
Applied Linear Algebra and Big
Data Course Book

A project by

Kabir Gandhi

Presented to

The Department of Applied Mathematics

In partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

March 29, 2019

Abstract

This project involves the development of course notes for Harvard’s Applied Math-

ematics 120: Applied Linear Algebra and Big Data. The course notes span eight

chapters, beginning with a review of foundational concepts in linear algebra that are

used throughout the course. Then, methods for solving linear equations are discussed,

including the LU decomposition, iterative methods, the MapReduce algorithm and

how to deal with large, sparse matrices that often come up in large-scale applications.

Next, eigenvalues, eigenvectors and their respective applications are discussed, includ-

ing Google’s PageRank algorithm, spectral clustering, solutions to systems of linear

ordinary di↵erential equations, transient amplification and the Jordan form. Chap-

ters 4 and 5 explore principal component analysis and singular value decomposition,

and several applications of these techniques: image compression, the matrix norm, the

condition number, polar decomposition, solving under-determined and over-determined

linear equations, multivariate PCA, maximum covariance analysis, and SVD-based rec-

ommendation systems. Then, in chapter 6 we discuss the identification and analysis

of frequent patterns and applications of similarity analyses. In chapter 7, multiple

clustering algorithms are considered, analyzed and demonstrated, including hierarchi-

cal, k-means, and self-organizing maps. In addition to the clustering algorithms, the

notes cover related issues such as unusually-shaped data (and the application of the

Mahalanobis distance in these cases), the “curse of dimensionality”, and techniques

for clustering very large datasets such as the BFR and CURE algorithms. Finally,

machine learning classification algorithms are discussed in chapter 8, including percep-

trons, support vector machines and feedforward neural networks, as well as a discussion

of over-fitting and neural network optimization. The notes include numerous images,

graphics and numerical examples, generated using MATLAB and python, designed to

clarify challenging concepts and improve the overall student experience in digesting

complex course material. There was an emphasis in designing these notes to include

step-by-step numerical examples for frequently arising problems. The course is de-

signed to be predominantly applications-focused and proofs are provided only when

they contribute to the understanding of important concepts.

Acknowledgements and Background

This project would not have been possible without the incredible guidance and encour-
agement of Professor Eli Tziperman. I approached Professor Tziperman with the idea of
taking on this daunting project and have received invaluable feedback throughout the writ-
ing process. I am further grateful to the rest of the AM120 teaching sta↵, in particular
Xiaoting Yang and Minmin Fu, for their opinions on how best to explain aspects of chal-
lenging course material. I would also like to thank all the students of AM120 past and
present for their feedback on the course book and for pointing out areas of course content
that required further clarification. Finally, my thanks to Mathias Legrand for his template
used in designing the course notes.

Throughout this project, I applied both my previous experience as a student and teaching
assistant in AM120 and experience from other courses throughout my Applied Mathematics
education, in particular AM115 (Mathematical Modeling), to make the material as ap-
proachable and useful as possible. The motivation for this project emerged as a result of my
work as a teaching assistant in Spring 2018. I received feedback from students in the course
who wished there was a single, centralized resource for course content which motivated me
to initiate this project. I constructed a full first draft of these course notes based on the
extended course syllabus, my own notes, course references, and some existing partial notes,
and worked with Professor Tziperman to edit and refine the notes for the current iteration
of the course, with regular feedback from the outstanding students in AM120.

Applied Linear Algebra and Big Data

APM120 Course Notes

Eli Tziperman and Kabir Gandhi

Copyright c� 2019 Eli Tziperman and Kabir Gandhi

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the “Li-
cense”). You may not use this file except in compliance with the License. You may obtain a copy of the
License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable
law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
for the specific language governing permissions and limitations under the License.

http://creativecommons.org/licenses/by-nc/3.0

Contents

I Part One

1 Introduction . 11

1.1 What is this course about? 11
1.2 Notation and linear algebra review 11

2 Linear equations . 23

2.1 Motivation 23
2.1.1 Medical tomography . 23

2.2 Geometric interpretations for linear equations 27
2.3 Direct solution to linear equations by LU decomposition 29
2.3.1 Gaussian elimination . 29
2.3.2 LU decomposition algorithm . 30
2.3.3 Example of LU decomposition . 31
2.3.4 Solving linear equations using the LU decomposition for multiple RHS 32
2.3.5 Why does the LU decomposition algorithm work? . 32

2.4 Iterative methods 33
2.4.1 Jacobi . 34
2.4.2 Gauss-Seidel . 34

2.5 Existence of solutions and sensitivity to noise 35

2.6 Dealing with huge systems 37
2.6.1 Sparse matrices . 37
2.6.2 MapReduce . 37

3 Eigenproblems . 41

3.1 Motivation 41

3.2 Google’s PageRank 41
3.2.1 Introduction and explanation . 41
3.2.2 Matrix model of PageRank . 42
3.2.3 Refinements to the matrix model . 43
3.2.4 Calculating PageRank using the power method . 45

3.3 The power method 45
3.3.1 Gram-Schmidt orthogonalization . 45
3.3.2 The power method: calculating the largest eigenvalue/vector 46
3.3.3 Block power method . 47
3.3.4 Inverse power method . 47

3.4 Spectral clustering (partitioning) of networks 48

3.5 Generalized eigenvalue problems 51

3.6 Linear ordinary differential equations and matrix exponentiation 52
3.6.1 Higher order, linear, constant coefficient ODEs . 53
3.6.2 Matrix exponentiation . 53
3.6.3 Stability of solutions to linear ODEs . 54

3.7 Non-normal dynamics and transient growth 58

3.8 Jordan form 60
3.8.1 Calculating the transformation to Jordan form . 61
3.8.2 Numerical example and sensitivity to noise . 62
3.8.3 A fuller Jordan form example . 63
3.8.4 Jordan form and ODEs . 63

II Part Two

4 Principal Component Analysis . 67

4.1 Principal Component Analysis (PCA) from the covariance matrix 67
4.1.1 Motivation . 67
4.1.2 Derivation . 67
4.1.3 Example of PCA . 70
4.1.4 Fraction of variance explained by PC modes . 71
4.1.5 PCA from covariance matrix in Matlab . 72
4.1.6 Examples and additional issues . 72

5 Singular Value Decomposition . 73

5.1 Singular Value Decomposition (SVD) 73
5.1.1 Statement, examples and calculation of SVD . 73
5.1.2 Geometric interpretation of SVD . 76

5.2 SVD applications 77
5.2.1 Image compression, low-rank approximation . 77
5.2.2 Effective rank of a matrix . 78
5.2.3 Matrix norm and condition number . 79
5.2.4 Polar decomposition and the Kabsch algorithm . 81
5.2.5 Least squares, over-determined systems . 83
5.2.5.1 Over-determined problems and QR decomposition . 85
5.2.6 Under-determined systems and the pseudo inverse . 85
5.2.7 Solving linear systems when r <min(N,M) . 87
5.2.8 PCA using SVD . 89
5.2.9 Multivariate PCA . 89
5.2.10 Maximum covariance analysis (MCA) . 91
5.2.10.1 Variance explained by MCA (SVD) modes . 92
5.2.11 The Netflix Prize . 94

6 Similar items and frequent patterns . 97

6.1 Similar items 97
6.1.1 Motivation . 97
6.1.2 Jaccard similarity . 97
6.1.3 Shingling of documents . 98
6.1.3.1 k-Shingling . 98
6.1.3.2 Shingling using stop words . 99
6.1.4 Hash functions . 99
6.1.5 Matrix representation of sets . 100

6.2 Frequent patterns and association rules 100
6.2.1 Mining frequent patterns . 101
6.2.2 A-priori algorithm and association rules . 102

III Part Three

7 Cluster Analysis: unsupervised learning . 107

7.1 Motivation 107
7.2 Distances/metrics 108
7.2.1 Euclidean distances . 108
7.2.2 Hamming distance . 109
7.2.3 Cosine distance . 109
7.2.4 Jaccard distance . 109
7.2.5 Edit distance . 109

7.3 The curse of dimensionality 109
7.3.1 Euclidean distances in high-dimensional spaces . 110
7.3.2 Angles between random vectors in high-dimensional spaces 110

7.4 Hierarchical clustering 111
7.4.1 Efficiency of hierarchical clustering . 112
7.4.2 Merging and stopping criteria . 112
7.4.3 Hierarchical clustering in non-Euclidean spaces . 116
7.4.4 Ward method . 116

7.5 K-means 118
7.6 Self-organizing maps 118
7.7 Mahalanobis distance 120
7.8 Spectral clustering 123
7.8.1 Similarity, degree and Laplacian matrices . 123
7.8.2 Spectral clustering algorithm . 124
7.8.3 Example . 125

7.9 BFR algorithm 127
7.10 CURE (Clustering Using REpresentatives) 128

8 Classification: supervised learning . 131

8.1 Motivation 131
8.2 Perceptrons 132
8.2.1 Training perceptrons . 132
8.2.2 Example . 133
8.2.3 Problems with perceptrons . 134
8.2.4 An extension to non-linear hyperplanes . 135

8.3 Support vector machines 136
8.3.1 Calcualting the SVM by gradient-based minimization . 137
8.3.2 Example . 138

8.4 Multi-Layer Artificial Neural Networks 140
8.4.1 Motivation . 140
8.4.2 Evaluating a neural network (feedforward) . 141
8.4.2.1 Examples . 143
8.4.3 Back-propagation . 146
8.4.4 Ways to improve neural networks . 149

8.5 k nearest neighbors (k-NN) 151
8.5.1 Classification of discrete labels . 151
8.5.2 k-nn and Locally-weighted kernel regression . 152

Bibliography . 153

Index . 157

A Appendices . 163
A.1 Proof that eigenvectors are orthogonal () the matrix is normal 163
A.2 Proof that Frobenius norm is equal to sum of singular values squared 164

I
1 Introduction . 11
1.1 What is this course about?
1.2 Notation and linear algebra review

2 Linear equations . 23
2.1 Motivation
2.2 Geometric interpretations for linear equations
2.3 Direct solution to linear equations by LU decompo-

sition
2.4 Iterative methods
2.5 Existence of solutions and sensitivity to noise
2.6 Dealing with huge systems

3 Eigenproblems . 41
3.1 Motivation
3.2 Google’s PageRank
3.3 The power method
3.4 Spectral clustering (partitioning) of networks
3.5 Generalized eigenvalue problems
3.6 Linear ordinary differential equations and matrix

exponentiation
3.7 Non-normal dynamics and transient growth
3.8 Jordan form

Part One

1. Introduction

1.1 What is this course about?

Welcome to APM120! This course covers topics in linear algebra which arise frequently in applications,
especially in the analysis of large data sets. The topics covered include linear equations, eigenvalue
problems, linear differential equations, principal component analysis, singular value decomposition,
data mining methods (such as frequent pattern analysis), clustering, classification, and machine learning
methods (such as neural networks and support vector machines). Examples will be given from
physical sciences, biology, climate, finance, the internet, image processing and more. The focus is on
applications rather than rigorous proofs, and proofs will be provided only occasionally, when they
provide important intuition about the subjects covered.

Please see the course syllabus for details regarding course administration, requirements, grading,
and so on.

1.2 Notation and linear algebra review

Consider the following brief reminder and introduction to notation that will be used in the course.
APM120 assumes you have already taken a basic linear algebra course. Homework #0 covers the
material you need to know before starting this course, covered below.

Notation
Vectors: ~x= x= x= xi; vector norm |x|=

q
Âi x2i ;

row vector (x)1⇥n; column vector (x)n⇥1;
scalar product x ·y= x

T
y= Âi xiyi = xiyi = |x| |y|cosq ;

Matrices: A= A
⇠
= ai j;

matrix multiplication (C)n⇥p = (A)n⇥m(B)m⇥p where cik = Âm
j=1 ai jb jk = ai jb jk. Matrix mul-

12 Chapter 1. Introduction

tiplication is associative but not commutative. This means that (AB)C = A(BC) ⌘ ABC, but
AB 6⌘ BA. For example,

LA=

0

@
1 0 0
1/3 1 0
�1/2 0 1

1

A

0

@
2 1 1
4 �6 0
�2 7 2

1

A=

0

@
2 1 1
42
3 �52

3
1
3

�3 6.5 1.5

1

A .

Note that 1/3 of the first row of A has been added to the second and 1/2 of the first row was
subtracted from the third, an example of row manipulation via matrix multiplication.

Permutation matrices: These are used to exchange the rows of a given matrix, e.g.,

PA=

0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
2 1 1
4 �6 0
�2 7 2

1

A=

0

@
4 �6 0
2 1 1
�2 7 2

1

A ,

Note that while PA exchanges rows of A, AP exchanges its columns.
Unit/identity matrix: I= di j, AI= IA= A;

I is a diagonal matrix with 1s along the diagonal. I�1 = I
Transpose: AT = a ji, transpose of a product (AB)T = BTAT , conjugate transpose A† = a⇤ji where

z⇤ = (a+ ib)⇤ = a� ib.
Inverse: A�1A= AA�1 = I.
Eigenvalues: li, and the corresponding eigenvectors, ei, of a matrix A, will be further discussed in

the next chapter. They satisfy the equation Aei = liei, as shown in their calculation below.

1.2 Notation and linear algebra review 13

Review examples
We now go through several examples of key linear algebra techniques that will proveful useful
throughout the course. First, we define the following matrices that we will carry out operations on:

L=

0

@
1 4 1
4 2 8
3 2 1

1

A= [1,4,1;4,2,8;3,2,1];

d =

0

@
1
2
4

1

A= [1;2;4];

R=

✓
1 4
2 6

◆
= [1,4;2,6]

Linear equations, Gaussian elimination and back substitution
Consider Lx = d. We denote the ith line of the combined matrix and RHS (L,d) as li, and the jth
column as c j. To solve, carry out the following Gaussian elimination steps:

(L,d) =

0

@
1 4 1 1
4 2 8 2
3 2 1 4

1

A

l2 = l2�4l1
0

@
1 4 1 1
0 �14 4 �2
3 2 1 4

1

A

l3 = l3�3l1
0

@
1 4 1 1
0 �14 4 �2
0 �10 �2 1

1

A

l2 = l2/(�14)
0

@
1 4 1 1
0 1 �2/7 1/7
0 �10 �2 1

1

A

l3 = l3+10l2
0

@
1 4 1 1
0 1 �2/7 1/7
0 0 �46

7 23
7

1

A

l3 = l3/(�4
6
7
)

0

@
1 4 1 1
0 1 �2/7 1/7
0 0 1 �1/2

1

A

14 Chapter 1. Introduction

Finally, using back substitution we solve:

x3 =�1/2
x2� (2/7)(�1/2) = 1/7) x2 = 0;
x1+4⇥0+1(�1/2) = 1) x1 = 1.5

In Matlab, the inverse (or more conveniently the backslash operator) may be used: x=inv(L)*d, or
x=L\d.

Determinants and linear independence of vectors
1. Using row-expansion of cofactors:

The determinant of L is given by the expansion of cofactors along the ith row,

|L|=
3

Â
j=1

li jci j

where li j are the elements of L and the cofactors are given by ci j = (�1)i+ j|Mi j|. The matrixMi j
is obtained from L by eliminating the i row and j column. Expanding along i= 1,

|L|= 1⇥ (�1)1+1 det([2,8;2,1])+4⇥ (�1)1+2 det([4,8;3,1])+1⇥ (�1)1+3 det([4,2;3,2])
= 1⇥ (1)⇥ (�14)+4⇥ (�1)⇥ (�20)+1⇥ (1)⇥ (2)
= 68

In Matlab, write L=[1,4,1;4,2,8;3,2,1]; det(L).
2. Using reduction to row-echelon form:

Using Gaussian elimination, zero elements under the diagonal,

L=

0

@
1 4 1
4 2 8
3 2 1

1

A

l2 = l2�4l1

=

0

@
1 4 1
0 �14 4
3 2 1

1

A

l3 = l3�3l1

=

0

@
1 4 1
0 �14 4
0 �10 �2

1

A

l3 = l3� (10/14)l2

=

0

@
1 4 1
0 �14 4
0 0 �4.8571

1

A

The determinant is then the product of the diagonal elements,

det(L) = 1⇥ (�14)⇥�4.8571= 68.

1.2 Notation and linear algebra review 15

Matrix inversion
1. Using matrix of cofactors:

Again, the cofactors are given by ci j = (�1)i+ j|Mi j|, where the matrix Mi j is obtained from L by
eliminating the i row and j column. The inverse is then given by L�1 = 1

|L|C
T . Specifically,

L�1 =
1
|L|

0

@
(�1)1+1(�14) (�1)1+2(�20) (�1)1+3(2)
(�1)2+1(2) (�1)2+2(�2) (�1)2+3(�10)
(�1)3+1(30) (�1)3+2(4) (�1)3+3(�14)

1

A
T

=
1
68

0

@
�14 20 2
�2 �2 10
30 �4 �14

1

A
T

=
1
68

0

@
�14 �2 30
20 �2 �4
2 10 �14

1

A

2. Using row operations:

Start with the identity matrix augmented to the right of L:
0

@
1 4 1 10 0
4 2 8 0 1 0
3 2 1 0 0 1

1

A

Multiply the first line by �4 and add it to the second line:
0

@
1 4 1 1 0 0
0 �14 4 �4 1 0
3 2 1 0 0 1

1

A

Then, similarly, multiply the first line by �3 and add it to the third line:
0

@
1 4 1 1 0 0
0 �14 4 �4 1 0
0 �10 �2 �3 0 1

1

A

Moving onto the second column, subtract (4/-14) times row 2 from row 1.
0

@
1.0 0 2.1 �0.14 0.29 0
0 �14.0 4.0 �4.0 1.0 0
0 �10.0 �2.0 �3.0 0 1.0

1

A

Next, subtract (-10/-14) times row 2 from row 3:
0

@
1.0 0 2.1 �0.14 0.29 0
0 �14.0 4.0 �4.0 1.0 0
0 0 �4.9 �0.14 �0.71 1.0

1

A

Finally, we zero out the third column by subtracting (2.1/�4.9) times row three from row one
and subtracting (4/�4.9) times row three from row two:

0

@
1.0 0 0 �0.21 �0.029 0.44
0 �14.0 4.0 �4.0 1.0 0
0 0 �4.9 �0.14 �0.71 1.0

1

A

16 Chapter 1. Introduction

and 0

@
1.0 0 0 �0.21 �0.029 0.44
0 �14.0 0 �4.1 0.41 0.82
0 0 �4.9 �0.14 �0.71 1.0

1

A

Finally, we divide row 2 by �14 and row 3 by �4.9 to arrive at:
0

@
1.0 0 0 �0.21 �0.029 0.44
0 1.0 0 0.29 �0.029 �0.059
0 0 1.0 0.029 0.15 �0.21

1

A

where the right hand side of the augmented matrix is the inverse. It is easy to verify that the three
right columns are indeed the inverse of the original L matrix by multiplying them by L to arrive
at the identity matrix (By definition, L�1L= I).

Eigenvalues and eigenvectors
First, we find the “characteristic polynomial” of R and the roots of this polynomial (the eigenvalues of
R):

det(R�l I) = det
✓
1�l 4
2 6�l

◆

= (1�l)(6�l)�8= l 2�7l �2 (the characteristic polynomial)

) l = 7/2±
p
57/2=�0.2749,7.2749

Consider two examples of calculating eigenvectors. First, a simple 2⇥2 example using the eigen-
values we just calculated for the matrix R, and second, a 3⇥3 example solved using “Gaussian
elimination”.

Given the eigenvalues found above we solve in general,
✓
1�l 4
2 6�l

◆✓
x
y

◆
= l

✓
x
y

◆

✓
1�7.2749 4

2 6�7.2749

◆
= 7.2749

✓
x
y

◆

✓
�6.2749 4

2 �1.2749

◆✓
x
y

◆
=

✓
0
0

◆

Note that the two equations derived from this system are not linearly independent – we just multiply the
first by �2/6.2749 to get the second. As a result, there is an infinite number of solutions �6.2749x+
4y= 0 or y= 1.5687x. Choose x= 1 to find,

(x,y) = (1,1.5687).

Then, normalize so that the eigenvector has unit length,

e= (x,y)/
p
x2+ y2 = (0.5375,0.8432).

It may be verified that this is an eigenvector (upto a minus sign) using Matlab,

1.2 Notation and linear algebra review 17

[V,D]=eig([1,4;2,6])

V =

-0.9528 -0.5375

0.3037 -0.8432

D =

-0.2749 0

0 7.2749

Next, consider the 3⇥3 example in which we transform to reduced row-echelon form to solve:

L=

0

@
1 4 1
4 2 8
3 2 1

1

A

Using Matlab, the eigenvalues are:

0

@
l1
l2
l3

1

A=

0

@
8.4820

�2.2410+1.7305i
�2.2410�1.7305i

1

A

Let’s calculate the eigenvector e1 = (e1,e2,e3)T corresponding to the first eigenvalue, l1 = 8.4820:

(L�l1I)e1 = 0

which we can write explicitly as,

B= L�l1I

=

0

@
�7.4820 4.0000 1.0000
4.0000 �6.4820 8.0000
3.0000 2.0000 �7.4820

1

A

Now, to solve (L�l1I)e= 0 we add a column of zeros to the RHS of the matrix and perform Gaussian
elimination on rows to bring the equation to a reduced row-echelon form. Because the RHS is of zeros
only, it does not change and we do not write it here explicitly. After several row reductions to ensure
zero below the diagonal, we find,

B=

0

@
1 0 �1.1841
0 1 �1.9649
0 0 0.0001

1

A

Since we have done our calculations using 4 or 5 significant digits, we must consider 0.0001 on the
last row to be zero – a round-off error. Given this, e3 can be chosen arbitrarily so we choose e3 = 1.
Then, the second equation tells us that e2�1.9649e3 = 0, so e2 = 1.9649. The first equation tells us
that e1�1.1841e3 = 0 so that e1 = 1.1841. Therefore, e1 = (1.1841,1.9649,1). We normalize by the
norm of the vector, ke1k=

q
e21+ e22+ e23 = 2.5026, to find e1 = (0.4731,0.7851,0.3996). This is in

fact equal to Matlab’s solution:

18 Chapter 1. Introduction

[U,D]=eig(L)

U = [0.4732 + 0.0000i 0.6865 + 0.0000i 0.6865 + 0.0000i

0.7851 + 0.0000i -0.5190 + 0.3747i -0.5190 - 0.3747i

0.3996 + 0.0000i -0.1492 - 0.3109i -0.1492 + 0.3109i]

D = [8.4820 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i -2.2410 + 1.7305i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i -2.2410 - 1.7305i]

Matrix diagonalization

Given a matrixU whose columns are the eigenvectors of R, we may need to calculate,

U�1RU =

✓
�0.9528 �0.5375
0.3037 �0.8432

◆�1✓1 4
2 6

◆✓
�0.9528 �0.5375
0.3037 �0.8432

◆

and show that this is diagonal (i.e. only has values along the diagonal). To do this, we find the the
eigenvectors of R and insert them into a matrix U as the columns. We then find the inverse of this
matrix of eigenvectors,U�1, and multiplyU�1RU to show the result is diagonal:

U�1RU =

✓
�0.2749 0

0 7.2749

◆

We see thatU�1RU is indeed diagonal and the diagonal elements are the eigenvalues of R.

Gram-Schmidt orthogonalization

In order to orthonormalize the columns of L (that is, make the columns orthogonal to one another with
unit norm), carry out the following steps:

L=

0

@
1 4 1
4 2 8
3 2 1

1

A=
�
c1 c2 c3

�

1.2 Notation and linear algebra review 19

Then,

L=

0

@
1 4 1
4 2 8
3 2 1

1

A

c1 = c1/|c1|

L=

0

@
0.1961 4 1
0.7845 2 8
0.5883 2 1

1

A

c2 = c2� c1(c
T
2 c1)

L=

0

@
0.1961 3.3077 1.0000
0.7845 �0.7692 8.0000
0.5883 �0.0769 1.0000

1

A

c2 = c2/|c2|

L=

0

@
0.1961 0.9738 1.0000
0.7845 �0.2265 8.0000
0.5883 �0.0226 1.0000

1

A

c3 = c3� c1(c
T
3 c1)� c2(c

T
3 c2)

L=

0

@
0.1961 0.9738 0.4533
0.7845 �0.2265 2.2667
0.5883 �0.0226 �3.1733

1

A

c3 = c3/|c3|

L=

0

@
0.1961 0.9738 0.1155
0.7845 �0.2265 0.5774
0.5883 �0.0226 �0.8083

1

A

In Matlab, the same process is carried out using the code:

% the input matrix:

L=[1,4,1;4,2,8;3,2,1];

% orthonormalize columns:

L(:,1)=L(:,1)/norm(L(:,1));

L(:,2)=L(:,2)-L(:,1)*(L(:,2)’*L(:,1));

L(:,2)=L(:,2)/norm(L(:,2));

L(:,3)=L(:,3)-L(:,1)*(L(:,3)’*L(:,1))-L(:,2)*(L(:,3)’*L(:,2));

L(:,3)=L(:,3)/norm(L(:,3));

L

% test outcome columns for orthonormality:

L1_norm=L(:,1)’*L(:,1),L2_norm=L(:,2)’*L(:,2),L3_norm=L(:,3)’*L(:,3),

L1_times_L2=L(:,1)’*L(:,2)

L1_times_L3=L(:,1)’*L(:,3)

L2_times_L3=L(:,2)’*L(:,3)

20 Chapter 1. Introduction

Null space of a matrix
Suppose we need to calculate the null space of the matrix A,

A=

0

@
1 3 2 5
2 3 1 2
3 6 3 7

1

A

The null space of the matrix A is defined by the vectors satisfying Ax= 0. Start by adding the rhs to
the above,

A1 =

0

@
1 3 2 5 0
2 3 1 2 0
3 6 3 7 0

1

A

Using Gaussian elimination, discussed above, we arrive at the reduced matrix,

A1 =

0

@
1 3 2 5 0
0 �3 �3 �8 0
0 0 0 0 0

1

A

This result implies the equations,

x+3y+2z+5w= 0
�3y�3z�8w= 0,

which we can solve for x, y in terms of z and w:

y=�z� (8/3)w
x=�(3y+2z+5w)
=�(3(�z� (8/3)w)+2z+5w)
= z+3w.

Thus, we can write that in general,
2

664

z+3w
�z� (8/3)w

z
w

3

775=

2

664

z
�z
z
0z

3

775+

2

664

3w
�(8/3)w

0w
w

3

775= z

2

664

1
�1
1
0

3

775+w

2

664

3
�(8/3)

0
1

3

775

and the null space is given by the two vectors that are multiplied by z and w, correspondingly. Normal-
izing these two vectors by their norm (i.e. magnitude) so that we can compare our results with Matlab.
In Matlab, we find

a1=[1,-1 1 0]; a2=[3 -8/3 0 1];

a1=a1/norm(a1);a2=a2/norm(a2);

my_fprintf_array(a1);my_fprintf_array(a2);

a1=[0.57735 -0.57735 0.57735 0];

a2=[0.725241 -0.644658 0 0.241747];

% check that these are, indeed null vectors of A:

A*a1’

A*a2’

% and they are both zero, as expected

1.2 Notation and linear algebra review 21

Gradient
Consider the function J(x,y)= 2x+y+3xy+x2/2+y2/2. The gradient of this function is the following
vector,

—J(x,y) =
✓

∂J
∂x

,
∂J
∂y

◆

= (2+3y+ x,1+3x+ y)

Evaluating the gradient at a specific point x= (x,y) = (1,2), we find

—J(x,y) = (2+3⇥2+1,1+3⇥1+2) = (9,6),

while the value of the function itself at this point is

J(1,2) = 2⇤1+2+3⇤1⇤2+12/2+22/2= 12.5.

Consider a small vector dx = (dx,dy) = 0.001⇥ (9,6) in the same direction of the gradient at this
specific point and let’s evaluate the change to the function J at the point x+dx. The first two terms in
the Taylor expansion of the multivariate function J are

J(x+dx)⇡ J(x)+
∂J
∂x

dx+ ∂J
∂y

dy

= J(x)+—J ·dx.

Substituting the numerical values for x and dx, using Matlab notations for the scalar product
J(x+dx)⇡ 12.5+[9;6]’*0.001*[9;6]=12.617.
The gradient at a given point indicates the direction of fastest increase of the function. Indeed,

when we moved in the direction of the gradient the function increased. We can check directly what the
value of the function is at the new point to find,

J(x+dx) = J((1,2)+0.001(9,6)) = J(1.09,2.06) = 12.6172,

which is remarkably close to the Taylor approximation.

2. Linear equations

2.1 Motivation

Linear equations arise in the analysis of electrical networks, chemical reactions, network analysis,
Leontief economic models, ranking of sports teams, numerical finite difference solution of PDEs,
medical tomography, and much more.

In this chapter, we discuss several ways to efficiently solve large sets of linear equations. In
some applications, it is necessary to solve systems of the form Ax = b for many right hand side b
vectors. This is done using the “LU decomposition” which deconstructs a matrix A such that the linear
equations Ax= b can be efficiently solved for many right hand sides. We will see, however, that LU
decomposition does not work well for sparse matrices (with many zero entries, as occurs in many
applications) and thus we then cover iterative methods, which are often better for solving equations
involving sparse matrices.

Throughout this section, and in particular for LU and iterative methods, a good reference is Strang
(2006).

2.1.1 Medical tomography
Medical tomography serves as a fascinating example of the power of applied linear algebra. This type
of computerized imaging uses detection of the intensity of X-rays fired through tissue to determine the
density of tissues in question. With these densities, we can generate images for medical expert analysis.
As we’ll see, this kind of imaging, at scale, relies on the solution to millions of linear equations and may
lead to either under-determined or over-determined systems, that is, to more unknowns than equations,
or more equations than unknowns.

The objective is to calculate tissue density (brain, bone and so on) in a 2d section from multiple X-
rays through the tissue. The idea is that the X-ray intensity transmitted via a distance s, I(s), is a function
of tissue density along the ray path, r(x,y). If the density were constant, r0, the intensity would simply

24 Chapter 2. Linear equations

be an exponentially decaying function of the distance traveled within the tissue, I(s) = I(0)exp(�µr0s),
where µ is some appropriate constant depending on the tissue composition. When the tissue density is
not constant, however, this is replaced by an integral along the path as follows.

Let each path be described by (x(u),y(u)) with u going from 0 to s; Some 2d examples are:

(x,y) = (u,0) a path along the y-axis
(x,y) = (0,u) a path along the x-axis
(x,y) = (u,u) a diagonal path

Intensity is related to tissue density as ,

I(s) = I(0)exp
✓
�
Z s

0
µr(x(u),y(u))du

◆
,

or

log(I(s)/I(0)) =�
Z s

0
µr(x(u),y(u))du.

Represent the density values on a grid in each two dimensional section, r(xi,y j) = ri j,

(r11,r12, . . . ,r1n,r21,r22, . . . ,rmn)

which we write as a vector rrr ,

rrr = {r1, . . . ,rmn}, (k = 1,m⇥n)

and write the integral as a sum,

�
Z s

0
µr(x(u),y(u))du=�

mn

Â
k=1

µBlkrkDu

where Blk is one when X-ray l goes through location xk = (xi,y j) and zero otherwise. This leads to
a linear system Arrr = b. The rhs bbb is made of log(I(s)/I(0)) entries and the matrix A is (µDu)B,
where each row represents one trajectory through the tissue. Here is an example of one ray and the
corresponding LHS of the equation,

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

In this example of a ray passing through grid cells 3, 4, 9, 10 and 15, the corresponding LHS of the
equation is,

Z
r du= r3Du3+r4Du4+r9Du9+r10Du10+r15Du15 = RHS=

�1
µ

log(I(s)/I(0))

2.1 Motivation 25

and in matrix form this is,

0

BB@

. . .
0 0 Du3 Du4 0 . . .0 Du9 Du10 0 . . .0 Du15 . . .0

. . .

. . .

1

CCA

0

BBBB@

r1
...
...

r20

1

CCCCA
= ~RHS

Note that a given location xk = (xi,y j) is encountered by many rays. The dimension of the matrix A
is L⇥K =(number of X-ray trajectories)⇥(number of grid points). Increasing the resolution of (xi,y j)
to get a detailed image, we would always have K > L, i.e., more unknowns r(xi,y j) than equations,
leading to an under-determined system which can be solved using SVD, as discussed in sections 5.2.5
and 5.2.6.

While the above derivation conveys the essence of medical tomography, in practice the calculation
is often done using a “Radon transform”.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/6-overdetermined-and-underdetermined-linear-eqns/more/Radon-Transform-and-Math-of-Medical-Imaging-Jen-Beatty-Colby.pdf

26 Chapter 2. Linear equations

Figure 2.1: Tomography schematics and brain scan images from here, here and here.

http://www.fda.gov/ucm/groups/fdagov-public/documents/image/ucm115328.gif
https://applied-math.uibk.ac.at/cms/images/research_images/computer-tomography.png
https://upload.wikimedia.org/wikipedia/commons/5/50/Computed_tomography_of_human_brain_-_large.png

2.2 Geometric interpretations for linear equations 27

2.2 Geometric interpretations for linear equations
A linear system of equations, Ax= b, can be interpreted using the rows or the columns of A to help
understand why there may be no solutions, a unique solution, or an infinite number of solutions. For
example, consider

5x+3y�2z= 6
2x+4y� z=�2
x+3y+3z=�1

.

This system of equations can be re-written in matrix form as Ax= b,
2

4
5 3 �2
2 4 �1
1 3 3

3

5

2

4
x
y
z

3

5=

2

4
6
�2
�1

3

5 .

Let’s start by examining the rows of this system. Each equation represents a plane in 3D space. Row
1: 5x+ 3y� 2z = 6 is equivalent to an equation for the height of the plane z = 2.5x+ 1.5y� 3, and
similarly for row 2: 2x+4y� z = �2 and row 3: x+3y+3z = �1. Plotting these three planes, we
see that they intersect at a particular point which is the solution to the system of equations. When
two or more of the planes are parallel (but not identical), or when two pairs of planes intersect along
parallel lines, there is no intersection of all three planes and therefore no solution. When the three plans
intersect along a line instead of at a point, there is an infinite number of solutions.

28 Chapter 2. Linear equations

Alternatively, we can interpret the columns of the system geometrically. We can rewrite the system
of equations as a sum over three column vectors that is equal to the column vector on the RHS,

x

2

4
5
2
1

3

5+ y

2

4
3
4
3

3

5+ z

2

4
�2
�1
3

3

5=

2

4
6
�2
�1

3

5 .

We are looking for the three numbers x,y,z such that the linear combination above equals the RHS. We
plot each of the above column vectors such that each starts at the end of the previous one. We then
plot the RHS column vector and find that it ends at the same point as the third vector from the LHS.
The x,y,z for which the sum of the LHS vectors and the RHS vector meet is the solution to the linear
system of equations. When the three vectors on the LHS are not linearly independent, it may not be
possible to find a combination of these vectors that is equal to the RHS, and in this case there is no
solution. An infinite number of solutions may occur if, say, two of the LHS vectors are parallel and the
RHS vector is such that it can still be expressed in terms of the LHS vectors. In this case, one can find
different combinations of the two parallel LHS vectors that can be part of a combination that is equal to
the RHS, yielding an infinite number of solutions.

4

column interpretation, unique solution

2

y

-3

-2

-1

0z

0

1

0

2

3

2

x
4 6 8 -210

-1
2

61

-0.5

4

y

0

x

0

2

z

-1

column interpretation, no solution

-2 0

0.5

1

10

column interpretation, many solutions 1

-4

-2

0

y

-5

2

4z

6

5

8

10

0

12

x
5 010

10

column interpretation, many solutions 2

-4

-2

0

y

-5

2

4z

6

5

8

10

0

12

x
5 010

2.3 Direct solution to linear equations by LU decomposition 29

2.3 Direct solution to linear equations by LU decomposition

In this section, we describe the LU decomposition algorithm, demonstrate it with a specific example,
show how it is used to efficiently solve systems of linear equations with many right hand sides, discuss
its computational cost and explain why the algorithm works.

2.3.1 Gaussian elimination
As a reminder, consider the following example, Ax= b,

2

4
�2 �1/3 �22

3
6 5 4
3 4.5 3

3

5

2

4
x
y
z

3

5=

2

4
�102

3
28
21

3

5 .

(1) We start by exchanging the first two equations such that the coefficient of the first variable in the
first equation is as large as possible,

2

4
6 5 4
�2 �1/3 �22

3
3 4.5 3

3

5

2

4
x
y
z

3

5=

2

4
28

�102
3

21

3

5

(2) Now, subtract �2/6 times the first equation from the second, subtract 3/6 of the first equation from
the third,

2

4
6 5 4
0 11

3 �11
3

0 2 1

3

5

2

4
x
y
z

3

5=

2

4
28
�11

3
7

3

5

(3) Exchange the last two equations again, to make sure the pivot (coefficient of y in second equation)
is largest,

2

4
6 5 4
0 2 1
0 11

3 �11
3

3

5

2

4
x
y
z

3

5 .=

2

4
28
7

�11
3

3

5

(4) Subtract 11
3/2 times the second equation from the third,

2

4
6 5 4
0 2 1
0 0 �2

3

5

2

4
x
y
z

3

5=

2

4
28
7
�6

3

5

which we now solve by back substitution:

�2z=�6) z= 3
2y+3⇥1= 7) y= 2

6x+5⇥2+4⇥3= 28) x= 1

30 Chapter 2. Linear equations

2.3.2 LU decomposition algorithm
The algorithm for LU decomposition of a matrix A follows a similar approach to Gaussian elimination.
The objective is to write the matrix as a product of an upper triangular and a lower triangular matrix.
Because we want to avoid having zero or small pivots, we normally need to multiply the matrix by a
permutation matrix before it can be decomposed such that LU=PA. We will see that this decomposition
is useful as it helps us solve Ax= b efficiently for many RHS vectors b.

We note first that the each step in the above Gaussian elimination example could be expressed using
permutation and manipulation matrices,

(1) is obtained by multiplying A by the permutation matrix

P1 =

2

4
0 1 0
1 0 0
0 0 1

3

5

(2) is obtained by multiplying A by the manipulation matrix,

L1 =

2

4
1 0 0

2/6 1 0
�3/6 0 1

3

5

and step (3) is again a permutation using

P2 =

2

4
1 0 0
0 0 1
0 1 0

3

5 .

Step (4) uses another manipulation matrix,

L2 =

2

4
1 0 0
0 1 0
0 �2/3 1

3

5 .

Combining all steps, the manipulation bringing A to an upper diagonal matrix can therefore be written
as,

U= L2P2L1P1A=

2

4
6 5 4
0 2 1
0 0 �2

3

5

and therefore,

A= P�1
1 L�1

1 P�1
2 L�1

2 U.

It turns out that, magically (section 2.3.5), this can also be written as

A= P�1LU

where,

U=

2

4
6 5 4
0 2 1
0 0 �2

3

5 , L=

2

4
1 0 0
1/2 1 0
�1/3 2/3 1

3

5 , P=

2

4
0 1 0
0 0 1
1 0 0

3

5 .

2.3 Direct solution to linear equations by LU decomposition 31

Note the relationship with the original Li,Pi, which is explained to some degree by the relation between
L1 and its inverse,

L1 =

2

4
1 0 0
1/3 1 0
�1/2 0 1

3

5 , L�1
1 =

2

4
1 0 0

�1/3 1 0
1/2 0 1

3

5 .

The LU algorithm calculates these U,L and P as follows:
1. Initialize U= A, and initialize L and P to the identity matrix.
2. Starting with the first column, exchange rows in U such that the entry in the column with the

largest absolute value becomes the diagonal value (the pivot). Similarly, exchange the same rows
in P, and similarly exchange them in L but only below the diagonal.

3. Zero the column under the pivot in U by subtracting from each row by a factor of the pivot value.
Insert this “subtraction factor” in the appropriate entry of L.

4. Move to the next column of U and repeat the above steps until you arrive at an upper diagonal U
and a lower diagonal L matrix.

2.3.3 Example of LU decomposition
⌅ Example 2.1 Consider the following 3⇥3 matrix A,

A=

2

4
�2 �1/3 �22

3
6 5 4
3 4.5 3

3

5 .

Initialize,

U=

2

4
�2 �1/3 �22

3
6 5 4
3 4.5 3

3

5 L=

2

4
1 0 0
0 1 0
0 0 1

3

5 P=

2

4
1 0 0
0 1 0
0 0 1

3

5 .

Now exchange rows 2 and 1 so that the pivot becomes the entry in the column with the largest magnitude.
Reflect this exchange in P,

U=

2

4
6 5 4
�2 �1/3 �22

3
3 4.5 3

3

5 L=

2

4
1 0 0
0 1 0
0 0 1

3

5 P=

2

4
0 1 0
1 0 0
0 0 1

3

5 .

To zero out column 1, rows 2 and 3, subtract from row 2 of U �2/6=�1/3 times row 1, and from
row 3 3/6= 1/2 times row 1. Put these subtraction factors in the first column below the diagonal in L,

U=

2

4
6 5 4
0 11

3 �11
3

0 2 1

3

5 L=

2

4
1 0 0

�1/3 1 0
1/2 0 1

3

5 P=

2

4
0 1 0
1 0 0
0 0 1

3

5 .

Again we have to swap rows 2 and 3 so that the largest magnitude value in column 2 is the pivot. We
also swap the elements below the diagonal of L and adjust the permutation matrix accordingly,

U=

2

4
6 5 4
0 2 1
0 11

3 �11
3

3

5 L=

2

4
1 0 0

1/2 1 0
�1/3 0 1

3

5 P=

2

4
0 1 0
0 0 1
1 0 0

3

5 .

32 Chapter 2. Linear equations

To zero out column 2 below the pivot, subtract 11
3/2= 2/3 times row 2 from row 3 and place the factor

below the diagonal in L,

U=

2

4
6 5 4
0 2 1
0 0 �2

3

5 L=

2

4
1 0 0
1/2 1 0
�1/3 2/3 1

3

5 P=

2

4
0 1 0
0 0 1
1 0 0

3

5

It is now easy to check that LU= PA, as desired. ⌅

2.3.4 Solving linear equations using the LU decomposition for multiple RHS
LU is useful when we need to solve Ax = b for many RHS b. First, consider the cost of Gaussian
elimination. If we call each division or multiplication-subtraction one operation, it takes n operations
to achieve zeros below the first entry in the first column of the matrix. With n�1 rows below the first
row, we have n(n�1) = n2�n operations. If we reduce the elimination down to k equations, k2� k
operations are needed to clear out the column below the pivot. As such the total operations become,

(12+ ...+n2)� (1+ ...+n) =
n(n+1)(2n+1)

6
� n(n+1)

2

=
n3�n
3

For large n, this is approximately n3/3.
Given the LU decomposition, we can now solve Ax= b efficiently for many right hand sides b,

using only O(n2) steps for each RHS. We use the LU Decomposition to write LUx= Pb and define
Ux= c so that we have Lc= Pb. We calculate the RHS Pb, and efficiently solve the lower diagonal
system Lc = Pb for the vector c using forward substitution. Then, we efficiently solve the upper
diagonal system Ux= c using back substitution to find x. This can be repeated for many b in O(n2)
steps for each b, which is far less expensive than the n3/3 steps that would be required for a full
Gaussian elimination (section 2.3.4).

2.3.5 Why does the LU decomposition algorithm work?
(Optional) Each step of the LU algorithm involves a row permutation followed by a row manipulation
to set values under the diagonal to zero. This can be written as a multiplication by a permutation matrix
and then by a manipulation matrix. For example, the first step in the above example may be written as,

U1 = E1P1A,

where

P1 =

2

664

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3

775 E1 =

2

664

1 0 0 0
�0.3 1 0 0
�0.1 0 1 0
0.2 0 0 1

3

775 U1 =

2

664

1 2 3 4
0 2.5 �1.8 8.1
0 5 6 7
0 �2 5.6 6.2

3

775 .

The final result of the Gaussian elimination is therefore,

U= E3P3E2P2E1P1A

2.4 Iterative methods 33

which we may write as,

U= E3(P3E2P
T
3)(P3P2E1P

T
2P

T
3)(P3P2P1)A.

Define E0
3 = E3, E0

2 = P3E2PT
3 and E0

1 = P3P2E1PT
2P

T
3 . It turns out that these new matrices have the

same form as the original Ei matrices: 1 along the diagonal and non-zero values only under the diagonal
in the ith column. Thus we may write,

U= (E0
3E

0
2E

0
1)(P3P2P1)A.

The inverse of each of the E0
i is obtained by changing the signs of the elements under the diagonal.

Multiplying by these inverses and defining P= P3P2P1 we find,

(E0�1
3 E0�1

2 E0�1
1)U= PA.

Define L= (E0�1
3 E0�1

2 E0�1
1), and it turns out that because of the special structure of these matrices, their

values are just added under the diagonal, leading to the familiar form of the L matrix. We therefore
have LU= PA as required.

For more details, see here, as well as chapters 20, 21 of Trefethen and Bau III (1997).

2.4 Iterative methods
When solving large systems, Gaussian elimination and LU decomposition may not be appropriate for
several reasons. If the problem needs to be solved for a single RHS, it may take too many operations
(n3/3 is large and thus, elimination is computationally expensive). Also, if the matrix is highly sparse,
its LU decomposition can be very dense (section 2.6.1), making LU operations unnecessarily expensive.
Both issues can be resolved by using iterative methods that can be used to obtain an approximate solution
for x. The iterations are terminated when the solution has converged closely enough to the actual
solution such that additional iterations yield the same solution. Because multiplying sparse matrices is
inexpensive, this solution method can be significantly more efficient than Gaussian elimination. For
a good resource on this subject, see Strang (2006),§7.4. To create an iterative scheme, we write the
equation matrix as the difference between two matrices to be specified, A = S�T. Thus, Ax = b

becomes Sx= Tx+b. This is used to create an iteration scheme from k to k+1 by writing,

Sxk+1 = Txk+b. (2.1)

At every iteration, the RHS is known and we need to solve Sxk+1 = rhs for xk+1, so a convenient
choice for S that allows an efficient solution is required. Of course, the iterative solution xk+1 needs to
converge to the true value of x, and to examine if it does, consider the error at iteration k, defined as
ek = x�xk. Subtracting the equation Sx= Tx+b for the actual solution x from the above iteration
scheme, we find the error equation,

Sek+1 = Tek Error Equation, (2.2)

or, equivalently, ek+1 = S�1Tek. An iterative scheme is convergent if the error goes to zero as the
number of iterations increases. This occurs when every eigenvalue of S�1T satisfies |li| < 1. The
rate of convergence depends on the size of maxi |li| — the smaller this value is, the faster the solution
should converge to the true value of x. This maximum absolute value eigenvalue, maxi |li|, is termed

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/2-direct-solution/why_LU_works.txt

34 Chapter 2. Linear equations

the spectral radius. The reason the rate of convergence is governed by the absolute value of the largest
eigenvalue is seen by expanding the initial guess in terms of the eigenvectors of S�1T, vi, and denoting
the corresponding eigenvalues li. Thus, we may write the error initially, after one and then after k
iterations as,

e0 = c1v1+ . . .+ cnvn
e1 = S�1Te0 = c1l1v1+ . . .+ cnlnvn

ek = (S�1T)ke0 = c1l k
1v1+ . . .+ cnl k

nvn.

The error will therefore clearly be dominated by the largest eigenvalue, which explains the above
convergence criterion. Below we consider two specific simple iterative schemes based on different
choices for S and T.

2.4.1 Jacobi
In Jacobi’s method, we define S to be the diagonal part of A and then set T= S�A. For example, we
define A as,

A=


0.5 0.25
0.1 0.1

�
.

We would define S and T matrices as,

A= S�T=


0.5 0
0 0.1

�
�


0 �0.25
�0.1 0

�
.

Using these matrices we would iterate as above using the equation,

xk+1 = S�1(Txk+b) (2.3)

for a given RHS vector b, starting with an initial guess for x0. The guess for x0 should have a non-zero
projection on the solution, and often a random vector or a vector of ones, x0 =

⇥
1 1

⇤T is appropriate.
The eigenvalues of S�1T in this case are 0.7071 and �0.7071. Thus, max |li| < 1, so the iterative
scheme should converge to the true solution x.

2.4.2 Gauss-Seidel
Another iterative scheme is Gauss-Seidel, where S is the lower triangular part of A and T is the
remainder. For example, given

A=


0.5 0.25
0.1 0.1

�
,

define S and T matrices as

A= S�T=


0.5 0
0.1 0.1

�
�

0 �0.25
0 0

�
,

and carry out iterations as instructed above. The eigenvalues of S�1T are 0 and 0.5, so again the
solution converges to the true value of x since max |li|< 1, and it converges faster than in the Jacobi
scheme as the largest eigenvalue (in absolute value) is smaller.

2.5 Existence of solutions and sensitivity to noise 35

2.5 Existence of solutions and sensitivity to noise
There are two things to beware of when solving real-world problems. (1) The solution may be overly
sensitive to “noise” because the matrix governing the system could be ill-conditioned. This could be
measurement noise affecting the matrix or RHS, or noise introduced by round-off error due to the finite
accuracy of a computer. We will discuss later the “condition number” of a matrix which allows us
to prejudge if the solution is expected to be sensitive to such noise. (2) Even a problem that is not
ill-conditioned could be sensitive to noise if not solved correctly, specifically if row exchanges are not
properly used during the Gaussian elimination.

Consider Ax1 = b vs Ax2 = b+db, using the following values,

A=


4.67 �3.03
6.87 �4.67

�

b=


�5.56
�8.31

�

db=


�0.08
0.06

�

to find

x1 = [�0.83, 0.56]T

x2 = [�1.39, �0.27]T .

The small noise added to the RHS led to a very large difference in the solution. The two equations
are shown as two lines for each system, with their solutions (crossing point of the lines), with and
without the noise db, in Fig. 2.2. One can see that in this case the sensitivity to noise is large because
the matrix is nearly singular. The two equations are therefore nearly identical, and thus their lines are
nearly parallel – a small amount of noise can shift their crossing line significantly.

-2 -1 0 1
x

-2

-1

0

1

2

3

y

the two eqns Ax=b

-2 -1 0 1
x

-2

-1

0

1

2

3

y

the two eqns Ax=b+ b

Figure 2.2: Solutions to two linear equations with and without noise. The small noise led to a large
shift of the solution from the black to the green cross.

As for the importance of row exchanges (pivoting) and the effect of round-off errors, consider the
following example of an equation Ax= b for x= (x,y)T ,

A=


0.0001 �1

2 1

�
, b=


3
2

�
.

36 Chapter 2. Linear equations

A direct solution gives

x=


2.49988
�2.99975

�
.

Using Gaussian elimination, the matrix and RHS become

[A,b] =


0.0001 �1 3

0 20001 �59998

�
,

and back substitution results in,

x=


2.49988
�2.99975

�
.

Next, using a limited precision, the Gaussian elimination stage gives,

[A,b] =


0.0001 �1 3

0 20000 �60000

�
,

and the back substitution therefore gives a wrong answer with a large error,

x=


0
�3

�
.

Finally, consider the above problem, but this time with appropriate row pivoting. Start with the matrix
and RHS written as,


0.0001 �1 3

2 1 2

�
,

exchange rows,


2 1 2

0.0001 �1 3

�
.

Add the first row times �0.0001/2 to the second,


2 1 2
0 �1.0001 2.9999

�
,

and assume finite accuracy,


2 1 2
0 �1 3

�
.

The second equation gives y=�3, and substituting in the first, we have 2x�3= 2) x = 2.5. The
solution is therefore consistent with that which was obtained using full accuracy.

2.6 Dealing with huge systems 37

2.6 Dealing with huge systems
2.6.1 Sparse matrices

A sparse matrix is a matrix in which most of the entries are zero. By contrast, a dense matrix is one in
which most of the entries are non-zero. We define the sparsity or density of a matrix as the number of
non-zero entries in the matrix divided by the total number of entries.

Often, we can save enormous amounts of memory by storing only the non-zero entries of the matrix.
There are several standards for storing a sparse matrix, and a common one is to store it as a list with
row number, column number, and the value of the entry. For example, the matrix,

A=

2

66664

0 0 0 4 0
0 1 2 0 0
0 0 0 0 0
3 0 0 5 0
0 0 7 0 0

3

77775

can be stored as,

list=

0

@
row: 1 2 2 4 4 5
col: 4 2 3 1 4 3
val: 4 1 2 3 5 7

1

A

so that we can index into the row and column of the matrix to return a specific value. We’ve stored 18
digits instead of the original 25, and for very sparse matrices of a large dimension this method can lead
to substantial memory savings.

When solving problems involving sparse matrix systems we often find that direct methods such as
PA= LU decomposition may not be the most efficient strategy. The reason is that the lower triangular L
and upper triangular U matrices that result from the decomposition of a sparse matrix are substantially
denser than the original sparse matrix.

To see why, note that the first step of the LU decomposition involves adding the first rows to the
following ones to eliminate the entries in the first column, so assuming the rows are very large and
sparse (say 0.1%), the density of the resulting second to last rows is expected to be roughly twice the
original one (0.2%). That’s because we are likely adding zeros to non-zero entries. The next step is
adding the second row to all the rows below it, so the density of the third to last rows is now about
0.4%, etc. At this rate the density doubles every step. Eventually, the density increases sufficiently
that we cannot assume that non-zero values are necessarily added to zero values and vice versa during
the LU decomposition calculation, and in turn the approximation of the density doubling at every step
breaks down. But in general, if the matrix is large enough the density of consecutive rows becomes
larger quickly and therefore the LU decomposition is not expected to be sparse.

Fig. 2.3 shows an example of a sparse system yielding a dense LU decomposition.
As a result, iterative methods may be better for arriving at an approximate solution to huge

sparse linear systems. Iterative methods also often work best (converge well) for equations based on
diagonally-dominant, and/or symmetric positive definite matrices.

2.6.2 MapReduce
Dealing with massive data problems can lead to computational, storage and memory limitations. This
can be addressed for some problems using the Google MapReduce algorithm, which splits up the
problem across multiple processors. The steps of the algorithm are as follows,

38 Chapter 2. Linear equations

A, density=5.17%

50 100 150 200

50

100

150

200 -1

-0.5

0

0.5

1
L, density=36.8%

50 100 150 200

50

100

150

200 -1

-0.5

0

0.5

1
U, density=38.7%

50 100 150 200

50

100

150

200 -1

-0.5

0

0.5

1

Figure 2.3: LU decomposition of a sparse matrix leads to dense L and U.

Split: The (large) data set is split up into manageable chunks across several processors and disks.
Consider a problem involving 200,000 rows of data. We could, say, split up the data into 10
chunks of 20,000 rows each across 10 processors and disks. Each chunk is now of a manageable
size that can fit into the computer memory and be analyzed.

Map: Once split up, each row of data is then mapped to a {KEY, VALUE} pair. You can have multiple
values stored for a given key. For example, if calculating average flight delay and average flight
time by the day of the week, then for each flight, the KEY would be the day of the week and the
VALUE(s) would be the flight’s delay and its duration.

Shuffle: Once all the data have been mapped to {KEY,VALUE} pairs, the data is then grouped
according to KEY across processors. So, in the above example, MapReduce would group all the
Monday flights from all the sub-data sets together, all the Tuesday flights together etc., shuffling
the data across processors.

Reduce: With the data now sorted and grouped by key, we carry out the reduce stage. At this point, the
MapReduce algorithm has provided us with all desired flight information information, grouped
together for a given KEY. This allows us to finalize the computation for that KEY in the reduce
step based on our initial objective. That is, in the reduce step we conduct a final aggregation or
computational step to arrive at some desired summary statistic for a given KEY. For example, say
we are given all the Monday flights first and their corresponding delays. These data can be used
in the reduce step to calculate the average flight delay for Monday. Then we can do the same
reduce for all the Tuesday through Sunday flights to find the average flight delay for these KEYS
respectively.

⌅ Example 2.2 Word counting example: Fig. 2.4 shows an example illustrating how the MapReduce
algorithm is used to count the number of words in a large file of text. ⌅

⌅ Example 2.3 Matrix multiplication example: Of the many applications of the MapReduce algo-
rithm in computation we consider here matrix multiplication A= BC, or aik = Â j bi jc jk. This is further
discussed in section 2.3.9 of Leskovec et al. (2014) with additional refinements and consideration of
efficiency. Assume the matrices in question are so large that they cannot fit in a computer memory in
order to be multiplied together. Start by defining a Map function that creates sets of the matrix elements
in B and C required to compute a given element of A.
Map Function: In order to calculate aik, define the KEY as (i,k). The VALUE is then all entries bi j

that are used to calculate aik, written as (“B”, j,bi j) for all j. Here “B” is a label denoting the

2.6 Dealing with huge systems 39

Dog	Cat	Rabbit	Cat		
Rabbit	Bird	Cat		
Bird	Rabbit	Cat	Bird

Dog	Cat	Rabbit	
Cat

Bird	Rabbit	Cat	
Bird

Rabbit	Bird	Cat

Dog,	1	
Cat,	2	
Rabbit,	1

Bird,	2	
Rabbit,	1	
Cat,	1

Rabbit,	1	
Bird,	1	
Cat,	1

Dog,	1

Cat,	2	
Cat,	1	
Cat,	1

Rabbit,	1	
Rabbit,	1	
Rabbit,	1

Bird,	1	
Bird,	2

Dog,	1

Cat,	4

Rabbit,	3

Bird,	3

Dog,	1	
Cat,	4	
Rabbit,	3	
Bird,	3

INPUT	(Some	
block	of	text)

SPLITTING MAPPING SHUFFLING REDUCING OUTPUT

Figure 2.4: A word counting MapReduce example. The map step calculates the number of occurrences
of each word in the sub-files and returns a {KEY,VALUE} pair corresponding to the (word, number of
occurrences in sub-data). This is further analyzed in the reduce step, to calculate the total number of
occurrences of a each word in the entire data.

matrix. The {KEY,VALUE} pairs are therefore ((i,k),(“B”, j,bi j)). Similarly, the entries of C
are mapped into {KEY,VALUE} pairs as ((i,k),(“C”, j,c jk)). Note that any given element in B
and C will be used multiple times for computing different elements of A, and thus each element
of B and C will be mapped to multiple {KEY,VALUE} pairs.

Reduce Function: For each key (i,k) the reduce function receives two arrays, (“B”, j,bi j) and
(“C”, j,c jk) for all values of j. The reduce function then sorts by j, multiplies bi j by c jk,
and accumulates the products to find aik.

⌅

For further examples, see the course Matlab/python demonstrations of the algorithm used to analyze
data from airline flights.

3. Eigenproblems

3.1 Motivation
We now move onto our discussion of eigenvectors and eigenvalues. We will explore a series of applica-
tions of these powerful tools such as Google’s PageRank algorithm, partioning of graphs/networks,
solving systems of linear differential equations, and even the explosive development of weather systems.
Be sure to review the calculation of eigenvectors and eigenvalues in Section 1.2.

3.2 Google’s PageRank
3.2.1 Introduction and explanation

Google originally created the PageRank algorithm to rank search results according to their importance,
and this algorithm serves as a wonderful example of the utility of eigenvectors.

Consider the Internet as a network of websites with pages containing links to other pages, with
an example depicted in Figure 3.1. Nodes represent the websites and the arrows represent links. The
PageRank algorithm is based on the assumption that websites which have more incoming links from
other important sites are more important, leading to a recursive definition. In addition, the value of an
outgoing link from a given page is weighted according the number of outlinks that page has — if a
page has 50 outlinks, the weight of each outlink is 1/50.

Mathematically, the above definition can be expressed as follows. For n pages Pi, i= 1,2, ...,n the
PageRank of page i is defined as,

ri = Â
j2Li

r j
Nj

, (3.1)

where Nj is the number of outlinks from page Pj and Li are the pages that link to page Pi. We discuss
a matrix formulation of the PageRank algorithm in the next section, and a method to solve for the
rankings ri.

42 Chapter 3. Eigenproblems

1 3

2 4 7

6 5

Figure 3.1: Network of 7 pages for demonstrating PageRank.

3.2.2 Matrix model of PageRank
Define a “transition matrix” of a given network, Q,

qi j =
⇢

1/Ni if Pi links to Pj
0 otherwise, (3.2)

such that the ith row represents the outgoing links from page i. Writing this matrix explicitly for the
example network in Fig. 3.1,

Q=

2

666666664

0 0 0 0 0 0 0
1
3 0 1

3
1
3 0 0 0

1
2

1
2 0 0 0 0 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 1 0
0 0 0 1

2
1
2 0 0

0 0 0 0 1 0 0

3

777777775

Using this matrix, we can write equation (3.1) for the PageRank r in matrix form,

r
T = r

TQ (3.3)

which, after transposing both sides, givesQT
r= r. We can see this is an eigenproblem for an eigenvalue

that is equal to one. The matrix Q is “column-stochastic” (i.e., a square matrix whose elements are
positive, its columns sum to one on each row and that is also irreducible; see Wikipedia for the theorem,
reproduced again below, and for stochastic matrices). Such a matrix is indeed known to have a largest
eigenvalue that is equal to one, according to the Perron-Frobenius theorem. In order to calculate the
eigenvector corresponding to the unit eigenvalue, which gives the PageRank of each web page, we turn
this eigenproblem into an iteration scheme for calculating iterate k+1 from iterate k,

rk+1 = QT
rk.

http://en.wikipedia.org/wiki/Perron-Frobenius_theorem
http://en.wikipedia.org/wiki/Stochastic_matrix

3.2 Google’s PageRank 43

We will see below that repeating this iteration leads to an improving approximation for the eigenvector
representing the PageRank. But first, some refinements to the matrix Q are needed.

Theorem 3.2.1 — Perron-Frobenius. Assuming an irreducible matrix, T, the theorem states that:
1. T has a positive (real) eigenvalue lmax such that all other eigenvalues of T satisfy,

|l | lmax.

2. Furthermore, lmax has algebraic and geometric multiplicity of one, and has an eigenvector x
with x> 0.

3. Any non-negative eigenvector is a multiple of x
4. More generally, if y� 0, y 6= 0 is a vector and µ is a number such that

Ty µy

then

y> 0, and µ � lmax

with µ = lmax if and only if y is a multiple of x
5. If 0 S T,S 6= T then every eigenvalue s of S satisfies

|s |< lmax.

In particular, all the diagonal minors T(i) obtained from T by deleting the ith row and column
have eigenvalues all of which have absolute value < lmax.

6. If T is primitive, then all other eigenvalues of T satisfy

|l |< lmax

3.2.3 Refinements to the matrix model

To explain the needed refinements to the PageRank algorithm, consider an alternative interpretation
for it. Imagine a random walker surfing from page to page following the links. When more than one
outgoing link is available, the walker chooses among them randomly. Define now the importance
(PageRank) of a page to be the probability that a random walker is at that page; the random walker is
more likely to end up at a page with more in-links, consistent with our previous definition. Consider
some issues the random walker may run into.
Stuck at Node: The first issue presents itself at page (node) 1 in the example of Figure 3.1. Once

arriving at page 1, the walker will get stuck there because Page 1 has no outlinks. To resolve this,
allow the random walker arriving at this page to jump to any random page with equal probability.
Mathematically, this is done by defining a new matrix,

Q̂= Q+
1
n
ed

T ,

where d is a column vector of 1s and e is a column vector with 1 in each entry corresponding to

44 Chapter 3. Eigenproblems

rows in Q which are all zeros. In the above specific example, define d and e as,

d=

2

666666664

1
1
1
1
1
1
1

3

777777775

, e=

2

666666664

1
0
0
0
0
0
0

3

777777775

,

and Q̂ becomes

Q̂= Q+
1
7

2

666666664

1
0
0
0
0
0
0

3

777777775

⇥
1 1 1 1 1 1 1

⇤
=

2

666666664

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
3 0 1

3
1
3 0 0 0

1
2

1
2 0 0 0 0 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 1 0
0 0 0 1

2
1
2 0 0

0 0 0 0 1 0 0

3

777777775

Note that this addition changes a line of zeros in the transition matrix to a line whose sum of
columns is one, as required by the Perron-Frobenius theorem.

Stuck at Subgraph: The second potential problem is the random walker getting stuck in a subgraph.
In Figure 3.1 the network can be divided into two subgraphs: pages {1,2,3} and pages {4,5,6,7}.
If the random walker moves to page 4 from page 2, there is zero probability that the walker
will return to pages {1,2,3} – the walker is stuck in subgraph {4,5,6,7}. To resolve this issue,
allow the random walker to jump from any site to any other site with some small probability
(“teleportation”), at any time. This is done by further adjusting the transition matrix, defining ˆ̂Q
(and thus making the transition matrix “irreducible”, again required by the theorem),

ˆ̂Q= aQ̂+(1�a)
1
n
dd

T

= aQ+a 1
n
ed

T +(1�a)
1
n
dd

T (3.4)

with d defined again as a column of 1s, and a as the teleportation factor, chosen to be a ⇡ 0.85.
Note that ddT is a matrix whose elements are all 1. The smaller the a , the faster the convergence
of the iterations for finding the PageRank is, as it determines the magnitude of the second-largest
eigenvalue of the matrix (see next section for the explanation of how the convergence rate is
determined from these eigenvalues). However, a small a also lowers the contribution of the

3.3 The power method 45

transition matrix Q which represents the network. In this example, calculate ˆ̂Q to be,

ˆ̂Q= 0.85

2

666666664

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
3 0 1

3
1
3 0 0 0

1
2

1
2 0 0 0 0 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 1 0
0 0 0 1

2
1
2 0 0

0 0 0 0 1 0 0

3

777777775

+(1�0.85)
1
7

2

666666664

1
1
1
1
1
1
1

3

777777775

⇥
1 1 1 1 1 1 1

⇤

=

2

666666664

1
7

1
7

1
7

1
7

1
7

1
7

1
7

32
105

3
140

32
105

32
105

3
140

3
140

3
140

25
56

25
56

3
140

3
140

3
140

3
140

3
140

3
140

3
140

3
140

3
140

32
105

32
105

32
105

3
140

3
140

3
140

3
140

3
140

61
70

3
140

3
140

3
140

3
140

25
56

25
56

3
140

3
140

3
140

3
140

3
140

3
140

61
70

3
140

3
140

3

777777775

3.2.4 Calculating PageRank using the power method
Several variants of the “power method” for efficiently calculating eigenvalues and eigenvectors of large
matrices will be covered in the next section, and one is demonstrated here for the case of calculating
the PageRank for an n⇥n transition matrix. The steps are,

1. Initialize an n⇥1, non-zero starting vector x0 either by ones or by random numbers.
2. Calculate the next iterate: x̂k = ˆ̂QT

xk�1
3. Normalize: xk = x̂k/kx̂kk
4. Iterate for k = 0,1,2, ... until the solution converges (changes between iteration results become

sufficiently small) indicating that an appropriate approximation of the desired eigenvector was
found.

As for why the algorithm works and when may it fail, see the next section.

3.3 The power method
The objective of the simplest power method is to calculate the largest eigenvalue (in absolute value)
and the corresponding eigenvector of a matrix. For large, and in particular large and sparse matrices,
this method is especially efficient. As a result, it is very appropriate when all we need is the largest or
smallest few eigenvalues/vectors, as when solving for a network’s PageRank.

3.3.1 Gram-Schmidt orthogonalization
Reminder: In an orthogonal basis, vectors are orthogonal to one another (that is for any two vectors q1
and q2, q1 ·q2 = q

T
1 q2 = 0). The basis is orthonormal if the vectors are also normalized to one,

q
T
i q j =

⇢
0 i 6= j
1 i= j

To make a basis orthonormal, use the Gram-Schmidt orthogonalization briefly summarized as
follows. Consider three independent vectors a1, a2, a3. We are looking for three orthonormal vectors

46 Chapter 3. Eigenproblems

q1,q2,q3 that span the same space. Start by normalizing a1,

q1 =
a1

ka1k
.

Next, define a new vector A2 that is orthogonal to q1, by subtracting any component of a2 that is in the
direction of q1. Then we normalize A2 to get q2,

A2 = a2� (qT1 a2)q1, q2 =
A2

kA2k
.

Finally, repeat the procedure for q3 removing any components of a3 in the direction of q1 and q2 and
normalize,

A3 = a3� (qT1 a3)q1� (qT2 a3)q2, q3 =
A3

kA3k
.

It will be useful later to write this Gram-Schmidt process as a matrix decomposition, such that,

A= (A1,A2,A3) = (q1,q2,q3)

0

@
q
T
1 a1 q

T
1 a2 q

T
1 a3

0 q
T
2 a2 q

T
2 a3

0 0 q
T
3 a3

1

A

= QR. (3.5)

3.3.2 The power method: calculating the largest eigenvalue/vector
The simplest power method attempts to calculate the largest (in absolute value) eigenvalue and the
corresponding eigenvector of a matrix Q. The eigenproblem Qe = le is used to create an iteration
scheme, calculating the k+1 approximation for e from the kth approximation as follows. Start from an
initial guess, v0, then iterate and normalize at each step,

v̂k+1 = Qvk

vk+1 = v̂k+1/kv̂k+1k.

If the matrix is sparse, the multiplication by a vector is inexpensive, making this an efficient scheme.
As for why this works, consider the eigenvectors e1,e2, ...,en of the matrix Q, expand the initial guess
in terms of these eigenvectors, and consider the next iterations ignoring the normalization step for a
moment,

v0 = c1e1+ ...+ cn�1en�1+ cnen
v1 = Qv0 = c1l1e1+ ...+ cn�1ln�1en�1+ cnlnen

vk = c1l k
1 e1+ ...+ cn�1l k

n�1en�1+ cnl k
n en.

Assuming the eigenvalues are arranged by their absolute value magnitude such that ln is the largest,
|l1| |l2| ... |ln�1|< |ln|, the last term in the above sum dominates as k increases until eventually
vk ⇡ cnl k

n en. Adding the normalization, we find vk ⇡ en. The largest eigenvalue is then calculated from
the ratio of, say, the first element of vk and vk+1.

3.3 The power method 47

We can now understand why the above scheme may fail . First, if the initial guess v0 does not
project on en, the scheme cannot work because the desired eigenvalue must be represented in the
expansion of the initial conditions. Next, the convergence to the last eigenvector depends on the
ratio |ln�1|/|ln|. If this ratio is close to 1, convergence is very slow as the second to last term is not
becoming smaller than the last term sufficiently rapidly, and if it equals 1 convergence may not even
occur. If ln�1 = ln, the iterations seem to converge, but vk will contain contributions from these the two
eigenvectors corresponding to the two largest eigenvalues. These problems are resolved using the block
power method introduced below. If ln�1 =�ln, the iterations will not converge as the contribution of
one of the corresponding two eigenvectors with a negative eigenvalue keeps changing sign, cancelling
out the dominant terms.

3.3.3 Block power method
Expanding on the basic power method, the block power method allows us to calculate the largest
p eigenvalues/eigenvectors of a matrix A. Start by initializing p orthonormal vectors with random
numbers, placing them in an n⇥ p matrix U0 and multiplying them by A. We then orthonormalize the
resulting matrix using Gram-Schmidt, and proceed to the next iteration,

Ûk+1 = AUk

Uk+1 = Gram-Schmidt of Ûk+1

The reason this approach converges is essentially identical to that of the regular power method, and
the rate of convergence is determined in this case by the ratio |ln�p|/|ln�p+1|. The block power
method should work only for normal matrices, whose eigenvectors are orthogonal, otherwise the
orthogonalization step destroys the structure of the eigenvectors. If the matrix is non-normal, the
iterations may lead to a mixing among the non-orthogonal eigenvectors. An example showing the
convergence of the iteration in a simple case is shown in Fig. 3.2.

Demos: Calculating the largest p eigenvalues/vectors using the block power method, and demon-
strating different scenarios in which the block power method fails. These scenarios are important to
understand when using Matlab/python to calculate a few largest/smallest eigenmodes: demo;

3.3.4 Inverse power method
Finally, the inverse power method allows to calculate the smallest eigenvalue and corresponding
eigenvector for a matrix Q. Use the inverse of Q for the iterative scheme, using the fact that Qek = lkek
may be written as Q�1

ek = l�1
k ek, to derive the iteration scheme,

v̂k+1 = Q�1
vk

vk+1 = v̂k+1/kv̂k+1k.

In practice, calculating the inverse Q�1 is undesired as it may lead to numerical issues for large and
noisy matrices that are not well-conditioned. Instead, multiply the above iteration scheme by Q on
both side to find Qv̂k+1 = vk. This is seen as a set of linear equations that needs to be solved for v̂k+1.
As iterations proceed, the dominant term in vk will be the one involving l�1

1 where l1 is the smallest
eigenvalue of Q, and the corresponding eigenvector e1. The inverse power method converges to the
correct smallest eigenvalue/vector only if |l1|< |l2|. It is now simple to generalize this to an inverse
block power method for calculating the smallest p eigenvalues and corresponding eigenvectors.

You are encouraged to read about the more efficient “shifted power method” for calculating
eigenvectors/values in Strang §7.3 pp 396-397.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/2-power-method/

48 Chapter 3. Eigenproblems

Figure 3.2: Iterations of the block power method, calculating the two eigenvectors corresponding to the
two largest eigenvalues of a 3⇥3 matrix. The colors from blue to red denote progressing iterations.

3.4 Spectral clustering (partitioning) of networks
Eigenvectors can also be used to partition networks. An example would be a social network, where
different individuals are linked (friended), forming groups, and the objective of the analysis is to
identify these groups. This is a special case of the more general spectral clustering algorithm to be
discussed later in the course. In order to get an insight into how the algorithm works, consider first
the “network”, with four nodes, connected in pairs as shown in Fig. 3.3. Note that the network is
non-directed, as there is no direction to the links between two nodes, unlike the case analyzed in the
discussion of the PageRank algorithm. Consider a vector x= (x1,x2,x3,x4)T corresponding to the four
nodes, which we would like to be the classification measure, such that if the network is divided into
two parts, the two corresponding groups of elements of x are positive and negative, respectively.

1 2

3 4

Figure 3.3: an example network

We first define an Adjacency matrix, A, to have an element at the (i, j) location if nodes i and j are

3.4 Spectral clustering (partitioning) of networks 49

connected. The Degree matrix, D, is a diagonal matrix that sums the rows of the Adjacency matrix, A,
and the Laplacian matrix is defined as L= D�A. For the above example,

A=

0

BB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCA , D=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA , L= D�A=

0

BB@

1 0 �1 0
0 1 0 �1
�1 0 1 0
0 �1 0 1

1

CCA .

The partition (clustering) vector x turns out to be the eigenvector corresponding to the second smallest
eigenvalue of L. To see this, consider the scalar quadratic form x

TLx, which is seen to be in this case,

x
TLx= (x1� x3)2+(x2� x4)2.

This is precisely the sum of differences corresponding to connected pairs of nodes and is always the
case – for a proof, see the spectral clustering chapter of the course to see that this is the basis for the
classification algorithm. If we find x which minimizes this quadratic form, we expect in the above
example x1 and x3 to be as similar to each other as possible, and x2 and x4 to be similar as well, such
that linked pairs have similar magnitudes.

Let’s consider how to find the minimum of xTLx. First, this needs to be a constrained minimization,
by requiring, for example, that the magnitude of x is one, or else the minimum would just be x= 0.
Second, remembering that we wish to use the x for classification of the network into two groups based
on their signs, it makes sense to require that the mean of their values is zero, forcing the elements to
have both positive and negative signs. So the constrained optimization problem becomes,

find min
x

1
2
x
TLx

subject to
1
2
x
T
x= 1

and xT1= 0,

where 1 = (1,1,1,1) in our example. Ignoring the constraint xT1 = 0 for a moment, we write this
constrained optimization using Lagrange multipliers,

min
x

1
2
x
TLx+l (1� 1

2
x
T
x) =

1
2 Â

i j
xiLi jx j+l

1� 1

2 Â
i
x2i

!
.

At the minimum, the derivative with respect to any component xp should vanish,

0=
d
dxp

"
1
2 Â

i j
xiLi jx j+l

1� 1

2 Â
i
x2i

!#

=
1
2 Â

i
xiLip+

1
2 Â

j
Lp jx j�lxp = Â

i
xiLip�lxp = Lx�lx,

using the fact that the matrix L is symmetric in the last step. From the above, we conclude that

Lx= lx

50 Chapter 3. Eigenproblems

1

8
2

5 6

4

3

7

9

Figure 3.4: Network for demonstrating spectral partitioning.

so that the x that minimizes the quadratic form is an eigenvector of the Laplacian matrix L. To see
which of the eigenvectors, consider the quadratic form again,

x
TLx= x

Tlx= lxTx= l .

We are therefore looking for the eigenvector whose eigenvalue is as small as possible, but non-zero.
Because the smallest eigenvalue is zero and it corresponds to a vector of 1s. We required above that x
be perpendicular to the vector of 1s, and therefore we choose x to be the eigenvector corresponding to
the second smallest eigenvalue of the Laplacian matrix.

As an example, consider the network shown in Fig. 3.4. The adjacency matrix and the first and
second eigenvectors of the corresponding Laplacian matrix are shown here, showing that the second
eigenvector clearly well-classifies this particular network.

A=

0

BBBBBBBBBBBB@

0 1 1 0 0 0 0 1 0
1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1 0
0 0 1 1 0 1 0 0 1
1 1 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0

1

CCCCCCCCCCCCA

2 4 6 8
node number

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ei
ge

nv
ec

to
r c

om
po

ne
nt

s

v1
v2

(Optional) Finally, why is the matrix called a Laplacian matrix? If we derive the Laplacian
matrix for a network made of a one dimensional line of connected nodes, it turns out to be the same
as the finite difference representation of a second derivative. Consider a function y(x), represented
on a grid xi = 0,Dx,2Dx, . . . The second derivative of y(x) at a point xi = iDx is approximated as

3.5 Generalized eigenvalue problems 51

y00(x) = ∂y/∂x2 ⇡ (yi+1� 2yi+ yi�1)/Dx2. The vector of second derivatives at all grid points may
be written in matrix form as L(y1, . . . ,yn)T , where the matrix L has �2 on the diagonal, and 1 on
the two diagonals on either side. The Laplacian matrix for the above mentioned one-dimensional
connected series of nodes has the same shape. Now, consider the corresponding “Sturm-Liouville”
problem Ly= ly, or in a differential equation form, y00+ly= 0 with y0(0) = y0(2p) = 0. The solutions
(eigenfunctions) are yn(x) = cos(nx), ln = n. They become more oscillatory for higher n, corresponding
to larger eigenvalues. Therefore, the eigenvectors corresponding to smaller eigenvalues correspond to
a coarser division of the network into sub-components. This provides some further intuition into the
choice of the second smallest eigenvector for the partitioning the network into two parts.

See demo network_classification_example.m/py.

3.5 Generalized eigenvalue problems
Generalized eigenproblems of the form Ax = lBx arise in both the solution of partial differential
equations and in classification problems (see later in the course). In order to solve them, we could
multiply B�1 to obtain a standard eigenproblem B�1Ax= lx and solve for x and l . However, if A,B
are symmetric, it is not a good idea to because B�1A is not necessarily symmetric, and we lose a very
helpful property of the original problem. Instead, it is best to transform the generalized problem to a
symmetric regular eigenvalue problem using “Cholesky decomposition”, B= RR† where † indicates
complex conjugate transpose, or just B=RRT in the case of real matrices. To implement this procedure,
we carry out the following steps.

1. First, write the LU decomposition

B= L1U1

as a B= LDU decomposition, whereD is diagonal and both L and U now have 1 on their diagonal,
not only on the diagonal of L as in the standard LU decomposition. This is done by calculating the
usual B= L1U1, then setting D to be the diagonal of U1, and calculating U= D�1U1 (in Matlab:
U=D\U1). The inverse of D is trivial because it is diagonal. Note that the LDU decomposition of
a symmetric matrix B is

B= LDLT .

To see that this is the case (as shown in Strang 1N p 57), write B= LDU so BT = UTDLT which
is a lower⇥diagonal⇥upper decomposition. However, B= BT so also BT = LDU. Because LDU
is unique LT = U and that B= LDLT .

2. Next, write this as a Cholesky decomposition B= RRT with R= L
p
D.

3. Transform the generalized eigenproblem as follows. Write Ax= lBx as

Ax= lRRT
x,

multiply on left by R�1 to find R�1Ax= lRT
x, or R�1A(RT)�1RT

x= lRT
x; define y= RT

x

and

A0 = R�1A(RT)�1 = R�1A(R�1)T .

We have transformed to a standard eigenproblem A0
y= ly where A0 is symmetric.

4. We can now solve for y and can then efficiently solve y= RT
x for x.

For a demo, consider Generalized_eigenvalue_problem.m/py.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/3-network_classification/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/4-generalized-eigenvalue-problem/

52 Chapter 3. Eigenproblems

3.6 Linear ordinary differential equations and matrix exponentiation
Eigenvalues and eigenvectors are essential for solving systems of linear, constant-coefficient ordinary
differential equations which arise in numerous applications. Consider, for example, the equations,

dx1
dt

= 4x1� x2

dx2
dt

= 2x1+ x2

with initial conditions x1(t = 0) = 1, x2(t = 0) =�2. We can write these equations in matrix form,

dx
dt

=


4 �1
2 1

�
x1
x2

�
, x(t = 0) =


1
�2

�
.

In general, given a set of linear ODEs written in matrix form, dx/dt =Ax, substituting into this equation
a solution assuming an exponential time dependence, x= x0el t , we find dx/dt = lx0el t = Ax0el t , or
Ax0 = lx0. Therefore, the constant l determining the time dependence is an eigenvalue of A and the
amplitude x0 is the corresponding eigenvector. Note that there are several eigenvalues and eigenvectors,
and therefore several possible solutions. Given that if two functions solve these linear equations, so too
does their sum, and thus the general solution is a sum over these eigen-solutions,

x(t) =
n

Â
i=1

cieielit , (3.6)

where {ei,li} are the eigenvector, eigenvalue pairs, and the constants ci are determined from the initial
conditions. At t = 0, this solution may be written in matrix form as x(t = 0) = x0 = Sc, where the
vector c contains the constants ci, and S is a matrix whose columns contain the eigenvectors ei. Thus,
the required coefficients are given by the initial conditions via c= S�1

x0. The solution (3.6) may now
be written in matrix form as,

x(t) = S

2

64
el1t

. . .
elnt

3

75S�1
x0. (3.7)

For the above example, the eigenvalues and vectors are l1 = 2,v1 =
⇥
0.4472 0.8944

⇤T and
l2 = 3,v2 =

⇥
0.7071 0.7071

⇤T . The solution to this system of differential equations is, therefore,

x(t) = c1el1te1+ c2el2te2

We can write this solution in matrix form using (3.7),

x1(t)
x2(t)

�
=


0.4472 0.7071
0.8944 0.7071

�
e2t 0
0 e3t

�
0.4472 0.7071
0.8944 0.7071

��1 1
�2

�
.

Note that the eigenvalues and eigenvectors may be complex, but if the initial conditions and the
matrix are real, the solution must also be real. This is achieved by calculating appropriate coefficients
ci. In the case of complex eigenvalues, writing l = lR± ilI and eigenvectors e= eR± ieI , and using
el t = elRt(cos(lIt)+ isin(lIt)), the solution may be written as,

x(t) = c1elRt(eR coslIt� eI sinlIt)+ c2ielRt(eI coslIt+ eR sinlIt)

The above discussion assumes that the matrix has n independent eigenvectors. If that’s not the case,
some adjustments are needed. See the discussion of the Jordan form of a matrix in Section 3.8.

3.6 Linear ordinary differential equations and matrix exponentiation 53

3.6.1 Higher order, linear, constant coefficient ODEs
So far we have dealt with a system of first order constant-coefficient linear differential equations. A
higher order system of constant-coefficient ODEs can be transformed to a set of first order ODEs and
solved using the above approach. Consider a second order, homogeneous, constant coefficient ODE,

ẍ= aẋ+bx,

and define y= ẋ, writing the above equation instead as a set of two first order ODEs,

ẏ= ay+bx
ẋ= y.

Similarly, a set of n linear, constants coefficient ODEs can be converted to a single nth order ODE,
assuming no pathologies.

3.6.2 Matrix exponentiation
The above solution (3.7) for a set of linear, constant coefficient ODEs can be elegantly written in terms
of the exponent of the matrix A. Following the formula for the Taylor expansion of ex, the exponent of
a matrix A is defined as,

eA = I+A+
A2

2!
+

A3

3!
+ · · · (3.8)

Assuming we can diagonalize A using its eigenvectors as A = S⇤S�1, where ⇤ is a diagonal matrix
containing the eigenvalues, we can plug this formula into the equation for the matrix exponential and
we find that

eAt = I+At+
A2t2

2!
+

A3t3

3!
+ · · · (3.9)

= I+S⇤S�1t+
(S⇤2S�1t)(S⇤2S�1t)

2!
+

(S⇤2S�1t)3

3!
+ ...

= I+S⇤S�1t+
S⇤2S�1t2

2!
+

S⇤3S�1t3

3!
+ ...

= S(I+⇤t+
(⇤t)2

2!
+

(⇤t)3

3!
+ ...)S�1 = Se⇤tS�1. (3.10)

Because ⇤t is diagonal, its exponent is a diagonal matrix with elit along the diagonal. Thus, solution
(3.6) to the ODEs may be written using (3.10) and (3.7) as,

x(t) = eAtx0. (3.11)

It is not difficult to see from the first line of the expression (3.10) for eAt that its derivative is given by

d
dt
eAt = AeAt ,

and from there,

dx(t)
dt

=
d
dt
eAtx0 = AeAtx0 = Ax(t),

so that (3.11) indeed solves the equation. In Matlab/python, expm(A) gives the exponent of a matrix A.

54 Chapter 3. Eigenproblems

3.6.3 Stability of solutions to linear ODEs
In applications it is important to know if the solution to a set of linear ODEs grows to infinity, decays to
zero, oscillates, etc. This behavior depends on the nature of the eigenvalues. For linear homogeneous
ODEs, x(t) = 0 is always an equilibrium solution: starting there, the solution to dx/dt = Ax will
remain at x= 0. The question, though, is whether the solution will return to this equilibrium point if
perturbed slightly – this is referred to as the stability of the equilibrium point. Using the eigenvalues we
can determine whether the origin is a stable or unstable equilibrium point, and also determine in which
way the solution either returns to the stable origin or departs from the unstable origin. The eigenvectors
and eigenvalues are also used to construct graphical phase portraits of the system of ODEs, providing
further insight into the stability.

To determine the stability, write each eigenvalue in the form: l = lR+ ilI , and from this make the
following conclusions about the behavior of the solution,

• If all eigenvalues have a negative real part, the solution is stable, and decays to zero.
• If one or more of the eigenvalues have a positive real part, the solution is unstable and a small
perturbation away from zero will grow to infinity.

• If one or more of the eigenvalues has a non-zero imaginary part, the solution will oscillate.
It is helpful to plot and analyze the solution to a set of two dimensional ODEs in a “phase

space” whose coordinates are the variables. That is, given dx/dt = Ax with x(t) = (x1(t),x2(t))T , the
coordinates will be (x1,x2). At each point in this phase space, we can draw an arrow pointing in the
direction of (ẋ1, ẋ2), with the corresponding magnitude. Similarly, the solution x(t) corresponds to a
curve in this phase space, emanating from the initial conditions. In addition, the directions of the two
eigenvectors (when they are real) are also shown by the dash black and green lines.

Consider the following two-dimensional examples of ODEs in the form dx/dt = Ax. For each
example, we provide the matrix A, its eigenvalues li and its eigenvectors as the columns of a matrix S.

3.6 Linear ordinary differential equations and matrix exponentiation 55

Real eigenvalues, decaying solution: Consider

A=


�0.2306 0.0461
0.0461 �0.2694

�
; li =�3,�2; S=


�0.5532 �0.8330
0.8330 �0.5532

�
.

Using the linear ODE Matlab/python demo, the phase portrait and solution of this system is
shown below. The vectors on the phase portrait are all pointing toward the origin, showing it is a
stable equilibrium and that the solution is decaying.

0 2 4 6 8 10
t

0

0.1

0.2

0.3

0.4

0.5

|x
(t)

|

time series

|x|
x1
x2

-1 0 1
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

phase space

i.c.
trajectory
quiver
eigenvec 1
eigenvec 2

Real eigenvalues, growing solution: Next, consider

A=


0.2306 �0.0461
�0.0461 0.2694

�
; li = 2,3; S=


�0.8330 �0.5532
�0.5532 0.8330

�
.

The phase portrait and time series solution of this system are shown below. Unlike the previous
example, the vectors in this phase portrait are pointing outwards, showing the origin is unstable,
and the solution is growing in time.

0 2 4 6 8 10
t

-1

0

1

2

3

4

5

6

|x
(t)

|

time series

|x|
x1
x2

-1 0 1
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

phase space

i.c.
trajectory
quiver
eigenvec 1
eigenvec 2

56 Chapter 3. Eigenproblems

Imaginary eigenvalues: Next, let

A=


0.610 1.064
�1.290 �0.610

�
; li = 0± i; S=


�0.350�0.574i �0.350+0.574i

0.740 0.740

�
.

Because the real part of the eigenvalue is zero and the imaginary part non-zero, the phase portrait
is an ellipse centered around the origin, and the time series shows oscillations that are not growing
nor decaying. The origin is a neutrally stable equilibrium in this case.

0 2 4 6 8 10
t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

|x
(t)
|

time series

|x|
x1
x2

-1 0 1
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

phase space

i.c.
trajectory
quiver

Stable spiral: Now let

A=


0.510 1.064
�1.290 �0.710

�
; li =�0.1± i; S=


�0.350�0.574i �0.350+0.574i

0.740 0.740

�
.

For such complex eigenvalues, with non-zero real part, the phase portrait is a spiral. Since the
real part is negative, the origin is a stable point and the solution is a stable spiral.

0 2 4 6 8 10
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

|x
(t)
|

time series

|x|
x1
x2

-1 0 1
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

phase space

i.c.
trajectory
quiver

3.6 Linear ordinary differential equations and matrix exponentiation 57

Unstable spiral:

A=


0.710 1.064
�1.290 �0.510

�
; li = 0.1± i; S=


�0.350�0.574i �0.350+0.574i

0.740 0.740

�
.

The eigenvectors are the same as in the previous example. However, because the real part of the
eigenvalue is positive, the solution is an unstable spiral, spiraling away from the origin.

0 2 4 6 8 10
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

|x
(t)
|

time series

|x|
x1
x2

-1 0 1
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

phase space

i.c.
trajectory
quiver

One stable, one unstable mode:

A=


�0.08 �1.44
�1.44 �0.92

�
; li =�2,1; S=


0.6 �0.8
0.8 0.6

�
.

Because one eigenvalue is positive and one negative, the solution is nearly always going to
infinity (unless starting exactly over the dash green line, in the direction of the eigenvector with a
negative eigenvalue), but may go toward the origin first.

0 2 4 6 8 10
t

-1500

-1000

-500

0

500

1000

1500

2000

|x
(t)

|

time series

|x|
x1
x2

-1 0 1
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

phase space

i.c.
trajectory
quiver
eigenvec 1
eigenvec 2

58 Chapter 3. Eigenproblems

There are some additional possible behaviors even in two-dimensional systems. See Strogatz
(1994).

3.7 Non-normal dynamics and transient growth
We now know that if the real part of all eigenvalues of a set of linear constant coefficient ODEs is
negative, the solution must be decaying to zero for long times (as t ! •). It turns out, though, that
before decaying the solution in some cases may first experience a very dramatic amplification. This
phenomenon has been used to explain the explosive development of some weather systems, and can be
used to predict similar explosive growth in economic models. To understand why and how this might
happen, consider

dx
dt

= Ax, x(t = 0) = x0.

The solution, as shown by (3.11), is x= eAtx0 ⌘ Bx0. Given the eigenvectors/values of the matrix,

Aei = liei,

where ei are the eigenvectors of A. The solution may also be written as

x(t) = Â
i
cieielit .

where the coefficients ci are chosen to satisfy the initial conditions such that

x0 = Â
i
ciei.

The time dependent solution may also be written as,

x(t) = eAtx0 ⌘ Bx0.

If the eigenvalues all have negative real parts, we expect the solution to decay to zero, x(t ! •)! 0.
However, it turns out that when A is non-normal, AAT 6= ATA – that is, its eigenvectors are not
orthogonal to each other (see appendix A.1) – the solution may undergo an arbitrarily large amplification
before decaying to zero.

Consider first a geometric view of the amplification using a 2⇥2 example where x= (x,y) shown
in Fig. 3.5. The solution may be written as x(t) = c1e1el1t + c2e2el2t and we assume for this example
that l2 ⌧ l1 < 0. The initial conditions at t = 0 are therefore a superposition of two vectors parallel
to the two eigenvectors, x0 = c1e1+ c2e2. As the figure shows, the initial conditions in this particular
example are a combination of two nearly parallel large vectors that nearly cancel each other, leading to
the smaller, unit norm, initial conditions. This occurs because c1 is large and positive and c2 is large
and negative. By time t = t the first vector decays just slightly, while the second decays significantly.
As a result, the solution x(t), which is the sum of the two vector with the corresponding exponential
time dependence, grows, leading to a “non-normal” amplification. At even later times, the first vector
decays too, and so does the total solution.

Next, let’s see how we find the initial conditions x0 that lead to a maximal squared norm at a time t ,
|x|2 = x(t)Tx(t), subject to the requirement that the initial conditions are normalized |x0|2 = x

T
0 x0 = 1.

3.7 Non-normal dynamics and transient growth 59

c1e1e
�1t

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c2e2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c1e1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c2e2e
�2t

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>e2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3.5: Initial conditions and later development in a 2⇥2 non-normal transient growth case with
l2 ⌧ l1 < 0.

Use Lagrange multipliers to maximize

J(x0) = x(t)Tx(t)+l (1�x
T
0 x0)

= (Bx0)
T (Bx0)+l (1�x

T
0 x0)

= x
T
0 (B

TB)x0+l (1�x
T
0 x0).

Denoting the components of the initial conditions as x0,i, we require that at the maximum point
∂J(x0)/∂x0,i = 0. This, after some algebra, leads to

(BTB)x0 = lx0. (3.12)

The optimal initial conditions maximizing the state at a later time t are therefore an eigenvector of BTB,
where B is the propagator B= exp(At) = SeLtS�1. We next show that the corresponding eigenvalue is
the amplification factor from the initial conditions to the amplified state. Define the amplification factor
to be the norm of the solution at t divided by that at t = 0. It is convenient to calculate the square of
the amplification factor, kx(t)k2/kx0k2, and calculate it,

kx(t)k2

kx0k2
=

x(t)Tx(t)
xT0 x0

=
(Bx0)T (Bx0)

xT0 x0

=
x
T
0 (B

TB)x0
xT0 x0

=
x
T
0 lx0
xT0 x0

=l .

This suggests that the optimal initial conditions are the eigenvector of BTB corresponding to the largest
eigenvalue. The amplification factor is therefore is the square root of the largest eigenvalue.

An important point to note is that when we find the optimal initial conditions that maximize the
solution norm at t = t , and then plot the norm of the solution as function of time, the maximum of
this time series does not necessarily occur at t = t . That is, the above maximization only requires that
kx(t)k2 is maximized subject to unit-norm initial conditions, it does not require the norm at time t to
be larger than at other times. This is demonstrated in Figure 3.6, where the solution was optimized for
t = 1 (denoted by a dash vertical black line) yet the peak in the norm of the solution occurs around
t = 0.5.

60 Chapter 3. Eigenproblems

A numerical example based on,

A=


�9.7945 60.2566
�0.7395 4.2945

�

which has eigenvalues �5 and �0.5 is shown in Fig. 3.6 where we are trying to maximize the solution
noram at t = t = 1. First, we find the propagator, B= eA⇤1 = SeLtS�1, and BTB,

B= SeLtS�1

=

✓
�0.9969 �0.9883
�0.0793 �0.1525

◆✓
0.0067 0

0 0.6069

◆✓
�2.0715 13.4291
1.0776 �13.5451

◆

B=

✓
�0.6325 8.0342
�0.0986 1.2461

◆

BTB=

✓
0.4097 �5.2042
�5.2042 66.1019

◆

Now, we want to solve (BTB)x0 = lx0 to find x0 - the eigenvector corresponding to the largest
eigenvalue of BTB. We find,

x0 =

✓
�0.0785
0.9969

◆
and the amplification factor, l = 66.5116.

0 2 4 6 8 10
t

-2

0

2

4

6

8

10

|x
(t)

|

time series

|x|
x1
x2

-10 -5 0 5 10
x1

-10

-5

0

5

10

x 2

phase space

i.c.
trajectory
quiver
eigenvec 1
eigenvec 2

Figure 3.6: A numerical example of transient growth.

.

3.8 Jordan form
Much of the above discussion, including the solution of ODEs using matrix exponentiation, assumed
that the matrix can be diagonalized. It turns out, though, that this is not always possible. To see this,

3.8 Jordan form 61

consider a matrix A,

A=

2

4
2.5 �0.5 �1
0.5 1.5 1
0 0 2

3

5 (3.13)

which has a proper inverse and is therefore well-conditioned,

A�1 =

2

4
0.375 0.125 0.125
�0.125 0.625 �0.375

0 0 0.5

3

5 .

However, the eigenvalues and eigenvectors of A are all identical, and are calculated by Matlab to be,

S=


0.7071 0.7071 �0.7071
0.7071 0.7071 �0.7071

�

⇤=

2

4
2 0 0
0 2 0
0 0 2

3

5 .

The matrix of eigenvectors is therefore singular and cannot be inverted. As a result, we can’t diagonalize
the matrix using SAS�1 = ⇤, where ⇤ is the diagonal matrix of eigenvalues. The best we can do is to
find an alternative similarity transformation that brings A to a “Jordan form”, J. That is, we need find a
matrix of M, such that M�1AM= J, where in the simple case considered here, the Jordan form has the
eigenvalues on the diagonal and ones just above the diagonal

J=

2

4
l 1 0
0 l 1
0 0 l

3

5 .

This form is called a “Jordan block”, and in general a non-diagonalizable matrix has a Jordan form that
is made of several Jordan blocks of varying sizes. We will consider first the simple case of a single
Jordan form of a 3⇥3 matrix.

3.8.1 Calculating the transformation to Jordan form
Start with M�1AM = J, multiply by M on the left of both sides, to find AM = MJ. Writing M =
[v1,v2,v3], and given the special structure of J, we have,

Av1 = lv1,
Av2 = lv2+v1,

Av3 = lv3+v2.

This may also be written as,

(A�l I)v1 = 0 (3.14)
(A�l I)v2 = v1, (3.15)
(A�l I)v3 = v2. (3.16)

62 Chapter 3. Eigenproblems

Now multiply (3.15) by (A�l I) and use (3.14) to find (A�l I)2v2 = 0. Similarly, multiply (3.16) by
(A�l I)2 and use (A�l I)2v2 = 0, to find,

(A�l I)v1 = 0

(A�l I)2v2 = 0

(A�l I)3v3 = 0. (3.17)

This is why the vi are called generalized eigenvectors, as opposed to regular eigenvectors which simply
all satisfy (A�l I)ei = 0.

To calculate the transformation matrix to Jordan form, M, start with v3. The equations above show
that this vector is in the null space of the matrix (A�l I)3. However, note that (A�l I)2v3 = v1 6= 0.
Thus, v3 is found by looking for a vector that is in the null space of (A�l I)3 but not in the null space
of (A�l I)2. Given v3 we then use (3.16) to calculate v2 and then use (3.15) to calculate v1. We can
now form the transformation matrix to Jordan form asM= [v1,v2,v3].

3.8.2 Numerical example and sensitivity to noise
For the above example, solving for Vcandidates as the null space of (A�2I)3, we find

Vcandidates =

2

4
1 0 0
0 1 0
0 0 1

3

5 .

Next, multiplying the vectors in the null space by (A�2I)2, we find that only the third columns does
not yield zero,

(A�2I)2Vcandidates =

2

4
0 0 �1
0 0 �1
0 0 0

3

5 .

Therefore, the third column of Vcandidates is the desired vector v3 = (0,0,1)T . Next, v2 = (A�2I)v3 =
(�1,1,0)T , and v1 = (A�2I)v2 = (�1,�1,0)T . The needed transformation is found to be,

M= [v1,v2,v3] =

2

4
�1 �1 0
�1 1 0
0 0 1

3

5 .

Verify thatM indeed provides the needed similarity transformation to Jordan form,

J=M�1AM=

2

4
�1 �1 0
�1 1 0
0 0 1

3

5

2

4
2.5 �0.5 �1
0.5 1.5 1
0 0 2

3

5

2

4
�0.5 �0.5 0
�0.5 0.5 0
0 0 1

3

5=

2

4
2 1 0
0 2 1
0 0 2

3

5 .

However, it turns out that the Jordan form is exceedingly sensitive to noise. Consider adding an
extremely small perturbation to one of the elements of the matrix, creating

A1 =

2

4
2.5000001 �0.5 �1

0.5 1.5 1
0 0 2

3

5 ,

3.8 Jordan form 63

such that the difference between A1 and A is merely 10�6 in a single element. The eigenval-
ues/eigenvectors of A1 are now distinct and independent of each other,

S=

2

4
0.7076 0.7066 0.7071
0.7066 0.7076 0.7071

0 0 0.0000

3

5 , li = (2.0007,1.9993,2.0000),

such that A1 does not require a Jordan form anymore to be diagonalized. We conclude from this that
Jordan form is extremely sensitive to noise and therefore is not likely to come up in many data-driven
applications. The next subsection provides some intuition for the reason for this extreme sensitivity to
noise using an ODE perspective.

For some additional details and generalities and for proof by recursion that a Jordan form can
always be found, see Strang Appendix B.

3.8.3 A fuller Jordan form example
So far we have dealt with a single Jordan block. The Jordan form of a more general matrix may be
composed of multiple Jordan blocks, and while we do not deal with how to find the transformation
matrix for this form (Strang Appendix B), here is an example calculated using Matlab/python.

⌅ Example 3.1 Consider the matrix

A=

2

66666666664

2 1 0 0 4 0 0 0
0 42

3 � 1
3 0 22

3 0 0 0
0 0 2 0 0 0 0 0
0 0 �16 2 �8 0 �8 �2
0 � 2

3
1
3 0 11

3 0 0 0
0 0 0 0 0 4 0 0
0 0 8 0 4 0 6 1
0 22

3 �11
3 0 182

3 0 0 6

3

77777777775

whose Jordan form obtained using Matlab/python’s J=jordan(A) is,

J=

2

66666666664

4 0 0 0 0 0 0 0
0 6 1 0 0 0 0 0
0 0 6 0 0 0 0 0
0 0 0 2 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 4

3

77777777775

.

This Jordan form shows that A has one eigenvalue with the value of 2 with three identical eigenvectors,
another eigenvalue 2 with a single, unique eigenvector, two eigenvalues of 4, each with a separate,
unique eigenvectors, and two eigenvalues of 6 again sharing a single eigenvector. ⌅

3.8.4 Jordan form and ODEs
In order to provide a motivation for the Jordan form and to also understand its extreme sensitivity to
noise, consider an example of a second order ODE equivalent to a set of first order ODEs based on a

64 Chapter 3. Eigenproblems

Jordan form,

dx/dt = Jx,

J=

✓
�2 1
0 �2

◆

the two equations are

ẋ=�2x+ y,
ẏ=�2y.

Take the derivative of the first ẍ=�2ẋ+ ẏ, add twice the first equation to find ẍ+2ẋ= (�2ẋ+ ẏ)+
2(�2x+ y), and use the second equation to find,

ẍ+4ẋ+4x= 0. (3.18)

Note that this is equivalent to

0= (dt � (�2))2x
= (dt +2)(ẋ+2x)
= (ẍ+2ẋ)+2(ẋ+2x)
= ẍ+4ẋ+4x.

The general solution is

x= c1e�2t + c2te�2t . (3.19)

To find this, substitute x= eat in eqn. (3.18) to find a2+4a+4= (a+2)2 = 0, so that a1,2 =�2 and
therefore the secular term te�2t must be added as a second solution to be able to satisfy general initial
conditions.

Physical interpretation: Eqn (3.18) is a “critically damped” oscillator equation. If the damping
term coefficient were 4+ e , the solution would have exponentially approached zero. If it were 4� e
(where e is a small noise parameter) we would have obtained damped oscillations. On the boundary
between these two regimes, one obtains the solution (3.19). This also helps explain why Jordan form is
so sensitive to noise, and why it is not of practical interest: it’s not likely that the friction would have
exactly this critical value in a real-world problem.

More on connection to ODEs: Consider the exponential of a Jordan form. Let Îk⇥k be a matrix
with 1 above the diagonal, so that one Jordan block is J = l I+ Î. Now eJt = (Iel t)eÎt . Noting that
Îk = 0, one finds that eÎt is given by a finite power series leading to a form (as in Strang, eqn 10 on p
331),

Jk =

0

@
l 1 0
0 l 1
0 0 l

1

A
k

eJt = (Iel t)eÎt =

0

@
el t tel t 1

2 t
2el t

0 el t tel t

0 0 el t

1

A

which contains resonant terms (proportional to powers of t multiplying the exponential solutions) as
expected. The solution to a set of linear, constant coefficient ODEs can therefore be written in terms
of the matrix exponential even in the case that the matrix cannot be diagonalized, using the matrix of
generalized eigenvectors instead.

II

4 Principal Component Analysis 67
4.1 Principal Component Analysis (PCA) from the co-

variance matrix

5 Singular Value Decomposition 73
5.1 Singular Value Decomposition (SVD)
5.2 SVD applications

6 Similar items and frequent patterns . . . 97
6.1 Similar items
6.2 Frequent patterns and association rules

Part Two

4. Principal Component Analysis

4.1 Principal Component Analysis (PCA) from the covariance matrix
4.1.1 Motivation

Principle Component Analysis, also known as “Factor Analysis” or “Empirical Orthogonal Functions”,
is a powerful yet simple technique for uncovering relationships within data, with applications in finance,
weather and climate, social sciences and more. Some interesting applications include,

• Quantitative finance: Consider a vector containing stock prices, where the vector is given daily,
for several years, and can therefore be represented as a data matrix whose columns are the daily
data. We wish to find out which stock prices vary together, and which stocks vary opposite to,
or independently of, one another to create an optimal portfolio. PCA allows us to call upon the
covariance matrix to more clearly understand these kinds of relationships.

• Weather and climate systems: See the animation of sea surface temperature (SST) during El
Niño events in slides 1-4. We can use PCA to look for trends and correlations between different
weather phenomena and observable climate metrics.

• Neuroscience: In neuroscience, spike-triggered covariance analysis (a variant of PCA) is used
to analyze the generation of neuron action potential.

4.1.2 Derivation
Consider N vectors of size M⇥1, fn = fmn. Each column vector could represent, for example, data
at a given time, and the different components of fn could correspond to, for example, either data –
such as temperature – at different locations, or, say, prices of stocks of different companies at this
time. Let F= (f1, . . . , fN) = fmn be the M⇥N data matrix containing the entire data set. While we are
using a terminology that is based on the subscript representing time, this is not necessarily the case.
For example, the elements of fn could be the number of high school students taking courses in social
sciences, biology, literature, math and physics (that is, M = 5), and the subscript n could represent

http://seas.Harvard.edu/climate/eli/Courses/EPS131/Sources/09-ElNino/1-Intro-El-Nino.pptx

68 Chapter 4. Principal Component Analysis

different schools.
The first step is to remove the mean from each row of the data matrix, defining a mean-less primed

data matrix,

f 0mn = fmn�
1
N

N

Â
i=1

fmi

and from now on we are going to drop the prime and assume the mean is zero.
Our objective is to find M orthogonal vectors u j of dimension M⇥ 1 (these are the principal

components) that best describe the variability in the data. By this we mean that we look for u1 of
magnitude one such that ÂN

n=1(u1 · fn)2 is maximal. Maximizing this projection means that u1 is similar,
up to a minus sign, to the typical patterns of the data vectors fn. Next, we look for u2 of magnitude one
such that ÂN

n=1(u2 · fn)2 is maximal again, and is also orthogonal to the first u1, i.e. u1 ·u2 = 0. Then,
in general, we wish u j to be of magnitude one and to maximize ÂN

n=1(u j · fn)2 while being orthogonal
to all previous vectors. Define a matrix U whose columns are the vectors u j, and use the data matrix
notation to rewrite the sum to be maximized as,

1
N

N

Â
n=1

(u j · fn)2 =
1
N

N

Â
n=1

(uTj fn)
2 =

1
N

N

Â
n=1

M

Â
m=1

UmjFmn

!2

=
1
N

N

Â
n=1

M

Â
m=1

UmjFmn

!
M

Â
k=1

Uk jFkn

!

=
M

Â
m=1

M

Â
k=1

Umj

1
N

N

Â
n=1

FmnFkn

!
Uk j

= u
T
j

✓
1
N
FFT

◆
u j.

The matrix that appears here,

CM⇥M ⌘ 1
N
FM⇥NF

T
N⇥M

is the covariance matrix, whose element ci j = 1
N ÂN

n=1 fin f jn is the time averaged product (covariance)
of data elements i and j.

We next show that the covariance matrix is positive semi-definite,

x
TCx= Â

i j
xiCi jx j =

1
N Â

i j
xi
✓

Â
n
FinFjn

◆
x j

=
1
N Â

i j
xi
✓

Â
n
FinFjn

◆
x j =

1
N Â

n

Â
i
xiFin

!

Â
j
Fjnx j

!

=
1
N Â

n

Â
i
xiFin

!2

� 0.

and this implies the eigenvalues are non-negative.

4.1 Principal Component Analysis (PCA) from the covariance matrix 69

The constrained optimization problem of maximizing ÂN
n=1(u j · fn)2 and requiring u j to be of unit

magnitude is solved using Lagrange multipliers by maximizing,

u
T
j Cu j+l (1�u

T
j u j).

By requiring the derivative with respect to the elements of u j to vanish, we find that the optimal vectors
are eigenvectors of the covariance matrix,

Cu j = lu j.

Because the covariance matrix is symmetric, the eigenvectors u j are orthogonal, as we required above.
The projection of the eigenvector u j on the data – the quantity being maximized – is equal to the
corresponding eigenvalue,

u
T
j Cu j = u

T
j l ju j = l j,

and therefore the maximal projection occurs for the eigenvectors corresponding to the largest eigen-
values. This also provides some intuition for the discussion of the variance explained by each PC in
section 4.1.4 below. We can project the data at a given time, fn, on a principal component u j, to obtain
the amplitude for this principal component at that time,

t jn = fn ·u j.

This corresponds to a time series {t j1, . . . , t jN} which represents the amplitude of the principal com-
ponent u j as function of time. Time series are more generally referred to as the principal component
“expansion coefficients”, in particular in applications where the different data vectors do not represent
different times as mentioned above. There are M such time series, and we can put them as the rows
of an M⇥N matrix as T = (t jn). Remembering that we defined the M principal components to be
the columns of the M⇥M matrix U= (u1, . . . ,uM), we can write the equation used to derive the time
series matrix as

T= UTF.

Multiplying by the orthogonal matrix of principal components U, which is also the inverse of UT , we
find,

FM⇥N = UM⇥MTM⇥N .

This equation corresponds to an expansion of the data in terms of the eigenmodes (principal compo-
nents). Writing it for one time,

fn =
M

Â
j=1

u jt jn.

If some of the PCs are judged not important, for example, if we decide that they represent only
noise in the data, we may therefore wish to reconstruct the data using only k <M PCs. Then,

Freconstructed =
k

Â
j=1

u jt jn

= UM⇥kTk⇥N

= U(:,1 : k)⇤T(1 : k, :)

70 Chapter 4. Principal Component Analysis

4.1.3 Example of PCA
⌅ Example 4.1 Consider the following data set that represents the deviations from the long-term mean
of the CO2 concentration in the atmosphere (first line), the global mean surface temperature (second)
and the area of summer sea ice in the Arctic (third) over 9 consecutive years,

F=

0

@
0 �1.75 0.25 �1.0 0.5 �0.25 0.75 0.5 1.0

�3.0 �0.5 �1.75 0.25 �0.5 1.0 0.75 1.75 2.0
0 1.75 �0.25 1.0 �0.5 0.25 �0.75 �0.5 �1.0

1

A ,

where each column represents a year.
The PCA steps are as follows,
1. Calculate the covariance matrix by calculating FFT/N, where N = 9 is the number of years.
2. Calculate the eigenvectors of the covariance matrix and normalize them; these are the principle

components. Place the eigenvectors as columns of a matrixU , where each column is a principal
component of the data matrix.

3. Calculate the time series, T = UTF, where F is the original dataset and U is the matrix of
eigenvectors. If the data matrix F has dimensions M⇥N, the time series T should be the result
of multiplying matrices that areM⇥M and M⇥N and so should also be of dimensionsM⇥N.

The covariance matrix is,

FFT/N = C=

0

@
0.6944 0.3472 �0.6944
0.3472 2.361 �0.3472
�0.6944 �0.3472 0.6944

1

A .

We see that the diagonal terms are the variance of the three variables, that is, the average of (CO2)2, of
the temperature squared and of the ice area squared (because each variable (row) in the data matrix has
zero mean). The off-diagonal terms are the covariance of the different variables. The values indicate
that the CO2 and global temperature vary in the same direction, hence positively correlated (entry c12),
while they are both negatively correlated with sea ice (c13,c23). That is, CO2 and temperature tend to
increase/decrease together, while sea ice vary in the opposite direction.

The eigenvalues and eigenvectors (PCs) of the covariance matrix are calculated, and sorted by the
value of the eigenvalues from large to small,

D=

0

@
2.57 0 0
0 1.18 0
0 0 0

1

A , U=

0

@
0.272 0.653 0.707
0.923 �0.385 0
�0.272 �0.653 0.707

1

A .

The PCs ui are orthogonal vectors whose structure best represents the nine data vectors. In other
words, u1 is a vector that is as parallel as possible to the data vectors. u2 is as parallel as possible to the
data vectors while also being perpendicular to u1. Because the data space is three-dimensional, the last
eigenvector u3 is actually completely determined by the requirement that it is perpendicular to the first
two PCs. The principal components corresponding to the largest eigenvalues represent the main modes
in the data.

The eigenvector corresponding to the largest eigenvalue is the first PC
u1 = (0.272,0.923,�0.272)T . From a climate point of view, this PC represents a variability mode in
which when the CO2 and global temperature both increase, the sea ice decreases, and vice versa.

4.1 Principal Component Analysis (PCA) from the covariance matrix 71

Furthermore, we may be interested in calculating the time series, T, for this data, which we can
find by multiplying the transpose of the matrix of principle components, U, by the original data set, F.
We calculate the time series to be,

T=

0

@
�2.77 �1.41 �1.48 �0.314 �0.189 0.787 1.1 1.89 2.39
1.16 �2.09 1.0 �1.4 0.845 �0.711 0.69 �0.0212 0.535
0 0 0 0 0 0 0 0 0

1

A

The time series of the first and most dominant PC, u1, shows a continuous increase over time. Given
that, from our interpretation of the principle components, CO2 concentration and temperature vary in
the opposite direction of sea ice coverage, we can conclude from the time series that temperature and
CO2 concentration increase with time, while sea ice coverage decreases. The time series of the second
mode, shows alternating signs, indicating short-term variability superimposed on the slower climate
change represented by the largest mode. The smallest PC, is positive for CO2 and sea ice coverage
and negative for temperature. It explains zero percent of the variance (which will be discussed further
in the next section), presumably because even during climate variability in this data set, the CO2 and
temperature never vary together while leaving the sea ice unchanged. Thus, this principal component
does not represent a physical mode.

Two eigenvalues dominate since one is zero (yielding an empty bottom row in the time series),
and as a result the data can effectively be reconstructed using only two PCs. Let the reconstructed
data be Frecontructed , we can calculate Frecontructed = U(:,1:2)*T(1:2,:). Indeed, since one of the
eigenvalues is zero (rather than, say, much smaller than the other two eigenvalues), the reconstructed
data set is identical to the original. ⌅

4.1.4 Fraction of variance explained by PC modes
We found so far that the eigenvectors of the covariance matrix are the principal components that best
describe the variability in the data, and that the projection of these modes on the data is given by
the time series. We consider further the role of the eigenvalues of the covariance matrix. First, let’s
introduce the concept of “total variance” using a simple example. If the data vectors are given by
fn = (xn,yn,zn)T , using the expression for the variance of xn, var(x) = ÂN

n=1 x2n/N, and similarly for yn
and zn, we define the total variance of these data as var(xn)+ var(yn)+ var(zn). In terms of the data
matrix, the variance of the ith variable in the data vectors (the ith row of F) is,

1
N

N

Â
n=1

(fin)2 ,

and the total variance is the sum over all of these,

total variance=
M

Â
i=1

1
N

N

Â
n=1

(fin)2
!
. (4.1)

Next, use the fact that this total variance is exactly the trace (sum of diagonal elements) of the
covariance matrix, which is also equal to the sum of eigenvalues, trace(C) = ÂM

j=1 l j. As a result, the
fraction of the variance explained by the ith PC, ui is,

li

ÂM
j=1 l j

. (4.2)

72 Chapter 4. Principal Component Analysis

We can consider another way to understand the issue of “fraction of total variance explained”. Let u1
be the first PC, corresponding to the largest eigenvalue of C. Given also the corresponding time series,
we can create a partial reconstruction of the data using this first PC only,

FPC1 = u1t1 = U(:,1)⇤T(1, :) (=M⇥N).

Now calculate the total variance of this reconstructed data using (4.1). The ratio of this total variance to
that calculated using the full rather than reconstructed data, is the fraction of the total variance explained
by the first PC, and should be equal to the first eigenvalue divided by the sum of all eigenvalues, as
derived above.

4.1.5 PCA from covariance matrix in Matlab
%% calculate covariance matrix:

C=F*F’/N;

%% calculate PCs (matrix U) and eigenvalues:

[U,D]=eig(C);

%% calculate time expansion coefficients:

T=U’*F;

%% fraction of variance explained by each PC:

trace_C=trace(C);

fraction_variance=diag(D)/trace_C;

%% reconstruct data using only k PCs (assuming they are sorted!):

F_reconstructed=U(:,1:k)*T(1:k,:);

4.1.6 Examples and additional issues
Examples, activities and demos,

1. Complete the demo of PCA analysis of time series of four stocks
PCA_small_data_example_using_covariance.m/py

2. Consider the idealized 1d example, demonstrating the meaning of the covariance matrix, and the
calculation of PCs for both cos(kx)cos(wt) and for random data:
one_dim_covariance_matrix_and_PCA_tutorial.m/py

3. Idealized 2d example: which shows the calculated PC structure and time series: example_2_PCA.m/py
(Optional) Some additional issues to consider are that,

1. PCs do not represent physical modes, only data representation modes.
2. There may be distortion of calculated modes due to overlapping (non-orthogonal) modes of

variability, finite length of time, commensurate periods of variability of different modes, etc.

http://seas.Harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/PCA/
http://seas.Harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/PCA/
http://seas.Harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/PCA/

5. Singular Value Decomposition

5.1 Singular Value Decomposition (SVD)

Singular Value Decomposition, or SVD, is one of the most useful linear algebra concepts, with
applications in many different fields, from image compression to robotics to the solution of linear
equations and more. We consider first its definition, how it is calculated, and then several of its many
applications.

5.1.1 Statement, examples and calculation of SVD
Any m⇥n matrix can be written using its SVD as,

A= U⌃VT , (5.1)

where U is an m⇥m orthonormal matrix (UTU= UUT = I), ⌃ is an m⇥n matrix with the “singular
values” of A along its diagonal and zeros elsewhere, and V is another n⇥n orthonormal matrix. The
singular values along the diagonal of ⌃ are the square roots of the non-zero eigenvalues of AAT or ATA
(the non-zero eigenvalues of these two matrices are the same). The columns of U are the eigenvectors
of AAT , while the columns of V are the eigenvectors of ATA.

To get some insight into the above statement of SVD, multiply the SVD decomposition (5.1) by
UT on the left and take transpose of both sides, to find

ATU= V⌃T . (5.2)

Similarly, multiply (5.1) by V on the right to find,

AV = U⌃. (5.3)

74 Chapter 5. Singular Value Decomposition

Writing these last two equations for each column of U and V separately,

Avi = siui, i= 1, . . . ,n (5.4)

AT
ui = sivi, i= 1, . . . ,m, (5.5)

which has the form of two coupled eigenvalue problems. Multiply the first equation on the left by AT

and use the second, and then multiply the second by AT and use the first, to find,

ATAvi = siA
T
ui = s2

i vi,

AAT
ui = siAvi = s2

i ui.

We have therefore shown that the columns of U are the eigenvectors of AAT , while the columns of V
are the eigenvectors of ATA. This also revealed that the singular values si are the square root of the
eigenvalues of either AAT or ATA.

Note that U and V are orthonormal because their columns are the eigenvectors of the symmetric
matrices AAT or ATA, which are orthogonal to each other. This is because a symmetric matrix is also
normal and its eigenvectors are therefore orthogonal, see proof in section A.1. The eigenvalues of AAT

or ATA are non-negative and therefore have real square roots, as these are both positive semi-definite
matrices. The proof is essentially identical to the one used in section 4.1.2 to show that the covariance
matrix derived from the data matrix is positive definite.

We will run through an example shortly, but first, the algorithm for the calculation of the singular
value decomposition is as follows,

1. Consider the two square matrices AAT and ATA, calculate the one with smaller dimensions.
2. Calculate the eigenvalues and eigenvectors of the resulting matrix.
3. Insert the square root of the calculated eigenvalues (i.e., the singular values) into S with the

largest non-zero singular in the top left entry, decreasing down the diagonal.
4. If AAT was used, then its eigenvectors will be the first m columns of U, while if ATA was used,

its eigenvectors will be the first n columns of V. Arrange the columns of the resulting matrix (U
or V) from left to right with the eigenvector corresponding to the largest singular values to the
left, decreasing to the right.

5. Calculate the other orthogonal matrix. If AAT was used to calculate U, then the first m columns
of V are calculated using the matrix-form equations (5.2), or the vector form (5.5). Similarly, if
ATA was used to calculate V, then the first n columns of U are calculated using (5.3) or (5.4).

6. Finally, complete the rest of the columns of V or U by starting with random vectors and using
Gram-Schmidt orthogonalization to make sure the columns of the resulting matrix are orthogonal.

⌅ Example 5.1 As a simple numerical example, consider the following matrix,

A=

✓
3 2 1
2 3 1

◆

and calculate its SVD, A(n⇥m) = U(n⇥n)⌃(n⇥m)V
T
(m⇥m). Because A

TA is 3⇥3 while AAT is 2⇥2, start
with the latter, and use the fact that the U vectors are the eigenvectors of AAT .

AAT =

✓
14 13
13 14

◆

5.1 Singular Value Decomposition (SVD) 75

The eigenvalues of AAT are 1 and 27 (shown in the matrix D), and the corresponding matrix of
eigenvectors, U, is

U=

✓
�0.7071 0.7071
0.7071 0.7071

◆
D=

✓
1 0
0 27

◆

The singular values are square root of the diagonal of D. We rearrange the columns of U such that the
first corresponds to the largest singular value, and create the singular values matrix by taking the square
root of the above eigenvalues and appending a column of zeros to ensure the correct dimensions,

U=

✓
0.7071 �0.7071
0.7071 0.7071

◆
⌃=

✓
5.1962 0 0

0 1 0

◆
.

Next, find V. We cannot use the eigenvectors of ATA, because eigenvectors, even when normalized
to have unit norm, are uniquely determined only up to a minus sign. However, the signs of U and V
must be consistent to have A= U⌃VT . Arbitrarily multiplying some of the columns of V by a minus
sign would violate A= U⌃VT . Using v1 = AT

u1/s1 and v2 = AT
u2/s2, we find

V =

0

@
0.6804 �0.7071 0
0.6804 0.7071 0
0.2722 0 0

1

A .

the columns of U,V corresponding to the zero singular values (in this case, the third column of V)
are not needed in most applications, but in case it is needed, start with a random vector and use
Gram-Schmidt to get a vector perpendicular to the first two columns: set v3 = (1,1,1)T and perform
G-S to find a v3 perpendicular to the v1,v2 in the matrix above, leading to,

V =

0

@
0.6804 �0.7071 �0.1925
0.6804 0.7071 �0.1925
0.2722 0 0.9623

1

A .

Checking using Matlab we first recreate the original matrix:

U⌃VT =

✓
2.9999 2.0000 1.0001
2.0000 2.9999 1.0001

◆

The result looks good! Now compare to Matlab’s output using the svd function,

[U,S,V]=svd(A)

U =[-0.7071 -0.7071

-0.7071 0.7071]

S =[5.1962 0 0

0 1.0000 0]

V =[-0.6804 -0.7071 -0.1925

-0.6804 0.7071 -0.1925

-0.2722 -0.0000 0.9623]

Note that Matlab’s response is different by a minus sign for the first U and first V vectors. This is fine as
the two minus signs for u1 and v1 cancel out during the reconstruction ofA=U⌃VT = u1s1v1+u2s2v2.
⌅

76 Chapter 5. Singular Value Decomposition

5.1.2 Geometric interpretation of SVD
Real square matrices can be used to represent transformations of geometric shapes. For example,
consider a two-dimensional shape made of points (Figure 5.1, panel (a)) and consider each point as
representing a vector from the origin. Place all vectors as columns in a matrix X. After multiplying
each such vector by a matrix A, the shape (now given by the columns of AX) is transformed to a
different one (Figure 5.1, panel b). Consider now the sequence of transformations given by the SVD
decomposition of A.

-2 0 2
-2

0

2
(a) shape xi

-2 0 2
-2

0

2
(b) A*xi

-2 0 2
-2

0

2
(c) VT*xi

-2 0 2
-2

0

2
(d) S*VT*xi

-2 0 2
-2

0

2
(e) U*S*VT*xi

Figure 5.1: Geometric interpretation of SVD

When we carry out a singular value decomposition on a transformation matrix, A, we can think
about each component, the resultant U, S and VT matrices, as carrying out a part of the transformation.

⌅ Example 5.2 Let us take the following matrix, A, as an example, using the diagram in Fig. 5.1.

A=

✓
1.396 �0.4776
0.8659 �0.05269

◆

Calculating the SVD,

U=

✓
0.866 �0.5
0.5 0.866

◆
, ⌃=

✓
1.7 0
0 0.2

◆
, V =

✓
0.9659 0.2588
�0.2588 0.9659

◆

Recall that in transformations, AX = (USVT)X implies the data X is transformed by VT then by S
and last by U. Here, VT rotates the initial square spanned by unit vectors anti-clockwise by 30�. ⌃
applies a stretch to the square, creating a parallelogram, with the y-coordinates stretched by a factor of
0.2, and the x-coordinates stretched by a factor of 1.7. Finally, U applies a counter-clockwise rotation
by 45�. Thus, we see the piecewise transformations applied to our original shape achieves the same
transformation as the original A matrix. We will see this geometric interpretation of SVD in our
discussion of polar decomposition. ⌅

See Matlab/python demos here; as well as an animation and caption from Wikipedia by Kieff, with
some more details here.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/2-geometric-interpretation/
https://en.wikipedia.org/wiki/Singular_value_decomposition#/media/File:Singular_value_decomposition.gif
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/2-geometric-interpretation/Singular-Value-Decomposition-geometric-intepretation-Wikipedia.pdf

5.2 SVD applications 77

5.2 SVD applications
5.2.1 Image compression, low-rank approximation

Sending or downloading images (e.g., from a satellite mission to Earth) often requires that we only
store and send the essential components of the image. Say an image is N⇥N pixels, represented by a
matrix, A, of N2 numbers, each representing a gray scale value at a particular point in the image. SVD
may be used to reduce the amount of data representing the image – that is, compress it. Given the SVD
of A, the singular values determine the contribution of each of the U and VT columns to the image,
which becomes more apparent if we write the SVD as,

A= U⌃VT = u1s1v
T
1 +u2s2v

T
2 +u3s3v

T
3 + · · ·+ursrv

T
r

where r is the rank (defined for now as the number of non-zero singular values) of A, and the singular
values are shown in order of descending magnitude.

If the matrix representing the image is dominated by a few, say k, large singular values, then the
image matrix can be reconstructed using only the contributions from U and V vectors associated with
these largest singular values. If we keep k singular values, and disregard the other N� k, we need to
store k singular values plus (k terms in the expansion) times (k u,v eigenvectors) times (N values per
vector) = 2kN+ k numbers instead of the original N2, which can be a significant saving when N is
large and if the image can be reproduced well with a small k. Note that if we use all SVD modes for
the reconstruction, then the required data includes both the U and V matrices plus N singular values,
or 2N2+N, which amounts to approximately twice the number of entries in the original matrix, thus
certainly not representing a compression. . .

An example of carrying out this SVD image compression on an image of a Baboon is shown in
Fig. 5.2 and is given in the demo SVD_applications_image_compression.m/py.

The demo also shows the “explained variance” of the image, which is defined and calculated as
follows. Let the image be Xm⇥n,

XTX= (U⌃VT)T (U⌃VT) = V⌃2VT

The total variance is sum of diagonal elements of C= XTX/N, that are given by,

Cii = Â
j
Xi jXi j/N = Â

j
Vi jVjis2

i /N = s2
i /N

The total variance is therefore sum of singular values squared divided by N, and the fraction of the
variance explained by the first k modes is therefore,

k

Â
i=1

s2
i

r

Â
i=1

s2
i

.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/3-image-compression/

78 Chapter 5. Singular Value Decomposition

k=5/512, compression= 1.953%, explained var= 95.7% k=30/512, compression= 11.72%, explained var= 97.52% k=512/512, compression= 200%, explained var= 100%

0 200 400
n

0
2
4
6

104 singular values

0 200 400
n

100

105
log singular values

Figure 5.2: Image compression using SVD

5.2.2 Effective rank of a matrix
The “rank” of a matrix is defined as the number of independent rows or columns (smaller of the two, if
the matrix is not square), and is equal to the number of non-zero eigenvalues. However, in practice,
matrices may have columns that are nearly parallel, and treating them as independent can substantially
ill-affect the solution of a linear system of equations based on the matrix. The “effective rank” of a
matrix addresses this issue. Consider two examples matrices, where e is assumed small,

A1 =

✓
1 2
2 4+ e

◆
,

A2 = A1⇥106.

For a finite value of e , the two rows of A1 are different and A1’s rank (number of non-zero
eigenvalues) is 2. However, if e is smaller than the error in the measurements that determined the
values of A and b, it would make sense to treat e as very small noise, in which case the two equations
represented by the matrix are effectively the same, and the rank of the matrix is effectively only 1. This
implies that there are fewer equations than unknowns, and we will see in sections 5.2.5, 5.2.6 and 5.2.7
how to solve such systems where the numbers of equations and unknowns are not the same.

To determine the number of independent rows of a matrix, it is not wise to use the absolute value of
the eigenvalues – that is, treat eigenvalues smaller than some threshold as zero – or similarly, assume
that if the determinant is below some threshold it should be considered zero. In the above example, the

5.2 SVD applications 79

determinant and eigenvalues of A2 are much larger than that of A1, although it is equally ill-conditioned.
Setting e = 10�6, the singular values of both matrices are,

diag(⌃1) = (5,0.0000002), diag(⌃2) = 106(5,0.0000002).

To determine the effective rank, let the specified relative error in the entries of the matrix and RHS be e .
Find the value of k for which sk/s1 > e , while sk+1/s1 < e . This k is the effective rank of the matrix.
Assuming the relative error in the entries of A and b is, say, e = 0.001, this criterion would suggest that
both matrices above are of rank 1.

5.2.3 Matrix norm and condition number
We now revisit the conditioning of matrices, as discussed in earlier in the course (section 2.5). We are
interested in understanding how sensitive the solution to a linear system is to noise in A or in the RHS
b, and how we can determine whether a matrix is well-conditioned or ill-conditioned.

Consider a linear equation Ax = b. Adding a small perturbation to the RHS, the solution will
change to x+dx. The revised equation is,

A(x+dx) = b+db

Subtracting the original equation leads to the “error equation” for the error in the solution due to a
noise in the RHS,

Adx= db. (5.6)

Intuitively, the error dx= A�1db in the solution would be large, when A�1 is large (in some yet-to-be-
defined sense) or equivalently, when A is nearly singular. This motivates a discussion of the “condition
number” of a matrix, which, in turn, depends on the definition of the norm of the matrix. Both are
calculated using SVD.

Start by defining the “matrix norm”, which can be thought of as the maximum stretching effect a
matrix A can have on a vector,

kAk=max
x6=0

kAxk
kxk (5.7)

We next show that the matrix norm is equal the largest singular value (or the square root of the largest
eigenvalue). Start by rewriting the norm definition as,

kAk2 =max
x6=0

kAxk2

kxk2 =max
x6=0

x
TATAx

xTx
.

Given that kxk 6= 0, we can divide the numerator and denominator of the above definition by the norm
of x and therefore assume that it is equal to 1. This leads to a revised definition,

kxk2 = max
kxk=1

x
TATAx.

To find this maximum, use constrained optimization using a Lagrange multiplier,

J = x
TATAx+l (1�x

T
x)

J = Â
i, j,k

xiAT
i jA jkxk+l (1�Â

k
x2k).

80 Chapter 5. Singular Value Decomposition

The maximum occurs when,

0=
dJ
dxm

= Â
j,k
AT
m jA jkxk+Â

i, j
xiAi jTAim�2lxm

= Â
j,k
AT
m jA jkxk+Â

j,i
AT
m jA jixi�2lxm.

Renaming index i to k in the second sum,

0=
dJ
dxm

= 2Â
j,k
AT
m jA jkxk�2lxm = 2(AAT

x�lx).

Therefore, the maximum occurs when ATAx= lx; that is, when x, l are eigenvector, eigenvalue of
ATA. At this point, we can calculate kAk2,

kAk2 = x
TATAx

xTx

=
x
Tlx
xTx

= l .

The desired maximum of the squared norm therefore occurs when x is the eigenvector of ATA corre-
sponding to its largest eigenvalue, and the value of the square of the matrix norm is the eigenvalue of
ATA, and thus equal to the square of the largest singular value, l = s2

1 . Thus, the norm of A is given
by the largest singular value,

kAk= s1.

Next, derive the condition number, c, of a matrix A, which provides a measure of the amplification
of noise in the RHS. Let us compare the relative error in the solution, kdxk/kxk, with the relative
change to the RHS, kdbk/|bk. We write,

kAxk= kbk  kAk ·kxk

so that,

kxk � kbk
kAk .

Similarly, from the error equation (5.6) we find,

kdxk= kA�1
bk  kA�1k ·kdbk

so that,

kdxk  kA�1k ·kdbk.

Dividing the last equation by the norm kxk and using the above bound that kxk � kbk/kAk we find,

kdxk
kxk  kAk ·kA�1kkdbk

kbk .

5.2 SVD applications 81

The number c= kAk ·kA�1k is termed the condition number. Using our above result that kAk= smax
and therefore also that kA�1k= smin, where smax,min are the largest and smallest singular values of A,
we can equivalently write the condition number as,

c= kAk ·kA�1k= smax/smin,

kdxk
kxk  c

kdbk
kbk . (5.8)

The worst case scenario in terms of the amplification of the noise db into a large error in the
solution, dx, occurs when the relative error in the solution (LHS of 5.8) is equal to its upper bound
(RHS of 5.8). That is, the relative error in the solution is as large as it can be, given added noise in the
RHS. This occurs when x is proportional to the singular v vector corresponding to the largest singular
value of A and dx is proportional to the smallest one. In that case, take the norm of the RHS and LHS
of the equation and of the error equation and divide to find,

kAdxk2

kAxk2 =
kdbk2

kbk2 .

Write the squared norm on the LHS explicitly,

(Adx)T (Adx)
(Ax)T (Ax)

=
kdbk2

kbk2

or

dxT (ATA)dx
xT (ATA)x

=
kdbk2

kbk2 .

Using the fact that x and dx are chosen to be the largest and smallest singular vectors,

s2
minkdxk2

s2
maxkxk2

=
kdbk2

kbk2 ,

so that,

kdxk
kxk =

smax

smin

kdbk
kbk = c

kdbk
kbk .

This implies that the worst case noise structure is proportional to db= A�1dx.
See demo SVD_applications_matrix_rank_norm_condition_number.m/py).

5.2.4 Polar decomposition and the Kabsch algorithm
Polar decomposition is used in continuum mechanics and robotics, in applications requiring the ability
to separate rotations from stretches. Below we show an application of polar decomposition in the
comparison and identification of molecular structures.

Matrix polar decomposition is motivated by the representation of a complex number z= x+ iy in
terms of an amplitude and a rotation angle, as z= reiq . Matrix polar decomposition similarly writes
a real, square matrix A as the product of a symmetric positive semi-definite matrix (the “stretching”
or “amplitude”), S, and an orthogonal matrix, R, representing a rotation. If A is invertible, then R is
positive definite.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/4-matrix-rank-norm-condition-number/

82 Chapter 5. Singular Value Decomposition

SVD allows us to calculate this decomposition into A=R1S1 or into A= S2R2 by inserting VTV= I
into the SVD,

A= U⌃VT = (UVT)(V⌃VT) = R1S1

A= U⌃VT = (U⌃UT)(UVT) = S2R2

The factor R1 is orthogonal because RT
1R1 = (UVT)T (UVT) = VUTUVT = I, and S1 is symmetric and

semi-definite because ⌃ is. The same applies for R2 and S2.
With A, a transformation matrix (e.g., as in section 5.1.2), the decomposition A= RS breaks the

transformation into a stretching followed by a rotation. Figure 5.3, based on the demo, here, shows the
geometric interpretation of polar decomposition. Note the difference from the geometric interpretation
of SVD itself. In that case, two rotations were used, before and after the stretching step. As a result, the
stretching was done along the x and y axes. Here, only one rotation is involved, and the stretching and/or
compression occur in some general directions, depending on the matrix S, that are not necessarily the
directions of the two axes.

-2 0 2
-2

0

2
original shape xi

-2 0 2
-2

0

2
A*xi

-2 0 2
-2

0

2
ROTATE*xi

-2 0 2
-2

0

2
STRETCH*xi

-2 0 2
-2

0

2
 STRETCH*ROTATE*xi

Figure 5.3: Geometric interpretation of polar decomposition.

Kabsch algorithm for comparing molecular structures
Start with the location of atoms in a molecule, given as a set of N 3⇥ 1 column vectors xi, and
written as a 3⇥N matrix X= [x1, . . . ,xN] = xi j. Consider another molecule given by a similar matrix
Y = [y1, . . . ,yN] = yi j.

Next, shift both molecules to the origin by calculating and subtracting the mean location of atoms
in each molecule,

x̄=
1
N

N

Â
i=1

xi; x̂i = xi� x̄, x̂i j = [x̂1, . . . , x̂N]

ȳ=
1
N

N

Â
i=1

yi; ŷi = yi� ȳ, ŷi j = [ŷ1, . . . , ŷN],

where hat represents the coordinates of the molecules shifted toward the origin, and x̂i j is the ith
coordinate (out of 3 space coordinates) of the jth shifted molecule.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/5-polar-decomposition/

5.2 SVD applications 83

Figure 5.4: Demonstrating the Kabsch algorithm.

Next, calculate the covariance matrix of the two shifted molecules,

C= X̂ŶT , ci j =
N

Â
k=1

x̂ikŷ jk.

Derive the SVD decomposition of the covariance matrix,

C= U⌃VT ,

which can be used to derive two different polar decomposition forms, using VTV = UTU= I,

C= U⌃VT = U(VTV)⌃VT = (UVT)(V⌃VT) = QS1

C= U⌃VT = U⌃(UTU)VT = (U⌃UT)(UVT) = S2Q

where Q is an orthogonal matrix QTQ = I and therefore represents a pure rotation, while S1 and S2
are positive definite symmetric matrices that represent stretching/compression. For the comparison of
molecular structures, rotate the Y matrix using,

ˆ̂Y = QŶ

and now X̂ and ˆ̂Y should be as aligned as possible, and we can decide if they represent the same
molecules or two different ones, as shown in Figure 5.4.

5.2.5 Least squares, over-determined systems
Consider M equations and N unknowns, in the form, Ax= b where there may be more equations than
unknowns (over-determined systems), and even inconsistent equations. That is, theM⇥N matrix A is
not square, and M > N. An example with M = 3 and N = 2,

x= 1, y= 2, x+ y= 4.

84 Chapter 5. Singular Value Decomposition

which may be written in the form Ax= b, where

A=

0

@
1 0
0 1
1 1

1

A , b=

0

@
1
2
4

1

A .

An exact solution does not exist, but we can look for a solution that minimizes the norm e
T
e of the

error e= Ax�b. For this, look for x that satisfies

0=
∂
∂x
�
e
T
e
�
=

∂
∂x
�
(Ax�b)T (Ax�b)

�

=
∂
∂x
�
x
TATAx�b

TAx�x
TAT

b
�
= 2

�
ATAx�AT

b
�

or, done more carefully,

0=
∂
∂x
�
e
T
e
�
=

∂
∂x
�
(Ax�b)T (Ax�b)

�

=
∂
∂x

M

Â
i=1

(Ax�b)i(Ax�b)i =
∂

∂xn

M

Â
i=1

N

Â
j=1

Ai jx j�bi

!
N

Â
k=1

Aikxk�bi

!

=
∂

∂xn

M

Â
i=1

N

Â
(j,k)=1

Ai jAikx jxk�
N

Â
k=1

Aikxkbi�
N

Â
j=1

Ai jx jbi+bibi

!

=
M

Â
i=1

N

Â
k=1

AinAikxk+
N

Â
j=1

Ai jAinx j�Ainbi�Ainbi

!
= 2

�
ATAx�AT

b
�
.

The optimal solution satisfies

ATAx= AT
b, (5.9)

and the solution is, therefore,

x= (ATA)�1AT
b. (5.10)

This is referred to as the least-squares solution because it minimizes the sum of squares of the elements
of the error vector e. In practice, for a large problem, it makes more sense to solve (5.9) using Gaussian
elimination, rather than to invert the matrix ATA on the LHS and use the expression (5.10).

⌅ Example 5.3 Consider the equations 2x= 3, 3x= 4. To solve, write A= [2;3], b= [3;4], ATA= 13,
AT

b= 18. Optimal solution is therefore 18/13. The residual, while optimally small, is not zero if the
equations are not consistent, and is equal to Ax�b, in this case,

r= Ax�b=

✓
2
3

◆
(18/13)�

✓
3
4

◆
=

✓
�0.23
0.15

◆
.

⌅

5.2 SVD applications 85

5.2.5.1 Over-determined problems and QR decomposition

Suppose we need to solve an over-determined problem Ax= b (more equations than unknowns) for
many right hand sides. Remember (equation 3.5) that we can write the Gram-Schmidt orthogonalization
of the vectors represented by the columns of a matrix A as A = QR, with R upper-diagonal and Q
orthogonal. Using this, write,

ATAx= AT
b,

(QR)T (QR)x= (QR)Tb,

RTQTQRx= RTQT
b,

RTRx= RTQT
b,

Rx= QT
b.

The last equation is easily solved because R is upper diagonal, and thus we may use back substitution to
solve for x, at a cost much smaller than solving the equation (5.9). So if the over-determined problem
needs to be solved many times for many different b, QR provides an efficient algorithm.

5.2.6 Under-determined systems and the pseudo inverse

If A(M⇥N)x(N⇥1) = b(M⇥1) has fewer equations than unknowns, the problem is referred to as under-
determined and there may be many possible solutions. SVD allows us to obtain a solution for such
problems. A simple example is x+ y= 2, corresponding to A= (1, 1), b= 2, which has an infinite
number of solutions. A unique solution to this underdetermined problem may be found by adding a
requirement that x has the smallest possible norm, and with this requirement x can then be found using
SVD.

Our first step is to define the “pseudo inverse” of A, denoted A†. For an M⇥N matrix ⌃ with
non-zero elements only along the diagonal, the pseudo inverse is defined as the transpose of the original
⌃, with the non-zero diagonal elements replaced by their inverse, and with the matrix transposed,

S =

0

BBBBBBBB@

s1 0 . . .0
. . . 0 . . .0

sr 0 . . .0
0 0 . . .0

. . . 0 . . .0
0 0 . . .0

1

CCCCCCCCA

(M⇥N)

S† =

0

BBBBBBBBBBBBB@

s�1
1

. . .
s�1
r

0
. . .

0
...

0 0

1

CCCCCCCCCCCCCA

(N⇥M)

Given a general matrix with the SVD A(M⇥N) = U(M⇥M)⌃(M⇥N)V
T
(N⇥N), we define its “pseudo

inverse” as A†
(N⇥M) = V⌃†UT . To see why it is called the pseudo inverse, consider A†A and AA†. First,

86 Chapter 5. Singular Value Decomposition

note that,

(A†A)(N⇥N) = (V(N⇥N)⌃
†
(N⇥M)U

T
(M⇥M))(U(M⇥M)⌃(M⇥N)V

T
(N⇥N))

= V⌃†UTU⌃VT = V⌃†⌃VT

= V(N⇥N)

0

BBBBBBBB@

1
. . .

1
0

. . .
0

1

CCCCCCCCA

(N⇥N)

VT
(N⇥N) (5.11)

Similarly,

(AA†)(M⇥M) = (U(M⇥M)⌃(M⇥N)V
T
(N⇥N))(V(N⇥N)⌃

†
(N⇥M)U

T
(M⇥M))

= U⌃VTV⌃†UT = U⌃⌃†UT

= U(M⇥M)

0

BBBBBBBB@

1
. . .

1
0

. . .
0

1

CCCCCCCCA

(M⇥M)

UT
(M⇥M) (5.12)

Note that the number of non-zero elements in the diagonal matrix is r, which may smaller or equal
to min(M,N), in general, and is the rank of the matrix A. Consider now an under-determined system,
with fewer equations than unknowns, M < N. If the rank of A is equal to the number of equations,
r =M < N, then based on (5.11) and (5.12), we have (AA†)(M⇥M) = I(M⇥M) but (A†A)(N⇥N) 6= I(N⇥N).
This justifies the “pseudo inverse” terminology. Given this, it is easy to see that a solution in this
particular case is given by

x
† = A†

b, (5.13)

because if we substitute x† = A†
b in the matrix equation we find Ax† = AA†

b= Ib= b.
Next, show that the solution x

† = A†
b is also of the smallest possible norm. Note that x has the

dimension of the columns of V. Given that sr+1, . . . ,sM = 0, we can write x† as an expansion in first r
vi vectors,

x= A†
b= V⌃†UT

b=
r

Â
i=1

u
T
i b

si
vi.

The rest of the vi vectors are in the null space of A,

Avi = siui = 0, i= r+1, . . . ,N

and the solution x
† does not contain any of these null vectors. We can construct other solutions by

adding any vector xnull that is a superposition of the null vectors of A,

xnull =
N

Â
i=r+1

civi.

5.2 SVD applications 87

Because Axnull = 0, x= x
†+xnull is also a solution to Ax= b. Any such solution, however, will have a

larger magnitude than x†, because the null and non-null parts are orthogonal (based on orthogonality of
V vectors) and therefore satisfy Pythagoras’ theorem,

kxk2 = kx†+xnullk2 = kx†k2+kxnullk2 � kx†k2.

We thus showed that x† is the smallest norm solution to the under-determined (M <N) full rank (r=M)
problem.

For an example, see SVD_application_underdetermined_linear_eqns.m/py.

5.2.7 Solving linear systems when r <min(N,M)

When solving systems that are formally over-determined, in the sense that there are fewer unknowns
than equations, A(M⇥N)x(N⇥1) = b(M⇥1), N <M, we cannot use the methods discussed in section 5.2.5
if (ATA)(N⇥N) is not full rank (non-invertible), that is, if r< N, because this matrix needs to be inverted
to find the solution (5.10). Similarly, when solving an under-determined system with M < N, if the
rank of A is less than the number of equations, r <M, we cannot use the solution (5.13) discussed in
section 5.2.6 because as shown there A†A 6= 1 when r <M. Note that these issues occur in both cases
when r <min(N,M). We first demonstrate these cases with simple examples.

Start with a rank-deficient under-determined problem,

x+ y+ z= 2
x+ y+ z= 3

with M = 2 equations and N = 3 unknown. The matrix is,

A=

✓
1 1 1
1 1 1

◆
,

and its rank is clearly r = 1<M = 2, and there is no solution because the equations are contradictory.
Thus, we must resort to looking for a solution that minimizes the norm of the error, e= Ax�b, rather
than one that solves the above equations. A second example, of a rank-deficient over-determined
problem is,

x+ y= 2
x+ y= 3
x+ y= 4,

where the matrix is

A=

0

@
1 1
1 1
1 1

1

A .

While there are more equations (M = 3) than unknowns (N = 2), the rank of the matrix is only
r = 1< N = 2, and we find,

ATA=

✓
3 3
3 3

◆

http://seas.Harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/6-overdetermined-and-underdetermined-linear-eqns/

88 Chapter 5. Singular Value Decomposition

whose rank is also 1. ATA therefore cannot be inverted to solve using the least-squares solution (5.10).
The remedy to both pathologies demonstrated by these examples is to seek a solution that minimizes

the error, such that the solution’s norm is as small as possible – a combination of the approaches we
used for the over-determined and under-determined cases. We already know that the solution that
minimizes the error satisfies ATAx= AT

b. Given that ATA is not full-rank, there are an infinite number
of solutions. We are therefore looking for the smallest norm solution for this equation, and as before,
this is obtained by using the pseudo inverse,

x= (ATA)†AT
b.

It turns out that this may be written simply as x = A†
b, exactly as in the case of under-determined

problems, and this result is derived as follows,

(ATA)†AT =
�
(U⌃VT)T (U⌃VT)

�†
(U⌃VT)T

=
�
V⌃TUTU⌃VT �† (V⌃TUT)

=
�
V⌃T⌃VT �† (V⌃TUT)

= V(⌃T⌃)†VTV⌃TUT)

= V(⌃T⌃)†⌃TUT

= V(⌃†⌃T†)⌃TUT

= V⌃†(⌃T†⌃T)UT

= V⌃†UT = A†.

This proves that the optimal solution for the case of an over-determined problem with rank-deficient
ATA, or for an under-determined problem where the rank of A is less than the number of equations, is
exactly the same as for the general under-determined case.

The pseudo inverse of an invertible (full-rank) matrix is equal to its standard inverse, A�1 = A†,
which can be shown as follows,

A�1 = (USVT)�1 = (VT)�1S�1U�1 =VS�1UT =VS†UT = A†.

The above derivation thus shows that the solution to the full-rank over-determined case (5.10) can be
written as,

x= (ATA)�1
b= (ATA)†b= A†

b.

Similarly, the solution to a problem with the same number of equations and unknowns, where the
matrix may be inverted may be written as,

x= A�1
b= A†

b.

Thus, we conclude that the solution to any system of linear equations may be written as,

x= A†
b.

See demo of the different classes of linear equations using the code
Review_examples_linear_equations.m/py.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/6-overdetermined-and-underdetermined-linear-eqns/

5.2 SVD applications 89

5.2.8 PCA using SVD
PCA may be derived directly from the data matrix using SVD, instead of deriving the covariance
matrix as described above. Consider an M⇥N data matrix representing a set of M⇥1 column vectors
fi, each representing, for example, a spatial structure at a time i= 1, . . . ,N, such that the data matrix
is F = (f1, . . . , fN). The covariance matrix FFT/N is therefore M⇥M. The SVD decomposition is
FM⇥N = UM⇥M⌃M⇥NVT

N⇥N . Then, the columns of U are eigenvectors FFT – they are normalized, so
this is the same as eigenvectors of C= FFT/N – and correspond to the principal components describing
the spatial structures, and the relationships between the variables in the data vectors fn.

When using the covariance matrix to calculate the PCs, the expansion coefficients (time series) are
obtained by projecting the data on the PC vectors, using T= UTF. Given the SVD of F, this is equal
to T= UTU⌃VT = ⌃VT . The columns of V are therefore the normalized, or non-dimensional, PCA
expansion coefficients (time series). The dimensional expansion coefficients of the PCs are the first M
columns of V (each of size N⇥1) multiplied by the corresponding singular values (⌃VT).

The advantage of PCA via SVD is smaller round-off errors because the data matrix A is not squared.
The advantage of using the covariance matrix FFT/N is that it can be much smaller in some cases when
N >M, as there are often more time steps than variables. Thus, in these cases using the covariance
matrix leads to a much smaller problem.

Here is a summary of the approach. F is the M⇥N data matrix, each column is data at one time,
typically N >M. PCA analysis is simply done using,

[U,S,V]=svd(F);

PCs are the columns of U (M vectors of size M⇥1). The variance explained by each mode is given
by the eigenvalues of the covariance matrix, which, up to a factor N, are the same as the squares of
singular values of the data matrix. Because the fraction of variance explained is normalized by the sum
of the eigenvalues of the covariance matrix, the factor N does not matter, and we have for the variance
explained by the ith PC,

s2
i

Â j s2
j
,

which is equivalent to (4.2).

5.2.9 Multivariate PCA
In many applications, it is necessary to perform the PCA of several variables that are given in different
units. Examples include analyzing the relation between several stocks in NY and several stocks in
Tokyo given in different currencies, or between surface temperature over many locations in Pacific
ocean and wind speed over these locations, again given in different units.

We proceed as follows. First, remove the mean (and linear trend, when relevant) from each variable.
That is, remove the mean from each of the NY stocks and each of the Tokyo stocks. Next, calculate the
standard deviation (std, square root of the total variance) of all of the NY stocks, and normalize each of
them by this std, and do the same for the Tokyo stocks. Note that we do not normalize each individual
stock by its own std, but normalize each group (all NY stocks) by the std calculated from the entire
group. The normalization puts the two (or more) different data sets into the same normalized units.
Finally, arrange all normalized variables in a single vector and proceed to produce the data matrix from
these vectors and analyze it, as in the single variable case.

90 Chapter 5. Singular Value Decomposition

In mathematical terms, consider two groups of variables, in two data matrices, Xmn and Yln,
corresponding to n = 1, . . . ,N vectors of size M and L, respectively (i.e., M stocks in NY and L in
Tokyo).

Remove the mean from each row of the data matrices,

X 0
mn = Xmn�

1
N

N

Â
i=1

Xmi

Y 0
ln = Yln�

1
N

N

Â
i=1

Yli

Normalize by std of each group of variables,

X̂mn =
X 0
mnq

1
MN ÂN

j=1 ÂM
i=1(X 0

i j)
2

Ŷln =
Y 0
lnq

1
LN ÂN

j=1 ÂL
k=1(Y 0

k j)
2

Next, create an (L+M)⇥N data matrix F corresponding to N vectors fn of length M+ L, as
fn = (x̂n; ŷn). SVD analysis of this combined matrix, F = U⌃VT , gives us the multivariate PCs
(columns of U) and the corresponding time series (columns of ⌃VT).

Multivariate PCA is a very powerful tool for analyzing the relation between two data sets,
but it may fail to extract important information as demonstrated by the following example (see
SVD_applications_MCA_vs_PCA.m/py).

⌅ Example 5.4 Consider the following two data sets X and Y, and the composite data set F constructed
as follows,

X(4⇥N) = 3

2

664

2
2
1
1

3

775sin(w1t)+0.2

2

664

2
0
1
0

3

775sin(w3t)

Y(3⇥N) = 2

2

4
1

�1
1

3

5sin(w2t)+0.2

2

4
�1
0
0

3

5sin(w3t)

t = 0.3(1, . . . ,N), N = 10000

F=

✓
X

Y

◆

(7⇥N)
(5.14)

where w1 = 2p/11, w2 = 2p/7, and w3 = 2p/3. Thus, X varies predominantly with a frequency w1, Y
with a frequency w2, and they both have a small shared variability with a frequency w3. Using SVD to
analyze F, we find that the first three singular values are 671, 245 and 25, while the other four are zero,

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/7-PCA-MCA/

5.2 SVD applications 91

so that only the first three PCs contribute to the variance, and are given by,

U=

2

666666664

�0.63 0.00 �0.56
�0.63 0.00 0.56
�0.31 0.00 �0.28
�0.31 0.00 0.28
0.00 0.57 0.37
0.00 �0.57 0.18
0.00 0.57 �0.18

3

777777775

.

The first PC clearly represents the w1 variability of the first data set, while the second represents the
w2 variability of the second data set. However, the co-variability of the two data sets, represented by
the common w3 variability, is not well-represented by the third PC. We would have expected the third
PC to have the structure of the w3 variability, (2,0,1,0,�1,0,0)T . However, (2,0,1,0,�1,0,0)T is
not orthogonal to the first two PCs and therefore cannot be the third PC. In general, the requirement
that PCs be orthogonal to one another, in a system where the variability modes are not necessarily
orthogonal, may sometimes render the PCs less useful, as demonstrated by this particular example. The
analysis suggested in the next section addresses this shortcoming of multivariate PCA in the context of
analyzing the relation between two data sets. ⌅

5.2.10 Maximum covariance analysis (MCA)
Multivariate PCA attempts to diagnose the variability of two or more data sets, in addition to their
possible covariance, and for this reason sometimes fails to correctly diagnose the covariance as seen
above. MCA is an alternative SVD-based analysis method that can be used to cleanly analyze the
covariance of the two data sets by not attempting to also analyze the variance of each data set.

Consider again two data matrices, X(M⇥N) and Y(L⇥N), corresponding to n = 1, . . . ,N vectors of
size M and L, respectively (i.e., M stocks in NY and L in Tokyo, given over N days). In this case we
need to remove the mean from each variable, but do not need to normalize by the standard deviation.
Calculate the covariance matrix (of dimensionsM by L) as

C= XYT/N =
N

Â
n=1

xny
T
n /N.

The “total covariance” is defined as the sum over all of the squared elements of C (also known as the
Frobenius norm of this matrix),

total covariance⌘
M

Â
i=1

L

Â
j=1

c2i j.

To proceed, note that this total covariance is also equal to the sum over the squared singular values of C
(section A.2). This suggests an SVD analysis of the covariance matrix, C= U⌃VT . Given this role of
the singular values, we deduce that the fraction of the total covariance explained by SVD mode k is
therefore given by,

s2
k

Âi s2
i
.

92 Chapter 5. Singular Value Decomposition

Note that the columns of U have the same dimension as the columns of the X data vectors, while
columns of V have the same dimension as those of the Y data matrix. If, for example, there is only one
non-zero singular value, s1, then we deduce that the first two singular vectors, u1 and v1, completely
explain the co-variability of the two data sets. Specifically, these vectors are the structures in X and Y,
correspondingly, that vary together. Normally, additional singular values would be non-zero, and in this
case the first mode explains the strongest co-variability, corresponding to the largest fraction of the total
covariance. The next SVD vectors, u2 and v2, again represent X and Y structures that vary together,
each of them is orthogonal to the previous corresponding vectors, and they explain (are parallel to) the
next strongest co-variability signal. Unlike multivariate PCA, MCA does not attempt to explain the
separate variability (variance) of X and Y, but only to extract the parts of the two data sets that vary
together.

For the data set from the above example (5.14) (letting N = 10,000 to eliminate excess noise in the
resulting PCs), we find,

C= XYT/N =

y1 y2 y3
x1 �0.04 0.00 0.00
x2 0.00 0.00 0.00
x3 �0.02 0.00 0.00
x4 0.00 0.00 0.00

si = 0.045,0,0

u1 = (�0.89,0,�0.45,0)T

v1 = (1,0,0)T

The covariance matrix shows that x1 and x3 are correlated with y1, and that there are no other correlations
between the two data sets. The first U and V SVD vectors nicely capture the structure of the vectors used
to create the co-variability with a frequency w3, as desired. In this case, there is only one co-variability
mode that explains all of the total covariance because there is only one non-zero singular value. The
uncovered relationship between x1, x3 and y1 is seen in the initial structure of the data governed by the
combined w3 vector for X and Y, (2,0,1,0,�1,0,0)T .

Next, one may want to examine the contribution of the co-variability to the original two data sets.
For this purpose, project the original X, Y data on the MCA vectors to find the corresponding time
series,

TX = UTX

TY = VTY.

In the above example, this extracts only the w3 variability of each of the two data sets.
Finally, the co-variability of the two data sets may be a small part of the variability of each of the

two, as in the above example, or may be more dominant. To quantify this, it is possible to calculate
the variance of each of the data sets explained by the SVD vectors of the covariance matrix, and this
is discussed in section 5.2.10.1. In conclusion, we use multivariate PCA to analyze the variance of
multiple data sets and MCA to analyze the covariance of two data sets. Both analyses together provide
a fuller picture than either method alone.

5.2.10.1 Variance explained by MCA (SVD) modes
(Optional) In MCA analysis of two co-varying data sets, we normally ask what part of the covariance
is explained by each SVD mode, but we can also ask what part of the variance of each data set is

5.2 SVD applications 93

explained by the SVD modes. For example, if a certain mode explains all of the covariance between the
two fields, but does not explain much of the variance, it means that the two data sets are barely related
to each other.

Consider the MCA/SVD analysis of two data sets XM⇥N and YL⇥N , and for convenience assume that
different columns correspond to different times. Write these as time-dependent (zero-mean, detrended)
vectors xn and yn where n is a discrete index running over all times in the data. Let the SVD modes
of the covariance matrix C= XYT/N, corresponding to X, be em, m= 1, . . . ,M. We can expand xn in
these modes as,

xn =
M

Â
m=1

amnem,

where the expansion coefficients are obtained from this first equation using,

e
T
j xn =

M

Â
m=1

amneTj em = a jn.

The norm square of xn at a time n is,

x
T
n xn =

M

Â
m=1

amneTm

!
M

Â
j=1

a jne j

!
.

Given that the SVD modes are orthonormal, eTme j = dmj,

x
T
n xn =

M

Â
m=1

a2mn.

The total variance at all times is therefore

var(x) =
1
N

N

Â
n=1

x
T
n xn =

1
N

N

Â
n=1

M

Â
m=1

a2mn.

So the total variance explained by, say, SVD mode k is,

1
N

N

Â
n=1

a2kn,

and the percent total variance of X explained by mode k is, therefore,

100⇥

N

Â
n=1

a2kn

N

Â
n=1

M

Â
m=1

a2nm

.

In Matlab, this would be calculated as follows,

94 Chapter 5. Singular Value Decomposition

C=XY’/N;

% e_j are the columns of U:

[U,S,V]=SVD(C);

% calculate expansion coefficients of X data in terms of its SVD modes:

a=U’*X;

% calculate total variance

tmp=a.*a/N;

total_variance=sum(tmp(:))

% calculate variance of X explained by modes k=1:3

for k=1:3;

mode_k_variance(k)=a(k,:)*a(k,:)’/N;

end

% desired fraction:

var_k_percents=100*mode_k_variance(:)/total_variance;

% sum of the variance of X explained by these first few modes:

sum(var_k_percents)

5.2.11 The Netflix Prize

Consumers reveal their preferences – whether for their music taste, movie preference, favorite TV
shows, or products they like to buy on-line – via their ratings of products, and companies therefore
have large amounts of rating data that can be used to more effectively recommend new content to their
customers. To invite improved algorithm ideas, Netflix hosted a competition for a $1,000,000 prize.
The winning entry was based on SVD, among other factors Koren et al. (2009).

Two possible strategies for recommendation systems are based on content and on collaborative
filtering. In the context of music recommendation, for example, content-based filtering is based on a
list of properties acquired from the information provided by the users about their preferences, as well
as on properties of the music or artists they listened to, such as genre. Collaborative filtering calls upon
the user’s past behavior – for example, previous transactions or movie ratings – without explicitly using
user-profile information. Collaborative filtering suffers the “cold start” problem of difficulty in making
appropriate recommendation to new users.

Collaborative filtering can work by comparing either items (e.g. movies) or users. Comparing
items: suppose movies x, y, z are similar in the sense that they were liked by the same users. Then if
a given user liked movies x, y she is also likely to like z. Comparing users: suppose users a, b, c are
similar in the sense that they liked the same movies. Then, if users a, b liked a given movie, we can
guess that user c will also like this movie.

The ratings of movies by users can be put into a large sparse matrix whose elements rum contain
the rating by user u of movie m. It turns out to be useful to use SVD to process and analyze this matrix
in order to obtain optimal recommendations. The following is a simplified version that ignores the
dimension-reduction element of the algorithm.

1. Define the element ri j of the rating matrix R as the rating by user i of movie j. There are m users
and n movies so m rows and n columns in the user-movie matrix, R.

2. Fill missing values: calculate average rating for each movie over users, and fill missing values
with the appropriate average for that movie.

3. Remove from each row (that is, from each user) the mean over movies, r̄i = 1
n Ân

j=1Ri j.
4. Perform SVD, decide on a rank k, and calculate a reduced rating matrix to remove noise, replacing

https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Collaborative_filtering

5.2 SVD applications 95

R with Um⇥k⌃k⇥kVT
k⇥n.

5. The columns of U,V tell us something useful about the user groups and movie groups.
6. Calculate similarity of movies j, f based on the reduced rating matrix (the similarity is the

correlation of movies j, f based on average over users),

simj f =
Âm
i=1Ri jRi fq

(Âm
i=1R2

i j)(Â
m
i=1R2

i f)

7. Calculate a prediction of the rating by user i of movie j, by averaging over the ratings of all
movies by the same user, each weighted according to its similarity to movie j,

pri j =
Ân

f=1 simj f Ri f

Ân
f=1 |simj f |

+ r̄i

Example code is given by, SVD_applications_Netflix.m/py.
(Optional) Information on the fuller procedure in highlighted parts of section 6.1 of Vozalis and

Margaritis (2006) is available here. Note that instead of eqn (4) in Vozalis, the predicted rating of
movie a by user j is pra j = Ân

i=1 simji(rrai+ r̄a)/(Ân
i=1 |simji|), where simji is the similarity between

the ratings of movies i, j by all users, and the sum is over movies.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/8-Netflix/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/8-Netflix/

6. Similar items and frequent patterns

6.1 Similar items
6.1.1 Motivation

In analyzing large data sets, we may be interested in the similarity between different items. Are two
faces similar? Does the similarity between two texts suggests plagiarism? Are two shoppers buying
similar items? Are two consumers watching similar movies?

We start by considering a few measures of similarity, and then discuss “hash functions” which are
used to convert text to numerical data for more efficient similarity analysis. Then, we look at the matrix
representation of sets, which is useful in comparing documents, shoppers, and so on.

6.1.2 Jaccard similarity
The Jaccard similarity of two sets A and B is defined as the ratio of the size of the intersection of A and
B to the size of their union,

J(A,B) =
|A\B|
|A[B| , (6.1)

where |A| is the number of elements in a set A. Consider a few examples:
1. Sets of logicals:

⌅ Example 6.1 Calculate the Jaccard similarity, J(a,b), of the following sets:

a=[0 0 1 1 0 1 0 1 1]

b=[0 1 0 1 0 0 1 0 1]

There are n= 9 entries in each of the sets, but the similarity is defined only based on the columns
of the sets that have at least one 1 entry. We thus exclude columns 1 and 5 from our calculation

98 Chapter 6. Similar items and frequent patterns

of the similarity, and have a union of 7. We then calculate the number of columns in the data with
a 1 in both set a and b - there are two such columns. Thus, we conclude that J(a,b) = 2/7 . ⌅

2. Sets of integers:

⌅ Example 6.2 Calculate the Jaccard similarity, J(p,q), of the following sets:

p=[1,2,3,4,5,6]

q=[3,5,8]

To find the union, p[q, we count the number of distinct entries: there are six unique entries in
set p, and one additional unique entry in set q (3 and 5 are repeated from the first set), for a total
of seven unique entries. The intersections of the set are the numbers 3 and 5 — so two overlaps.
Thus, J(p,q) = 2/7 . ⌅

3. Sets of words:

⌅ Example 6.3 Calculate the Jaccard similarity J(x,y), of the following two sets of words:

x={Chase after money and security and your heart will never

unclench Care about peoples approval}

y={and you will be their prisoners Do your work then step

back The only path to serenity};

To calculate the Jaccard similarity of these strings we calculate the number of distinct words in
these two strings: we find that this union is 28 words. The words that appear in both strings, x
and y, are “and”, “your” and “will”, or a total of three words. Thus, J(x,y) = 3/28 . ⌅

For further examples and for programming tips, please see the demo Jaccard_examples.m/py. See
also Leskovec et al. (2014)§3.1.1.

6.1.3 Shingling of documents
6.1.3.1 k-Shingling

To conduct similarity analysis on a large set of possibly large documents, two steps are needed. First,
it turns out that individual words from a document do not convey the document’s contents as well as
small sets of adjacent words from the document, known as “shingles”. Second, it is more efficient to
turn these shingles into numbers using hash functions and analyze those numbers, than to analyze the
words themselves.

Consider first the shingling of a string of characters. The “k-shingling” involves taking k contin-
uous characters at a time. For example, the set of 3-shingles of the string x={abcdeffedcba}, are
{abc,bcd,cde,def,eff,ffe,fed,edc,dcb,cba}. We can apply this concept of k-shingling on a
much larger scale for different k’s and compare the emerging sets from two documents to determine
their similarity. The concept of k-shingles is especially useful when forcing shingles of words rather
than characters: in most cases of plagiarism, for example, one rarely finds a verbatim copy of text, but
rather similar meaning, rearrangement of word order, and portions of shared text that can be revealed
by comparing appropriate word-shingles.

The general rule of thumb is to pick a k such that the probability of any given shingle appearing in
any given document is low but not too low. For example, if we pick a k that is too small, like k = 1, we
would find that the sets emerging from a document would be common among many other documents
which may in fact be dissimilar. If we choose k to be too large, then no two strings/documents will be
similar.

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/

6.1 Similar items 99

6.1.3.2 Shingling using stop words
Often, a useful way to construct shingles of words from longer text, is to make sure they always start
with what are known as “stop words”. Examples of stop words, though they can be designed according
to specific context, are “and”, “but”, “you”, and so on. Stop words are common words which are not
specific or revealing of context. Experience shows they are helpful in delimiting sets of words into
chunks that can be compared for analyzing the similarity of documents.

⌅ Example 6.4 As an example, here is how we could calculate the first eight 3-shingles starting with
stop words for the following text:

Chase after money and security and your heart will never unclench Care about

peoples approval and you will be their prisoners Do your work then step back

The only path to serenity

The first eight “3-shingles” are then,

{"and security and","and your heart", "your heart will","will never unclench",

"about peoples approval","and you will","you will be", "will be their"}

and so on. ⌅

6.1.4 Hash functions
The purpose of a hash function is to produce a number that represents a given string or k-shingle
of words, such that two different strings are not likely to result in the same number. A simple yet
oversimplified (and thus poor) example in Matlab code is,

% specify input string:

input_string=’adr1’

% create an array of numbers with an element corresponding to each

% character in the string:

array=double(input_string)

% this gives:

% array = 97 100 114 49

% calculate the product of all numbers:

n=prod(array);

% yielding :

% n=54184200

% Calculate the hash as the reminder of division by a prime number,

% say 17, so that the hash value is always between 0 and 16:

hash_value=mod(n,17);

% which gives the final hash value of hash_value=15.

The function maps any string to a number between 0 and 16, so now instead of comparing an infinite
set of strings, we need to compare numbers in that range, a much more manageable task.

However, this hash function fails as it returns the same number for two different strings. For
example, the hash values of both ‘asdf1’ and ‘asdf2’ are both zero, so the comparison of these two hash
values will give us the wrong impression that these are equal strings. The problem here is the letter ‘f’:
Because double(f)=102 is divided by 17 with no remainder, the multiplication by 102 in both strings

100 Chapter 6. Similar items and frequent patterns

results in a zero hash value. More sophisticated hash functions can be constructed such that they fail
this way very rarely, so that if the hash values are similar, we can assume with a high level of certainty
that the original strings or shingles are indeed identical.

See the Matlab demos of the above oversimplified hash function simple_hash_function.m/py as
well as a more sophisticated “Cyclic Redundancy Check” hash function known as crc32, crc32_demo.m/py.

6.1.5 Matrix representation of sets
It is often helpful in calculating Jaccard similarities between shopping baskets of customers, or
documents represented by shingles of words, to represent these sets (of documents, shopping baskets,
and so on) using matrices. We construct a matrix of logicals (1 or 0) such that the row corresponds to a
particular item in the store (or k-shingle in a document), and each column corresponds to a given set
(one basket or one document). Consider, for example, the sets in Table 6.1. In this example, each set
contains items from the larger setU = {a,b,c,d,e, f}. Entry (1,1) is 1 because item a is in Set 1, and
entry (2,1) is 0 because item b is not in Set 1. We can see that S1 = {a,e} and S4 = {b,c,e, f}.

item S1 S2 S3 S4
a 1 1 0 0
b 0 1 1 1
c 0 1 1 1
d 0 1 0 0
e 1 1 0 1
f 0 0 0 1

Table 6.1: Matrix representation of 4 sets

Companies often want to be able to recommend an item to a potential customer: which book to
buy, or which movie to watch, based on an individual’s previous choices. One way to do this is to
recommend items that have been bought/watched by other people with a similar taste. This is referred to
as collaborative filtering – as discussed in the Netflix challenge example, section 5.2.11. For example,
in the context of online shopping, similar tastes would be expressed by a significant Jaccard similarity.
The definition of “significant” similarity needs to be determined empirically for a given problem such
that it is small enough to indicate that tastes are indeed similar, but not too small such that no two tastes
are similar. This empirically determined value may be very small (a few to less than one %), but in
practice this may still suggest useful recommendations.

6.2 Frequent patterns and association rules
We now move onto a discussion of frequent patterns and association. We are interested in evaluating,
in large datasets, the frequency with which we find items together. For example, in the context of a
grocery store, what items are frequently purchased together (are often together in a customer’s “basket”
– e.g., the obvious combination of hot dogs and mustard, or, more surprisingly, beer and diapers!). With
this information, stores can organize sale items to encourage bundled purchasing. In the context of
the internet, words frequently searched together are used to give recommendations to user searches.
For example, for a user who searches “Harvard” may also be interested in “Ivy League”. Similarly
with book recommendations on online book stores, etc. There are applications of frequent patterns in
medical diagnosis as well, in for example, biomarkers in diseased plants. Each “basket” here contains

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/

6.2 Frequent patterns and association rules 101

the biomarkers seen in an affected plant, and the fact that they appear together helps us understand the
role of previously unidentified biomarkers.

We next examine the efficient “A-priori” algorithm for finding frequent patterns in a large data
sets, and see how such patterns help us identify “association rules” that teach us about interesting
connections in the data. A helpful reference for this section is Leskovec et al. (2014).

6.2.1 Mining frequent patterns
In order to aid the discovery of frequent patterns and association rules between items we use a market-
basket model of data, where each basket has a subset of items, known as an itemset. A set of items that
appears in many different baskets is a “frequent” itemset. Specifically a set is frequent if it appears in a
fraction of the baskets larger than a specified support threshold, s. The “support”, k, of an itemset, I, is
the number of baskets which contain I.

⌅ Example 6.5 As an example, consider a few Google searches from what appears to be a pet-lover
living in Cambridge.

S1: {dog, cat, good}

S2: {rain, in, Cambridge}

S3: {rain, dog, good}

S4: {Cambridge, bad, weather, rain}

S5: {Pets, Harvard, Cambridge}

S6: {Harvard, dog, policy, good}

S7: {Harvard, Square, Cambridge}

Setting the support threshold to s = 3/7, we look through the above baskets to find the frequent
“singletons” – i.e., single words which occur in three or more baskets. We find that,

dog, rain, good, Harvard, Cambridge

are the frequent singletons that appear in 3 or more sets. Now, using these singletons we form all the
candidate frequent pairs (of which there are

�5
2
�
- order does not matter),

{dog, rain}

{dog, good}

{dog, Harvard}

{dog, Cambridge}

{rain, good}

{rain, Harvard}

{rain, Cambridge}

{good, Harvard}

{good, Cambridge}

{Harvard, Cambridge}

Looking at the sets which contain one or more of these frequent pair candidates,

S1: {dog, cat, good}

S2: {rain, in, Cambridge}

S3: {rain, dog, good}

S4: {Cambridge, bad, weather, rain}

102 Chapter 6. Similar items and frequent patterns

S5: {Pets, Harvard, Cambridge}

S6: {Harvard, dog, policy, good}

S7: {Harvard, Square, Cambridge}

we see that the number of occurrences of these candidates are,

{dog, rain}=1

{dog, good}=3

{dog, Harvard}=1

{dog, Cambridge}=0

{rain, good}=1

{rain, Harvard}=0

{rain, Cambridge}=2

{good, Harvard}=1

{good, Cambridge}=0

{Harvard, Cambridge}=2

and thus the only frequent pair is {dog, good} because it occurs in at least a fraction s (3/7) of the
itemsets. Thus, the Googler seems to associate “good” and “dog”. This is an example of a two iteration
A-priori algorithm, covered in more detail next. ⌅

6.2.2 A-priori algorithm and association rules
The A-priori algorithm allows us to efficiently identify frequent patterns in a large set of baskets. First
consider the following definitions. A “frequent set” I is one that appears in a larger fraction of the
baskets than the specified threshold, s. An “association rule” I ! j tells us that if a given set I appears
in a basket, a given item j is likely to be in that basket as well. The “confidence” of a rule is the fraction
of baskets with I that also contain j, and the “interest” in a rule is the difference between confidence in
I ! j and fraction of baskets that contain j. These are all demonstrated next.

The A-priori algorithm proceeds as follows:
1. Select a support threshold, s, as a fraction of all sets.
2. For every item (word, book, etc.), count the number of sets the item occurs in.
3. Identify the frequent singletons – the items which are in at least a fraction s of the sets.
4. List the candidates for frequent pairs – all combinations of frequent singletons. For n frequent

singletons there should be
�n
2
�
candidates for frequent pairs.

5. List the sets which contain one or more frequent pair candidate.
6. Identify the frequent pairs – those with a fraction equal to or greater than s.
7. Identify the candidate triple frequent sets: the triple sets that are composed of pairs of items that

themselves are frequent pairs.
8. Identify the frequent triple sets by searching the data.
9. Repeat to find frequent 4-sets or higher, if desired.

⌅ Example 6.6 As an example, consider the following sets,

S1: 3,4,5,6,7,8,9,10,13,

S2: 1,2,3,4,5,7,11,13,

S3: 1,2,3,5,6,12,

S4: 2,3,4,7,9,11,12,13,15,

S5: 1,3,4,7,9,12,13,14,

6.2 Frequent patterns and association rules 103

S6: 2,4,5,6,8,14,

S7: 1,2,3,6,7,8,9,10,

S8: 1,2,3,4,6,8,9,10,13,

S9: 1,2,4,5,6,9,11,13,15,

S10: 2,4,7,8,9,10,13,14,

Assume a threshold s= 0.55, and calculate the fraction occurrence of each single items across the sets,

Item % Occurence of Item
1 0.6
2 0.8
3 0.7
4 0.8
5 0.5
6 0.6
7 0.6
8 0.6
9 0.7
10 0.4
11 0.3
12 0.3
13 0.7
14 0.3
15 0.2

Thus, candidate pairs are pairs that involve items (1,2,3,4,6,7,9,13). There are
�8
2
�
= 28 candidates. Of

these, we find that there are only 4 frequent pairs, composed of the frequent items (2,4,9,13),

Item 1 Item 2 % Occurrence of Pair
2 4 0.6
4 9 0.6
4 13 0.7
9 13 0.6

The possible items in a frequent triple are therefore, (2,4,9,13), yielding 4 possible triplets (
�4
3
�
= 4

candidates). For the triples,

(4,9,13)
(2,9,13)
(2,4,13)
(2,4,9)

to be considered as candidate frequent triplets, all possible sub-pairs of a triplet need to be frequent. So,
of these four possible triplets, we are left only with (4,9,13) as a candidate frequent triple set. Indeed,
counting the number of occurrences, we find that this triple is frequent,

Item 1 Item 2 Item 3 % Occurrence of Triplet
4 9 13 0.6

104 Chapter 6. Similar items and frequent patterns

The possible association rules that can be deduced from the frequent triplet are,

Association Rule
(4, 9)! 13
(4, 13) ! 9
(9, 13) ! 4

The confidence (fraction of baskets with I that also contain j) and interest (difference between
confidence in I ! j and fraction of baskets that contain j) are,

Association Rule I Support (I, j) Support j Fraction Confidence Interest
(4, 9)! 13 6 6 0.7 1 0.3
(4, 13)! 9 7 6 0.7 6

7 0.157
(9, 13)! 4 6 6 0.8 1 0.2

Note also that the interest in a rule can be negative, and rules with negative interest can be. . . interesting!
For example, if out of one hundred customers, 10 buy Coke and 10 buy Pepsi, with no overlap, then the
confidence in the Association Rule Coke! Pepsi is 0, yet the interest is 0� 1

10 < 0, clearly telling us
that the items may in fact be “substitute goods”. ⌅

III
7 Cluster Analysis: unsupervised learning

107
7.1 Motivation
7.2 Distances/metrics
7.3 The curse of dimensionality
7.4 Hierarchical clustering
7.5 K-means
7.6 Self-organizing maps
7.7 Mahalanobis distance
7.8 Spectral clustering
7.9 BFR algorithm
7.10 CURE (Clustering Using REpresentatives)

8 Classification: supervised learning . . 131
8.1 Motivation
8.2 Perceptrons
8.3 Support vector machines
8.4 Multi-Layer Artificial Neural Networks
8.5 k nearest neighbors (k-NN)

Bibliography . 153

Index . 157

A Appendices . 163
A.1 Proof that eigenvectors are orthogonal () the

matrix is normal
A.2 Proof that Frobenius norm is equal to sum of singular

values squared

Part Three

7. Cluster Analysis: unsupervised learning

7.1 Motivation

In this chapter we explore a variety of “unsupervised” learning techniques for clustering large data sets.
We begin by discussing the various ways of measuring “distance” between data points – the key tool
in clustering that allows us to cluster together similar items, whose distance from each other is small.
Quite often, data may not be in Euclidean space, and thus other distance measures may be required.
We then survey two main approaches to clustering: hierarchical (each point is an initial cluster, then
clusters are merged to form larger ones) and point-assignment (starting with points that are cluster
representatives, clusteroids, and then adding other points one by one). We will also consider methods
that are appropriate for very large problem when computer memory becomes an issue. This process
of cluster discovery and analysis has broad ranging applications, from archaeology to weather and
climate.

Some example interesting applications are,
• Archaeology/Anthropology: Clustering allows us to group pottery samples from multiple sites
according to color, shape, material and discovery location, to hopefully reveal their original
cultural origin.

• Genetics: Gene expression data can be clustered together to identify genes of similar function;
grouping known genes with novel ones may reveal the function of the novel genes.

• TV Marketing: Grouping TV shows into groups likely to be watched by people with similar
purchasing habits;

• Criminology: Clustering Italian provinces shows that crime is not necessarily linked to geographic
location (North vs. South Italy), as is sometimes assumed.

• Medical Imaging: Identifying volumes of cerebrospinal fluid, white matter, and gray matter from
magnetic resonance images (MRI) of the brain using clustering methods.

• Social networks: Cluster individuals based on behavior patterns to identify communities.

108 Chapter 7. Cluster Analysis: unsupervised learning

• Internet Search Results: Show relevant related results to a given search beyond using keywords
and link analysis.

• Weather and climate: Identify consistently re-occurring weather regimes to increase predictabil-
ity.

7.2 Distances/metrics
Before diving into some different measures of distance, there are three conditions that must be satisfied
by a distance function, d(x,y):

1. d(x,y)� 0 – No negative distance.
2. d(x,y) = d(y,x) – Distance from x to y is the same as from y to x, i.e., distance is a symmetric

function with respect to its two arguments.
3. d(x,y) d(x,z)+d(z,y) – This is known as the “triangle inequality”. It ensures that the distance

between two points is the shortest path from one to the other.

7.2.1 Euclidean distances
The typical measure of distance in an n-dimensional space is known as the L2-norm, and is what we
typically think of as “distance”. In an n-dimensional Euclidean space (where points are defined by
vectors of n numbers),

d([x1,x2, ...,xn], [y1,y2, ...,yn]) =

s
n

Â
i=1

(xi� yi)2

⌅ Example 7.1 Consider this 6-dimensional example,

x=
⇥
2 4 5 3 8 6

⇤T
, y=

⇥
1 3 10 2 5 7

⇤T

d(x,y) =
q

(2�1)2+(4�3)2+(5�10)2+(3�2)2+(8�5)2+(6�7)2

=
p
38.

⌅

Another notable Euclidean distance is the L1-norm, also known as the Manhattan Distance, which
defines the distance between two points as the sum of the magnitudes of the differences in each
dimension. In two dimensions, the Manhattan distance is the travel distance between two points in a
city with a grid street system, which is where the distance measure derives its name from.

More generally, the Lr-norm is defined as,

d([x1,x2, ...,xn], [y1,y2, ...,yn]) =

n

Â
i=1

|xi� yi|r
!1/r

Finally, another interesting measure is the L•-norm, which is the limit as r ! • of the Lr norm.
As r grows, only the dimension with the largest difference matters, so formally, the L•-norm is the
maximum of |xi� yi| over all dimensions i. For example, consider the 3d Euclidean space and the
points (1,2,3) and (4,8,6). The L•-norm is,

max(|1�4|, |2�8|, |3�6|) =max(3,6,3) = 6.

7.3 The curse of dimensionality 109

7.2.2 Hamming distance
The Hamming distance between two ordered sets of elements, dH(x,y), is the number of components
in which x and y differ.

⌅ Example 7.2 For example, for the vectors,

x=
⇥
4 6 8 6

⇤T
, y=

⇥
4 7 5 6

⇤T
,

the Hamming Distance is dH(x,y) = 2, because these vectors differ in two components, the second and
third. ⌅

7.2.3 Cosine distance
The cosine distance, dcos, considers points of a similar angle from the origin as “close”. For example, a
scalar multiple of a vector has the same angle from the origin as the original vector, and thus these two
vectors have a cosine distance of 0. The cosine distance is calculated as,

dcos(x,y) = cos�1

0

@ Ân
i=1 xiyiq

(Ân
i=1 x2i)(Â

n
i=1 y2i)

1

A

7.2.4 Jaccard distance
In the previous chapter, we discussed the Jaccard similarity J(x,y) 2 [0,1] as a measure of the likeness
of items in two sets. The Jaccard distance, dJ(x,y), is simply defined as 1� J(x,y). This is because if
two sets are similar, they have a high Jaccard similarity, but in the context of clustering should have a
small distance.

7.2.5 Edit distance
Finally, the Edit distance, dE(x,y), between two strings, x and y, is defined as the smallest number
of insertions or deletions of single characters required to convert x to y (or vice versa). Consider, for
example, the strings x= fcvbnn and y= fvgnm. The edit distance dE(x,y) = 5, because 5 operations
are required to convert x to y, which are,

1. Delete c
2. Delete b
3. Insert g after v
4. Delete the second n
5. Insert m after n

7.3 The curse of dimensionality
Euclidean distance measures in a high-dimensional space can often introduce non-intuitive issues which
are referred to as the “curse of dimensionality”, whose two manifestations are: (1) distances between
almost all pairs of points are nearly equal, and (2) almost all vector pairs are orthogonal to each other.
This renders Euclidean and cosine distance measures meaningless, and thus can make clustering of
points in high dimensional spaces a challenge.

110 Chapter 7. Cluster Analysis: unsupervised learning

0 0.5 1 1.5 2
distance/mean

0

0.01

0.02
fre

q

0 50 100 150
angle (degree)

0

0.5

1

fre
q

0 0.5 1 1.5 2
distance/mean

0

0.01

0.02

fre
q

0 50 100 150
angle (degree)

0

0.01

0.02

fre
q

0 0.5 1 1.5 2
distance/mean

0

0.02

0.04

fre
q

0 50 100 150
angle (degree)

0

0.02

0.04

fre
q

0 0.5 1 1.5 2
distance/mean

0

0.02

0.04

fre
q

0 50 100 150
angle (degree)

0

0.02

0.04

fre
q

0 0.5 1 1.5 2
distance/mean

0

0.02

0.04

fre
q

0 50 100 150
angle (degree)

0

0.02

0.04

fre
q

0 0.5 1 1.5 2
distance/mean

0

0.05

fre
q

0 50 100 150
angle (degree)

0

0.05

fre
q

Figure 7.1: The curse of dimensionality, showing the distribution of distances and angles between pairs
of random points as function of data space dimension.

7.3.1 Euclidean distances in high-dimensional spaces
Consider random points in the unit cube in a d-dimensional Euclidean space. Each point is written
as a= [a1,a2, ...,ad]0, with ai 2 [0,1]. The distance squared between two points a= [a1,a2, ...,ad] and
b= [b1,b2, ...,bd] is,

d

Â
i=1

(ai�bi)2.

Given that ai and bi are random numbers in the range of 0 to 1, then for large d, the squared distance
between the two is proportional to the average of random squared differences (ai�bi)2. As long as
the dimension is large, the distance squared is always close to this average, and thus we conclude
that the distance between any two random vectors is always nearly the same. This is problematic, for
example, if we try to cluster together nearby points, since the points will essentially be inseparable
using Euclidean distance measures. Be wary that this analysis assumes the data points are random,
which is not the case in applications, but it still points to a surprising property of high-dimensional
spaces.

7.3.2 Angles between random vectors in high-dimensional spaces
A similarly unexpected result occurs with regards to the angles between random vectors in high-
dimensional space. Consider two points, x and y. The cosine of angle between these two vectors
is,

cos(\x,y) = Âd
i=1 xiyiq

Âd
i=1 x2i

q
Âd
i=1 y2i

.

7.4 Hierarchical clustering 111

This is also the formula for the correlation of two sets of numbers. Given that xi and yi are assumed
random, and thus uncorrelated, this correlation is expected to be very small for a large value of d. Thus,
in a high dimensional space, the cosine of the angle between vectors is zero, and so the angle between
vectors is 90o. Thus, random vectors in high dimensions tend to be orthogonal! This implies that the
cosine distance is not expected to be a useful measure of distance for the purpose of clustering random
data either, because the angles between most data points will be near 90�.

Fig. 7.1 shows the tendency for Euclidean distances to be uniform and for angles between random
points to be 90�, respectively.

7.4 Hierarchical clustering
Hierarchical clustering algorithms start with each point as its own cluster. Pairs of clusters are then
merged based on their “proximity” (which can be defined in several ways). Merging stops once further
clustering would produce clusters that are less useful. The optimal number of clusters and the stopping
criteria are discussed below.

⌅ Example 7.3 Consider a simple example using Euclidean distance between clusteroids (cluster
centers, defined as the average location of all points in the cluster) as the measure for deciding which
clusters to merge. Fig. 7.2 shows the five points. The clustering proceeds as follows.

1. Initially each point is its own cluster, and the clusteroids are just the data points themselves

Cluster: 1 2 3 4 5
x 1.2068 1.2462 0.7871 �0.8844 �1.0588
y 0.4 1.0714 1.0268 0.9298 1.0137

2. Calculate the Euclidean distances between all points, constructing a 5⇥5 symmetric distances
matrix, D, where di j is the distance between points i and j.

D=

0

BBBB@

0 0.6726 0.7543 2.157 2.347
0.6726 0 0.4613 2.135 2.306
0.7543 0.4613 0 1.674 1.846
2.157 2.135 1.674 0 0.1935
2.347 2.306 1.846 0.1935 0

1

CCCCA

3. The smallest distance is between points 4 and 5, so we merge them and calculate their centroid
to be [-0.9716,0.9718]. The number of clusters is now k = 4, given by {1}, {2}, {3}, {4,5}.
The new centroids of the 4 clusters are now,

Cluster: 1 2 3 (4 and 5)
x 1.207 1.246 0.7871 �0.9716
y 0.4 1.071 1.027 0.9718

4. Next, calculate the distances between the clusters again (a 4⇥4 distance matrix, not shown) and
merge the clusters with the smallest distance between them (2 and 3). The number of clusters is
now k = 3, given by {1}, {2,3} and {4,5}.

5. Calculate the clusteroids of the remaining 3 clusters, and the revised 3⇥ 3 distance matrix,
revealing that we should merge 1 with {2,3}. The number of clusters is now k = 2, given by
{1,2,3} and {4,5}.

112 Chapter 7. Cluster Analysis: unsupervised learning

-1.5 -1 -0.5 0 0.5 1 1.5
x

0

0.5

1

1.5

y

Hierarchical Clustering Small Example

1

23
4

5

First	clustering

Figure 7.2: First three steps in a simple 5 point hierarchical clustering example.

6. Merge the remaining 2 clusters into a single cluster, if desired.
⌅

We will see below how the optimal number of clusters can be determined from this analysis.

7.4.1 Efficiency of hierarchical clustering
This hierarchical clustering algorithm is quite inefficient. At each step we calculate the distance
between all pairs of clusters to determine the best clusters to merge. The first distance calculation takes
n2 steps, and subsequent steps require (n� 1)2,(n� 2)2, This sums up to is O(n3). As noted in
Leskovec et al. (2014), there are more efficient versions of hierarchical clustering that have efficiency
O(n2log(n)).

7.4.2 Merging and stopping criteria
In order to decide which clusters to merge and when to stop merging, we need to define some measures
of cluster quality. The clusteroid, or cluster center, is the average of the locations of all N points in the
cluster,

x̄= xc =
1
N Â

i
xi.

The cluster radius, r, is the largest distance of a point in the cluster to the clusteroid, r=maxi(|xi�xc|).
The cluster diameter is the largest distance between any two members of the cluster, d =maxi, j(|xi�
x j|). The cluster density is the number of points in the cluster, divided by the radius, r = N/r, or
divided by the diameter, or by the radius raised to the power of the data dimension, and so on. The
variance of cluster A is,

varA =
NA

Â
j=1

Nd

Â
i=1

(xi j� x̄i)2

7.4 Hierarchical clustering 113

where Nd is the dimension of the data vectors x j, NA is the number of points in cluster A, xi j is the ith
element of data vector x j, and x̄i is the location of the ith coordinate of the clusteroid. A good cluster
should be characterized by a small radius, diameter or variance and a large density.

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Randomly generated data

 data
distances between all pairs of data points

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 7.3: 40 random data points and their distance matrix, represeting their respective distances from
one another.

To demonstrate how the optimal number of clusters is chosen, consider a hierarchical clustering
example of 40 points in a 2d space (Figure 7.3). Our merging criteria uses the popular Ward method,
described in section 7.4.4 below, which merges clusters such that the merge leads to the smallest
increase in variance.

The entries along the diagonal of the distance matrix are zero, and the points seem to form natural
clusters: the points indexed 1–10 appear to have small distance from one anther, as do 11–20, 21–30
and 31–40. The clusters at different values of the choice for the clusters number k are shown in Fig. 7.6.

In determining the optimal number of clusters and the order of the clustering process we consider a
“dendrogram plot” (Fig. 7.4) and an “elbow plot” (Fig. 7.5). The dendrogram shows the progress of
the clustering, with the horizontal axis representing all data points, and the vertical axis representing
the merging criterion or a related measure. The vertical axis could show, for example, the value of
the variance in the Ward method at each merging, or the smallest cluster diameter at merging, or the
average cluster diameter, or the distance between clusteroids at merging, and so on. The figure shows a
large increase in the vertical measure when going from four clusters to two clusters, indicating that four
may be a good choice. Note also the somewhat large distance when going from five clusters to four,
suggesting that perhaps five clusters is also a reasonable choice.

To identify the optimal number of clusters we can also look for a “break point” in the elbow plot
(Fig. 7.5). This figure shows a measure of the cluster quality (say maximum diameter in this case),
as function of the number of clusters. Going from small number of clusters k to a larger one, the
maximum diameter goes down. When increasing the number of clusters does not lead to a reduction in
the maximum diameter (or other merging criterion being used), we conclude that the optimal number
has been reached. Again, in this case the elbow plot suggests four or five clusters is optimal. The final
choice has to be made based on what makes sense for the application being considered.

There are several possible methods (referred to as “linkages”) for deciding which clusters to merge
at each step. We can choose to merge two clusters that,

• have the smallest distance between clusteroids.
• lead to the smallest increase in the variance of the merged cluster (Ward method).

114 Chapter 7. Cluster Analysis: unsupervised learning

• result in the smallest radius or diameter of the resulting cluster.
• result in the highest density of the resulting cluster.
• are characterized by the smallest “single” distance: this distance is the smallest distance between
any two points in the two clusters. This approach is especially helpful in analyzing complexly-
shaped clusters (section 7.10).

Figure 7.4: A “dendrogram” plot, showing the progression of cluster merging in hierarchical clustering.

0 2 4 6 8 10
k

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
ax

 d
ia

m
et

er

'Elbow plot': find optimal # of clusters

Figure 7.5: Elbow plot revealing that k = 5, or perhaps 4, is a sensible optimal number of clusters.

7.4 Hierarchical clustering 115

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=1

Cluster 1

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=2

Cluster 1
Cluster 2

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=3

Cluster 1
Cluster 2
Cluster 3

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=4

Cluster 1
Cluster 2
Cluster 3
Cluster 4

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=5

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=6

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=7

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

-2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster assignments, maxclust=8

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8

Figure 7.6: Resulting clustering of 40 points using the Ward method for merging, depending on desired
number of clusters, k.

116 Chapter 7. Cluster Analysis: unsupervised learning

7.4.3 Hierarchical clustering in non-Euclidean spaces

Non-Euclidean spaces do not support the concept of a centroid, and thus we need to use some other
measure of distance as discussed in section 7.2: Jaccard, cosine, edit or Hamming distances. We can
still define the diameter, density, etc. of a cluster, however. Instead of using a clusteroid, we can find a
data point that is “representative” of the cluster. An optimal representative generally minimizes one or
more of three measures,

1. The sum of the square of the distances to the other points in the cluster
2. The sum of the distances to the other points in the cluster
3. The maximum distance to another point in the cluster

⌅ Example 7.4 For example, consider the clustering of the strings fghj, ftgh, tghj and gjhk. We
calculate the edit distances between these strings to be,

fghj ftgh tghj gjhk

fghj 0 2 2 4
ftgh 2 0 2 4
tghj 2 2 0 4
gjhk 4 4 4 0

Applying the three criteria for a good representative we can see that fghj, ftgh, and tghj are all
equally good representatives, but gjhk is not. ⌅

7.4.4 Ward method

In the Ward method, a common merging strategy in hierarchical clustering, clusters are merged when
the resulting change in the variance within a newly merged cluster is minimal. Here we develop the
formula for calculating this change in variance. Consider the clustering of N-dimensional data vectors,
where Xi jA is the i component of the jth data vector, which is a part of cluster A. The clusteroid and
total variance for cluster A are,

X̄iA =
1
NA

NA

Â
j=1

Xi jA

varA =
NA

Â
j=1

N

Â
i=1

(Xi jA� X̄iA)
2

with a similar formula for cluster B, where NA and NB are the number of points in clusters A and B
being merged into a clusterC and defining NC = NA+NB. Using

X̄iC =
1

NA+NB
(NAX̄iA+NBX̄iB),

7.4 Hierarchical clustering 117

the total variance of the combined cluster is given by,

varC =
N

Â
i=1

NC

Â
j=1

(Xi jC� X̄iC)
2

=
N

Â
i=1

"
NA

Â
j=1

(Xi jA� X̄iC)
2+

NB

Â
j=1

(Xi jB� X̄iC)
2

#

=
N

Â
i=1

"
NA

Â
j=1

✓
(Xi jA� X̄iA)�

1
NC

(NBX̄iB�NBX̄iA)

◆2

+
NB

Â
j=1

✓
(Xi jB� X̄iB)�

1
NC

(NAX̄iA�NAX̄iB)

◆2
#
.

Rearranging,

=
N

Â
i=1

"
NA

Â
j=1

(Xi jA� X̄iA)
2+

NB

Â
j=1

(Xi jB� X̄iB)
2

�
NA

Â
j=1

2(Xi jA� X̄iA)
1
NC

(NBX̄iB+NBX̄iA)+
NA

Â
j=1

1
N2
C
(NBX̄iB�NBX̄iA)

2

�
NB

Â
j=1

2(Xi jB� X̄iB)
1
NC

(NAX̄iA+NAX̄iB)+
NB

Â
j=1

1
N2
C
(NAX̄iA�NAX̄iB)

2

#
.

Using ÂNA
j=1(Xi jA� X̄iA) = 0, we have,

= varA+ varB+
N

Â
i=1

NAN2
B

N2
C

(X̄iB� X̄iA)
2+

NBN2
A

N2
C

(X̄iA� X̄iB)
2

= varA+ varB+
N

Â
i=1

NANB(NB+NA)

(NA+NB)2
(X̄iB� X̄iA)

2

= varA+ varB+
N

Â
i=1

NANB

NA+NB
(X̄iB� X̄iA)

2.

The change in variance is therefore given by,

Dvar = varC� (varA+ varB) =
NANB

NA+NB

N

Â
i=1

(X̄iB� X̄iA)
2,

or, in vector form, the final expression for the change in variance due to the merging of clusters A and
B is,

Dvar = varC� (varA+ varB) =
NANB

NA+NB
kX̄B� X̄Ak2.

Note that in some software packages, including Matlab (see near bottom of the following link), the
above expression is changed in two ways. First, using the square root of Dvar and second, including a
factor of 2 as follows,

p
Dvar =

p
varC� (varA+ varB) =

r
2NANB

NA+NB
kX̄B� X̄Ak.

With this factor of 2, the distance between two singleton clusters is the same as the Euclidean distance.

https://www.mathworks.com/help/stats/linkage.html

118 Chapter 7. Cluster Analysis: unsupervised learning

7.5 K-means

The k-means algorithm is an example of a point-assignment clustering method. We assume for
simplicity a Euclidean space and specify the number of clusters, k, in advance. The algorithm is as
follows for clustering N data points,

1. Choose k data points that are as far as possible from one another, such that are likely to be in
different clusters. These are the initial centroids:
(a) Choose the first point randomly.
(b) Choose the m+1 representative point such that its distance from the previous m representa-

tives is as large as possible. Specifically, go over all data points and for each point calculate
the smallest distance to one of the m previously selected representatives. Then choose
representative point m+1 such that it maximizes the smallest distance to the previous m
points.

2. For each of the remaining N� k data points:
(a) Find the centroid closest to a given point
(b) Add this point to the cluster of that centroid
(c) Adjust the centroid of that cluster to include the added point

3. Optional “iterations”: Use the final centroids as initial representative points and go through steps
2(a),(b),(c) again with all data points; repeat as many of these iterations as needed to converge.

4. Optional additional “replicates”: Repeat all above steps with different choices for the randomly
selected initial point and then choose the replicate that leads to the best clusters.

Given the k-means results for different values of k, it is then necessary to choose the optimal number
of clusters using an elbow plot or a similar criterion.

This point-assignment clustering method is different from the hierarchical clustering method dis-
cussed earlier because we specify k to begin with and choose a set of initial clusteroids or representative
points. It is not necessary to calculate all distances between all pairs of the N points at every step –
we only need to calculate the distance from each data point to the k clusteroids. This is much more
efficient, as typically k⌧ N.

Demos: run_kmeans_clustering_demos.m/py.

7.6 Self-organizing maps

The Self-Organizing Maps (SOM) clustering method, also known as Kohonen Maps, calculates a
specified number of clusteroids using a machine learning approach: going through the data points one
at a time and improving the estimate for the k clusteroids gradually. We start by defining “representative
points” that will eventually become the clusteroids in two separate spaces,

1. The data space, where the representative points are marked by the vectors mi, of the same
dimension as the data points.

2. A grid space, in which the representatives are arranged in an equi-distant line or 2d grid. The
locations of the representatives in this space are denoted ri. The grid space also defines the
“neighbors” of each representative.

First, we choose the number of clusters to be calculated and set the initial position of the appropriate
number of clusteroids in data space. At each iteration (t), the algorithm proceeds as follows:

1. Select one data point, z(t)
2. Find the representative nearest to z(t), mark its location asmc(t)
3. Move this nearest representative slightly toward the data point

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/3-k-means/

7.6 Self-organizing maps 119

4. Identify the neighboring representative points in grid space of the nearest representative (numbers
2 and 4 in Fig. 7.7). Move these representatives toward z(t) as well, but less, as specified below.

This is repeated for all points in the data, where a full pass over all points is referred to as an epoch,
and the process is repeated for several epochs until convergence.

grid space
● ● ● ● ●

1 2 3 4 5

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
SOM demo, epoch=1

1
2

3

4
5

Figure 7.7: (left) An example 1d grid space. (right) An example SOM iteration. Representative point
number 3 is the nearest to the data point being considered (red circle) thus it is pushed toward the
nearest data point. Representative number 3’s nearest neighbors in grid space are representative points
2 and 4, which are also pushed toward the data point, although to a lesser degree.

Consider at this point the first demo self_organizing_maps_hand_calculation_example.m/py which
uses a 1d arrangement of the three representative points. This demo highlights two problems that need
to be resolved with appropriate refinements to the above algorithm. First, the clusteroidsmi(t) continue
moving until the end of the calculation, never converging. Second, the clusteroids do not end up at the
center of their respective cluster. The reason for these two problems is that each clusteroid is “attracted”
to the points in other clusters, even if it is not the closest representative to those points. Consider,
therefore, the following modifications to the algorithm:

1. Make the “learning rate”, a(t), at which representatives move toward the data points, decrease
as the iterations proceed. This leads to a convergence ofmi(t) and prevents the representative
points from moving forever.

2. At later stages of the learning, where each representative point has found its cluster, ensure that
its location is not affected by data points to which it is not the closest representative point. This
way each representative point is eventually influenced by its own cluster only (that is, affected
only by points to which it is the closest representative), so that it finds itself at the center of that
cluster.

In addition, as a useful generalization, one may allow a 2d arrangement in grid space of the representa-
tive points.

The movement of a representative point mi(t) in data space, when representative mc(t) is the
closest to data point z(t), is given by,

mi(t+1) =mi(t)+hci(t)[z(t)�mi(t)] (7.1)

hci(t) = a(t)e�kri�rck2/s(t). (7.2)

https://courses.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/4-self-organizing-maps/

120 Chapter 7. Cluster Analysis: unsupervised learning

scales. If we were to increase the size of the SOM, the
average quantization error would decrease, and we
would obtain the possibility that the SOM analysis may,
in fact, capture the synoptic-scale baroclinic waves
along the major storm tracks.
The percentages at the bottom right of each map

depict the pattern frequency, which we define as the
percentage of observations classified to that particular
pattern, for the entire 48-yr period. For the purpose of
describing the NAO shift discussed in the introduction
and in the following section, we subdivide the data into
three periods: 1958–77 (P1), 1978–97 (P2), and P3
(1998–2005). The designations, P1 and P2, are identical
to those of previous works (Hilmer and Jung 2000; Jung

FIG. 2. Distortion surface created by a Sammon mapping
scheme: the black circles, which describe the positions of the SOM
patterns, have the same general orientation as in Fig. 1.

FIG. 1. The 4 ! 5 SOM of SLP anomaly maps contoured at intervals of 2 hPa: solid (dashed) lines depict positive (negative) values,
with the zero contour omitted. Percentages on the bottom right of each map describe the pattern frequency for the entire period;
percentages on the top left of each map describe the pattern frequency for 1958–77 (P1: top), 1978–97 (P2: middle), and 1998–2005
(P3: bottom).

6358 JOURNAL OF CL IMATE VOLUME 21

Figure 7.8: A Sammon mapping of grid space from Johnson et al. (2008): the black circles describe the
positions of the SOM patterns.

Both a(t) and s(t) should be functions that decrease with iteration number (e.g., 1/t). Note that the
nearest representative, for which i= c moves toward the data point at a rate a(t) as the Gaussian is
equal to one when i= c. Other points move less, at a rate also determined by the Gaussian term. As
the neighborhood size in grid space represented by s(t) becomes smaller (that is, the “neighborhood
kernel” becomes more restricted in grid space), points other than i= c are affected less and less and
now each representative is influenced only by its own cluster, allowing it to move to the center of that
cluster. A simpler example of a neighborhood kernel that is used in some of our class demos sets the
kernel to one for nearest neighbors and zero otherwise, instead of letting hci(t) decay away from the
representative being considered.

Finally, consider the “Sammon map” which summarizes the results by showing which clusters
are similar: the grid space is re-plotted as points in 2d such that the distance between neighboring
representatives is proportional to the (say, Euclidean) distance between the corresponding clusteroids.
See Fig. 2 of Johnson et al. (2008), reproduced in Fig. 7.8.

7.7 Mahalanobis distance
In clustering applications, we must be careful to choose a distance measure that correctly takes into
account the structure of data. Consider, for example, the 2d data in Fig. 7.9. There is an elliptical cluster
of points, with the clusteroid marked by a cross and some point A highlighted in red, and another point
B marked in blue. Point B appears to lie outside of the elliptical cluster, even though point A is further
from the clusteroid than point B, based on a Euclidean distance. This reveals that a Euclidean distance
is inappropriate here as it does not take into account the structure of the data and would have led to the
inclusion of point B in the cluster, even though we can see it does not belong there. We therefore would
like to derive an alternative distance measure that takes into account the structure of the data.

Let X2⇥N = {xn}, n = 1 . . .N represent N random 2d column vectors, Gaussian distributed with
standard deviation of one and zero mean, shown in Fig. 7.10a. Its Euclidean distance from the origin,

dE(x,0)2 = (x�0)T (x�0) = x
T
x

is shown in Fig. 7.10a.

7.7 Mahalanobis distance 121

X

x

y

A

B

Figure 7.9: Data showing an elliptical cluster, where point A is intuitively expected to be in the cluster
while point B is outside. However, point B has a smaller Euclidean distance to the clusteroid than A,
demonstrating the shortcoming of Euclidean distance measures in clustering unusually shaped data.

Next, consider a set of data points that is not symmetric around zero. For this, consider the
transformation matrix

A=

✓
1 0
0 5

◆

which stretches the data in the vertical direction by a factor of 5 and leaves the horizontal direction
unchanged, and let yn = Axn, with a corresponding data matrix Y2⇥N = {yn}, n= 1 . . .N. The stretched
data and their Euclidean distances from the origin are shown in Fig. 7.10c. This distance distribution is
clearly not satisfactory from the point of view of cluster analysis, as there is a clear cluster, but one
would expect its edge to be characterized by a constant distance from the origin. This is the objective
of the Mahalanobis distance.

To calculate the Mahalanobis distance, define the covariance matrix C= YYT/N, and the inverse
covariance C�1 which turns out numerically to be,

C⇡
✓

1 0
0 25

◆
.

Let us calculate the covariance matrix analytically as well,

C= Â
n
yny

T
n /N = Â

n
(Axn)(Axn)

T/N

= Â
n
Axnx

T
nA

T/N = A

✓
Â
n
xnx

T
n /N

◆
AT

= A

✓
1 0
0 1

◆
AT = AAT =

✓
1 0
0 25

◆
.

We have used the fact that the non-transformed data vectors are random (uncorrelated) so that their
covariance matrix is the unit matrix, hxi(n)x j(n)i= di j, where we denoted xn = (x1(n),x2(n))T . The
covariance matrix of the transformed data is diagonal and corresponds to the stretching in the vertical
direction, as discussed above.

122 Chapter 7. Cluster Analysis: unsupervised learning

The inverse of the covariance matrix is,

C�1 =

✓
1 0
0 0.04

◆
.

The Mahalanobis distance from the origin, defined as,

dM(y,0)⌘
p
yTC�1y

=

r
y21+

1
25

y22

is shown in Fig. 7.10d. Note how the distance in the second dimension is reduced by the same factor in
which it was stretched to create the data. This distance has the desired properties because C�1 undoes
the data stretching, and the Mahalanobis distance between the transformed data points is equal to the
regular distance between the non-transformed data.

dM(y,0)2 = y
TC�1

y= (Ax)TC�1(Ax) = x
TATC�1Ax

= x
TAT (AAT)�1Ax= x

TAT ((AT)�1A�1)Ax= x
T
x.

Given that the covariance matrix is diagonal, let its diagonal elements be s2
i . Its inverse is then also

diagonal, composed of 1/s2
i , and the distance may therefore be simply written as,

dM(y,x) =

s

Â
i

(yi� xi)2

s2
i

.

This shows that, in this example, the Mahalanobis distance simply undoes the stretching by normalizing
the data about its standard deviation in each direction.

Consider next both a stretching and a rotation of the data y= (BA)x, where,

A=

✓
1 0
0 5

◆

B=

✓
0.7071 0.7071
�0.7071 0.7071

◆

R(q) =
✓

cos(q) �sin(q)
sin(q) cos(q)

◆
,

where R(q) represents the general form of a 2d rotation matrix by q degrees, showing B represents an
anti-clockwise rotation of 45�. The Euclidean distance from the origin is shown by the color shading in
Fig. 7.10e. The numerically calculated covariance and inverse covariance are then,

C=

✓
0.7071 �3.5355
0.7071 3.5355

◆

C�1 =

✓
0.7071 0.7071
�0.1414 0.1414

◆

7.8 Spectral clustering 123

and the corresponding Mahalanobis distance is shown in Fig. 7.10f. As a check, calculate the covariance
matrix analytically again,

C= Â
n
yny

T
n /N = Â

n
(BAxn)(BAxn)T/N

= Â
n
(BA)xnx

T
n (BA)

T/N = (BA)Â
n
xnx

T
n /N(BA)

T

= (BA)

✓
1 0
0 1

◆
(BA)T = BAATB.

The Mahalanobis distance based on this C is shown in Fig. 7.10f and again has the desired property of
equal distance to cluster edge.

In general, the Mahalanobis distance is helpful because it takes advantage of existing structure
(covariance) in the data, and thus allows us to cluster data with unique shape.

Figure 7.10: Euclidean vs. Mahalanobis distances

7.8 Spectral clustering
Earlier in the course we explored how to partition networks into two distinct subgroups using the second
eigenvector of the Laplacian matrix of a network. We now take this a step further and explore how to
cluster networks or data points into two or more clusters using a similar spectral clustering algorithm.
The spectral clustering algorithm is simple, efficient, and in some cases may even outperform much
simpler algorithms such as the k-means (Von-Luxburg, 2007). Before diving into spectral clustering,
you may find it useful to revisit our discussion of partitioning of networks in Chapter 3.

7.8.1 Similarity, degree and Laplacian matrices
When discussing network clustering, we constructed an adjacency matrix A such that ai j = 1 if nodes i, j
are connected, and 0 otherwise. Instead, we now construct a similarity matrix W for data points based
on their distances from one another. Given a set of data points, x1,x2, . . . ,xn the objective is to cluster
together nearby points. Given the matrix with distances between each two nodes, disti j = |xi�x j|, we

124 Chapter 7. Cluster Analysis: unsupervised learning

construct a similarity matrix W, for example by using wi j = exp(�dist2i j/s2). Thus, instead of binary
entries we have a range of values from 0 to 1. The diagonal degree matrix, D, is then defined as before,

dii =
n

Â
j=1

wi j.

The Laplacian matrix is also defined as before using L= D�W.

Theorem 7.8.1 — Laplacian Matrix. The Laplacian matrix, L, satisfies the following properties:
1. For every vector x of a dimension n equal to the number of data points,

x
TLx=

1
2

n

Â
i, j=1

wi j(xi�x j)
2.

Proof: Using the definition of dii,

x
TLx= x

TDx�x
TWx=

n

Â
i=1

dixi2�
n

Â
i, j=1

xixjwi j

=
1
2
(

n

Â
i=1

dixi2�2
n

Â
i, j=1

xixjwi j+
n

Â
j=1

d jxj
2) =

1
2

n

Â
i, j=1

wi j(xi�xj)
2

2. L is symmetric and positive semi-definite.
Proof: The symmetry of L is a direct result of the symmetry of D and A, and it is positive
semi-definite because, as shown above, xTLx� 0.

3. The smallest eigenvalue of L is zero and the corresponding eigenvector is a vector of ones, 1.

4. Because it is symmetric and non-negative, L has n non-negative, real-valued eigenvalues,

0= l1  l2  ... ln

The eigenvector of L corresponding to l2 can be used to cluster the data into two parts, as explained
and proved in the context of network clustering in Chapter 3.

7.8.2 Spectral clustering algorithm

Consider the clustering of n data vectors of dimension m into k clusters. The spectral clustering
algorithm proceeds as follows,

1. Calculate the L2 distances disti j between each pair of the m-dimensional n data vectors to create
the distance matrix.

2. Calculate the n⇥n “similarity” matrix, W, such that close points are assigned a value close to 1
and far points are represented by a value close to zero. E.g., wi j = exp(�dist2i j/dist

2
mean), where

distmean is the mean of all non-zero values in the distances matrix, dist.
3. Calculate the diagonal degree matrix, D.
4. Calculate the n⇥n Laplacian matrix, L= D�W.
5. Calculate the n-dimensional eigenvectors u1,u2, . . . ,uk�1, corresponding to the k�1 smallest

eigenvalues.

7.8 Spectral clustering 125

6. In order to cluster into k clusters, place the calculated eigenvectors u2, . . . ,uk�1 into a new
(k�1)⇥n data matrix F= (u2, . . . ,uk�1).

7. Cluster the data matrix F into k clusters, treating it as a set of n data vectors of dimension (k�1).
For 2 clusters use the signs of u2 to cluster the data. For 3 or more clusters, use k-means or
similar methods. The resulting k clusters of the n vectors in F is the desired clustering of the
original n vectors.

Note that because the number of required clusters is normally much smaller than the dimension of
the original data vectors, the dimension of the new data matrix, (k�1)⇥n, is much smaller than the
dimension of the original data set, m⇥n, and thus its clustering is easily obtained. To calculate the
smallest k� 1 eigenvectors of L, we can use the efficient inverse block power method. The use of
the eigenvectors of the Laplacian matrix corresponding to the k�1 smallest non-zero eigenvalues is
justified as was the use of the second eigenvectors in the case of network clustering: these vectors
minimize xTLx and thus minimize the distance between pairs of points in the same cluster.

7.8.3 Example
⌅ Example 7.5 Consider a data matrix of 2d vectors, X, shown in Figure 7.11,

X=


5 7 23 70 6 5
9 5 92 62 60 70

�

0 20 40 60 80 100
0

20

40

60

80

100

1
2

3

45

6

Figure 7.11: 2d Data for Spectral Clustering

Define the similarity matrix,W, such that

wi j = exp(�dist2i j/distmean
2).

We calculate the distances between the points as:

distances=

2

6666664

0 4.47 84.9294 83.87 51.01 61
4.47 0 88.459 84.96 55.01 65.03
84.92 88.45 0 55.76 36.24 28.43
83.86 84.96 55.76 0 64.03 65.49
51.01 55.01 36.24 64.03 0 10.05
61 65.03 28.43 65.49 10.05 0

3

7777775
.

126 Chapter 7. Cluster Analysis: unsupervised learning

We calculate that distmean = 55.9152, and use this to calculate the similarity matrix, whose elements
wi j = exp(�dist2i j/s2):

W =

2

6666664

1 0.99 0.10 0.10 0.43 0.30
0.99 1 0.08 0.09 0.37 0.25
0.09 0.08 1 0.36 0.65 0.77
0.10 0.09 0.36 1 0.26 0.25
0.43 0.37 0.65 0.26 1 0.96
0.30 0.25 0.77 0.25 0.96 1

3

7777775
.

Using this similarity matrix, sum the columns to calculate the elements of the diagonal degree matrix,
D,

D=

2

6666664

2.93785 0 0 0 0 0
0 2.81334 0 0 0 0
0 0 2.98069 0 0 0
0 0 0 2.09786 0 0
0 0 0 0 3.70971 0
0 0 0 0 0 3.55686

3

7777775
.

Finally, we calculate the Laplacian matrix, L= D�W,

L=

2

6666664

1.937 �0.993 �0.099 �0.105 �0.435 �0.304
�0.993 1.813 �0.081 �0.099 �0.379 �0.258
�0.099 �0.081 1.980 �0.369 �0.657 �0.772
�0.105 �0.099 �0.369 1.097 �0.269 �0.253
�0.435 �0.379 �0.657 �0.269 2.709 �0.968
�0.304 �0.258 �0.772 �0.253 �0.968 2.556

3

7777775
.

The second and third eigenvectors and eigenvalues of the Laplacian matrix are,

FT =

2

6666664

0.4657 �0.2514
0.5058 �0.3086
�0.2338 0.5134
�0.6853 �0.6024
0.002229 0.2774
�0.05465 0.3716

3

7777775

Eigenvalues= (0,1.097,1.599,2.851,2.934,3.615)

Given the second and third smallest eigenvectors of the Laplacian matrix in F, we cluster the six 2d
data points into three clusters as shown in Fig. 7.12.

We could use hierarchical or k-means to cluster these points, but the three clusters based on the plot
are clearly (1,2), (3,5,6), 4 – consistent with the drawing of the original data above. In this case, the
original data as well as the Laplacian eigenvectors we ended up clustering were in 2d (since we only
needed two eigenvectors), and so clearly there was no efficiency advantage to be gained here. ⌅

7.9 BFR algorithm 127

-1 -0.5 0 0.5 1
eigenvector 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ei
ge

nv
ec

to
r 3

1
2

3

4

5
6

Figure 7.12: Results of spectral clustering.

7.9 BFR algorithm

The Bradley, Fayyad and Reina (BFR) algorithm (Bradley et al., 1998), is a variation on the k-means
algorithm, designed to cluster extremely large data sets in a very high dimensional space, and is therefore
designed to minimize storage requirements. The algorithm assumes the data to be normally distributed
about a centroid. The mean and standard deviation may vary from dimension to dimension and are
updated during the processing of the data, but the data in different dimensions must be independent of
each other for the algorithm to hold. In 2d, for example, this means that a cluster can take the shape of
an ellipse, but not of a rotated ellipse.

The BFR algorithm begins by selecting k initial points, using one of the methods described in
Section 7.5. The data points are then read in small groups (chunks) into memory, while summaries of
the k clusters are also stored in main memory, including the mean (clusteroid) for each cluster and its
standard deviation in each direction. As the data are read into memory, they are divided into three sets:

1. The discard set: These are summaries of the clusters themselves as the algorithm progresses.
They are called discard sets because, once clustered, the data points represented by the summaries
are discarded.

2. The compressed set: The compressed sets are summaries for sets of points not close to any of the
k clusters initialized in the algorithm, but have been found close to one another. Summaries of
these data points are stored as “mini-clusters”, and the original data are discarded.

3. The retained set: These are the data points that are neither assigned to one of the k clusters, nor
to a “mini-cluster”. As a result, no summary is kept for these points, and the original data points
are kept in memory.

Processing data using BFR
1. For a given chunk of input data, all points that are “sufficiently close” (see below) to the centroid

of a cluster are assigned to that cluster and are used to update its clusteroid and standard deviation

128 Chapter 7. Cluster Analysis: unsupervised learning

in each direction.
2. Points that are not sufficiently close to any of the centroids but are close to other compressed or

retained points are clustered with these points. This forms “mini-clusters” – their summaries are
kept and the data points eliminated. Remaining single-points that are not close to other retained
points or compressed sets are added to the retained set in memory.

3. When possible, updated “mini-clusters” are merged with each other or with the existing k clusters.
4. The above steps are repeated for all chunks of data.
5. Once all data have been processed, data points in the retained set are either noted as outliers, or

are assigned to the nearest clusters, if possible.

Definition of “sufficiently close”
Two approaches are discussed in Leskovec et al. (2014),

a. Add a point p to an existing cluster if the centroid is not only the closest but if it is also unlikely
that after the remaining points have been processed other cluster centroids will form that are
closer to p. This second criterion is strongly linked to the original assumption that the data were
normally distributed in each dimension, and to the estimated standard deviations of each cluster
in all data directions.

b. Use the Mahalanobis Distance (section 7.7) to estimate the likelihood that p belongs to one of
the k clusters.

7.10 CURE (Clustering Using REpresentatives)
The CURE (Clustering Using REpresentatives) algorithm is used for clustering large amounts of data
where clusters are expected to take complex shapes, such as two concentric rings. These types of data
rings cannot be accurately clustered based on distance from their centroids because the data rings share
a centroid at their respective centers. An example is shown in the right panel of Fig. 7.13, where the
blue and red clusters share the same clusteroid, yet are clearly distinct. CURE is a point-assignment
clustering algorithm that, like k-means, relies on a series of pre-selected representative points that span
the entire, complexly-shaped cluster, and uses these points to cluster the rest of the data appropriately.
The difference is that CURE uses more than a single representative point for each cluster in order to be
able to accommodate the complex cluster shapes.

To initialize CURE,
1. First, a small random sample of data points are clustered using hierarchical clustering based on

the “single” linkage (section 7.4.2).
2. The resulting set of points from each cluster (or a subset of these) are designated as its represen-

tatives, and are ideally as far apart from one another as possible.
Next, we carry out a point assignment on the rest of the data points and assign each new point p to

the cluster containing a representative closest to p. An example of the CURE algorithm is shown in
Fig. 7.13.

7.10 CURE (Clustering Using REpresentatives) 129

-5 0 5 10 15 20 25
-5

0

5

10

15

20

25
Original Data, N=8200

-5 0 5 10 15 20 25
-5

0

5

10

15

20

25
Representatives, N=300

cluster 1
cluster 2

-5 0 5 10 15 20 25
-5

0

5

10

15

20

25
Clustered Data, N=8200

cluster 1
cluster 2

Figure 7.13: The CURE algorithm selection of representatives and final clustering

8. Classification: supervised learning

8.1 Motivation

We now move onto “supervised learning”, or “classification” techniques. In all of these classification
methods, we have some “training data” points that are divided into classes via a known “label”. The
objective is to learn how to assign such labels in order to classify new data points. The applications
of these “machine learning” classification techniques are broad and continuing to expand, disrupting
every data-driven industry. Some key examples of the applications of these algorithms include:

• Recognition: Optical character recognition, handwriting recognition, speech recognition, written
language recognition (for example, in spam filtering)

• Social media analysis: Sentiment analysis of tweets (e.g., angry/sad/happy) in order to predict
how similar individuals may vote.

• Recommendations: For example, product and book recommendations on Amazon and television
recommendations on Netflix.

• Financial Prediction: Predicting individual credit scores and predicting loan defaulting based
on an individual’s financial profile.

• Advertising: Advertisers learn about your preferences through searches and use this information
to present targeted advertisements.

Unlike the “unsupervised learning” techniques from the previous chapter – where the input data
does not inform the clustering algorithm what the clusters should be – in “supervised learning” training
data define the classes and allow us to learn the correct classification. From this learning, we can predict
how to accurately classify future data. The training data contains pairs of data of the structure (x,y),
where x contains information about a given data point (i.e. its coordinates – text of email, image of
hand writing, area and age of a house), and y is the label (spam/not spam, which letters is drawn, or
what price the house was sold at) of that data point for its given features. The labels may be a real
numbers, binary (0 or 1) or part of some finite set of numbers. These known data are then divided into

132 Chapter 8. Classification: supervised learning

“training data” used to deduce the algorithm and “validation data” used to test the results.
We begin by exploring perceptrons – a binary, linear classifying technique that later forms the basis

of neural networks. Next, support vector machines demonstrate the use of a gradient-based optimization
for the learning. Then, we move on to more more sophisticated techniques, such as feedforward neural
networks, and finally, we look at k-nearest neighbor algorithms.

8.2 Perceptrons

A perceptron is a hyperplane of dimension d� 1 that splits up d-dimensional data points into two
groups, shown for example as a separating line in two dimensions in Fig. 8.1. Let the dimensionalizing
vector, x= [x1,x2, . . . ,xd] represent a point in data space, where each such data point is assigned a label
of either y = +1 or y = �1. The perceptron is defined by a vector of weights, w = [w1,w2, . . . ,wd].
Each perceptron also has a threshold, q , which is used to determine the classification of the input
vector, x. If w · x > q then the output of the perceptron is +1, and if w · x < q the output is �1.
Ideally, the perceptron defined by the weights vector, w, applied to the training data leads to the
correct classification of ±1 for all points. Once a perceptron we are training has correctly classified all
training data we stop updating the w vector, which reveals a potential shortcoming discussed later. The
perceptron itself represents the line w ·x= q , where x here is the vector defining the dimensions of
the hyperplane. The perceptron should be defined such that it correctly separates positive and negative
labels.

8.2.1 Training perceptrons

In training a perceptron to correctly classify future data, we go over the training data vectors, x, and use
their respective, known classifications, y, to update the weight vector, w and threshold, q , until all the
training points are correctly classified. To simplify the training process initially, assume the threshold
q = 0 and consider the following steps:

1. Initialize the weight vector, w, with 0’s or random numbers.
2. Initialize a learning rate parameter, h , which is a small, positive real number.
3. For each training data point, (xi,yi), we calculate the classification label y0i = sign(w ·xi). If the

label y0i is equal to the known, correct yi, then the perceptron does not need to be adjusted. If,
however, the labels are different, then the point is currently incorrectly classified. We update w
by writing wnew = wold +hyix, adjusting w slightly in the direction of x as seen in Fig. 8.1.

woldwnew

x1

= +1
= -1

⌘x1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wold · x = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wnew · x = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 8.1: Updating a perceptron based on a misclassified point.

8.2 Perceptrons 133

Following the usual machine learning paradigm, this procedure is repeated by going over all training
data, and then (after possibly randomly shuffling them) going over all points several times until some
convergence is reached. Each such pass over all data points is known as an “epoch”. While assuming
the threshold q = 0 is helpful for introducing how to update perceptrons, most classification problems
require a non-zero, variable threshold q 6= 0. To generalize the above, we can allow q to vary by adding
q as a component of the weight vector w, and supplementing the data point vectors as follows,

1. Replace the weight vector, w= [w1,w2, . . . ,wd] with w0 = [w1,w2, ..,wd ,q]
2. Replace every vector x= [x1,x2, ..,xd] with x

0 = [x1,x2, ..,xd ,�1]
With these adjustments the perceptron condition with a threshold now becomes w0 ·x0 � 0 which

appears to have the form of a perceptron with a zero threshold. However, if we compute the dot product
we see this is in fact identical to the desired w ·x� q . We update the weight vector w0 in the same way
as described above for perceptrons with a zero threshold.

Carefully selecting the learning rate h is important: if h is too small the convergence to a correctly
defined perceptron will take too many steps, and if h is too large, the w vector will jump around and
converge slowly, if ever. In addition, it is advisable to make the learning rate smaller as the epochs
proceed, in order to ensure convergence. One can also use an adjustable learning rate, h , that is,
for example, proportional to the deviation of the current data point that is not classified correctly
(h = h0|x ·w�q |), but bounded on both sides so that, say, 0.01< h < 1.

8.2.2 Example
⌅ Example 8.1 Consider the following 2d training data, X , and the corresponding labels, y:

X =

✓
�0.81 0.45 0.65 0.11 �0.12
0.87 �0.87 �0.05 �0.76 0.43

◆

y=
�
�1 1 1 1 �1

�

We start by visualizing the data in Fig. 8.2, where circles are classified +1 and crosses are
classified �1, and also plot an initial guess for the perceptron line shown in dash green, [w,q] =
[(�1,�1.8),�0.4]. As a check, remember that a perceptron classifies a point as +1 if w ·x> q and as
�1 otherwise. The first point is above the line, and is classified correctly as,

x1 =
⇥
�0.81 0.87

⇤T

w=
⇥
�1 1

⇤T

q =�0.4
w ·x�q =�0.356
�0.356< 0. Thus, this point is correctly classified as �1.

To be able to update q as well, define the augmented w and X ,

X =

0

@
�0.81 0.45 0.65 0.11 �0.12
0.87 �0.87 �0.05 �0.76 0.43
�1 �1 �1 �1 �1

1

A

y=
�
�1 1 1 1 �1

�

w=
⇥
�1 �1.8 �0.4

⇤T

h = 0.16

134 Chapter 8. Classification: supervised learning

Consider point #1 again using these augmented w and X ,

w
T
x1 =

⇥
�1 �1.8 �0.4

⇤
2

4
�0.81
0.87
�1

3

5=�0.356.

< 0 so point 1 should have �1 label, which it does. Correct, no need to adjust.

Similarly, for point #2:

w
T
x2 = 1.516.

> 0 so point 2 should have +1 label, which it does. Correct, no need to adjust.

However, for point #3:

w
T
x3 =�0.16

< 0 so perceptron suggests point 3 should have �1 label, however it has
a +1 label. The perceptron is thus incorrect and we need to adjust.

wnew = wold +hy3X3 =

2

4
�1
1

�0.4

3

5+0.16⇥1⇥

2

4
0.65
�0.05
�1

3

5=

2

4
�0.43
�0.86
�0.27

3

5

After this adjustment, point 3 is correctly classified in this case (check). Continuing with the new w,
we find that training points #4 and #5 are both correctly classified,

w
T
x4 = 0.877

> 0 so point 4 should have 1 label, which it does. Correct, no need to adjust.

w
T
x5 =�0.0525

< 0 so point 5 should have �1 label, which it does. Correct, no need to adjust.

We can continue this procedure over all points again to ensure this perceptron accurately classifies
the training data to confirm our solution, but graphically we can already see the updated perceptron
now correctly classifies all training points (blue line in Fig. 8.2). ⌅

8.2.3 Problems with perceptrons
Linearly inseparable training data: The training data provided may not be separable with a hyper-

plane (e.g., blue circle in Fig. 8.3), in which case there will never be convergence, as misclassified
points pull the perceptron in opposite directions. To address this, we can generalize the hyper-
plane by transforming the training data so that the hyperplane is able to separate the data but
this may introduce over-fitting issues – we will have constructed a perceptron that is designed to
effectively classify the training data, but may fail to correctly classify other input data.

Sub-optimal perceptrons: On the other hand, for two sets of data points that are quite spaced away
from one another (e.g., Fig. 8.3 without the blue circle), we may construct several perceptrons
that correctly classify the training data, shown in black. These may, however, be suboptimal and
biased towards the positively or negatively classified data points. Ideally, the perceptron would
be exactly in the center of the space between the two sets as it is then most likely to correctly
classify new points that may be in this gap. That said, the perceptron training algorithm discussed

8.2 Perceptrons 135

-1 -0.5 0 0.5 1

X
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X
2

Perceptron demo: o=+1; x=-1

1

2

3

4

5

Figure 8.2: Perceptron example. Point 3 is initially misclassified (dash green line), and this is corrected
after the update (blue line).

above stops once the perceptron accurately classifies all training data. Thus, we may derive
perceptrons that correctly classify the training data but have a small margin for error and thus fail
to classify new data in the gap between the two distinct clusters. We will see in the next chapter
how support vector machines address this shortcoming of perceptrons.

= +1
= -1

Figure 8.3: While the red perceptron correctly classifies the training data (in green), it fails to correctly
classify additional data (in blue).

8.2.4 An extension to non-linear hyperplanes
Consider a 2d data set with the coordinates of each point given by xi = (x1,x2). If a linear perceptron
of the form w1x1+w2x2�q = 0 cannot classify the data points because they are not separable by a
straight line or hyperplane, it is possible to construct a non-linear separating line that may be able to
perform the classification. Suppose we are looking for a quadratic line that separates the two data sets,
given by x2 = Ax1+Bx21+C, or, more generally, by w1x1+w2x2+w3x21�q = 0. Instead of looking
for a weight vector with three elements in the linear two-dimensional case, we look for a weight vector

136 Chapter 8. Classification: supervised learning

= +1

= -1

Support vectors

w · x+ b = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 8.4: An SVM selects a feasible separating line (red line) at a distance g from the distinct datasets,
maximizing the likelihood of correctly classifying future data inputs.

with four elements. The training data need to be extended accordingly, such that each data vector is
now x

0
i = (x1,x2,x21,1) and w

0 = [w1,w2,w3,q]. We then proceed with the learning algorithm to find
w
0 as before. It is straightforward to generalize this to more general or higher order non-linearities (e.g.,

w1x1+w2x2+w3x21+w4x22+w5x1x2+w6x31+w7 = 0); this extension to a non-linear hyperplane also
works for support vector machines (SVMs) covered in the next section.

8.3 Support vector machines
To remedy the above issues with perceptrons, we next discuss support vector machines (SVMs). Unlike
a perceptron, whose training halts as soon as a hyperplane that correctly classifies the training data is
found, a support vector machine selects a specific hyperplane w ·x+b= 0 that maximizes the distance
g between the hyperplane and the closest points of the training set, as shown in the Fig. 8.4.

Furthermore, we also see in Fig. 8.4 two parallel hyperplanes at distance g from the central
hyperplane (the SVM, in red), w ·x+b= 0. Each of these parallel hyperplanes touches a few “support
vectors” – the training points that actually constrain the dividing hyperplane by being at a distance g
away. A d-dimensional set of points generally has d+1 support vectors, as shown in Fig. 8.5.

As a preliminary attempt to construct a support vector machine, for each data point, (xi,yi), in our
n-point training set, we would like to find the weights w that maximize the distance, g , from the data
to the SVM hyperplane, subject to the constraint that if y = +1, then w ·x � g , and if y = �1, then
w ·x�g . Equivalently, we may re-write this constraint as,

yi(w ·xi+b)� g for all i= 1,2, ..,n. (8.1)

However, this formulation does not lead to a unique solution for the weights, because given a set of
weights w that satisfies (8.1), we can always multiply the weights by a factor of 2 and the distance g is
similarly scaled; we can just arbitrarily multiply the weights to maximize g , which is trivial.

To address this shortcoming, we normalize the weight vector by requiring that the two planes on
the two sides of the SVM plane separating the two data sets are represented by the lines w ·xi+b=±1.

8.3 Support vector machines 137

0 1 2 3 4 5
x

0

1

2

3

4

5

y

SVMs example 12.8 from MMD

w " x = ux + vy = 1

w " x = ux + vy = !1

Figure 8.5: We can see there can be more than d+1 support vectors in d dimensions.

This means that we now cannot multiply w by some factor and can proceed to calculate g in this case.
Consider two points x1, x2 on the two planes above and below the SVM separating plane, just across
from one another. The distance between them is 2g , and the direction of the vector separating them
is that of the unit vector w/kwk. We can therefore write, x1 = x2+ 2gw/kwk. At the same time,
because x1 is on the upper hyperplane, we have w ·x1+b=+1. Substituting this expression for x1
into the relation between x1, x2 we find, w · (x2+2gw/kwk)+b=+1. Now use w ·x2+b=�1 to
find, w · (2gw/kwk) = +2, or gw ·w/kwk= gkwk2/kwk=+1, which leads to g = 1/kwk.

Our corrected optimization problem therefore becomes minimizing kwk, which is now the inverse
of g , by varying w and b subject to the constraint that,

yi(w ·xi+b)� 1 for all i= 1,2, . . . ,n. (8.2)

8.3.1 Calcualting the SVM by gradient-based minimization
In applications, noise in the data may not allow us to find a plane that perfectly separates the two
data sets, and therefore instead of minimizing kwk subject to the above constraint (8.2), we seek to
minimize the following cost function,

f (w,b) =
1
2

d

Â
j=1

w2
i +C

n

Â
i=1

max{0,1� yi(w ·xi+b)}. (8.3)

The first term is minimized for small w, and therefore large g . The second term penalizes misclassified
points for a given w and thus contains a sum over the penalty function L(xi,yi) =max{0,1�yi(w ·xi+
b)}. If a point is correctly classified by the hyperplane defined by w and b, then 1� yi(w ·xi+b) 0,
and thus L(xi,yi) = 0 and no penalty is incurred. However, if a point (xi,yi) is too close to the
hyperplane, or is misclassified by it, then 1� yi(w ·xi+b)� 0, L(xi,yi)� 0, and the penalty function
contributes to a larger f (w,b). Thus, the minimum of the penalty function (8.3) achieves our goal of

138 Chapter 8. Classification: supervised learning

classifying all points as well as possible while making the margin g as large as possible, thus placing
the SVM plane as close as possible to the center of the gap between the two groups of points.

Note that the second term in the cost function is multiplied by a constant, C (the “regularization
parameter” or “Penalty constant”). For large C, a misclassified point is more heavily penalized – thus,
we select a large C if we want very few misclassified points, but a narrow margin, and conversely a
smallC if we accept a few misclassified points, but a larger margin (a hyperplane further away from
the data boundaries of the two classes). In the case of data composed of two clusters that can be well
separated, it is useful to choose a largeC = 1000, or so, to find an appropriate solution.

As with perceptrons, we can transform to a problem without a threshold b by adding 1 as an extra
dimension to each data point, and adding b to the weight vector,

w
0 = [w,b]; x

0
i = [xi,1].

(Note that we added �1 to each data point for perceptrons, because they were defined as w · x > q ,
while we are adding 1 to the SVM which is defined as w ·x+b> 0).

The transformation to a threshold-less format allows us to write the penalty as,

f (w0) =
1
2

d

Â
j=1

(w0
i)
2+C

n

Â
i=1

max{0,1� yiw ·x0i}. (8.4)

Finally, we find the derivative of the penalty function by gradient-based minimization. Construct the
gradient of the cost function with respect to the components of w,

∂ f
∂wj 0

= w0
j+C

n

Â
i=1

if yi

d

Â
j=1

w0
jx
0
i j

!
� 1 then 0 else � yix0i j

!
(8.5)

The gradient points in the direction of steepest increase of the penalty function as a function of the
weights. To minimize f (w,b) = f (w0), we thus move the w0

j components in opposite directions with
respect to the gradient. Using a constant learning rate h , we write the following iterative scheme for
the weights,

w0
j
k+1 = w0

j
k�h ∂ f

∂w0
j

for all j = 1,2, . . . ,d+1. (8.6)

For sufficiently large k, this should approach the minimum of the penalty with respect to the weights
w
0 = [w,b].

8.3.2 Example
⌅ Example 8.2 Consider the following example training data, (X ,y), and the initial guess for w,b.
The threshold b is found by adding an extra data point 1 to the original data points and making b the
final element in a revised w vector, w0 = [w,b].

X =

0

@
�0.8 �0.2 0.65 0.11 �0.12
0.87 0.5 �0.05 �0.76 0.43
1 1 1 1 1

1

A

y=
�
1 �1 �1 �1 1

�

w
0 = [w,b] =

⇥
10 10 0

⇤T

8.3 Support vector machines 139

-1 -0.5 0 0.5 1

X
1

-1

-0.5

0

0.5

1

X
2

SVM classification: o=+1, x=-1

1

2

3

4

5

Figure 8.6: An example of two steepest decent SVM iterations, see text.

We can see from Fig. 8.6 below that it is not possible to partition the training data into two groups
using a single straight line, but we can still look for the optimal SVM.

We carry out the first two steepest descent iterations, using a learning rate of h = 0.1, and a penalty
constant ofC= 10. With number of dimensions in the augmented data d = 3 and number of data points
n= 5, the cost function to be minimized is given by,

f (w0) =
1
2

3

Â
i=1

w0
i
2+C

5

Â
i=1

max{0,1� yiw0 ·x0i}

The gradient with respect to w0 is therefore given by,

∂ f (w0)

∂w0
k

= w0
k+C

n

Â
i=1

{if 1� yiw0 ·x0i < 0 then 0, else �yix0i j}= w0
k+C

n

Â
i=1

Gi.

where we denote with Gi the contribution of data point i to the gradient of f (w0). In the first iteration,
we go over all data points and check the inequality 1� yi(w0 ·xi)< 0 to determine the contribution Gi
of each data point to the gradient updating. We find that the initial cost is 213, and,

i= 1, C⇥Gi = [8,�8.7,�10]
i= 2, C⇥Gi = [�2,5,10]
i= 3, C⇥Gi = [6.5,�0.5,10]
i= 4, C⇥Gi = [0,0,0]
i= 5, C⇥Gi = [0,0,0]

Thus, at the end of this first iteration, ∂ f (w0)/∂w0
k = [22.5,5.8,10]T , and the new estimate for the

weights is,

w
0 =

2

4
10
10
0

3

5�h

2

4
22.5
5.8
10

3

5=

2

4
7.75
9.42
�1

3

5 ,

140 Chapter 8. Classification: supervised learning

and the cost is reduced to 152.21. Proceeding to the next steepest descent iteration,

i= 1, C⇥Gi = [8,�8.7,�10]
i= 2, C⇥Gi = [�2,5,10]
i= 3, C⇥Gi = [6.5,�0.5,10]
i= 4, C⇥Gi = [0,0,0]
i= 5, C⇥Gi = [0,0,0]

and now, ∂ f (w0)/∂w0
k = [20.25,5.22,9]T and the new estimate for the weights is

w
0 =

2

4
7.75
9.42
�1

3

5�h

2

4
20.25
5.22
9

3

5=

2

4
5.725
8.898
�1.9

3

5 .

The initial SVM and the two next iterations are seen in Fig. 8.6. We can continue with further iterations
and will converge to an optimal SVM. An actual convergence requires making the learning rate smaller,
in this case. ⌅

8.4 Multi-Layer Artificial Neural Networks
8.4.1 Motivation

Neural networks are a machine learning classifier that have their foundations in the biological operation
of neurons – cells in our body that transmit electric signals and in doing so determine human responses.
Each neuron in the human body collects electrical and chemical inputs through branch-like structures
known as dendrites. The neuron accumulates and analyzes these inputs from dendrites, and based on
some criterion or threshold makes a decision to “fire”, passing an output electrical response down its
axon to structures at the end of the neuron known as boutons. These boutons are linked to thousands
of other neurons via synapse connections. The human reaction, thus, can be explained by a series
of electrochemical reactions and “decisions” made in neurons that ultimately lead to some physical
response. This whole process happens in a matter of milliseconds.

Artificial neural networks draw on the concept of the human neuron to mimic its behavior: taking
in inputs, processing these inputs, and determining an output using an activation function. The basic
principles behind an artificial neural network link closely to our earlier discussion of perceptrons –
linear binary classifiers that, using a weight vector, determine one of two classifications for a given
input. Perceptrons take the dot product of an input vector, x, and a trained weight vector, w, and check
to see if the result is above or below a calculated optimal threshold, b, to classify it with a “+1” or
“�1” label. Thus, artificial neural networks may be taught of as a collection of perceptrons digesting
information and deciding whether to fire. To see the similarities and the key differences between
between neural networks and perceptrons, consider the following examples of two functions, the OR
function, and the XOR function.

Fig. 8.7 shows these two functions. The OR function takes two inputs and outputs 1 if at least one
of the input elements is 1, and 0 otherwise. The function can be reproduced by a simple perceptron
with a weight vector w= [1,1] and a threshold q = 1.

The XOR function outputs a label of 1 if the inputs are different, and 0 otherwise. Fig. 8.7 shows
that these labels are not separate (cannot be classified) by a line, and thus a perceptron cannot be used
to classify these data. This can be addressed by using a neural network with a single hidden layer,

8.4 Multi-Layer Artificial Neural Networks 141

OR function XOR function

(0,1) (1,1)

(1,0)(0,0)

(0,1) (1,1)

(1,0)(0,0)

Label: 1

Label: 0

≥ 1?

w = 1

w = 1

(1 or 0) ≥ 1? (1 or 0)
≥ 1?

≥ 1?

In
pu

t

In
pu

t

a11

a12 a12

a11

a22

a21

a3a2

Figure 8.7: The XOR function cannot be classified by a linear perceptron, but can be well-classified
with a neural network with a single hidden layer.

connecting the input and output layers, as shown in the right panel of Fig. 8.7. Consider, for example
the input vector (a11,a

1
2) = (1,1). Using the specified weights, we calculate the hidden layer neuron

values by first multiplying the inputs by the appropriate weights and testing against the threshold:
w2
11a

1
1+w2

12a
1
2 = 1.5> 1 and therefore a21 = 1. Similarly, w2

12a
1
1+w2

22a
1
2 = 1a11+0.5a12 = 1.5> 1, and

therefore a21 = 1. We use these to calculate the output neurons as follows �2a21+1a22 =�1< 1 and
therefore a3 = 0, as it should be. Try this with other inputs to verify that XOR is indeed well-represented
by this simple neural network.

The above calculation for a21, for example, may be expressed as follows,

z21 = w2
11a

1
1+w2

12a
1
2�1

a21 = s(z21),

s(z) =

(
0 z< 0
1 z� 0

where s is the step function (Heaviside function). In this formulation, the �1 added to z21 is referred
to as the “bias” and the step function is referred to as the “activation function”, determining what the
output of the neuron is as function of its input z21.

The applications of feed-forward neural networks are broad-ranging, with examples including
image and handwriting recognition, language translation, facial and voice recognition, and chess
playing.

8.4.2 Evaluating a neural network (feedforward)
A neural network, following the above example, contains an input layer, several hidden layers, and an
output layer. When designing a neural network, we must be careful to consider the design the correct
architecture, with the optimal number of hidden layers for accuracy and efficient calculation. The value
of the jth neuron in the `th layer is denoted a`j. The relationship between each two layers is defined by

142 Chapter 8. Classification: supervised learning

the elements of a weight matrix, where w`
jk, is the weight connecting the kth neuron in the (`�1)th

layer to the jth neuron in the `th layer. Each neuron also has a “bias”, denoted by b`j, for the jth neuron
in the `th layer, for the activation of the jth neuron in the `th layer. The activation function may be
denoted s(x), and thus the output of the neural network is estimated from the input as follows,

z2i = Â
j
w2
i ja

1
j +bi

a2i = s(z2i)
· · ·
z`i = Â

j
w`
i ja

`�1
j +b`i

a`i = s(z`i)
· · ·
zLi = Â

j
wL
i ja

L�1
j +bLi

aLi = s(zLi).

Each step may also be written in matrix form as

z
` =W`

a
`�1+b

`

a
` = s(z`),

where the activation function is applied separately to each element of the input vector. See an example
architecture for a feedforward neural network below in Fig. 8.9.

There are several helpful activation functions, s(x), that we often use,
1. Tansig function: tansig(x) = 2(1+ exp(�2x))�1�1
2. Sigmoid function: sigmoid(x) = (1+ exp(�x))�1

3. Softplus function: softplus(x) = log(1+ exp(x))
4. Rectified linear: s(x) = 0, if x 0, s(x) = ax otherwise
5. Linear: s(x) = ax.
Typically, the same activation function is used for all layers in a given network except for in the

output layer, where the chosen activation fundction depends on the objective output of the network:
Binary outputs: For a binary output layer, deciding between two options represented by 1 and 0 (Yes

and No), a sigmoid or similar output activation function is used.
Multiple discrete labels: Where a classification between multiple classes is needed, for example

when deciding which handwritten letter is described by a given image, the softmax function
can be used, generalizing the sigmoid function used for binary outputs. The softmax activation
function is defined as,

softmax(x) =
exp(x)

Âi exp(xi)

For example, if we input the vector,

x=
�
1 2 3 4 1 2 3

�T

softmax(x) =
�
0.024 0.064 0.175 0.475 0.024 0.064 0.175

�T
.

8.4 Multi-Layer Artificial Neural Networks 143

We can see that the softmax activation function effectively highlights the largest values and
suppresses the values significantly below the maximum entry. In MATLAB, we apply a softmax
output layer and use the vec2ind function to get our output.

Regression: When the network needs to calculate a number or several numbers within a continuous
range (e.g., price of a house, value of CO2 flux from a forest to the atmosphere), a linear or
rectified linear output layer is often appropriate.

-5 0 5
-2

-1

0

1

2

3
activation functions

Figure 8.8: Example activation functions

8.4.2.1 Examples
Example – Using MATLAB
⌅ Example 8.3 Consider the training data shown in the left panel of Fig. 8.9, where there are two
input parameters (x,y) and three possible labels marked 1, 2, 3. The training data are used to train the
network with two hidden layers to classify the training data into these three classes, such that each class
is defined as one of the three vectors,

a=

2

4
1
0
0

3

5 b=

2

4
0
1
0

3

5 c=

2

4
0
0
1

3

5 .

The training involves finding the weights and biases W`,b` that lead to the best classification of the
training data, the algorithm for which is described in section 8.4.3.

The trained network is given by the following weights and biases,

W2 =


�1.55907 1.27589
�0.736139 �0.589527

�
, b

2 =


0.00936571
7.94701

�

W3 =


�7.08115 5.63232
5.1499 �9.04534

�
, b

3 =


�2.00214
�2.07198

�

W4 =

2

4
�3.29493 9.78708
�5.59981 �6.17265
9.01543 �3.69417

3

5 , b
4 =

2

4
1.62788
�1.04292
1.20986

3

5 .

144 Chapter 8. Classification: supervised learning

0 2 4 6 8 10

x

0

2

4

6

8

10

y

training data

2

3

2

1

1

3

3

2 3

3 3

1

1

1

3 3

3

3

2

1

3

2

2

3

2

1

2

1

2

33

3

1

3

2 1

3

1

1

3

33

3

3

2

1

3

3

1

3

2

3

3

2

1

3

2

2

2

2

1

32

1

3

1

2 1

2

3

2 3

1

1

2

3

2

2

12

3

3

3

3

1

3

1

3

1

2

2

2

3

3

3

2

1

3

3

1

0 2 4 6 8 10

x

0

2

4

6

8

10

y

classified data

3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1

3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
1
1

3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
1
1
1

3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Inputs Hidden Layer Output LayerHidden Layer

a1 a2 a3
a4

Figure 8.9: Training data and classification by a the neural network with 2 hidden layers

8.4 Multi-Layer Artificial Neural Networks 145

Given these weights, an input vector a1 = (x1,x2)T is classified as follows,

a
2 = tansig(W2

a
1+b

2)

a
3 = tansig(W3

a
2+b

3)

a
4 = softmax(W4

a
3+b

4)

out put = vec2ind(a4).

The results of applying this network to a grid of points in the (x,y) plane are shown in the right panel
of Fig. 8.9, and this simple network is clearly able to classify all the training data and come up with a
reasonable classification of the entire two dimensional input plane. ⌅

Example – Hand Calculation
⌅ Example 8.4 Consider the following step-by-step hand calculation for a similar but slightly different
feedforward neural network which similarly classifies the input data into three classes, such that the
class is defined as one of the three vectors,

a=

2

4
1
0
0

3

5 b=

2

4
0
1
0

3

5 c=

2

4
0
0
1

3

5

The network is given by the weights,

w2 =


�1.4862 1.2127
�0.7293 �0.5830

�
b2 =


0.0105
7.8570

�

w3 =


�6.7012 5.2272
4.7825 �8.4793

�
b3 =


�1.9767
�1.9729

�

w4 =

2

4
�3.1456 9.2062
�5.1856 �5.8752
8.4518 �3.4107

3

5 b4 =

2

4
1.4622
�0.9299
1.2625

3

5

and by the transfer functions

tansig(x) = 2/(1+ exp(�2x))�1
softmax(x) = exp(x)/Â

i
exp(xi)

where these functions, when applied to vectors, are taken for each component separately. These
activation functions may be written in MATLAB as “anonymous functions” using,

tansig= @(x) 2./(1+exp(-2.*x))-1;

softmax=@(x) exp(x)/sum(exp(x(:)));

Given the network, an input vector a1 = (x1,x2)T is classified as follows,

a
2 = tansig(w2

a
1+b

2)

a
3 = tansig(w3

a
2+b

3)

y= a
4 = softmax(w4

a
3+b

4);

146 Chapter 8. Classification: supervised learning

where the matrix operations may be written explicitly, for example, as

z
2 = w2

a
1+b

2, z2i = Â
j
w2
i ja

1
j +b2i .

We would like to now apply this network to the following data point x2 =[2 8]T to find its classification.
First, we calculate the output from the first layer into the second layer by finding the intermediate

z2 and input it into the tansig activation function to find a2:

a1 =

2
8

�

z2 = (w2 ⇤a1+b2) =

�1.4862 1.2127
�0.7293 �0.5830

�
2
8

�
+


0.0105
7.8570

�

z2 =

6.7397
1.7344

�

a2 = tansig(z2) =

0.999997
0.939574

�

Continuing we find that,

z3 = (w3 ⇤a2+b3) =

�6.7012 5.2272
4.7825 �8.4793

�
0.999997
0.939574

�
+


�1.9767
�1.9729

�

z3 =

�3.76654
�5.15734

�

a4 = tansig(z3) =

�0.99893
�0.999934

�

z4 = (w4 ⇤a3+b4) =

2

4
�3.1456 9.2062
�5.1856 �5.8752
8.4518 �3.4107

3

5

�0.99893
�0.999934

�
+

2

4
1.4622
�0.9299
1.2625

3

5

z4 =

2

4
�4.60115
10.125

�3.76979

3

5

a4 = softmax(z4) =

2

4
4.02279e�07

0.999999
9.23817e�07

3

5⇡

2

4
0
1
0

3

5

Thus, the point [2, 8]T is classified as class b. ⌅

8.4.3 Back-propagation
Next, consider how the weights of a neural network are calculated using the training data. The training
data are given by data vectors xi, i= 1, . . . ,n and corresponding labels y(xi). A classification/label can
be a binary (0 or 1) label, a discrete label that can take multiple values, a continuous scalar value, or a
vector of continuous values. Start by defining a cost function that measures the success of the network
in classifying the training points,

C(W,b) =
1
2n

n

Â
i=1

ky(xi)�a
Lk2 (8.7)

8.4 Multi-Layer Artificial Neural Networks 147

where W denotes the collection of weights in the network, b all the biases in the network, aL is the
vector of output labels from the network for a given input vector xi, n is the number of training points,
and y(xi) is the training label which the network should match. Thus, the quadratic cost function is, in
other words, the mean squared error of the neural network, and is constructed to be small when the
output matches the training labels. The objective of the training is to adjust the weights of the neural
network in order to minimize the cost function. To achieve this, we use a gradient descent algorithm, as
done when updating SVMs, and compute the gradients with respect to the cost function via a process
known as back-propagation.

Given the cost gradient, we update determine the weights and biases using a learning rate h ,

w`
i j ! w`

i j�h ∂C
∂w`

i j

b`i ! b`i �h ∂C
∂b`i

.

By repeating the process, the cost is minimized and the weights and biases are able to accurately
classify data points. A typical algorithm for such training involves calculating the gradient for a “batch”
of, say m, input training data, calculates the averaged cost and averaged gradient for this batch, and
uses it to updates the weights. Then, the next batch is processed and so on. Once all training data points
have been processed (a single “epoch”), the training data are shuffled and used again and again, until
convergence is achieved.

The back-propagation algorithm efficiently calculates the gradients used in the gradient-based
optimization for training the network. To appreciate its efficiency, consider the brute-force approach
for calculating the gradient. One could estimate the cost for a set of weights and biases,C1 =C(W,b),
then introduce a small perturbation into only one of the weights or the biases, say dw`

i j, recalculate
the cost C2 =C(W+dw`

i j,b), and approximate the gradient using (C2�C1)/dw`
i j (via a Taylor series

approximation). This would need to be repeated for each weight denoted by i, j, for each layer
`, and a large network could have millions of such weights. Thus, this brute force approach may
require evaluating the network millions of times and thus is computationally inefficient. Instead,
the back-propagation algorithm evaluates the gradient with respect to all weights and biases using a
computational cost equivalent to evaluating the network only once.

Before moving into the details of the back-propagation algorithm, we need to introduce a less-
frequently used algebraic tool in linear algebra, the Hadamard product, a�b. For two vectors, the
Hadamard product is the result of the multiplication of each component two vectors of equal dimension
to produce a new vector. For example,

a=

2

4
1
2
3

3

5 b=

2

4
4
5
6

3

5 a�b=

2

4
1⇤4
2⇤5
3⇤6

3

5=

2

4
4
10
18

3

5

In order to determine the partial derivatives ∂C/∂w`
jk and ∂C/∂b`j, define an intermediate quantity,

denoted d `
j – the sensitivity of the cost to the input into the jth neuron of the `th layer,

d `
j ⌘

∂C
∂ z`j

. (8.8)

148 Chapter 8. Classification: supervised learning

Starting with the output layer and using the chain rule,

d L
j =

∂C
∂ z`j

= Â
i

∂C
∂aLi

∂aLi
∂ zLj

= Â
i

∂C
∂aLi

∂aLi
∂ zLj

di j =
∂C
∂aLj

s 0(zLj),

or, in both scalar and vector forms,

d L
j =

∂C
∂aLj

s 0(zLj)

ddd L = —aC�s 0(zL). (8.9)

For a quadratic cost function, for example,C= 1
2 Â j(y j�aLj)

2 then ∂C/∂aLj = (aLj �y j). Next, calculate
the sensitivity for the `th layer in terms of the sensitivity and weights of the (`+1)th layer,

d `
j =

∂C
∂ z`j

= Â
i

∂C
∂ z`+1

i

∂ z`+1
i

∂ z`j

= Â
i

∂C
∂ z`+1

i

∂
∂ z`j

(Â
k
w`+1
ik a`k+b`+1

i)

= Â
i

∂C
∂ z`+1

i

∂
∂ z`j

(Â
k
w`+1
ik s(z`k)+b`+1

i)

= Â
i

∂C
∂ z`+1

i
s 0(z`j)w

`+1
i j

= Â
i

d `+1
i s 0(z`j)w

`+1
i j

so that, in both scalar and vector forms,

d `
j = Â

i
w`+1
i j d `+1

i s 0(z`j) (8.10)

ddd ` = (W`+1)Tddd `+1�s 0(z`). (8.11)

Equations (8.9) and (8.11) allow us to calculate the sensitivities d `
j for all layers. These can now be

used to calculate the needed partial derivatives of the cost function. With respect to the biases this is
given as,

∂C
∂b`j

=
∂C
∂ z`j

∂ z`j
∂b`j

= d `
j (8.12)

while the cost derivative with respect to the weights is given by,

∂C
∂w`

jk
=

∂C
∂ z`j

∂ z`j
∂w`

jk
= d `

j a
`�1
k . (8.13)

8.4 Multi-Layer Artificial Neural Networks 149

In summary, the back-propagation equations for calculating the cost derivative with respect to the
weights and biases are,

ddd L = —aC�s 0(zL)

ddd ` = ((W`+1)Tddd `+1)�s 0(z`)

∂C
∂b`j

= d `
j

∂C
∂w`

jk
= a`�1

k d `
j .

The neural network learning algorithm is therefore,
1. Input a set of training data points and corresponding labels, (x,y).
2. For each training point, perform the following steps,

• Evaluate the feed-forward network to calculate the label aL.
• Calculate the sensitivity, ddd L, for point x,

ddd L = —aC�s 0(zL)

• Back-propagate the sensitivities – for each layer `= L�1,L�2, ...,2 compute

ddd ` = ((W`+1)Tddd `+1)�s 0(z`)

3. Calculate the partial derivative of the cost with respect to the weights and biases; update the
weights and the biases,

w`
i j ! w`

i j�h ∂C
∂w`

i j

b`i ! b`i �h ∂C
∂b`i

.

8.4.4 Ways to improve neural networks
Beyond training the neural network via the back-propagation algorithm, we now explore the different
ways to enhance the performance of a neural network to optimize for the trade off between efficiency
and accuracy. We discuss several such improvements here:

Fine-tuning the architecture
Problems with neural networks may occur if too few or too many nodes are chosen. Consider a
regression example first, where the problem is fitting data that are produced from the simple equation
yi = 2Xi+ ni where ni is a random number (Fig. 8.10). The blue ⇥ marks show the training data.
The red line shows the neural network evaluated at a higher resolution set of points X . Panels (a) of
the figure show the results using a small network, with two hidden layers with 2 nodes each. The
neural network is unable to fit all training data, yet this is not necessarily a problem, because these
points contain noise and a perfect fit may not be needed. When making the network much larger (two
hidden layers with 15 nodes each, panels (b) in Fig. 8.10), the neural network returns what are clearly
unacceptable gaps between the training points, a clear sign of what we call “overfitting”. The problem

150 Chapter 8. Classification: supervised learning

occurs because we make the weights very large when many weights are available for the optimization
so that we correctly fit the network to all training points. As a result, when these large weights are
evaluated away from the training point they result in unreasonable values. The same problem occurs
in trying to fit a polynomial to such data. A high-degree polynomial will provide a perfect fit to the
training data, but an unreasonable behavior in between and as a result may not be useful in classifying
new data near the training data. A smaller degree polynomial (such as a straight line or quadratic) will
lead to an imperfect fit to the training data but a more stable overall performance – that is, no large
fluctuations between training points. In the example, the average absolute value of weights and biases
for the larger network are 2-4 times those of the small network.

One could note that there is a problem with the network by keeping some of the data for validation.
In the example, consider the circles as these validation points. We evaluate the network using the
training points as well as the validation points, by calculating the “performance” as the mean squared of
the misfit between the training/validation labels and the labels calculated by the network. In the case of
the small network (Fig. 8.10a) the fit to the validation points improves initially, but starts deteriorating
after about 10 epochs. This indicates that even with this small network, there are not enough data
points to well-constrain the weights. For the larger network (Fig. 8.10b), while the performance for the
training points improves when training for additional epochs, the performance for the validation points
does not improve, clearly demonstrating that there is a problem with the network.

0 5 10
X

0

5

10

15

20

25

y

network using [2,2] nodes

(a)

training data
validation data
neural network

20 40 60 80 100
epoch

10-1

100

101

102

m
ea

n
sq

 e
rro

r

performance

training
validation

0 5 10
X

0

5

10

15

20

25

y

network using [15,15] nodes

(b)

training data
validation data
neural network

10 20 30 40 50
epoch

10-10

100

m
ea

n
sq

 e
rro

r

performance

training
validation

0 5 10
X

0

5

10

15

20

25

y

network using [15,15] nodes

(c)

training data
validation data
dummy data
neural network

10 20 30 40 50
epoch

10-1

100

101

102

m
ea

n
sq

 e
rro

r

performance

training
validation
training+dummy

0 5 10
X

0

5

10

15

20

25

y

network using [15,15] nodes

(d)

training data
validation data
neural network

10 20 30 40 50
epoch

100

m
ea

n
sq

 e
rro

r

performance

training
validation

Figure 8.10: (a) A neural network with too few nodes. (b) Too many nodes, leading to over-fitting. (c)
Adding dummy random data points to attempt to eliminate over-fitting. (d) Adding a regularization
term to the cost function.

A rule of thumb for selecting the number of nodes is given by Haykin (2009) as N = O(W/e).
Here N is the number of data points,W is the number of weights and biases to be calculated, and e is
the allowed misfit to the training data points. This relation allows us to guess how the required number
of data points changes as we change the other two parameters. It does not tell us how many weights to
use for a given problem, though, as it only provides an order-of-magnitude, or a scaling estimate, as
indicated by the O(). To reduce the effects of over-fitting, one can add dummy random data points by

8.5 k nearest neighbors (k-NN) 151

adding noise to the original data points, as shown in Fig. 8.10c.

Regularization
Alternatively, one may “regularize” the problem by adding an extra term to the cost function, attempting
to minimize the magnitude of the calculated weights,

C =
1
2 Â

j
(y j�aLj)

2+l Â
i, j,`

(w`
i j)

2

where l is the regularization parameter. This again leads to more reasonable results (using l = 0.5,
Fig. 8.10d). A final alternative for preventing over-fitting to be considered is to stop the optimization
early, so that the fit to the training data points is not as good, but the over-fitting issue is not as
pronounced. We stop the optimization when the performance for the validation points stops improving
and starts deteriorating, as seen around epoch number ten in Fig. 8.10a.

Similarly, in a classification problem, a network that it too small will not be able to fit all training
labels (Fig. 8.11), and again one needs to decide if a perfect fit to the training data is needed, depending
on the application context.

0 2 4 6 8 10
x

0

1

2

3

4

5

6

7

8

9

10

11

y

training data (b) & classified data (r)

3

3

32

2

1

2
1 2

1 2

3

3

3

2

2

1

3

3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3

1
3
3
3
3
3
3
3
3
3

1
1
3
3
3
3
3
3
3
3

2
2
2
3
3
3
3
3
3
3

2
2
2
2
3
3
3
3
3
3

2
2
2
2
2
3
3
3
3
3

2
2
2
2
2
2
3
3
3
3

2
2
2
2
2
2
2
3
3
3

2
2
2
2
2
2
2
2
3
3

Figure 8.11: A classification neural network with too few nodes calculates labels (red) that cannot
match all training data (blue).

8.5 k nearest neighbors (k-NN)
8.5.1 Classification of discrete labels

The k-nearest neighbor classification algorithm assigns a label to a given data point according to the
point’s proximity to known training data. The label may be discrete or continuous. In thinking about
nearest-neighbor calculations we must be cognizant of three main considerations:

• The distance measure used to determine “proximity” to the nearest neighbors.
• The number, k, of nearest neighbors used to determine the label for the data point in question.
• The way the nearest neighbors are weighted: how should nearer neighbors be considered relative
to ones that are further away?

152 Chapter 8. Classification: supervised learning

In the case of discrete labels, given a choice for the number of neighbors to be considered, k, the
label of the point to be classified can simply be chosen by a majority vote of these nearest neighbors.

⌅ Example 8.5 Consider the training data in Fig. 8.12, and suppose we need to find an appropriate
label for the point [5, 5.5]. The nearest neighbor training points are 15, 2, 9, 7 and 8, and the chosen
label depends on the value of k as follows.
k = 1 nearest label is +, classification is “+”
k = 2 nearest labels are ++, classification is “+”
k = 3 nearest labels are ++⇥, classification is “+”
k = 4 nearest labels are ++⇥�, dominant label and thus the classification is “+”
k = 5 nearest labels are ++⇥�+, dominant label and thus the classification is “+”.

0 2 4 6 8 10
x

0

2

4

6

8

10

y

1
2

3
4

5

6

7

8

910
11

12

13

14

15

Figure 8.12: An example of k-NN with discrete label.

⌅

8.5.2 k-nn and Locally-weighted kernel regression
Next, consider the case of a non-discrete label. As an example, suppose we need to find the price f (x)
of a house that depends on a vector of parameters, e.g., x = (x1,x2)T = (area, age), from k nearest
neighbors of x for which we know the area and age xn, n = 1, . . . ,k as well as the price f (xn) = fn.
One approach would be to use an average or weighted average of nearest neighbors. A more interesting
one is to use a “local regression”, where we write the quantity to be evaluated as a linear combination
of the data coordinates (e.g., the house cost is a linear combination of the area and age),

f (x) =
d

Â
i=1

wixi = w ·x,

and find wk using least squares fit to k nearest neighbors xn by minimizing the weighted sum of squares
for the training data.

Note that, as was the case for perceptrons, support vector machines and neural networks, if we
would like the regression to include a free coefficient (bias, or non-zero threshold), we would add a
row of ones to the data matrix such that each data vector is of the form x̂ = (x1,x2,1)T , as well as

8.5 k nearest neighbors (k-NN) 153

another element to w so it becomes of the form ŵ= (w1, . . . ,wd ,wd+1)T and of dimension d+1. The
regression is of the form,

f (x) =
d

Â
i=1

wixi+wd+1 = w
0 ·x0,

and includes a free term as desired, while the solution procedure is identical for the cases with and
without a free term, and is described as follows.

Define a coordinate matrix X= (x1, . . . ,xk) such that the coordinates xn of the nth nearest neighbor
are given by the nth column of X. The function to be minimized in order to find the regression
coefficients may then be written as,

J(w) =
k

Â
n=1

K(d(xn,x))(f (xn)�w ·xn)2

=
k

Â
n=1

Knn

fn�

N

Â
i=1

wixin

!2

where N is the dimension of w and xn (or of w0 and x0n if a non-zero bias is needed), k is the number of
near neighbors to be used, d(xn,x) is the distance between the nth nearest neighbor training data point
and the point being classified, fn = f (xn) is the known label (house price) of the nth near neighbor data
point, K is a “kernel function” that weights the training data based on their distance from the point
that is being estimated, x. Two such examples of a kernal, K are a constant K and a K that decays as a
Gaussian of the distance. Knn is a diagonal matrix containing the distance-weights. At the minimum of
J(w), its derivative with respect to wj is equal to zero, giving,

0=
dJ
dwj

=
k

Â
n=1

2x jnKnn

fn�

N

Â
i=1

wixin

!
.

We can write this in matrix form as,

XKXT
w= XKf

and the solution is,

w= (XKXT)�1(XK)f.

Note the dimensions of all matrices and vectors here,

wN⇥1 =
⇣�

XN⇥kKk⇥kX
T
k⇥N
��1
N⇥N (XN⇥kKk⇥k)N⇥k

⌘

N⇥k
fk⇥1.

We are assuming that there are more neighbors than weights to be calculated, k > N, so that the
above matrix inverse exists. This is essentially an over-determined problem, where the only main
difference from previous over-determined systems being the weight matrix, K. The predicted price for
coordinates (house age and area x) is now given by wT

x. Note that while the price may be a non-linear
function of the (age, area) parameters, the regression provides a linear local approximation.

154 Chapter 8. Classification: supervised learning

0 0.2 0.4 0.6 0.8 1
age

0

0.2

0.4

0.6

0.8

1

ar
ea

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 8.13: An example for house prices as function of age and area. Houses previously sold (the
training data) are indicated by ⇥ symbols while the house whose price is to be estimated is indicated by
the +. The contours are the actual cost as function of these two parameters prescribed for this example.

Bibliography

Agarwal, R., Imielinski, T., and Swami, A. (1993). Mining associations between sets of items in
massive databases. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 207–216.

Agarwal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In Intl. Conf. on Very
Large Databases, pages 487–499.

Andersson, E. and Ekstrom, P.-A. (2004). Investigating google’s pagerank algorithm. Student report in
scientific computing.

Blum, A., Hopcroft, J., and Kannan, R. (2017). Foundations of Data Science.

Bradley, P. S., Fayyad, U., and Reina, C. (1998). Scaling clustering algorithms to large databases. In
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining,
KDD’98, pages 9–15. AAAI Press.

Compo, G. P. and Sardeshmukh, P. D. (2010). Removing ENSO-related variations from the climate
record. J. Climate, 23(8):1957–1978.

Farrell, B. F. and Ioannou, P. J. (1996). Generalized stability theory part I: autonomous operators. J.
Atmos. Sci., 53:2025–2040.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.

deeplearningbook.org.

Guha, R., Rastogi, R., and Shim, K. (1998). Cure: An efficient clustering algorithm for large databases.
Proc. ACM SIGMOD Intl. Conf. on Management of Data.

Haykin, S. (2009). Neural Networks and Learning Machines. Pearson Prentice Hall.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

156 Chapter 8. Classification: supervised learning

Jacobson, L. (2013). Introduction to artificial neural networks. http://www.theprojectspot.com/.

Johnson, N. C., Feldstein, S. B., and Tremblay, B. (2008). The continuum of northern hemisphere
teleconnection patterns and a description of the nao shift with the use of self-organizing maps. J.
Climate, 21(23):6354–6371.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets. Cambridge
University Press.

Mitchell, T. (1997). Machine learning. McGraw-Hill Science/ Engineering/ Math.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Peixoto, J. P. and Oort, A. H. (1992). Physics of Climate. American Institute of Physics.

Strang, G. (2006). Linear algebra and its applications. 4th ed. Cengage Learning.

Strogatz, S. (1994). Nonlinear dynamics and chaos. Westview Press.

Trefethen, L. N. and Bau III, D. (1997). Numerical linear algebra, volume 50. Siam.

Von-Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4):395–416.

Vozalis, M. G. and Margaritis, K. G. (2006). Applying SVD on generalized item-based filtering. IJCSA,
3(3):27–51.

http://www.theprojectspot.com/

Index

A

A-priori algorithm 102
Activation function 140

Linear 142
Rectified linear 142
Sigmoid 142
Softplus 142
Tansig 142

Adjacency matrix 48, 123
Amplification factor 59
Anonymous functions (MATLAB) 145
Artificial neural networks 140
Association rule 102

confidence in 102
interest in 102

B

Back substitution 13, 29, 85
Back-propagation 146–149
BFR algorithm 127
Bias 141, 143
Block power method 47

C

Chain rule 148
Characteristic polynomial 16
Cholseky decomposition 51
Classification (label) 131
Cluster

center 112
density 112
diameter 112
radius 112
variance 112, 116

Clusteroids 111, 127
Cold start problem 94
Condition number 35, 79–81
Conjugate transpose 51
Constrained optimization 49, 79, 137
Convergence

of block power method 47
of inverse power method 47
of neural networks 147
of PageRank 44
of perceptron 133, 134
of power method 47
of SOM 119
of SVM 140

158 INDEX

Cosine distance 109
Cost function 137, 146
Covariance 67–69, 92
Covariance matrix 68, 89, 121
Critically damped oscillator 64
CURE algorithm 128
Curse of dimensionality 109
Cyclic redundancy check 32 (crc32) 100

D

Data matrix 67, 89
Data space 118, 132
Degree matrix 49, 124
Dendrogram plot 113
Distance conditions 108
Dot product 11

E

Edit distance 109, 116
Effective rank 78
Eigenmodes 47, 69
Eigenvalues 12, 16

complex 52
Eigenvectors 16, 41

calculating 18
Elbow plot 113, 118
Elliptical data 120
Epoch 119, 133, 147, 150
Equilibrium point 54
Error 84
Error equation 33, 79, 81
Error in solution 33
Expansion coefficients 69, 71, 89, 93
Explained variance 77

F

Feedforward neural network 145
Filtering

collaborative 94, 100
content-based 94

Forward substitution 32
Fraction of total covariance 91
Fraction of total variance 71, 93
Frequent patterns

applications 100
introduction 100

Frequent set 102

G

Gaussian distribution 153
Gaussian elimination 13, 14, 29, 35

cost 32
efficiency of 32

Generalized eigenproblems 51
Generalized eigenvectors 62, 64
Gradient 21
Gradient-based minimization 138
Gradient-descent minimization 137, 147
Gram-Schmidt orthogonalization 18, 45, 47, 74,

85
Grid space 118

H

Hadamard product 147
Hamming distance 109
Hash functions 98, 99
Heaviside function 141
Hidden layer 141, 143
Hierarchical clustering 126

algorithm 111
efficiency 112
example 113
linkages 113
merging criteria 112

High-dimensional space 109
Hyperplane 134, 136

I

Image compression 77
Initial conditions 52, 58, 64
Input layer 141
Inverse block power method 125
Itemset 101
Iterative methods 33
Iterative scheme 33

INDEX 159

J

Jaccard
distance 109
similarity 97–98

Jaccard similarities 100
Jordan block 61
Jordan form 60–64

K

k-means 118, 126
k-nearest neighbor classification 151
Kabsch algorithm 82
Kernel function 153

L

L2-norm 108
L•-norm 108
Lagrange multipliers 49, 59, 69, 79
Laplacian matrix 49, 123
Learning rate 119, 132, 133, 138, 147
Least-squares solution 84, 88
Linear combination 152
Local regression 152
LU decomposition

advantages of 37
algorithm 31
cost of 29
efficiency of 32
example 29, 31

M

Machine learning 131, 133
Mahalanobis distance 121
Manhattan distance 108
MapReduce 37
Market-basket model 101
Matrix

column interpretation 28
column stochastic 42
density 37
determinant 14
diagonal 61
diagonalization 18, 53

exponentiation 53
identity 12
inverse of 12, 15–16
Laplacian 49, 50
manipulation 12, 30
non-normal 58
norm 79
normal 47
of cofactors 14, 15
orthogonal 81
orthonormal 18, 73
permutation 12, 30
positive semi-definite 68, 74, 81, 124
rank 77, 78, 86
rotation 122
row interpretation 27
sparse 37, 45
symmetric 51
transition 42
transpose 12

Maximum Covariance Analysis (MCA) 91
Medical tomography 23
Merging criteria 113
Multivariate PCA 89

N

Nearest neighbor training points 152
Neighborhood kernel 120
Netflix challenge 94
Network partitioning 48
Neurons 140
Noise 35, 79, 81, 137
Non-directed network 48
Non-normal amplification 58
Normalization 17, 46, 89, 122
Null space 20, 62, 86
Number of solutions 27, 28

O

OR function 140
Ordinary differential equations 52
Orthogonal vectors 68, 69, 111
Oscillatory solutions 51, 54, 56
Output layer 141, 143

160 INDEX

Over-determined systems23, 83–85, 87–88, 153
Over-fitting 134

P

Page outlinks 41
PageRank

algorithm 41
definition of 41

Penalty constant 138, 139
Penalty function 137, 138
Perceptrons 132–135, 140
Perron-Frobenius theorem 42, 44
Phase space 54
Point-assignment 118, 128
Polar decomposition 81
Power methods 45
Principle Component Analysis (PCA)

derivation 67
example 70
motivation 67
reconstruction of data using 69
variance explained in 72
via SVD 89

Pseudo inverse 85, 88

Q

QR decomposition 46, 85

R

Radon transform 25
Random walker 43
Rectified linear 143
Regression 143
Regularization 151
Regularization parameter 138, 151
Relative error 81
Representative point 116, 118, 119, 128
Row interpretation 27

S

Sammon map 120
Self-organizing maps 118
Sensitivity (neural networks) 149

Sensitivity to noise 62
Shingles 98, 99
Similarity 97
Similarity matrix 123
Singular Value Decomposition (SVD)

calculation of 73
fraction of variance explained 89
geometric interpretation of 76

Singular values 73
Softmax function 142
Spectral clustering 48, 123
Spectral radius 34
Stability of solution 54
Steepest descent 139
Stop words 99
Sturm-Liouville problem 51
Subgraph 44
Substitute goods 104
Summaries (clustering) 127
Support threshold 101
Support vector machines 136–140
Support vectors 136

T

Taylor series approximation 21, 53, 147
Teleportation 44
Threshold

perceptron 132
SVMs 138

Time series 69–71, 89
Total covariance 91
Training data 131, 153
Triangle inequality 108

U

Under-determined system 25
Under-determined systems 23, 78, 85–88

V

Validation data 132, 150
Variance 70, 71, 92
vec2ind function 143

INDEX 161

W

Ward method 113
Weights

matrix 143, 153
vector 132, 135, 138, 140

X

XOR function 140

A. Appendices

A.1 Proof that eigenvectors are orthogonal () the matrix is normal
Consider the following proof that the eigenvectors of a matrix are orthogonal if and only if the matrix
is normal, that is, ATA= AAT , see http://fourier.eng.hmc.edu/e161/lectures/algebra/node8.html.

Theorem: The product of two unitary matrices is unitary.
Proof: Let U and V be unitary, i.e., U⇤ = U�1 and V⇤ = V�1, then UV is unitary:

(UV)⇤ = V⇤U⇤ = V�1U�1 = (UV)�1

Theorem: Two square matrices A and B are simultaneously diagonalizable if and only if they
commute.

Proof: Let A and B be simultaneously diagonalizable by R (this means that the two have the same
eigenvectors that are in R),

R�1AR= ⇤A, R�1BR= ⇤B

then

AB= (R⇤AR
�1)(R⇤BR

�1) = (R⇤A⇤BR
�1) = (R⇤B⇤AR

�1) = (R⇤BR
�1)(R⇤AR

�1) = BA

Let A and B commute, i.e., AB= BA. Assuming u is an eigenvector of A corresponding to eigenvalue
l , i.e., Au= lu, then

ABu= B(Au) = lBu.

We see that Bu is also an eigenvector of A corresponding to the same eigenvalue l , i.e., Bu must be a
scaled version of u (in the same 1-D space): Bu= gu, i.e., u is also an eigenvector of B.

Theorem: A matrix is normal if and only if it is unitarily diagonalizable.
Proof: If A is unitarily diagonalizable,

AU= U⇤, U�1AU= U⇤AU= A, A= U⇤U⇤

http://fourier.eng.hmc.edu/e161/lectures/algebra/node8.html

164 Chapter A. Appendices

where U⇤ = U�1 is unitary and ⇤ is a diagonal matrix satisfying ⇤⇤⇤= ⇤⇤⇤, then A is normal:

AA⇤ = (U⇤U⇤)(U⇤U⇤)⇤ = (U⇤U⇤)(U⇤⇤U⇤)

= U⇤⇤⇤U⇤ = U⇤⇤⇤U⇤ = (U⇤⇤U⇤)(U⇤U⇤) = A⇤A

Note that “diagonalizable by a unitary matrix”, implies immediately that the matrix has orthonormal
eigenvectors and vice versa.

If A is normal, then it is diagonalizable by a unitary matrix. First, we show any matrix A can be
written as

A= B+ iC

where
B=

1
2
(A+A⇤) = B⇤, C=�1

2
i(A�A⇤) = C⇤,

are both Hermitian, and diagonalizable by a unitary matrix. As A is normal, we have

0= AA⇤ �A⇤A= (B+ iC)(B� iC)� (B� iC)(B+ iC) = 2i(CB�BC)

We see that CB = BC, i.e., B and C commute, and they can be simultaneously diagonalized by
some unitary matrix U:

U⇤BU= ⇤B, U⇤CU= ⇤C,

and so can A= B+ iC:

U⇤AU= U⇤(B+ iC)U= ⇤B+ i⇤C = ⇤A

A.2 Proof that Frobenius norm is equal to sum of singular values squared
Consider one row of A, a j. Because the vi vectors are orthogonal and normalized, we can use them to
expand a j = ÂN

i=1(a j·vi)vi. The squared magnitude of a j, which is the sum of squares of the elements
of a j, is therefore,

|a j|2 =
N

Â
i=1

(a j·vi)vi
N

Â
k=1

(a j·vk)vk =
N

Â
i=1

(a j·vi)2

where in the last equality we used the fact that the vi vectors are orthonormal. According to this, the
Frobenius norm is,

normF(A) = kAkF = Â
i, j
a2i j =

M

Â
j=1

|a j|2

=
M

Â
j=1

N

Â
i=1

(a j·vi)2 =
N

Â
i=1

(Avi)2

=
N

Â
i=1

(Avi)T (Avi) =
N

Â
i=1

v
T
i (A

TA)vi =
N

Â
i=1

v
T
i s2

i vi

=
N

Â
i=1

s2
i .

	Part I — Part One
	1 Introduction
	2 Linear equations
	2.1 Motivation
	2.2 Geometric interpretations for linear equations
	2.3 Direct solution to linear equations by LU decomposition
	2.4 Iterative methods
	2.5 Existence of solutions and sensitivity to noise
	2.6 Dealing with huge systems

	3 Eigenproblems
	3.1 Motivation
	3.2 Google's PageRank
	3.3 The power method
	3.4 Spectral clustering (partitioning) of networks
	3.5 Generalized eigenvalue problems
	3.6 Linear ordinary differential equations and matrix exponentiation
	3.7 Non-normal dynamics and transient growth
	3.8 Jordan form

	Part II — Part Two
	4 Principal Component Analysis
	4.1 Principal Component Analysis (PCA) from the covariance matrix

	5 Singular Value Decomposition
	5.1 Singular Value Decomposition (SVD)
	5.2 SVD applications

	6 Similar items and frequent patterns
	6.1 Similar items
	6.2 Frequent patterns and association rules

	Part III — Part Three
	7 Cluster Analysis: unsupervised learning
	7.1 Motivation
	7.2 Distances/metrics
	7.3 The curse of dimensionality
	7.4 Hierarchical clustering
	7.5 K-means
	7.6 Self-organizing maps
	7.7 Mahalanobis distance
	7.8 Spectral clustering
	7.9 BFR algorithm
	7.10 CURE (Clustering Using REpresentatives)

	8 Classification: supervised learning
	8.1 Motivation
	8.2 Perceptrons
	8.3 Support vector machines
	8.4 Multi-Layer Artificial Neural Networks
	8.5 k nearest neighbors (k-NN)

	Bibliography
	Index
	A Appendices
	A.1 Proof that eigenvectors are orthogonal -3mu the matrix is normal
	A.2 Proof that Frobenius norm is equal to sum of singular values squared

