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Abstract

Social sciences know limited methods for counterfactual estimation, i.e. approx-

imating how a variable of interest would have developed without a particular

policy intervention. Recent frequentist work has developed for the purpose a

tool known as the Synthetic Control Method (SCM). SCM continues to suffer

of certain flaws, including its inability to produce a confidence interval. In this

senior thesis I develop a new Bayesian statistical methodology for counterfactual

estimation inspired by the synthetic control method. I use pre-intervention data

to model the target society’s trajectory on underlying developments that can

be inferred from data on control societies. My proposed method is less prone to

overfit than synthetic controls and better able to describe estimate uncertainty.

I implement the method for two previously studied research questions: German

re-unification in 1990 and a California tobacco control reform in 1988. To esti-

mate the model computationally, I use a standard MCMC sampling approach.

My approach outperforms SCM in a simple test of predictive accuracy.
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1 Introduction

Social scientists often find themselves in the unfortunate circumstance where

they would like to investigate a counterfactual scenario. What would have hap-

pened to this variable of interest without that one-off policy intervention? We

cannot observe alternative histories, so the conclusive answer must ultimately

remain elusive. However, statistical estimation can in principle give us both

good approximations of the counterfactual trajectory and reliable measures of

the uncertainty associated with that estimate. Alas, statistical methods appro-

priate for this purpose remain scarce.

In this senior thesis, I propose a novel statistical framework for this type

of counterfactual estimation. Inspired by prior frequentist work, I base my

approach on the insight that societal developments are often driven by inter-

society trends. Consequently, the counterfactual trajectory can be predicted

from the observed trajectories of societies unaffected by the intervention. Unlike

previous researchers, I lay out a fully probabilistic causal model to justify my

methodology.

I then demonstrate that my model can be computationally estimated in the

Bayesian framework using Markov Chain Monte Carlo (MCMC) algorithms. In

contrast to prior work, my model yields full description of estimate uncertainty.

I implement my model to examine two previously studied research questions:

the impacts of German re-unification in 1990 and the California tobacco con-

trol reform of 1988. I demonstrate that my model outperforms the original

frequentist methodology on a simple test of predictive accuracy.
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1.1 Motivation

A defining feature of the social sciences is the absence of controlled experiments.

Instead, researchers often need to estimate the impact of some one-off policy

intervention. Say, we might ask how much the 1988 California tobacco control

program reduced the state’s smoking rate. Logically, that impact must equal

the difference between the current rate and the smoking rate we would have

observed without the intervention. Thus, we often have a pressing need to ask

what could be termed the counterfactual question of the social sciences: how

would the variable of interest have developed in the target society absent a given

policy intervention?

Figure 1: Motivating Question: California Tobacco Control Reform
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Conventional statistics might suggest a particular simple way of answering

this question. We could use pre-intervention data to train a model to predict the

variable of interest from some other features of that society. Post-intervention

data on those covariates, then, would let us predict what should have happened

to the target feature. This corresponds to explict modeling of causal a relation

between features. Alas, the important covariates are often unobserved. Fur-
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ther, even the observed covariates may be distorted by a treatment effect of

the intervention. Together these issues of latent variables and covariate endo-

geneity make this inter-feature modeling approach inappropriate for most policy

intervention contexts.

A promising alternative is to predict the variable of interest in the target

society using not other features but other societies. For instance, we could

predict the California smoking rate from data on smoking rates of other US

states. This approach lacks some of the flaws of the feature model. First,

endogeneity is usually mitigated. The smoking rate in Illinois, for instance, is

unlikely to change much due to tobacco regulation reform in California. Second,

the threat of latent variables is mitigated. Many unobserved variables will have

observable effects on other societies, and the society model can in principle

capture these effects.

An ostensible concern is that a society-based model does not reflect causal

relations. Surely smoking rate in one state is not caused by smoking rates in

others. Indeed, this is the very reason we need not worry about endogeneity.

Yet, the society model in fact can be grounded in good causal understanding.

Note that the unobserved variables that determine our variable of interest will

often follow inter-society trends.

Smoking rates across states, for instance, may be affected by federal legis-

lation, Big Tobacco PR scandals, and poorly understood cultural phenomena.

If we suppose each state to have a unique, constant set of exposures to these

trends, we can estimate jointly both the trends and the exposures. This gives

the inter-society model its causal interpretation. The model estimates the un-

derlying causal trends and their impact on the target society using data on other

societies.

Prior work in quantitative social science has developed an increasingly pop-
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ular frequentist method based on this inter-society principle. It is known as the

synthetic control method (SCM). SCM models the target society as a weighted

average of other societies. This frequentist method, however, has substantial

flaws. First, it is suspect to substantial overfit concerns. Second, it fails to

produce confidence intervals or other similar measures of esimation uncertainty.

Third, the approach is not well grounded in a probabilistic causal model. Fourth,

SCM discards much of the information contained in available data.

The problem can be better solved using the Bayesian paradigm of statistics.

Bayesian models are known to be quite resistant to the threat of overfitting.

More importanty, a Bayesian model will always yield a full, quantitative descrip-

tion of estimation uncertainty. Finally, full Bayesian treatment will naturally

allow formal modeling and computational estimation of the kinds of unobserved

trends discussed above.

1.2 Contribution Summary

In this senior thesis I propose a new Bayesian framework for counterfactual

analysis. I present an approach that can take use of the inter-society insight

that underlies synthetic controls. At the same time my approach is less, if at all,

suspect to the limitations of traditional SCM. I in particular demonstrate that

my framework can readily quantify the uncertainty associated with its point

estimates, including the calculation of 95% credible intervals. The framework is

inspired by the synthetic control method, so I name it the Bayesian Synthetic

Control (BSC).

The BSC framework is defined as a probabilistic latent variable model. Each

of the unobserved intersociety trends is modeled explicitly as a random, latent

variable, and so are the coefficients used to construct observed society data

from those latent trends. The target society’s post-intervention trajectory is
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treated as a sum of a counterfactual trajectory and the effect of the intervention,

the latter of which is estimated as an additional model variable. The model

incorporates three levels of uncertainty: over the trajectory of the latent trends,

over the target society’s exposure to the various trends, and over the random

noise that distorts our observed data.

I lay out in detail the mathematical formulation of the probabilistic model

that underlies BSC. Then I implement the method in practice to re-visit two

previously studied research questions: the economic impact of the German re-

unification in 1990 and the effectiveness of 1988 tobacco control reform in Cal-

ifornia. I estimate these effects computationally using a Markov Chain Monte

Carlo (MCMC) algorithm, an technique that sends a sampler on a ’random walk’

to explore the targeted probability distribution. I show that BSC outperforms

SCM in a simple test of prediction accuracy. I also demonstrate that BSC’s

method of quantifying its prediction uncertainty, unlike those of its frequentist

predecessors, can be used to test for modeling assumption violations.

1.3 Outline

The rest of this thesis is structured as follows. Section 2 introduces the fre-

quentist Synthetic Control Method and reviews related literature. In Section

3 I first review the workflow of Bayesian data analysis and then exhibit how

to cast the SCM research question into the Bayesian paradigm of statistics in

three sequential steps. In section 4, I introduce the full Bayesian Synthetic Con-

trol framework and specify in detail the underlying probabilistic latent variable

model. In section 5 I apply my model to the previously studied problem of the

economic impact of German re-unification in 1990, and compare its performance

to SCM. Section 6 lays out a practical application to another previously stud-

ied question, that of California’s 1988 tobacco control reform, and introduces a
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method of endogenously choosing the supposed number of latent variables. Sec-

tion 7 discusses the model’s values and limitations as well as plausible extensions

to it. Section 8 offers concluding remarks.
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2 Synthetic Control Method and Related Work

2.1 Origins and Motivation

SCM was first developed in 2003 [Abadie and Gardeazabal, 2003]. The original

motivating problem was to estimate how the Basque Country GDP would have

developed without the heightening of separatist terrorist activity in mid-1970’s.

To do so, the authors modeled the Basque Country as a weighted average of

other regions in Spain. The method they used to choose those weights, along

with some later adjustments to the procedure, is what has since come to be

known as the synthetic control method.

2.2 Technical Specification

The basic SCM procedure is similar to training an OLS regression to predict

the target society’s value from the values of comparison societies. The model is

trained on pre-intervention data to derive coefficients for the comparison soci-

eties. Those coefficients and post-intervention data on the comparison societies

are then used to draw a synthetic post-intervention trajectory for the target

society.

Unlike OLS, SCM restricts itself to constructing weighted averages. Math-

ematically this translates into constraining the regression coefficients to form a

convex combination. Other societies’ weights are chosen to minimize the pre-

intervention error between the observed trajectory and the synthetic one. For

additional robustness, this error is calculated as a weighted average of squared

erros in the variable of interst and some covariates. The error calculation weights

are typically chosen through cross-validation.

To describe the method formally along the lines of a later paper [Abadie

et al., 2010], consider a set of J + 1 societies over T years such that the society
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1 faces the treatment effect in all years following some intermediate year T0.

Denote by yit the variable of interest in society i at time t and by Zi a vector of

r society-specific covariates that are constant over time. Collect values y1t for all

t ≤ T0 and the entries of Z1 into the vectorX1 of length r+T0. Similarly, collect

into the (r+T0)×J matrix the corresponding values for all other societies. Let

V be a matrix of variable weights for squared error calculation. Finally, let W

be the vector of J weights specified to the J comparison societies.

Define the pre-intervention error thus:

||X1 −X0W ||V =
√

(X1 −X0W )′V (X1 −X0W ). (1)

Then select the synthetic control weights W ∗ thus:

W ∗ = argmin
W

||X1 −X0W ||V (2)

such that (3)

Wj ≥ 0 ∀j and

J+1∑
j=2

Wj = 1. (4)

These weights are then used to calculate the SCM estimator ŷN1t for the

counterfactual target society value in year t thus:

ŷN1t =

J+1∑
j=1

Wjyjt. (5)

The details of choosing V vary in literature but they typically involve using

one or more parts of the pre-intervention period as validation sets, running

12



the SCM procedure repeatedly, and then choosing whatever V minimizes the

prediction error on the validation set(s).

2.3 Motivating Causal Model

In [Abadie and Gardeazabal, 2003], the SCM methodology was introduced as

an ad hoc solution to a particular research problem. In [Abadie et al., 2010],

however, the model specification is described together with a motivating causal

model. Namely, if we denote the intervention-free variable value of society i in

year t by yNit , the authors suppose that

yNit = δt + θtZi + λtµi + εit (6)

where δt indicates an annual fixed effect, θt is a year-specific vector of coeffi-

cients, Zi represents society-specific observable covariates, λt is a year-specific

vector of latent variables, µi denotes a vector of coefficients specific to society

i, and εit is an error term drawn from a distribution centered at zero.

To be sure, the model is included as a motivational one. SCM does not

involve estimating any of the above model parameters explicitly. However, the

authors use the model to prove that under a certain set of assumptions the

SCM estimator is asymptotically unbiased: the bias term converges to zero as

the number of pre-treatment periods grows without bound.

2.4 Significance Testing

The same paper develops a signficance test for SCM [Abadie et al., 2010]. The

test is based on relabeling and resembles Fisher’s exact test. It involves con-

structing an SCM estimate for each of the comparison societies that did not

undergo intervention. The findings are considered statistically significant if the

13



estimated effect is larger for the target society than for 95% of the others. This

test is routinely used in the literature to check finding significance. I provide an

imaginary illustration in Figure 2.

Figure 2: Canonical SCM Significance Test
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2.5 Limitations

The single most important issue with the standard SCM setup is its inability

to produce comprehensive description of its prediction uncertainty. The previ-

ously mentioned re-labeling technique can only test for the significance of the

treatment effect’s sign. (Recent researchers have also cast doubt on the test’s

validity as a Fisher randomization test due to lack of weighting on propensity

scores [Ben-Michael et al., 2018].) Importantly, there is thus no way to set a

confidence interval or to report a standard error.

SCM’s design also makes it suspect to overfit considerations. Some of the

variation in the comparison societies’ growth trajectories is composed of ran-

dom noise that doesn’t reflect any trends relevant for the target society. Conse-

quently, it is possible that the optimized weighted average correlates spuriously

with the pre-intervention target society data. This threat grows as we increase

14



the pool of comparison societies. With many enough societies to choose from,

one can always find a combination that resembles the target data very closely.

To the extent that the correlation is spurious, it is unlikely to continue in the

post-intervention period.

Some of SCM’s design features moderate the threat of overfit. The convexity

constraint of coefficients prevents the model from seeking arbitrarily overfitted

linear combinations. Further, the use of the additional covariates (Z) makes

measuring the pre-intervention error more robust. However, it is not clear how

well these design features eliminate overfit.

Additionally, these design features introduce issues of their own. The con-

vexity constraint, for instance, prevents SCM from modeling negative correla-

tions between societies. This amounts to discarding useful information. (Later

researchers also present other reasons to find strictly nonnegative coefficients

undesirable [Doudchenko and Imbens, 2017].) The use of additional covariates,

on the other hand, both imposes an additional data availability constraint and

burdens the analysis with an additional arbitrary specification, namely that of

covariate selection.

Furthermore, the connection between SCM’s implementation and the asso-

ciated causal model is somewhat distant. Recall that the latter was deviced in

hindsight and only serves to motivate the former. No causal relation or inter-

society latent trend is estimated directly. Instead SCM relies on a (generally

biased) estimator that uses other societies directly as covariates, even though we

know those other trajectories to be but noisy functions of the latent explanatory

factors. This limits SCM’s interpretability.

Finally, we have no good way of testing whether the SCM modeling assump-

tions hold. This relates to the method’s inability to quantify its own uncertainty.

We cannot check whether predictions made for ’known counterfactuals,’ or com-
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parison society post-treatment data, actually fall within the confidence bounds.

The closest SCM gets to a consistency check is verifying that the synthetic tra-

jectory matches observed data in the pre-treatment period. Alas, this match can

well happen even if the causal model is far from accurately describing reality.

2.6 Extensions and Related Work

The Synthetic Control Method has become the subject of active academic dis-

course in the past several years. Numerous applied studies have used the method

to investigate topics ranging from federalism and social spending in Belgium

[Arnold and Stadelman-Steffen, 2017] to the importance of the Turkey-EU cus-

toms union [Aytuğ et al., 2017] and from child mortality in the face of trade

liberalization [Barlow, 2018] to the demographic consequences of HIV [Karlsson

and Pichler, 2015]. The authors of the study that introduced SCM significance

testing also chimed in with a follow-up article investigating the 1990 German

re-unification [Abadie et al., 2015].

The SCM methodology itself has also attracted notable attention of theoret-

ical researchers. One such study [Ferman and Pinto, 2016] investigates SCM’s

behavior when the method fails to find an exact match in the pre-treatment

period. The authors find that under that condition the estimator is not asymp-

totically unbiased.

In response, another group of researchers propose an extension to SCM, the

Augmented Synthetic Control Method (ASCM) [Ben-Michael et al., 2018]. The

ASCM complements the SCM estimator with a bias-correction term, and shows

that the result is asymptotically less biased than SCM when the pre-treatment

matching is imperfect. The paper also introduces an estimator for the variance

of the ASCM prediction error, and bases it on the empirical distribution of

errors generated in a re-labeling exercise.
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Separately, another paper proposes a closely related panel data approach

(PDA) as an alternative to SCM [Hsiao et al., 2012]. The authors suppose that

a number of latent inter-society factors, a society-specific intercept, and white

noise determine the variable of interest. They demonstrate that the model that

motivates SCM can be derived as a special case of their more general formu-

lation. Similarly to SCM, they derive an asymptotically unbiased estimator

for the counterfactual trajectory that is calculated directly using comparison

society values without estimating the latent factors. Using Monte Carlo simula-

tions the authors also find evidence of overfitting (in the form of a deteriorating

bias-variance balance) as the number of comparison societies grows beyond a

point. The paper does not attempt to calculate a confidence interval. Later

work has since shown that PDA performs well for a wider number of simulated

data generation processes than SCM [Wan et al., 2018].

Another notable contribution is the Generalized Synthetic Control, or GSC

[Xu, 2017]. The GSC assumes a causal structure where observed time-invariant

covariates together with latent time-variant trends drive the variable of interest.

GSC differs from previous methods in that it begins by deriving an explicit point

estimate for those latent trends. Its counterfactual estimator is then calculated

using those latent trend point estimates. The number of factors is selected using

cross-validation. The authors also introduce a novel way of setting confidence

intervals. Namely, they carry out parameteric bootstrap on errors generated for

comparison societies during a re-labeling exercise.

Finally, a research team at Google has made what is to my knowledge the

first Bayesian contribution to the synthetic control literature [Brodersen et al.,

2015]. In their paper, the authors describe a very general Bayesian state-space

model for cross-sectional time-series variables. The model is in part inspired by

synthetic controls and includes as one of its components a Bayesian regression

17



on comparison units.

At the same time, the [Brodersen et al., 2015] approach is largely designed

for the study of market behavior and impact assessment for advertising. Con-

sequently, it does not lay out a clear causal model applicable in most social

scientific contexts. The abstract model is general enough to incorporate a latent

linear variable structure, but the authors don’t implement one. They instead

focus in great part on time-series behavior such as seasonality. The authors

implement a modern Markov Chain Monte Carlo (namely, NUTS) sampling

method to estimate the posterior distribution of their model and thus fully

quantify their prediction uncertainty.
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3 Steps towards a Bayesian Synthetic Control

The recent frequentist extensions to the default SCM, namely ASCM and GSC,

have taken important steps to address some of the method’s limitations. How-

ever, the proposed improvements are perhaps not fully satisfying. In particular,

their confidence intervals continue to depend on re-labeling methods so that

the produced spread cannot distinguish between model-based uncertainty and

error resulting from assumption violations. Additionally, the methods remain

vulnerable to overfit.

This suggests that there remains space to improve on prior work by casting

the problem in the Bayesian paradigm of statistics. Among other strengths, the

Bayesian workflow is rather immune to overfitting [Bishop, 2006, p. 147] and

automatically yields a full description of prediction uncertainty. The [Brodersen

et al., 2015] model is a perfectly valid approach to doing so, but it is not well

specified for the context of policy intervention analysis and lacks interpretability

and a clear causal structure.

In this chapter I exhibit a set of intermediary steps from the original SCM

method to constructing a satisfying Bayesian framework for the same purpose.

First, though, I note that causal inference is most popularly done in the fre-

quentist paradigm of statistics. I therefore begin by providing a brief review of

Bayesian data analysis. For more detail, I include in the appendix a lengthier

dicussion of the Bayesian and frequentist workflow differences.

3.1 Review: Bayesian Data Analysis

The conventional frequentist statistical workflow is defined by one core premise:

only observable data is random. This means that observable quantites have

some data generating process, they are draws from some unknown distribution,
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and that running that process again would yield a different draw from that

distribution. An unobserved parameter, however, is never random. It merely

has some true value but no distribution or generating process from where it was

drawn.

In contrast, a Bayesian analyst treats all unknown quantities as random

variables, including any unseen model parameters. If we are subjectively uncer-

tain about some quantity, it makes no difference for us whether that quantity

has a generating process in the ’real world’. We can describe this uncertainty

using a probability distribution. When we encounter (more) data, we update

our believes to include the information contained in that data.

I illustrate the Bayesian workflow using a simplified Bayesian equivalent

of the ordinary least squares regression (OLS). We begin by assuming that two

variables, yi and xi, are correlated with some unknown slope β. Each data point

yi is normally distributed around some unknown mean µi with some unknown

variance σ2 so that µi = βxi.

The Bayesian and frequentist workflows agree that yi here is properly random

and could in principle be re-sampled from some distribution. That’s as far as a

frequentist is willing to go: the distribution’s parameters β and σ are fixed even

if unknown. As Bayesians, though, we consider those parameters too as random

and suppose there is some underlying distribution from which they are drawn.

Before actually seeing any data, we set a prior distribution for each. We could

describe our prior uncertainty over β with the standard normal distribution and

that for σ with the standard uniform. Figure 3 says this more visually.

For a more precise even if less exciting expression of the same model, we can

also specify the Bayesian regression model algebraically:
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yi ∼ N (µi, σ), (7)

µi = βxi, (8)

σ ∼ Uniform(0, 1), (9)

β ∼ N (0, 1). (10)

Figure 3: Directed Graph of Bayesian Regression

β

µi

σ

yi

Figure 3 illustrates well our total a priori uncertainty over future values

of yi. We formally suppose yi to be drawn from a gaussian. However, we

don’t actually know the parameters of that distribution. Therefore if we had to

predict new values for yi, we couldn’t just pull them from a gaussian. Rather the

distribution that captures our full uncertainty about yi is really some complex

weighted average (or integral) over many different normal distributions.

Fortunately the Bayesian paradigm allows us to disregard the details of that

resulting complex distribution. The step-by-step method of doing so is referred
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to as ’ancestral sampling’. First we draw new ’ancestor’ samples for β and σ from

their corresponding prior distributions. Then we plug those into the gaussian

of yi. Then we can easily draw a new value for yi from a known gaussian.

This procedure corresponds to climbing down the directed graph of Figure 3.

Following these steps consequtively would amount to accurate estimation of the

prior predictive distribution of yi even as we may have no idea of its functional

form.

Ancestral sampling is concretely illustrated in Figure 4. The first and third

blue graph on the top row visualize the prior distributions of β and σ, respec-

tively, and highlight four random draws therefrom. The second graph on top

simply takes each β draw and plots out the corresponding slope against the 95%

confidence interval of such slopes. Finally, the top-right graph illustrates the

output of completed ancestral sampling. For each of the four β, σ-pairs, the

graph contains a 10-item dataset generated from the resulting yi gaussian.

In a real data analysis setting, though, we observe rather than generate a

dataset. For our example, we observe the data shown in the middle panel of Fig-

ure 4. The core of Bayesian data analysis consists of updating our prior beliefs,

shown in the top panels, with the information contained in this observation.

This updating has a particular mathematical formulation, given by the fa-

mous Bayes’ Theorem, but the task is intuitively very simple. It is really an

exercise in ancestral sampling. We start going through β and σ-values in our

prior distributions. For each pair we examine whether the observation could

plausibly be a draw from the predictive yi gaussian specified by that pair. We

rule out all values for which this is not reasonable. We also re-weigh each re-

maining β, σ-pair by a combination of how probable we found it a priori and

how plausibly exactly it could have generated the data we saw.

The outcome of this updating is a description of our new, a posteriori un-
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Figure 4: Bayesian Workflow
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certainty over the values of β and σ. These posterior distributions are superim-

posed in red on the blue prior distributions in the first and third bottom panel

graphs of Figure 4. We can clearly see how the posterior has ruled out many

values possible a priori but implausible given the data. The posterior trend line

distribution in the second bottom panel further visualizes how the β-posterior

corresponds to insisting that the true slope should resemble the downward trend

of the observed dataset.
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Notice that we can now return to ancestral sampling, just this time using

our updated posterior distributions. The first and third bottom panel highlight

four random β, σ-value pairs drawn from the posteriors. We can again plug

each pair into the yi gaussian and generate new predicted datasets. One such

ten-item generated dataset is visualized for each β, σ-pair in the bottom-right

panel of Figure 4. The distribution of these draws is known as the posterior

predictive distribtuion.

The posterior predictive distribution is a famously useful tool in Bayesian

statistics. It can obviously be used to predict the unknown. In the empirical

sections of this thesis, for instance, I base my findings on counterfactual trajec-

tories drawn from the posterior predictive distribution. However, the posterior

predictive can also be used for model checking. If we use the model to predict

some data we actually can observe, most of the observed data should fall within

the spread of the posterior predictive distribution. A failure of this test suggests

that the model is misspecified.

I hinted previously that the Bayes Theorem readily yields an expression for

the posterior probability distribution. In practice, though, that expression is

usually too complex for us to solve it exactly. Instead, Baeysian models are

almost always estimated computationally, and that is how I derive all empirical

findings in this thesis. The approach I use is referred to as Markov Chain Monte

Carlo (MCMC). MCMC is a method of exploring a complex probability distri-

bution by sending a sampler on a ’random walk’ on its surface. Specifically, I

use a pre-existing Python implementation of an MCMC sampler known as the

No-U-Turns Sampler (NUTS) [Hoffman and Gelman, 2014], a modern extension

to the famous Hamiltonian Monte Carlo (HMC) algorithm. For a more compre-

hensive review of MCMC sampling and of my computational implementation,

please see the Appendix.
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I now set aside discussion of general questions of Bayesian data analysis.

Instead, I proceed to describe three intermediate steps to casting the Synthetic

Control Method counterfactual prediction problem into this Bayesian paradigm

of statistics.

3.2 Bayesian Dirichlet Regression

An obvious first step is to device a Bayesian regression that directly mirrors

the SCM methodology. Namely, we can define a convex set of unknown weights

w that are used to construct the target society from comparison societies as a

weighted mean as follows:

yNit = y−itw
′ + εit (11)

where we denote by yNit the non-treated outcome in society i and year t, by y−it

the vector of variable values in the other J societies, and by εit the year-society

specific error term.

In the Bayesian setting, the prior distribution offers an obvious way of im-

posing the convexity constraint. Namely, we can set a prior that allocates zero

probability mass to any coefficient values but those that form a convex combi-

nation.

The Beta is a well-known distribution that does so for just two coefficients.

The multivariate generalization of Beta, the Dirichlet distribution, allows us to

accommodate an arbitrary number of coefficients, so it is an appropriate choice

for this problem. Supposing that we have no prior information about similarity

between societies, we can specify a symmetric flat Dirichlet with the single

concentration parameter set to one. This corresponds to setting a uniform prior

on all possible weights. We can gain intuition to the shape of a uniform Dirichlet
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by considering a 3-dimensional example such as the one in Figure 5. The value

on each axis represents the value of one weight, and the shaded triangular plane

section represents the uniform distribution on convex combinations.

Figure 5: Three-Dimensional Dirichlet Distribution

We also need to assume a form for the error term εit. The SCM methods

don’t typically do so, but they always minimize some type of squared error. To

achieve the same effect in a Bayesian model, we can give the term a normal

prior with zero mean and an unknown standard deviation σ. Recent literature

suggests that the Half-Cauchy distribution forms a good prior for standard

deviation terms [Polson and Scott, 2012]. I include a visualization of the general

Half-Cauchy shape in Figure 6.

If we collect all pre-intervention outcomes into the vector yN0 and the matrix

y−0, we can then specify the direct Bayesian SCM analogue thus:
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Figure 6: Half-Cauchy Distribution

yN0 ∼ N
(
µ0, σ

2
)
, (12)

µ0 = y−0w
′, (13)

σ ∼ Half-Cauchy (γσ) , (14)

w ∼ Dirichlet (1) (15)

where γσ is a known constant that reflects the analyst’s prior belief about the

scale of the error term’s spread. The joint posterior distribution of w and σ can

be used together with comparison society post-treatment outcomes to calculate

the posterior predictive distribution of the target society’s counterfactual post-

treatment outcomes. The model is visualized in Figure 7.

This Bayesian SCM analogue has the ability to quantify its prediction uncer-

tainty, and the Bayesian workflow protects it from much of the threat of overfit.

However, like SCM, it is unable to capture negative correlations. Further, it is

clearly not a model of any real-world causation. Whatever latent trends drive

growth across societies make no appearance in the model specification. The
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Figure 7: Bayesian Dirichlet Regression
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next step addresses both of these issues.

3.3 Bayesian PCA Regression

The reason we think it reasonable to predict one society’s outcomes from those

of others is the underlying assumption that the same set of latent trends drives

growth across all of them. A better approach is therefore to predict the target

society directly from those trends. Borrowing a causal model from [Hsiao et al.,

2012], we can set up the following formulation:

yNit = ltβ
′
i + κi + εit (16)

where lt represents the state of some M inter-society trends in year t, βi denotes

a set of society-specific coefficients, and κi is a society-specific intercept. For

notation, collect the annual lt vectors for all years into the matrix L.
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Now that we have replaced society weights w with trend coefficients βi,

there is no longer any need to impose a convexity constraint. Instead, we can

set a more typical prior distribution such as the standard normal on each coef-

ficient. Consequently the model no longer need discard information on negative

correlations.

Of course, the issue with incorporating the latent trends L in the model is

that they are latent, so we do not know their numeric values. An easy solution is

to follow the example of GSC and replace the variable L with a point estimate L̂.

One obvious way of doing so is to carry out a frequentist Principal Component

Analysis (PCA) to derive a smaller set of M vectors. The PCA analysis can be

calculated on comparison society data (so excluding for the target society) to

derive the point estimate for all years.

Then we can describe the Bayesian model thus:

yN0 ∼ MvNormal
(
µ0, σ

2I
)
, (17)

µ0 = L̂β′0 + κ0, (18)

σ ∼ Half-Cauchy (γσ) , (19)

β0 ∼ MvNormal (1, I) , (20)

κ0 = κ01, (21)

κ0 ∼ N
(
κµ, κsd

)
(22)

where 1 denotes a vector of ones, I represents the identity matrix, MvNormal

denotes the multivariate normal distribution, and κµ and κsd are known con-

stants that describe the analyst’s prior uncertainty about the target society’s

average outcome level in the pre-treatment period.

Again, we can fit the model in the pre-treatment period so that the joint
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Figure 8: Bayesian PCA Regression
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posterior distribution of β0 and σ can be used together with the post-treatment

latent trend estimates L̂ to draw a posterior predictive distribution for the

counterfactual estimate.

This approach finally models explicitly the relation between the target soci-

ety and the laten trends. Further, it lacks the burdens of a convexity constraint.

If any overfitting concerns remained previously, the dimensionality reduction

here puts most of those to grave: one can look for spurious correlations from a

large group of covariates but not from just a small handful.

However, this PCA regression is not really a satisfying Bayesian model.

Most importantly, the core insight of the Bayesian paradigm is that we should

not replace variables with their point estimates. To replace L with the PCA

estimate L̂ is to understate drastically our uncertainty over a variable that we

cannot observe. This motivates a more comprehensive latent variable model.
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3.4 Bayesian Latent Factor Estimation

Let us now treat the latent trends L as unknown variables and estimate them

from the data. This invites us to rewrite our model as one pertaining to the

whole dataset rather than just the target society. To do so, denote by Y N , K,

β, and ε the values of yit, κi, βi, and εi collected into appropriately shaped

matrices. Then we can describe the causal model thus:

Y N = K +Lβ′ + ε. (23)

Setting priors here is a slightly more involved process than previously. Note

that several κi and βi values are drawn, one for each society. Consequently, it

would be appropriate to suppose all draws are from the same latent distribution

and to estimate the parameters of that distribution explicitly. This practice,

known as hierarchical modeling, provides insurance against outlier parameters.

Before I proceed, I want to draw attention to an important consequence of

including the latent trends L as an explicit model variable. Denote the number

of such latent trend variables by M . Any latent variable model of this kind

must overcome an issue of rotational non-identitfiability.

To see what this means, note that the the M model variables are concep-

tually distinct from the M latent trends themselves. The former are features

of the model, the latter features of reality (or at least of the data). Suppose

momentarily that M = 2 and denote the model variables by 1 and 2 while de-

noting the real-world trends by A and B. Notice that the pairs can be matched

with each other in either order: either {(A, 1), (B, 2)} or {(A, 2), (B, 1)}.

These two matchings are perfectly equivalent and yield identical likelihoods.

With neutral priors this leads to a multimodal posterior distribution with one
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identical mode for each possible matching. The number of modes grows with

the factorial M ! of the number of included latent trends. Unfortunately, multi-

modality is known to pose a serious challenge for the MCMC sampling approach

I use to estimate my model computationally [Pompe et al., 2018]. Recall from

section 3.1 that MCMC is based on sending a sampler on a ’random walk’

around the posterior distribution. To work properly, the sampler must spend

sufficient time in each neighborhood of the distribution and frequently traverse

between them. This is difficult because the sampler tends to get stuck in one

mode at a time for lengthy periods at a time.

I use a simple albeit imperfect way of resolving the rotational identification

issue. Namely, I discard the idea of neutral prior distributions and instead

use a narrow prior to pin each latent variable into the approximate shape of a

unique underlying factor. This of course requires a well-justified way of picking

a prior guess for each trajectory. I opt to do so using the frequentist technique

of Principal Component Analysis (PCA). A PCA algorithm finds an optimal,

or squared-error minimizing, linear basis for the dataset. PCA is an appealing

choice because it turns out to be the maximum-likelihood estimate for the kind

of a latent factor model I use [Bishop, 2006, p. 147]. I discuss the limitations

of this pinning approach in section 7.

After setting these and other priors, we could ostensibly estimate this model

as in the previous sections. Alas, a problem looms: we do not observe the values

of Y N for the target society post-intervention. Thus the likelihood function

is undefined. The obvious solution would be to, as before, remove the post-

treatment years from the model.

However, recall that we no longer have point estimates for L in the post-

treatment period. Instead, it is this very model that is supposed to yield those

estimates. Without them we have no use for the β estimates because we can
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only predict the counterfactual using the two in tandem. Thus, we can no longer

restrict ourselves to running the model for pre-treatment years only.

The other intuitive solution is to run the model without the target society

so as to derive an estimate for the latent factors for the whole time period.

However, then we would not get an estimate for the coefficients β0 used to derive

the target society value from those trends. We could of course run a separate

model to estimate those coefficients, but we would have to provide that second

model with numeric values for L. However, reducing L to a numeric point

estimate is exactly what we are trying to avoid in this model.

Thus, we face the reality that the model in its current state can only be run if

we exclude all data either for the target society or for the post-treatment years.

Either exclusion renders the model useless for counterfactual estimation. The

solution to this dilemma is the introduction of explicit treatment effect terms.

In doing so, I lay out the full Bayesian Synthetic Control framework.
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4 The Bayesian Synthetic Control Model

In this section I lay out a formal description of the Bayesian Synthetic Control

model and its underlying modeling assumptions.

4.1 Structure

Consider a set of T years and J societies, and some quantitatively measured

societal feature of interest. Focus first on the situation N where no policy

intervention took place. Denote by yNit the value of the feature of interest in

year t and society i. Suppose that the change over time in that quantity of

interest is driven by a small number M of latent inter-society trends (where

M < J), along with random noise. Suppose further that each such latent trend

can be represented as a trajectory that takes a singular real value for each of

the T years. Then we can associate with each year t a vector lt of length M

that captures the state of those latent inter-society trends. We can thus write

that

yNit = δt + κi + fi(lt) + εit (24)

where δt is an annual fixed effect, κi is a society-specific intercept, fi(·) is some

real-valued function, and εit represents random noise. Let us also suppose that

fi(·) takes a linear form. Then we can associate a coefficient vector βi with each

society i, and largely borrow the causal model of [Hsiao et al., 2012] to write

equation 24 in this form:

yNit = δt + κi + ltβ
′
i + εit. (25)
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We can stack the individual parameters together into higher-dimensional

vectors and matrices: let β denote the J ×M transformation matrix of coeffi-

cients; let L denote the T ×M matrix of intersociety trend values over time; let

δ denote the vector of length T of annual fixed effects; let ∆ denote the T × J

matrix constructed by stacking δ next to itself J times; let κ denote the vector

of length J of society-specific intercepts; let K denote the T × J matrix that

results when κ is stacked on top of itself T times; and let ε denote the T × J

matrix of random noise. Finally, denote by Y N the T × J dimensional matrix

of all untreated outcomes. Then we can describe the whole system thus:

Y N = ∆ +K +Lβ′ + ε. (26)

4.2 Reform Effect

Now suppose that some of the observations are distorted by the treatment effect

of a policy intervention. Denote by αit the treatment effect in society i and year

t, and by yIit the outcome with the treatment effect. Then we can write that

yIit = yNit + αit. (27)

Now let dit be an indicator variable for whether the society i was treated

in the year t, and let yit denote the actual observed outcome. Then we can

re-write equation 25 to include the effect of the intervention as follows:

yit = δt + κi + β′ilt + αitdit + εit. (28)
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Let the treatment effect vary freely for each year and society. Denote by D

the full T ×J indicator matrix for the treated observations, and by α the T ×J

matrix of associated treatment effects. In principle α contains information also

for the non-realized effects which the intervention would have had on the non-

treated years and societies, but in practice its values only matter wherever the

treatment is switched on in D. We can then describe the full dynamics of the

model thus:

Y = ∆ +K +Lβ′ +α ◦D + ε (29)

where ◦ denotes the pointwise (Hadamard) product for matrices.

4.3 Estimation Goal

To estimate the parameters of the causal model in 29 we still need to specify

a number of distributional assumptions and priors. Later parts of this section

will do so in detail. However, it is already worth asking what exactly we aim to

do with this model. Note that once we have set priors and fit the model with

a dataset, we will land up with a full posterior probability distribution for each

variable. What is the goal of setting up the model as it is and estimating these

particular parameters?

Indeed, we would not usually be substantially interested in most of the vari-

ables listed above. Most of them, such as the intercept terms and all comparison

society values, are only present to make estimating the model at large possible.

There are really only two distributions we are genuinely interested in. The first

one is the posterior predictive distribution of Y , or rather the parts of it that

relate to the target society in the treated years. The second one is the reform

effect term α.
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Using just these two distributions we can repeatedly draw a sample for Y

and another one for α, and then subtract the latter from the former so as to get

a draw of Y − α ◦D. This, of course, is by definition equal to Y N , the coun-

terfactual trajectory. This demonstrates that estimating the equation 29 will

ultimately allow us to draw samples from the posterior predictive distribution

of the counterfactual trajectory of interest. These are indeed exactly the steps

I use when calculating estimates in the applied sections of this thesis.

4.4 Comparison: SCM Motivating Model

The authors of [Hsiao et al., 2012] show that the model laid out in subsections 4.1

and 4.2 reflects directly the motivating model of the original SCM methodology.

To see as much, recall its formal description as laid out in equation 6:

yNit = δt + θtZi + λtµi + εit. (30)

Now, let us constrain θt1 = 1, temporarily denote κi ≡ Zi1, and redefine βi

and lt as the following concatenations:

lt = (θt2, . . . , θtr, λt1, . . . , λtF ) , (31)

βi = (Zi2, . . . , Zir, µi1, . . . , µiF ) . (32)

Then equation 30 simplifies back to equation 25:

yNit = δt + κi + ltβ
′
i + εit. (33)
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In other words, BSC and SCM share the same underlying model of causal

structure. Both suppose that change over time is driven in a linear fashion by

unobserved inter-society trends, each associated with society-specific exposures.

The two differ only in terms of certain constrains imposed on the model. BSC

fixes one of the year-specific variables to equal one, therefore introducing a

geographic fixed effect. This society intercept is useful for BSC because it allows

for treating the latent trends as zero-centered shapes. The same need doesn’t

arise in SCM because the estimator is actually calculated using the non-zero

centered trajectories of other societies.

SCM, on the other hand, constrains some of the society-specific coefficients

(the ones denoted by Z) to take the observed values of some societal covariates.

BSC imposes no such constraint, treating each societal coefficient as an unknown

variable.

4.5 Distributional Assumptions

In order to set up a full probabilistic model, I need to set prior distributions for

each of the model parameters. This is the crucial step that allows for Bayesian

data analysis and for estimation of the posterior probability distribution. To do

so in a rigorous fashion, I define some further model parameters.

4.5.1 White Noise

First, suppose that the random noise term εit follows a normal distribution with

mean zero and an unknown standard deviation σ. Assume that σ is constant

over societies and does not change over time. Let the value of σ have a Half-

Cauchy prior distribution with the known scaling parameter γσ.
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4.5.2 Annual Fixed Effect

Suppose that each annual fixed effect is drawn from a gaussian prior with known

mean and standard deviation. Call the mean δµ and the standard deviation δsd.

4.5.3 Intercept

Suppose that each society-specific intercept κi is drawn from a normal distribu-

tion with unknown mean κµ and standard deviation κsd. Let the prior distribu-

tion of κµ be a gaussian with the known mean kµ and standard deviation ksd.

For κsd, let the prior be Half-Cauchy with the known scaling parameter γκ.

4.5.4 Treatment Effect

Let each element αit of the treatment effect matrix α follow a gaussian prior

with known mean αµ and standard deviation αsd. Recall from subsection 4.2

that we let the treatment effect vary freely by year and society. Thus, to prevent

the estimation of one treatment effect from affecting the estimate for another,

we don’t allow any hierarchical structure for this prior.

It is extremely important to set αsd equal to a very large number. The prior

distribution should allocate almost identical probability densities for all rea-

sonably sized intervention effects. Otherwise the model will prefer a particular

effect size and adjust the β coefficients such that the counterfactual trajec-

tory is estimated accordingly. This will make the model very sensitive to the

treated trajectory, a strongly undesirable feature for a model aimed to estimate

the counterfactual trajectory. It should pay little regard to the observations

distorted by the intervention.
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4.5.5 Transformation Coefficients

Let all country-specific coefficients βim for the m-th latent component be drawn

from a normal distribution with an unknown mean βµm and standard deviation

βsdm . For all m = 1, . . . ,M , let βµm follow a gaussian prior with the known mean

bµ and standard deviation bsd, and βsdm to have a Half-Cauchy prior with known

scaling parameter γβ .

Note that for the coefficients of each factor, this hierarchical structure has a

regularizing effect across societies. All societies’ coefficients are drawn from the

same distribution so the model will estimate that distribution to have its mass

wherever it is that most societies appear to fall by their likelihood. For countries

that appear outliers from the group, the distribution will ’pull’ their posteriors

closer to the rest. Suppose for example that most societies’ trajectories are

constructed using a strongly positive coefficient on the m-th factor. Then the

model would strongly penalize estimates that allocate a negative m-coefficient

for some outlier society.

This effect acts as a soft constraint to prevent extrapolative prediction. At

the same time it should be noted that there is no similar regularization across

the M latent trends. The M coefficients of any particular society are estimated

independently from each other.

4.5.6 Latent Factors

Let the value of the m-th latent trend in the year t have a Gaussian prior centered

around the known mean pmt with the trend-specific standard deviation rm. For

shorthand, denote by P the T ×M matrix of these prior means, by r the vector

of length M of standard deviations, and by R the T ×M matrix that results

when r is stacked on top of itself T times.

In principle it would be desirable to have Pmt0 = 0 and rm0
= rm1

for all
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t,m0,m1. This would correspond to a fully uninformative prior that treats each

component identically. In practice, though, doing so yields a rotational iden-

tification issue that makes computational approximation much more difficult.

Therefore in all the empirical sections of this thesis, I set informative compo-

nent priors that differentiate between the components. I elaborate further on

this issue in section 3.4.

4.6 Formal Model Specification

The contents of subsections 4.1 and 4.5 can be mathematically specified in a

single probabilistic model. I do so in the equations 34 - 50. First, though, it

bears explaining certain important features of the notation I use.

Most importantly, I distinguish between the single-variate (scalar) gaussian,

denoted by N , and the multivariate (vector) gaussian, denoted by MvNormal.

The potential confusion roots to the fact that I frequently use the scalar gaussian

with dimension subscripts like this: NX×Z . In such case I include as parameter

inputs a matrix of means and a matrix of variances (rather than a covariance

matrix).

I refer with this notation to a collection of independent scalar normals ar-

ranged into the shape of a matrix. The (x, z)-th gaussian takes its mean and

variance from the (x, z)-th elements of the mean and variance matrix, respec-

tively, and yields its draw into the (x, z)-th cell of the output matrix. This

corresponds exactly to the ’vectorized’ behavior familiar to the users of soft-

ware such as R and Python. At the same timem this is wholly distinct from the

behavior of the multivariate gaussian which inputs a covariance matrix (rather

than a matrix of variances) and yields a generally non-independent vector out-

put.

Also consider some other points on notation. I denote vectors and matrices

41



by boldface characters (κ,Y ) and scalars by regular characters (κµ, σ). Latin

letters only denote matrices when in capital case and vectors (or scalars) when

in small case, but this doesn’t hold strictly for greek letters. All standalone

vectors are treated as column vectors. I refer to a vector of X ones as 1[X] and

to a matrix of X × Z ones as 1[X×Z], while I[X] refers to the X × X diagonal

identity matrix.

I denote by ◦ the Hadamard product of two matrices of equal dimension.

Hadamard multiplies the input matrices’ cells elementwise. By ⊗ I refer to an

outer product of two same-length vectors. This is the exact opposite of the

dot product: if x · z = xz′ yields a scalar, then x ⊗ z = x′z yields a square

matrix. The outer product is used underneath exclusively for one purpose, that

of stacking a vector repeatedly on top of (or next to) itself to form a matrix like

thus: 1⊗ x (or x⊗ 1).

Now we are finally ready to lay out in full the complete mathematical spec-

ification of the formal probabilistic model of the Bayesian Synthetic Control.

The specificaion is quite lengthy, so I use hierarchical indentation to help the

reader group up related equations. The expression for, or the distribution of,

each named variable is independent of any other variables that are not indented

underneath it. Thus, the BSC model can be formally expressed as beneath:
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Y ∼ N[T×J](µ,σ
2), (34)

σ = σ1[T×J], (35)

σ ∼ Half-Cauchy(γσ), (36)

µ = Lβ′ + ∆ +K +α ◦D, (37)

L ∼ N[T×M ](P ,R
2), (38)

α ∼ N[T×J]

(
αµ, (αsd)2

)
, (39)

∆ = δ ⊗ 1[J], (40)

δ ∼ MvNormal
(
δµ1[T ], (δ

sd)2I[T ]

)
, (41)

K = 1[T ] ⊗ κ, (42)

κ ∼ MvNormal
(
κµ1[J], (κ

sd)2I[J]

)
, (43)

κµ ∼ N
(
kµ, k

2
sd

)
, (44)

κsd ∼ Half-Cauchy(γκ), (45)

β ∼ N[J×M ]

(
Bµ, (Bsd)2

)
, (46)

Bµ = 1[J] ⊗ βµ, (47)

βµ = MvNormal
(
bµ1[M ], b

2
sdI[M ]

)
, (48)

Bsd = 1[J] ⊗ βsd, (49)

βsd = Half-Cauchy[M ](γb1[M ]). (50)

Line 34 above specifies the model’s gaussian likelihood function, and lines

37 and 35 specify its mean and standard deviation inputs. The latter is not

really a substantial equation, but rather a description of filling up a matrix

with the single scalar σ. The prior of that variance term is expressed on line 36.

Construction of the the mean term µ is somewhat more convoluted. Indeed,
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the rest of the lines 38 - 50 are devoted solely for that task.

Namely, line 38 specifies the prior of the latent trend variables, and line 39

does the same for the treatment effects. Line 41 defines the prior of the annual

fixed effect vector. 40 contains notation of an outer product between δ and a

unit vector. This corresponds to the simple operation of stacking the δ-vector

on top of itself repeatedly to form an appropriately shaped matrix.

Line 43 defines the prior distribution of the society-specific intercept vector.

The (hyper)parameters of this distribution themselves have priors specified by

44 and 45. Again, line 42 simply stacks the intercept vector repeatedly into

a matrix. Lines 46 - 50 work similarly: 46 states the prior distribution of the

transition matrix of coefficients, 48 and 50 determine priors for the parameters

of that distribution, and 47 and 49 describe repeated stacking of vectors.

Taken together, the lines 34 - 49 can be used to precisely specify the BSC

probabilistic model. However, any reader trying to develop intuition to the

model’s behavior will find them of little to no use. Therefore, before I move on

to empirical applications, I visualize the abstract model and discuss briefly how

it behaves.

4.7 Intuition

The BSC can be clearly visualized using the same directed graph notation I

introduced in section 3. Figure 9 provides exactly this visualization. It pictures

each model variable along with its dimensionality and the broad shape of its

prior distribution.

While the full graph is fairly complex, we can ignore much of it and still

capture well the core causal dynamic. First, we can immediately ignore the

three intermediate variables σ, ∆, andK placed at halfway points of the arrows.

They reflect nothing beyond stacking vectors into matrices and add nothing to
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Figure 9: The Bayesian Synthetic Control Model
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intuition.

In fact, we need pay little attention to the whole two broad branches on

the right, the δ branch and the κ branch. The former represents a simple

annual fixed effect, while the latter is a society-specific intercept (along with

some hyperparameters). For broad intuition, it suffices for us to note that the

model lets each year and society have its own average value. These intercept
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variables add nothing further to the framework.

For the time being also set aside the treatment effect α. What remains is

a representation of the four important components of the BSC model. First,

there are some inter-society trends L that drive growth over time. Second, we

associate with each society a set of coefficients or exposures β that determine

how the society reacts to changes in L. Third, the influence of L and β on

the outcome variable Y can be fully summarized by an alteration in the state

variable µ. Fourth, the observed data for all societies and years is distorted by

white noise determined by σ.

We can impose one of two distinct interpretations on the whole these compo-

nents form. The first one notes that a combination of unobserved trajectories,

linear coefficients, and normally distributed noise is a well-studied one: it is that

of a latent factor analysis, or of dimensionality reduction. From this point of

view the core of BSC consists of doing Bayesian PCA to find a small-dimensional

basis for the matrix of observed data.

The second interpretation points out that unlike in normal dimensionality

reduction, in the typical BSC use-case the analyst really only cares about just

one target society in the dataset. If the dataset is large, that one society cannot

much impact the latent factor estimate. For that one society those latent factors

are really just as external as a set of covarites would be. Given the data on

other societies, the shape of L is fixed for the target society (even if only up to

a probability distribution) and can be conditioned on. From this point of view,

then, BSC is really just a linear regression where data on other societies is used

to predict one target society

Mathematically, both interpretations hold true simultaneously. For the pur-

poses of intuition, however, we can then conceptualize these two estimations

happening in a sequence. First we estimate the latent trends using data on
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other societies, and then we regress the target society on those trends. It all

happens within one probabilistic model so we can do this without committing

to a particular point estimate of the latent trend shapes.

Now recall from section 3.4 the problem we set off to solve in the first place.

The data for the important target society years in Y is distorted by the treat-

ment effect of a policy intervention. What we want to know is the relationship

(as expressed in the β coefficients) between the non-treated target society out-

come and the latent trends. It would be detrimental for that attempt if our

estimate of that relationship were contaminated by the distorted data. This

would happen if we naively regressed the observed target society outcomes on

the estimated latent trends for the whole time period.

Indeed, this is the very issue that originally prevented us from running the

two processes, latent variable estimation and target society regression, within a

single model. To prevent contamination we needed to discard data either on the

target society, preventing regression, or on the post-treatment years, preventing

full latent variable estimation.

The BSC framework solves this issue by introducing the explicit treatment

effect term α. Recall that α varies freely for each post-treatment year in the

target society. This has a profound impact on the model’s behavior: likelihood

of the observed data for the treated units becomes independent of the choice

of β. To see why, note that likelihood is determined by the distance between

estimated µ and the observed data. Now the model can use the treatment

effect term α to shift µ from where Lβ′ would have otherwise placed it to

match exactly the observed data.

The distance between µ and Y becomes chronically zero for all the treated

outcomes. With that constant distance comes constant likelihood. As long as

the prior of α is sufficiently flat over all plausible values, the constant likelihood
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translates directly into a constant posterior probability. In other words, the

α term makes all other model parameter estimates completely independent of

observed data for the treated units. For all practical purposes, the model runs

as if the data were missing altogether.

This is ultimately the whole purpose of the Bayesian Synthetic Control

model: to carry out latent factor analysis and target society regression within

one probabilistic model without contaminating parameter estimates with treated

data. All other take-aways from Figure 9 are more or less secondary.

48



5 Application: German Re-Unification

5.1 Background

One of the important papers on the original SCM methodology investigate the

impact of the German re-unification in 1990 [Abadie et al., 2015]. Namely,

they focus their study on the effect on per capita incomes in the former West

Germany. At the time of the re-unification, the West was markedly wealthier

than the East, so the impact is speculated to have been negative. Indeed, the

authors find that by 2003, West German per capita GDP would have been 12%

higher without the reform. I implement the BSC framework to examine this

same research question.

5.2 Data

I base my work on the dataset used by the original authors which is published

online for replication purposes. The target variable is per capita GDP ad-

justed for purchasing power parity (PPP). The data is acquired from OECD

National Accounts and, where necessary, Germany’s Statistisches Bundesamt.

The dataset also includes five other covariates useful for SCM, but they play no

part in my BSC implementation.

The data covers 16 OECD countries. This includes all 23 member states from

1990 barring seven, which the authors discarded due to anomalous economic

development. For consistency with the previous study, I use the same set of 16

countries. The time period covered is 1960-2003 of which the period 1990-2003

are considered treatment years for West Germany.

I make one alteration to the dataset. The original authors measure GDP in

current US dollars rather than ones adjusted for inflation. Consequently, their

variable grows at an arftifically high exponential rate. This exponential growth
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behavior interacts poorly with my assumption that the white noise variance

term σ2 is constant over years. To see this, note that one would expect to

see the magnitude of the random error to be more or less proportional to the

absolute value of the variable.

To moderate this issue, I adjust the GDP per capita figures approximately for

inflation and express them in constant 2003 US Dollars. To do so, I use the US

GDP deflator time series which I record from World Bank’s World Development

Indicators [The World Bank, 2019].

5.3 Parameter Specification

To set the BSC framework up for computational estimation, I specify each of

the model’s hyperparameters.

5.3.1 White Noise

The prior distribution of the white noise parameter σ is Half-Cauchy, which

only takes one scaling hyperparameter γσ. The Half-Cauchy distribution has

an infamously fat tail, so the scaling parameter can be set with relatively little

concern. I opt to set γσ = 500. This corresponds to saying that I believe,

a priori, there to be 1
2 probability that the country-year-specific noise term is

drawn from a normal with a standard deviation less than USD 500.

5.3.2 Annual Fixed Effect

The annual fixed effect has a constant mean δµ for all years, which I set equal

to zero. I suspect the annual fixed effect should never grow very large relative

to the overall size of the typical society. However, the strength of that belief

is moderated by the prospect that the annual fixed effect interact one way or

another with the latent trends L. To err on the side of ignorance, I thus set the
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prior standard deviation δsd = 10000.

5.3.3 Intercept

The intercept term indicates each country’s mean income over the period 1960-

2003. Setting it up requires specifying three hyperparameters. The unknown

mean κµ is drawn from a gaussian with two hyperparameters: mean kµ and

standard deviation ksd. The unknown standard deviation κsd is drawn from a

Half-Cauchy with the scaling parameter γκ.

A priori, I believe the average of the country mean incomes should be lower

than USD 30,000, a fairly typical Western per capita income around the turn of

the millennium. I also believe that it should be higher than USD 6,000, a definite

lower bound for most developed countries. To reflect this, I set kµ = 18000 and

ksd = 6000. I indicate similar uncertainty over the variance of country means

by setting γκ = 2, 500.

5.3.4 Treatment Effect

The year-country specific treatment effect α has a gaussian prior with the known

mean αµ and standard deviation αsd. I set αµ = 0 so as to not presuppose the

sign of the effect. Also recall from section 4.5.4 how vital it is to set αsd equal

to some very large value. In other words, it is important to make this prior very

uninformative. It should be almost flat over all even vaguely reasonable values.

Preferring to err on the side of excessive flatness, I set αsd = 30, 000.

5.3.5 Transformation Coefficients

Recall that the country-specific coefficient for each latent factor is drawn from

the same gaussian prior with unknown mean and standard deviation. That

mean itself has a gaussian hyperprior with mean bµ and standard deviation

bsd, while the standard deviation has a Half-Cauchy hyperprior with the scaling
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parameter γβ . The scale of these coefficients is fundamentally linked to the

scale of the latent factor trajectories with which they are multiplied to generate

observed data. I set the priors of the latter to match the scale of the observed

data. That requires coefficients in the unit neighborhood of zero, so that’s where

I fix the β-related priors: bµ = 0, bsd = 1, and γβ = 1.

5.3.6 Latent Factors

Recall from section 3.4 that the prior distribution of each latent factor trajectory

is pinned around a frequentist estimate for one PCA component. This means

that the latent factors L have a heavily informative, data-driven prior.

I carry out the PCA analysis using a pre-existing implementation based on

singular-value decomposition from the scipy Python library. I fix the number

of latent components at M = 4. The algorithm yields components centered

around zero with variance similar in magnitude to those of the vectors in the

observed dataset. The resulting components are stacked into a T ×M matrix

and the mean of the latent factor prior P is set equal to that matrix.

It is less clear what the appropriate standard deviation rm is for each compo-

nent. The frequentist PCA components vary in variance, so rm should be related

to the variance of the underlying component. I opt for direct proportionality

where rm = λsdpcam . The remaining task then is to choose the λ multiplier.

The choice is important. If λ is too large, the prior will fail to pin each com-

ponent to one model variable and the MCMC sampler will struggle to converge.

If it is set too small, the model will further underestimate the uncertainty over

the latent variable trajectories. In real terms I determined λ heuristically by

attempting to run the sampler with a few obvious guesses. I concluded that

λ = 2 is the largest integer for which the sampler consistently converges with

my default chain size. Thus, my prior for a latent variable trajectory allows its

value to vary by two standard deviations of the underlying PCA component’s
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trajectory.

It should be noted that this specification of the L prior does not genuinely

reflect my prior uncertainty over its value, but rather computational necessities.

This has nontrivial implications for interpretation of my findings, and I return

to them in more length in section 7.

5.4 Findings

Figure 10 summarizes the resulting BSC counterfactual estimate. It plots the

mean BSC counterfactual trajectory estimate along with its 95% credible inter-

val. The figure also includes the observed trajectory for comparison.

Figure 10: West German per capita GDP (2003 PPP USD)
Observation vs. BSC Counterfactual Estimate before and after Re-Unification
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My findings are largely in line with those of [Abadie et al., 2015]. Namely,

I find that the counterfactual growth trajectory doesn’t much differ from the

observed data in the first four years after the reform. Starting in 1994, however,

the two trajectories begin to diverge substantially. By 2003, the observed GDP

level is some USD 4,630, or 16.0%, below the mean predicted counterfactual

value. This is equivalent to a fall in the average annual growth rate by 1.1
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percentage points, from over 1.9% to just under 0.9%. This BSC-generated gap

is slightly larger than the one predicted by SCM which is USD 3,360, or 11.7%,

and corresponds to a 0.7 fall in the average growth rate.

Importantly, the observed data falls far outside the credible interval (CI)

of the posterior predictive distribution from 1994 onwards. To be specific, the

95% CI of the cumulative treatment effect on per capita GDP by 2003 is USD

2,570 - 6,680. In other words, the BSC model indicates near-certain probability

that the 1990 re-unification caused a substantial fall in West-German per capita

GDP.

For an alternative visualization, we can also examine directly the posterior

distribution of the treatment effect term. I provide two such graphs in Figure 11:

the mean treatment effect estimate along with its 95%-CI on the left-hand side

and the full posterior density of the cumulative treatment effect by 2003. The

Figure further illustrates both how the treatment effect grew significant around

1994 and how strongly the model rejects the idea of a non-negative economic

impact.

Figure 11: West German per capita GDP (2003 PPP USD)
Treatment Effect Posterior Distribution
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The BSC model output also allows us to explore the posterior distributions

for other interesting model variables. Consider, for instance, the distributions
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for the latent factor trends, visualized in figure 12. Each mean trajectory is

plotted along with its 95%-CI.

Figure 12: German Re-Unification
Latent Variable Posteriors
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This visualization allows for qualitative interpretation of each latent factor.

For instance, one can see that the first component reflects an overall growth

trend that corresponds to global increase in per capita incomes over time. The

other components are more difficult to read, but closer analysis would likely re-

veal correlation between these trajectories and important determinants of inter-

national growth trends, such as energy prices, military conflicts, and recessions.

5.5 Comparison to SCM

A re-labeling exercise provides an excellent opportunity to compare the BSC

findings to those of SCM. To do so, I use each framework to predict in turn

the observed post-treatment trajectory of each of the comparison societies. At
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Figure 13: German Re-Unification, Accuracy Comparison
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each run, I measure the distance between the prediction and the observation.

To do so with BSC, I use the posterior predictive mean as my point estimate. I

visualize the comparison society average of the error for each year and framework

in figure 13. Overall, the findings show that the BSC exhibits greater predictive

accuracy on this dataset.

5.6 Consistency Checking

BSC’s ability to produce a full description of its prediction uncertainty has

an important consequence: ability to test modeling assumptions. Recall that

BSC, like any other statistical estimation strategy, is based on a set of strong

modeling assumptions. Both the resulting point estimate and all measures of

prediction uncertainty are valid only inasmuch as the modeling assumptions hold

true. If the premises are violated, the results of the framework grow suspect in

proportion to the scale of that violation.

In real terms these assumptions are bound to be more or less inaccurate.

The important task is that of measuring how severe their violations are. One

easy way to do so is to run a posterior predictive check. Namely, when the model
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is used to predict observed trajectories in this dataset, the posterior predictive

distribution should include the observed data. Posterior predictive checking is

considered one of the best methods for model checking in the Bayesian context

[Gelman and Shalizi, 2013]. Following the uncertainty quantification approach

of [Abadie et al., 2015], [Xu, 2017], and [Ben-Michael et al., 2018] suggests an

obvious way of doing so for BSC: run the model with re-labeling so as to pre-

dict in turn the ”no German re-unification” counterfactual for each comparison

society. If my modeling assumptions held true, the observed data would never

fall far outside the spread of the resulting posterior predictive distribution.

Note also that this consistency check cannot be carried out for GSC, ASCM,

or any other method that uses re-labeling to calculate confidence intervals. In-

stead, these methods artifically set their confidence bounds so as to include

most of the observed data within the spread of uncertainty. This may hide

warning signs of assumption violations, which is dangerous because both the

point estimates and the confidence intervals are valid only to the extent that

the assumptions hold up.

Figure 14 exhibits the results of this test. The dotted line indicates the

share of the comparison societies for which the observed trajectory falls outside

the 95%-CI of the BSC posterior predictive distribution. The dashed line plots

the same measure for the 99%-CI. The dotted graph reflects the share of total

prediction failures where the observed data is more extreme than any single

draw from the estimated posterior predictive distribution or, put in othe words,

receives the p-value of zero.

The share of predictions that falls within the 95%-CI starts at close to 90% in

1990, but soon falls to around two thirds and stabilizes at that level. The wider

99%-CI performs better, consistently capturing the observed data 80-90% of

the time. Complete prediction failures are very infrequent, with only a handful
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Figure 14: German Re-Unification, Posterior Predictive Check
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of years seeing even one single occurrence. Perhaps surprisingly, none of the

graphs demonstrates a clear upward trend over time.

This test clearly demonstrates a couple of points. First, the modeling as-

sumptions are indeed violated. Second, the importance of those violations does

not much depend on the timespan of the prediction, at least as long as it doesn’t

much exceed one decade.

At the same time, the results are not altogether hopeless. Even though

the posterior predictive interval consistently includes the data less often than it

should, it still does so most of the time. The 95%-CI succeeds more than two

thirds of the time and the wider intervals perform better still. This finding does

indicate that the modeling assumptions are somewhat accurate for the GDP per

capita data in the OECD in 1960-2003. I discuss further this balance in section

7.
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6 Application: California Tobacco Control Pro-

gram

6.1 Background

Another important SCM paper examined the effect of a 1988 tobacco reform on

California’s smoking rate [Abadie et al., 2010]. The reform, known as Proposi-

tion 99, introduced sin tax hikes and other anti-smoking measures. California’s

smoking rate fell after the intervention but so did the national smoking rate

and the rates of many other states. The authors of the 2010 study find that the

reform’s effect amounted to a 25% fall in cigarette sales. The study is famous

for introducing the re-labeling based SCM significance testing. Its findings have

been frequently re-analyzed [Ben-Michael et al., 2018]. I join in on this effort

and study the same research question using BSC.

6.2 Data

The target variable for [Abadie et al., 2010] was the number of cigarette packs

sold per capita according to tax data. As comparison societies they use a set

of 38 other US states, or all such states that didn’t introduce major tobacco

controls of their own. The time period covered is 1970-2000, of which the

years 1989-2000 are considered a treatment period for California. Again for

consistency, I use the same selection of data and acquire it from a recent edition

of the publication which the original authors used [Orzechowski and Walker,

2014]. As in section 5, I ignore the other covariates used for SCM, which in this

case included income, age structure, cigarette prices, and beer consumption.
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6.3 Parameter Specification

6.3.1 White Noise

Much of the US population was non-smokers throughout 1970-2000, and most

smokers adjust their smoking rate relatively little year-to-year. Thus, I set a rel-

atively conservative prior distribution on the white noise parameter σ. Namely,

I set γσ = 10 to reflect that I imagine the white noise term to have a standard

deviation less than ten packs per person with probability of one half.

6.3.2 Annual Fixed Effect

As in section 5, I set the mean of the annual fixed effect term equal to zero. To

err on the side of ignorance, I nevertheless allow the prior standard deviation

be quite large at δsd = 30.

6.3.3 Intercept

I believe that the average of annual state smoking rates should be greater than

zero but less than 365, or a daily pack for each person. To reflect this, I set

kµ = 180, ksd = 90, and γκ = 90.

6.3.4 Treatment Effect

As in section 5, I opt for a vastly uninformative treatment effect prior: αµ = 0

and αsd = 500.

6.3.5 Transformation Coefficients and Latent Factors

I set transformation coefficient priors and latent variable priors exactly as in

section 5. Namely, bµ = 0, bsd = 1, and γβ = 1 for the coefficients, and

P = pca and r = 2sdpca for the latent factors.
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Unlike in section 5, I refrain from specifying the number of components M a

priori. Instead, I carry out model selection to determine the most appropriate

number, and ultimately implement the model wit M = 6. I present the details

of this selection process in section 6.4.

6.4 Selecting the Number of Latent Factors

Recall that in section 5 I fixed the number of latent factors a priori at M = 4.

That choice of M was ultimately arbitrary. The choice matters because increas-

ing M helps the model explain more of the observed variance but also involves

increasing the number of free model parameters, which introduces additional

uncertainty. It seems reasonable to say that there should be some optimal M

that finds the most desirable balance in this trade-off. The larger number of

comparison societies in the California dataset emphasizes the importance of

finding, or at least rigorously guessing, what that optimal value is.

One obvious way to select the best M is through formal model selection.

Namely, we can run the model repeatedly with different values of M and record

a measure of the model’s performance at each round. The choice of that measure

is not obvious but one popular option is a statistic known as the Watanabe-

Akaike Information Criterion (WAIC). WAIC is known to be asymptotically

equivalent to measuring the model’s predictive accuracy with repeated cross-

validation [Watanabe, 2010].

I implement this approach to selecting the optimal M for the California

dataset. I begin with the a priori assertion that M ∈ {3, 4, 5, 6, 7, 8}, a set which

I limit to be fairly small because larger values are computationally expensive. I

run the model once for each value of M , using the parameterization from 6.3 and

treating California as the target society. For each run, I calculate the WAIC

measure using a pre-existing implementation from the pymc3 Python library.
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Figure 15: CA Prop. 99, WAIC Model Comparison

M 3 4 5 6 7 8
WAIC 7308 6834 6616 6538 6450 6326

The values are collected in table 15.

The WAIC value is decreasing in the number of latent components variables.

Smaller WAIC indicates better predictive performance, so I choose the model

with the largest number: M = 8.

6.5 Findings

My core findings are captured in figure 16: it plots the mean predicted counter-

factual trajectory and its 95%-CI along with the observed data. Like previous

researchers, I find that the counterfactual trajectory falls slower than the ob-

served smoking rate. The two trajectories don’t diverge notably for the first

couple of years after the reform. Starting around 1992, however, the gap begins

to grow more substantial. By 2000, the predicted rate is 64.0 packs per person

and almost 22.4 packs, or 54%, greater than the observed rate.

My findings are quite similar to those of [Abadie et al., 2015] when it comes

to the scale of the treatment effect. I find that the the reform reduced smoking

over the 1989-2000 period by 15.4 annual packs per person, or by 23%. The

reported SCM estimate is slightly larger at approximately 25%. For further

comparison, [Ben-Michael et al., 2018] report some predicted reform effects for

the particular year 1997. The predictions are 26 for SCM and 20 or 13 packs per

capita for two different Augmented SCM (ASCM) implementations. The BSC

estimate is 16.5 packs, so substantially less than the SCM but halfway between

the two ASCM estimates.

However, the observed post-treatment trajectory falls within the BSC 95%
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Figure 16: CA Proposition 99, Counterfactual and Observation
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credible interval of my counterfactual estimate in almost all of the post-treatment

years. This is clearly visible in figure 16 where the solid observation line remains

well within the shaded CI region all the way into the late 90’s. It is only for

the three years starting in 1998 that the observed smoking rate is significantly

lower than the prediction, and even then the observation is just barely outside

the credible interval. In other words, for most of the studied period, BSC sug-

gests that even without the reform there would have been over 5% probability

of seeing a trajectory as far from the prediction or further still than the one we

observe. That said, including the last three years, we conclude that the cumu-

lative effect over the whole time period is indeed significant. The full posterior

distribution of the cumulative effect is illustrated in Figure 17.

These significance findings differ somewhat from those of previous studies.

The original SCM study [Abadie et al., 2015] found stronger evidence, with

the cumulative treatment effect becoming significant as early as 1993. At the

same time, [Ben-Michael et al., 2018] differs from both the original study and

my BSC findings and concludes that the cumulative treatment effect was not
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Figure 17: CA Proposition 99, Treatment Effect Posterior Distribtuion
Mean with 95%-CI Over Time vs. Probability Density in 2000
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even almost significant. They exhibit a frequentist confidence interval for each

of their three tested frequentist SCM methods and show that the observation

falls well within each of those intervals. (They use a two-standard error interval

which corresponds to a 95.45%-CI but my significance findings are robust to

adopting this wider interval.)

In conclusion, BSC’s findings in the California tobacco control case are qual-

itatively similar to those of previous researchers. However, the prior frequentist

methods disagree both with each other and with BSC on the exact point esti-

mate for the treatment effect and on whether that effect was significant or not.

These heterogenous findings demonstrate on one hand how much uncertainty

counterfactual estimation often involves. On the other hand, they also empha-

size the importance of the choice of methodology. If various synthetic controls

always agreed, improving on them would make little difference. A borderline

case like that of California’s Proposition 99, however, demonstrates exactly how

important it is to refine further counterfactual estimation methods.
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7 Discussion

The Bayesian Synthetic Control framework has certain undeniable strengths as

a statistical tool for the social sciences, but also some notable limitations. It can

easily be extended to many more general types of problems, but there remains

much space for further work and improvements on the framework. I discuss

these considerations underneath.

7.1 Values

7.1.1 Uncertainty Quantification

Perhaps BSC’s single most important improvement on prior work is its ability to

produce full and probabilistically valid description of the uncertainty associated

with its predictions. This is well exhibited in figures 10 and 16 where the

mean counterfactual trajectory is surrounded by a full spread of other possible

trajectories. In addition to visualizing this spread, we can describe it through

credible intervals, the interquartile range, or any other measure appropriate for

the research context.

This rich description of uncertainty makes BSC stand far apart from the

original synthetic control methodology. SCM can at best yield a significance

test for the sign of the error. In many impact assessment contexts, however,

that does not suffice. To know that an intervention had an impact of the right

sign is promising, but of little use in a cost-benefit analysis. BSC, instead, is

perfectly suited for that type of assessment.

One particularly appealing feature of the resulting distribution of uncertainty

is that it is in principle exact. It does not depend on asymptotic behavior such

as infinite pre-treatment years or comparison socieities. Additionally, and in

contrast to all prior frequentist work, the description of uncertainty is fully
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model-based and avoids using up information generated by re-labeling. This

property leaves re-labeling available for consistency checks. Consequently, and

unlike the prior methods, BSC transparently reveals failures of the modeling

assumptions.

7.1.2 Overfitting

I have previously pointed out how SCM, like many frequentist methods, is quite

suspect to overfitting. Similarly, I’ve already noted (and explain further in the

Appendix) that the issue is rarely of concern to Bayesian models. It does bear

further emphasizing, though, that BSC is even better shielded from overfit than

many other Bayesian models.

To see this, note that the SCM is supspect to overfit because the relatively

large number of comparison societies allows the method to look for spurious

correlations between them and the target society. BSC goes beyond the regular

Bayesian approach to prevent this by first carrying out a dimensionality reduc-

tion from J to M . It is much more difficult to find a spuriously correlated linear

combination of half a dozen than several dozen available covariates.

Finally, the hierarchical structure of BSC’s prior distributions further moder-

ate overfitting and extrapolation. Recall that the coefficients of all societies are

drawn from the same distribution, and that distribution is estimated explicitly.

This strongly regularizes against generating overfitted outlier estimates.

Admittedly, it is not easy to show empirically whether and how much one

technque is more suspect to overfitting than another. However, we can take

predictive performance for a tentative proxy of overfitting. The predictions of

an overfitted model should be less accurate because they are distorted by random

noise. As we saw in figure 14, BSC does indeed appear to produce more accurate

predictions than SCM. This provides moderate empirical evidence for my claim

of the overfitting concern.
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7.1.3 Information Efficiency

Recall that the original SCM methodology discards certain types of information

altogether. Namely, the method is unable to model negative correlation between

societies. BSC, on the other hand, can utilize information on any linear inter-

society trends. The loss of information associated with BSC is strictly tied to the

dimensionality reduction used to estimate the latent trends. That loss, instead

of prefering any particular type of information, extracts whatever patterns are

most effective in explaining the observed variation. Further, SCM requires data

on a number of covariates other than the variable of interest, while BSC analysis

performs well on simple single-variate datasets.

7.1.4 Interpretability

An important part of BSC’s appeal is that it is directly based on a causal model.

In other words, it lays out a set of assumptions about causation in the real world

and then estimates explicitly the associated variables. This again stands in fairly

stark contrast to the original SCM. The SCM method motivates itself with a

latent variable model, but those latent variables or their relation to the observed

data is not estimated. Instead, the method estimates a relation between societies

even while acknowledging that no causation runs between them in reality. SCM,

then, is only motivated by an idea of causal stucture but cannot be interpreted

as one. The same criticism applies directly to ASCM. Meanwhile GSC does

estimate explicitly the underlying trends but fails to describe its uncertainty

over their shapes.
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7.2 Limitations

7.2.1 Assumption Violations

The BSC framework is ultimately based on a fairly strict set of assumptions.

First, change in the variable of interest must be driven solely by inter-society

trends along with a single clearly identified policy intervention. Second, the

relation between those trends and the variable of interest must be linear. Third,

the intervention has no effect on any of the comparison societies. Fourth, the

white noise errors are independently drawn from a distribution that is constant

over time and societies. In practice, these assumptions are frequently violated.

We saw evidence and implications of this type of behavior exhibited in figure

14. It shows that when BSC is run to predict a trajectory which by assumption

was not affected by the German re-unification, the resulting credible interval

does not consistently contain the observed data. By the end of the time period,

a third of other societies were outside the 95% CI. Clearly, the model does

not quite correctly capture the dynamics of per capita GDP growth in OECD

countries.

It should be noted, though, that this limitation is shared by the previous

frequentist tools, too. The shared characteristic of all SCM-related models is an

assumption of latent, linearly combined causal factors. BSC’s ability to describe

its own uncertainty makes the violation of this assumption transparent. That

SCM does not do so does not mean that its reliability is not compromised by

those violations.

There is no obvious fix to this limitation. As long as it persists, researchers

should be careful to run extensive checks for the validity of the linear factor

model whenever using SCM-related tools. If figure 14 indicated an error rate

that ascends slowly from 5% to 15%, we could take the model’s predictions with
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a fair degree of confidence. If the graph instead grew rapidly to the mid or high

double digits, however, we should conclude that the predicted counterfactual

trajectory is invalid. A pattern like the one currently seen suggests that the

counterfactual estimate is useful, but should be interpreted with substantial

reservations.

7.2.2 Number of Latent Variables

The structure and validity of the BSC probabilistic model in any particular

practical context depends quite heavily on the number M of included latent

variables. It is fairly obvious that my approach to choosing M in section 5,

namely that of fixing it a priori, has few virtues beyond simplicity and ease of

computation. The approach used in section 6, that of formal model compar-

ison, is markedly more promising. However, even that approach is ultimately

unsatisfying.

To see why, note that after the selection phase I fit the model with M = 8 as

if I now knew for a fact 8 to be the correct number. In real terms, though, the

true number of latent causal trends remains uncertain. The model output should

reflect this uncertainty rather than hiding it as BSC currently does. A simple

even if computionally expensive improvement would therefore be to give M an

explicit prior and to include it in the model as an additional latent variable.

Equivalently, the model could be run for several choices of M and the result-

ing posterior distributions could be combined using model averaging. Either

approach would incorporate in the findings a non-trivial source of uncertainty

that is currently hidden from the analyst.

7.2.3 Latent Variable Identification

The BSC implementation in its current form pins each of the latent factor

trajectories into the neighborhood of one frequentist PCA component. Recall
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that this is done to aid computation, not to reflect genuine prior information.

This prevents the artificial multimodality resulting from rotational symmetry.

However, it is possible the posterior distribution also has genuine multimodality.

There could be a completely different set of trajectories that can be used to

construct the observed dataset. The current informative prior structure prevents

BSC from exploring such other modes.

Consequently, the model underestates our uncertainty over the shape of those

latent trends. It is likely, even if not strictly necessary, that this also leads to

some understating of uncertainty over the predicted counterfactual trajectory.

Even where this understatement is small in scale, in marginal cases it might

lead us to mistakenly place an observed trajectory outside a particular credible

interval.

Unlike the issue described in section 7.2.1, this limitation is not inherent in

the mathematical formulation of the Bayesian Synthetic Control. Instead it re-

sults from my preferred computational soluion. One simple improvement would

be to run the model several times, each run with a different set of informative

priors. For instance, another run could pin the latent factors using Independent

Component Analysis (ICA) factors rather than PCA components. Results from

the various runs could then be combined using a technique such as Bayesian

model averaging.

More rigorously, the issue could be eradicated by removing the informative

prior and allocating the sampler sufficient computational resources to explore

the multimodal posterior distribution. Alternatively, the NUTS sampler could

be replaced with another algorithm better prepared to deal with multimodal-

ity. In fact, the whole MCMC sampling approach could itself be replaced with

another way of estimating the posterior, such as the variational inference frame-

work.
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7.2.4 Computational Resources

The BSC framework resembles many other Bayesian techniques in that its com-

putationally much heavier than its frequentist relatives. A single run of the

baseline BSC implementation as in sections 5 and 6 took 8-12 hours on a vir-

tual Amazon Web Services Ubuntu machine equipped with substantial process-

ing power. Tentative experimentation suggests that removing the informative

latent variable priors might require upwards from 5 to 10-fold increase in com-

putation time for sampler convergence even if M = 4. Furthermore, running

the model for each of the comparison societies so as to produce the findings in

figure 14 requires a J-fold increase in computation time. SCM and the related

frequentist tools use less computation time by orders of magnitude.

7.3 Extensions

There are certain natural extensions that the BSC framework can easily accom-

modate. For instance, there is no reason why there should only be one target

society. Rather, the indicator matrix D can be edited to mark any years in

any number of societies as targets of the treatment effect. The BSC framework,

therefore, could be used as a Bayesian alternative not only to the conventional

SCM but also to other econometric techniques such at the canonical Difference-

in-Differences method.

Similarly, BSC is also immediately able to accommodate missing comparison

society data. The missing elements can be replaced with any reasonable dummy

values and then marked as distorted in the treatment effect indicator matrix.

Not only does this relax data quality requirements, but the model in fact outputs

a rigorous estimate for the missing values as a side product. Indeed, BSC could

even be used for the sole purppose of missing data imputation in any situation

in the social sciences and beyond where latent linear variable structure can be
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assumed.

BSC can also readily incorporate fairly substantial modifications of its un-

derlying causal model. The inter-society relationship could be complemented

with time-series behavior such as lagged outcomes or seasonality. We could re-

lax the assumption of a linear latent variable structure and allow for nonlinear

factor inputs. Fixed effect terms could be added or removed. Indeed, I included

the annual fixed effect mostly for consistency with the causal structure of prior

publications on synthetic controls. Over the long term, WAIC model compar-

ison would likely form better grounds for variable inclusion than consistency

with previous methodologies.
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8 Conclusion

In this senior thesis I have laid out the design for a novel statistical tool for the

social sciences, the Bayesian Synthetic Control. I have demonstrated that the

BSC is well suited to study the kinds of research questions that have previously

been investigated using the Synthetic Control Method and its frequentist ex-

tensions. Indeed, I have shown that BSC and SCM share a largely equivalent

causal model. I have also demonstrated that the BSC framework lacks some

of the flaws associated with SCM. The main improvement is quantification of

uncertainty, which is accompanied by certain other strengths such as robustness

to overfit concerns.

I have exhibited the framework’s performance on two previously studied

datasets and contrasted my findings with those of the original SCM method-

ology. The contrast showed that BSC, despite tending to agree with SCM’s

qualitative results, can further our understanding about the magnitude of the

associated treatment effects, even to the point of casting doubt on the statistical

significance of those findings. I have demonstrated that BSC outperforms SCM

in a simple accuracy test when predicting untreated placebo trajectories. I have

also showed that BSC’s method of uncertainty quantification can yield evidence

of model mis-specification where prior frequentist work fails to do so. Together

these demonstrations show that the framework is ready for implementation and

use in practical social scientific research contexts.

Nevertheless, BSC continues to have notable limitations. While these limita-

tions are often shared by the related frequentist tools, their persistence empha-

sizes that researchers should exercise great caution when using the various syn-

thetic control tools. It also exhibits the amount of further work that remains to

be done in translating tools of causal inference into the Bayesian paradigm. The
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study of treatment effects has long been dominated by the frequentist paradigm

of statistics. This trend may be ripe for reversal and tools like BSC may play a

part in doing so.
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Appendix: Review of Bayesian Data Analysis

Most work on synthetic controls has been carried out in the frequentist paradigm

of statistics. Indeed, the same is more or less true of the broader field of causal

inference in the social sciences. In this Appendix, I review the workflow of

Bayesian data analysis, discuss briefly its strengths and weaknesses, and elabo-

rate on the MCMC sampling approach to implementing it computationally.

Paradigm Differences

The core difference between the two paradigms of data analysis concerns the

treatment of unknown parameters. In the frequentist workflow, only observed

data is considered to consist of random variables. Model parameters, such as

covariate coefficients in a regression, are considered unknown constants. They

are not taken to be in any sense random.

This distinction roots directly to the frequentist interpretation of probability

as a long-term frequency. Namely, the analyst supposes that the observed data

was generated by some process involving randomness. Running that process

again would yield different data. Running it repeatedly for long enough would

generate data that converged to some population distribution. Our observation

is one draw from this distribution and thus properly random. The unobserved

parameters which define that process, on the other hand, do not themselves

have a generating random process. They are simply constants, even if unknown

ones. You cannot assign a probability distribution to the value of an unknown

parameter any more than you can assign a probability distribution to the value

of pi.

In contrast, a Bayesian analyst treats all unknown quantities as random

variables, whether they be measurable outcomes or abstract model parameters.
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This reflects a different understanding of probability. Namely, Bayesians con-

sider probability to be a measure of uncertainty. Anything that is unobserved

is also uncertain, and we can (or even should) describe it using probabilities.

To do so, each model parameter is assigned a prior probability distribution to

describe the analyst’s a priori uncertainty over its value. This prior uncertainty

is then updated using the observed data to derive a probability distribution to

describe the analyst’s a posteriori uncertainty over that value.

Estimation Goals

The two paradigms yield different approaches to data analysis. The frequentist

paradigm has a particular limitation when it comes to discussing the values

of an unknown parameter. It can only do so in terms of the likelihood, or

the probability of seeing the observed data given those values: p(y|θ). Point

estimates are selected through some type of optimization, often by maximizing

the likelihood. Construction of a confidence interval, whenever possible, is done

by estimating how extreme the parameter could be without the likelihood falling

very low.

In other words, for a parameter θ, observed data y, and supposed probability

function p, a frequentist analysis looks for a point estimate in this fashion:

θ̂freq = argmax
θ

p(y|θ). (51)

Bayesian analysis does not much concern itself with point estimates. In-

stead, it uses the Bayes theorem together with prior probabilities p(y) and the

likelihood function to derive a posterior probability distribution. Given full

confidence in the model in use, the posterior offers a full description of the ana-

lyst’s a posteriori uncertainty over parameter values. Formally, then, a Bayesian
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analysis seeks this new probability function:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(52)

∝ p(y|θ)p(θ). (53)

Note that this approach does not commit itself to a particular estimated

value for the unknown parameters. Rather, the the output is a full distribution

of probable values. Any predictions are made by integrating over all plausible

parameter values, weighing each by its posterior probability.

We are also often interested in the posterior predictive distribution p(y∗|y)

of some unseen data y∗. The posterior predictive describes the kinds of data

we would expect to see given the data that we actually did observe. In the

case of social scientific counterfactual estimation, we can specifically derive it

for the unobserved trajectory we would have seen without the treatment effect.

When individual draws of data are independent, the predictive has a fairly

straightforward integral representation:

p(y∗|y) =

∫
p(y∗|θ,y)p(θ|y)dθ (54)

=

∫
p(y∗|θ)p(θ|y)dθ (55)

∝
∫
p(y∗|θ)p(y|θ)p(θ)dθ. (56)

In practice both 53 and 56 are too complex to be calculated exactly. How-

ever, each of the components p(y|θ), p(y∗|θ), and p(θ) tends to be easy to

compute. In practice Bayesian posteriors are therefore estimated computation-

ally. Perhaps the most well-established method of doing so is Markov Chain
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Monte Carlo.

Markov Chain Monte Carlo

One often-used way to estimate a probability distribution is to draw samples

from it. If we can draw a large sample from a distribution, we can derive

robust estimates for most of its features. Means, standard deviations, and

quintile functions are only some of the many sample statistics that converge to

population values as the sample size grows. Samples make it particularly easy

to answer questions such as ”how probable is it that θ > 0?” We can simply

count the proportion of draws where that is so. With large enough sample size,

the sample proportion will have converged to the population proportion.

MCMC refers to a group of algorithms designed to draw samples from com-

plex probability distributions. To do so, an MCMC algorithm sends a sampler

on a ’random walk’ (Markov chain) around the parameter space. At each step,

the sampler records its current location as a draw from the distribution and

then jumps into a new stochastically chosen location in the parameter space.

The exact method of determining where the jump goes varies by algorithm.

However, the method always guarantees that the targeted posterior probability

distribution is also the stationary distribution of the sampler’s random walk.

Stationary distribution here refers to a type of limiting behavior. The share

of draws recorded in any neighborhood of the parameter space converges to

the share of probability mass allocated to that neighborhood by the stationary

distribution. In other words, as the chain length grows, the collection of values

recorded by the Markov chain converges into a sample drawn from the stationary

distribution.

Therefore, given enough time and processing power, any MCMC algorithm

is guaranteed to produce a random draw from the targeted posterior probability
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distribution. The only required input is a method to compute that distribution’s

density at any point in the parameter space. In practice, though, available

computation time is limited so the choice of an MCMC algorithm matters.

For a Markov chain to converge to the stationary distribution, it needs to

spend plenty of time in all plausible neighborhoods of the parameter space.

Therefore it is important that the sampler moves from one neighborhood to

another fairly quickly. This requires it to take large enough steps during its

random walk. A popular algorithm to help the sampler increase its step size is

one known as Hamiltonian Monte Carlo (HMC).

Unlike many simpler algorithms, HMC uses information on the gradient of

the underlying distribution to inform its next step. This allows it to move

around the posterior more quickly, leading to faster convergence. Being a more

complex algorithm, however, HMC is very sensitive to user-provided configu-

ration specifications. This sensitivity motivated the recently quite popular No

U-Turns Sampler (NUTS). The underlying structure of NUTS is merely that of

HMC, but it carries out automatic, adaptive selection of appropriate sampling

configurations. For full technical reference, I implemented the BSC model us-

ing pre-existing implementation of the NUTS sampler from the pymc3 Python

library. I ran the sampler with target acceptance rate of 0.9, maximum tree

depth of 12, two simultaneous Markov chains, 5,000 tune-in steps per chain,

and 20,000 sampling steps per chain. The results were checked for convergence

using the Gelman-Rubin diagnostic and the lack of sampler divergences. Other

Python libraries vital for my code included numpy, pandas, theano, sklearn,

matplotlib, and seaborn.
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Overfitting

Overfitting is a term used to describe a particular flaw in statistical analysis.

In essence, an overfitted analysis yields results too specific to the sample it was

trained on. It captures not only genuine patterns in the data but also random

noise. An overfitted model will try to reconstruct that specific instance of white

noise when used to make predictions on previously unseen data. Because random

noise does not in fact reproduce itself in new data, overfitting generally worsens

the predictive performance of a statistical analysis.

The roots of overfitting are largely in the optimization approach used in

frequentist statistics. Recall that a frequentist analysis selects a single point

estimate for θ. It is selected to be whatever value minimizes an error on the

training data. Random noise, not only genuine patters, impacts the size of the

error. Whenever there are many choices of θ that produce fairly small errors, the

exact choice among them is thus often determined by white noise. The threat

of this grows as the number of the model’s free parameters (eg. the number of

covariates) increases.

Bayesian models, on the other hand, are by nature quite immune to param-

eter overfitting. Recall that a Bayesian analysis does not involve any optimiza-

tion, nor does the model commit itself to any particular choice of parameter

values. Instead, the estimate is constructed by integrating over all posssible

parameter values. Each value is weighted by its posterior probability. Thus

all values that produce a fairly small error in training data and have a fairly

large priror probability also have a fair degree of impact on the prediction. This

means predictions are based on averaging over many different values of random

noise, which eliminates most of the threat of overfitting.

It should be noted that there are frequentist methods for constraining overfit.

Some of the the famous ones include regularization terms and extensive cross-
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validation. However, they do not fully diminish the overfit case for the Bayesian

paradigm. This is in part because they all ultimately commit themselves to a

particular choice of parameter values rather than aggregating over all or many

plausible ones.

Prediction Uncertainty

Statistical models rarely if ever aim to yield exactly correct predictions. Instead,

a prediction aims to be a good estimate of the unknown true value. As such,

the prediction is uncertain. Quantifying that uncertainty is a core task for

any serious statistical analysis. Such quantification usually includes an overall

measure of confidence in the sign of the prediction (eg. a significance test) and

either a measure of the expected magnitude of the error (eg. a standard error)

or a description of the interval or region where the true value is expected to be

(eg. a confidence interval).

As discussed before, a frequentist analysis cannot describe its uncertainty

with probability statements related to the unknown parameters. Instead, it de-

pends on well-studied formulae for significance tests and confidence intervals.

These formulae, when applicable, are guaranteed to be consistent with the true

paradigm values a specified proportion (usually 95%) of the time they are imple-

mented on new datasets. However, there is no guarantee that the conventional

formulae are applicable to any particular newly introduced estimator with an

unknown distribution (such as the conventional SCM). Furthermore, frequen-

tist confidence intervals are infamously convoluted to interpret. Unlike the name

might suggest, the 95% confidence interval does not contain the true value with

95% probability. Rather, the associated confidence is strictly confidence in the

method of computing the interval, not that in the true parameter value.

A Bayesian model, on the other hand, does not depend on the applicability of
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particular confidence interval or standard error formulae. Recall that a Bayesian

analysis estimates directly the posterior predictive distribution. In other words,

the analysis output is a distribution that describes explicitly the analyst’s full

posterior uncertainty over the counterfactual trajectory. Once we know this

distribution, we can readily discern measures like its standard deviation and any

desired credible interval. The claims made about the paramter are probabilistic

and thus trivially easy to interpret.

Measurement of prediction uncertainty, therefore, may occasionally present

a major reason to prefer the Bayesian workflow. It more readily and reliably

captures the spread of possible outcomes along with the respective probabilities.

Summary

The Bayesian and frequentist paradigms of statistics are characterized by sub-

stantially different workflows, strengths, and weaknesses. Previous work in syn-

thetic controls has been overwhelminly dominated by the frequentist paradigm.

Many of its more striking features, such as discarding of information and chal-

lenges in quantification of information, root directly to fundamental features of

the underlying paradigm.

It seems clear that addressing the problem using the Bayesian workflow has

substantial promise of improvement on past work. The issues of overfit and

prediction uncertainty are of little to no concern for a robust Baysian modeling

exercise. Interpretability, too, has proven an issue in the current frequentist

approaches and may be best addressed with a paradigm shift.
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