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Abstract

We consider the problem of time series clustering, which asks how to cluster objects with
dynamically changing properties over time into sensible groups in an unsupervised manner.
In tackling this problem, we pursue a model-based approach, introducing a mixture of
nonlinear state-space models and corresponding inference algorithms. In particular, we
develop a Monte Carlo expectation-maximization algorithm for finite mixtures and a
Markov chain Monte Carlo algorithm for both finite and infinite mixtures. We apply our
work to a variety of examples in computational neuroscience and demonstrate the utility
of time series clustering in these real-world settings.
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1 Introduction

Time series data are ubiquitous in everyday life. From daily stock returns to hourly
seismic activity to second-by-second recordings of a patient’s heart rate, it is important
to develop methodologies that can process and analyze data characterized by significant
changes over time. Over the years, the field of time series analysis has witnessed much
growth, with advances in fundamental problems such as imputation, forecasting, anomaly
detection, classification, segmentation, signal estimation, and many more (Shumway and
Stoffer, 2017).
Time series clustering is one such task involving the unsupervised categorization of

various objects that each exhibits some dynamically changing component(s) recorded as
time series data. Based on the evolution of their respective time series, the objects are
grouped into separate clusters in a way such that objects within the same cluster exhibit
similar temporal dynamics that are sufficiently different from those of objects in other
clusters.
The ability to cluster multiple time series has several benefits. Among these include

creating the clustering to uncover previously unknown relationships between the objects
of interest, and using an existing clustering to categorize a newly observed object into a
group with known properties. Some examples of real-world time series clustering problems
include:

• Determining common underlying trends among sets of stocks (Guo et al., 2008),
• Identifying pathological cases from streams of medical activity (Gullo et al., 2012),
• Finding climactic patterns in temperature or pressure data (Ji et al., 2013),
• Discovering neuron communities through analysis of spike trains (Humphries, 2011).

Domains for applying time series clustering cover a wide breadth of interdisciplinary
fields, such as aviation, psychology, speech processing, finance, medicine, and robotics;
Aghabozorgi et al. (2015) and Liao (2005) present comprehensive reviews of time series
clustering applications.
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1.1 A Motivating Example from Neuroscience

In computational neuroscience, a common type of recorded data is the neuronal firing
sequence (also known as a spike train), which is a stream of binary 0-1 values over time
that indicate when a neuron fired. More specifically, at every time point, we record a ’1’
if the neuron fired and a ’0’ otherwise. Typically, this data is recorded at the millisecond
resolution (Boyden et al., 2005). Fundamental questions in neuroscience are built on how
to efficiently analyze collections of these firing sequences from various neurons in the brain.
The field of neural coding, for instance, is concerned with how we can characterize the
relationship between patterns in these sequences and exogenous stimuli experienced by
humans and animals (Doya et al., 2007).

We can think of a firing sequence from a single neuron as a time series. Specifically, this
is a time series that exhibits nonlinear dynamics, because each observed point in time
may depend on previously observed points, but this relationship is nonlinear. Clustering
firing sequences from different neurons effectively clusters the neurons themselves. In a
data set comprising hundreds to thousands of neuronal time series (Brown et al., 2004),
such a clustering can provide insights into how neural computation is implemented at the
level of groups of neurons. For instance, if a cluster of neurons all respond the same way
to a stimulus, then it is reasonable to hypothesize that these neurons comprise a network
of interactions in the brain. Thus, the ability to cluster times series is a useful tool in
neuroscience research, because it can potentially reveal previously unknown relationships
between groups of neurons, which can fuel the development of biological hypotheses about
the brain. We give concrete examples of these applications throughout the remainder of
this manuscript.

1.2 Problem Specification

Formally, the problem of time series clustering assumes we have a set of N objects indexed
by n = 1, . . . , N . From dynamically changing attributes of the objects, we observe N
respective time series Y = {y(1), . . . ,y(N)}. Each object’s series y(n) = {y(n)

1 , . . . , y
(n)
Tn
} is

a vector of observations over Tn discrete time units. The dependence of Tn on n indicates
that different time series can be of different lengths. As an example, consider multiple time
series of daily stock returns for various companies in which the period of data collection
ends after several companies go out of business.
The time series may either be univariate or multivariate, depending upon the specific
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application at hand; that is, each time-point observation satisfies y(n)
t ∈ Y , where the set

Y may have a single dimension (e.g. Y = R) or multiple dimensions (e.g. Y = Rp for
p > 1). For instance, the field goal percentage of a basketball player over the length of an
NBA season is single-dimensional, whereas the geographic coordinates (i.e. latitude and
longitude) of a plane over the duration of a flight are multidimensional.
The task of clustering time series requires identifying K clusters labeled {1, . . . , K}

and N cluster assignments Z = {z(1), . . . , z(N)} such that each z(n) ∈ {1, . . . , K}. Thus,
the cluster assignments partition the set of all objects {1, . . . , N} into K disjoint sets. In
contrast to supervised machine learning literature, the ground-truth cluster assignments
are not known a priori, so the cluster assignments Z are solely inferred from the time
series data Y in an unsupervised fashion. The number of clusters K may be supplied or
not supplied in advance, depending upon the application of interest. The potential lack of
specification for K adds an additional layer of unsupervision to the problem.
The partition, also known as the clustering, is done so that two objects {n, n′} within

the same cluster exhibit similar temporal dynamics {y(n),y(n′)}, while two objects in
different clusters exhibit sufficiently different dynamics. The specific mechanism by which
the clustering occurs is termed the clustering method, and there exist several such methods
for clustering time series in the literature, which are elaborated on in Section 1.3.

The subject of this manuscript is a newly proposed method for clustering multiple time
series – especially ones that exhibit some sort of nonlinear dynamics. The method models
the series as the output of a generative mixture of state-space models and then performs
statistical inference on the latent variables of the mixture. These latent variables are then
used to determine the final clustering of the time series and their respective objects. Parts
of this manuscript is published in Lin et al. (2019), which is referenced throughout the
ensuing chapters.

1.3 Related Work

Existing methods in the rich literature on clustering multiple time series can be roughly
categorized into three principal types – feature-based methods, shape-based methods, and
model-based methods. This categorization was first established by Liao (2005) and later
reiterated by Aghabozorgi et al. (2015) in their respective surveys of time series clustering
methods.
Typical feature-based methods are two-stage processes that first extract a set of fea-

tures from each time series and then perform clustering in feature space using standard
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algorithms. For example, Guo et al. (2008) cluster stock time series data by constructing
lower-dimensional representations with independent component analysis and then using
the k-means algorithm to partition the resultant values. Similarly, Fu et al. (2001) reduce
time series data to feature vectors comprised of "perceptually important points" and
then utilize a modified version of the self-organizing map algorithm. A major advantage
of feature-based approaches is that they do not require engineering a novel algorithm
for handling time series in the clustering step. Thus, they can take advantage of classic
clustering procedures, such as k-means (Wilpon and Rabiner, 1985; Owsley et al., 1997;
Vlachos et al., 2003) and hierarchical agglomerative clustering (Shaw and King, 1992;
Wang et al., 2006). However, in many cases, deciding on the most appropriate method
to extract features can be difficult and highly application-specific. Furthermore, since
the clustering is not done on the actual data themselves, key information present in the
original data could be lost during the feature extraction step, thereby leading to potentially
poor clustering results.
The appeal of shape-based methods is that they process the raw time series data

themselves. Instead of employing an intermediate feature extraction step, they directly
leverage a time series-specific distance metric in combination with standard algorithms to
cluster the multiple time series. Popular metrics include Euclidean distance (Faloutsos
et al., 1994), dynamic time warping (Sakoe, 1971), longest common subsequence (Vlachos
et al., 2002), edit distance (Chen and Ng, 2004), and cross-correlation based distances
(Golay et al., 1998). Standard clustering algorithms that have been used in conjunction with
these metrics include k-means (Niennattrakul and Ratanamahatana, 2007), k-medioids
(Liao et al., 2002), fuzzy c-means (Golay et al., 1998; Möller-Levet et al., 2003)), and
hierarchical agglomerative clustering (Kakizawa et al., 1998; Van Wijk and Van Selow,
1999; Kumar et al., 2002; Shumway, 2003). Yet, although they are popular, many shape-
based methods experience shortcomings in not having a straightforward way to deal with
multiple time series with varying lengths, missing values, and/or unaligned recordings.
Furthermore, while feature-based methods and shape-based methods are relatively simple
to implement, they cannot be used to perform statistical inference on the parameters of a
physical model by which the time series are generated.

Model-based approaches are advantageous because they establish a probabilistic frame-
work outlining the generative process of the multiple time series. Thus, we can make
powerful statements such as: Under the model, two time series {y(n),y(n′)} have a pos-
terior probability p of being in the same cluster, where p can be found using inference
techniques. The typical generative model of choice for clustered data is the mixture model,
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which is reviewed in Section 2.4. Performing statistical inference on the mixture model’s
parameters yields posterior probability distributions over the cluster assignments Z.

In existing literature, many model-based approaches for clustering multiple time series
employ Bayesian mixtures over the parameters of established time series models. Ex-
amples of these time series models have included generalized autoregressive conditional
heteroskedasticity (GARCH) models (Bauwens and Rombouts, 2007), integer valued
autoregressive (INAR) models (Roick et al., 2019), and temporally reweighted Chinese
restaurant process (TRCRP) models (Saad and Mansinghka, 2018).

State-space models are a well-known and flexible class of models for handling time series
data (Durbin and Koopman, 2012). Several existing model-based approaches for clustering
time series employ a mixture of linear Gaussian state-space models (LGSSM), which are
reviewed in Section 2.5.1. Xiong and Yeung (2002) use the expectation-maximization
algorithm for finite mixtures of autoregressive moving average (ARMA) models, which
are a subset of LGSSM. Inoue et al. (2006) and Chiappa and Barber (2007) both examine
general LGSSM mixtures and use Gibbs sampling and variational Bayes, respectively, for
posterior inference. Nieto-Barajas and Contreras-Cristán (2014) and Middleton (2014)
extend the framework by using a Dirichlet process mixture to infer the number of clusters
and Gibbs sampling for full posterior inference. In all of these cases, the linear-Gaussian
assumption is crucial for tractable inference; it enables exact evaluation of the likelihood
using a Kalman filter and the ability to sample exactly from the state sequences underlying
each of the time series. For nonlinear and non-Gaussian state-space models, this likelihood
cannot be evaluated in closed form and exact sampling is not possible.

1.4 Overview of Thesis

The main contribution of this manuscript is to establish a model and corresponding
inference algorithms for clustering multiple time series that exhibit nonlinear dynamics.
Nonlinear time series are arguably more common than their linear counterparts and
appear in a large breadth of examples, ranging from human breath rates to NMR laser
data to foetal electrocardiogram recordings (Kantz and Schreiber, 2004). By relaxing the
linear-Gaussian assumption used in much of previous literature, we make a particular
form of model-based clustering more generalizable and more appropriate for a wider range
of applications.

Chapter 2 provides some background of terminology and methods that are employed in
the remainder of the manuscript. Chapters 3 and 4 introduce the primary results. These
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results include:

• Introducing a mixture model of nonlinear state-space models for clustering time
series (Section 3.1; Section 4.1),

• Deriving a Monte Carlo expectation-maximization algorithm for finding maximum
a posteriori solutions in the case of finite mixtures (Section 3.2),

• Deriving a Markov chain Monte Carlo algorithm for performing full Bayesian
inference in both finite and infinite mixtures (Section 4.2),

• Applying the framework and algorithms to a number of applications in neuroscience-
related problems, such as epilepsy recognition (Section 3.3.1), neuronal firing clus-
tering (Section 3.3.2), identification of stimulus-locked response profiles (Section
4.5.1), and analysis of interacting neuronal firing regions (Section 4.5.2).

The Markov chain Monte Carlo algorithm in Chapter 4 is the primary subject of Lin
et al. (2019) and employs recent innovations in Monte Carlo, including particle marginal
Metropolis-Hastings (Andrieu et al., 2010) and controlled sequential Monte Carlo (Heng
et al., 2017). Finally, Chapter 5 concludes the manuscript with a discussion of implications
and future work.
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2 Background

This chapter establishes notation and reviews some key concepts that will be used
throughout the rest of the manuscript. Section 2.1 introduces the concept of generative
modeling, which forms the foundation of our methodologies. Then, Section 2.2 and
Section 2.3 review the expectation-maximization algorithm and Markov chain Monte
Carlo methods, respectively. Next, Section 2.4 elaborates on finite and infinite mixture
models and relevant inference algorithms. And finally, Section 2.5 touches on state-space
models and recently developed particle-based methods for handling nonlinear dynamics
within these models.

2.1 Generative Models

Z y(n) N

Figure 1: A graphical model which
assumes y(1), . . . ,y(N) are condition-
ally independent given Z. Observed
variables are indicated in gray.

Generative models for observed data Y =

{y(1), . . . ,y(N)} are statistical models of the joint
probability distribution p(Z,Y ), where Z is a set
of latent variables. The generative part of the
model comes from the factorization p(Z,Y ) =

p(Z) · p(Y | Z), which suggests a natural process
for the generation of Y – i.e. sample Z ∼ p(Z)

and then sample from the conditional distribution
Y ∼ p(Y | Z). It is popular to picture this generative process in the form of a directed
acyclic graph (DAG) that is known as a Bayesian network or graphical model (Figure 1).
Statistical inference for a generative model involves finding (or approximating) the

posterior distribution p(Z |Y ), which is a difficult task in many instances. The expectation-
maximization algorithm can be used to provide a point estimate of the posterior, such as
the maximum a posteriori estimate. A dominant methodology for full posterior inference
is Markov chain Monte Carlo. We briefly review these methods in the next two sections.
In the case of time series clustering, we generatively model the raw time series as the

observed data and the cluster assignments as latent variables. Thus, inference on the
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model parameters allows us to find posterior probabilities for the cluster assignments.
Further details can be found in Chapters 3 and 4.

2.2 Expectation-Maximization

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an optimization
method for finding maximum likelihood estimates (MLE) and/or maximum a posteriori
(MAP) estimates of unobserved parameters Θ in a generative model with observed
data Y and latent variables Z. In the presence of latent variables, the log-posterior
log p(Θ | Y ) ' log p(Θ) + log p(Y |Θ) = log p(Θ) + log [

∑
Z p(Y ,Z |Θ)] is intractable

to optimize over in general, where ' denotes equality up to an additive constant with
respect to Θ. Thus, EM takes the approach of iteratively optimizing log p(Θ〈i〉 | Y )

until convergence for iterations i = 1, 2, 3, . . . in a two-step algorithm comprised of the
expectation step and the maximization step (Algorithm 1).

Algorithm 1 ExpectationMaximization(Y ,Θ〈0〉, ε0)

1: Set i = 0
2: Set ε =∞
3: while ε0 < ε do

// Expectation Step
4: Define expected complete data log-likelihood `(Θ|Θ〈i〉) = EZ | Y ,Θ〈i〉 [log p(Y ,Z|Θ)]

5: Define expected complete data log-posterior R(Θ |Θ〈i〉) = log p(Θ) + `(Θ |Θ〈i〉)
// Maximization Step

6: Optimize Θ〈i+1〉 = arg maxΘR(Θ |Θ〈i〉)
7: Compute ε = ‖Θ〈i+1〉 −Θ〈i〉‖2.
8: Set i = i+ 1
9: end while

10: return Θ〈i〉

It is possible to prove that log p(Θ〈i〉 |Y ) ≥ log p(Θ〈i−1〉 |Y ) for all i = 1, . . . , I, thereby
establishing the local optimality of the final solution Θ〈I〉 (Wu et al., 1983). However,
there is no general guarantee of how close this local optimum is to the global optimum
arg maxΘ log p(Θ | Y ), and this is a well-known feature of EM.

2.2.1 Monte Carlo Expectation-Maximization

An assumption of the classic EM algorithm is that the expected complete data log-
likelihood `(Θ | Θ〈i〉) of Algorithm 1 (Line 4) is computationally tractable. However,
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this quantity is an integral with respect to the posterior p(Z | Y ,Θ〈i〉), which may be
impossible to calculate analytically for certain generative models. Monte Carlo Expectation-
Maximization (MCEM) attempts to rectify this problem by approximating `(Θ |Θ〈i〉)
with a Monte Carlo estimate; that is `(Θ |Θ〈i〉) ≈ 1/S ·∑S

s=1 log p(Y ,Zs |Θ), where
Zs ∼ p(Z | Y ,Θ〈i〉) for s = 1, . . . , S. MCEM ultimately allows us to apply the EM
algorithm to a wider range of generative models (Caffo et al., 2005).

2.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a family of algorithms for sampling from a
distribution of interest when it is difficult to do so directly. The general idea is to
construct an ergodic Markov chain whose stationary distribution is exactly the distribution
of interest. Thus, MCMC is highly useful for using samples to approximate the (potentially
intractable) posterior distribution of a generative model.

In this section, we review common MCMC methods, i.e. Metropolis-Hastings (Section
2.3.1) and Gibbs Sampling (Section 2.3.2). MCMC inference algorithms for specific
generative models, such as mixture models and state-space models, are covered in the
next sections.

2.3.1 Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is a
remarkable invention that allows one to sample from any target distribution q(Z) as
long as we are able to compute a function f(Z) that is proportional to this density q(Z).
Of course, f(Z) = q(Z) is a valid proportional function, yet q(Z) may not always be
tractable to compute.

For instance, in the generative model setting, the desired target distribution is usually
the posterior over latent variables, i.e. q(Z) = p(Z | Y ) = p(Z,Y )/

∫
Z p(Z,Y ). The

integral in the denominator often makes q(Z) impossible to compute, yet this denominator
is also constant with respect to Z. Thus, q(Z) is proportional to f(Z) = p(Z,Y ), the
joint distribution which is often tractable and allows us to use the MH algorithm to sample
from the posterior p(Z | Y ).
In addition to the target q, the MH algorithm requires us to specify a proposal dis-

tribution r(Z ′ | Z) for the Markov chain and a starting point Z0. We summarize MH
in Algorithm 2. The output of the algorithm comprises samples Z1, . . . ,ZL for L ≥ 1.

9



The Markov chain almost never reaches stationarity immediately, so in practice, it is
customary to throw away the first few samples as part of a burn-in period of length B,
where 1 ≤ B ≤ L. Thus, in subsequent tasks, the samples ZB+1, . . . ,ZL are used as an
approximation of the target distribution.

Algorithm 2 MetropolisHastings(f, r, L,Z0)

1: for ` = 1, . . . , L do
2: Draw proposal Z ′ ∼ r(Z | Z`−1).
3: Compute acceptance probability a = min

(
1, f(Z′)·r(Z`−1 | Z′)

f(Z`−1)·r(Z′ | Z`−1)

)
.

4: Sample u ∼ Uniform(0, 1).
5: if u ≤ a then
6: Accept proposal Z` = Z ′.
7: else
8: Reject proposal Z` = Z`−1.
9: end if

10: end for
11: return samples Z1, . . . ,ZL

2.3.2 Gibbs Sampling

Gibbs sampling (Geman and Geman, 1987) is a special case of Metropolis-Hastings for
sampling from the joint distribution of a set of random variables in which the proposal is
accepted with probability 1. The basic idea is that we can sample from an M -dimensional
joint distribution q(Z) over many variables Z = {Z1, . . . ,ZM} by iteratively sampling
from the univariate conditional distributions qm(Zm | Z1, . . . ,Zm−1,Zm+1, . . . ,ZM) for
m = 1, . . . ,M . Algorithm 3 reviews the Gibbs sampling algorithm, which outputs samples
{Z1, . . . ,ZL} for the joint distribution. As with the MH algorithm, burn-in is typically
applied to these samples.

Algorithm 3 GibbsSampling({q1, . . . , qM}, L,Z0)

1: for ` = 1, . . . , L do
2: for m = 1, . . . ,M do
3: Draw from conditional Z`m ∼ qm(Zm | Z`1, , . . . ,Z`m−1,Z`−1

m+1, . . . ,Z`−1
M ).

4: end for
5: end for
6: return samples Z1, . . . ,ZL

10



2.4 Mixture Models for Clustered Data

Mixture models are popular generative models for clustered data (McLachlan et al.,
2000). They follow a general structure of assuming that N observed data points
Y = {y(1), . . . ,y(N)} have latent cluster assignments Z = {z(1), . . . , z(N)} where each
z(n) ∈ {1, . . . , K}. Usually, the number of clusters K is much fewer than the number
of observations N . Furthermore, it is typically assumed that all data points assigned
to the same cluster k are independent and identically distributed (i.i.d.) realizations of
a generative process parameterized by shared cluster parameters θ(k), for k = 1, . . . , K.
The set of all cluster parameters is denoted Θ = {θ(1), . . . ,θ(K)}. In this section, we
summarize the finite mixture model and the infinite mixture model for clustered data.

2.4.1 Finite Mixture Model

α

q

z(n) y(n)

G

θ(k) K

N

Figure 2: The graphical model of
the finite mixture model.

The Bayesian finite mixture model is a generative
model of the following form:

q ∼ Dirichlet(α), (1)

z(n) ∼ Categorical(q), 1 ≤ n ≤ N,

θ(k) ∼ G, 1 ≤ k ≤ K,

y(n) | z(n) = k ∼ p(y(n) | θ(k)), 1 ≤ n ≤ N,

where α = {α(1), . . . , α(K)} is a K-dimensional vec-
tor of pseudo-counts and G is a base distribution
for the parameters. The function p characterizes the
distribution over y(n) given that object n belongs
to cluster k. This function will change depending
on what type of mixture model we are considering.
Given observations Y , a common objective is to perform posterior inference on this
model to characterize posterior distributions for Z | Y and/or Θ | Y . In many inference
procedures, it is common to integrate out the vector q due to conjugacy between the
Dirichlet and Categorical distributions. A graphical model of the finite mixture model is
given in Figure 2.
In the Gaussian mixture model (GMM) setting, each observed data point y(n) is a K-

dimensional variable that is normally distributed when conditioned on cluster membership.
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The cluster parameters are means and covariances of a Gaussian distribution, i.e. θ(k) =

{µ(k),Σ(k)} and p(y(n) |θ(k)) = N (y(n) |µ(k),Σ(k)) for all k. A natural base distribution G
that upholds conjugacy places a Gaussian N (µ0,Σ0) prior on µ(k) and an inverse Wishart
W−1(Φ, ν) prior on Σ(k), where µ0,Σ0,Φ, ν are all hyperparameters.
For the GMM, there exists a well-known EM algorithm for inferring an estimate Θ∗

that maximizes p(Θ∗ |Y ) and finding the corresponding posterior distribution over cluster
assignments p(Z | Y ,Θ∗). There also exists a well-known Gibbs sampling algorithm for
full Bayesian inference to determine p(Θ, Z | Y ). Both of these algorithms benefit from
Gaussian-Gaussian and Gaussian-inverse Wishart conjugacy, and are commonly used in
clustering applications (Murphy, 2012).

2.4.2 Infinite Mixture Model

An often-noted limitation of the finite mixture model is that a practitioner must specify
the number of clusters K before running an inference algorithm. However, in many
applications, this number may be unknown or unavailable. The infinite mixture model
(Ferguson, 1973; Neal, 2000) attempts to rectify this problem by letting the number of
clusters K also be a random variable in the model.

There are other ways to deal with this limitation, such as using model selection criteria
to pick a single model among multiple finite mixtures with different values of K (Celeux
and Soromenho, 1996) or using a mixture of finite mixtures (Miller and Harrison, 2018).
We choose to explore the infinite mixture model, because it is a natural extension of the
finite mixture model and as a result, shares similar inference techniques.

Dirichlet Process

The Dirichlet process (DP) (Ferguson, 1973) is at the heart of the infinite mixture
model. Whereas the Dirichlet distribution provides a prior over all K-dimensional discrete
distributions, the DP provides a prior over all discrete distributions in general. The DP is
parameterized by an inverse-variance parameter α and a base distribution G. A sample
from DP(α,G) is an almost surely discrete distribution Q, in which the number of distinct
values within N → ∞ draws from Q (i.e. K) is random. Rewriting the finite mixture
model of Equation (1), the Dirichlet process infinite mixture model can be written as:

Q ∼ DP(α,G), (2)

θ̃(n) ∼ Q, 1 ≤ n ≤ N,

12



y(n) | θ̃(n) ∼ p(y(n) | θ̃(n)), 1 ≤ n ≤ N.

In this setting, the parameters are indexed by the observation index n instead of by the
cluster index k. Two objects {n, n′} are in the same cluster if θ̃(n) = θ̃(n′).

Chinese Restaurant Process

α

z(n) y(n)

G

θ(k) ∞

N

Figure 3: The graphical model of
the infinite mixture model under the
CRP representation.

Although the Dirichlet process mixture model of
Equation (2) provides randomness for K, it is dif-
ficult to directly perform inference on this model
due to the infinite dimensionality of Q. The Chi-
nese restaurant process (CRP) representation of the
DP integrates out this intermediary distribution Q
(Neal, 2000). To generate a sample from the CRP, we
can imagine the data points 1, . . . , N as customers
arriving successively at a restaurant. Given hyper-
parameter α, each customer n sits at an already
occupied table k with probability N (k)/(n− 1 + α),
where N (k) is the number of people already sitting
at table k, and starts a new table with probability
α/(n − 1 + α). Thus, the customers’ table assign-
ments z(1), . . . , z(N), along with the number of tables
K, are random variables. Each table has an associated value θ(k), which is independently
drawn from a base distribution G.

In the mixture model, the CRP allows us to separate the process of assigning a cluster
(i.e. table) to each n from the process of choosing a parameter (i.e. table value) for each
cluster. The result is a form that is similar to the finite mixture model, but we do not
need to choose K a priori:

z(1), . . . , z(N) ∼ CRP(α,N), (3)

θ(k) ∼ G, 1 ≤ k <∞,
y(n) | z(n) = k ∼ p(y(n) | θ(k)), 1 ≤ n ≤ N.

A graphical model is depicted in Figure 3. In this case, the number of clusters K is
simply the number of distinct values in Z = {z(1), . . . , z(N)}, where each z(n) ∈ {1, . . . , K}.
Even though an infinite number of θ(k) are technically drawn from G, inference algorithms
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only need to keep track of the finite number of cluster parameters that are involved in the
generation of Y = {y(1), . . . ,y(N)}. Nonetheless, inference is not necessarily easy to do.
To the best of the author’s knowledge, there is no straightforward method of using the
EM algorithm for this model, although there are attempts at working with a truncated
version (Kimura et al., 2013). In MCMC, there are several proposed methods for sampling
from the posterior distribution of the infinite mixture model, many of which originated
in Neal (2000). Neal’s Algorithm 8 is one of the most general, as it handles the case in
which there is no conjugacy between G and p(y(n) | θ(k)).

2.5 State-Space Models for Time Series Data

State-space models are frequently used as generative models of time series data y =

{y1, . . . , yT} and appear in a wide variety of real-world applications (Durbin and Koopman,
2012). Given parameters θ, state-space models introduce an underlying latent process
x = {x1, . . . , xT} and assume the following form:

x1 | θ ∼ h(x1;θ), (4)

xt | xt−1,θ ∼ f(xt−1, xt;θ), 1 < t ≤ T,

yt | xt,θ ∼ g(xt, yt;θ), 1 ≤ t ≤ T,

where f is some state transition density, g is some state-dependent likelihood, and h is
some initial distribution. The Bayesian setting places a prior G on θ. A graphical model
is given in Figure 4. In this section, we summarize types of state-space models, as well as
relevant inference algorithms.

2.5.1 Linear-Gaussian State-Space Models

The linear-Gaussian state-space model (LGSSM) assumes that f , g, and h are all Gaussian
densities. Let the dimension of xt be m and the dimension of yt be p. In the most basic
form, given parameters θ = {A,B,C,D, µ0,Σ0}, where A ∈ Rm×m, B ∈ Rm×m, C ∈
Rq×m, D ∈ Rq×q, µ0 ∈ Rm, and Σ0 ∈ Rm×m, the LGSSM follows:

x1 | θ ∼ N (µ0,Σ0), (5)

xt | xt−1,θ ∼ N (Axt−1, B), 1 < t ≤ T,

yt | xt,θ ∼ N (Cxt, D), 1 ≤ t ≤ T.
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Figure 4: The graphical model of the state-space model.

The linear-Gaussian assumption makes exact inference computationally tractable due to
conjugacy. For instance, there exists an EM algorithm for maximum likelihood estimation
of θ (Ghahramani and Hinton, 1996), which can be easily extended to MAP estimation if
G is an inverse-Wishart distribution. There also exists a straightforward Gibbs sampling
algorithm for full Bayesian inference of p(x,θ | y) in the linear-Gaussian setup (Carter
and Kohn, 1994). Many of these methods take implicit advantage of the Kalman filter
(Swerling, 1958; Kalman, 1960), which allows for exact computation of the parameter
likelihood p(y | θ).

2.5.2 Nonlinear State-Space Models

Nonlinear state-space models relax the linear-Gaussian assumption, allowing f, g, and h to
take any form as distributions involving some nonlinearity. Inference then becomes a more
difficult task. One early attempt to use the EM algorithm substitutes Gaussian radial basis
function approximators for the nonlinearities during the M-step (Ghahramani and Roweis,
1999). This reduces the optimization problem to a solvable system of linear equations, yet
depending on the specific nonlinearities, the approximation can be arbitrarily poor.
In MCMC literature, a recent innovation known as the particle marginal Metropolis-

Hastings (PMMH) algorithm (Andrieu et al., 2010) allows one to construct a Markov
chain with a stationary distribution exactly equal to p(x,θ | y) for nonlinear state-space
models, provided that they have access to an algorithm which computes a Monte Carlo
estimate of the parameter likelihood p̂(y |θ). It is an improvement over previously existing
Gibbs sampling algorithms for accomplishing this task (Kim et al., 1999). The basic idea
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of PMMH is to embed a particle filter, which is designed to produce such estimates, inside
the MH algorithm.

Boostrap Particle Filter

A natural choice for particle filtering is the bootstrap particle filter (BPF) (Gordon
et al., 1993), which is reviewed in Algorithm 4. The BPF is based on a sequential
importance sampling procedure that iteratively approximates each filtering distribution
p(xt | y1, . . . , yt,θ) with a set of S particles {x1

t , . . . , x
S
t } so that

p̂(y | θ) =
T∏
t=1

(
1

S

S∑
s=1

g(xst , yt;θ)

)
(6)

is an unbiased estimate of the parameter likelihood p(y |θ) (Doucet et al., 2001). Algorithm
4 provides a review of this algorithm.

Algorithm 4 BootstrapParticleFilter(y, θ, f , g, h)
1: for s = 1, . . . , S do
2: Sample xs1 ∼ h(x1;θ) and weight ws1 = g(xs1, y1;θ).
3: end for
4: Normalize {ws1}Ss=1 = {ws1}Ss=1/

∑S
s=1w

s
1.

5: for t = 2, . . . , T do
6: for s = 1, . . . , S do
7: Resample ancestor index ast−1 ∼ Categorical(w1

t−1, . . . , w
S
t−1).

8: Sample xst ∼ f(x
ast−1

t−1 , xt;θ) and weight wst = g(xst , yt;θ).
9: end for

10: Normalize {wst}Ss=1 = {wst}Ss=1/
∑S

s=1w
s
t .

11: end for
12: return Particles {{xs1}Ss=1, . . . , {xsT}Ss=1}

A common problem with the BPF is that although its estimate of p(y | θ) is unbiased,
this approximation may have high variance for certain observation vectors y and certain
parameters θ. The variance can be reduced at the price of increasing the number
of particles, yet this often significantly increases computation time and is therefore
unsatisfactory. A recently developed alternative to the BPF that attempts to remedy this
problem is controlled sequential Monte Carlo.
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Twisted Sequential Monte Carlo

Controlled sequential Monte Carlo (cSMC) (Heng et al., 2017) is based on the premise
that we can modify a state-space model in such a way that standard bootstrap particle
filters give lower variance estimates while the likelihood of interest is kept unchanged.
The basic idea of cSMC is to run several iterations of twisted sequential Monte Carlo

(twisted SMC), a process in which we redefine the model’s state transition density f ,
initial distribution h, and state-dependent likelihood g in a way that allows the BPF
to produce lower-variance estimates without changing the parameter likelihood p(y | θ).
Guarniero et al. (2017) provide a different iterative approach.
Using a policy γ = {γ1, . . . , γT} in which each γt is a positive and bounded function,

we define,

hγ(x1;θ) =
h(x1;θ) · γ1(x1)

Hγ(θ)
, (7)

fγt (xt−1, xt;θ) =
f(xt−1, xt;θ) · γt(xt)

F γ
t (xt−1;θ)

, 1 < t ≤ T,

where Hγ(θ) =
∫
h(x1;θ)γ1(x1)dx1 and F γ

t (xt−1;θ) =
∫
f(xt−1, xt;θ)γt(xt)dxt are nor-

malization terms for the probability densities hγ and fγt , respectively. To ensure that
the parameter likelihood estimate p̂(y | θ) remains unbiased under the twisted model, we
define the twisted state-dependent likelihoods gγ1 , . . . , g

γ
T as functions that satisfy:

p(x,y | θ) = hγ(x1;θ) ·
T∏
t=2

fγt (xt−1, xt;θ) ·
T∏
t=1

gγt (xt, yt;θ) (8)

⇐⇒ h(x1;θ) ·
T∏
t=2

f(xt−1, xt;θ) ·
T∏
t=1

g(xt, yt;θ)

=
h(x1;θ)γ1(x1)

Hγ(θ)
·
T∏
t=2

f(xt−1, xt;θ)γt(xt;θ)

F γ
t (xt−1;θ)

·
T∏
t=1

gγt (xt, yt;θ)

⇐⇒
T∏
t=1

g(xt, yt;θ) =
γ1(x1)

Hγ(θ)
·
T∏
t=2

γt(xt)

F γ
t (xt−1;θ)

·
T∏
t=1

gγt (xt, yt;θ).

This equality can be maintained if we define gγ1 , . . . , g
γ
T as follows:

gγ1 (x1, y1;θ) =
Hγ(θ) · g(x1, y1;θ) · F γ

2 (x1;θ)

γ1(x1)
, (9)
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gγt (xt, yt;θ) =
g(xt, yt;θ) · F γ

t+1(xt;θ)

γt(xt)
, 1 < t < T,

gγT (xT , yT ;θ) =
g(xT , yT ;θ)

γT (xT )
.

Thus, the parameter likelihood estimate of the twisted model is

p̂γ(y | θ) =
T∏
t=1

(
1

S

S∑
s=1

gγt (xst , yt;θ)

)
. (10)

The optimal policy γ∗ that minimizes the variance of this estimate may be intractable to
compute in general. Thus, we typically choose γ as the policy that is closest to γ∗ within
a tractable set. The strategy for finding γ depends on the specific nonlinearities f, g, h.
The BPF is simply a degenerate case of twisted SMC in which γt = 1 for all t.

Algorithm 5 ControlledSMC(y, f , g, h, θ, L)

1: Collect particles {xs1}Ss=1, . . . , {xsT}Ss=1 = BootstrapParticleFilter(y, θ, f , g, h).
2: Initialize Γ′ = {Γ′1, . . . ,Γ′T} where Γ′t(xt) = 1 for all t = 1, . . . , T .
3: for ` = 1, . . . , L do
4: Solve for cumulative policy Γ = FindPolicy(Γ′, f , g, h, {xs1}Ss=1, . . . , {xsT}Ss=1, y).

// Bootstrap particle filter to sample particles.
5: for s = 1, . . . , S do
6: Sample xs1 ∼ hΓ(x1) and weight ws1 = gΓ

1 (xs1, y1).
7: end for
8: Normalize {ws1}Ss=1 = {ws1}Ss=1/

∑S
s=1w

s
1.

9: for t = 2, . . . , T do
10: for s = 1, . . . , S do
11: Resample ancestor index ast−1 ∼ Categorical(w1

t−1, . . . , w
S
t−1).

12: Sample xst ∼ fΓ
t (x

ast−1

t−1 , xt;θ) and weight wst = gΓ
t (xst , yt).

13: end for
14: Normalize {wst}Ss=1 = {wst}Ss=1/

∑S
s=1w

s
t .

15: end for
16: Update Γ′ = Γ.
17: end for
18: return Likelihood estimate p̂Γ(y | θ) (Equation (10)).
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Controlled Sequential Monte Carlo

The full cSMC algorithm is given in Algorithm 5. It iterates on twisted SMC for L
iterations, building a series of policies γ〈1〉, γ〈2〉, . . . , γ〈L〉 over time. Given two policies Γ′

and γ, we can define,

hΓ′·γ(x1) ∝ hΓ′(x1)γ1(x1) = h(x1;θ) · Γ′1(x1) · γ1(x1), (11)

fΓ′·γ
t (xt−1, xt;θ) ∝ fΓ′

t (xt−1, xt;θ) · γt(xt) = f(xt−1, xt;θ) · Γ′t(xt) · γt(xt), 1 < t ≤ T.

We can see from these relationships that twisting the original model using Γ′ and then
twisting the new model using γ has the same effect as twisting the original model using a
cumulative policy Γ where each Γt(xt) = Γ′t(xt) · γt(xt).

In Algorithm 5, the FindPolicy function of Line 4 will depend on the specific type of
nonlinear state-space model. In Section 4.3, we present an approach that works well for
dynamic generalized linear models, a class of nonlinear state-space models with Gaussian
latent states that are common in neuroscience applications.

2.5.3 Point Process State-Space Model

The point process state-space model is a particular nonlinear state-space model that is
commonly used in neuroscience literature to describe neuronal firing data (Smith and
Brown, 2003). We briefly review this model here.

Consider an experiment with R successive trials, during which we record the activity of
a neuronal spiking unit. For each trial, let (0, T ] be the continuous observation interval
following the delivery of an exogenous stimulus at time τ = 0. In addition, for each trial
r = 1, . . . , R, let Sr be the total number of spikes from the neuron during trial r, and
the sequence 0 < τr,1 < . . . < τr,Sr corresponds to the times at which events from the
neuronal unit occur. We assume that {τr,s}Sr

s=1 is the realization in (0, T ] of a stochastic
point-process with counting process Nr(τ) =

∫ τ
0
dNr(u), where dNr(τ) is the indicator

function in (0, T ] of {τr,s}Sr
s=1. A point-process is fully characterized by its conditional

intensity function (CIF) (Vere-Jones, 2003). Assuming all trials are independent and
identically distributed realizations of the same point-process, the CIF λ(τ |Hτ ) of dNr(τ)

for r = 1, . . . , R is

λ(τ |Hτ ) = lim
δ→0

p (Nr(τ + δ)−Nr(τ) = 1 |Hτ )

δ
, (12)
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where Hτ is the event history of the point process up to time τ . Suppose we sample dNr(τ)

at a resolution of δ to yield a binary event sequence. We denote by {∆Nt,r}T,Rt=1,r=1 the
discrete-time process obtained by counting the number of events in T = bT /∆c disjoint
bins of width ∆ = M ·δ, whereM ∈ N. Given the initial state x0, a popular approach is to
encode a discrete-time representation of the CIF {λt}Tt=1 within an autoregressive process
that underlies a binomial state-space model with observations {∆Nt,r}T,Rt=1,r=1 (Smith and
Brown, 2003):

x1 ∼ N (x0 + µ1, ψ0), (13)

xt | xt−1 ∼ N (xt−1 + µt, ψ), 1 < t ≤ T,

pt = λt · δ = σ(xt) =
expxt

1 + expxt
, 1 ≤ t ≤ T,

yt =
R∑
r=1

∆Nt,r ∼ Binomial (R ·M, pt) , 1 ≤ t ≤ T,

where µ = {µ1, . . . , µT} is a vector of inputs to the system that are usually used to signify
changes in the firing rate of the neuron at various time points, and ψ and ψ0 are variance
parameters that impose stochastic smoothness on the latent process x.
Equation (13) is a nonlinear state-space model because the state transition density f

and initial distribution h are Gaussian, but the state-dependent likelihood g is binomial.
In the subsequent chapters, we will revisit this point process state-space model several
times in applications of time series clustering to neuroscience.
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3 State-Space Finite Mixture Model
and MCEM Algorithm

The natural generative model for time series clustering problems is a mixture of state-space
models, which we introduce here. This mixture can either be finite or infinite, depending
on whether or not the true number of clusters K is known. This chapter focuses on the
finite case. We present a Monte Carlo expectation-maximization algorithm for MAP
inference and show its utility on a time series clustering application in neuroscience.

3.1 Finite Mixture of State-Space Models

Given N times series Y = {y(1), . . . ,y(N)} of length T , the model has the following form:

q ∼ Dirichlet(α), (14)

z(n) ∼ Categorical(q), 1 ≤ n ≤ N,

θ(k) ∼ G, 1 ≤ k ≤ K,

x
(n)
1 | z(n) = k,θ(k) ∼ h(x

(n)
1 ;θ(k)), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1, z
(n) = k,θ(k) ∼ f(x

(n)
t−1, x

(n)
t ;θ(k)), 1 < t ≤ T, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t , z(n) = k,θ(k) ∼ g(x
(n)
t , y

(n)
t ;θ(k)), 1 ≤ t ≤ T, 1 ≤ n ≤ N.

Figure 5 depicts the graphical model representation.

3.2 Monte Carlo Expectation-Maximization Inference

Algorithm

We denote the set of all cluster assignments Z = {z(1), . . . , z(N)}, the set of all hidden
states X = {x(1), . . . ,x(N)}, and the set of all cluster parameters Θ = {θ(1), . . . ,θ(K)}.
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Figure 5: The finite state-space mixture model for time series clustering. For simplicity,
we omit dependencies that are assumed between Y and (Z,Θ).

The goal is to recover a clustering of the time series data Y by performing MAP inference
on {Θ, q}, yielding estimates {Θ∗, q∗} which can then be used to find a distribution over
cluster assignments p(Z | Y ,Θ∗, q∗).

3.2.1 Expectation Step (E-Step)

From the previous (i.e. i-th) M-Step, assume we have the parameter estimates Θ〈i〉 and
q〈i〉. We begin by defining the expected complete-data log-likelihood (ECDLL):

`(Θ, q) = EZ,X | Y ,Θ〈i〉,q〈i〉 [log p(Z,X,Y |Θ, q)] (15)

= EZ | Y ,Θ〈i〉,q〈i〉
[
EX | Z,Y ,Θ〈i〉,q〈i〉 [log p(Z |Θ, q) + log p(X,Y | Z,Θ, q)]

]
= EZ | Y ,Θ〈i〉,q〈i〉

[
EX | Z,Y ,Θ〈i〉,q〈i〉 [log p(Z | q) + log p(X,Y | Z,Θ)]

]
=

N∑
n=1

K∑
k=1

p(z(n) = k | y(n),Θ〈i〉, q〈i〉) ·
(
log q(k) + V (n,k)(Θ)

)
∝

N∑
n=1

K∑
k=1

p(z(n) = k |Θ〈i〉, q〈i〉) · p(y(n) | z(n) = k,Θ〈i〉, q〈i〉) ·
(
log q(k) + V (n,k)(Θ)

)
=

N∑
n=1

K∑
k=1

q(k)〈i〉 · p
(
y(n) | θ(k)〈i〉

)
·
(
log q(k) + V (n,k)(Θ)

)
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where the quantity V (n,k)(Θ) is further expanded as:

V (n,k)(Θ) = Ex(n) | z(n)=k,y(n),Θ〈i〉,q〈i〉 [log p(x(n),y(n) | z(n) = k,Θ)] (16)

= Ex(n) | z(n)=k,y(n),Θ〈i〉,q〈i〉 [log p(x(n) | θ(k)) + log p(y(n) | x(n),θ(k))]

= E
x(n) | y(n),θ(k)

〈i〉 [log p(x(n) | θ(k)) + log p(y(n) | x(n),θ(k))]

= E
x(n) | y(n),θ(k)

〈i〉[
log h(x

(n)
1 ;θ(k)) +

T∑
t=2

log f(x
(n)
t−1, x

(n)
t ;θ(k)) +

T∑
t=1

log g(x
(n)
t , y

(n)
t ;θ(k))

]
.

From Equation (15) and Equation (16), we can see that computing the ECDLL requires
computing the parameter log-likelihood p(y(n) | θ(k)〈i〉) as well as expectations of the
nonlinear functions f, g, h under the smoothing distribution x(n) | y(n),θ(k)〈i〉. The first of
these tasks can be done using a standard particle filtering method, such as the bootstrap
particle filter or controlled sequential Monte Carlo (Heng et al., 2017). The latter task
may be difficult to do in general; in Section 3.3.2, we give an application with specific
nonlinearities in which this expectation is possible to approximate.

A potential further complication is the introduction of priors on Θ and q in the Bayesian
setting. Under such a scenario, we are instead interested in the expected complete-data
log-posterior (ECDLP), which is:

R(Θ, q) ' EZ,X | Y ,Θ〈i〉,q〈i〉 [log p(Θ, q) + log p(Z,X, Y |Θ, q)] (17)

= log p(Θ, q) + `(Θ, q),

where ' denotes equality up to an additive constant.

3.2.2 Maximization Step (M-Step)

After establishing the ECDLP in Equation (17), we wish to compute new values Θ〈i+1〉, q〈i+1〉

that increase the log-likelihood of the data Y . We can arrive at maximum ECDLL es-
timates by setting ∂R/∂Θ = 0 and ∂R/∂q = 0, while obeying the constraint that∑K

k=1 q
(k) = 1.

For q, since conjugacy exists between the Dirichlet prior and the Categorical likelihood,
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the update can be analytically derived as:

q(k)〈i+1〉
=
α(k) − 1 +

∑N
n=1 w

(n,k)∑K
k′=1 α

(k′) −K +N
, 1 ≤ k ≤ K, (18)

where

w(n,k) = p(z(n) = k | y(n), q〈i〉,Θ〈i〉) ∝ q(k)〈i〉 · p
(
y(n) | θ(k)〈i〉

)
. (19)

The parameter likelihood p(y(n) | θ(k)〈i〉) can be exactly computed for linear-Gaussian
state-space models with a Kalman filter, but must be approximated for the general
nonlinear case using particle filtering methods.
For Θ, a closed form solution for Θ〈i+1〉 = arg maxΘR(Θ, ·) may or may not be

derivable, depending on f, g, h and G. Section 3.3.2 gives an example of when derivation
is possible using a Monte Carlo approximation for certain quantities.

3.2.3 Computing Cluster Distributions

Alternately repeating the E-Step and M-Step yields a sequence of parameter estimates
{Θ(1), q(1)}, {Θ(2), q(2)}, . . . , until some convergence criterion returns a final estimate
{Θ∗, q∗}. To find a posterior distribution over possible clusterings Z of the time series Y ,
we calculate:

log p(Z | Y ,Θ∗, q∗) ' log p(Z |Θ∗, q∗) + log p(Y | Z,Θ∗, q∗) (20)

=
N∑
n=1

log p(z(n) |Θ∗, q∗) +
N∑
n=1

log p(y(n) | Z,Θ∗, q∗)

=
K∑
k=1

N (k) · log q(k)∗ +
N∑
n=1

log p
(
y(n) | θ(k)∗

)
,

where N (k) is the number of z(n) equal to k for k = 1, . . . , K. In the nonlinear state-space
case, we need a particle filter to compute the cluster parameter likelihoods p

(
y(n) | θ(k)∗).

3.3 Applications

We present two applications of using the EM algorithm to cluster time series. The first
concerns epileptic seizure recognition. The time series in this example are modeled using
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linear-Gaussian state-space models, which allows us to exactly compute the ECDLL in
Equation (15) (and by extension, the ECDLP in Equation (17)) without Monte Carlo
methods. The relatively successful clustering in this setting serves as a demonstration of
the abilities of the EM algorithm in the absence of nonlinearities.

The second application concerns neuronal firing rates. In this example, we use a mixture
of nonlinear state-space models, which requires us to employ particle-based methods
for tractable inference. Thus, the EM Algorithm becomes a MCEM algorithm in this
setting. We show that for this specific problem, the algorithm is able to identify a sensible
clustering of the time series in question.

3.3.1 Epilepsy Recognition

Epilepsy is a chronic disorder that affects 50 million people every year. It is characterized
by subjects undergoing a central nervous system breakdown, also known as a seizure. In a
recent report by the World Health Organization, it is estimated that 70% of people with
epilepsy could live seizure-free if they were properly diagnosed and treated. A common
way of recognizing these seizures is by using electroencephalography (EEG). This is a way
to monitor electrical activity in the brain and record any unusual behavior. EEG usually
comes as data in the form time series, with points given at the centi-second or milli-second
resolution. There is motivation to cluster these time series according to whether or not a
particular patient is undergoing a seizure. These clusters can then be used in downstream
tasks, such as determining whether a future patient is undergoing a seizure based on
which cluster their EEG data falls into.

The specific dataset we use is collected by Andrzejak et al. (2001). It contains N =

115, 000 series of length T = 178 from a total of 500 individuals. Each series y(n) ∈ Y is
a sequence of EEG recordings keeping track of electrical activity in the brain for a total
of one second. The total number of true clusters is K = 2. Of the 115,000 series, a total
of 23,000 (or 20%) come from patients who experience epileptic seizures (k = 1). The rest
come from patients who do not (k = 2).
The dataset comes with cluster labels, indicating which time series correspond to

epileptic seizures. Our objective is to separate the data without explicitly building these
labels into the inference procedure. Afterwards, we can use the labels to benchmark the
performance of the algorithm. Figure 6 presents examples of EEG recordings from an
epileptic brain and a normal brain.
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Figure 6: Sample EEG recordings from (a) an epileptic brain and (b) a normal brain.

Modeling Details

Each data point y(n)
t ∈ R, so it is possible to adopt the linear-Gaussian state-space

(LGSSM) framework. In addition, there are multiple time series belonging to two different
clusters, which prompts us to employ a finite mixture. In the form of Equation (14), we
generatively model the time series as:

q ∼ Dirichlet(α), (21)

z(n) ∼ Categorical(q), 1 ≤ n ≤ N,

θ(k) = ψ(k) ∼ G, 1 ≤ k ≤ K,

x
(n)
1 ∼ N (x0

(n), ψ0), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1, z
(n) = k, ψ(k) ∼ N (x

(n)
t−1, ψ

(k)), 1 < t ≤ T, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t ∼ N (x
(n)
t , σ2), 1 ≤ t ≤ T, 1 ≤ n ≤ N.

where x(n)
0 , ψ0, σ

2 are all supplied constants. Let the base distribution G be inverse Gamma
with hyperparameters a, b. The one cluster parameter in this case is the variance ψ(k) in
the state transition density. This was chosen with the knowledge that in general, patients
experiencing epileptic seizures exhibit EEG recordings with relatively greater degrees of
oscillation than those who are not experiencing seizures.

EM Algorithm

Since Equation (21) is a mixture of linear-Gaussian state-space models, we can exactly
compute the quantities in Equation (15) of the E-Step. For example, a Kalman filter gives
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the exact parameter log-likelihood p(y(n) | θ(k)〈i〉). In addition, observe that the initial
distribution h and the state-dependent likelihood g do not depend on the cluster parameter
θ(k) = ψ(k). Thus, the other major quantity from Equation (15) and Equation (16),
V (n,k)(Θ), can be expanded as:

V (n,k)(Θ) = E
x(n) | y(n),θ(k)

〈i〉 (22)[
log h(x

(n)
1 ;θ(k)) +

T∑
t=2

log f(x
(n)
t−1, x

(n)
t ;θ(k)) +

T∑
t=1

log g(x
(n)
t , y

(n)
t ;θ(k))

]

' E
x(n) | y(n),θ(k)

〈i〉

[
T∑
t=2

log f(x
(n)
t−1, x

(n)
t ;θ(k))

]

' E
x(n) | y(n),θ(k)

〈i〉

[
T∑
t=2

−1

2
logψ(k) − (x

(n)
t − x(n)

t−1)2

2ψ(k)

]

= −(T − 1)

2
logψ(k) − 1

2ψ(k)

T∑
t=2

E
x(n) | y(n),θ(k)

〈i〉

[
(x

(n)
t − x(n)

t−1)2
]

= −(T − 1)

2
logψ(k) − 1

2ψ(k)

T∑
t=2

E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
.

The final quantity,
∑T

t=2 E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
, is a statistic from the smoothing

distribution. We can arrive at an exact calculation using a Kalman smoother, which is
explained in the next section.

In the M-Step, we wish to find ψ(k)〈i+1〉 which maximizes the ECDLP R, a function of
ψ(k) in Equation (17). Setting ∂R/∂ψ(k) = 0, we have:

0 =
∂

∂ψ(k)

[
log p(ψ(k); a, b) + EZ,X | Y ,Θ〈i〉,q〈i〉 [log p(Z,X, Y |Θ, q)]

]
(23)

0 = −a+ 1

ψ(k)
+

b

(ψ(k))2
+

∂

∂ψ(k)

 N∑
n=1

p(z(n) = k | y(n), q〈i〉,Θ〈i〉)︸ ︷︷ ︸
w(n,k)

·V (n,k)(Θ)


0 = −a+ 1

ψ(k)
+

b

(ψ(k))2
+

N∑
n=1

w(n,k) ·
[
−(T − 1)

2ψ(k)
+

1

2(ψ(k))2

T∑
t=2

E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]]

0 = − 1

ψ(k)
·
(
a+ 1 +

T − 1

2

N∑
n=1

w(n,k)

)
+
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1

(ψ(k))2
·
(
b+

1

2

N∑
n=1

T∑
t=2

w(n,k) · E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
])

.

Solving this final equation yields

ψ(k)〈i+1〉
=

b+
1

2

N∑
n=1

T∑
t=2

w(n,k) · E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]

a+ 1 +
T − 1

2

N∑
n=1

w(n,k)

. (24)

Notice that this solution is the MAP of the ECDLP, an inverse Gamma distribution with
hyperparameters a′, b′, where

a′ = a+
T − 1

2

N∑
n=1

w(n,k), (25)

b′ = b+
1

2

N∑
n=1

T∑
t=2

w(n,k) · E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
.

Equation (19) describes how to compute w(n,k) and the next section details how to compute
E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
.

Algorithm 6 summarizes our EM algorithm for the epilepsy model of Equation (21).

Kalman Smoothing

As previously mentioned, for a given time series of observations y and supplied parameters
{ψ, x0, ψ0, σ

2}, we can compute E [(xt − xt−1)2 | y] for all t = 2, . . . , T by running a
Kalman smoother (Haykin, 2004). Expanding this quantity further, we see that it is an
expression involving five common statistics from the smoothing distribution p(x | y):

E
[
(xt − xt−1)2 | y

]
= E[(xt)

2 | y] + E[(xt−1)2 | y]− 2E[xt · xt−1 | y] (26)

= Var[xt | y] + Var[xt−1 | y]− 2Cov[xt, xt−1 | y] + (E[xt | y]− E[xt−1 | y])2 .

Algorithm 7 summarizes the Kalman smoother, which is designed to calculate µt | T =

E[xt | y,θ] and νt | T = Var[xt | y,θ] for all t. The final statistic, the covariance, can be
computed as Cov[xt, xt−1 | y,θ] = Lt−1 · νt | T , where Lt is the Kalman gain for all t < T .
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Algorithm 6 EpilepsyExpMax(Y , K, a, b,α, ψ0, σ
2, {x(1)

0 , . . . , x
(N)
0 }, ε0)

1: Set i = 0.
2: Draw parameters ψ(k)〈0〉 ∼ InvGamma(a, b) for k = 1, . . . , K and q〈0〉 ∼ Dirichlet(α).
3: Set ε =∞.
4: while ε0 < ε do

// Expectation Step
5: for n = 1, . . . , N do
6: for k = 1, . . . , K do
7: Run KalmanSmoother(y, ψ(k)〈i〉, x

(n)
0 , ψ0, σ

2).
8: Compute

∑T
t=2 E

[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
using Equation (26).

9: Compute w(n,k) = p(z(n) = k | y(n), q〈i〉,Θ〈i〉) ∝ q(k)〈i〉 · p
(
y(n) | ψ(k)〈i〉

)
.

10: end for
11: end for

// Maximization Step
12: for k = 1, . . . , K do
13: Optimize and solve for q(k)〈i+1〉 using Equation (18).
14: Optimize and solve for ψ(k)〈i+1〉 using Equation (24).
15: end for
16: Compute ε = ‖Θ〈i+1〉 −Θ〈i〉‖2.
17: Set i = i+ 1.
18: end while
19: return q〈i〉,Θ〈i〉

Algorithm 7 KalmanSmoother(y, ψ, x0, ψ0, σ
2)

1: Initialize µ0 | 0 = x0 and ν0 | 0 = ψ0.
// Forward Kalman Filter

2: for t = 1, . . . , T do
3: Set µt | t−1 = µt−1 | t−1 and νt | t−1 = νt−1 | t−1 + ψ
4: Set Kt = νt | t−1/(νt | t−1 + σ2)

5: Set µt | t = µt | t−1 +Kt · (y(n)
t − µt | t−1)

6: Set νt | t = Kt · σ2

7: end for
// Backward Kalman Smoother

8: for t = T − 1, . . . , 1 do
9: Compute Kalman gain Lt = νt | t/νt+1 | t

10: Set µt | T = µt | t + Lt · (µt+1 | T − µt+1 | t)
11: Set νt | T = νt | t + L2

t · (νt+1 | T − νt+1 | t)
12: end for
13: return (µ1 | T , ν1 | T , L1), . . . , (µT | T , νT | T , LT )
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Table 1: Confusion matrix for a representative run of Algorithm 6 with K = 2, along
with calculated true positive rate (TPR) and true negative rate (TNR).

True Seizure True Non-Seizure
Clustered Seizure 2160 580

Clustered Non-Seizure 140 8620
TPR: 0.939 TNR: 0.937

Results

We feed at N = 115, 000 time series into Algorithm 6 with K = 2, a = 1, b = 1, and
α = [1, 1]. We let ψ0 = 1 and σ2 = 1. For each time series n, the initial state is
estimated as the average of the first five data points, x(n)

0 = 1/5 ·∑5
t=1 y

(n)
t . Finally, we

use a convergence threshold of ε0 = 10−5. After convergence, cluster parameters Θ∗ and
q∗ are returned by the algorithm. We use Equation (20) to compute posterior cluster
distributions for all the time series p(Z | Y ,Θ∗, q∗). To determine a final clustering, we
assign each time series n to the cluster k such that p(z(n) = k | y(n),Θ∗, q∗) is maximized.
We compare this final clustering with the ground-truth labels of seizure vs. no seizure.

It is well-documented that the EM algorithm tends to get stuck in local minima. Thus,
we run Algorithm 6 a total of 20 times for different random initializations. Over the 20
times, the algorithm reports an average accuracy of 93.87%. In Table 1, we report the
confusion matrix of a representative run. We see that the true positive rate (TPR) and
true negative rate (TNR) are roughly equal, meaning neither cluster dominates in terms
of accuracy. On average, the two final cluster parameter estimates are ψ(1)∗ = 13, 785.23

for seizure-related time series and ψ(2)∗ = 260.12 for non-seizure related time series.
This is consistent with the initial belief that seizure-related time series are more volatile.
Interestingly, in all runs of the algorithm, over 99% of the time series have a cluster
distribution p(z(n)|y(n),Θ∗, q∗) in which one of the clusters has at least a 0.95 calculated
probability of being the true cluster for time series n.

One may expect the results to improve if we use more than two clusters. However, upon
repeating the experiment for K = 3, there is no such improvement in the corresponding
results. We see that one cluster clearly contains all seizure-related time series while a
second cluster clearly contains all non-seizure-related time series. However, the third
cluster becomes a roughly even, 50-50 mix of the two classes, thereby bringing the overall
accuracy down to 86.55% – even if we group the third cluster with one of the other two.
Nonetheless, it seems that the EM inference algorithm does a relatively clean job of
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correctly separating the data in an unsupervised manner when K = 2. This example
with linear-Gaussian state-space models establishes that the finite mixture model has
some utility in real-world settings. In the subsequent experiment, we explore time series
that exhibit nonlinear dynamics. Thus, exact inference becomes impossible and the EM
algorithm is forced to rely on particle methods instead of Kalman smoothing.

3.3.2 Neuronal Firing Clustering

We explore an application of time series clustering in a nonlinear setting. A neuron is a
nerve cell that transmits electrical signals as part of the nervous system of every human.
Neurons fire in response to different stimuli. These firings can be recorded as binary
indicators over the course of a time period. Thus, a neuronal firing sequence is effectively
a binary time series. Different neurons are believed to exhibit different firing patterns in
response to different stimuli. Therefore, the problem of clustering neuronal firing patterns
is important, because it can reveal hidden relationships between neurons that were not
noticed before. The neuron is arguably the fundamental unit of learning and thought
that exists in our brains, so it is of great interest to understand its characterizations in
greater detail. In this application, we build a model and algorithm designed to recover a
ground-truth clustering among several neuronal firing patterns. If the algorithm is able to
yield successful results and perform as expected, then it may have utility in problems in
which the ground-truth clustering is not known.

The objective is to build a model that inputs a time series of 0-1 neuronal firing indicators
and accurately outputs different clusterings of neurons by their original stimulus. For this
experiment, we used a dataset collected by Temereanca et al. (2008). The experimenters
artificially moved the whiskers of mice at different velocities (50 mm/s and 16 mm/s).
Theses velocities form the ground-truth clustering of the data, i.e. K = 2. For the two
velocities, the experimenters recorded the corresponding firing sequences for N neurons
over T = 3000 time points, with certain neurons receiving the fast stimulus (i.e. k = 1,
50 mm/s) and others receiving the slow stimulus (i.e. k = 2, 16 mm/s). At each time
point in the experiment, a ’1’ indicates that the neuron fired, while a ’0’ indicates that
the neuron did not fire. The experiment was repeated over a total of R = 50 trials.

Modeling Details

Thus, the data for each neuron n comes in the form of a raster {∆N (n)
t,r }T,Rt=1,r=1, where each

∆N
(n)
t,r ∈ {0, 1}. Assuming independence between trials, we sum this raster across trials
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to form a univariate time series y(n), where each y
(n)
t =

∑R
r=1 ∆N

(n)
t,r ∈ {0, . . . , 50}. A

popular way to specify a generative model for this time series is to use the binomial point
process state-space model of Equation (13). Given multiple neurons that share common
attributes, we impose a finite mixture of point process state-space models on the data:

q ∼ Dirichlet(α), (27)

z(n) ∼ Categorical(q), 1 ≤ n ≤ N,

θ(k) = ψ(k) ∼ G, 1 ≤ k ≤ K,

x
(n)
1 ∼ N (x0

(n), ψ0), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1, z
(n) = k, ψ(k) ∼ N (x

(n)
t−1, ψ

(k)), 1 < t ≤ T, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t ∼ Binomial

(
R,

expx
(n)
t

1 + exp x
(n)
t

)
, 1 ≤ t ≤ T, 1 ≤ n ≤ N.

Similar to the previous application, the cluster parameter in this problem is ψ(k), the
variance of the underlying latent process. Looking at representative plots of neurons with
fast and slow stimuli (Figure 7), we expect those receiving the fast stimulus to have a
higher variance than those receiving a slow stimulus. Thus, the expectation is that this
parameter can partition the data in a sensible manner.
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Figure 7: Sample segments of representative firing sequences {y(n)
1000, . . . , y

(n)
1500}, in which

a neuron n experiences (a) the fast stimulus and (b) the slow stimulus.
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MCEM Algorithm

Inference for this model essentially follows the same form as Algorithm 6, in the epilepsy ex-
ample. However, there are a couple of notable differences. Two key quantities can no longer
be directly computed due to the nonlinearities of Equation (27) and the lack of conjugacy
between the Gaussian and the binomial. These quantities are the parameter log-likelihood
p
(
y(n) | ψ(k)〈i〉

)
and the smoothing quantity

∑T
t=2 E

[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
. Thus,

we introduce Monte Carlo methods for the E-Step. The parameter log-likelihood can be
estimated using a particle filter. Controlled sequential Monte Carlo (Heng et al., 2017) is
a natural choice, because it is designed to provide low-variance estimates. The smoothing
quantity can be similarly estimated using a particle smoother. In fact, the output of the
bootstrap particle filter (and cSMC by implication) can be altered to give estimates from
the smoothing distribution of a state-space model. We elaborate on how this is done in
the next section.
The M-Step updates are exactly the same as those in Algorithm 6, except we use

estimates for the parameter log-likelihood and the smoothing quantity instead of exact
calculations. A summary of the resultant MCEM algorithm is given in Algorithm 8.

Particle Smoothing

Consider the point process state-space model of Equation (13):

x1 ∼ N (x0, ψ0),

xt | xt−1 ∼ N (x
(n)
t−1, ψ), 1 < t ≤ T,

yt | xt ∼ Binomial
(
R,

expxt
1 + exp xt

)
, 1 ≤ t ≤ T.

The problem of particle smoothing inputs a given time series of observations y and supplied
parameters {ψ, x0, ψ0, σ

2} and outputs sets of S particles {xs1 | T}Ss=1, . . . , {xsT | T}Ss=1 that
approximate the smoothing distribution p(x | y). Once we have these particles, we can
compute the following unbiased estimate of

∑T
t=2 E [(xt − xt−1)2 | y]:

1

S

S∑
s=1

T∑
t=2

(xst | T − xst−1 | T )2. (28)

As noted by Doucet and Johansen (2009), the output of a bootstrap particle filter (BPF)
can be modified to produce {xs1 | T}Ss=1, . . . , {xsT | T}Ss=1 from the smoothing distribution.
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Algorithm 8 NeuronClustMCExpMax(Y , K, a, b,α, ψ0, R, {x(1)
0 , . . . , x

(N)
0 }, S, L, ε0)

1: Set i = 0.
2: Draw parameters ψ(k)〈0〉 ∼ InvGamma(a, b) for k = 1, . . . , K and q〈0〉 ∼ Dirichlet(α).
3: Set ε =∞.
4: while ε0 < ε do

// Expectation Step
5: for n = 1, . . . , N do
6: for k = 1, . . . , K do
7: Run ParticleSmoother(y, ψ(k)〈i〉, x

(n)
0 , ψ0, R).

8: Estimate
∑T

t=2 E
[
(x

(n)
t − x(n)

t−1)2 | y(n), ψ(k)〈i〉
]
using Equation (28).

9: Estimate w(n,k) = p(z(n) = k | y(n), q〈i〉,Θ〈i〉) ∝ q(k)〈i〉 · p
(
y(n) | ψ(k)〈i〉

)
.

10: end for
11: end for

// Maximization Step
12: for k = 1, . . . , K do
13: Optimize and solve for q(k)〈i+1〉 using Equation (18) and E-Step estimates.
14: Optimize and solve for ψ(k)〈i+1〉 using Equation (24) and E-Step estimates.
15: end for
16: Compute ε = ‖Θ〈i+1〉 −Θ〈i〉‖2.
17: Set i = i+ 1.
18: end while
19: return q〈i〉,Θ〈i〉

The BPF (Algorithm 4) returns particles {xs1}Ss=1, . . . , {xsT}Ss=1 where each set of particles
{xst}Ss=1 approximates p(xt |y1, . . . , yt−1). In Line 7 of Algorithm 4, we also sample ancestor
indices {ast}Ss=1 to determine the trajectory of particles in the next time step {xst+1}Ss=1 for
t = 1, . . . , T − 1. We can use these ancestor indices to get particles from the smoothing
distribution by defining a new set of indices {bs1}Ss=1, . . . , {bsT}Ss=1.
First, define weights for the T -th time step wsT = g(xsT , yT ) for s = 1, . . . , S and

normalize them so that
∑S

s=1 w
s
T = 1; for the point process state-space model, this state-

dependent likelihood g is the probability mass function of the binomial. Then, sample the
following indices:

bsT ∼ Categorical(w1
T , . . . , w

S
T ), s = 1, . . . , S. (29)

We can see that the set of particles {xb
s
T
T }Ss=1 form an approximation of p(xT | y1, . . . , yT ).
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Algorithm 9 ParticleSmoother(y, ψ, x0, ψ0, R, S, L)

1: Define f(xt−1, xt) := N (x
(n)
t |x(n)

t−1, ψ), g(xt, yt) := Binomial(yt |R, expxt/(1 + expxt)),
and h(x1) := N (x1 | x0, ψ0).

2: Collect particles {xs1}Ss=1, . . . , {xsT}Ss=1, ancestor indicies {as1}Ss=1, . . . , {asT}Ss=1, and
final policy Γ from ControlledSMC(y, f , g, h, {ψ, x0, ψ0}, L).

3: for s = 1, . . . , S do
4: Weight wsT = gΓ(xsT , yT ).
5: end for
6: Normalize {wsT}Ss=1 = {wsT}Ss=1/

∑S
s=1 w

s
T .

7: for s = 1, . . . , S do
8: Sample index bsT ∼ Categorical(w1

T , . . . , w
S
T ).

9: Define smoothing particle xsT | T := x
bsT
T .

10: end for
11: for t = T − 1, . . . , 1 do
12: for s = 1, . . . , S do
13: Define index bst = a

bst+1

t .
14: Define smoothing particle xst | T := x

bst
t .

15: end for
16: end for
17: return {xs1 | T}Ss=1, . . . , {xsT | T}Ss=1

We can then use the following recursive procedure for all t < T :

bst = a
bst+1

t , s = 1, . . . , S. (30)

Then, it follows that {xbstt }Ss=1 is drawn from the smoothing distribution p(xt | y1, . . . , yt)

for all 1 ≤ t ≤ T . Thus, we can define {xst | T}Ss=1 := {xbstt } for all t. Doucet and Johansen
(2009) note that this approximation of the smoothing distribution is typically poor, because
of the particle degeneracy problem in which earlier time steps are really only represented
by a single unique particle.
However, controlled sequential Monte Carlo can produce much better approximations

of the smoothing distribution due to its twisting mechanism. After twisting the model,
cSMC outputs particles using the BPF. Thus, we can modify this output using the process
detailed by Equation (29) and Equation (30) to generate particles from the smoothing
distribution {xs1 | T}Ss=1, . . . , {xsT | T}Ss=1. Algorithm 9 summarizes this procedure.
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Results

In total, we have data from N = 24 neurons that are fed into Algorithm 8. As stated
earlier, for each neuron n, we know whether the true stimulus is the fast stimulus (k = 1)
or the slow stimulus (k = 2). There are 12 neurons with the fast stimulus and 12
neurons with the slow stimulus. We let K = 2, the base distribution be InvGamma(1, 1),
α = [1, 1], and ψ0 = 10−10. The initial state x(n)

0 for neuron n is empirically estimated
as log(p

(n)
0 /(1 − p(n)

0 )), where p(n)
0 = 1/(20 · R) ·∑20

t=1 y
(n)
t . For cSMC hyperparameters,

we let L = 3 iterations and S = 128 particles. Finally, we let ε0 = 10−4. The algorithm
returns final cluster parameters Θ∗ and q∗.

Over 20 runs of Algorithm 8, we notice that Θ∗ and q∗ are very stable for this problem.
The average final parameter estimates are ψ(1)∗ = 0.261 and ψ(2)∗ = 0.094. We make a
final assignment of neuron n to the cluster k that maximizes p(z(n) = k | y(n), q∗,Θ∗) over
all k = 1, . . . , K. Table 2 presents the resultant confusion matrix, which ended up being
the same for all runs.

Table 2: Confusion matrix for a representative run of Algorithm 8 with K = 2.

True Fast Stimulus True Slow Stimulus
Clustered Fast Stimulus 11 4
Clustered Slow Stimulus 1 8

The results confirm the initial expectation that ψ(1)∗ > ψ(2)∗, because there is greater
variance for time series corresponding to the faster stimulus. The algorithm seems
somewhat able to separate the two stimuli in an unsupervised manner, with 19 out of
the original 24 time series being placed in correct clusters. Perhaps if more than one
parameter were used for cluster assignment, then the partition would be more aligned
with expectations.
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4 State-Space Infinite Mixture Model
and MCMC Algorithm

While the finite mixture model seems to successfully cluster time series in certain applica-
tions, an obvious limitation is that it relies on the specification of the number of clusters
K. Thus, for real-world problems where it is difficult to determine this quantity, the finite
mixture model may not be appropriate.
Furthermore, while the MCEM algorithm is efficient, it does have certain drawbacks,

depending on the specific applications of interest. First of all, the final MCEM parameter
estimates are often only locally optimal and can be arbitrarily far from the true MAP
estimates. The sensitivity of EM to starting conditions often requires us to run the
algorithm several times. In addition, the algorithm does not allow us to perform full
Bayesian inference to find a joint posterior distribution over cluster assignments and
cluster parameters p(Z,Θ | Y ). Finally, the tractability of the optimization problem in
the M-Step depends on the specific nonlinearities in question; for certain nonlinearities,
this step may be difficult or impossible to take.
In an attempt to address these issues, we develop an infinite mixture of nonlinear

state-space models, also known as the Dirichlet process nonlinear state-space mixture
(DPnSSM). We present a corresponding Markov chain Monte Carlo inference algorithm
that leverages Metropolis-within-Gibbs and particle MCMC. We apply the model and
inference algorithm to problems in computational neuroscience. The vast majority of
results in this chapter can also be found in Lin et al. (2019).

4.1 Dirichlet Process Nonlinear State-Space Mixture

We employ the Chinese restaurant representation of the Dirichlet process mixture, which
provides randomness over the number of clusters K. Let α be an inverse-variance
hyperparameter and G be a base distribution. Given N times series Y = {y(1), . . . ,y(N)}
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Figure 8: The graphical model representation of the DPnSSM. For simplicity, we omit
dependencies that are assumed between Y and (Z,Θ).

of length T , the model has the following form:

z(1), . . . , z(N), K ∼ CRP(α,N), (31)

θ(k) ∼ G, 1 ≤ k ≤ K,

x
(n)
1 | z(n) = k,θ(k) ∼ h(x

(n)
1 ;θ(k)), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1, z
(n) = k,θ(k) ∼ f(x

(n)
t−1, x

(n)
t ;θ(k)), 1 < t ≤ T, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t , z(n) = k,θ(k) ∼ g(x
(n)
t , y

(n)
t ;θ(k)), 1 ≤ t ≤ T, 1 ≤ n ≤ N.

Figure 8 depicts the graphical model representation.

4.2 Inference Algorithm

For conducting posterior inference on the DPnSSM, we introduce a Metropolis-within-
Gibbs sampling procedure inspired by Algorithm 8 from Neal (2000). We derive the
following process for alternately sampling (1) the cluster assignments Z |Θ,Y , α,G and
(2) the cluster parameters Θ | Z,Y , α,G. A summary of the inference algorithm is given
in Algorithm 10. Outputs are samples {Z〈i〉,Θ〈i〉} for iterations i = 1, 2, . . . , I.
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4.2.1 Sampling Cluster Assignments

For any set S = {s(1), . . . , s(J)}, we denote set S without the j-th element as S(−j) =

S \ {s(j)}. The posterior distribution of the cluster assignment z(n) is:

p(z(n) | Z(−n),Θ,Y , α,G) ∝ p(z(n) | Z(−n),Θ, α,G) · p(Y | Z,Θ, α,G) (32)

∝ p(z(n) | Z(−n), α) · p(y(n) | z(n),Θ, G).

The first term in Equation (32) can be represented by the categorical distribution,

p(z(n) = k | Z(−n), α) =


N (k)

N − 1 + α
, k = 1, . . . , K ′, (33)

α/m

N − 1 + α
, k = K ′ + 1, . . . , K ′ +m,

where K ′ is the number of unique k in Z(−n), N (k) is the number of cluster assignments
equal to k in Z(−n), and m ≥ 1 is some integer algorithmic parameter that represents the
infinitely many clusters not found in Z(−n).

The second term in Equation (32) is equivalent to the parameter likelihood p(y(n) |θ(k)),
where θ(k) is known if k ∈ {1, . . . , K ′}; otherwise, θ(k) must first be sampled from G if
k ∈ {K ′ + 1, . . . , K ′ + m}. Since y(n) is the output of a nonlinear state-space model,
we must use particle methods to approximate this parameter likelihood. We employ
controlled sequential Monte Carlo to produce low-variance estimates of this likelihood
(Heng et al., 2017). We outline the details behind how we use cSMC in Section 4.3.

4.2.2 Sampling Cluster Parameters

For a given cluster k ∈ {1, . . . , K}, we wish to sample from the distribution:

p(θ(k) |Θ(−k), Z,Y , α,G) ∝ p(θ(k) |Θ(−k), Z, α,G) · p(Y |Θ, Z, α,G) (34)

∝ p(θ(k) |G) ·
∏

n | z(n)=k

p(y(n) | θ(k)).

The first term of Equation (34) is the probability density function of the base distribution,
and the second term is a product of parameter likelihoods. Because the likelihood
conditioned on class membership involves integration of the state sequence x(n), and the
prior G is on the parameters of the state sequence, marginalization destroys any conjugacy
that might have existed between the state sequence prior and parameter priors.
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Algorithm 10 InferDPnSSM(Y , α,G,m, r, I, Z〈0〉,Θ〈0〉)
1: for i = 1, . . . , I do
2: Let Z = Z〈i−1〉 and Θ = Θ〈i−1〉.

// Sample cluster assignments.
3: for n = 1, . . . , N do
4: Let K ′ be the number of distinct k in Z(−n).
5: for k = 1, . . . , K ′ +m do
6: Run cSMC to compute p(y(n) | θ(k)).
7: end for
8: Sample z(n) | Z(−n),Θ,Y , α,G.
9: end for

10: Let K be the number of distinct k in Z.
// Sample cluster parameters.

11: for k = 1, . . . , K do
12: Sample proposal θ′ ∼ r(θ′ | θ(k)).
13: for n ∈ {1, . . . , N} | z(n) = k do
14: Run cSMC to compute p

(
y(n) | θ′

)
.

15: end for
16: Let a = p(θ′ |Θ(−k),Z,Y ,α,G)·r(θ(k) | θ′)

p(θ(k) |Θ(−k),Z,Y ,α,G)·r(θ′ | θ(k)) .
17: Let θ(k) = θ′ with probability min(a, 1).
18: end for
19: Let Z〈i〉 = Z and Θ〈i〉 = Θ.
20: end for
21: return (Z〈1〉,Θ〈1〉), . . . , (Z〈I〉,Θ〈I〉)

To sample from the conditional posterior of parameters given cluster assignments,
Middleton (2014) re-introduces the state sequence as part of his sampling algorithm for
the linear Gaussian state-space case. We use an approach that obviates the need to
re-introduce the state sequence and generalizes to scenarios where the prior on parameter
and the state sequence may not have any conjugacy relationships. In particular, our
sampler uses a Metropolis-Hastings step with proposal distribution r(θ′ |θ) to sample from
the class conditional distribution of parameters given cluster assignments. This effectively
becomes one iteration of the well-known particle marginal Metropolis-Hastings algorithm
(Andrieu et al., 2010). To evaluate the second term of Equation (34) for PMMH, we once
again choose to use cSMC (Section 4.3).
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4.2.3 The Case of Finite Mixture

It is simple to convert the DPnSSM into a finite mixture model in which the true number
of clusters K is known a priori. Instead of using a Dirichlet process, we can simply use
a Dirichlet(α) distribution in which α is a K-dimensional vector with each α(k) > 0 for
k = 1, . . . , K. Then, we can modify Equation (31) with:

q |α ∼ Dirichlet(α), (35)

z(1), . . . , z(N) | q ∼ Multinomial(N, q),

θ(k) |G ∼ G, 1 ≤ k ≤ K,

where q is an intermediary variable that is easy to integrate over.
The resultant inference algorithm is simpler. The only necessary modification to

Algorithm 10 is that, when sampling cluster assignments, there is no longer any need for
an auxiliary integer parameterm ≥ 1 to represent the infinite mixture. Thus, Equation (33)
becomes

p(z(n) = k | Z(−n),α) =
N (k) + α(k) − 1

N − 1 +
∑K

k′=1 α
(k′) −K

, k = 1, . . . , K, (36)

where N (k) is the number of cluster assignments equal to k in Z(−n). The process of
sampling cluster parameters remains exactly the same as in the infinite mixture case.

4.3 Controlled Sequential Monte Carlo

Controlled sequential Monte Carlo (Heng et al., 2017) is the workhorse of the DPnSSM
inference algorithm, appearing in both the sampling cluster assignments step and the
sampling cluster parameters step. It is used to provide low-variance estimates of the
parameter likelihood p(y | θ) for a fixed computational cost. Alternatively, we could use
the bootstrap particle filter to provide these estimates, but it would not be as efficient.
Section 2.5.2 and Algorithm 5 provide a general summary of how cSMC works. The
remaining unspecified part of the algorithm is the FindPolicy function in Line 6. As
stated earlier, the implementation of this function will vary depending on the identities of
f, g, h in the nonlinear state-space model. In this section, we present a general scheme for
finding a twisting policy γ that is justifiable for specific classes of nonlinear state-space
models. This scheme, known as approximate backwards recursion, was first identified by
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Heng et al. (2017) for the binomial state-space model.

4.3.1 Determining the Optimal Policy

In Equation (10), the variance of the estimate p̂γ(y | θ) comes from the twisted state-
dependent likelihoods gγ1 , . . . , g

γ
T . Thus, to minimize this variance, we would like gγt to be

as uniform as possible with respect to xt. Let the optimal policy which minimizes this
variance be denoted γ∗. It follows that

γ∗T (xT ) = g(xT , yT ;θ), (37)

γ∗t (xt) = g(xt, yt;θ) · F γ∗

t+1(xt;θ), 1 ≤ t < T.

Under γ∗, the likelihood estimate p̂γ∗(y | θ) = Hγ∗ = p(y | θ) has zero variance. However,
it may be infeasible for us to use γ∗ in many cases, because the BPF algorithm requires
us to sample xt from fγ

∗

t for all t. For example, under γ∗, we would have

fγ
∗

T (xT−1, xT ;θ) ∝ f(xT−1, xT ;θ) · γ∗T (xT ) = f(xT−1, xT ;θ) · g(xT , yT ;θ), (38)

which may be impossible to directly sample from if f and g form an intractable posterior.
In such a case, we must choose a suboptimal policy γ.

4.3.2 Choosing a Gaussian Policy

Consider the special case in which the latent state sequence x is Gaussian, i.e. in the
popular class of nonlinear, Gaussian state-space models. This means that the state
transition density and the initial distribution follow the form:

h(x1;x0, ψ0, µ1) = N (x1 | x0 + µ1, ψ0), (39)

f(xt, xt+1;ψ, µt) = N (xt+1 | xt + µt, ψ),

for parameters θ = {x0, ψ0, ψ,µ}, where µ = {µ1, . . . , µT}. Assume further that the
state-dependent likelihood g(xt, yt) is a log-concave function of xt; in subsequent sections,
we give a class of examples in which this condition is satisfied.

Thus, we can show that F γ∗

t+1(xt;θ) =
∫
f(xt, xt+1;θ)γ∗t+1(xt+1)dxt+1 must be log-

concave in xt. This further implies that for all t, γ∗t (xt) = g(xt, yt) · F γ∗

t+1(xt;θ) is a
log-concave function of xt since the product of two log-concave functions is log-concave.
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Hence, we have shown that the optimal policy γ∗ = {γ∗1 , . . . , γ∗T} is a series of log-concave
functions. This justifies the approximation of each γ∗t (xt) with a Gaussian function,

γt(xt) = exp(−atx2
t − btxt − ct), (at, bt, ct) ∈ R3, (40)

and thus, fγt (xt−1, xt;θ) ∝ f(xt−1, xt;θ) · γt(xt) is also a Gaussian density that is easy to
sample from when running the BPF algorithm.
We want to find the values of (at, bt, ct) that enforce γt ≈ γ∗t for all t. One simple way

to accomplish this goal is to find the (at, bt, ct) that minimizes the least-squares difference
between γt and γ∗t in log-space. That is, given a set of samples {x1

t , . . . , x
S
t } for the random

variable xt, we solve for:

(at, bt, ct) = arg min
(at,bt,ct)∈R3

S∑
s=1

[log γt(x
s
t)− log γ∗t (x

s
t)]

2 (41)

= arg min
(at,bt,ct)∈R3

S∑
s=1

[
−(at(x

s
t)

2 + bt(x
s
t) + ct)− log γ∗t (x

s
t)
]2
.

Also, in a slight abuse of notation, we redefine for all t < T ,

γ∗t (xt) = g(xt, yt) · F γ
t+1(xt;θ), (42)

because when performing approximate backwards recursion, it is not possible to analytically
solve for the intractable integral F γ∗

t+1(xt;θ).
In the aforementioned least-squares optimization problem, there is one additional

constraint that we must take into account. Recall that fγt (xt−1, xt;θ) ∝ f(xt−1, xt;θ)·γt(xt)
is a Gaussian density that we sample from. Therefore, we must ensure that the variance
of this distribution is positive, which places a constraint on γt and more specifically, the
domain of (at, bt, ct). Using properties of Gaussians, we can perform algebraic manipulation
to work out the following parameterizations of hγ and fγt :

hγ(x1;θ) = N
(
x1

∣∣∣ ψ−1
0 · (x0 + µ1)− b1

ψ−1
0 + 2a1

,
1

ψ−1
0 + 2a1

)
, (43)

fγt (xt−1, xt;θ) = N
(
xt

∣∣∣ ψ−1 · (xt−1 + µt)− bt
ψ−1 + 2at

,
1

ψ−1 + 2at

)
, 1 < t ≤ T.
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The corresponding normalizing terms for these densities are

Hγ(θ) =
1√

1 + 2a1ψ0

exp

(
ψ−1

0 · (x0 + µ1)− (b1)2

2(ψ−1
0 + 2a1)

− (x0 + µ1)2

2ψ0

− c1

)
, (44)

F γ
t (xt−1;θ) =

1√
1 + 2atψ

exp

(
ψ−1 · (xt−1 + µt)− (bt)

2

2(ψ−1 + 2at)
− (xt−1 + µt)

2

2ψ
− ct

)
, 1 < t ≤ T.

Thus, to obtain (at, bt, ct) and consequently γt for all t, we solve the aforementioned
least-squares minimization problem (Equation (41)) subject to the following constraints:

a1 > −
1

2ψ0

, (45)

at > −
1

2ψ
, 1 < t ≤ T.

4.3.3 Repeated Twisting Mechanism

The mechanism of cSMC iteratively performs twisted sequential Monte Carlo with policies
γ〈1〉, γ〈2〉, γ〈3〉, . . . As established in Equation (11), twisting the original model using Γ′ and
twisting the new model using γ is equivalent to twisting the original model by a cumulative
policy Γ = Γ′·γ. Thus, assuming that both Γ′ and γ are series of Gaussian functions with co-
efficients {(A′1, B′1, C ′1), . . . , (A′T , B

′
T , C

′
T )} and {(a1, b1, c1), . . . , (aT , bT , cT )}, respectively,

then the cumulative policy Γ has Gaussian coefficients {(A1, B1, C1), . . . , (AT , BT , CT )},
where each (At, Bt, Ct) = (A′t + at, B

′
t + bt, C

′
t + ct).

Algorithm 11 outlines the complete scheme in detail, assuming an existing policy Γ′.
By embedding it inside Algorithm 5, we can run cSMC to produce low-variance likelihood
estimates for state-space models with Gaussian latent states and nonlinear, log-concave
state-dependent likelihoods.

4.3.4 Log-Concave State-Dependent Likelihoods

The justification in using Algorithm 11 relies on the key requirement that the state-
dependent likelihood is log-concave. In this section, we give examples of state-space
models in which this requirement is satisfied.

Dynamic Generalized Linear Model

The dynamic generalized linear model (West et al., 1985) is an extension of generalized
linear models to the state-space framework. The state-dependent likelihood g is said to
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Algorithm 11 FindPolicy(Γ′, f , g, h, {xs1}Ss=1, . . . , {xsT}Ss=1, y)

1: Define γ∗T (xT ) = gΓ′
T (xT , yT ).

2: for t = T, . . . , 2 do
3: Solve (at, bt, ct) = arg min(at,bt,ct)

∑S
s=1 [−(at(x

s
t)

2 + bt(x
s
t) + ct)− log γ∗t (x

s
t)]

2 sub-
ject to at > −1/(2ψ)− A′t using linear regression.

4: Define new policy function γt(xt) = exp(−atx2
t − btxt − ct).

5: Define cumulative policy function Γt(xt) = Γ′t(xt)·γt(xt) = exp(−Atx2
t−Btxt−Ct).

6: Define fΓ
t (xt−1, xt;θ) and F Γ

t (xt−1;θ).
7: if t = T then
8: Define gΓ

T (xT , yT ) = g(xT , yT )/ΓT (xT ).
9: else

10: Define gΓ
t (xt, yt) = g(xt, yt) · F Γ

t+1(xt;θ)/Γt(xt).
11: end if
12: Define γ∗t−1(xt−1) = gΓ′

t−1(xt−1, yt−1) · F Γ
t (xt−1;θ)/F Γ′

t (xt−1;θ).
13: end for
14: Solve (a1, b1, c1) = arg min(a1,b1,c1)

∑S
s=1 [−(a1(xs1)2 + b1(xs1) + c1)− log γ∗1(xs1)]

2 sub-
ject to a1 > −1/(2ψ0)− A′1 using linear regression.

15: Define new policy function γ1(x1) = exp(−a1x
2
1 − b1x1 − c1).

16: Define cumulative policy function Γ1(x1) = Γ′1(x1) ·γ1(x1) = exp(−A1x
2
t −B1xt−C1).

17: Define Γ-twisted initial distribution hΓ(x1;θ) and HΓ(θ).
18: Define gΓ

1 (x1, y1) = HΓ(θ) · g(x1, y1) · F Γ
2 (x1;θ)/Γ1(x1).

return Cumulative policy Γ = {Γ1, . . . ,ΓT}.

be part of the exponential family if it follows the form:

g(xt, yt) = exp
[
χ(xt)

>φ(yt)− ζ(χ(xt)) + η(yt)
]
, (46)

where χ(xt) are the natural parameters, φ(yt) are the sufficient statistics, ζ is the log
partition function and η is the log scaling function.
The log partition function ζ is so-named because it is the log of the partition func-

tion, or normalizing constant,
∫

exp[χ(xt)
>φ(yt) + η(yt)]dyt. We can prove that it is a

convex function of the natural parameters χ(xt). We begin with the observation that∫
g(xt, yt)dyt = 1 for any value of xt, since g must be a valid pdf of yt. Then, we can

differentiate both sides by χ(xt), which gives:

0 =

∫
g(xt, yt)

(
φ(yt)−

dζ

dχ(xt)

)
dyt (47)

dζ

dχ(xt)
= E[φ(yt)].
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Differentiating by χ(xt) again, it follows that:

0 =
d

dχ(xt)

[∫
g(xt, yt)

(
φ(yt)−

dζ

dχ(xt)

)
dyt

]
(48)

0 =

∫ [
g(xt, yt)

(
− d2ζ

dχ2(xt)

)
+ g(xt, yt)

(
φ(yt)−

dζ

dχ(xt)

)2
]
dyt

d2ζ

dχ2(xt)
=

∫
g(xt, yt) (φ(yt)− E[φ(yt)])

2 dyt

d2ζ

dχ2(xt)
= Var[φ(yt)].

Hence, the first and second derivatives of ζ are the mean and the variance of φ(yt)

respectively. The fact that the second derivative is non-negative everywhere guarantees
that ζ is a convex function of χ(xt) and consequently, g is a log-concave function of χ(xt).

In the special case where φ(yt) = yt, it follows that g belongs to the well-known subset of
distributions called the natural exponential family. If we follow the literature of generalized
linear models and let χ(xt) = wtxt for some scalar weight wt ∈ R (i.e. this amounts to
using the canonical link function), then we can rewrite Equation (46) as:

g(xt, yt) = exp[wtxt · yt − ζ(wtxt) + η(yt)]. (49)

In combining this equation with a Gaussian state transition density f and a Gaussian initial
distribution h, the resultant model is introduced by West et al. (1985) as the dynamic
generalized linear model. These models uphold the log-concavity of g as a function of
xt, thereby justifying the use of a Gaussian approximation to the optimal policy γ∗, as
detailed Section 4.3.2. They are also widely used in applications such as neuroscience.
Here are some notable examples of state-space models with a state-dependent likelihood
belonging to the natural exponential family:

• Binomial State-Space Model The binomial log probability mass function follows
the form:

log g(xt, yt) = log

(
Rt

yt

)
+ yt log πt + (Rt − yt) log(1− πt), (50)

where the probability of success πt = expwtxt/(1 + expwtxt) and Rt is the total
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number of trials at time t. Rewriting in natural exponential family form, we have

log g(xt, yt) = wtxt · yt −Rt log(1 + expwtxt) + log

(
Rt

yt

)
. (51)

Neuroscience applications for the binomial case include Smith and Brown (2003).

• Poisson State-Space Model The poisson log probability mass function follows
the form:

log g(xt, yt) = yt log λt − λt − log yt!, (52)

where the average rate λt = expwtxt. Rewriting in natural exponential family form,
we have

log g(xt, yt) = wtxt · yt − expwtxt − log yt!. (53)

Neuroscience applications for the Poisson case include Paninski et al. (2007) and
Pillow et al. (2008).

• Negative Binomial State-Space Model The negative binomial log probability
mass function follows the form:

log g(xt, yt) = log

(
yt + rt − 1

yt

)
+ yt log πt + rt log(1− πt), (54)

where the probability of success πt = expwtxt/(1 + expwtxt) and rt is the number
of failed trials at time t. Rewriting in natural exponential family form, we have

log g(xt, yt) = wtxt · yt − (yt + rt) log(1 + expwtxt) + log

(
yt + rt − 1

yt

)
. (55)

Neuroscience applications for the negative binomial case include Linderman et al.
(2015) and Gao et al. (2015).

Stochastic Volatility

The stochastic volatility model is a well-known state-space model that is commonly used
for financial data to explain the phenomenon of volatility clustering (Durbin and Koopman,
2012). The observations y1, . . . , yT typically correspond to the differences in the log of
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asset prices. The simplest stochastic volatility model follows the state-space framework:

yt | xt ∼ N
(
µ, σ2 expwtxt

)
, (56)

with a Gaussian state-sequence x, where µ and σ2 are supplied parameters. Thus, the log
state-dependent likelihood g follows the form:

log g(xt, yt) = −1

2
log 2π − 1

2
log σ2 − 1

2
wtxt −

1

2σ2
(yt − µ)2 exp(−wtxt), (57)

which is a concave function of xt.

4.4 Simulation

We conduct a simulated experiment to test the ability of the DPnSSM to yield desired
results in a setting in which the ground truth clustering is known. The application is
neuroscience, where is it common to model neuronal firing activity as arising from a point
process state-space model (Section 2.5.3). We begin by describing the data simulation
process, continue by elaborating on the modeling procedure, and finish with a discussion
of the results.

4.4.1 Data Generation

We simulate N = 25 neuronal rasters that each record data for R = 45 trials over the
time interval (−500, T ] milliseconds (ms) before/after an exogenous stimulus is applied
at 0 ms, where T = 1500. For each trial, the resolution of the binary event sequence is
δ = 1 ms. We create bins of size ∆ = M · δ, where M = 5, and observe neuron n firing
∆N

(n)
t,r ≤M times during the t-th discrete time interval (t∆−∆, t∆] for trial r.

We use the following process for generating the simulated data: For each neuron n,
the initial rate is independently drawn as λ(n) ∼ Uniform(10, 15) Hz. Each neuron’s
type is determined by the evolution of its discrete-time CIF λ

(n)
t over time. We split

the discrete-time intervals into three parts – t1 = {−99, . . . , 0}, t2 = {1, . . . , 50}, and
t3 = {51, . . . , 300}. We generate five neurons from each of the following five types:

1. Excited, sustained neurons with rate λ(n)
t = λ(n) for t ∈ t1; rate λ(n)

t = λ(n) · exp(1)

for t ∈ t2, t3.
2. Inhibited, sustained neurons with rate λ(n)

t = λ(n) for t ∈ t1; rate λ(n)
t = λ(n) ·exp(−1)

for t ∈ t2, t3.
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3. Non-responsive neurons with rate λ(n)
t = λ(n) for t ∈ t1, t2, t3.

4. Excited, unsustained neurons with rate λ(n)
t = λ(n) for t ∈ t1; rate λ(n)

t = λ(n) · exp(1)

for t ∈ t2; rate λ(n)
t = λ(n) for t ∈ t3.

5. Inhibited, unsustained neurons with rate λ(n)
t = λ(n) for t ∈ t1; rate λ(n)

t = λ(n) ·
exp(−1) for t ∈ t2; rate λ(n)

t = λ(n) for t ∈ t3.
Following the point-process state-space model of Equation (13) – which assumes indepen-
dent and identically distributed trials – we simulate,

y
(n)
t =

R=45∑
r=1

∆N
(n)
t,r ∼ Binomial(R ·M = 225, p

(n)
t ), (58)

where p(n)
t = λ

(n)
t · δ for t = −99, . . . , 300. These are the observations Y = {y(1), . . . ,y(N)}

that are fed to the DPnSSM. The model is then tasked with figuring out the original
ground-truth clustering.

4.4.2 Modeling

In modeling these simulated data as coming from the DPnSSM, we employ a mixture of
the generative process specified by Equation (13); that is,

z(1), . . . , z(N), K ∼ CRP(α,N), (59)

θ(k) = [µ(k), logψ(k)] ∼ G, 1 ≤ k ≤ K,

x
(n)
1 | z(n) = k, µ(k) ∼ N (x

(n)
0 + µ(k), ψ0), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1, z
(n) = k, ψ(k) ∼ N (x

(n)
t−1, ψ

(k)), 1 < t ≤ T, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t ∼ Binomial(225, σ(x
(n)
t )), 1 ≤ t ≤ T, 1 ≤ n ≤ N,

where cluster parameters θ(k) arise from a Dirichlet process with base distribution G

and σ is the sigmoid function. In Equation (59), we only include a stimulus parameter
µ(k) for time t = 1, because the stimulus is only applied at time τ = 0. The parameter
µ(k) describes the extent to which the exogenous stimulus modulates the response of the
neuron – a positive value of µ(k) indicates excitation, a negative value indicates inhibition,
and a value close to zero indicates no response. The state transition density f imposes a
stochastic smoothness constraint on the CIF of neuron n, where ψ(k) controls the degree
of smoothness. A small value of ψ(k) suggests that the neurons exhibit a sustained change
in response to the stimulus, whereas a large value of ψ(k) indicates that the change is
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unsustained. With respect to the DPnSSM, the goal is to cluster the neurons according
to the extent of the initial response µ(k) and how sustained the response is ψ(k) .
The series are fed into Algorithm 10 with hyperparameter values α = 1, G[µ, logψ] =

[N (0, 2),Uniform(−15, 0)], and m = 5. For every series n, we compute the initial state
x

(n)
0 = σ−1(1/500 ·∑0

t=−99 y
(n)
t ) from the observations before the stimulus in that series.

In addition, we let ψ0 = 10−10, a very small value that forces any change in the latent
state at t = 1 to be explained by the cluster parameter µ(k). The initial clustering is
(Z〈0〉,Θ〈0〉) = (1,θ0), where 1 is a vector of N ones denoting that every series begins in the
same cluster and θ0 is sampled from G. For the proposal r(θ′ | θ), we use a N (θ, 0.25 · I)

distribution, where I is the 2× 2 identity matrix. We run the sampling procedure for I
= 10,000 iterations and apply a burn-in of B = 1,000 samples. To compute likelihood
estimates, we use L = 3 cSMC iterations and S = 64 particles.

4.4.3 Selecting Clusters

The output of Algorithm 10 is a set of Gibbs samples (Z〈1〉,Θ〈1〉), . . . , (Z〈I〉,Θ〈I〉). Each
sample (Z〈i〉,Θ〈i〉) may very well use a different number of clusters. The natural question
that remains is how to select a single final clustering (Z∗,Θ∗) of our data from this output.
There is a great deal of literature on answering this subjective question. We follow the
work of Dahl (2006) and Nieto-Barajas and Contreras-Cristán (2014).

Each Gibbs sample describes a clustering of the time series; we therefore frame the
objective as selecting the most representative sample from our output. To start, we take
each Gibbs sample i and construct an N ×N co-occurrence matrix Ω〈i〉 in which,

Ω
〈i〉
(n,n′) =

1, z(n) = z(n′) | z(n), z(n′) ∈ Z〈i〉,
0, z(n) 6= z(n′) | z(n), z(n′) ∈ Z〈i〉.

(60)

This is simply a matrix in which the (n, n′) entry is 1 if series n and series n′ are
in the same cluster for the i-th Gibbs sample and 0 otherwise. We then define Ω =

(I − B)−1
∑I

i=B+1 Ω〈i〉 as the mean co-occurrence matrix, where B ≥ 1 is the number
of pre-burn-in samples. This matrix summarizes information from the entire trace of
Gibbs samples. The sample i∗ that we ultimately select is the one that minimizes the
Frobenius distance to this matrix, i.e. i∗ = arg mini‖Ω〈i〉−Ω‖F . We use the corresponding
assignments and parameters as the final clustering (Z∗,Θ∗) = (Z〈i

∗〉,Θ〈i
∗〉). The appeal

of this procedure is that it makes use of global information from all the Gibbs samples,
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yet ultimately selects a single clustering produced by the model. If there are J > 1 Gibbs
samples i1, . . . , iJ such that Ω〈ij〉 = Ω〈i

∗〉 for j = 1, . . . , J , our final cluster parameters Θ∗

can be redefined as the average among the corresponding parameter samples,

Θ∗ =
1

J

J∑
j=1

Θ〈ij〉 ≈ E[Θ | Z = Z∗]. (61)

This averaging must be preceded by a permutation of each set of θ(1), . . . ,θ(K) ∈ Θ〈i
∗
j 〉 to

fix any potential label switching.

4.4.4 Results

After running the algorithm, a heatmap of the resultant mean co-occurrence matrix Ω

(Equation (60)) and the selected clustering Ω〈i
∗〉 can be found in Figure 9. The rows

and columns of this matrix have been reordered to aid visualization of clusters along the
diagonal of Ω. From this experiment, we can see that the DPnSSM inference algorithm is
able to successfully recover the five ground-truth clusters.
Table 3 summarizes the final cluster parameters Θ∗. As one may expect, a highly

positive µ∗(k) corresponds to neurons that are excited by the stimulus, while a highly
negative µ∗(k) corresponds to neurons that are inhibited. The one cluster with µ∗(k) ≈ 0

corresponds to non-responsive neurons. With µ∗(k), the algorithm is able to approximately
recover the true amount by which the stimulus increases or decreases the log of the firing
rate/probability, which is stated in Section 4.4.1 – i.e. +1 for k ∈ {1, 4}, −1 for k ∈ {2, 5}
and 0 for k = 3. This provides an interpretation of the numerical value of µ(k). Indeed,
if expx

(n)
0 << 1, expx

(n)
1 << 1, as is often the case when modeling neurons, then the

expected increase in the log of the firing probability due to the stimulus is:

E

[
log

σ(x
(n)
1 )

σ(x
(n)
0 )

]
≈ E

[
log

expx
(n)
1

expx
(n)
0

]
= µ(k). (62)

In addition, the values for logψ∗(k) in Table 3 reveal that the algorithm uses this
dimension to correctly separate unsustained clusters from sustained ones. For k ∈ {1, 2, 3},
the algorithm infers smaller values of logψ∗(k) because the change in the firing rate is less
variable after the stimulus has taken place, whereas the opposite is true for k ∈ {4, 5}. In
summary, the DPnSSM is able to recover some of the key properties of the data in an
unsupervised fashion, thereby demonstrating its utility on this toy example.
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Figure 9: Heatmap of mean co-occurrence matrix Ω for simulation results. Elements of
the selected co-occurrence matrix Ω〈i

∗〉 that are equal to 1 are enclosed in green squares.
Each square corresponds to a distinct cluster.

Table 3: Parameters for simulation, where θ∗(k) = [µ∗(k), logψ∗(k)]> for each θ∗(k) ∈ Θ∗.

k µ∗(k) logψ∗(k) Effect
1 +0.96 −10.88 Excited, Sustained
2 −0.92 −12.32 Inhibited, Sustained
3 +0.03 −10.04 Non-responsive
4 +1.04 −5.55 Excited, Unsustained
5 −0.89 −5.89 Inhibited, Unsustained

4.5 Applications

We present two real-world applications of the DPnSSM to clustering time series problems
in neuroscience. In both of these problems, the true number of clusters is unknown, which
prompts us to use the infinite mixture version. Both problems address data from the
same experiment, which we briefly outline.
Allsop et al. (2018) conduct a fear-conditioning experiment designed to elucidate the

nature of neural circuits that facilitate the observational learning of fear. In short, an
observer mouse observes a demonstrator mouse receive conditioned cue-shock pairings
through a perforated transparent divider. The experiment consists of R = 45 trials.
During the first 15 trials of the experiment, both the observer and the demonstrator hear
an auditory cue at time τ = 0 ms. From trial 16 onwards, the auditory cue is followed by
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the delivery of a shock to the demonstrator at time τ = 10,000 ms, i.e. 10 seconds after
the cue’s administration. The data are recorded from various neurons in the prefrontal
cortex of the observer mouse. The two main regions of neuronal recording are the anterior
cingulate cortex (ACC) and the basolateral amygdala (BLA). The detailed experimental
paradigm is described in Allsop et al. (2018).

4.5.1 Identification of Stimulus-Locked Response Profiles

First, we apply our analysis to N = 33 ACC neurons from this experiment that form
a network hypothesized to be involved in the observational learning of fear. Our time
interval of focus is (−500, T = 1500] ms before/after the administration of the cue. The
raster data comes in the form of {∆N (n)

t,r }T,Rt=1,r=1, binned at a resolution of ∆ = 5 ms with
T = 300, where each ∆N

(n)
t,r ≤M = 5.

The goal is to use the DPnSSM to identify various groups, or clusters, of responses in
reaction to the auditory cue over time and over trials. Each cluster of neurons form a
common stimulus-locked response, which suggests that they may be involved in the same
learning process. For example, a group of neurons that respond significantly after trial 16
can be interpreted as one that allows the observer to understand when the demonstrator
is in distress.

Clustering Cue Data over Time

To cluster neurons by their cue responses over time, we collapse the raster for all neurons
over the R = 45 trials. Thus, for neuron n, define y(n)

t =
∑R

r=1 ∆N
(n)
t,r . We apply the exact

same model as the one used for the simulations (Equation (59)). We also use all of the
same hyperparameter values, as detailed in Section 4.4.2.

Table 4: Cluster parameters for cue data
over time.

k µ∗(k) logψ∗(k) # of Neurons
1 +0.54 −6.27 17
2 +0.03 −6.80 1
3 −0.07 −7.25 8
4 −0.70 −6.01 4
5 +1.21 −4.52 3

To choose clusters, we use the same pro-
cess as the one described in Section 4.4.3.
A heatmap of Ω along with demarcations
of Ω〈i

∗〉 for this experiment can be found in
Figure 10. Overall, five clusters are selected
by the algorithm. Table 4 summarizes the
chosen cluster parameters. Figure 11 shows
two of the five clusters identified by the
algorithm, namely those corresponding to
k = 1 (Figure 11a) and k = 5 (Figure 11b).
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Figure 10: Heatmap of mean co-occurrence matrix for cue data over time and selected
clusters (green).

Each of the figures was created by overlaying the rasters from neurons in the corresponding
cluster. The fact that the overlaid rasters resemble the raster from a single unit (as opposed
to random noise), with plausible parameter values in Table 4, indicates that the algorithm
has identified a sensible clustering of the neurons. One advantage of not restricting the
algorithm to a set number of classes a priori is that it can decide what number of classes
best characterizes these data. In this case, the inference algorithm identifies five different
clusters. We defer a scientific interpretation of this phenomenon to a later study.

Clustering Cue Data over Trials

Table 5: Cluster parameters for cue data
over trials.

k µ∗(k) logψ∗(k) # of Neurons
1 +0.19 −5.29 8
2 −0.14 −4.40 11
3 −0.08 −2.38 2
4 +0.87 −2.95 10
5 −0.42 −0.41 2

We also apply DPnSSM to determine if
neurons can be classified according to vary-
ing degrees of neuronal signal modulation
when shock is delivered to another animal,
as opposed to when there is no shock de-
livered. The shock is administered starting
from the 16th trial onwards. Thus, to un-
derstand the varying levels of shock effect,
we collapse the raster across the T = 300

time points (instead of the R = 45 trials, as
was done in Section 4.5.1). In this setting,
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Figure 11: Overlaid raster plots of neuronal clusters with (a) moderately excited
(µ∗(1) = 0.54) and somewhat sustained (logψ∗(1) = −6.27) responses to the cue; and (b)
more excited (µ∗(5) = 1.21) and less sustained responses (logψ∗(5) = −4.52) to the cue. A
black dot at (τ, r) indicates a spike from one of the neurons in the corresponding cluster
at time τ during trial r. The vertical green line indicates cue onset.

each y
(n)
r =

∑T
t=1 ∆N

(n)
t,r ∈ {0, 1, . . . , 2000} represents the number of firings during the

r-th trial. For each neuron n, let the initial state be x(n)
0 = σ−1(1/15 ·∑15

r=1 y
(n)
r ). Then,

we use the following state-space mixture:

z(1), . . . , z(N), K ∼ CRP(α,N), (63)

θ(k) = [µ(k), logψ(k)] ∼ G, 1 ≤ k ≤ K,

x
(n)
16 | µ(k) ∼ N (x

(n)
0 + µ(k), ψ0), 1 ≤ n ≤ N,

x(n)
r | x(n)

r−1, ψ
(k) ∼ N (x

(n)
r−1, ψ

(k)), 16 < r ≤ R, 1 ≤ n ≤ N,

y(n)
r | x(n)

r ∼ Binomial(2000, σ(x(n)
r )), 16 ≤ r ≤ R, 1 ≤ n ≤ N,

where once again the cluster parameters are θ(k) = [µ(k), logψ(k)]>. All other hyperparam-
eter values are the same as those listed in Section 4.4.2.
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The corresponding heatmap, representative raster plots, and clustering results can be
found in Figure 12, Figure 13, and Table 5, respectively. We speculate that the results
suggest the existence of what we term empathy clusters, namely groups of neurons that
allow an observer to understand when the demonstrator is in distress.
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Figure 12: Heatmap of mean co-occurrence matrix for cue data over trials and selected
clusters (green).

4.5.2 Network Analysis of Interacting Neuronal Firing Regions

In their study, Allsop et al. (2018) hypothesize on the nature of the interaction between
the ACC and the BLA regions of the brain by analyzing firing data from neurons one at a
time. Their analysis leads them to speculate that ACC neurons transmit socially derived
information to the BLA during the cue presentation, thereby allowing the BLA within the
observer to associate the cue with a shock to the demonstrator. This is a hypothesis on
the neural mechanism behind observational learning. In this section, we use the DPnSSM
to reaffirm this hypothesis by analyzing the firing data is a more automated way.
Allsop et al. (2018) follow a two-step process to arrive at this conclusion: First, they

identify specific neurons in both the ACC and the BLA as cue responsive neurons, i.e.
neurons that respond significantly to the cue in some way. The response can be either
excitation or inhibition with respect to the cue. This categorization is mainly done by
eye. Next, Allsop et al. (2018) use state-space analysis (Smith and Brown, 2003) on each
cue responsive neuron to determine its rate change trial, i.e. the first trial after shock
delivery in which the neuron begins to respond significantly differently to the cue. They
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Figure 13: (a) Overlaid raster plots of neuronal clusters with (a) slightly inhibited,
variable responses (k = 2) and (b) very excited, variable responses (k = 4). The red line
marks the first trial with shock administration.

find that BLA neurons have, on average, a larger rate change trial than ACC neurons.
This leads them to conclude that ACC neurons transmit information to the BLA during
fear conditioning.
In this section, we follow the same two-step process, but use the DPnSSM to obviate

the need to analyze the neuron data individually and manually. We show that our analysis
leads us to similar conclusions as (Allsop et al., 2018), suggesting that the DPnSSM may
have some utility in supplementing neuroscience research.
Similar to the last experiment, the time interval of focus is (−500, T = 1500] ms

before/after the administration of the cue. Once again, the raster data comes in the
form of {∆N (n)

t,r }T,Rt=1,r=1, binned at a resolution of ∆ = 5 ms with T = 300, where each
∆N

(n)
t,r ≤M = 5. We examine a total of N = 95 neurons with an average firing rate of at

least 1 Hz over the time interval of interest. There are 68 neurons from the ACC and 27
neurons from the BLA.
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Identification of Cue Responsive Neurons

We use the DPnSSM to identify which of the 96 neurons are cue responsive. The neurons
are hypothesized to work as a greater network, so one would expect various clusters of
responses to the cue. This is the rationale behind using a mixture model for the data.
Instead of the two-parameter clusterings of Equation (59) and Equation (63), we only
use a one-parameter mixture model in this setting, because we only wish to separate
the neurons based on the level of initial response to the cue. Instead of the binomial
state-space model (Equation (13) and Equation (51)), we use the equally popular Poisson
state-space model (Equation (53)) to demonstrate the flexibility of the DPnSSM. This is
the full generative model that we employ:

z(1), . . . , z(N), K ∼ CRP(α,N), (64)

θ(k) = µ(k) ∼ G, 1 ≤ k ≤ K,

x
(n)
1 | z(n) = k, µ(k) ∼ N (x

(n)
0 + µ(k), ψ0), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1 ∼ N (x
(n)
t−1, ψ), 1 < t ≤ T, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t ∼ Poisson(expx
(n)
t ), 1 ≤ t ≤ T, 1 ≤ n ≤ N.

where the data y(n)
t =

∑R
r=1 ∆N

(n)
t,r are collapsed across trial.

Posterior inference on this model is done using Algorithm 10 with hyperparameter
values α = 1, G = N (0, 2), and m = 5. For every series n, we compute the initial state
x

(n)
0 = log(1/500 ·∑0

t=−99 y
(n)
t ) from the observations before the stimulus in that series.

In addition, we let ψ = 10−5, ψ0 = 10−10, i.e. very small values forcing any significant
change in the latent state to be explained by the cluster parameter µ(k).
For the initial clustering, we use (Z〈0〉,Θ〈0〉) = (1,θ0), where 1 is a vector of N ones

and θ0 ∼ G. We set the proposal r(θ′ | θ) = N (θ, 0.25), run the algorithm for I = 10,000
iterations, and apply a burn-in of B = 1,000 samples. The cSMC parameters are L = 3

iterations and S = 64 particles.
After burn-in, we collect posterior samples (Z〈B+1〉,Θ〈B+1〉), . . . , (Z〈I〉,Θ〈I〉). In the

model detailed by Equation (64), the cue response parameter µ(k) is indexed by the cluster
index k. However, we can index this parameter by the neuron index n instead by defining
the variable µ̃(n) = µ(k) where k = z(n). That is, µ̃(n) is the cue response parameter for
neuron n.

We identify a neuron n as cue responsive if the posterior probability of a change in the
latent firing rate at time τ is at least 90%. In terms of the model, we define this as either
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p(µ̃(n) > 0 | Y ) ≥ 0.9 or p(µ̃(n) < 0 | Y ) ≥ 0.9. From the Gibbs samples, we can estimate
these quantities as:

p̂(µ̃(n) > 0 | Y ) =
1

I −B
I∑

i=B+1

I
(
µ(ki)

〈i〉
> 0
)
, where ki = z(n)〈i〉, 1 ≤ n ≤ N, (65)

p̂(µ̃(n) < 0 | Y ) =
1

I −B
I∑

i=B+1

I
(
µ(ki)

〈i〉
< 0
)
, where ki = z(n)〈i〉, 1 ≤ n ≤ N,

where I(·) is the indicator function of whether an event is true. Figure 14 shows a
visualization of which neurons are deemed cue responsive. Out of the N = 96 neurons, a
total of 59 (42 ACC, 17 BLA) satisfy the aforementioned requirement. We will use these
59 in the subsequent analysis.
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Figure 14: A bar plot of max{p̂(µ̃(n) > 0 | Y ), p̂(µ̃(n) < 0 | Y )} for neuron n = 1, . . . , N
in the context of Equation (64). Neurons that exhibit this quantity being greater than a
threshold of 0.9 are deemed cue responsive. Excited neurons satisfy p̂(µ̃(n) > 0 | Y ) > 0.5,
while inhibited neurons satisfy p̂(µ̃(n) < 0 | Y ) > 0.5.

ACC Versus BLA Rate Change Trial Analysis

To identify neurons that are involved in the observational learning of fear, we must find cue
responsive neurons whose responses change significantly after trial 16, the trial in which
the cue begins to be paired with the shock. The exact trial in which such a significant
change occurs is known as the rate change trial r0

(n). The rate change trial r0
(n) is a

random variable and varies for different neurons n. However, the versatility of particle
filtering methods within the DPnSSM algorithm allows us to simply sample r0 as an
additional parameter in the inference algorithm.
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In the previous analysis, we identified N = 59 cue responsive neurons. We reindex
these neurons n = 1, . . . , N and ignore the others. We collapse the neuronal rasters
across time to create time series Y = {y(1), . . . ,y(N)} over trials. More specifically, we
let y(n)

r =
∑T

t=1 ∆N
(n)
t,r for all r = 1, . . . , R and all n. Once again, we adopt the Poisson

state-space model. With respect to the DPnSSM, the full generative model is, as follows:

z(1), . . . , z(N), K ∼ CRP(α,N), (66)

θ(k) = [µ(k), r0
(k)] ∼ G, 1 ≤ k ≤ K,

x
(n)
1 | z(n) = k, µ(k), r0

(k) ∼ N (x
(n)
0 + µ(k) · I(r0

(k) = 16), ψ0), 1 ≤ n ≤ N,

x
(n)
t | x(n)

t−1, z
(n) = k, µ(k), r0

(k) ∼ N (x
(n)
t−1 + µ(k) · I(r0

(k) = r), ψ), 16 < r ≤ R, 1 ≤ n ≤ N,

y
(n)
t | x(n)

t ∼ Poisson(expx
(n)
t ), 16 ≤ r ≤ R, 1 ≤ n ≤ N,

where I(·) is the indicator function. Again, we run Algorithm 10 for full Bayesian inference.
For each neuron n, the initial state x(n)

0 = log(1/15 ·∑15
r=1 y

(n)
r ) is computed from the

trials prior to the shock modulation. We set the base distribution for the parameters
G[µ(k), r0

(k)] = [N (0, 2),Categorical(16, . . . , 35)]. This is done with the expectation that
the rate change trial will occur in one of the first 20 out of 30 trials after shock delivery
begins; Allsop et al. (2018) estimated the latest rate change trial as occurring 17 trials
after shock delivery.
The MH proposal distribution r(θ′ | θ) has two components for this two-parameter

problem. The response parameter µ′ ∼ N (µ, 0.25), as before. Since the rate change trial
r0 is a discrete variable, we adopt a categorical proposal distribution in which r′0 = r0 − 1

with probability 1/3, r′0 = r0 with probability 1/3, and r′0 = r0 + 1 with probability 1/3.
All other hyperparameters are the same as in the previous analysis, in which we identified
cue responsive neurons.

From the output of Algorithm 10, we collect samples (Z〈B+1〉,Θ〈B+1〉), . . . , (Z〈I〉,Θ〈I〉).
We are now interested in identifying learning neurons, i.e. cue responsive neurons that
also exhibit significant changes after trial 16. These neurons encode a response to the cue
that is modified when the cue is paired with the shock, thereby suggesting that they are
involved in observational learning. A sensible way to find these neurons is simply to repeat
the exercise of Equation (65). We define cue responsive neuron n as a learning neuron if
it satisfies the following condition: Either p̂(µ̃(n) > 0 | Y ) ≥ 0.9 or p̂(µ̃(n) < 0 | Y ) ≥ 0.9,
where µ̃(n) is now defined for the generative model of Equation (66). A corresponding
visualization of can be found in Figure 15. From the N = 59 cue responsive neurons, we
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find 44 learning neurons, with 31 from the ACC and 13 from the BLA.

1 10 20 30 40 50 60
Neuron Index

0.0

0.2

0.4

0.6

0.8

1.0

ACC-Excited ACC-Inhbited BLA-Excited BLA-Inhbited

Figure 15: A bar plot of max{p̂(µ̃(n) > 0 |Y ), p̂(µ̃(n) < 0 |Y )} for cue responsive neuron
n = 1, . . . , N in the context of Equation (66). Neurons that exhibit this quantity being
greater than a threshold of 0.9 are deemed learning neurons. Excited neurons satisfy
p̂(µ̃(n) > 0 | Y ) > 0.5, while inhibited neurons satisfy p̂(µ̃(n) < 0 | Y ) > 0.5.

A key finding in Allsop et al. (2018) is that the rate change trial for learning neurons is
smaller in the ACC than in the BLA. For any neuron n, we can estimate its mean rate
change trial r̃(n)

0 as

ˆ̃r
(n)

0 =
1

I −B
I∑

i=B+1

I(r(ki)
0

〈i〉
), where ki = z(n)〈i〉, 1 ≤ n ≤ N. (67)

15 17 19 21 23 25 27 29 31 33 35
Rate Change Trial

(a)

0

1

2

3

4

5

N
u

m
b

er
of

N
eu

ro
n

s

ACC-Excited

BLA-Excited

BLA-Inhibited

15 17 19 21 23 25 27 29 31 33 35
Rate Change Trial

(b)

0

1

2

3

4

5

N
u

m
b

er
of

N
eu

ro
n

s

ACC-Inhibited

BLA-Excited

BLA-Inhibited

Figure 16: A comparison of the mean rate change trial for (a) excited ACC vs. BLA
neurons and (b) inhibited ACC vs. BLA neurons.

In Figure 16a, we present a histogram of the mean rate change trial of excited ACC
neurons vs. BLA neurons. This figure confirms the finding of Allsop et al. (2018), as the
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average BLA rate change trial occurs after the average excited ACC rate change trial.
It further supports the hypothesis that the ACC may transmit information to the BLA
during fear conditioning. On the other hand, inhibited ACC neurons (Figure 16b) seem
to exhibit much more variance in terms of the rate change trial. This suggests a more
complicated relationship between these inhibited ACC neurons and the BLA neurons,
which may be worth exploring in a future neuroscience study. We provide this section as an
example of how the DPnSSM may be used to uncover findings that drive the formulation
of new neuroscience hypotheses.
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5 Conclusion

This manuscript introduced a new model-based method for clustering time series. The
proposed approach combined two existing classes of generative models – mixture models
and state-space models – to create a mixture of state-space models for time series exhibiting
nonlinear dynamics in particular. We also developed two inference algorithms, a Monte
Carlo expectation-maximization algorithm for maximum a posteriori inference and a
Markov Chain Monte Carlo algorithm for full Bayesian inference. We applied these
algorithms to problems in computational neuroscience, analyzing prototypical examples
of nonlinear time series in this domain. The clustering results produced by the algorithm
seemed to be consistent with expectations for both simulations and real-world experiments.

In comparison to other approaches for clustering time series, this model-based approach
has certain advantages. The state-space framework is quite flexible, easily accommodating
time series with different lengths and missing values. In addition, although this paper only
considers examples in which each latent state and each observed value is one-dimensional,
our model and inference algorithms can be extended to cases in which observed time series
and/or latent states have multiple dimensions. For example, as demonstrated in Section
5.2 of Heng et al. (2017), controlled sequential Monte Carlo, the main workhorse of the
algorithm, scales well with a 64-dimensional time series model. This suggests that our
proposed clustering approach with particle filtering is scalable to applications involving
multivariate time series.
However, one potential disadvantage of model-based clustering methods is that they

are usually much slower to execute than feature-based or shape-based methods. Both EM
and MCMC sampling are iterative processes that are much more complex than simply
computing a distance metric between time series. In addition, although the state-space
framework is flexible, we typically need some domain knowledge in order to choose an
appropriate type of state-space model, along with cluster parameters, for the mixture
framework. Furthermore, the inference algorithm cannot necessarily be treated as a black-
box approach, because the specific type of state-space model (e.g. non-exponential family)
may require us to modify the optimal method for policy selection in controlled sequential
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Monte Carlo. Thus, as with many clustering methods, the utility of our model-based
approach will depend on the specific application at hand.

In future work, one avenue of interest is finding ways to speed up the inference algorithms.
For the MCMC case, this could involve running multiple chains in parallel. When doing so,
it would be important to make sure that each chain returns an unbiased approximation of
the posterior distribution; thus, we are interested in applying recent advances in unbiased
Markov chain Monte Carlo (Jacob et al., 2017) to this work.
Another interesting idea is to explore methods in variational inference, the other

dominant methodology for posterior inference in generative models. Such an approach
would likely combine previously developed variational methods for inference in state-space
models (Krishnan et al., 2017) and Dirichlet process mixtures (Blei et al., 2006) .
Furthermore, we are always interested in exploring other settings in which our model

can be applied. Immediate examples that come to mind include sports (e.g. using binomial
state-space models to cluster NBA players based on their field goal percentages) and
finance (e.g. using stochastic volatility models to cluster various companies based on their
asset returns).
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