148 distinct lines represented. 

Figure 1 displays their frequency of occurrence. The average implied probability of a 

favorite win is 0.584, while the median value is 0.576. The 25th percentile is 0.545, the 75th 

percentile is 0.615, and the standard deviation is 0.046. Overall, the minimum and 

maximum implied probabilities of a favorite win are 0.515 and 0.737, corresponding to 

moneylines of -106 and -280, respectively.  

In the sample, favorites have a 55.92% winning percentage. In over two-thirds of all 

games, the favorite is the home team, with a winning percentage of 57.04%. In games 

where the away team is the favorite, this value drops to 53.30%. Table 1 features an 

additional breakdown of probabilities by month of the season, showing a general tendency 

of the favorites to win more often as the season progresses. 6 

 I use the second dataset to analyze line movements from the 2013 – 2018 seasons.  

The data comes from donsbest.com, a gambling site that archives MLB game information 

from 2013 onwards. While the closing line comes explicitly from the sportsbook Pinnacle, 

the opening line source is not stated, but a comparison of a large number of the opening 

lines shows that they do in fact come from Pinnacle as well. However, a main limitation to 

using donsbest.com is the incompleteness of its data: 2,717 games had some form of 

missing data and therefore were dropped. Of the dropped games, a disproportionate amount 

                                                
6 Appendix A.2 describes adjustments that I make to the dataset prior to analysis. 



 14 

– 986 (36%) – are from the 2015 season. In order to try to minimize the potential bias this 

would introduce to results, analysis of line movement accuracy focuses on aggregate 

performance rather than year to year performance. After the dropping of these data, 11,863 

games remain in the sample. 

Among these games, the average shift from opening to closing line for the favorite’s 

implied win percentage is -0.0124, while the average percent change in the line is -2.17%. 

This means that on average the favorite became slightly less favored, which suggests larger 

betting volumes on the underdogs. Overall, there are 4,242 games where the favorite 

became more favored, 332 where there was no line change, and 7,289 games where the 

favorite became less favored. In 1,325 of these latter games, the line shifted enough that 

the opening favorite became the closing underdog.  Closing line favorites have a winning 

percentage of 57.19%, which equates to an average opening line error of 0.0211 and an 

average closing line error of 0.0163. This provides evidence supporting the traditional view 

that closing lines are better forecasters of performance. Table 2 contains further summary 

statistics, and Figure 2 provides a visualization of the distribution of line movements.  

IV. Methodology 
 
Using the aggregate 1977 – 2018 dataset, I run several sets of weighted least squares 

regressions to explore various market dynamics. The first three regressions focus on 

identifying the evolution of market accuracy and precision over time, with the goal of 

discerning periods of substantial shift. After analyzing these general trends in the market, 

I perform additional analyses to measure information assimilation in the market and test 

for drivers of accuracy, such as betting volume and bettor composition.  Lastly, I use the 
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2013 – 2018 line movement dataset to estimate the information content of these movements 

as they relate to forecasting accuracy. 

Overall Market Dynamics 
 

In a perfectly efficient market with no transaction costs, a moneyline’s implied 

probability of a favorite win would be identical to the actual proportion of games won by 

favorites who are listed at that price.7 But the outcomes of sports games inherently have a 

degree of stochasticity, such that even the most robust model will not be perfectly accurate. 

This paper investigates how well the accuracy of moneylines improves over time and seeks 

to identify driving mechanisms. To do so, the data had to be narrowed to moneylines that 

had sufficiently large samples in each year from 1977 to 2018.  Games with “similar” 

moneylines were grouped together to bolster sample sizes for analysis. In this paper, I 

group games that have closing lines within 4 points of one another, starting from -106. 

Thus, the first “Line Group” is -106 to -110, the next is -111 to -115, and so on. This 

corresponds to a maximum difference of 0.009 between the implied probabilities of a 

favorite win, with this difference shrinking with subsequent groupings.8 The data set 

originally had 148 distinct lines, but these were combined into 29 separate Line Groups.  

The motivation for performing the analysis by moneyline, rather than simply 

aggregating across all lines, is to be able to control for differences between lines. Games 

                                                
7 This holds in theory, but in practice bookmakers charge a commission on bets called the “vigorish” or 
“juice”. The presence of the vigorish can introduce a slight bias to the lines, meaning perfect market 
efficiency might not be equivalent to perfect accuracy. For simplicity, I treat 100% accuracy as 100% 
efficient, since this phenomena should bias all lines equally and to the same degree.  There is also no reason 
for this bias to be different across years, and so conditional on this, cross year results should be valid.   
8 The 4-point threshold yields the maximum number of Line Groups that have enough observations to satisfy 
the inequality np > 5 in each period, consistent with prior literature (Woodland and Woodland 1994, Gandar 
et al. 2002, Ryan et al. 2012). This enables a normal approximation to the binomial distribution, increasing 
the precision of the estimated difference between observed proportions of favorite wins at line l and the 
implied probability of a favorite win at line l. 
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where a team is favorited to win at 70% are likely fundamentally different from games 

where a team is favorited at only 51%. For example, in the former a Cy Young caliber 

pitcher could be starting for the favorite, whereas in the latter replacement level pitchers 

could be on the mound.9 The market views these as two distinct scenarios and should have 

different responses in each. Therefore, focusing our analysis by moneyline lets us consider 

dynamics driven primarily by changes within lines, where the observations are more 

similar, and assists in controlling for unobserved heterogeneity that could arise between 

lines. 

 To convert from the favorite closing line (FCL) to the implied probability of a 

favorite win, P, I use the formula:  P = (-FCL) / (-FCL + 100). I then calculate the yearly 

absolute error of each Line Group’s prediction by taking the absolute value of the 

difference between the average implied probability and actual proportion of games won by 

the favorite team.10  

I first measure the change in absolute error over time, using the regression equation 

															𝐸#,%	 = 	𝛽( +	𝛽*𝑌𝑒𝑎𝑟% + ∑ 𝛾#Ι#23
#4* +	e#,%,                                  (1) 

where Ei,t is the average absolute error of Line Group i in year t, Yeart is an index for year 

group t, Ii is an indicator for Line Group i, and ei,t is the error term. The time increment 

varies from 1 year to up to 5 years, with the average absolute error being recalculated 

accordingly in order to see if the market adjusts over a period of several years rather than 

                                                
9 “Cy Young” refers to the recipient of the Cy Young Award, awarded annually to the top pitcher in the 
American and National Leagues. Replacement level players are those with skills that are league-average. 
10 As in Woodland and Woodland (1994), I use a standardized test statistic in every year to test the efficiency 
of each Line Group, testing against the null hypothesis that for each Line Group P = r, where r is the actual 
proportion of games won by the favorite team. I find at most two inefficient Line Groups in a given year, 
significant at the 5% level. This occurs in only 2 years in the sample. Overall, the findings are consistent with 
prior literature. Appendix A.3 describes the test statistic used and presents the results.  
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every year. Table 3 presents these groupings. In this regression and subsequent ones, Line 

Group serves as the fixed effect, and I cluster standard errors at the Line Group level. Thus, 

I am able to identify changes from variation within each line over time rather than the 

variation across all lines in order to mitigate omitted variable biases. The specification uses 

analytic weights, corresponding to the Line Group’s frequency of occurrence in each time 

period. 

While the first set of regressions tests accuracy, the second set tests precision by 

capturing the change in the standard deviation of the absolute error over time. The standard 

deviation of each Line Group’s prediction error is calculated over 2 to 5-year increments. 

Observations are again weighted by the number of games in each Line Group over the 

appropriate time interval. The regression equation is 

𝜎#,%	 = 	𝛽( +	𝛽*𝑌𝑒𝑎𝑟% +	∑ 𝛾#Ι#23
#4* + e#,%,                                    (2) 

where si,t  is the standard deviation of the absolute error of Line Group i during year group 

t, and Yeart, Ii, ei,t. are the same as in Equation 1.   

The third set of regressions uses a period by period “cut test” to identify periods 

after which the standard deviation significantly differs from the prior periods. This test is 

performed over 2, 3, 4, and 5-year periods for robustness. The resulting regression equation 

is 

𝜎#,%	 = 	𝛽( +	∑ 𝛽#Ι#23
#4* ∗ Y% + ∑ 𝛾#Ι#23

#4* + e#,%,                                   (3) 

where Yt  is a dummy variable that equals 1 if the observation occurs during or after year 

group t and 0 otherwise. For instance, let period j represent the 1989 – 1991 seasons when 

considering the 3-year increment sample.  Pre-1989 games are assigned a value of 0, while 

1989 games and afterwards are assigned a value of 1. Standard deviations are calculated 
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accordingly and regressed on the dummy variable, using Line Group again as the fixed 

effect and weighting according to number of games. The remaining variables are defined 

as in the previous equations. 

Information Assimilation 
 

As more games are played over the course of a season, market participants have 

more information concerning true team ability, and, therefore, performance forecasts 

should align more closely with the results of actual performance. The subsequent 

regressions give insight into the rate at which the market incorporates such information 

into its forecasts of performance by regressing prediction error on the total number of 

regular season MLB games that have been played up to that point in time. In these analyses, 

I do not use Line Groups; rather, I consider each week’s prediction accuracy in aggregate. 

Concern about sample size is the primary motivation behind this decision. Many Line 

Groups do not have games in every week of the season, and in the weeks that they are 

represented they suffer from small sample sizes - typically fewer than 6 games per week. 

Therefore, relying on the assumption that in-season learning occurs across all moneylines 

at similar rates, I focus on the week’s predictions in aggregate, using a sample size of 79 

games per week on average.  

 For every week, I average the implied probability of a favorite win for all games 

occurring during that week and compare that to the actual proportion of games won by the 

favorite, taking the absolute value of the difference between the two values to calculate 

each week’s absolute prediction error. The primary regression equation is 

𝐸#,% = 	𝛽( +	𝛽*N#,% + ∑ 𝛾%𝛪%92
%4* + e#,%,                                     (4) 
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where Ei,t is the absolute error of week i in year t, Ni,t is the total number of games that have 

been played before week i of year t, It  is an indicator for year t, and ei,t is the error term. I 

use year fixed effects in order to control for factors that vary across year, minimizing 

potential biases in the estimates that could arise from certain seasons being largely 

mispriced. The number of games per week serves as the weight.  

 The next two regressions follow Paul and Weinbach (2011), who find that MLB 

betting volume decreases substantially after the arrival of the National Football League 

(NFL) season, especially on popular NFL game days (Saturday, Sunday, Monday).11 

Figure 3 displays the average number of bets per MLB game by day of the week for the 

2009 season, both pre- and post-football.12 Betting volume falls in every day of the week 

post-football, with the most drastic falls occurring on the weekends. I attempt to exploit 

this finding to disentangle the impacts of betting volume and the presence of informed or 

“skilled” bettors on line accuracy. It is assumed that a higher volume of bets means that 

lines become representative of more people’s beliefs, thereby incorporating more 

information. However, if there are a large number of recreational or “uninformed” bettors, 

this information could actually be noise. Therefore, studying accuracy post-football can 

yield insights into the composition of the betting market, as those still participating are far 

likelier to be informed, professional gamblers who are more adept at incorporating 

information into their predictions. These bettors remain in the market because they perceive 

                                                
11 Paul and Weinbach (2011) show this trend in betting volume only in the 2009 season. I assume that such 
trends persist in each season, which is a potential limitation, as it could decrease the meaningfulness of my 
findings if the 2009 season was an anomaly.  
12 Pre-football refers to MLB games that occur before the start of NFL season, and post-football refers to 
games that occur after the start of the NFL season. 
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themselves to have an edge and do not change markets due to relatively high switching 

costs. 

 I perform two additional analyses to capture the impact of the NFL season on 

forecasting accuracy and information assimilation in the MLB betting market. The goal of 

these analyses is to provide quantitative evidence that can help describe the composition 

of bettors and whether it is the informed bettors who drive information incorporation into 

the market. The first analysis simply adds a dummy variable to Equation 4 to capture the 

difference in accuracy pre- and post-football season. This gives the regression equation  

𝐸#,% = 	𝛽( +	𝛽*N#,% + 𝛽2𝐹#,% + ∑ 𝛾%Ι%92
%4* + e#,%,                               (5) 

where the additional Fi,t is a dummy variable that equals 1 if week i of year t occurs after 

the start of that year’s NFL season and 0 otherwise.13 All other variables are the same as in 

Equation 4. I then analyze time trends of these learning rates to see if the rate of information 

assimilation has changed over time. 

 Next, I analyze prediction at a more granular level: by day of the week. I calculate 

the absolute prediction error for every day of the season using the same process as in 

Equation 5, but at the daily level instead of weekly. This leads to an average sample size 

of 11 games per day. The resulting regression equation is 

𝐸#,% = 	𝛽( +	𝛽*N#,% + 𝛽2𝐹#,% + ∑ 𝛾%𝛪%92
%4* +	∑ 𝜔#𝐹#,%*9

#4* + e#,%,                (6) 

where Ei,t is now the absolute error of day i in year t, Ni,t is the total number of games that 

have been played before day i of year t, It is an indicator for year t (serving as the fixed 

effect), and w*F is a series of interaction terms between dummy variables for day of the 

                                                
13 For simplicity, if week i of the MLB season begins before the start of the NFL season but still includes the 
NFL opening day, I label that week as occurring post-football. 
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week and a dummy variable for post-football. I repeat this analysis on both the opening 

lines and closing lines from the 2013 – 2018 seasons to attempt to determine whether 

changes in the market due to football’s arrival are driven by oddsmakers or bettors. 

Line Movements 
 

Lastly, I explore the relationship between line movements and accuracy, focusing 

on the impact of overall line movements from opening to closing. After a line opens, 

oddsmakers can move it either in response to new information or to imbalances of betting 

action, which can be due either to noise generated by uninformed bettors or bettors 

responding to their own information. Examples of new information could include line-up 

and schedule changes, weather conditions, and injury reports, among many others. I 

hypothesize that larger line movements correspond to shifts associated with more 

information, thus leading to a higher degree of accuracy. To test this, I calculate the percent 

change associated from opening to closing lines, sort games into deciles based on their 

percent change, and find the absolute errors associated with both the opening and closing 

lines, aggregated by decile.14 To consider the information content of these movements, I 

estimate the effect of both their direction and their magnitude on accuracy using the 

regression equation 

𝐸#,% = 	𝛽( +	𝛽*∆#,% + 𝛽2𝜇#,% + 𝛽>𝜇#,% ∗ ∆#,% + 𝛿0𝐹#,% + ∑ 𝛾%𝛪%A
%4* + e#,%,            (7) 

                                                
14 I choose to focus on percent change instead of other metrics like absolute change in the line because a line 
movement of +5 has a far greater impact when the opening line is -130 relative to when the opening line is -
200 (changing the implied probability of a favorite win by -1% and -0.5%, respectively). I therefore assume 
that information is likelier to be proportional to percent change in the line rather than absolute shift. Existing 
literature only explores the relationship between absolute shifts, market efficiency, and information through 
the possible existence of profitable wagering strategies, not through the lens of forecasting accuracy. 
Appendix A.4 contains further statistics and information about each decile.  
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where Ei,t is absolute error associated with the opening line for ith percent change decile in 

year t, calculated both pre- and post-football. ∆#,% is the magnitude of the average percent 

change of the ith decile in year t, and 𝜇#,% is a dummy variable equal to 1 if the line moved 

towards the favorite or stayed the same and 0 otherwise. 𝜇 ∗ ∆#,% is an interaction term 

between magnitude and direction of the line shift. The remaining variables are defined as 

above, again using year fixed effects. I repeat the analysis for the closing line as well.  

V. Results 
 
Overall Market Dynamics 
 
 In Table 4, I present results from regressing absolute prediction error on various 

time intervals (Equation 1). The coefficient of interest is Year, and its associated coefficient 

in the 1-Year column is -0.000823, implying that there is a decline in absolute error over 

time, although it is not statistically significant. This estimate suggests that relative to 1977, 

out of 100 games valued at a particular Line Group, the favorite would be correctly 

predicted 3.45 more times on average in 2018. When aggregating over 2 and 3-year 

intervals, the coefficient becomes more negative at -0.00164 and -0.00272, respectively, 

with both significant at the 10% level. These estimates are consistent with the favorite 

winning 3 to 4 more games on average at a certain Line Group in 2018 compared to 1977. 

While the Year coefficients are still negative for the 4 and 5-year intervals, they are no 

longer statistically significant, potentially driven in part by the smaller sample size.  

 Tables 5 through 9 contain the results from various regressions of standard 

deviation of prediction error on time. Firstly, Table 5 displays results from regressing 

standard deviation over 2, 3, 4, and 5-year periods (Equation 2). The negative coefficients 

signify that the standard deviation of prediction error is decreasing over time, and thus 
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prediction precision is increasing. As the year increment increases, so does the size of this 

effect. For instance, a 4-year increment in time corresponds to a decrease of .00093 in the 

standard deviation of prediction error, while a 5-year increment in time corresponds to a 

larger decline of .0014, significant at the 1% level. The loss of statistical significance in 

the 2-year increment is not surprising, as calculating standard deviation over a sample of 

just two observations yields imprecise estimates. Nevertheless, the additional year 

increments serve as robustness checks for the downward trend. A possible explanation is 

that the market is able to better integrate information over longer periods, increasing 

forecasting precision.  

 Figure 4 seeks to identify time periods that led to significant changes in the standard 

deviation of prediction error over the course of the 42 seasons. The subfigures provide a 

visualization of the regression coefficient of interest, Year, and its 95% confidence interval 

from the cut tests described in Equation 3. Subplot D of Figure 4 displays the results when 

analyzing changes in standard deviation over 5-year periods and shows statistically 

significant declines after 1992-1996, 1997-2001, 2002-2006, and 2012-2016 at the 1% 

significance level. Comparisons with the results from the 2, 3, and 4-year increment 

regressions show that the findings for 1997-2001 and 2002-2006 are robust to the year 

increment size and remain significant at least at the 10% level. Table 6 shows that the effect 

of decline in standard deviation after 1997-2001 is larger in magnitude (-9.018e-3) than the 

decline associated with 2002-2006 (-7.58e-3), signifying a more substantial market shift in 

the former period. This finding is again robust to the year increment, as evidenced in Tables 

7 through 9. 
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 Overall, these results suggest that there has been a convergence over time between 

the market forecasts and actual outcomes. This convergence is primarily due to substantial 

improvements in prediction precision rather than prediction accuracy. Marked 

improvements in precision occur in the late 1990s and early 2000s, implying that changes 

in market dynamics during this time period drive the aggregate trend. 

Information Assimilation: Learning Rates Within Season 

 The results from regressing weekly absolute error on the running total of games 

provide insight into the market’s incorporation of information and are located in Table 10. 

The coefficient for running total is -0.0000289 and significant at the 1% level, implying 

that the accuracy of lines improves within season. Compared to the first week of a season 

(running total = 0), a week towards the end of the season (running total ~ 2200) would have 

a prediction error .05358 points smaller, which translates to correctly predicting the 

favorite win 4.29 more times on average if the two weeks both have 80 games with the 

same distribution of lines. When the dummy variable Post Football is added to the equation, 

the coefficient for running total increases slightly in magnitude to  -0.0000445 and remains 

significant at the 1% level. The coefficient of Post Football is 0.033312, statistically 

significant at the 1% level as well, implying that prediction error in the MLB betting market 

increases once the NFL season kicks off. This suggests that an 80-game week with games 

at the same line just prior the start of the NFL season would correctly predict the favorite 

win 2.66 more times on average compared to an 80-game week just after the start of the 

NFL season.  
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Information Assimilation: Learning Rates Over Time 

 Figure 5 displays a plot of the learning rate coefficients, calculated by regressing 

weekly error on the running total of games played up to that week for each season from 

1977 – 2018, controlling for the start of the football season in each year. When looking at 

the sample as a whole, there is no statistically significant downward trend over time, though 

in every year from 1998 onwards the coefficient of the running total is negative. The line 

of best fit first becomes negative and significant at the 5% level when considering the 

period 1982 through 2018.15 Negative values of the learning rate imply that learning does 

indeed occur over the course of a season. An overall downward trend in learning rates 

would signify that the market incorporates within-season information on performance 

faster over time, improving accuracy and leading to a higher degree of efficiency. 

However, the evidence is not statistically significant and does not allow us to reject the 

hypothesis that learning rates have not changed over time across the period of study.  

Information Assimilation: Impact of the NFL Season by Day of the Week 

Graphical analysis of Figures 6 and 7 provides suggestive evidence in support of 

the hypothesis that an increase in betting volume alone does not lead to improved accuracy, 

with a more important driver being bettor composition. 

Figure 6 displays the average closing line error, aggregated by day of the week, 

across the entire 1977 – 2018 sample, while Figure 7 shows the daily opening and closing 

line errors from 2013 – 2018. Pre-Football, I consider Saturday, Sunday, Monday, and 

Thursday as high-volume, as shown previously in Figure 3. It appears that Pre-Football 

high-volume betting days are not the most accurate days in either sample. Rather, 

                                                
15 The slope of this best fit line is -8.25 E-7, with a standard error of 3.859 E-7 and R-squared of 0.1156.  
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Wednesdays, which correspond to the lowest volume days, are. Therefore, it is not simply 

the case that more bets lead to better predictions. A possible explanation is that on days 

with more bets, there are more recreational gamblers who add noise to the lines and 

decrease accuracy. It is also worth noting in these figures that absolute error of lines 

increases substantially more after the start of the football season in the years 2013 – 2018 

than it does across all seasons. It is possible that sample size is driving this difference, as 

relatively few MLB games occur after the start of the football season in each year. 

Further considering the change in volume resulting from the NFL season, 

specifically on Saturday and Sunday, appears to show a positive relationship between 

informed bettor presence and accuracy improvements. Saturday and Sunday have the 

largest decrease in betting volume from Pre-Football to Post-Football, and they, therefore, 

likely have the largest concentration of informed bettors Post-Football. Although Saturday 

and Sunday do not have the smallest opening and closing line errors Post-Football, they 

experience the largest improvements in error reduction from opening to closing lines. This 

could suggest that oddsmakers bias their lines Post-Football, especially on Saturdays and 

Sundays, in an effort to attract more bettors, and the informed bettors in the market partially 

take advantage of this mispricing.  

I test the above hypotheses more rigorously with a regression of error on day of the 

week, and Table 11 presents the results. The estimated coefficients do not support the 

hypotheses at a statistically significant level. Relative to Saturday in all regressions, the 

only days that have worse predictions are Monday and Thursday, significant at the 5% 

level. These days have similar betting volumes to Saturdays Pre-Football, and there are no 

days with statistically significant improvements in error relative to Saturday. Thus, it does 
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not appear to be the case that larger betting volumes introduce more noise to lines. In 

addition, the coefficient for the change in error on Saturdays Post-Football is positive for 

the 2013 – 2018 opening and closing line regressions, and the estimate is not the smallest 

for the 1977 – 2018 regression. For instance, the change in error relative to Saturday for 

Friday Post-Football is -0.0005422, whereas the change in error for Saturday PostFootball 

is -0.000492. However, none of these results are statistically significant. Overall, these tests 

are inconclusive at establishing a relationship between betting volume and accuracy and 

giving insight into the market composition of bettors. 

Line Movements 

Table 12 presents the results from regressing opening and closing absolute error on 

line movements. For the opening error results, the point estimate for the magnitude of 

percent change is 0.3629, significant at the 1% level. This implies that for games where the 

favorite became less favorited, a 1% increase in percent change in the line leads to an 

absolute error increase of 0.003629. This estimate is quite small, as it suggests that the 

favorite is correctly predicted to win 3.63 more times on average out of 1000 games with 

a 4% line change relative to a 5% line change. The effect becomes smaller when 

considering closing error, as the point estimate decreases to 0.2526 and remains significant 

at the 1% level. This translates to the closing line correctly predicting the favorite win 2.53 

more times on average out of 1000 games with a 4% line change relative to a 5% line 

change. 

For games where the favorite became more favored, the effect of a 1% magnitude 

increase of percent change of the line movement is an increase in opening line error of 

0.00163 and a decrease in closing line error of 0.00217. The former result is not statistically 
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significant, while the latter is significant at the 1% level. Overall, it appears that the 

magnitude of the percent change from opening line to closing line has heterogeneous 

effects on prediction error, depending on the direction of the shift. If the favorite becomes 

more (less) favored, larger shifts are associated with greater (lower) accuracy. It appears 

that bettors in the market are able to identify and bet more heavily on favorites undervalued 

at the opening line, driving the line to adjust in the appropriate direction in this case. 

Lastly, the coefficient for Post Football is positive for both the opening and closing 

error analyses, implying that line error increases after the start of football season. These 

results are significant at the 1% level and consistent with the findings in the prior 

analyses.16 

VI. Discussion 
 

Overall, the dominant market dynamic is not improved accuracy of closing lines 

over time – there is no statistically significant and robust trend when considering absolute 

prediction error. Rather, a decrease in the volatility of the error appears to be driving the 

convergence between prediction and actual outcomes. Figures 8 and 9 help demonstrate 

this trend among eight of the most frequently occurring moneylines. Substantial 

improvements in precision appear to occur after 1997-2001, which provides suggestive 

evidence that the increasing quality and quantity of information available for every game 

has helped spur this trend. This period corresponds to the takeoff of the internet and the 

establishment of free historical databases like Baseball Prospectus and Baseball Reference. 

These sites could have served to decrease the cost of data acquisition and processing, 

                                                
16 Appendix A.5 provides a sensitivity check to these results, using the line shift as the regressor of interest 
instead of percent change. Line shift is the change in implied probability of a favorite win from opening line 
to closing line.  
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thereby mitigating potential inefficiencies that result from data acquisition and processing 

barriers (Stigler 1961, Ho and Michaely 1988). For instance, large representative samples 

of player performance could be established, providing a more precise view of how players 

and teams would fare in certain matchups. 

 Additionally, after the 2002 season, the use of sabermetrics proliferated in Major 

League Baseball, popularized by the Oakland Athletics’ “Moneyball” strategy.17 This led 

to the development of statistics that more accurately predicted player performance and 

identified underlying talent levels, enhancing the quality of information in the market 

(Passan 2011). In fact, one of the largest and most statistically significant learning rates 

corresponds to the 2003 season, implying that the market was able to better incorporate 

performance information and thus evaluate team skill more accurately earlier in the season, 

making the moneylines better forecasts of actual outcomes. The negative learning 

coefficients provide evidence that the market responds to information over the course of 

the season – the market is able to assimilate current-season information about team and 

individual performances, rather than rely on less representative past performance, 

consistent with Ryan et al.’s (2012) findings. Post-2000, there is a general downward trend 

in learning rates across seasons, providing suggestive, yet statistically insignificant, 

evidence that the information assimilation accelerates over time. Although historical 

gambling information is difficult to obtain, a more in-depth comparison of line data, such 

as from 1998 to 2004, could perhaps tease out changes in the market as due to information 

                                                
17 The Athletics relied heavily on sabermetrics to identify undervalued players, a method known as 
“Moneyball”. It helped demonstrate that traditional baseball wisdom is often flawed by overvaluing certain 
statistics that in reality weren’t very relevant to player and team performance. With the third lowest payroll 
in all of the MLB, the A’s ($40 million) tied the Yankees ($126 million) for most wins and made the playoffs 
(Lewis 2003, “MLB Team Payrolls” 2018). 
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quantity (databases) or information quality (sabermetrics). Another period to study these 

information effects could be 2015 onwards, as the 2015 release of StatCast tracks and 

makes publicly accessible a tremendous amount of previously unavailable data like exit 

velocity, spin rate, and route efficiency. There appears to be clear value in this data, as 

MLB front offices invest millions in big data analytics and college teams use similar 

technology to try to give their team an edge (Lananna 2018). This value could extend to 

the betting market as well, allowing informed bettors who are able to utilize the data to 

gain an added edge. 

 My findings related to line movements offer interesting contributions to existing 

literature in the field. Firstly, the large increase in opening line error after the start of 

football season provides suggestive evidence supporting Levitt’s (2004) finding that 

oddsmakers intentionally bias their lines in an effort to maximize profit rather than their 

traditionally assumed role as market makers. If oddsmakers only consider game attributes 

when setting their lines, opening line error is not likely to rise as substantially as it does. 

However, a limitation to this aspect of my analysis is sample size, as only about 250 games 

occur post-football each season, compared to around 2,150 games pre-football. 

Additionally, aggregating error by day of the week could bias my estimates upward. For 

instance, a day where two favorites that are valued at 0.6 and 0.65 lost would have a larger 

error than a day where two favorites valued at 0.53 and 0.54 lost. But there does not seem 

to be a tendency for certain lines to occur on certain days, either pre- or post-football. 

Therefore, the bias would be present both pre- and post-football, meaning the increase in 

opening line error would still be apparent. 
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Secondly, I find that larger line movements on average tend to lead to larger 

prediction errors. This contrasts the findings of Gandar et al. (1998), who find that bettors 

move lines by a sufficient magnitude to remove opening line biases. However, they only 

examine the NBA point spread market, which would be better suited for comparisons to 

the MLB over/under market than the moneyline market. Furthermore, it could be the case 

that the markets as a whole are organized very differently, which limits the strength of 

comparison and relevance to my findings. 

 Lastly, I am not able to establish conclusive links between betting volume, 

informed bettor composition, and prediction accuracy. A key limitation is that my 

attempted analysis relies on general trends that were observed in the 2009 season only, and 

it is possible that these trends do not extrapolate out to other seasons. This could be one 

driver of the insignificant results, but a more likely motivation is that the models I use are 

too simplistic to disentangle the effects between volume and market composition. The 

model only uses day of the week and running total controls, rather than actual betting 

volume amounts or team/media coverage controls, which could also impact volume, due 

to the difficulty of obtaining this historical data. Certain gambling sites do release this 

information for each game, but do not archive it, making it possible to actively track betting 

volumes to then compare against outcomes. This could be a fruitful area of study, as it 

would enable clearer tests for the information content of line movements and composition 

of bettors by considering the volume bet at opening lines relative to closing lines. For 

instance, in a market with a heavy presence of informed traders, there should be a larger 

proportion of opening line winning bets compared to closing line winning bets in games 

where the favorite becomes more favored. Tracking the timing of the movements could 
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also give insight into bettor behavior and test to see if bettors are able to time the market 

to their advantage.  

VII. Conclusion 
 
Market response to information is a critical component of efficiency, yet complex 

pricing problems make it difficult to study in large-scale financial markets. Betting markets 

simplify this problem and provide fertile grounds for analyzing the relationship between 

information and efficiency. I use moneyline data from over 88,000 MLB games from 1977 

to 2018 to study the evolution of the MLB betting market efficiency, particularly focusing 

on the impacts of information assimilation, quality, and quantity.  

 I find that while the market has not seen improvements in accuracy year to year, its 

forecasting precision has significantly increased. This increase in precision corresponds to 

the late 1990s and early 2000s, which coincides with a time of substantial improvements 

in both the quality and quantity of information available to the market, such as the 

establishment of historical databases, the rise of the internet, and the widespread 

acceptance of sabermetrics. 

 One of the manners through which the market has maintained its efficiency is 

through the consistent assimilation of information throughout the season. The market 

originally relies on past-season information in its forecasts but gradually incorporates 

current-season information to improve its prediction accuracy. On a game-by-game basis, 

larger line movements on average lead to worse predictions, which contrasts earlier 

literature in other sports betting markets and suggests that the market may not properly 

process information very well over short time periods. Worse predictions also occur after 

the start of football season, which decreases overall MLB betting volumes. While I find 
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suggestive evidence of informed bettor presence and in support of Levitt (2004), I am 

unable to establish conclusive relationships between betting volume, market composition, 

and efficiency using only moneyline data. With more data, specifically on line movement 

and bet timings, further differentiation could become possible.  

 Overall, although my paper does not establish causal links between information 

assimilation and market efficiency, it does present new evidence on the manner in which 

markets process information and how this relates to more accurate pricing and valuation. 

The findings have particular relevance to prediction markets more generally, giving insight 

into how these markets aggregate and incorporate information into their forecasts. 
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Tables and Figures 
 

Figure 1: Distribution of Moneylines, 1977 - 2018 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Figure 1 displays a histogram of the frequency of each money line from the 1977 
season to the 2018 season. Because the analysis focuses on the favorite closing line, a 
probability of 0.5 is the lower bound for what can be considered a favorite. 
 
 

Table 1: Favorite Win Probabilities by Month 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 1 shows the breakdown of favorite win probabilities by month of the year. The 
MLB season start date varies from late March to early April. The regular season concludes 
in September. Average Implied Probability is calculated by averaging all the implied 
probabilities of a favorite win, as determined by the moneyline, each month. Actual 
probability corresponds to the proportion of games favorites won in that month. 
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Table 2: Summary Statistics of Line Movements 
 
 
 
 
 
 
 
 
 
Note: Table 2 contains summary statistics of line movements occurring during the 2013 – 
2018 seasons. Opening implied probability corresponds to the opening moneyline, and 
closing implied probability to the closing line. Line Shift is the difference between the 
closing and opening lines, calculated by subtracting closing implied probability from 
opening implied probability. Percent Change translates this shift into a percentage change.  
 
 

Figure 2: Distribution of Line Movements  

 
Note: Figure 2 shows the distribution of line movements as represented by (A) the change 
in implied probabilities and (B) the percent change from opening to closing line.  
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Table 3: Overview of Year Groupings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: This table shows Year Groupings that result from aggregating years together over 
various time increments, from 2 to 5 years. These Year Groupings are used to study the 
accuracy and precision of the market across time.   
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Figure 3: MLB Per Game Betting Volume by Day of Week 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Figure 3 shows the breakdown of the average number of bets per MLB game by day 
of the week, both before and after the start of football season. (Source: The figure is 
reproduced from Paul and Weinbach (2011), Figure 2) 
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Table 4: Prediction Accuracy Over Time 

 
Note: Table 4 reports the regression results from regressing average absolute prediction 
error on time. The regressor of interest is Year, which is an index for the Year Groups at 
each time increment. For example, in the 2-Year increment, Year ranges from 1 
(corresponding to 1977-1978) to 21 (corresponding to 2017-2018). Line Group serves as 
the fixed effect. Standard errors are in parentheses and are clustered at the Line Group 
level. Analytic weights are used. *** p<0.01, ** p<0.05, * p<.0.10 
 
 
 
 
 
 
 
 

Table 5: Prediction Precision Over Time 

 
Note: Table 5 reports the regression results from regressing the standard deviation of the 
prediction error on time. As in Table 4, the regressor of interest if Year, serving as the 
index for the Year Groups at each time increment. Line Group serves as the fixed effect. 
Standard errors are in parentheses and are clustered at the Line Group level. Analytic 
weights are used. *** p<0.01, ** p<0.05, * p<.0.10 
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Table 6: Year Cut Tests on Standard Deviation of Prediction Error  
(5-Year Increments) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 6 contains the results from performing the discontinuity cut test, regressing the 
standard deviation of prediction error in each period on the dummy variable Year Group, 
equal to 1 if the observation occurs during or after the period of interest, and 0 otherwise. 
Line Group serves as the fixed effect. The coefficients for Year Group, and their standard 
errors (in parentheses), are scaled by a factor of 103. Standard errors are clustered at the 
Line Group level. Analytic weights are used, weighting observations by the number of 
games at each Line Group in each period. *** p<0.01, ** p<0.05, * p<.0.10 
 
 
Table 7: Year Cut Tests on Standard Deviation of Prediction Error 

(4-Year Increments) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 7 contains the results from performing the cut test by Year Group, with the 
Year Groups corresponding to 4-Year increments. Line Group serves as the fixed effect. 
The coefficients for Year Group, and their standard errors (in parentheses), are scaled by a 
factor of 103. Standard errors are clustered at the Line Group level. Analytic weights are 
used, weighting observations by the number of games at each Line Group in each period.  
*** p<0.01, ** p<0.05, * p<.0.10 
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Table 8: Year Cut Tests on Standard Deviation of Prediction Error  
(3-Year Increments) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 8 contains the results from performing the cut test by Year Group, with the 
Year Groups corresponding to 3-Year increments. Line Group serves as the fixed effect. 
The coefficients for Year Group, and their standard errors (in parentheses), are scaled by a 
factor of 103. Standard errors are clustered at the Line Group level. Analytic weights are 
used, weighting observations by the number of games at each Line Group in each period. 
*** p<0.01, ** p<0.05, * p<.0.10 
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Table 9: Year Cut Tests on Standard Deviation of Prediction Error  

(2-Year Increments) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 9 contains the results from performing the cut test by Year Group, with the 
Year Groups corresponding to 2-Year increments. Line Group serves as the fixed effect. 
The coefficients for Year Group, and their standard errors (in parentheses), are scaled by a 
factor of 103. Standard errors are clustered at the Line Group level. Analytic weights are 
used, weighting observations by the number of games at each Line Group in each period.  
*** p<0.01, ** p<0.05, * p<.0.10 
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Table 10: Within Season Learning Rate 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 10 displays the results from regressing the average weekly error of each week 
on Running Total, which is the number of games that have been played in the season up to 
the start of that week. The coefficient associated with Running Total is assumed to be the 
within season “learning rate”. Post Football is a dummy variable that equals 1 if the week 
occurred after the start of football season and 0 otherwise. Analytic weights are used, 
weighting by the number of games each week, and standard errors are in parentheses. 
***p<0.01, **p<0.05, *p<.0.10 
 
 

Figure 5: Learning Rates Over Time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Figure 5 displays the coefficient associated with the running total of games, along 
with its 95% confidence interval, obtained from regressing weekly absolute prediction 
error on the number of games that have been played in the season up to the start of that 
week. A negative trend in these coefficients would imply an acceleration of the learning 
rate. All regressions controlled for the start of football season and used analytic weights.  
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Figure 6: Average Absolute Error of Closing Line by Day of Week 
(1977 – 2018) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Figure 6 displays the average absolute error for closing lines from 1977-2018 by day 
of the week, broken down further by Pre- and Post-Football. The average absolute error is 
the difference between the average implied probability of a favorite win and the actual 
proportion of favorite wins. 
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Figure 7: Average Absolute Error of Lines by Day of Week  
(2013 – 2018) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Figure 7 displays the average absolute errors for both the opening lines and the 
closing lines from 2013-2018 by day of the week, broken down further by Pre- and Post-
Football. Average absolute error is the difference between the average implied probability 
of a favorite win and the actual proportion of favorite wins. 
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Table 11: Day of Week Regression Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 11 contains the regression results from regressing daily absolute error on day 
of the week, controlling for the number of games played up until that day. Days with “Post 
Football” occur after the start of football season. The coefficients represent the estimated 
increase or decrease in absolute prediction error for each day of the week relative to a 
Saturday occurring Pre-Football. Analytic weights are used, weighting observations by the 
number of games each day, and standard errors are in parentheses. *** p<0.01, ** p<0.05, 
* p<.0.10 
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Table 12: Line Movements Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 12 reports the results from regressing absolute prediction error for the opening 
and closing lines on the line movement, calculated as the average percentage change of 
each decile of the line movement distribution. The regression uses games from the 2013 to 
2018 seasons. Percent Change Direction is a dummy variable equaling 1 if line moved 
towards the favorite (favorite became more favored) or stayed the same, and 0 otherwise 
(favorite became less favored). Direction*Magnitude is an interaction variable between 
Percent Change Direction and Percent Change Magnitude. Analytic weights are used, 
weighting observations by the number of games they contain, and standard errors are in 
parentheses. ***p<0.01, **p<0.05, *p<.0.10 
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Figure 8: Implied Probability of a Favorite Win versus Favorite Win 
Percentage, 1977 - 2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Figure 8 compares the implied probability of a favorite win with the actual proportion 
of games won by the favorite for the eight most frequently occurring Line Groups. The 
titles on each sub-chart correspond to the Line Group depicted. Implied probability is a 
weighted average of the closing lines within each of the Line Groups.  
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Figure 9: Standard Deviation of Absolute Prediction Error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Figure 9 displays the standard deviation of the absolute error for the eight most 
frequently occurring Line Groups. The standard deviation is calculated over 4-year periods.  
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Appendix 
 
A.1 Terminology 

Moneylines are one of the primary means that bettors use to gamble on the outcome 

of a sporting event. Books set the moneylines to reflect the odds that they believe will even 

the betting action on both sides. For example, one moneyline could be Boston Red Sox: -

140, New York Yankees: +130. Here, the Red Sox are considered the favorite, and a bet 

of $140 on them would net $100 if they win, while the Yankees are the underdog and a 

$100 bet on them would net $130. The difference between these odds is known as the dime 

line, vigorish, or the “juice” and is the books’ commission for taking the bet. The opening 

moneyline is typically released no more than 24 hours before the start of a game. If 

unbalanced betting occurs at the opening line, the oddsmakers can adjust the line to try to 

balance the amount bet on each team. Closing moneylines represent the final odds offered 

before the start of a game, and they should be best representative of the market equilibrium 

– they serve not only as a clearing price, but also as the market forecast of game outcomes. 

I specifically use the favorite closing line as a proxy for the ex ante probability of a favorite 

win and seek to analyze the evolution of its accuracy over time. It relies on the assumption 

that books are balanced such that oddsmaker’s profits are independent of the game’s 

outcome, consistent with prior literature (Woodland and Woodland 1994; Gandar et al. 

2002; Ryan, Gramm, and McKinney 2012). 

 

 

 

 



 55 

A.2 Data 
 
 I use two datasets for my analysis: the first consists of all of the closing lines from 

the 1977 – 2018 seasons and the second contains the opening and closing lines from the 

2013 – 2018 seasons. The closing line dataset uses two separate sources, with the 1977 – 

1999 seasons coming from Computer Sports World and the 2000 – 2018 seasons from 

Covers.com. Sections I describes data adjustments. Section II compares the two sources 

using two years of overlap. 

I. Adjustments 
 

Originally, the dataset consisted of 95,131 games from the 1977 to 2018 seasons. 

Covers.com included data on both regular season and post season games for the 2001 

through 2018 seasons, but an inspection of the CSW data reveals that it contains only 

regular season games from 1977 to 1999. To ensure the most consistency, analysis focuses 

only on regular season games across all seasons. This also eliminates the potential concern 

that betting market dynamics change once the post season occurs, either from increased 

popularity of games or the adoption of new playing strategies by managers. Roughly 1000 

games were dropped due to missing data entries. Furthermore, in order to ensure adequate 

sample size for analysis and at least one observation when aggregating over different year 

increments, games that had a favorite closing line that did not occur at least once every two 

years were dropped. This left 88,306 games for analysis.  
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II. Comparison of Data Sources 
 

The fact that the dataset comes from two distinct sources could potentially be a 

problem. Moneylines vary by oddsmaker, and this paper seeks to examine the accuracy of 

the lines over time. The use of two distinct sources therefore could confound results. To 

mitigate this risk I analyze two years of overlap that existed between the sources – the 1999 

and 2000 seasons – to determine how similar the data were. Originally there were 4,849 

games of comparison, but 37 observations were dropped due to missing data. Thus, 4,812 

games were compared and the mean difference between lines was just 0.03 points, and the 

standard deviation was 3.12 points. The 5th and 95th percentiles of the difference are -4 and 

4, respectively. Figure 10 provides a visualization of the distribution. 

Figure 10: Distribution of the line difference between the 2 sources  
over the 1999 – 2000 seasons 

 

 

 

 

 

 

 

 
 
 
 
 
Note: This figure shows a histogram of the differences between the favorite closing lines 
of Computer Sports World and Covers.com over the 1999 and 2000 MLB seasons, after 37 
games were dropped due to incomplete data.  
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A.3 Test of Line Group Efficiency 
 

To test the efficiency of each Line Group, in every year I use the Line Group’s 

average implied probability of a favorite win (P) and the actual proportion of a favorite 

win (r) to then calculate the standardized test statistic for the null hypothesis that P = r, as 

in Woodland and Woodland (1994). The standardized test statistic is  

𝑧C,% = 	
r!,#D	P!,#

E
P!,#(%&P!,#)

(!,#

	,                                                       (8) 

where Pl,t is the implied probability of a favorite win, rl,t is the observed proportion of 

games won by the favorite, and nl,t is the number of games with closing lines in Line Group 

l in year t. Table 13 displays the results of this analysis, showing the number of inefficient 

Line Groups by year. For conciseness, the table only includes years with at least one 

statistically significant inefficient Line Group. Considering that the analysis uses 29 Line 

Groups, the results imply a high degree of efficiency in market and are consistent with 

existing literature (Woodland and Woodland 1994, Ryan et al. 2012).  
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Table 13: Line Group Efficiency Standardized Test Statistic Results 

 

 

 

 

 

 

 

 

 

 

Note: This table displays the results from using a standardized test statistic to test the 
efficiency of each Line Group in every year. Only years in which at least one inefficient 
Line Group are displayed. The columns “10% Significance Level” and “5% Significance 
Level” show the number of Line Groups whose z-scores exceed the cutoffs 1.65 and 1.96, 
respectively.  
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A.4 Line Movement Deciles 
 

Table 14: Line Movement Deciles from the 2013 – 2018 Seasons 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Note: Table 14 displays the ranges of percent change associated with each decile. It also 
contains the total number of observations, as well as the number of observations occurring 
after the start of football season, for each decile. Percentage Post Football is the fraction 
Observations (Post Football) / Observations (Total), expressed as a percentage.  
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A.5 Line Movement Sensitivity Check 
 

Table 15: Line Movements Results using 
 Change in Implied Probability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Table 15 reports the results from regressing absolute prediction error for the opening 
and closing lines on the line movement, calculated as the average change in implied 
probability of a favorite win at each decile of the line movement distribution. The 
regression uses games from the 2013 to 2018 seasons. Line Shift Direction is a dummy 
variable equaling 1 if line moved towards the favorite (favorite became more favored) or 
stayed the same, and 0 otherwise (favorite became less favored). Shift*Magnitude is an 
interaction variable between Line Shift Direction and Line Shift Magnitude. Analytic 
weights are used, weighting by the number of games in each line movement decile, and 
standard errors are in parentheses. ***p<0.01, **p<0.05, *p<.0.10 
 


