
Geographic Clustering for Neighborhood
Boundaries: A Spatial Analysis of Chicago Using
Public Data

Citation
Kuppersmith, Joshua Benjamin. 2019. Geographic Clustering for Neighborhood Boundaries: A
Spatial Analysis of Chicago Using Public Data. Bachelor's thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364628

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364628
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Geographic%20Clustering%20for%20Neighborhood%20Boundaries:%20A%20Spatial%20Analysis%20of%20Chicago%20Using%20Public%20Data&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=ad1df5f7626754bcd54162b0cc6e95f0&departmentApplied%20Mathematics
https://dash.harvard.edu/pages/accessibility

Geographic Clustering for Neighborhood Boundaries:

A Spatial Analysis of Chicago using Public Data

Joshua Benjamin Kuppersmith

A Senior Thesis Presented to the

Department of Applied Mathematics

In Partial Fulfillment for Honors in

Applied Mathematics in Data Science (AB)

Harvard University

Advised by: Pavlos Protopapas

March 29, 2019

Table of Contents

1 Abstract 3

2 Introduction 4

2.1 Motivation . 4

2.2 Scope of Work . 5

2.3 Previous Work . 7

3 Background 11

3.1 Geographic Features . 11

3.2 Data Pre-Processing and Spatial Grid System 11

3.3 Principal Components Analysis . 13

3.4 Clustering . 14

3.5 K-Means Clustering . 14

3.6 Earth Mover’s Distance . 15

3.7 Normalization . 16

3.8 Regularization . 17

3.9 Hyperparameter Optimization . 17

4 Data and Exploration 19

4.1 Data Overview . 19

4.2 Feature Correlation and PCA . 23

5 Methodology 27

5.1 Evaluation Metrics . 27

5.2 Baseline - City Neighborhood and Police Beat Boundaries 28

5.3 Preliminary Modeling with K-Means . 28

5.4 Geographic K-Means Algorithm . 29

5.5 Proof of Convergence . 31

5.6 Model Robustness . 35

1

5.7 Regularization . 37

5.8 Hyperparameter Optimization . 39

6 Results and Discussion 40

6.1 Choosing the Evaluation Metrics . 40

6.2 Baseline Model . 42

6.3 Naive K-Means Results . 43

6.4 Preliminary Geographic K-Means Results . 45

6.5 Feature Based Clustering Results . 47

6.6 Picking Optimal Alpha . 51

6.7 Boundary Cleaning . 52

7 Conclusion 55

7.1 Insights . 55

7.2 Future Work . 56

7.2.1 Frontend Visualization Platform . 56

7.2.2 Further Clustering Testing . 57

7.2.3 Allowing Flexibility for K . 57

7.2.4 Cellular Potts Model . 58

7.2.5 Data Processing . 59

8 Acknowledgements 60

References 61

2

1 Abstract

Open data initiatives in cities around the world have enabled new efforts to understand

and improve urban areas through data analysis. In order to develop actionable insights to

improve cities, it is important to isolate differences between geographic areas throughout the

city. Neighborhoods are typically used as a unit for spatial separation, where each neighbor-

hood is internally similar, and different from outside areas. As such, neighborhood analysis

is key to developing an understanding of complex urban dynamics, yet current neighborhood

boundaries do not always adequately reflect similar areas of cities. This thesis proposes a

new clustering algorithm to automatically generate neighborhoods with highly similar in-

ternal data profiles. Using a grid-model of a city, this new method of clustering, called

Geographic K-Means, incorporates data accumulated within grid cells and builds clumps of

neighboring cells with similar data trends. This method is optimized using hyper-parameter

tuning to improve an Earth Mover’s Distance-based measure of within-neighborhood homo-

geneity. The optimization uses regularization to enforce smooth neighborhood boundaries,

helping us find an optimal balance between data similarity and realistic contiguous neigh-

borhoods. In order to build and test this algorithm, we used Chicago as a case study due to

its abundance of data. By generating new Chicago neighborhood boundaries, and increasing

within-neighborhood crime homogeneity, we are able to see the relationship between crime

and neighborhoods, and better detect sharp boundaries between areas of the city.

All code is available on Github at:

https://github.com/jkup11/Geographic-Neighborhood-Clustering

All raw data and cleaned crime data must be requested separately due to file size. If inter-

ested, contact Josh at joshkuppersmith@gmail.com.

3

https://github.com/jkup11/Geographic-Neighborhood-Clustering

2 Introduction

2.1 Motivation

Neighborhoods are a defining characteristic of cities. Large cities have a wide variety

of areas, all serving different purposes. New York is well known for its diverse variety of

neighborhoods, each having different attributes and personalities. Because of the difference in

social attributes between neighborhoods, each can be analyzed and understood individually.

The city as a whole is often too large to be analyzed in its entirety. Since each neighborhood

is very different, neighborhood analyses are an important way to gain a better understanding

of urban areas. As a result, spatial analyses attempting to better understand urban areas

are often neighborhood-dependent.

Today, urban analyses are more powerful than ever. With wide availability of urban

data through projects like Chicago’s Open Data Initiative, data scientists are able to create

more rigorous and complex models of cities. For example, crime analysis is one area where

geospatial data science has made a considerable impact. Predictive policing, as described by

Shapiro [Shapiro, 2017], is the use of spatial analytics to predict crime events and trends to

help police deploy resources more effectively. Companies like Civicscape are using high-tech

analytical frameworks to accomplish this goal. Micro-mobility businesses, such as ride and

bike sharing companies, also use spatial predictive models to determine where to place their

fleet and how to optimize their strategy in a city. Midgely explains how smart analytics

are used to optimize performance in the bike-sharing business [Midgley, 2009], and cities

like Chicago are becoming more and more reliant on these technologies with the boom of

dockless bike sharing [Claffey and Lilia, 2018]. Geospatial analysis is not a simple task, and

Andresen discusses the challenges associated with spatial heterogeneity in urban modeling,

since urban areas are highly variable at a granular level [Andresen and Mallseon, 2013]. This

work also implies that it is important to build more powerful urban models to capture this

variance and better understand cities. Because of the complexity of cities, and the high

stakes of urban modeling, spatial tools to help data scientists and researchers understand

cities are extremely valuable.

4

https://data.cityofchicago.org
https://www.civicscape.com

Because neighborhoods are often crucial to understanding and modeling a city, it is im-

portant that neighborhood boundaries are meaningful. This raises a key issue: neighborhood

boundaries are fluid. New developments, gentrification, and transportation can all change the

identity of neighborhoods. In addition, neighborhood boundaries drawn by a city can be out-

dated, especially in light of these changing urban dynamics. Delmelle analyzes demographic

changes in neighborhoods over time to propose several different key trends that are driving

change in neighborhoods over the past 50 years [Delmelle, 2017]. O’Sullivan also highlights

the way that neighborhoods influence change in cities, and how neighborhoods themselves

change over time. This work suggests that the demographics of stationary neighborhoods

irrefutably change over time, so it may be more useful to track how neighborhoods change

spatially rather than analyzing change in stationary neighborhoods [O’Sullivan, 2009]. This

work proposes a spatial graph-based model to represent urban neighborhoods, and uses data

to track demographic change over time.

One possibility to address neighborhood change is to create dynamic neighborhood

boundaries using crowdsourcing. Research suggests that there is variation in how individuals

define their own neighborhood, but there are common understandings of core neighborhood

identity [Coulton et al., 2011]. One proposed solution is that over time, people draw their

understanding of neighborhoods, which are then aggregated into boundaries. Bostonogra-

phy [Woodruff, 2012], a Boston-based mapping and spatial analytics blog, implemented this

concept, available at https://github.com/wboykinm/hoodsproj. While this model allows

for changes over time, it faces significant issues with individual and community bias, and a

data-based model would be more objective.

By attempting to redraw neighborhood boundaries with more meaning, we can provide

a tool to help people understand cities and be more effective in drawing conclusions about

causation of events in a city. Neighborhoods drawn using data can keep up with the changing

dynamics of a city and can help better differentiate neighborhoods.

2.2 Scope of Work

This thesis seeks to develop an algorithm to draw new neighborhood boundaries in urban

areas that accurately reflect spatial homogeneity for some set of available data. For simplicity,

5

https://github.com/wboykinm/hoodsproj

in this work, homogeneity will be measured using aggregate reported crime totals, but this

method allows for any data to be used to calculate homogeneity, such as demographics from

census data. By developing neighborhood boundaries with more internal spatial homogeneity

than currently drawn neighborhood boundaries, one can more easily analyze differences

between neighborhoods. Chicago is used as a test case for this algorithm, because it has

extensive public data and is the author’s home.

The first step is an exploratory data analysis of Chicago’s available spatial data. In-

cluded in this step is pre-processing and cleaning of the data. In addition, an accurate grid

representation of the city is generated, and data is accumulated onto the grid. Each row of

the resulting database represents a small square within the city, and contains information

about the square’s location and the data within that area. From there, a metric of success

is defined using Earth Mover’s Distance and standard deviation to quantify crime homo-

geneity within each neighborhood. Then, a baseline for homogeneity is established using

Chicago’s 96 pre-defined neighborhoods. The first attempt to re-draw neighborhood bound-

aries using K-Means clustering reveals several issues with this method. This preliminary

modeling leads to the proposal of the new algorithm, which uses the structure of K-Means

with modified distance calculations to generate neighborhoods that are both homogeneous

and smoothly contiguous. A simple Geographic K-Means algorithm is written and tested,

then expanded upon to include weighted contributions of geographically accurate Haversine

distance and vector distances of available data. The algorithm is then optimized by tuning

the weighting hyperparameter, α, with Earth Mover’s Distance (EMD) homogeneity used

as the target metric. Regularization is introduced as a way to balance the target of neigh-

borhood homogeneity and realistic boundaries. Regularization and EMD plots are used to

select a reasonable range for α to create a map with smooth, homogeneous neighborhoods.

Then, by visually inspecting the maps, we pick a realistic map that is homogeneous and con-

tiguous. Finally, a smoothing step is run on the final result to re-assign outliers, resulting in

an improved final model.

6

2.3 Previous Work

With the wide availability of detailed geospatial data and analytical tools, many re-

searchers and businesses are using data science to analyze urban environments. Crime mod-

eling of cities is a well-researched area, with an abundance of previous work. In many cases,

crime analysis in cities is focused on detecting or predicting crime hot spots, or areas with

particularly high crime density. These hot spots are useful in the predictive policing appli-

cation [Perry et al., 2013], since these projects aim to efficiently allocate police resources to

areas of high crime. Within this field, the strategy for locating hot spots varies greatly. In

Hermann’s spatio-temporal crime analysis [Herrmann, 2013], focus is placed on streets as a

geographic unit in order to more effectively aid law enforcement. This work also introduces

time as an important factor in predicting crime patterns. Another similar hotspot detection

work is Hu et al.’s work [Hu et al., 2018] which utilizes Kernel Density Estimation as a way

to analyze crime. Kernel Density Estimation is a method used to estimate a probability

density function from sample data, so this method generates a spatial probability distri-

bution which is easily evaluated for hotspots. All of these works present accurate ways to

analyze crime and predict high density areas in a city. Because this thesis will specifically

use Chicago’s crime data to illustrate neighborhood building, these spatial crime analyses

were useful to begin thinking about spatial relationships in urban crime, but do not directly

address neighborhood-specific models.

In their paper, “Using High-Resolution Population Data to Identify Neighborhoods and

Establish Their Boundaries”, Spielman and Logan attempt to determine neighborhood bound-

aries in urban areas [Spielman and Logan, 2012]. They define neighborhoods as contiguous

areas defined by social attributes and features that are different from the surrounding area.

This definition helps to shape the goals of this thesis in re-defining appropriate and realistic

neighborhoods. They calculate “egocentric signatures” to compare the similarities of geo-

graphic units given in the census. Then, using likelihood calculations, areas are clustered

together, thus defining new neighborhoods. This paper helps to guide the notion of cluster-

ing together geographic units. However, this thesis will use uniform rectangular grid cells as

the geographic unit, and will attempt to enforce a greater degree of neighborhood contiguity

7

to model reality more accurately. Hoodsquare [Zhang et al., 2013] also directly approaches

the question of re-drawing neighborhoods using data. This work uses Foursquare check-in

data to detect neighborhood boundaries, and compiles the algorithm and model into an ap-

plication that allows users to explore cities, and have neighborhoods recommended to them.

This paper uses spatial clustering for hotspot detection, and introduces a grid-based index

for spatial homogeneity, which serves as the basis for this thesis’s homogeneity metrics. This

thesis explores this area by using a grid-based data representation as the basis for clustering.

Other works similarly use Foursquare data, specifically to compare similar neighborhoods.

One work recommends Earth Mover’s Distance as the best way to quantify the difference

between data in different neighborhoods [Le Falher et al., 2015], and we will similarly use

this metric to calculate neighborhood homogeneity.

The geographic clustering method used in this thesis is also related to several other works

that attempt to cluster geographic data. Murray et al.’s 2013 paper [Murray and Grubesic,

2013] explores using K-Means and other non-hierarchical clustering methods to cluster crime

events and detect hot spots. While the framework for this thesis will focus on a grid-based

crime model rather than individual incidents, this 2013 paper explains methods for spatial

clustering and validates clustering as a good way to analyze geospatial datasets. DBSCAN

(Density-based spatial clustering of applications with noise) is one clustering algorithm de-

signed for spatial data [Ester et al., 1996]. It uses local density calculations to cluster areas

with similarly high or low density, and it detects outliers, handles noise well, and determines

the optimal number of clusters automatically. Like Murray et al., this is a valuable spatial

clustering tool, but since our data has uniform spatial density, this is probably not the right

algorithm to use for this modeling project. Instead, we need an algorithm that will handle the

uniform spatial distances of data points (grid cells) and also use the density and distribution

of other accumulated data to help determine neighborhood boundaries. These factors will

likely need to be appropriately weighted to ensure successful neighborhood determination.

Grid-based clustering algorithms have also been extensively researched, with several pop-

ular models in use. STING [Wang, Wei et al., 1997] proposes using a statistical information

grid to represent large spatial datasets in order to perform more computationally efficient

clustering with higher performance. A similar grid-based approach is used in this thesis.

8

CLIQUE [Agrawal et al., 1998] is an algorithm used to find high density clusters in high-

dimensional data using a grid representation of data, again illustrating the ability for a grid

to simply and robustly represent spatial data. WaveCluster [Sheikholeslami et al., 2000] is

another grid-based algorithm that uses wavelet transformation to find arbitrarily sized and

shaped clusters without high sensitivity to noise and outliers. Grid-based clustering is its

own subset of clustering analysis, with countless published algorithms with various applica-

tions and purposes, such as to reduce the influence of grid cell size [Lin et al., 2008] and to

allow for efficient hierarchical clustering on grids [Schikuta and Erhart, 1997].

Other works focus on neighborhood analysis. Yuan et al.’s 2012 work analyzes neigh-

borhoods in Beijing and uses clustering of point of interest and mobility data to determine

functionality of different neighborhoods [Yuan et al., 2012]. This work assumes that roadways

are a key factor in neighborhood development and uses road network data to define neigh-

borhoods as areas between significant roads. This road-based neighborhood representation

is different from the grid approach, but it enforces contiguous neighborhoods and is another

reasonable framework for neighborhood building. It also validates the use of point of interest

data to differentiate between neighborhoods with different functions, and presumably differ-

ent crime profiles. Overall, this work seeks to better understand neighborhoods in an urban

area, which is an outcome that this thesis seeks to improve. By re-drawing neighborhood

boundaries, this kind of analysis can become even more powerful, since new neighborhoods

are more homogeneous, creating greater differentiation between neighborhoods. While many

of these works are relevant to the goals of this thesis, few works have attempted to re-draw

neighborhood boundaries.

Examples from other fields also helped inspire the algorithmic approach in this thesis.

Grid models are present across many fields, and algorithmic approaches to clustering grids

are often similar to this geospatial model. For example, the Cellular Potts Model [Graner

and Glazier, 1992] (further discussed in Section 7.2.4) uses a grid with clusters representing

cellular organisms to model interactions of these organisms. The method uses random simu-

lation to find a minimum energy grid configuration that results in smooth boundaries. This

method inspires the regularization step in this thesis to generate neighborhoods with smooth

boundaries. Image segmentation often uses grid-based models and clustering because pixels

9

form a natural grid. K-Means is one algorithm that has been used in this space [Dhanachan-

dra et al., 2015], though this attempt does not account for the same spatial goals as this

thesis.

10

3 Background

The broad idea of this project is motivated by previous work, and individual pieces of

this complex problem are also driven by research. This thesis relies on various technical

tools used in the field. This section aims to provide context and background to the methods

used and developed while modeling the problem of re-drawing urban neighborhoods using

geospatial data.

3.1 Geographic Features

As explained previously, Yuan et al.’s functional area analysis [Yuan et al., 2012] shows

considerable evidence that geospatial datasets can reveal significant amounts of information

about urban areas, by building a model to predict the function of different parts of a city.

Several pieces of research use other geographic data to illustrate spatial relationships with

crime. For example, Bogomolov’s 2014 analysis uses human movement data and demographic

data to predict crime, and validates the relationships between these data sets and crime

trends [Bogomolov et al., 2014]. Groff is even more specific and uses point of interest data

about bars to generate a geospatial crime modeling system and illustrate positive correlation

between proximity of bars and higher crime [Groff, 2013]. This evidence suggests that

geographic data like cell towers, points of interest, and transportation data can be useful

in building a crime model, so they may also be successful in building neighborhood clusters

that represent consistent crime. All of these types of features are available in Chicago and

are collected and used in this project.

3.2 Data Pre-Processing and Spatial Grid System

Uniform grids are common in statistical geospatial work and rely on spherical trigonome-

try to accurately handle coordinates. Wang et al.’s work proposes a layered hierarchical grid

to maximize information stored on the grid but minimize storage space and time complexity

of lookup [Wang et al., 2018]. This work describes other spatial grid and clustering methods

in use, and suggests that a grid-based model is a reasonable way to represent data across

11

a city. While it is very simple to lay out a grid of equal latitude and longitude offsets for

each cell, this does not accurately represent geographic data. Because of the curvature of the

Earth and how latitudes and longitudes project onto Earth’s sphere, equal offsets in latitude

and longitude do not represent equal geographic distance. Instead, the Haversine Formula

must be used to calculate great circle distances given latitude and longitude, and find equally

sized grid cells [Gellert, W. et al., 1989]. Another possibility considered was to represent

distance with the Vincenty formula, which is slightly more accurately because it represents

Earth as an oblate spheroid rather than a sphere [Vincenty, 1975]. Because all distances in

this thesis are very small, the Haversine formula will suffice for calculating distance between

two points given latitude and longitude coordinates, and is as follows:

a = sin2(
φ2 − φ1

2
) + cosφ1 ∗ cosφ2 ∗ sin2(

λ2 − λ1
2

)

c = 2 tan−1(
√
a,
√

1− a)

d = R ∗ c

Where φ1 and φ2 are latitudes, λ1 and λ2 are longitudes, d is the distance in meters, and

R is the constant for the Earth’s radius, approximately 6371000m.

In the grid generation, the user picks the center point, desired distance offset between

grid cells, and number of cells. In the current example, I selected 100x100 cells, each approx-

imately 0.3km2. This size was selected because it is large enough to minimize sparseness,

and small enough to allow for precision in detecting neighborhood boundaries. This forms

the basis of our units for clustering and analyzing the city.

The visuals below illustrate the initial generated grid, and how it changes once filtered by

the city’s boundary. The same filtering process is used to “cluster” the city by pre-defined

neighborhood and police beat boundaries.

12

Figure 1: Spatial Grid Generation and Filtering

(a) Rectangular Dotted Spatial Grid (b) Chicago Filtered Spatial Grid

3.3 Principal Components Analysis

Principal Component Analysis, also known as PCA, uses linear algebra transformations

on data to convert correlated features into a set of uncorrelated variables called principal

components [Hotelling, 1992]. These principal components help to extract more meaning

from correlated features, and they take into account initial scale of variables. Because many

sets of features in this dataset are correlated (see Figure 6), like crime features and OSM

data with cell towers, PCA is a great way to transform these features into a smaller and

more informative set of features across the city.

PCA creates a list of p principal components (Z1, .., Zp) which are all linear combinations

of the original data with vector norms of 1. The principal components are pairwise orthog-

onal, and are ordered by the amount of variance in the data that each component explains,

such that the data has more variance in the direction of vector Z1 than Z2.

Let matrix Z be composed of columns Z1, .., Zp, such that Z is an n × p matrix, where

n is the number of rows in the original dataset. Matrix X is the original dataset, also

an n × p matrix. Re-center each column in X to have mean 0 and no intercept, then

calculate the eigenvectors of the matrix XTX, and let W be the matrix of eigenvectors.

13

For more background on eigenvectors, please visit MIT Math’s overview of Eigenvectors and

Eigenvalues. W is a p × p matrix. Then, Z = XW, and the columns of Z are re-ordered

based on explained variance [Jolliffe, 2002].

In this thesis, PCA is run using functionality in the sklearn.decomposition library.

This library also allows for easy calculations of explained variance.

3.4 Clustering

Clustering is a subset of machine learning techniques used to group together similar

data. Clustering algorithms have existed for decades, and clustering is a popular unsuper-

vised learning technique because it explores inherent structure of data without pre-defined

labels. “Algorithms for Clustering Data” introduced many methods including hierarchical

and partition clustering, and many more sophisticated and accurate algorithms have been

developed since this book was published [Jain, Anil and Dubes, Richard, 1988]. In this the-

sis, clustering is extremely important for grouping together cells with convincing similarity

such that clustered neighborhoods are as homogeneous as possible. In our modeling, each

generated cluster represents one neighborhood. K-Means clustering is a simple and reliable

algorithm that will form the basis of the clustering in this project, and will be modified in

order to perform accurate geospatial clustering. The K-Means clustering algorithm is de-

scribed in depth in the next section. An update on this algorithm for geographic clustering

will use a more appropriate distance function in each step of the algorithm. Along these

lines, there is existing scholarship on spatial clustering methods, including CLARANS [Ng,

R.T. and Han, Jiawei, 2002], developed in 2002. This algorithm is meant to group similar

geographic data in an efficient way and builds functionality that allows for clustering of

complex geographic objects. While this is not the method that will be used for geospatial

clustering in this thesis, it provides good background on possibilities.

3.5 K-Means Clustering

One very common clustering algorithm is K-Means clustering. The goal of the algorithm

is to optimize clustering of data points such that the sum of the distance between each data

14

http://math.mit.edu/~gs/linearalgebra/ila0601.pdf
http://math.mit.edu/~gs/linearalgebra/ila0601.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

point and its corresponding centroid is minimized. The observations are partitioned into k

clusters. The algorithm is as follows:

Algorithm 1: K-Means Clustering

1: procedure K-Means(X, k) . X: observations, k: # clusters

2: Randomly initialize centroids µ1, ..., µk from X

3: while ∆µ 6= 0 do . Iterate until convergence

4: ∀xi ∈ X, set Ci = argmin(||xi − µj||) for j in k . Ci: label for xi

5: for j ∈ k do

6: Xj ← xi ∀xi ∈ X if Ci = j . Each Xj is a cluster

7: µj = 1
|Xj |

∑
x∈Xj

x . Update µj to the mean of their data

8: end for

9: ∆µ = ||µold − µnew|| . Change in µ to check convergence

10: end while

11: return Ci . Ci form the new clusters from X

12: end procedure

First, randomly initialize centroids as data points. Then, iterate until centroids converge.

On each iteration, calculate distances between data points and centroids and assign each data

point to the cluster corresponding to its nearest centroid. Then, update each centroid to

the Euclidean mean of the data in its cluster. Calculate the difference between centroids

iteration to iteration to check for convergence. The final cluster labels represent converged

clusters.

3.6 Earth Mover’s Distance

Earth Mover’s Distance is a commonly used statistical metric which measures distance

between two probability distributions and is proportional to the work required to change

one distribution into the other. Concretely, if we have vectors x (length m) and y (length n)

which both represent weighted probability distributions, then F = (fij) is an m× n matrix

representing the flow between x and y, where fij “represents the amount of weight at xi which

15

is matched to weight at yi” [University, 1999]. We also define a distance matrix D = (dij),

where distances can be calculated in many ways, the most common being Euclidean distance.

Then, the formula for EMD is produced by solving an optimization problem to find the flow

that minimizes the c,ost of altering distributions. The final result is as follows:

EMD(x, y) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

This can be understood as work normalized by total flow. Additional work has been done

with Earth Mover’s Distance on vector fields, such as the work of Lavin, which presents a

simple and novel way to use EMD to compare vector fields [Lavin et al., 1998]. This suggests

that EMD can be used as a metric of similarity in this thesis, where crime counts across a

neighborhood are represented as a distribution vector. The EMD between this distribution

and a fabricated random distribution centered at the mean (µ) with noise up to ±√µ is a

measure of inhomogeneity. There are several libraries in Python that provide functionality

for these calculations, which simplifies the process of making these calculations.

3.7 Normalization

Normalization allows us to find a better initial weighting of these distances in order to

precisely tune hyperparameters. It plays a key role in the analysis of the developed cluster-

ing algorithm because features begin with highly variable magnitudes. K-Means clustering

weighs features with higher magnitude more heavily, creating a need for normalization to

isolate the influence of each individual feature. In addition, because of the way that the

distance metric for the new clustering algorithm is calculated, it is important to normalize

features so that geographic distance can be weighted appropriately in the algorithm.

In order to normalize a column of a dataset, represented by ~x, we run the following vector

transformation:

~xnorm =
~x− µ
σ

16

Where µ is the mean of the vector ~x, and σ is the standard deviation of the vector ~x.

This vector transformation results in an updated vector ~x with a mean of 0 and a standard

deviation of 1.

3.8 Regularization

Regularization is a technique used to add information to a modeling problem in order to

avoid overfitting. Since clustering is an unsupervised learning method, this problem is not

a standard application for regularization because there is no ground truth value. However,

the concept of overfitting still applies when improper weighting of data makes clusters very

homogeneous but non-contiguous, so they do not represent realistic neighborhoods. An

example of this improper weighting is seen in Figure 18.

One standard regularization method is ridge regression, which uses an L2 regularization

penalty term to minimize the size of the parameters, in order to shrink the parameters and

prevent co-linearity [Hoerl and Kennard, 2000]. Lasso regression is similar, but uses an L1

regularization term and is often used to select features for a model [Tibshirani, 1996]. In

either case, a specifically designed penalty term is used in the model to help find a better

solution without overfitting.

In this thesis, a regularization term is designed to penalize non-contiguous neighborhoods

since the model attempts to maximize neighborhood homogeneity, often at the expense

of neighborhood contiguity. If a model clusters together cells using mostly crime data,

homogeneity will be very high, but neighborhoods will be scattered across the map, and

not contiguous. Although regularization is not built into this model because it is not a

predictive model with pre-established truth, this regularization term can be plotted along

with inhomogeneity to help select the most reasonable model. More details will be provided

in sections 5.7 and 6.6.

3.9 Hyperparameter Optimization

In any machine learning model, certain parameters of the model can be tuned to improve

the performance and outcome of the model. Ordinarily, with predictive models, this kind of

17

optimization is performed with cross validation. Data is split into training and test sets, a

model is trained on the training set and deployed on the test set, and a metric of success is

calculated on the test predictions. Grid search is the most common way of tuning multiple

parameters at once. By running and evaluating the model multiple times on a grid of possible

parameters, one is able to find the best set of parameters [Claesen and De Moor, 2015].

Since clustering is an unsupervised learning method, there is no definite truth of neigh-

borhood identity for each cell, so it is not possible to define accuracy on a test set. Instead,

we must define another metric of success: homogeneity. Using this metric, we can run the

clustering algorithm with various parameters and determine which model yields the best

results. In most clustering algorithms, k: the number of clusters, is an important parameter

to choose. The weighting parameter for the new Geographic K-Means distance metric, α, is

another parameter that must be carefully tuned.

18

4 Data and Exploration

4.1 Data Overview

Chicago was selected as the test city for this thesis because of the quality and availability

of data on the Chicago Data Portal. Chicago is at the cutting edge of urban data collection

and has dedicated considerable resources toward the development of systems to record and

store the city’s data. The data is available to the public and used for urban planning.

Chicago hired Brett Goldstein, a Senior Fellow in Urban Science at the University of Chicago

and geospatial tech entrepreneur, as the city’s first Chief Data Officer in 2011 then as the

Chief Information Officer in 2012 [Goldstein, 2013]. Chicago’s innovative integration of

technology into the city’s operations is crucial for generating high quality data that enables

data scientists to make significant findings. Chicago is an example for other cities to follow

to improve the field of geospatial data science. To begin this project, I performed an in-

depth analysis of the data available for Chicago to gain some initial insight into the various

available data sources.

The Chicago Data Platform provides shapefile datasets with pre-defined boundaries for

the city. Figure 2 (a) is the outline of the city boundaries, which is used to filter out grid

cells that are not in the city, greatly reducing the size of the dataset. The Neighborhood and

Police Beat boundaries in Figures 2 (b) and (c) are used as baseline models and are useful

to compare to the results of newly developed neighborhoods.

19

https://data.cityofchicago.org

Figure 2: Various Chicago Shapefile Boundaries

(a) Chicago City Boundary (b) Neighborhood Boundaries (c) Police Beat Boundaries

Chicago’s crime data is another important aspect of this project, since it is used in the

example model to determine if the new algorithm can cluster together areas with similar

crime trends. Chicago’s crime data is available in .csv format, with a record for every crime

recorded in Chicago since 2001. Each record is made anonymous by abstracting locations to

the block level, thus each crime is given an approximate coordinate location. For each crime,

the record includes the date and time, crime type and description, approximate location,

and more. An important disclaimer on this crime data is that crime collection and reporting

systems are deeply flawed and biased. Police reporting of crime can be biased because

of differences in the way that neighborhoods are policed across economic and racial lines

[Gaston and Brunson, 2018]. This bias is an extremely important issue, and more work

must be done to understand how bias manifests itself in large crime data sets. This is an

especially important consideration when deploying any kind of predictive model using crime

data, which may reinforce these biases. Taking possible bias into account, this neighborhood

model is not meant to be used to deploy resources in a city, rather it only attempts to find

differences between areas and identify parts of cities that are clearly similar. The potential

for algorithmic bias drives a need for better ways to combat bias in crime data, but is beyond

the scope of this thesis.

Although this highly detailed Chicago crime dataset could merit its own separate analysis,

the simple visualization of crime trends in Figure 3 illustrates the complexity of this dataset.

Each crime has a unique trend, and determining the reasons for trends and significant spikes

20

and decreases in a specific crime type is a valuable way to try to understand crime in the

city.

Figure 3: Crime Trends by Type for 2001-2018

Another way to visualize this dataset is with a map. The technique of mapping geospatial

data is used throughout this project to understand trends over space, and was very important

for developing the initial intuition and plans for the algorithm. The Google Maps API is very

useful for plotting data and generating heatmaps, and the libraries Basemap and Geopandas

were also used for mapping. Matplotlib and Seaborn plots with latitude and longitude on

the axes were also used for simple graphs, like plotting clusters, differentiating each by color.

A heatmap of all crime incidents in Chicago (Figure 4) illustrates hotspots of reported crime,

and gives an initial understanding of parts of the city’s layout.

21

https://developers.google.com/maps/documentation/
https://basemaptutorial.readthedocs.io/en/latest/
http://geopandas.org
https://matplotlib.org
https://seaborn.pydata.org

Figure 4: Heatmap of Chicago Crime

For this project, various sources of geospatial data were collected so that the accumulated

dataset contains a rich set of information about Chicago’s urban landscape. Point of interest

data was collected from OpenCellID and OpenStreetMap. OpenCellID manages an enormous

dataset of cell towers around the world, including well over 5 million towers in the United

States. OpenStreetMap (OSM) is a crowdsourced map that relies on a virtual community

of contributors to build a map of what exists and where points of interest are located.

Together, these datasets presumably can represent population density and give information

that can help to differentiate neighborhoods in a city, like residential areas, business areas,

and commercial districts. In addition, the Chicago Data Platform provides rich data about

public transportation and bike sharing, so the locations of these transportation hubs was

added to the dataset in order to provide an even fuller collection of spatial features. Various

visualizations of these datasets are shown in Figure 5.

22

https://www.opencellid.org/#zoom=12&lat=41.8698&lon=-87.6727
https://www.openstreetmap.org/#map=12/41.8698/-87.6727&layers=C

Figure 5: Chicago Point of Interest Datasets

(a) Cell Tower Heatmap (b) OSM Points of Interest (c) Public Transportation

4.2 Feature Correlation and PCA

With these features collected, the grid is prepared for clustering analysis and is full of

features that can help to differentiate neighborhoods from each other. Of course, some of

these features are highly correlated, and Figure 6 illustrates the correlation between the

most significant features in the data set. Several geographic features, including cell towers,

parking, restaurants, Divvy bikes, and bus stops have reasonable positive correlation with

particular types of crime such as Battery, Deceptive Practice, and Robbery. In addition, it

is apparent that several of the crime metrics are highly correlated, suggesting that the crime

data follows global trends as well as trends for individual crimes. In addition, many of the

geographic features are highly correlated, which suggests that throughout the city, high and

low feature density areas are consistent.

23

Figure 6: Grid Accumulated Correlation Between Key Features

Because so many of these features are highly correlated, PCA is used for dimensionality

reduction, in order to extract more informative features from this dataset. The first choice

with PCA is to determine how many components are necessary for the analysis to account

for most of the variance in the data. Figure 7 shows that after looking at only 2 principal

components, nearly 99% of variance is explained. This means that these 2 features explain

the trends in the data set extremely well.

24

Figure 7: Variance Explained by First 5 Principal Components

We can also visualize these first two principal components using weighted heatmaps that

use the transformed PCA features as weights across the map to show areas of high value

(see Figure 8). It seems that the first principal component shows areas of high crime, which

makes sense because crime data has the highest magnitude of the original features. Principal

Component #2 has low magnitudes, but highlights an area downtown in Chicago’s loop,

perhaps where there is a high density of features but low crime, since this would be orthogonal

to the first principal component. It is useful that the various spatial trends of this dataset

can be condensed to fewer features than we originally had. To interpret the PCA results, we

can look at the coefficients of each feature vector, since the principal components are linear

combinations of features. The first principal component has a very large positive coefficient

for ‘All Crime’, as well as large positive coefficients for ‘Theft’, ‘Narcotics’, ‘Battery’, so this

seems to be a good proxy for crime density in the city. The second principal component has

large positive coefficients for ‘Theft’ and ‘Deceptive Practice’, and large negative coefficients

for ‘All Crime’, ‘Battery’, and ‘Narcotics’, so this component represents another crime trend,

perhaps where there is petty crime but not very much violent crime. Because the crime data

is very rich in the dataset and has high magnitudes, these are the features that the PCA

analysis highlights.

25

Figure 8: Principal Component Analysis Visualization

(a) Principal Component #1 (b) Principal Component #2

These analyses help to create initial ideas about the available data, and shape the desire

to cluster the city into new neighborhoods based on the available data.

26

5 Methodology

The broad goal of this thesis is to develop a method of clustering a grid representation

of Chicago with geographic data in order to generate intuitive and spatially homogeneous

neighborhood boundaries. This section discusses the specific techniques used to achieve this

goal.

5.1 Evaluation Metrics

The goal of the evaluation metric in this thesis is to measure homogeneity (or inhomo-

geneity) of neighborhoods by comparing the cells of a given neighborhood with each other.

For simplicity, the evaluation metric compares the total crime counts in each cell. In the

future, this metric could be multi-dimensional to account for counts of individual crime types

as well.

The first metric considered is a calculation of standard deviation. For each neighborhood,

we call the count of total crimes in the cells in the neighborhood xi, ..., xn, and x̄ is the average

crime count in the cell. Then, we calculate:

SD =

√√√√∑n
i=1 (xi − x̄)2

n− 1

Iterating through the neighborhoods, we generate a vector of standard deviations for

each neighborhood and we can take the mean or median to give information about overall

homogeneity. Lower standard deviation in a neighborhood (or across all neighborhoods)

correlates to a more homogeneous neighborhood. This calculation is performed using the

standard deviation function in the Python package numpy.

The other metric used to measure homogeneity is Earth Mover’s Distance, described

in the EMD Background section. As a recap, Earth Mover’s Distance is a metric used to

measure distance between distributions such that similar histogram shapes are close and

dissimilar distributions are far. Similar to the calculation of standard deviation, the EMD

metric iterates through each neighborhood, and calculates a homogeneity value, returning a

27

vector of measurements which can be interpreted with mean and median. For each neighbor-

hood, the vector of crime counts in each cell is compared against a fabricated vector which is

the mean crime count (µ) ± noise (up to
√
µ). EMD is the way that these distributions are

compared, since they can both be interpreted as similar histograms. Because the comparison

vector is generated randomly, the calculation is run 50 times and averaged in order to en-

sure consistent results that are not influenced by any one particular fabricated homogeneous

vector.

EMD calculations are based on the definitions and C++ implementation from Pele and

Werman’s 2009 Conference Paper, “Fast and robust Earth Mover’s Distances” [Pele and

Werman, 2009]. The Python package used is called pyemd, which is a Python wrapper for

this C++ implementation, and it is written by William Mayner.

5.2 Baseline - City Neighborhood and Police Beat Boundaries

For this simple baseline model, pre-defined neighborhoods and police beats are the areas

that constitute neighborhoods. To generate the baseline model, we filter cells and determine

which neighborhood and beat each cell is within. Then, the baseline model requires calcu-

lations of standard deviation and Earth Mover’s distance, both simple calculations because

these metrics are written into the functions SD and EMD (see file Functions.py).

The ‘Police Beats’ division contains ∼260 distinct neighborhoods, while the ‘Neighbor-

hood’ division has 96 distinct neighborhoods. Since this baseline will be tested against all

future models, tests will be used to determine which baseline model is most appropriate.

5.3 Preliminary Modeling with K-Means

K-Means clustering, as described in Section 3.5, uses Euclidean distance as its distance

metric and is a useful simple algorithm to cluster data. Sklearn contains excellent out-of-

the-box functionality for K-Means clustering in Python, providing a simple way to perform

initial tests on data.

Since this model is easy to run, it is used to test different combinations of features in

clustering as well as the effects of geography and geospatial features, and manipulations

28

https://github.com/wmayner/pyemd
https://github.com/jkup11/Geographic-Neighborhood-Clustering/blob/master/Functions.py
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

such as normalization. K-Means clustering provides a good naive model to run initial tests,

and develop an understanding for the challenges associated with designing a meaningful

algorithm for this problem.

5.4 Geographic K-Means Algorithm

This new clustering method will utilize distance calculations that are different from Eu-

clidean distance for several reasons. First, the Haversine distance between coordinate sets

must be used to account for accurately projected spatial distance. Additionally, this clus-

tering method must prioritize contiguous results, since neighborhoods must be contiguous

to adequately model reality. Based on our working definition of a neighborhood, it does not

make sense for one neighborhood to contain cells all across the city. Therefore, the most

important factor for clustering is geographic distance. For that reason, when we define the

function to measure distance between cells during clustering, it must be structured as:

(1− α) ∗H + α ∗ F ;

where H is the Haversine distance between cells and F is the Euclidean distance of the vectors

containing other features considered in clustering. α is a parameter that can be adjusted

to weight geographic distance and feature distance optimally, such that neighborhoods are

both homogeneous and contiguous.

Whereas K-Means clustering selects centroids by choosing k random data points or k

random points in the vector space, this algorithm uses a different method for centroid ini-

tialization. To initialize centroids, we first filter cells by each Chicago neighborhood bound-

ary, and calculate the center of each neighborhood using Euclidean mean (c1, ..., ck where

k = 96). We then determine which cell in the data set is closest geographically to each ci,

and let centroid µi be the point closest to ci. This method for centroid initialization takes

advantage of the urban knowledge that goes into the city’s neighborhood assignments by al-

lowing these neighborhoods to influence the algorithm’s initial configuration. Fixed centroid

initialization also enforces repeatability of results because it is not a random initialization.

This means that any two attempts to cluster the data with the same parameters will result

in the same clusters. Finally, this method sets k strictly at 96, the number of neighborhoods

29

in Chicago. Although there are potential benefits to loosening restrictions on k and being

able to optimize this parameter, this restriction ensures that comparisons to the baseline

model are fair and valid. Restrictions on k will be discussed further in Section 7.2. The full

algorithm is as follows:

Algorithm 2: Geographic K-Means Clustering

1: procedure Geo K-Means(X, k) . X: observations, k: # clusters

2: Filter cells by neighborhood, calculate each neighborhood’s center c1, ..., ck

3: Initialize centroids µi to the cell closest to ci . Result: centroids µ1, ..., µ96

4: while ∆µ 6= 0 do . Iterate until convergence

5: ∀xi ∈ X, calculate Haversine distance from each centroid’s coordinates (H)

6: ∀xi ∈ X, calculate Euclidean distance from each centroid’s features (F)

7: ∀xi ∈ X, add (1− α) ∗H + α ∗ F . New weighted distance metric

8: ∀xi ∈ X, set Ci = argmin((1− α) ∗Hj + α ∗ Fj) for j ∈ k

9: for j ∈ k do

10: Xj ← xi ∀xi ∈ X if Ci = j . Each Xj is a cluster

11: µj = 1
|Xj |

∑
x∈Xj

x . Update µj to the mean of their data

12: end for

13: ∆µ = ||µold − µnew|| . Change in µ to check convergence

14: end while

15: return Ci . Ci form the new clusters from X

16: end procedure

Note that the centroid update is not consistent with the new distance metric, since it

utilizes Euclidean mean. However, this centroid update is a very accurate approximation for

the much more computationally expensive ideal calculation, so it is used for simplicity.

When running tests with this algorithm, our first attempts use only geography, then

later trials include additional features. Because of the testing with PCA explained variance,

and additional modeling performed separately, the first two principal components are used

as features for this modeling. When running PCA, all geospatial features including crime,

cell towers, OSM point of interest features, and transportation features are used, and the

30

resulting transformed vectors explain the variance in these data sources. We also experiment

with normalization and optimization of parameters.

5.5 Proof of Convergence

Like the K-Means clustering algorithm, the Geographic K-Means clustering algorithm

can be proven to guarantee convergence. The proof follows similar logic to regular K-Means,

since the algorithm is very similar to K-Means, with small updates. The proof below has

been adapted from Bottou and Bengio’s 1995 work [Bottou and Bengio, 1995], and much

of the inspiration for the proof is derived from Rebbapragada et al.’s 2009 paper, which

proves convergence of an updated version of K-Means clustering called Phased K-Means

[Rebbapragada et al., 2009].

This clustering algorithm has converged once it reaches an iteration where the cluster

composition remains consistent. This guarantees that the centroids will not move and clus-

ters are locked in position.

Some key notation will now be defined. At each iteration, there is a set of centroids W

(either initial centroids, or the centroids calculated in the previous iteration). During each

iteration, we calculate distances from centroids and assign new cluster labels C based on the

minimums. These new clusters assignments are used to calculate updated centroids W ′, and

the new set of cluster assignments are C ′.

We will also define xi to be a piece of data, w to be an individual centroid and c(i) to be

the cluster that xi is assigned to at any time. Then, we can define the error function that

the algorithm attempts to minimize, which is:

E(W,C) =
∑
i

1

2
(xi − wc(i))2

This error metric iterates over each data point and sums the distance between the data

point and the centroid in its assigned cluster. This algorithm minimizes the aggregate sums

of these distances.

In order for K-Means to converge, it must be true that this error cannot increase during

an iteration. Using our notation, this means that

E(W ′, C ′) ≤ E(W,C)

31

∑
i

1

2
(xi − w′c′(i))2 ≤

∑
i

1

2
(xi − wc(i))2

One way to show that this is true is to show that

E(W ′, C ′) ≤ E(W ′, C) ≤ E(W,C)

and this sequence follows the steps in the algorithm. Intuitively E(W ′, C) is the error when

we have calculated new centroids, but still have the old cluster assignments, and E(W ′, C ′)

is the error after each data point has then been re-assigned to the nearest cluster.

The second step in this inequality, E(W ′, C ′) ≤ E(W ′, C), is trivial because both of

these terms have a constant set of centroids, but C ′ is calculated in order to minimize each

individual distance between a data point xi and its nearest centroid w′c(i), so the sum of

these distances is less (or equal) after the updated assignment than before. This expression

is a representation of this inequality:

∑
i

1

2
(xi − w′c′(i))2 ≤

∑
i

1

2
(xi − w′c(i))2

The first step in the target inequality is to show that E(W ′, C) ≤ E(W,C). In both

of these cases, the cluster assignments are the same, so we must show that when centroid

positions are updated (W to W ′) by averaging the points in each cluster C (using Euclidean

mean), they are closer on the whole to the set of data points in their clusters. By this

definition of the update, W ′ are centroids that minimize distances between centroid and

cluster data points. By calculating δE
δw′ for w′ ∈ W , and setting equal to 0, we get:

w′ =
1

|c|
∑
i∈c

xi

Therefore by definition, E(W ′, C) ≤ E(W,C) holds.

We have shown that for each subsequent step in K-Means clustering, the error decreases:

E(W ′, C ′) ≤ E(W ′, C) ≤ E(W,C). Thus, for any finite set of data points and centroids

(all will be finite in this thesis), K-Means clustering converges because the error function is

non-increasing.

To extend this proof to this Geographic K-Means algorithm, a few small changes must

be made. In this algorithm, rather than using Euclidean distance as the distance metric, we

32

use a weighted sum of Haversine distance and Euclidean vector distance. As stated above,

Haversine distance is defined as:

H(φ1, λ1, φ2, λ2)

a = sin2(
φ2 − φ1

2
) + cosφ1 ∗ cosφ2 ∗ sin2(

λ2 − λ1
2

)

c = 2 tan−1(
√
a,
√

1− a)

d = R ∗ c

We define the above formula as H, and define feature vector Euclidean distance as F . If

we let ~a = (a1, a2, ..., an) and ~b = (b1, b2, ..., bn), then

F (~a,~b) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2

Then, our weighted distance function for Geographic K-Means (where H is applied to lati-

tudes and longitudes, and F is applied to features) is

(1− α) ∗H + α ∗ F

We want to show that this distance function is correlated with ordinary square Euclidean

distance. Clearly α ∗ F correlates with Euclidean distance because it is the same metric

scaled down by a constant. Intuitively, Haversine distance correlates with Euclidean distance

because it is a measure of distance on the ground of the spherical projection of Earth.

Although the scales of these calculations are different, we know that if we take the Haversine

and Euclidean distances between two sets of latitude/longitude coordinates a1, a2 and b1, b2

such that a1 > b1, a2 > b2, then do the same calculations on (a1 + c), (a2 + c) and b1, b2,

where c is a small positive constant, the distance will increase. Similarly, if c is small and

negative, the distance will decrease. Therefore, Haversine distance and Euclidean distance

preserve the change in distance despite different scales, and are monotone functions.

Because the new distance metric is a weighted sum of two distance functions that are

correlated with ordinary Euclidean distance used to prove the convergence of K-Means,

Geographic K-Means distance function and Euclidean distance are directly related. Note

that we will call latitude and longitude lat and lon for reference, and spatial features are

33

feat. Therefore, we can redefine our error function with this new metric as

E(W,C) =
∑
i

[(1− α) ∗H(xi(lat), xi(lon), wc(i)(lat), wc(i)(lon)) + α ∗ 1

2
(xi(feat) − wc(i)(feat))2]

which is the sum of α ∗F and (1−α) ∗H, and is highly correlated with Euclidean distance.

The Geographic K-Means algorithm only changes the error function used above in the

proof of K-Means convergence by weighting factors. The new error function uses Haversine

Distance, which is directly related to Euclidean distance, but uses trigonometry to better

represent Earth’s spherical shape and map projections. Therefore, centroid calculation does

not change with this new metric, so convergence of Geographic K-Means holds from the

proof of convergence for ordinary K-Means clustering.

Through trials of the K-Means algorithm on Chicago’s data, we can calculate the target

error and show that it weakly decreases every iteration, illustrating algorithmic convergence

(see Figure 9 below).

Figure 9: Geographic K-Means Convergence

The centroid initialization technique also differs from the ordinary K-Means algorithm.

Ordinarily, centroids are initialized at random from the data points, or are set to be ran-

domly generated points in the vector space of the data. In this algorithm, the centroids are

34

initialized to proxies for the center of neighborhoods defined by the City of Chicago, so they

are not random. This change is trivial to convergence. The proof shows that this algorithm

will converge given a random set of centroids µ1, ..., µk. The non-random centroids specified

by the updated algorithm µ1, ..., µ96 are a one observation subset of the possible centroids for

which the algorithm will converge. Therefore, convergence still holds given this new strategy

for centroid initialization.

5.6 Model Robustness

When algorithmically generating neighborhoods in a city, it is important to ensure that

any results can be repeated and are robust to noise. If the results of a clustering trial vary

greatly depending on the different initial sets of centroids, then those generated neighbor-

hoods lose meaning. In other words, if a homogeneity result can be achieved in very different

ways, and the model is highly sensitive to noise, then it is difficult to tell if a model truly

represents better homogeneity in a city.

For this reason, the Geographic K-Means algorithm uses the strategy for initialization

detailed in Section 5.4, the explanation of this algorithm. Prior to using this method for cen-

troid initialization, centroids were initialized by randomly selecting k points in the dataset.

Although this model was very flexible, the results were highly variable, and any three runs of

the same model parameters could yield very different results due to the random initialization

(see Figure 10 below).

35

Figure 10: High Variability, Lack of Robustness in Early Models

(a) Trial 1 (b) Trial 2 (c) Trial 3

These three trials had the same parameters and similar homogeneity and smoothness

metrics, yet the neighborhoods boundaries are visually very different. By looking at the

outcropping on the upper-left of the map (O’Hare Airport), we can see the high degree of

variability. In order to make results more robust, we must update the method of centroid

initialization to reduce randomness. One attempted method uses K-Means clustering to first

generate evenly sized and spaced clusters from the cell locations, then calculate centers of

each cluster, and set centroids to the the data points closest to these centers. Although

this improved the similarity of clustering results run-to-run, the neighborhoods were still

somewhat variable and sensitive to noise. Thus, the new strategy, which fixes k to 96

for Chicago and eliminates randomness was chosen. Another strength of this strategy is

that it uses more data on Chicago by referencing the pre-defined neighborhoods. These

neighborhoods were drawn by urban planners that understood the layout of the city, thus

they do encode valuable information about the city’s structure. With this new initialization

technique, the initial state of the algorithm is improved, allowing the city’s data to build on

existing knowledge rather than starting from scratch.

A sensitivity analysis of the final centroid initialization technique reveals that the model

is robust to noise. Because this is a greedy algorithm, there is no guarantee of reaching an

absolute minumum solution each time, but we expect results to be similar despite noise. The

following results were generated using this model, and for each centroid component xi, we

36

added noise up to ±1
2
∗
√

var(~xi) where ~xi represents each column of the data set.

Figure 11: Final Model Sensitivity Analysis

(a) Trial 1 (b) Trial 2

A close look at these neighborhoods shows that they are very similar, despite random

noise in the initial centroids (see Figure 11). Therefore, this model is robust to noise,

strengthening the significance of the results.

5.7 Regularization

The regularization parameter is meant to penalize clusters that do not look like neighbor-

hoods. Thinking back to our definition of a neighborhood and looking at the Chicago neigh-

borhood map, neighborhoods can be abnormally shaped (non-circular and non-rectangular),

but they are typically not jagged and they do not contain isolated pieces.

This thesis will define a novel regularization parameter which relies on a cell’s neighbors

to penalize non-smoothness of neighborhood boundaries. Iterating through each cell in the

grid, we can sum up individual contributions from each cell to the regularization term.

In order to calculate an individual contribution, check the 8 total vertical, horizontal, and

diagonal neighbors of a cell, and the regularization contribution is the number of cells that are

37

members of a different cluster. This means that a cell in the center of its cluster contributes

0 to the parameter, a completely isolated cell contributes 8 to the parameter, and a cell

along a straight neighborhood boundary contributes 3 to the parameter. This ensures that

more jagged and isolated that neighborhoods correlate to a higher regularization parameter.

It also means that for higher values of k, the parameter will be greater since there are more

boundaries (see Figure 12).

Figure 12: Illustrative Examples: Colored Neighborhood Identities

(a) Center Cell Contributes 7 (b) Center Cell Contributes 4

Regularization coupled with the inhomogeneity metric of Earth Mover’s Distance form

the key targets for optimizing a model. The goal is to minimize both inhomogeneity and the

regularization parameter. When α is very small, geography dominates the clustering and

we expect to end up with very uniformly shaped clusters. Inhomogeneity is high because

little crime data is considered, but regularization is low because the neighborhoods are

smooth. With a high value of α, geographic features dictate the clustering, leading to

very homogeneous neighborhoods (low EMD) but a high regularization parameter because

the neighborhoods are not contiguous. These two target metrics have opposite trends, so

we have to find a range of α and k that reasonably satisfies both requirements- improved

EMD over the baseline, while maintaining low regularization penalty and visually realistic

neighborhoods.

38

5.8 Hyperparameter Optimization

For this problem, α (the weighting parameter) must be optimized to yield the best neigh-

borhood results. As discussed in the previous subsection, we must optimize this parameter

to minimize both within-cluster EMD and the regularization penalty term.

First, for each of 12 α values in the range (0, 1), we cluster with this value of α using the

normalized first two principal components as features. Using the results of these models, we

plot α against EMD and α against the regularization parameter. Since we want to minimize

both of these metrics, we visually inspect these plots and pick a range of α values that seem

reasonable and well-performing.

The next step is to visually inspect the maps generated from each of these clustering

models in the acceptable range and determine which is the most homogeneous without

violating the mandate that neighborhoods must be contiguous. Although the regularization

parameter helps to measure this, the human eye is the best judge for this target (with the

exception of machine vision algorithms that could handle this problem).

Finally, if the final chosen model necessitates smoothing, we can then smooth the clusters

by detecting outliers (cells that contribute 7 or 8 to the regularization parameter), and re-

assigning them to one of the neighboring clusters that is most similar.

39

6 Results and Discussion

The results of the previously described models are analyzed by looking at homogeneity of

clusters for each different method, as well as visual smoothness and the regularization value.

The results are presented and explained in this section.

6.1 Choosing the Evaluation Metrics

In testing to select an evaluation metric for homogeneity, Standard Deviation (SD) and

Earth Mover’s Distance (EMD) were considered, as well as an implementation of Shannon

Entropy [Shannon, 1948] for measuring within-neighborhood information. The Shannon

Entropy implementation did not follow all expected trends in testing, so it was dropped as

a possible method. Standard Deviation and EMD, however, followed expectations and both

proved to be useful measures of homogeneity.

The following histograms (Figure 13) show the aggregated crime counts in each of 3

different neighborhoods of relatively similar size, and illustrate the functionality of SD and

EMD.

Figure 13: Sample Neighborhoods to Illustrate SD and EMD

The results of the homogeneity calculations for this neighborhoods are as follows:

40

Std Dev EMD

Neighborhood 5 1525 1082

Neighborhood 12 515 415

Neighborhood 17 313 206

Both metrics penalize neighborhood 5 for having the widest distribution. Another key

attribute is the punishment of multi-modality. Neighborhoods 12 and 17 are on a similar

scale of crime magnitude, but neighborhood 12 has a multi-modal distribution with three

large peaks. Both metrics penalize this attribute of the distribution. EMD penalizes multi-

modality more heavily, as illustrated by the fact that neighborhood 12’s EMD is more than

double that of neighborhood 17. Therefore, since both metrics are very fast to calculate and

EMD has all of the desired attributes of a homogeneity metric, EMD will be considered as

the main homogeneity metric throughout this thesis.

The other choice we need to make is whether to use mean or median to represent the vec-

tor of within-cluster EMDs (or SDs). When calculating baselines for this thesis on Chicago’s

Neighborhoods, we generate the following histograms (Figure 14 below) from the calculated

vectors of the within-neighborhood EMD and SD.

Figure 14: Histograms of EMD and SD in Chicago Neighborhoods

These distributions look very similar, illustrating the fact that they both measure the

41

same phenomenon, and both are useful. We notice also that these distributions have heavy

right tails and a few neighborhoods with big outlier values. For that reason, I believe that a

calculation of mean will be skewed higher than it should be, so median is a better measure

of the homogeneity.

6.2 Baseline Model

For this project, the baseline is defined as the homogeneity of neighborhoods that are

pre-defined by the City of Chicago. The Standard Deviation of crime counts within the

neighborhood and Earth Mover’s Distance are applied to the clusters to obtain metrics of

homogeneity. For this baseline model, we observe the following results, which are medians

over all neighborhoods:

Std Dev EMD

Neighborhoods 464.9 348.5

Police Beats 530.2 402.6

Additionally, Figure 14 shows a histogram of the within cluster EMD and SD for both

neighborhood clusters. Figure 15 is the same plot for police beats:

Figure 15: Histograms of EMD and SD in Chicago Police Beats

42

Again, the distribution of Earth Mover’s Distance and Standard Deviation are very sim-

ilar. For police beats, these distributions seem to be slightly less normal than the neighbor-

hood baselines. In addition, the baseline model needs to be one that we can use to compare

to future models, and it seems that k ∼260 for police beats is too large to compare to clus-

tering models. Instead, k = 96 neighborhoods is a reasonable number of clusters to use as a

point of comparison. For these reasons, neighborhoods are selected as the baseline that will

be used for comparison throughout modeling.

6.3 Naive K-Means Results

Tests with sklearn’s K-Means clustering functionality provided initial insight for how to

build the geographic clustering method. The following preliminary modeled neighborhood

maps (Figure 16) were generated with this method with k = 20.

43

Figure 16: Results of Naive K-Means Trials on Multiple Subsets of Data

(a) Latitude & Longitude (b) Lat, Lon, Cell Towers

(c) Norm. Lat, Lon, Cell Towers (d) Norm. with more Features

In the first model (a), K-Means was run using only the latitude and longitude of each

cell as features. As expected, this generates very uniformly sized and evenly distributed

neighborhoods. In the second model (b), latitude, longitude, and cell towers were used and

the map is highly chaotic. In the third model (c), latitude, longitude, and cell towers were

again used but they were normalized prior to clustering. In this model, we see that the cell

towers manipulate the clusters so that they are not just uniform blobs, but more interesting

neighborhood shapes. The final model (d) again normalizes the features, but uses more

features like restaurants, bus stops, and parking lots (all taken from the OpenStreetMap

data). This model is again very chaotic, with little resemblance of neighborhoods. This

44

exercise illustrates that balance of the geography and the spatial features is challenging and

important. In model (a), geography is weighted too heavily, model (b) weights features too

heavily, and model (c) weights them both better than the others. Normalization puts features

on the same scale, evening out their effect, but in model (d), the four features overpower

latitude and longitude in absolute scale and lead to poor results. This leads to the conclusion

that geographic distance and feature distance must be handled separately in a Geographic

K-Means algorithm with a weighting factor. Normalization improves the initial scale of our

data features, which enables more precise tuning of the weighting parameter.

6.4 Preliminary Geographic K-Means Results

To start, some preliminary tests were run using the Geographic K-Means function to fix

errors and profile the code so that we could speed up the algorithm. These crucial speed

improvements allowed this model to be scaled and optimized without significant time issues,

so this preliminary testing played an important role in the development of this project.

Although this clustering map, shown in Figure 17, is naive and based on only latitude and

longitude-based Haversine distance, it shows k = 96 relatively uniform clusters.

45

Figure 17: Clustering with Haversine Distance Only

These results look similar to the first K-Means test, with larger k. The neighborhoods

are smooth and uniform. The median EMD for this model is 402 and median SD

is 526, so this model performs worse (i.e. less homogeneous) than the baseline model.

This makes sense because city neighborhood boundaries encode some information about the

surrounding area since city governments have an understanding of the city’s layout, while this

model essentially represents randomness, with the benefit of geographically close areas being

clustered together into contiguous neighborhoods. In Geographic K-Means, we leverage the

knowledge that cities use to build these neighborhoods by initializing our centroids to the

center of the pre-defined neighborhoods.

46

6.5 Feature Based Clustering Results

Once this testing was complete and the algorithm was running fast enough to handle

large trials, more features were introduced so that the algorithm handled the entire distance

metric, (1 − α) ∗ H + α ∗ F where H is Haversine distance and F is vector distance of

geographically accumulated features. In these examples, we use ‘PCA 1’ and ‘PCA 2’, the

first two components of the PCA analysis (which explain nearly 99% of the data’s variance),

as the features. These are extremely informational vectors about crime and data trends

across the city, and they together capture the major trends that are detectable in Chicago’s

public data. All of these models use k = 96 due to the selection of initial centroids from

Chicago’s pre-defined neighborhoods, and this also makes it easier to compare performance

with the initial baseline model. We also use α = 0.5 for simplicity (even weighting betwen

H and F).

Trial 1: Geographic K-Means on Latitude, Longitude, Principal Component #1 and Princi-

pal Component #2

47

Figure 18: Simple Geographic K-Means Trial

This model has median EMD of 6.7 and median SD of 20.8. This is a vast improvement

over the baseline and random geographic model.

The map looks chaotic, and given the extreme homogeneity of this model, it seems that

the feature data overwhelmed geography in this model. While the EMD and SD metrics

look very good, this model does not represent realistic neighborhoods, and we need to better

balance H and F . In this model, the Regularization parameter would be extremely large.

We will use normalization and α tuning to find this balance.

Trial 2: Geographic K-Means on Latitude, Longitude, Principal Component #1 and Princi-

pal Component #2 with all Features Normalized

48

Figure 19: Normalized Geographic K-Means

This model has median EMD of 387 and median SD of 495. This is significantly worse

than the baseline model and slightly better than pure Geographic K-Means with no features.

In this model, all features (including latitude and longitude) are normalized prior to

running clustering. The clusters are very uniform and smooth, illustrating that geography

was weighted more heavily than features. The Haversine distance on normalized latitude and

longitude clearly influences the model more than the normalized feature vector distances.

Because latitude and longitude are handled differently than other features in this algorithm’s

distance function, it doesn’t make intuitive sense to normalize everything. In addition,

Haversine distance is implemented specifically to handle latitude and longitude projections,

so manipulating these features prevents Haversine distance from having its desired effect of

enforcing geographic accuracy.

49

Trial 3: Geographic K-Means on Lat, Lon, PCA Component #1 and PCA Component #2

with PCA Features Normalized

Figure 20: Geographic K-Means with all Features but Lat/Lon Normalized

This model has median EMD of 300 and median SD of 405. This is an improvement

over the baseline model.

This model normalizes all features except for latitude and longitude, and the results

are better than any previous model. The clusters are more homogeneous than the baseline

model, and we can observe visually that the neighborhood boundaries are interesting and

non-uniform, but still represent mostly realistic neighborhoods. There is still work to do to

tune α to get the best model, but this model seems to achieve the goal of using normalization

to find a better initial balance between geography and accumulated features so that tuning

is more effective.

50

6.6 Picking Optimal Alpha

Now, to optimize α, we generate models for many α values between 0 and 1, and plot the

regularization penalty and Earth Mover’s Distance to determine a range of possible values

(see Figure 21 below).

Figure 21: EMD and Regularization Penalty for α with Optimal k Value

We want to minimize both EMD and regularization, so there is a good range of possible

α values in the middle of these plots. Based on this plot, the acceptable range is 0.3-0.7.

With α below 0.3, EMD is very high so these models do not improve over the baseline

model. With α above 0.7, regularization penalty skyrockets, and the corresponding maps

start to become very random and disobey the rules of contiguous neighborhoods. Looking

at the maps, it seems that α = 0.6 is a good map to choose because it improves significantly

over the baseline, and the neighborhoods are realistic. Figure 22 illustrates the map for this

chosen model.

51

Figure 22: Clustered Neighborhoods for α=0.6, k = 96

This model has median EMD of 296 and median SD of 386. This is a significant

improvement over the baseline model, which has median EMD of 349 and median SD of 465.

6.7 Boundary Cleaning

Once this final model is chosen, there is one last step to re-assign any outliers on the map

so that the clusters represent real neighborhoods better. This process uses code very similar

to the regularization step, since outliers are defined as points that contribute 7 or 8 to the

regularization parameter, and these points are re-assigned to the most similar neighboring

cluster.

Running this code on the model with α = 0.6 and k = 96, we see that 97 of the 3177

cells are re-assigned, and the resulting map in Figure 23 (a) is generated.

52

Figure 23: Final Model Compared to Baseline Model

(a) Final Smoothed Clustering Model (b) Initial Baseline Neighborhoods

This model has median EMD of 305 and median SD of 407. This is still a sig-

nificant improvement over the baseline model, which has median EMD of 349 and median

SD of 465. This is a 12.6% EMD improvement over the baseline model and a 12.5% SD

improvement over the baseline. This model also performs only slightly worse than the model

pre-smoothing neighborhoods. The regularization parameter drops from 6764 pre-smoothing

to 5964 post-smoothing, so it is clear that this step makes a significant impact on smooth-

ness. Visually, we can see that many outliers are clustered better and the neighborhoods are

more contiguous and less jagged. This smoothing step helps to enforce the rules of neighbor-

hoods that we defined, and this final model represents a useful set of neighborhoods based

on Chicago crime data that are more internally homogeneous than the neighborhoods that

the City of Chicago defines. Although the neighborhoods look very different from Chicago’s

initial neighborhoods, which have higher variability of size, we can see that many different

neighborhoods in the new model appear to be subset of pre-existing neighborhoods, and some

of the smaller Chicago neighborhoods are brought together into one larger neighborhood in

the new model. There are advantages and disadvantages of each model, but the spatial even-

53

ness and improved data-based homogeneity of the Geographic K-Means clustering model is

compelling as a strong model that can be used to update Chicago’s neighborhoods.

54

7 Conclusion

7.1 Insights

This thesis attempts to create a scientific process for re-drawing neighborhood boundaries

in urban areas. More meaningful neighborhood design can help to facilitate more significant

and insightful neighborhood-based studies and can help to differentiate a city into its key

areas. This can then provide a better understanding of cities and the driving factors of urban

phenomena. An improved understanding can help city governments, police departments,

and businesses make better decisions to drive change. The goal of this thesis is to provide a

template and methodology for how to use data to generate these neighborhoods. Although

the Chicago example is illustrative and powerful because of the quality of data in the city,

the template and the code for this thesis could easily be extended to another city. Another

data scientist could follow the steps for data processing and modeling, and run a completely

new model in a new place, with different data for clustering and different objectives. As such,

this thesis may empower data scientists and researchers to use a new unique tool for urban

neighborhood analysis, and in the future, I encourage others to build off of this algorithm

to make it even more powerful. It seems very possible that this work, or variants on this

subject, could be used to make policy and business decisions, and improve conditions in real

cities. This algorithm can enable city governments to better understand and respond to city-

wide trends, such as rising violent crime or shifting demographics in neighborhoods. There

are also a multitude of possible applications of the algorithm outside of urban planning.

Some compelling applications include using voter data to generate optimal gerrymandering

districts, using consumer data to better target customers with ads throughout a city, and

using real estate data to find boundaries in housing markets in a city.

This project was replete with many interesting challenges and surprises. The central

challenge is the trade-off between boundary smoothness and maximized homogeneity in the

process of neighborhood generation. Maximizing homogeneity is simple and requires no

geographic input, but it results in nonsensical neighborhoods with no contiguity. Similarly,

generating smooth and uniform neighborhoods is a simple task that can be achieved with

55

a naive K-Means clustering model on only latitude and longitude grid locations. Neither of

these alone are sufficient to generate a successful model of urban neighborhoods. To navigate

this trade-off and find a working solution, we tuned the α weighting parameter and utilized

a regularization term to monitor smoothness. The final neighborhood model contained

more homogeneous neighborhoods than those that the City of Chicago provides for our

baseline, and the neighborhood shapes are interesting and non-standard, as neighborhoods

are in reality. Although it is difficult to test if the neighborhoods truly represent internal

social uniformity, the crime metrics suggests that this algorithm returns more meaningfully

homogeneous regions. Another goal of the model was to generate reproducible and robust

results, which was a challenge because of the random nature of K-Means clustering. Although

the final neighborhood-based centroid initialization is imperfect because it limits flexibility of

k, it creates consistent and high-performing results, especially on the final clustering model.

This final model achieves the goals initially set out in this thesis and illustrates the possibility

for successful extension to other cities and other objectives. My hope is that these results

inspire others to continue building and improving this algorithm, and use it to as a powerful

tool for urban geospatial analysis.

7.2 Future Work

Although the objectives of this thesis were met, there were many interesting concepts

that arose throughout the process that suggested new areas to be considered for future work.

7.2.1 Frontend Visualization Platform

One piece of software that could be built to better illustrate the results of this work is

an interactive front end platform to deploy and visualize the clustering models built by this

algorithm. I envision a map-based web app with a backend database containing pre-processed

grids for one or several cities. The web app would contain an options panel where a user can

make model selections including city, grid size, α for weighting, number of neighborhoods k,

and accumulated features to use, then deploy the model. The backend would query for the

correct data and run the algorithm to generate clusters (speeding up the implementation

56

of the algorithm would be an important step), then render the results on the map. This

would allow users without data science skills to utilize this algorithm for the purposes of

urban planning or trying to understand the city. It would also allow even more testing of

combinations of hyperparameters and feature sets that were not attempted in this thesis.

7.2.2 Further Clustering Testing

There are also aspects of the algorithm that could be improved in future works. While

this algorithm is based on K-Means clustering and alters the distance functions, there are

many other clustering algorithms that could be altered to perform the same neighborhood

clustering. K-Means (a partition clustering algorithm) was used because it is easy to in-

terpret, allowing for very intuitive hyperparameter optimization and successful progression

through models. However, other partition clustering algorithms could be used, and hierar-

chical clustering would also be an interesting method to try to use for modeling this problem.

7.2.3 Allowing Flexibility for K

One drawback of the final selected model is that it relies on the city’s pre-defined neigh-

borhoods in order to initialize the centroids for clustering. For Chicago, this sets k = 96

immediately, with no attempt to optimize k for homogeneity and smoothness. While this

works in this example, and the method for initializing centroids strengthens robustness and

model intuition, it would be beneficial if future work could address how to extend this model

to allow for better tuning the parameter k.

In most clustering problems, tuning k is an important step. Two important methods

for optimizing the number of clusters in a clustering algorithm are the elbow plot and the

silhouette method. To generate an elbow plot, run the clustering algorithm many times for

different values of k and plot the value of k against the sum squared error of each data point

from its centroid in the final converged state [Kodinariya and Makwana, 2013]. In this plot,

we look for an “elbow”, where the rate of decrease declines, indicating that the marginal

benefit of raising the value of k is not significant. We select k to be the point at which this

“elbow” occurs. The silhouette method is another way to select an optimal value of k. For

each point in the converged clusters, we calculate a silhouette score between [−1, 1] which

57

represents how similar the data point is to its own cluster as compared to others [Rousseeuw,

1987]. A high value indicates a well-clustered point, so we pick the value of k that maximizes

the average silhouette score across clusters.

In order to allow for this tuning of k, there must be another way to initialize centroids

that does not rely on the baseline neighborhood boundaries. The new method must maintain

robustness, yet allow for any number of clusters. One method attempted in this thesis is

to use K-Means clustering on geographic data and select initial centroids to be the center

of these clusters. This method is discussed in Section 5.6 and is a possibility for further

testing in the future. Other possibilities include using the neighborhood based initialization

and randomly adding or subtracting centroids to achieve the desired k. More work must be

done to find the best way to enforce model robustness and use k as a parameter to improve

results and optimization.

7.2.4 Cellular Potts Model

This modeling question can specifically be re-worked using the Cellular Potts Model,

which has many similar goals to this algorithm. The Cellular Potts model comes from

computational biology and addresses the interaction and behavior of cellular organisms.

Graner and Glazier first proposed the model in 1992 to simulate how different types of

cells would arrange themselves when mixed [Graner and Glazier, 1992]. This approach

represents 2-dimensional space with a discrete grid, like our grid-based approach. Grid cells

can be classified to a particular organism, which makes up a contiguous cluster of cells. The

algorithm uses a random simulation to find a greedy lowest energy configuration of the cells.

In this case, energy is calculated by a Hamiltonian operator that includes adhesion energy

between organisms and volume constraints. Then, we randomly select grid cells and attempt

to change the classification of the cell, and only accept the change if the resulting energy

state (based on the Hamiltonian) is lower than the previous state. To read more on current

Cellular Potts modeling or run your own simulations, look at CompuCell3D’s Documenation.

Though this model comes from a field very different from geospatial analysis, the grid-

based algorithm has clear applications. This algorithm could be used to find an approximate

lowest energy configuration for neighborhood classifications on the city’s grid. In order to

58

http://www.compucell3d.org

successfully use this algorithm, a Hamiltonian operator would have to be carefully designed

to support the goals of the algorithm. The Hamiltonian would have to include some measure

of homogeneity, such as EMD, as well as smoothness, like the regularization term. The

Hamiltonian could calculate a weighted average of these terms, and perhaps others, so that

the random steps attempt to maximize both contiguity and homogeneity.

Once a Hamiltonian is designed, it would be easy to run random simulations to find a

greedy optimal grid configuration. This algorithm could be run on the initial neighborhoods

defined by the City of Chicago in order to improve upon this initial state. Another possibility

is to run Geographic K-Means clustering and use the Cellular Potts model to improve this

result, like a smoothing step. This model could be very beneficial to improving the procedure

for re-drawing neighborhood boundaries, and future work is needed to implement and test

its functionality.

7.2.5 Data Processing

In addition, the clustering and neighborhood building could be improved with alterations

to the data and data-processing. Given the sparsity and significant variance of some of the

data features, it would be valuable to attempt data smoothing over the grid. For example,

each cell’s crime counts and features could be averaged with the 8 surrounding cells, or a

weighted average could be used, so that the distribution of features is smoother. By using

these smoothed features, the neighborhoods generated might better represent reality, since

outliers which can detract from the model would be less prominent. The data could also be

accumulated onto a grid with smaller cells. The cells used in this thesis are approximately

300m x 300m, which is fairly small, but even smaller cells would provide a more precise model.

In addition, the neighborhood boundaries would be smoother, since the large cells often result

in a more jagged appearance. This would be much more computationally expensive in both

pre-processing and modeling, but by running the code with smaller cells on a powerful server,

and using parallelization to speed up code, it is possible. The neighborhood analysis would

be even more precise with smooth data and smaller units of area.

59

8 Acknowledgements

Thank you so much to my advisor, Dr. Pavlos Protopapas, for guiding me through this

process and providing insight in every step of this project. Thank you for supporting me in

pursuing a topic that excites me and for many brainstorming sessions in which we imagined

different ways to approach and solve this problem. Your creativity and expertise were crucial

for helping me define my problem and advance past difficulties.

Thank you to Professor Chris Rycroft for inspiring my interest in Applied Mathematics

and modeling through AM50 during my Freshman year of college. This course completely

changed my interests at a time when I was still considering pre-med. Your advising through

the years has kept me on track, and enabled me to achieve my academic goals. Finally,

thank you for encouraging me to pursue a Senior Thesis as a culmination of my academic

experience.

A big thank you also to James Dreben and the team at Zoba Inc., where I first became

interested in geospatial data analytics. Your willingness to teach me and allow me to con-

tribute early in my education was crucial to my development and sparked my passion for

data science. Being a member of Zobas team has been such a meaningful personal and

academic experience which has inspired me to further my knowledge and contribute tools to

the spatial analytics field.

Finally, thank you to my family and friends who encouraged and supported me throughout

this process.

60

References

[Agrawal et al., 1998] Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998).

Automatic subspace clustering of high dimensional data for data mining applications.

In Proceedings of the 1998 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’98, pages 94–105, New York, NY, USA. ACM.

[Andresen and Mallseon, 2013] Andresen, M. and Mallseon, N. (2013). Spatial heterogeneity

in crime analysis. In Crime Modeling and Mapping Using Geospatial Technologies, pages

3–24. Springer Netherlands : Imprint: Springer.

[Bogomolov et al., 2014] Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., and

Pentland, A. (2014). Once upon a crime: Towards crime prediction from demographics

and mobile data.

[Bottou and Bengio, 1995] Bottou, L. and Bengio, Y. (1995). Convergence properties of the

k-means algorithms. In Advances in neural information processing systems, pages 585–592.

[Claesen and De Moor, 2015] Claesen, M. and De Moor, B. (2015). Hyperparameter search

in machine learning. arXiv preprint arXiv:1502.02127.

[Claffey and Lilia, 2018] Claffey, M. and Lilia, C. (2018). City of Chicago pilot project for

dockless bike rental starts today to serve residents in far south side.

[Coulton et al., 2011] Coulton, C., Chan, T., and Mikelbank, K. (2011). Finding place in

community change initiatives: Using gis to uncover resident perceptions of their neighbor-

hoods. Journal of Community Practice, 19(1):10–28.

[Delmelle, 2017] Delmelle, E. C. (2017). Differentiating pathways of neighborhood change

in 50 us metropolitan areas. Environment and planning A, 49(10):2402–2424.

[Dhanachandra et al., 2015] Dhanachandra, N., Manglem, K., and Chanu, Y. J. (2015). Im-

age segmentation using k-means clustering algorithm and subtractive clustering algorithm.

Procedia Computer Science, 54:764–771.

61

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based

algorithm for discovering clusters in large spatial databases with noise.

[Gaston and Brunson, 2018] Gaston, S. and Brunson, R. K. (2018). Reasonable suspicion in

the eye of the beholder: Routine policing in racially different disadvantaged neighborhoods.

[Gellert, W. et al., 1989] Gellert, W., Gottwald, S., Hellwich, M., Kastner, H., and Kustner,

H. (1989). Haversine distance.

[Goldstein, 2013] Goldstein, B. (2013). Open data in Chicago: Game on. In Beyond Trans-

parency: Open Data and the Future of Civic Innovation. Code for America Press.

[Graner and Glazier, 1992] Graner, F. and Glazier, J. A. (1992). Simulation of biological cell

sorting using a two-dimensional extended potts model. Physical review letters, 69(13):2013.

[Groff, 2013] Groff, E. (2013). Measuring a place‘s exposure to facilities using geoprocessing

models: An illustration using drinking places and crime. In Crime Modeling and Mapping

Using Geospatial Technologies, pages 269–298. Springer Netherlands : Imprint: Springer.

[Herrmann, 2013] Herrmann, C. (2013). Street-level spatiotemporal crime analysis: Ex-

amples from Bronx County, NY (20062010). In Crime Modeling and Mapping Using

Geospatial Technologies, pages 73–104. Springer Netherlands : Imprint: Springer.

[Hoerl and Kennard, 2000] Hoerl, A. E. and Kennard, R. W. (2000). Ridge regression: Bi-

ased estimation for nonorthogonal problems. Technometrics, 42(1):80–86.

[Hotelling, 1992] Hotelling, H. (1992). Relations between two sets of variates. In Break-

throughs in statistics, pages 162–190. Springer.

[Hu et al., 2018] Hu, Y., Wang, F., Guin, C., and Zhu, H. (2018). A spatio-temporal kernel

density estimation framework for predictive crime hotspot mapping and evaluation. 99:89–

97.

[Jain, Anil and Dubes, Richard, 1988] Jain, Anil and Dubes, Richard (1988). Algorithms

for Clustering Data. Prentice Hall.

62

[Jolliffe, 2002] Jolliffe, I. T. (2002). Principal component analysis. Springer series in statis-

tics. Springer, New York, 2nd ed. edition.

[Kodinariya and Makwana, 2013] Kodinariya, T. M. and Makwana, P. R. (2013). Review on

determining number of cluster in k-means clustering. International Journal, 1(6):90–95.

[Lavin et al., 1998] Lavin, Rajesh Batra, and Lambertus Hesselink (1998). Feature compar-

isons of vector fields using earth mover’s distance.

[Le Falher et al., 2015] Le Falher, G., Gionis, A., and Mathioudakis, M. (2015). Where is

the Soho of Rome? measures and algorithms for finding similar neighborhoods in cities.

In Ninth International AAAI Conference on Web and Social Media.

[Lin et al., 2008] Lin, N. P., Chang, C.-I., Chueh, H.-E., Chen, H.-J., Hao, W.-H., et al.

(2008). A deflected grid-based algorithm for clustering analysis. WSEAS Transactions on

Computers, 7(4):125–132.

[Midgley, 2009] Midgley, P. (2009). The role of smart bike-sharing systems.

[Murray and Grubesic, 2013] Murray, A. and Grubesic, T. (2013). Exploring spatial pat-

terns of crime using non-hierarchical cluster analysis. In Crime Modeling and Mapping

Using Geospatial Technologies, pages 105–124. Springer Netherlands : Imprint: Springer.

[Ng, R.T. and Han, Jiawei, 2002] Ng, R.T. and Han, Jiawei (2002). CLARANS: A method

for clustering objects for spatial data mining. 14(5):1003–1016.

[O’Sullivan, 2009] O’Sullivan, D. (2009). Changing neighborhoods: A framework for spa-

tially explicit agent-based models of social systems. Sociological Methods & Research,

37(4):498–530.

[Pele and Werman, 2009] Pele, O. and Werman, M. (2009). Fast and robust earth mover’s

distances. In 2009 IEEE 12th International Conference on Computer Vision, pages 460–

467.

63

[Perry et al., 2013] Perry, W., McInnis, B., Price, C., Smith, S., and Hollywood, J. (2013).

Predictive policing the role of crime forecasting in law enforcement operations. RAND

Corp.

[Rebbapragada et al., 2009] Rebbapragada, U., Protopapas, P., Brodley, C., and Alcock, C.

(2009). Finding anomalous periodic time series. Machine Learning, 74(3):281–313.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis. Journal of computational and applied mathematics,

20:53–65.

[Schikuta and Erhart, 1997] Schikuta, E. and Erhart, M. (1997). The bang-clustering sys-

tem: Grid-based data analysis. In International Symposium on Intelligent Data Analysis,

pages 513–524. Springer.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. Bell

system technical journal, 27(3):379–423.

[Shapiro, 2017] Shapiro, A. (2017). Reform predictive policing. 541(7638).

[Sheikholeslami et al., 2000] Sheikholeslami, G., Chatterjee, S., and Zhang, A. (2000).

Wavecluster: A wavelet-based clustering approach for spatial data in very large databases.

The VLDB Journal, 8(3-4):289–304.

[Spielman and Logan, 2012] Spielman, S. E. and Logan, J. R. (2012). Using high-resolution

population data to identify neighborhoods and establish their boundaries. Annals of the

Association of American Geographers, 103(1).

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

[University, 1999] University, S. (1999). The earth mover’s distance (EMD).

[Vincenty, 1975] Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellip-

soid with application of nested equations. Survey Review, 23(176):88–93.

64

[Wang et al., 2018] Wang, Q., Phillips, N. E., Small, M. L., and Sampson, R. J. (2018).

Urban mobility and neighborhood isolation in America’s 50 largest cities. 115(30).

[Wang, Wei et al., 1997] Wang, Wei, Jiong Yang, and Richard Muntz (1997). STING : A

statistical information grid approach to spatial data mining.

[Woodruff, 2012] Woodruff, A. (2012). Crowdsourced neighborhood boundaries, part one:

Consensus.

[Yuan et al., 2012] Yuan, J., Zheng, Y., and Xie, X. (2012). Discovering regions of different

functions in a city using human mobility and POIs. In Proceedings of the 18th ACM

SIGKDD international conference on knowledge discovery and data mining, KDD ’12,

pages 186–194. ACM.

[Zhang et al., 2013] Zhang, A. X., Noulas, A., Scellato, S., and Mascolo, C. (2013). Hood-

square: Modeling and recommending neighborhoods in location-based social networks. In

2013 International Conference on Social Computing, pages 69–74. IEEE.

65

	Abstract
	Introduction
	Motivation
	Scope of Work
	Previous Work

	Background
	Geographic Features
	Data Pre-Processing and Spatial Grid System
	Principal Components Analysis
	Clustering
	K-Means Clustering
	Earth Mover's Distance
	Normalization
	Regularization
	Hyperparameter Optimization

	Data and Exploration
	Data Overview
	Feature Correlation and PCA

	Methodology
	Evaluation Metrics
	Baseline - City Neighborhood and Police Beat Boundaries
	Preliminary Modeling with K-Means
	Geographic K-Means Algorithm
	Proof of Convergence
	Model Robustness
	Regularization
	Hyperparameter Optimization

	Results and Discussion
	Choosing the Evaluation Metrics
	Baseline Model
	Naive K-Means Results
	Preliminary Geographic K-Means Results
	Feature Based Clustering Results
	Picking Optimal Alpha
	Boundary Cleaning

	Conclusion
	Insights
	Future Work
	Frontend Visualization Platform
	Further Clustering Testing
	Allowing Flexibility for K
	Cellular Potts Model
	Data Processing

	Acknowledgements
	References

