
Regret-Based Algorithms for Multi-Armed Bandits

Citation
Zhao, Kevin Hanbo. 2020. Regret-Based Algorithms for Multi-Armed Bandits. Bachelor's thesis,
Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364663

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364663
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Regret-Based%20Algorithms%20for%20Multi-Armed%20Bandits&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=5a1dacb9ffa66e021750f3cbb3dcf188&departmentComputer%20Science
https://dash.harvard.edu/pages/accessibility

Regret-based Algorithms

for Multi-Armed Bandits

A thesis presented

by Kevin Zhao

in partial fulfillment of the requirements for the degree of

Bachelor of Arts

in the joint subjects of

Statistics and Computer Science

Advisor: Professor Natesh Pillai (Statistics)

Harvard University

Cambridge, MA

April 2020

1

Abstract

Multi-armed bandits (MABs) are the single step analogs of the full reinforce-

ment learning problem. They are simple but powerful models for studying

the exploration/exploitation dilemma in the context of making sequential

decisions over time and under uncertainty. There are several notions of opti-

mality in the literature: asymptotic optimality, regret optimality, and PAC

optimality. In this work, we examine the multi-armed bandit problem (which

is sometimes called the sequential allocation problem) within the context

of regret optimality. We cover several groundbreaking algorithms that ap-

proach MABs through the frequentist and Bayesian perspective. UCB1 was

one of the first algorithms to achieve a logarithmic regret bound and sparked

a new field of literature for upper confidence bound based algorithms. UCB-

V was one of the first works to improve the regret bound for UCB1 but is

still not “optimal”. We later introduce KL-UCB, Thompson Sampling,

and Bayes UCB, which are all able to achieve regret optimality asymp-

totically (in the Bernoulli reward setting). We then perform experiments

to illustrate their robustness and how well these algorithms perform under

different reward distributions and slight perturbations to their respective

assumptions.

2

Acknowledgements

First and foremost, I would like to thank the entire Statistics department

and faculty for sparking a love for wrangling with uncertainty within me and

for emphasizing the necessity of solving problems elegantly. I would also like

to thank the Computer Science department for providing so many resources

to me and allowing me the flexibility to explore whatever interested me.

The reason why I have enjoyed my undergraduate career so much is due

in large part to the fact that I have taken a lot of courses offered by these

two departments. As I like to say, in my opinion, the two courses that have

been the most rewarding to me and what I think any prospective STEM

concentrator at Harvard must take are STAT110 and CS124.

I would also like to thank my advisor, Natesh Pillai, for all of his support -

for being not only extremely knowledgeable in numerous areas of Statistics

but also a fantastic professor that makes lecture time fly by. Last but not

least, I would like to thank Joseph Blitzstein for being the backbone of the

foundational courses in the Statistics department. Having assisted him in

two of his courses, I understand the immense effort and preparation that

he does in order to provide the best and most digestible presentation of

material.

3

In dedication to my parents and sister.

4

Contents

1 Introduction 7

1.1 Exploitation vs. Exploration 8

1.2 Action-value methods . 8

1.3 Other variations to the ε-greedy strategy 9

1.4 An incremental implementation 10

1.5 Nonstationary problems . 11

1.6 Notions of Optimality . 13

2 Starting Algorithms 15

2.1 Miscellaneous Probability Concepts 15

2.1.1 Inequalities . 15

2.1.2 Special Properties . 17

2.1.3 Overview . 19

2.2 Explore First . 20

2.3 UCB1 (Upper Confidence Bound 1) 22

2.4 Summary . 25

3 Frequentist Bandit Algorithms (UCB Based) 27

3.1 UCB-V (Upper Confidence Bound - Variance) 28

3.1.1 Notation . 28

3.1.2 Bound on the expected regret 29

3.1.3 The regret distribution for UCB-V 38

3.1.4 Overview . 39

3.2 KL-UCB . 41

3.2.1 Known lower bounds 41

3.2.2 Finite time analysis with Bernoulli divergence 42

3.2.3 KL-UCB vs. Optimized UCB 49

3.2.4 Overview . 50

3.2.5 Extensions . 50

5

4 Bayesian Bandit Algorithms 52

4.1 Thompson Sampling . 52

4.1.1 Aside . 54

4.1.2 Notation . 55

4.1.3 Finite time analysis 56

4.1.4 Overview . 61

4.2 Bayes UCB . 62

4.2.1 On natural exponential families 62

4.2.2 Notation . 63

4.2.3 The algorithm . 64

4.2.4 Limitations and Overview 65

5 Experiments 67

5.1 10-armed Bernoulli Bandit . 68

5.2 KL-UCB with different divergence functions 70

5.3 Bayes UCB and Thompson Sampling in a Beta Bandit 72

5.4 For fun . 73

5.5 Overview . 74

6 Conclusion 75

6.1 Going Further . 77

7 References 78

6

1 Introduction

To frequent gamblers and casino-goers, the term “one-armed bandit” may

sound familiar. It refers to the “oh-so-familiar” slot machine, where the

“arm” term comes from the lever on the slot machine. This naturally gives

the rise to notions of “multi-armed” bandits where there are multiple arms

to pull from.

Consider the following scenario and problem. You are faced with repeatedly

selecting a single action from a set of K choices. We normally denote the set

of actions as A. After each selection, you are given a scalar reward that is

drawn from a stationary distribution that may or may not depend on the ac-

tion that you selected. Each draw from this distribution is independent from

other draws, meaning that one action will not affect the rewards obtained

from other actions. The term stationary here means that the reward distri-

bution for any action that you select is not dependent on time as a variable.

The objective of this problem is to maximize the total expected reward ob-

tained over some time period, usually noted as “time-steps”. This problem

is known as the K-armed bandit problem which was described earlier in this

section.

Because there is assumed to be a reward distribution associated with each

action, there is a corresponding mean reward associated with choosing that

action (excluding unreasonable distributions like the Cauchy distribution).

We denote the action selected at time t as At and the corresponding reward

received from performing this action as Xt. In this problem, the flow goes

as such for some t: At → Xt, At+1 → Xt+1, Let us denote the average

total reward for selecting action a as:

q∗(a) = E[Xt|At = a]

where q∗ denotes the function that returns the true expected reward for any

given action a ∈ A. If these values were known from the start, then it

would be trivial to solve this problem, as we would just select the action

7

a′ = argmaxa∈Aq∗(a). However, what is assumed is that the reward dis-

tribution for each action is unknown and we can only obtain samples from

the distributions by performing the respective action. Thus, this leads to

the idea of approximating the function q∗ through various techniques. We

denote the function Qt(a) as our estimate of the expected reward by taking

action a at time t.

1.1 Exploitation vs. Exploration

At any given time step t, as long as the action space is finite (meaning that

|A| < ∞), there must exist a maximizing action for the function Qt (our

current estimates), which is called the greedy action. Note that there may

exist more than one greedy action and selecting any of the greedy actions

is known as exploitation. However, the estimate of the value of a certain

action may be inaccurate at a specific time t. Thus, you can imagine that

it is absolutely necessary to, sometimes, select non-greedy actions, which is

known as exploration. This is done in order to obtain better estimates of the

values of certain actions. It may be advantageous to explore more actions

at a certain point at the sacrifice of rewards in the short term in search of

higher long term rewards. This is known as the exploitation vs. exploration

dilemma.

1.2 Action-value methods

Taking motivation from statistical inference, a natural unbiased estimator

for the value q∗(a) obtained by taking an action a would be:

Qt(a) =

∑t−1
i=1 Xi · 1(Ai = a)∑t−1
i=1 1(Ai = a)

This is clearly an unbiased estimator for q∗(a) = E[Xt|At = a]. On top of

this, by the weak law of large numbers, this converges in probability to q∗(a),

which is extra motivation for using this as an estimator for the true value of

selecting a certain action a. Taking this as our estimator for q∗(a), an action

selection rule that we could use would be simply selecting the action At at

8

time step t such that At = argmaxa∈AQt(a). However, as described in the

previous section, the estimate Qt(a) may be inaccurate for certain actions

and thus would not lead to great action selection in the long run. To solve

this problem, we can introduce a different action selection criterion, given

by the following:

At =

argmaxa∈AQt(a) with prob. 1− ε

random with prob. ε

Instead of enlisting the entirely greedy action selection as before, the above

is known as ε-greedy action selection. The motivation behind this type of

action selection rule is that in the long run, each action will be selected in-

finitely often and thus, the action value estimate Qt(a) for any action a will

converge to its true value. Thus, in the long run, we will be able to find the

best action. This is an example of a rule that balances between exploration

and exploitation, which is in contrast to just selecting the action that maxi-

mizes the function Qt without any type of “exploration”. In practice, people

run ε-greedy algorithms until it has “converged” enough and then convert

the action selection strategy to entirely the greedy strategy. Additionally,

although it is called ε-greedy action selection, the probability of selecting the

maximizing action for a fixed time t is actually 1− ε+ ε
|A| .

1.3 Other variations to the ε-greedy strategy

In practice when implementing the ε-greedy strategy, there may exist a situ-

ation where there are two actions a and b such that |Qt(a)−Qt(b)| � 1 but

the maximizing action is a. However, under the ε-greedy action selection cri-

teria, we give the probability mass entirely towards the maximizing action

when in reality our estimates of the true action-value are extremely close

together. This doesn’t exactly make sense. We should somehow weight the

probability of selecting certain actions by how large the estimated reward

of taking those actions is. This motivates the softmax exploration policy

where now we select actions based on the following probability distribution,

9

where n = |A|:

P (At = a) =
exp{Qt(a)}∑n
i=1 exp{Qt(ai)}

The exponential function is ideal in this situation because it is always positive

so we will never deal with situations of “negative probability”. On top of

this, people may introduce a hyperparameter β known as the temperature

parameter, which basically creates the exact same exploration criteria given

by:

P (At = a) =
exp{Qt(a)/β}∑n
i=1 exp{Qt(ai)/β}

The temperature parameter β essentially quantifies our desire of exploration.

If β is very large, then our exploration probability distribution approaches

that of the uniform distribution, which is just randomly picking an action

from the set A. However, if β is small, then the action that maximizes Qt(a)

will dominate the fraction and therefore will have the largest probability

of being selected. With this selection rule, actions with similar estimated

rewards will have similar probabilities of being selected as opposed to the

original ε-greedy policy.

1.4 An incremental implementation

You may have noticed that in order to keep track of the sample averages

for a certain action a, it may require to store the entire history of rewards

received for taking that specific action. In reality, all that is necessary is to

keep track the number of times that you have selected that specific action.

Let us thin down the update of Qt to just one action which we will refer to

a. From this, we let Xt be the reward from selecting the action a after time

step t and Qn be the estimated reward of selecting action a after we have

10

selected it already n− 1 times. We then have the incremental update:

Qn+1 =
X1 + · · ·+Xn

n

=
1

n

n∑
i=1

Xi

=
1

n
(Xn +

n−1∑
i=1

Xi)

=
1

n
(Xn + (n− 1)Qn)

= Qn +
1

n
(Xn −Qn)

This gives rise to an elementary bandit algorithm given by the following:

Algorithm 1

Q(ai)← 0, i = 1, . . . , |A|
N(ai)← 0, i = 1, . . . , |A|
while true do

A =

argmaxa∈AQ(a) with prob. 1− ε

random with prob. ε

R = reward received from taking action A

N(A)← N(A) + 1

Q(A)← Q(A) + 1
N(A) [R−Q(A)]

end while

1.5 Nonstationary problems

The assumption that the reward distribution for any action a being sta-

tionary may not be valid in certain settings and environments. This leads

to the idea of tracking and solving the nonstationary bandit problem. In

the above, we used the incremental update for a certain action a: Qn+1 =

Qn + 1
n [Xn − Qn]. However, the choice of 1

n was not special. It was only

useful in the sense of sample averaging and forming unbiased estimators,

11

which may not be a realistic goal to have in a nonstationary problem. For

nonstationary problems, we consider updates of the form, where α ∈ (0, 1):

Qn+1 = Qn + α[Xn −Qn]

The fact that α ∈ (0, 1) is crucial and the reason why is shown below:

Qn+1 = Qn + α[Xn −Qn]

= αXn + (1− α)Qn

= αXn + (1− α)(αXn + (1− α)Qn−1)

= (1− α)nQ1 + α
n∑
i=1

(1− α)n−iXi

Let us find the value of the sum of the weights:

(1− α)n + α
n∑
i=1

(1− α)n−i = (1− α)n + α
n−1∑
i=0

(1− α)i

= (1− α)n + α · 1− (1− α)n

1− (1− α)

= (1− α)n + 1− (1− α)n

= 1

This type of weighting scheme is known as the exponential recency-weighted

average. In the sample averaging case, the weights also add up to one.

However, the difference is that each term in the sum carries the same weight

to the entire sum. In this weighting scheme, the weights add up to one as

well, but the terms that are more recent in the series carry more weight to

the sum rather than terms that are very early in the series. This allows

us to weight the most recent rewards that we obtain more heavily when

estimating the value of taking that action. In fact, as we collect more rewards

the contribution of terms very early in the series shrink towards zero. This

is an example of how to track a nonstationary problem. There are more

sophisticated procedures but this is not the focus of this thesis/paper.

12

1.6 Notions of Optimality

The objective of the multi-armed bandit problem is to find the action that

gives the maximum expected reward. However, if we are given two solution

methods, how are we supposed to measure whether one is better than the

other or not? Optimality within the multi-armed bandit sense is not im-

mediately unclear. Is a solution method optimal? If so, what metric is it

optimal with respect to? There are generally three agreed upon notions of

optimality within the literature of multi-armed bandits:

1. Asymptotic Optimality. This is exactly what it sounds like. A solution

method to the multi-armed bandit problem is optimal with respect to

this if it is eventually able to find the arm that has the highest expected

reward. In other words, if a∗ is the action that maximizes q∗(a), then

the solution method has asymptotic optimality if:

a∗ = argmaxa′
(

lim
t→∞

Qt(a
′)
)

2. Regret Optimality. Another approach to assessing how good of a job

a solution method does is through comparing the algorithm’s cumula-

tive reward over some time period T agains the best-arm benchmark.

Letting a∗ be the optimal action, then the best-arm benchmark over

the time period T is just q∗(a
∗) · T . We define:

R(T) = q∗(a
∗) · T −

T∑
i=1

Xi

This is known as regret at round T . This is a random variable, so the

value that we seek to minimize is the expected regret or in other words

E[R(T)].

3. PAC (Probably Approximately Correct) Optimality. A solution method

is optimal with respect to PAC optimality if, letting a∗ be the optimal

action, it will return with high probability an arm a such that its

expected reward is very close to the optimal expected reward. In other

13

words, it will return an arm a such that for ε, δ ∈ (0, 1):

P (q∗(a) ≥ q∗(a∗)− ε) ≥ 1− δ

We will focus on algorithms that approach the multi-armed bandit problem

through the regret optimality approach in this work.

14

2 Starting Algorithms

2.1 Miscellaneous Probability Concepts

This section will contain all of the major probability concepts that will be

used throughout this work.

2.1.1 Inequalities

Theorem 2.1 (Markov’s Inequality) Let Y be a random variable and

a > 0, then:

P (|Y | ≥ a) ≤ E[|Y |]
a

Proof : Note that |Y | = |Y | ·1(|Y | ≥ a) + |Y | ·1(|Y | < a). This implies that

|Y | ≥ |Y | · 1(|Y | ≥ a) but |Y | · 1(|Y | ≥ a) ≥ a · 1(|Y | ≥ a). Thus, we have:

E[|Y |] ≥ a · E[1(|Y | ≥ a)] =⇒ P (|Y | ≥ a) ≤ E[|Y |]
a

Corollary 2.1.1 Let g be any positive-valued function that is monotonically

increasing on [0,∞). Let Y be a random variable and a > 0. Then the event

|Y | ≥ a =⇒ g(|Y |) ≥ g(a). This means that: P (|Y | ≥ a) ≤ P (g(|Y |) ≥
g(a)) ≤ E[g(|Y |)]

g(a) .

Let us take any random variable Y and consider random variables of the

form Y − µ, where µ = E[Y]. Then by the corollary above, applying the

function g(x) = |x|, we obtain Chebyshev’s Inequality :

P (|Y − µ| ≥ ε) ≤ P ((Y − µ)2 ≤ ε2) ≤ E[(Y − µ)2]

ε2
=
V ar[Y]

ε2

Applying the function g(x) = etx onto the random variable Y itself in the

situation where the MGF MY (t) exists, we obtain Chernoff’s Inequality :

P (etY ≥ eta) ≤ E[etY]

eta
= e−ta ·MY (t)

Theorem 2.2 (Hoeffding’s Concentration Inequality) Let Y1, . . . , Yn

be bounded and independent random variables and a > 0, where Ȳn =
1
n

∑n
i=1 Yi and ∀i, |Yi| ≤ c a.s, then:

P (|Ȳn − E[Ȳn]| > a) ≤ 2e
−na2
2c2

15

Proof : (Taking alot of inspiration from Professor Blitzstein’s STAT210

Textbook [6]) WLOG we can assume that E[Yi] = 0 because we can just

work with variables of the form Yi−E[Yi] instead and also that c = 1 because

we can just rescale. Using Chernoff’s Inequality, we obtain that:

P (Ȳn ≥ a) ≤ e−taE[etȲn] = e−ta
n∏
i=1

E[e
t·Yi
n]

We now show a result specific to moment generating functions, in that for

t > 0 and a random variable Y with mean 0 and |Y | ≤ 1, E[etY] ≤ e
t2

2 . This

is known as Hoeffding’s Lemma. Because the function g(y) = ety is convex,

we have:

etY ≤ 1− Y
2

e−t +
1 + Y

2
et

when |Y | ≤ 1. This implies that:

E[etY] ≤ 1

2
e−t +

1

2
et

=
1

2

∞∑
i=0

(−1)ntn

n!
+

1

2

∞∑
i=0

n

n!

=

∞∑
i=0

t2i

(2i)!
≤
∞∑
i=0

t2i

i! · 2i
= e

t2

2

Equipped with Hoeffding’s Lemma, we arrive at the final result, which is

that:

e−ta
n∏
i=1

E[e
t·Yi
n] ≤ e−ta

n∏
i=1

e
t2

2n2 = e−tae
t2

2n

Restricting this inequality to when t = na, we have:

P (Ȳn ≥ a) ≤ e−
na2

2

If we replace, Yi with −Yi and repeat the same logic, we would arrive at

P (−Ȳn ≥ a) ≤ e−
na2

2 , which together imply that:

P (|Ȳn − E[Ȳn]| > a) ≤ 2e
−na2

2

16

2.1.2 Special Properties

Definition 2.1 (Sub-Gaussian Random Variable) Let X be a sub-gaussian

random variable. Then the following properties are equivalent to being sub-

gaussian (where Ki differ from each other by at most an absolute constant

factor):

1. The tails of X satisfy for all t > 0:

P (|X| ≥ t) ≤ 2e−t
2/K2

1

2. The moments of X follow for all p ≥ 1:

||X||p = (E[|X|p])1/p ≤ K2
√
p

3. The MGF of X2 satisfies for |λ| ≤ 1
K3

:

E[e(λX)2] ≤ eK2
3λ

2

4. The MGF is bounded at some point: E[eX
2/K2

4] ≤ 2.

Definition 2.2 We define the sub-gaussian norm for a random variable X

to be:

||X||ψ2 = inf{t > 0|E[eX
2/t2] ≤ 2}

Many known distributions are sub-gaussian. The Normal, Bernoulli, and

Uniform distributions are all subgaussian.

Theorem 2.3 (General Hoeffding’s Inequality) Let X1, . . . , Xn be in-

dependent with E[Xi] = 0 and also sub-gaussian. Let a ∈ Rn. Then, for

t ≥ 0:

P (|
n∑
i=1

aiXi| ≥ t) ≤ 2 exp{− −ct2

K2||a||22
}

where K = max1≤i≤n ||Xi||ψ2.

17

In this paper, we will use the first version of Hoeffding’s Inequality provided

earlier, but it should be noted that the motivations behind the inequality

are through the sub-gaussian properties of the bounded random variables.

Definition 2.3 Let X be a sub-exponential random variable. Then the fol-

lowing properties are equivalent to being sub-exponential (where Ki differ

from each other by at most an absolute constant factor):

1. For t ≥ 0:

P (|X| ≥ t) ≤ 2e−t/K1

2. For p ≥ 1:

||X||p ≤ K2p

3. The MGF of |X| follows:

E[eλ|X|] ≤ eK3λ

4. The MGF of |X| is bounded at some point:

E[e|X|/K4] ≤ 2

Definition 2.4 We define the sub-exponential norm for a random variable

X to be:

||X||ψ1 = inf{t > 0|E[e|X|/t] ≤ 2}

Theorem 2.4 (Bernstein’s Concentration Inequality) Let X1, . . . , Xn

be independent with E[Xi] = 0 and also sub-exponential. Let K = max1≤i≤n ||X||ψ1

and X̄n = 1
n

∑n
i=1Xi. Then, for all t ≥ 0:

P (|X̄n| ≥ t) ≤ 2 exp{−cn ·min(
t2

K2
,
t

K
)}

Theorem 2.5 (Modified Bernstein’s Inequality) Let X1, . . . , Xn be in-

dependent with E[Xi] = 0 and |Xi| ≤ K a.s. Let σ2 = V ar(
∑n

i=1Xi). Then,

for t ≥ 0:

P (|
n∑
i=1

Xi| ≥ t) ≤ 2 exp{− t2

2(σ2 +Kt/3)
}

18

Despite the theory for sub-Gaussian and sub-Exponential distributions, we

can actually combine them under a unifying definition.

Definition 2.5 Let X be a sub-Weibull random variable. Then X is a sub-

Weibull if it has a bounded ψβ norm, where:

||X||ψβ = inf{t > 0|E[e|X|
β/tβ] ≤ 2}

When β = 1 or β = 2, sub-Weibull random variables reduce to sub-exponential

and sub-gaussian random variables respectively. Typically, the smaller β is,

the heavier tail the random variable has.

Theorem 2.6 (Sub-Weibull Concentration Inequality) Suppose that Xi

are sub-Weibull random variables and that ||Xi||ψβ ≤ b. Then there exists

an absolute constant C that only depends on β such that for a ∈ Rn and

0 < α < 1/e2:∣∣∣ n∑
i=1

aiXi − E(

n∑
i=1

aiXi)
∣∣∣ ≤ Cb(||a||2(logα−1)1/2 + ||a||∞(logα−1)1/β

)
2.1.3 Overview

Many of the bandit algorithms presented in this work rely on the concen-

tration inequalities above. This is because the inequalities are distribution-

agnostic, only requiring boundedness as a condition. However, as a result,

we are not able to create tight bounds on the expected regret for bandits

in varying situations. We will see, in this work, a variety of algorithms,

ones that approach the MAB problem from the frequentist and Bayesian

perspectives.

19

2.2 Explore First

Consider the following algorithm, with the same notation defined in the

introductory section of this paper. The rewards are assumed to be bounded

on [0, 1].

Algorithm 2 Explore-First

Input: N , the number of times to play each arm

Pull each arm N times, keeping track of the average reward of each arm

Q is the table tracking the estimated reward.

Always play the action a∗ = argmaxa∈AQ(a).

In analyzing this algorithm with respect to regret over a time period T , let

Q(a) denote the estimated average reward after N rounds of playing the arm

a and let a∗ denote the optimal action. Recall that regret over a time period

T is defined as:

R(T) = q∗(a
∗) · T −

T∑
i=1

Ri

In order for this algorithm to work, we want our estimates of the true rewards

of taking specific actions to be close to the true value with high probabil-

ity. We use Hoeffding’s Concentration Inequality (bounded random variable

version), and letting ε =
√

8 log T
N :

P (|Q(a)− q∗(a)| > ε) ≤ 2

T 4
=⇒ P (|Q(a)− q∗(a)| ≤ ε) ≥ 1− 2

T 4

The number of arms is usually denoted by K. Let us first focus on the

case where there are only K = 2 arms. Consider the event D where all the

estimates of Q(a) for all actions a are within ε distance of their respective

true means. Let us assume D. If we choose the correct arm after the

initialization, then our regret is bounded by our mistakes from the first 2N

steps, which is bounded by N because the support of the rewards is [0, 1]

and there is only one arm that is incorrect. However, if we choose the wrong

arm after the initialization phase, then let us analyze the regret. For us to

20

choose the wrong arm a, it must be the case that Q(a) > Q(a∗) at the 2N+1

time step. Because we also assumed that D was true, we have:

q∗(a) + ε ≥ Q(a) > Q(a∗) ≥ q∗(a∗)− ε

This implies that:

q∗(a
∗)− q∗(a) ≤ 2ε = O

(√ log T

N

)
From this, we see that each round played after the initialization phase con-

tributes O
(√

log T
N

)
to the expected regret given D. Similarly, the regret

obtained in the first 2N moves as described above is bounded by N . Thus,

we have that:

E[R(T)|D] ≤ N +O
(√ log T

N
· (T − 2N)

)
≤ N +O

(√ log T

N
· T
)

We note that the first term in this is increasing in N and the second term

is decreasing in N . Setting the value of N as T 2/3(log T)1/3, we then get:

E[R(T)|D] ≤ O
(
T 2/3(log T)1/3

)
Finding the cumulative regret, we see:

E[R(T)] = E[R(T)|D]P (D) + E[R(T)|Dc]P (Dc)

≤ E[R(T)|D] + T ·O
(1

T 4

)
≤ O

(
T 2/3(log T)1/3

)
For the case where there are K > 2 arms, the regret contributed after the

initialization assuming the event D to be true is the same. We obtain the

regret bound using the same analysis of E[R(T)] ≤ NK + O
(√

log T
N · T

)
.

Using the same logic, because the first term is increasing in N and the second

term is decreasing in N , we set them equal and solve for N , which happens

to be on the order of (T/K)2/3(log T)1/3. This implies that the expected

regret for the general problem of K > 2 arms has the property:

E[R(T)] = O
(
T 2/3(K log T)1/3

)
21

This algorithm however performs horribly in the initialization/exploration

phase. It concentrates all of the exploration at the very beginning. It is

typically better to scatter the exploration throughout time, which is what

the following algorithm does.

2.3 UCB1 (Upper Confidence Bound 1)

Consider the same scenario as the one described above. Let us analyze

the algorithm known as UCB1. The algorithm works by computing upper

confidence bounds (UCB) for every arm a and then at every time step t

chooses the arm that gives the highest bound.

Algorithm 3 UCB1

Input: the number of arms K

Initialization:

Q(a)← 0 for all actions a

N(a)← 0 for all actions a

t← K + 1

Play each of the K arms once, and update Q(a) accordingly

while true do

Play the arm a that maximizes (where t is the current time step):

Q(a) +

√
2 log t

N(a)

Receive a reward R and update Q(a)

N(a)← N(a) + 1

t← t+ 1

end while

The rewards in this bandit problem are once again drawn from [0, 1].

Theorem 2.7 For all K > 1, if UCB1 is run on K arms having arbitrary

reward distributions with support [0, 1], then its expected regret after any

22

number of plays n has the following property:

E[R(n)] ≤ 8
∑

i: ai 6=a∗

log n

∆i
+ (1 +

π2

3
)

K∑
i=1

∆i

where ∆i = q∗(a
∗)− q∗(ai).

Proof : Before entering into the analysis of this proof, let us first define

notation. Let Xi,t denote the reward obtained by playing arm ai on time

step t and let Cn,s =
√

2 logn
s . On top of this, let Qt(ai) denote our estimates

of the expected reward of arm ai at time step t (just the sample average).

Let Ti(n) be the number of times arm ai is played in the first n trials. Then,

we can express our expected regret as, where ∆i = q∗(a
∗)− q∗(ai):

E[R(n)] =
K∑
i=1

E[Ti(n)]∆i

With this, we have that:

Ti(n) ≤ 1 +

n∑
t=K+1

1(At = ai)

The 1 comes from the initialization process where we play all the arms one

time. After K turns, we then begin selecting arms because on the confidence

bounds, which is what the indicators in the sum represent. We can loosen

this bound by considering a positive integer l. In English, we assume that

arm ai has already been played l times, then we have.

Ti(n) ≤ l +

n∑
t=K+1

1(At = ai, Ti(t− 1) ≥ l)

However, the event {At = ai} implies that on the previous time step, the

upper confidence bound of action ai was greater than that of the optimal

arm a∗ based on our estimates. Specifically, we are talking about this event:

{Qt−1(ai)+Ct−1,Ti(t−1) ≥ Qt−1(a∗)+Ct−1,Ta∗ (t−1)}. From now on, let Ui(t−
1) = Qt−1(ai) + Ct−1,Ti(t−1) and let U∗(t − 1) = Qt−1(a∗) + Ct−1,Ta∗ (t−1).

23

This means that we loosen our bound up a bit more so that its form can be

more tractable:

Ti(n) ≤ l +
n∑

t=K+1

1(Ui(t− 1) ≥ U∗(t− 1), Ti(t− 1) ≥ l)

If it is the case that the upper bound on arm ai exceeds the upper bound

of the optimal arm on time step t, then it must also be the case that the

minimum of the upper bounds on the optimal arm in all the time steps must

be less than the maximum of the upper bounds on arm ai (after l trials). In

other words, we have:

Ti(n) ≤ l +
n∑

t=K+1

1
(

min
0<s<t

Qs(a
∗) + Ct−1,Ta∗ (s) ≤ max

l≤b≤t
Qb(ai) + Ct−1,Ti(b)

)
However, the particular indices for which they occur are unknown. To loosen

this bound further, why don’t we just consider all possible pairs of indices!

This gives the following bound:

Ti(n) ≤ l +

T∑
t=K

t−1∑
s=1

t−1∑
b=l

1(Qs(a
∗) + Ct,Ta∗ (s) ≤ Qb(ai) + Ct,Ti(b))

≤ l +
∞∑
t=1

t−1∑
s=1

t−1∑
b=l

1(Qs(a
∗) + Ct,Ta∗ (s) ≤ Qb(ai) + Ct,Ti(b))

By the monotonicity of expectation, we obtain that:

E[Ti(n)] ≤ l +
∞∑
t=1

t−1∑
s=1

t−1∑
b=l

P ({Qs(a∗) + Ct,Ta∗ (s) ≤ Qb(ai) + Ct,Ti(b)})

Now suppose the event {Qs(a∗)+Ct,Ta∗ (s) ≤ Qb(ai)+Ct,Ti(b)} happens, then

one of the following three must also occur:

1. Qs(a
∗) + Ct,Ta∗ (s) ≤ q∗(a∗)

2. Qb(ai) ≥ q∗(ai) + Ct,Ti(b)

3. q∗(a
∗) < q∗(ai) + 2Ct,Ti(b)

24

To show this, suppose they all do not occur, then we have (under assumption)

that:

Qb(ai) + Ct,Ti(b) ≥ Qs(a
∗) + Ct,Ta∗ (s) > q∗(a

∗)

and also that:

q∗(ai) + 2Ct,Ti(b) > Qb(ai) + Ct,Ti(b) ≥ Qs(a
∗) + Ct,Ta∗ (s)

=⇒ q∗(a
∗) < q∗(ai) + 2Ct,Ti(b)

which is a contradiction because it is exactly statement (3). However, our

choice of l can make (3) never occur. If t ≥ l ≥ 8 logn
∆2
i

, then we have

that 2Ct,Ti(b) ≤ ∆i. By Hoeffding’s Concentration Inequality and the union

bound, we have that:

E[Ti(n)] ≤ 8 log n

∆2
i

+ 1 +

∞∑
t=1

t∑
s=1

t∑
b=l

2

t4

≤ 8 log n

∆2
i

+ 1 +

∞∑
t=1

2

t2

=
8 log n

∆2
i

+ 1 +
π2

3

=⇒ E[R(n)] =
∑

i: ai 6=a∗
E[Ti(n)]∆i

≤
∑

i: ai 6=a∗
(
8 log n

∆2
i

+ 1 +
π2

3
)∆i

= 8
∑

i: ai 6=a∗

log n

∆i
+ (1 +

π2

3
)

K∑
i=1

∆i

2.4 Summary

In this section, we covered two algorithms. Explore-First is an elementary

algorithm that was a naive solution to the multi-armed bandit problem be-

cause it concentrated all of its exploration in the very beginning, whereas

better bandit algorithms typically tend to spread their exploration through-

out time. That led to the creation of UCB1, which stands for upper con-

fidence bound. Pictorally, we can imagine UCB1 as a series of box-plots

25

centered at the sample mean for each arm with the bias factor as the exten-

sion. We keep track of all the sample means for each arm and add a bias

factor which in this case is
√

2 log t
Tk(t−1) . The idea behind using UCB-related

algorithms is to create an interval that captures the true mean of each arm

with high probability. Thus, in the situation where every arm’s average re-

ward is captured by their respective upper confidence bound, the only way

for a suboptimal arm to be chosen is when its bound is greater than the

bound of the optimal arm. However, because these bounds are shrinking as

a function of t, the number of times that this event occurs is limited. The

bias factor for UCB1 was chosen with inspiration provided by Hoeffding’s

Inequality. As we shall see, there are many other concentration inequalities

that could potentially lead to better bias factors and thus better algorithms

(in terms of expected regret).

26

3 Frequentist Bandit Algorithms (UCB Based)

In general, Upper Confidence Bound (UCB) based algorithms are centered

around a term known as the bias factor applied to a point estimate of the

estimated reward for taking a specific action. As we saw earlier, in UCB1

from Auer et al. [4], the bias factor for the action ak is
√

2 log t
Tk(t−1) . We use the

principle known as “optimism in the face of uncertainty” as dubbed in Auer

et al. [4]. This algorithm works by computing upper confidence bounds on

the expected rewards for every action. The result we derived earlier was

for rewards that were bounded within the support of [0, 1]. In general, for

bounded rewards in support [0, b], the bias factor for arm ak at time step t

is: √
2b2 log t

Tk(t− 1)

and the expected regret is bounded by:

E[R(n)] ≤ 8
∑

i: ∆i>0

b2 log n

∆i
+ (1 +

π2

3
)
K∑
i=1

∆i

In the algorithm UCB-Normal (also presented by Auer et al. [4]) which

restricts the rewards to follow Gaussian distributions, the expected regret is

shown to be bounded by:

E[R(n)] ≤ 256
∑

i: ∆i>0

σ2
i log n

∆i
+ (1 +

π2

3
+ 8 log n)

K∑
i=1

∆i

where σ2
i denotes the variance of the reward distribution for taking arm

ai. One difference between this bound and the previous one is that the

regret bound for UCB1 grows quadratically in b while the bound for UCB-

Normal scales with the variances of the reward distributions of the sub-

optimal arms. In practice, b is usually a conservative guess on how much

the rewards are bounded, so removing the dependence on this parameter

is desirable. UCB-Normal does this, but it makes the strong assumption

that the reward distributions are Normal, which is not the case in many

situations.

27

3.1 UCB-V (Upper Confidence Bound - Variance)

In the experimental section of Auer et al. [4], an algorithm (UCB1-Tuned)

that incorporates the sample variance of the rewards in the bias factor was

used. This algorithm outperformed UCB1 and all other algorithms pre-

sented in Auer et al. [4] in essentially all the experiments that were per-

formed. Intuitively, including the sample variance when creating bias factors

in an algorithm should outperform because it is including “more” informa-

tion, especially if the variance of the suboptimal arms is less than b2. As a

reminder, the rewards are assumed to be supported by [0, b]. This idea moti-

vated the creation of the UCB-V algorithm in Audibert et al. [3]. UCB-V

removes the quadratic dependence on b in the bound for the expected regret.

As an solution to create a “variance-aware” algorithm, UCB-V achieves a

bound of:

E[R(n)] ≤ 10
∑

i: ∆i>0

(
σ2
i

∆i
+ 2b) log n

This bound achieves a linear dependence with b. It is unfortunate that there

is still dependence on b but it has been shown that it is not possible to remove

the dependence on this parameter. It should be noted that this algorithm is

not proven to be optimal, but it was one of the first works that was able

to significantly improve the regret bound given in UCB1. The asymptotic

lower bound on expected regret in provided in the KL-UCB section of this

work.

3.1.1 Notation

Following the same notation as in the UCB1 section in Starting Algo-

rithms, we have that there are K arms. Ti(n) denotes the number of times

arm ai was selected in the first n rounds. Xi,j is the reward received after

pulling arm ai after the jth time. In the previous section, we denoted Qt(a)

as the sample average of the rewards of arm a after pulling it t times. For sim-

plicity, we will now denote it as X̄i,j . In other words, X̄i,j = 1
j

∑j
k=1Xi,k. We

define the sample variance in a similar fashion: Vi,j = 1
j

∑j
k=1(Xi,k − X̄i,j)

2.

28

The rewards are assumed to also be supported by [0, b] and are independent

from each other. µk also denotes the expected reward for the distribution of

taking arm ak. We also denote x ∧ y = min(x, y) and x ∨ y = max(x, y).

3.1.2 Bound on the expected regret

UCB-V follows the generic format of UCB1 except that it uses the variance

estimates in the bias factor. Two hyperparameters are introduced in the

algorithm. They are as follows. c is a constant that is greater than or equal

to 0. We also have an exploration table, which is denoted by L. It satisfies

the property that when s is fixed, t→ Ls,t is a nondecreasing function of t.

It is introduced as an “exploration function”. We also denote:

Bk,s,t = X̄k,s +

√
2Vk,sLs,t

s
+

3bcLs,t
s

We will show later that a valid choice of Bk,s,t is:

Bk,s,t = X̄k,s +

√
2Vk,s log t

s
+

3b log t

s

The algorithm is shown below:

Algorithm 4 UCB-V

Input: the number of arms K

Initialization:

t← K + 1

Play each of the K arms once

while true do

Play the arm ak that maximizes: Bk,Tk(t−1),t (t is the time step)

Receive a reward R and update sample averages and variances

t← t+ 1

end while

In the algorithm above, we define 1/0 =∞, so in the situation where Tk(t−
1) = 0, the arm ak will definitely be selected. Thus, if after some amount of

29

steps t arm ak has not been selected, then it must be selected on time step

t+1. We also note the presence of the exploration function Ls,t. In practice,

Ls,t is chosen to depend on only t and is Θ(log t). The s index represents the

number of times an arm has been pulled and the t index represents the time

step. If an arm has not been selected in a long period, then Ls,t will end up

dominating Bk,s,t and eventually the other bounds for the other arms. This

will then allow the algorithm to select that arm later in the process, which

will produce better estimates of that arm’s expected reward. Afterwards, it

will be selected more frequently or less frequently depending on how optimal

that arm is. This, for example, allows the algorithm to recover when the

rewards drawn from the optimal arm happen to on the lower end and we are

significantly underestimating the true expected reward for the optimal arm.

L must be chosen carefully as it essentially balances the exploration and

exploitation of the algorithm. It should not be chosen in a way where it will

dominate the sample means in Bk,s,t. Just as in all UCB related algorithms,

the backbone behind the theory relies on the observation of a concentration

inequality. Audibert et al. [3] notes a concentration inequality that relates

the sample mean with the sample variance.

Theorem 3.1 (Empirical Bernstein Inequality) Let X1, . . . , Xt be i.i.d

random variables with support in [0, b]. Let X̄t and Vt be the empirical means

and variances respectively. Then, for any t ∈ N and x > 0, where µ = E[X1]:

P
(
|X̄t − µ| ≤

√
2Vtx

t
+

3bx

t

)
≥ 1− 3e−x

More specifically, letting β(x, t) = 3 inf1<α≤3(log t
logα ∧ t)e

−x/α, we have that:

P
(
|X̄t − µ| ≤

√
2Vtx

t
+

3bx

t

)
≥ 1− β(x, t)

We note that this bound is useless for values of t ≤ 3 because the bound

will be larger than b. The idea is to apply this theorem to the rewards

Xk,1, . . . , Xk,s. We see that with probability at least 1−3e−(c∧1)Ls,t we have

that µk ≤ Bk,s,t at time t. This is why the exploration function must be

30

chosen carefully because if Ls,t is sufficiently high then we will have with

high probability that for any arm ak, the expected reward of arm ak is

upper bounded by Bk,s,t. We will see shortly that the exploration function

need not be a function of both s and t. It is suffice to just consider it as

a function of t at least for the sake of analyzing the expected regret and

distribution of regret for this algorithm. For intuition as to why Ls,t need

not depend on both s and t, s represents the number of times an arm has

been pulled and t the time step. Thus, ideally, for suboptimal arms, we have

that s � t. If it were more useful of a parameter, we would have that the

contribution that s brings to exploration would be around the same order

as t, but it does not and as a result, the removal of the dependence on s

will not alter the algorithm that much. In the analysis of this algorithm,

most of it is motivated by the proof structure of UCB1 except with the

addition of different probability bounds. We attempt to bound the expected

number of times that we select any suboptimal arms. By doing so, we also

bound the expected regret because: E[R(n)] =
∑

i: ∆i > 0E[Ti(n)]∆i, where

∆i = q∗(a
∗)− q∗(ai).

Theorem 3.2 For any τ ∈ R and integer l > 1, we have for the arm ak

(there are K arms total):

1.

Tk(n) ≤ l +
n∑

t=l+K−1

(1(Bk,s,t > τ for some l ≤ s ≤ t− 1)+

1(Bk∗,s,t ≤ τ for some 1 ≤ s ≤ t− 1))

2.

E[Tk(n)] ≤ l +
n∑

t=l+K−1

t−1∑
s=l

P (Bk,s,t > τ) +
n∑

t=l+K−1

t−1∑
s=1

P (Bk∗,s,t ≤ τ)

3.

P (Tk(n) > l) ≤
n∑

t=l+1

P (Bk,l,t > τ) + P (Bk∗,s,l+s ≤ τ : 1 ≤ s ≤ n− l)

31

Proof : We prove the three parts in sequence:

1. From UCB1, we note that:

Tk(n) ≤ l +
n∑

t=l+K−1

1(At = ak, Tk(t− 1) > l)

However, for the arm ak to be pulled on time step t, it must be

the case that Bk,Tk(t−1),t > Bk∗,Tk∗ (t−1),t. This means that Tk∗(t −
1) ≥ 1 (or else the upper bound would be infinity as we defined

above). Because l represents how many times we assumed we have

pulled arm ak already, if it is the case that Bk,Tk(t−1),t > Bk∗,Tk∗ (t−1),t,

that means l ≤ T − k(t − 1) ≤ t − 1 and similarly 1 ≤ Tk∗(t −
1) ≤ t − 1. We do not know exactly what values they are, but

we do know that a value within those bounds satisifies those con-

ditions. This means that the event {Bk,Tk(t−1),t > Bk∗,Tk∗ (t−1),t} ⊂
{Bk,s,t > τ for some l ≤ s ≤ t− 1, Bk∗,s,t ≤ τ for some 1 ≤ s ≤ t− 1}.
However, trivially the union of the two events contains the intersection,

we have that they are a subset of {Bk,s,t > τ for some l ≤ s ≤ t− 1}∪
{Bk∗,s,t ≤ τ for some 1 ≤ s ≤ t− 1}. We then have that:

Tk(n) ≤ l +
n∑

t=l+K−1

(1(Bk,s,t > τ for some l ≤ s ≤ t− 1)+

1(Bk∗,s,t ≤ τ for some 1 ≤ s ≤ t− 1))

2. This follows from the identity proven in the first part. We apply the ex-

pectation to both sides and the sum over all possible indices (applying

the union bound):

E[Tk(n)] ≤ l +
n∑

t=l+K−1

t−1∑
s=l

P (Bk,s,t > τ) +
n∑

t=l+K−1

t−1∑
s=1

P (Bk∗,s,t ≤ τ)

3. To prove the last inequality, we use the fact that the exploration

function Ls,t is an increasing function with t when s is fixed. Con-

sider the following event where for l + 1 ≤ t ≤ n,Bk,l,t ≤ τ and

32

for 1 ≤ s ≤ n − l, Bk∗,s,l+s > τ . This means for l + s ≤ t ≤ n,

Bk∗,s,t ≥ Bk∗,s,l+s > τ ≥ Bk,l,t. In other words, it means that arm ak

will never be selected more than l times. This means that the com-

plement of this event implies that Tk(n) > l, meaning that arm ak

is selected more than l times. We then have that P (Tk(n) > l) ≤
P ({∃l + 1 ≤ t ≤ n s.t Bk,l,t > τ} ∪ {∃1 ≤ s ≤ n− l s.t Bk∗,l,l+s ≤ τ}).
By the union bound, we then have:

P (Tk(n) > l) ≤
n∑

t=l+1

P (Bk,l,t > τ) + P (Bk∗,s,l+s ≤ τ : 1 ≤ s ≤ n− l)

Now that we are equipped with the results above, we can now prove the

upper bound on the expected regret for this algorithm. However, prior to

proving the bound that we stated at the very beginning of this section, we

prove the more general version for E[R(n)], which is shown later. Here,

however, we restrict Ls,t to only being a function of t, which we call Lt. Lt

is typically chosen to be Θ(log n). As we described earlier, the dependence

on s for the exploration function is not really necessary for the analysis of

this algorithm’s expected regret and its regret distribution.

Theorem 3.3 Let l = d8(c ∨ 1)(
σ2
k

∆2
k

+ 2b
∆k

)Lne (the n comes from E[R(n)]).

For l ≤ s ≤ t ≤ n and t ≥ 2, we have that for those s, t:

P (Bk,s,t > q∗(a
∗)) ≤ 2 exp{−

s∆2
k

8σ2
k + 4b∆k/3

}

Before we go into the proof for this result, let us first analyze what it is

trying to say. It says that the probability that the upper bound for any

suboptimal arm being greater than the mean reward for the optimal arm

falls exponentially in s, which is the number of times we pull that arm. This

is further justification and motivation for using Bk,s,t as the upper bound.

33

Proof : Let s, t satisfy the conditions in the theorem. Then, we have:

P (Bk,s,t > q∗(a
∗))

= P (X̄k,s +

√
2Vk,sLt

s
+

3bcLt
s

> q∗(a
∗))

= P (X̄k,s +

√
2Vk,sLt

s
+

3bcLt
s

> q∗(ak) + ∆k)

= P (X̄k,s +

√
2Vk,sLt

s
+

3bcLt
s

> q∗(ak) + ∆k ∩ Vk,s ≥ σ2
k +

b∆k

2
)

+ P (X̄k,s +

√
2Vk,sLt

s
+

3bcLt
s

> q∗(ak) + ∆k ∩ Vk,s < σ2
k +

b∆k

2
)

≤ P (Vk,s ≥ σ2
k +

b∆k

2
) + P (X̄k,s +

√
2(σ2

k + b∆k
2)Lt

s
+

3bcLt
s

> q∗(ak) + ∆k)

We now bound the first term. As an identity (from STAT111), we have that

Vk,s = 1
s

∑s
i=1(Xk,i − q∗(ak))2 − (q∗(ak) − X̄k,s)

2. From this we have that:

Vk,s ≤ 1
s

∑s
i=1(Xk,i − q∗(ak))2, which implies that: P (Vk,s ≥ σ2

k + b∆k
2) ≤

P (1
s

∑s
i=1(Xk,i− q∗(ak))2−σ2

k ≥
b∆k

2). We note that (Xk,i− q∗(ak))2−σ2
k ≤

X2
k,i ≤ b2. On top of this, we have that: V ar[(Xk,i − q∗(ak))

2 − σ2
k] =

E[((Xk,i − q∗(ak))2 − σ2
k)

2] ≤ b2E[(Xk,i − q∗(ak))2 − σ2
k] ≤ b2σ2

k. Knowing

this we apply Bernstein’s Inequality:

P (
1

s

s∑
i=1

(Xk,i − q∗(ak))2 − σ2
k ≥

b∆k

2
) ≤ exp{−

s(b∆k
2)2

2b2σ2
k + 2b2 b∆k

6

}

≤ exp{−
s∆2

k

8σ2
k + 4b∆k

3

}

Similarly, we bound the second term. We note that because l ≤ s ≤ t ≤ n

and the fact that Lt is an increasing function with t, we have:√
2(σ2

k + b∆k
2)Lt

s
+

3bcLt
s
≤

√
(2σ2

k + b∆k)(c ∨ 1)Ln
l

+
3b(c ∨ 1)Ln

l

≤

√
(2σ2

k + b∆k)∆
2
k

8(σ2
k + 2b∆k)

+
3b∆2

k

8(σ2
k + 2b∆k)

≤ ∆k/2

34

This means that:

P
(
X̄k,s+

√
2(σ2

k + b∆k
2)Lt

s
+

3bcLt
s

> q∗(ak)+∆k

)
≤ P (X̄k,s−q∗(ak) > ∆k/2)

After applying Bernstein’s Inequality to this as well, we combine the inequal-

ities to obtain the final result which is that:

P (Bk,s,t > q∗(a
∗)) ≤ 2 exp{−

s∆2
k

8σ2
k + 4b∆k/3

}

Thus, the proof is complete.

With these two intermediate theorems, we can now prove the expected regret

bound for this algorithm. In other words, we must bound E[R(n)].

Theorem 3.4 Let τ = q∗(a
∗) and l = d8(c ∨ 1)(

σ2
k

∆2
k

+ 2b
∆k

)Lne. Then we

have:

E[R(n)] ≤
∑

i: ∆i>0

(
1 + l+ne−(c∨1)Ln(

24σ2
k

∆2
k

+
4b

∆k
) +

n∑
t=16Ln

β((c∨1)Lt, t)
)

∆i

Proof : The theorem above looks very complicated but it follows from

bounding E[Tk(n)]. As we know from earlier, we have that:

E[Tk(n)] ≤ l +
n∑

t=l+1

t−1∑
s=l

P (Bk,s,t > q∗(a
∗)) +

n∑
t=l+1

t−1∑
s=1

P (Bk∗,s,t ≤ q∗(a∗))

We consider the first sum. As we just proved, we have:

P (Bk,s,t > q∗(a
∗)) ≤ 2 exp{−

s∆2
k

8σ2
k + 4b∆k/3

}

This implies that:

t−1∑
s=l

P (Bk,s,t > q∗(a
∗)) ≤

∞∑
s=l

P (Bk,s,t > q∗(a
∗))

≤
∞∑
s=l

2 exp{−
s∆2

k

8σ2
k + 4b∆k/3

}

= 2
e−l∆

2
k/(8σ

2
k+4b∆k/3)

1− e−∆2
k/(8σ

2
k+4b∆k/3)

≤ (
24σ2

k

∆2
k

+
4b

∆k
)e−(c∨1)Ln

35

Here, we use the fact that 1−e−x ≥ 2x/3 when 0 ≤ x ≤ 3/4. For the second

term, we have (where we use the bound relating the sample mean with the

sample variance), from which obtain the final result:

E[Tk(n)] ≤ 1 + l + n(
24σ2

k

∆2
k

+
4b

∆k
)e−(c∨1)Ln +

n∑
t=l+1

β((c ∨ 1)Lt, t)

which, because l ≥ 16Ln, implies that:

E[R(n)] ≤
∑

i: ∆i>0

(
1 + l+ne−(c∨1)Ln(

24σ2
k

∆2
k

+
4b

∆k
) +

n∑
t=16Ln

β((c∨1)Lt, t)
)

∆i

Thus, the proof is complete.

To balance the terms in the theorem above, Ln must be chosen to be pro-

portional to log n. In other words, Ln = γ log n for some γ. Therefore, we

obtain that a valid choice for the upper bound can be:

Bk,s,t = X̄k,s +

√
2γVk,s log t

s
+

3bcγ log t

s

By setting c = 1 and Lt = γ log t, we obtain the following result which is the

short and sweet bound that we mentioned at the beginning of this section.

Theorem 3.5 Let c = 1 and Lt = γ log t. Then there exists a cγ such that

for n ≥ 2:

E[R(n)] ≤ cγ
∑

i: ∆i>0

(
σ2
k

∆k
+ 2b) log n

In Audibert et al. [3], it is shown that for example if γ = 1.2, then cγ = 10,

which is the result we were trying to derive.

The bound on the expected regret for UCB-V has a linear dependence on

b and scales with the variance of the reward distributions of each subop-

timal arm. This significantly improves on the bound provided by UCB1,

which grows quadratically in b, especially when the variances of each arm

is much less than b. Even so, the algorithm can perform poorly. Although

the algorithm’s expected regret E[R(n)] = O(log n) (if we fix all the other

36

constants), there do exist reward distributions such that the algorithm suf-

fers polynomial regret. This occurs when γ < 1 in the exploration function

Lt = γ log t and when cγ < 1/3.

Theorem 3.6 Consider Lt = γ log t. If γ < 1, then there exist reward

distributions for which UCB-V achieves polynomial expected regret E[R(n)]

in n. This result is independent of the value of c (the other hyperparameter

besides L).

So far, what we have only considered is the situation where c = 1 and

γ > 1. In this situation, we are able to achieve logarithmic regret. We have

also shown that when γ < 1, we can sometimes obtain polynomial regret.

However, we also need to consider the interaction between c and γ. The

theorem below gives an additional condition that can introduce polynomial

regret:

Lemma 3.1 When Lt = γ log t and if cγ < 1/3, then there exist reward

distributions for which UCB-V achieves polynomial regret.

Proof : (Taken from Audibert et al. [3]) We prove an alternate version of

the statement above. Let Lt = γ log t, then for any γ > 0 and p ∈ (0, 1), if

cγ < −p/(3 log(1− p)), there exist reward distributions such that the mean

reward of the optimal arm is pb and UCB-V suffers polynomial regret.

We obtain the above lemma by taking p → 0. For cγ < − p
3 log(1−p) , ∃ε ∈

(0, 1) such that cγ = ε2 · − p
3 log(1−p) . To prove this alternate version, let

us consider the 2-armed bandit problem where arm a1 generates rewards

X1,i ∼ b · Bern(p) and arm a2 generates deterministic rewards of pbε. Let

n ∈ N and T = d−ε log n/ log(1 − p)e. We consider only large values of n

such that n > T . I claim that in the event that during the first T pulls

the optimal arm (a1) returns 0, then T1(n) ≤ T . To prove this, we suppose

for the sake of contradiction that T1(n) > T . We note that the optimal

arm in this construction is a1. If T1(n) > T , then certainly it must be the

case that T1(n) ≥ T + 1. This means that there must exist a t such that

B1,T,t ≥ B2,T2(t−1),t. However because we assumed this event to be the case,

37

this means that X̄1,T = 0 and because all the rewards are 0, V1,T = 0. This

means that:

B1,T,t =
3cγb log t

T
≤ 3cγb

−ε/ log(1− p)
≤ pbε

The last inequality was obtained by the fact that cγ = ε2 · − p
3 log(1−p) . How-

ever, B2,T2(t−1),t = pbε+ 3cγ log t
T2(t−1) > pbε. Thus, we have reached a contradiction

because B1,T,t < B2,T2(t−1),t, which means that arm a1 will not be selected.

The probability that the optimal arm returns 0 for all T trials is:

(1− p)T ≥ (1− p)1−ε logn/ log(1−p) = (1− p)n−ε logn = (1− p)n−ε

The expected regret when this event holds is at least (n−T)(pb−pbε). Thus,

the expected regret is at least: (1 − p)pb(1− ε)n1−ε, which is polynomial in

n because 1− ε > 0.

With the above, we see that the choices of L, the exploration function, and c

are very important for whether the algorithm is able to achieve logarithmic

regret. Thus, from this, we see that a valid choice is Lt = log t and c = 1,

which creates upper bounds of the form:

Bk,s,t = X̄k,s +

√
2Vk,s log t

s
+

3b log t

s

3.1.3 The regret distribution for UCB-V

In many situations, the expected regret may not be the best and only metric.

One may care about the distribution of the regret and thus how much the

regret varies. It is similar to the situation in statistical inference where

sometimes a researcher might want to increase the bias in their estimator

for the effect of dramatically reducing its variance. For example, if the

distribution of the regret is symmetric and bimodal with two peaks that are

very far away from each other, then it could be true that the expected regret

is low, but half of the time we are experiencing very large amounts of regret

when we run our algorithm. Thus, it is desirable to guarantee low regret

with high probability. The following theorem provides the distribution of

38

regret for UCB-V. Let:

β̃n(t) = 3 min
α≥1,M∈N

s0=0<s1<···<sM
s.t sj+1=α(sj+1)

M−1∑
j=0

e−
(c∨1)Lsj+t+1

α

Theorem 3.7 Let vi = 8(c∨ 1)
(
σ2
i

∆2
i

+ 2b
∆i

)
and r0 =

∑
i: ∆i>0 ∆i(1 + viLn),

then for x ≥ 1:

P (R(n) > r0x) ≤
∑

i: ∆i>0

2ne−(c∨1)Lnx + β̃n(bviLnxc)

This is not too interpretable but the corollary presented in Audibert et al.

[3] provides more insight into the distribution of the regret:

Corollary 3.7.1 Assume that c = 1 and that Lt = γ log t where γ > 1.

Then there exists α1, α2 > 0 that depend only on b,K, σ1, . . . , σK (K denotes

the number of arms) and ∆1, . . . ,∆K such that for any ε > 0, n ≥ 3, z >

α1 log n:

P (R(n) > z) ≤ (α2γ)γ

ε

log(z/α1)

zγ(1−ε)

In essence, ignoring the large amount of constants, it is saying that P (R(n) >

z) concentrates at a polynomial rate. Because the regret is on the order of

log n, it is not that much of a restriction to consider only z = Ω(log n).

We see that the concentration of regret is pretty slow. It doesn’t decay

exponentially like many of the other tail bounds that we have seen earlier in

this paper. Audibert cites that the reason why there is slow concentration

in the regret is because there is a chance that the first Θ(log t) selections of

the optimal arm may return small rewards, resulting in the arm not being

selected any more for the first t steps.

3.1.4 Overview

UCB-V improves on UCB1 by removing the quadratic dependence on the

parameter b, which represents the value that bounds the rewards. How-

ever, when implementing, UCB-V, the choice of the exploration table L =

39

{Ls,t}s≥0,t≥0 and the constant c are crucial to the asymptotic performance

of the algorithm with respect to regret. We determined that the dependence

on the s index for L is not necessary, and that a valid choice of L = Lt is

log t and c = 1. This creates the bound:

Bk,s,t = X̄k,s +

√
2Vk,s log t

s
+

3b log t

s

This is contrast to the bound given in UCB1 which is:

Bk,s,t = X̄k,s +

√
2 log t

s

which doesn’t incorporate any information about the sample variance of the

rewards. Intuitively, we would want to explore the arms that seem to have

high estimated variance so that we are able to obtain a better estimate for

the mean reward of taking that arm. This is in contrast against arms that

have low estimated variance where we are more certain about the mean

reward for that arm. This is because if we have a very good idea of where

the true estimated reward of an arm, it might be better off to select other

arms that have higher estimated variances for the chance that those arms

actually have higher average rewards. At the same time, this algorithm

makes no distributional assumptions, thus being able to achieve the bound

above for arbitrary bounded reward distributions.

40

3.2 KL-UCB

Due to the nature of Kullback-Leibler divergence, we introduce new notation.

Let νk represent the reward distribution of the arm ak and ν∗ represent

the reward distribution of the optimal arm. Then, the Kullback Leibler

divergence between these two distributions is, where f(x)dx and g(x)dx

denote the probability densities of νk and ν∗ respectively:

KL(νk, ν
∗) = Ef

[
log

f(X)

g(X)

]
=

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx

Similarly, let µk represent the expected reward for the arm ak and µ∗ repre-

sent the optimal expected reward. As we showed earlier, the expected regret

for UCB1 is bounded by:

E[R(n)] ≤ 8
∑

i: ∆i>0

log n

∆i
+ (1 +

π2

3
)

K∑
i=1

∆i

= 8
∑

i: ∆i>0

log n

∆i
+ C

Aside from this, for KL-UCB, the assumptions do not change (i.e rewards

are still bounded), and the notation from earlier in this paper stays constant.

KL-UCB improves the regret bounds from the previously mentioned UCB

algorithms by considering the distance between the estimated distributions

of each arm.

3.2.1 Known lower bounds

In 1985, Lai and Robbins. [12] proved that for one-dimensional parametric

classes of distributions, any strategy in the multi-armed bandit setting will

pull in expectation any suboptimal arm ak at least:

E[Tk(n)] ≥
(1

KL(νk, ν∗)
+ o(1)

)
log n

where KL(νk, ν
∗) is the KL divergence between the distributions νk and ν∗.

On top of this, the regret for KL-UCB satisfies:

lim sup
n→∞

E[R(n)]

log n
≤

∑
i: ∆i>0

∆i

KL(νk, ν∗)

41

Later, Burnetas and Katehakis. [7] proved that for multi-dimensional para-

metric distributions: let D be a family of distributions, then the following

lower bound is achieved:

E[Tk(n)] ≥
(1

KLinf (νk, µ∗)
+ o(1)

)
log T

where in this situation: KLinf (νk, µ
∗) = inf{KL(νk, ν)|ν ∈ D, E[ν] > µ∗}

and E[ν] represents the expectation of a random variable sampled from ν.

In words, what the function KLinf (νk, µ
∗) is doing in essence is finding the

smallest KL distance between the arm distribution νk and a distribution in

the model D whose expectation is greater than µ∗. This essentially measures

the difficulty of the problem.

3.2.2 Finite time analysis with Bernoulli divergence

From the whole class of probability distributions on [0, 1] (the range of our

rewards), we consider the subset of Bernoulli distributions, and analyze the

properties when using the KL distance function for Bernoulli random vari-

ables. In general, we could have used any KL distance function; however,

using the Bernoulli one is suffice and carries alot of important theoretical

results. We note that the KL divergence between two Bernoulli distribu-

tions with parameters p, q respectively, where β(p) represents the Bern(p)

distribution, is KL(β(p), β(q)) = p log p
q + (1 − p) log 1−p

1−q . By convention,

0 log 0 = 0 log 0/0 = 0 and x log x/0 = ∞ for x > 0. Before we describe

the algorithm, we first define the upper confidence bound for this algorithm,

where:

X̄k,s =
1

s

s∑
i=1

Xk,i

Bk,s,t = sup
{
q ∈ [0, 1]

∣∣∣s ·KL(β(X̄k,s), β(q)) ≤ log t+ c log log t
}

The hyperparameter to this algorithm is c which is a constant (in the The-

orem below this constant is chosen to be 3, but the authors recommend

setting it to 0 in general for the sake of performance issues). KL-UCB is

optimal for Bernoulli distributions (as it achieves the lower bound talked

42

about earlier) and strictly dominates UCB1 for any bounded reward dis-

tribution. This will be clarified later in this section. The upper confidence

bound can be found through Newton iterations or any other optimization

technique. The reason why Newton iterations would work well is because

for p ∈ [0, 1], the function KL(β(p), β(q)) is strictly convex and increasing

in the interval [p, 1]. Below is the algorithm for KL-UCB:

Algorithm 5 KL-UCB (Bernoulli divergence)

Input: the number of arms K

Initialization:

Play each of the K arms once

t← K + 1

while true do

Play the arm ak that maximizes Bk,Tk(t−1),t, which is:

sup
{
q ∈ [0, 1]

∣∣∣ Tk(t− 1) ·KL(β(X̄k,Tk(t−1)), β(q)) ≤ log t+ c log log t
}

Receive a reward R and update averages

N(a)← N(a) + 1

t← t+ 1

end while

Theorem 3.8 Suppose that we are in a K-armed bandit scenario with in-

dependent reward distributions that are bounded in [0, 1]. Let ε > 0 and take

c = 3 in the algorithm above. Let a∗ denote the optimal arm. Then, for any

positive integer n, the number of times any suboptimal arm ak is chosen is

upper bounded by:

E[Tk(n)] ≤ log n

KL(β(µk), β(µ∗))
(1 + ε) + C1 log log n+

C2(ε)

nγ(ε)

where C1 denotes a positive constant and C2(ε) and γ(ε) both denote positive

functions of ε. From this result, we see immediately that:

lim sup
n→∞

E[Tk(n)]

log n
≤ 1

KL(β(µk), β(µ∗))

43

Proof (Taken from Garivier and Cappe [9]): Fix ε > 0. We state again the

upper confidence bound for this algorithm for an arm ak. The form of the

bound is

Bk,Tk(t−1),t = sup
{
q ∈ [0, 1]

∣∣∣ Tk(t−1)·KL(β(X̄k,Tk(t−1)), β(q)) ≤ log t+c log log t
}

Without loss of generality, assume that the optimal arm a∗ is a1 (aka the

first index). We define d+(x, y) = 1(x < y) ·KL(β(x), β(y)) for x, y ∈ [0, 1].

We can bound the number of times that we select a suboptimal arm ak by:

E[Tk(n)] =E
[n∑
t=1

1(At = ak)
]

≤E
[n∑
t=1

1(µ1 > B1,T1(t−1),t)
]

+ E
[n∑
t=1

1(At = ak, µ1 ≤ B1,T1(t−1),t)
]

The above is true because:

{At = ak} = {At = ak, µ1 > B1,T1(t−1),t} ∪ {At = ak, µ1 ≤ B1,T1(t−1),t}

But the above event is contained in:

{µ1 > B1,T1(t−1),t} ∪ {At = ak, µ1 ≤ B1,T1(t−1),t}

Applying the union bound, we obtain the above identity. In order to proceed

in the proof, we need two new lemmas, which are included directly below:

Lemma 3.2 Following the conditions and notation provided above, we have

that:

n∑
t=1

1(At = ak, µ1 ≤ B1,T1(t−1),t) ≤
n∑
s=1

1(s ·d+(X̄k,s, µ1) < log n+3 log log n)

Proof : If the action selected at time t and µ1 ≤ B1,T1(t−1),t, then it must be

the case that Bk,Tk(t−1),t > B1,T1(t−1),t ≥ µ1. By the fact that KL(β(p), β(q))

is strictly increasing in q on the interval [p, 1], we have that:

d+(X̄k,Tk(t−1), µ1) ≤ KL(β(X̄k,Tk(t−1)), β(Bk,Tk(t−1))) =
log t+ 3 log log t

Tk(t− 1)

44

From this, we have that
∑n

t=1 1(At = ak, µ1 ≤ B1,T1(t−1),t) which we will

call J to save space:

J ≤
n∑
t=1

1(At = ak, Tk(t− 1)d+(X̄k,Tk(t−1), µ1) ≤ log t+ 3 log log t)

which we can continue to simplify using the Law of Total Probability:

J ≤
n∑
t=1

t∑
s=1

1(Tk(t− 1) = s,At = a, sd+(X̄k,s, µ1) ≤ log t+ 3 log log t)

≤
n∑
t=1

t∑
s=1

1(Tk(t− 1) = s,At = a)1(sd+(X̄k,s, µ1) ≤ log n+ 3 log log n)

=
n∑
s=1

1(sd+(X̄k,s, µ1) ≤ log n+ 3 log log n)
n∑
t=s

1(Tk(t− 1) = s,At = a)

≤
n∑
s=1

1(sd+(X̄k,s, µ1) ≤ log n+ 3 log log n)

The equality in the second to last line comes from the fact that you can

imagine the double summation as a triangle. You can sum up and obtain

every element either column-wise or row-wise but they are equivalent. The

last line is obtained from the fact that
∑n

t=s 1(Tk(t− 1) = s,At = a) ≤ 1 for

all s ∈ {1, . . . , n}.

Lemma 3.3 Let Xt be a independent random variables indexed by time t

that are bounded in [0, 1] with common expectation µ = E[Xt]. Let Ft

also be a filtration, an increasing sequence of σ-algebras, where for each t,

the σ-algebra generated by (X1, . . . , Xt), σ(X1, . . . , Xt) ⊂ Ft and let Xs be

independent of Ft for s > t. If we let εt be a sequence of Bernoulli random

variables and δ > 0 and let:

1. S(t) =
∑t

s=1 εsXs. This is analagous to the total sum of rewards

received for an arm.

2. N(t) =
∑n

s=1 εs. This is analogous to the number of times we have

pulled an arm.

45

3. µ̂(t) = S(t)/N(t). This is essentially the average reward.

4. Upper(n) = sup{q ∈ [0, 1]
∣∣∣N(n)KL(β(µ̂(n)), β(q)) ≤ δ}. This is es-

sentially the upper confidence bound.

Then we have that:

P (Upper(n) < µ) ≤ edδ log nee−δ

With these two lemmas, we now simplify further the bound. Starting back

from:

E[Tk(n)] ≤ E
[n∑
t=1

1(µ1 > B1,T1(t−1),t)
]

+ E
[n∑
t=1

1(At = ak, µ1 ≤ B1,T1(t−1),t)
]

≤
n∑
t=1

P (µ > B1,T1(t−1),t) +
n∑
s=1

P (sd+(X̄k,s, µ1) ≤ log n+ 3 log log n)

The term in the first sum is bounded by (this is obtained from the lemma

above):

P (µ > B1,T1(t−1),t) ≤ edlog(t)(log t+ 3 log log t)ee− log t−3 log log t

=
ed(log t)2 + 3 log t · log log te

t(log t)3

This implies that:

n∑
t=1

P (µ > B1,T1(t−1),t) ≤
n∑
t=1

ed(log t)2 + 3 log t · log log te
t(log t)3

≤ A log log n

where A is a positive constant (A ≤ 7 is enough). For the second sum, we

consider the value:

Kn =
⌊ 1 + ε

d+(µk, µ1)
(log n+ 3 log log n)

⌋
Then, we have that

∑n
s=1 P (sd+(X̄k,s, µ1)) which we call S satisfies:

46

S ≤ Kn +
∞∑

s=Kn+1

P (sd+(X̄k,s, µ1) ≤ log n+ 3 log log n)

≤ Kn +

∞∑
s=Kn+1

P (Knd
+(X̄k,s, µ1) ≤ log n+ 3 log log n)

= Kn +
∞∑

s=Kn+1

P (d+(X̄k,s, µ1) ≤ KL(β(µk), β(µ1))

1 + ε
)

≤ 1 + ε

d+(µk, µ1)
(log n+ 3 log log n) +

C2(ε)

nγ(ε)

To conclude this proof, we must prove that the last statement is valid. In

other words, we must prove the following lemma:

Lemma 3.4 For ε > 0, there exist C2(ε) > 0 and γ(ε) > 0 such that:

∞∑
s=Kn+1

P
(
d+(X̄k,s, µ1) ≤ KL(β(µk), β(µ1))

1 + ε

)
≤ C2(ε)

nγ(ε)

Proof (Taken from Garivier and Cappe): If it is the case such that d+(X̄k,s, µ1) ≤
KL(β(µk),β(µ1))

1+ε , then X̄k,s > r(ε) where KL(β(r(ε)), β(µ1)) = KL(β(µk),β(µ1))
1+ε .

From this, we obtain that:

P
(
d+(X̄k,s, µ1) ≤ KL(β(µk), β(µ1))

1 + ε

)
≤ P

(
KL(β(X̄k,s), β(µk)) > KL(β(r(ε)), β(µk)), X̄k,s > µk

)
≤ P (X̄k,s > r(ε)) ≤ e−sKL(β(r(ε)),β(µk))

Now combining the above into the sum, we obtain that:

∞∑
s=Kn+1

P
(
d+(X̄k,s, µ1) ≤ KL(β(µk), β(µ1))

1 + ε

)

≤ exp{−KL(β(r(ε)), β(µk))Kn}
1− exp{−KL(β(r(ε)), β(µk))}

≤ C2(ε)

nγ(ε)

where C2(ε) = (1−exp{−KL(β(r(ε)), β(µk))})−1 and γ(ε) = (1+ε)KL(β(r(ε)),β(µ1))
KL(β(µk),β(µ1)) .

With r(ε) = µk +O(ε), we have that C2(ε) = O(ε−2) and γ(ε) = O(ε2).

47

With the above, we finally establish that the bound that:

E[Tk(n)] ≤ log n

KL(β(µk), β(µ1))
(1 + ε) +A log log n+

C2(ε)

nγ(ε)

From this, we see immediately that the expected regret for this algorithm is:

E[R(n)] ≤
∑

k: ∆k>0

(log n

KL(β(µk), β(µ1))
(1 + ε) +A log log n+

C2(ε)

nγ(ε)

)
∆k

Together, this concludes the proof.

We assumed earlier µ1 was the optimal arm, so it entirely matches up with

what we needed to prove above. Because it holds for arbitrary ε, we have

that:

lim sup
n→∞

E[Tk(n)]

log n
≤ 1

KL(β(µk), β(µ1))

On top of this, by Lai and Robbins. [12], we know that the lower bound for

the expected number of times of selecting a suboptimal arm is:

E[Tk(n)] ≥
(1

KL(νk, ν∗)
+ o(1)

)
log n

This implies that KL-UCB achieves asymptotically the lower bound estab-

lished by Lai and Robbins. [12] when the reward distributions are Bernoulli.

And because we know that bounding E[Tk(n)] for all arms ak is sufficient for

bounding the regret, this means that KL-UCB is asympototically optimal

in terms of expected regret for Bernoulli reward distributions. But you may

ask, what about when the reward distribution is not Bernoulli? The next

section addresses this.

48

3.2.3 KL-UCB vs. Optimized UCB

For reward distributions that are not Bernoulli, KL-UCB does not perform

too poorly either. Even though we are using the KL divergence for Bernoulli

distributions, this algorithm applies to all bounded reward distributions.

Consider the UCB algorithm, where we change the confidence bound a little.

We consider the following modified algorithm:

Algorithm 6 UCB Modified

Input: the number of arms K

Initialization:

Play each of the K arms once

t← K + 1

while true do

Play the arm ak that maximizes Bk,Tk(t−1),t, which is:

X̄k,Tk(t−1) +

√
log t+ 3 log log t

2Tk(t− 1)

Receive a reward R and update averages

N(a)← N(a) + 1

t← t+ 1

end while

For this algorithm, we achieve the upper bound on the expected number of

times we draw suboptimal arms of:

E[Tk(n)] ≤ log n

2(∆k)2
(1 + ε) + C1 log log n+

C2(ε)

nγ(ε)

This algorithm is “optimal” in the sense that the 1
2 in the front cannot be

reduced. Recall that ∆k = µ∗ − µk for a suboptimal arm ak. We observe

immediately that because ε is arbitrary and ε > 0, we have:

lim
n→∞

E[Tk(n)]

log n
=

1

2(∆k)2
=

1

2(µ∗ − µk)2

49

However, we know by Pinsker’s Inequality that KL(β(µ∗), β(µ)) ≥ 2(µ∗ −
µk)

2. This shows that KL-UCB actually dominates plain old UCB based

algorithms. The asymptotic regret bound is significantly less, and in simula-

tions (presented later), KL-UCB actually dominates in small sample sizes

as well.

3.2.4 Overview

One thing to note is that although we are using the KL divergence for

Bernoulli distributions, the bound is not specific to the Bernoulli case and

actually is relevant for all reward distributions that are bounded in [0, 1].

KL-UCB is an algorithm that is able to achieve the lower bound estab-

lished by Lai and Robbins. [12] for Bernoulli rewards (in fact, it achieves

an even lower bound than UCB-V). The numerical experiments presented

in the Experiments section show the significant advantage of KL-UCB

over all the algorithms presented in that section. Therefore, KL-UCB is

an optimal solution of the Bernoulli reward case and also a general purpose

algorithm to use in the bounded bandit scenario. In fact, by changing the

divergence function, we can adapt KL-UCB to many other distributions

(the easiest being distributions coming from an natural exponential family).

This is shown in the Experiments section.

3.2.5 Extensions

KL-UCB makes no assumptions about the reward distributions besides the

fact that they are bounded within the range of [0, 1]. On top of this, it uses

the KL divergence function for Bernoulli distributions which is d(p, q) =

p log p
q + (1 − p) log 1−p

1−q . This algorithm is optimal in the Bernoulli reward

distribution scenario and performs very well in the general bounded reward

case, but in other situations, it can be adapted and adjusted by changing the

KL divergence function. Consulting the natural exponential family section

in the Bayes UCB section of this work, we see that supplying the means of

two distributions that belong to the same natural exponential family (NEF),

50

is suffice to calculate the KL divergence due to the fact that ψ′(η) is one-

to-one with µ, where ψ(η) comes from the density of a random variable

belonging to a NEF:

dFη(y) = exp{ηy − ψ(η)}dF0(y)

For example, in the case of Poisson rewards, we obtain that the proper

function should be d(µ1, µ2) = µ2−µ1+µ1 log µ1
µ2

and for exponential rewards

the function should be d(µ1, µ2) = µ1
µ2
− 1 − log µ1

µ2
. We are able to relate

the KL divergence to only the means of two distributions that belong to

the same exponential family. The mean of a Bern(p) distribution is p and

thus in the algorithm above where we used KL(β(p), β(q)), it already was

in the form of a function taking in the means of the distribution to find the

KL divergence. Because we never explicitly used the form of the divergence

between two Bernoulli distributions in the analysis above, all of the results

above hold. In particular,

lim sup
n→∞

E[R(n)]

log n
≤

∑
i: ∆i>0

1

d(µk, µ∗)
∆i

for general reward distributions with the divergence function d taking the

means instead. This is exactly the lower bound that Lai and Robbins. [12]

proved for parametric reward distributions. In practice, the exact divergence

function need not be calculated. One only needs an upper bound.

51

4 Bayesian Bandit Algorithms

So far, we have mostly considered statistical techniques for the multi-armed

bandit problem that approach it from the frequentist perspective. We as-

sumed that there exists a true but unknown mean reward for each arm.

We then create upper bound estimators and from there chose arms that

maximize these estimators using the “optimism in the face of uncertainty”

principle. For this section, we consider the multi-armed bandit from the

Bayesian perspective where we have priors on the mean rewards for each

arm. This leads to the discussion of two algorithms: Thompson Sam-

pling and Bayes UCB. Thompson Sampling is very simplistic and easy

to implement (it is used in industry quite often), but in many situations

Bayes UCB performs better in practice. In fact, we will see that Bayes

UCB and Thompson Sampling are actually frequentist optimal (at least

asymptotically) in the Bernoulli reward case.

4.1 Thompson Sampling

Thompson Sampling has attracted considerable attention within the past

few years. Currently, it is extremely popular in industry. For example, Mi-

crosoft uses Thompson Sampling in their adPredictor for CTR prediction

of search ads on Bing. However, it was less appealing in academia and the

literature for bandits because of its lack of analysis, which include bounds on

the expected regret for the algorithm. The first logarithmic bound however

was proposed by Agrawal and Goyal. [1] (for the Bernoulli setting). For

now, only results for Thompson Sampling in the Bernoulli reward

case are analyzed . The algorithm however can be extended to general

bounded reward problems, which is discussed later in this section, and the

analysis follows seamlessly.

Theorem 4.1 (Agrawal and Goyal [1]) For the K-armed bandit prob-

lem, the expected regret for Thompson Sampling satisfies the following:

E[R(n)] ≤ C
(∑
i: ∆i>0

1

∆2
i

)2
log n+ o(log n)

52

for some constant C.

For the 2-armed bandit, this bound is almost the same as the one given

by UCB1, but as K gets larger, we see immediately that the terms in the

sum blow up. Later, Kaufmann et al. [10] improved this bound to the

asymptotically optimal bound:

E[R(n)] ≤
∑

i: ∆i>0

(1 + ε)∆i

KL(β(µk), β(µ∗))
(log n+ log log n) + C(ε, µ1, . . . , µK)

for every ε > 0 and for some problem-dependent constant C(ε, µ1, . . . , µK).

So, at least in the Bernoulli case, we have that Thompson Sampling is

asymptotically optimal as:

lim
n→∞

E[R(n)]

log n
=

∑
i: ∆i>0

∆i

KL(β(µk), β(µ∗))

which is the lower bound shown in Lai and Robbins. [12] and where again

β(p) represents the Bern(p) distribution. For the later sections, we denote

the total sum of rewards of the first s rewards for a given arm ak as:

Sk,s =
s∑
i=1

Xk,i

By this notation, we then have that: X̄k,s = Sk,s/s. Also, because the re-

wards are Bernoulli, this implies that Sk,s represents the number of successes

in the first s pulls of arm ak. The algorithm for Thompson Sampling is

noted below. It assumes that the reward distributions are Bernoulli. We

apply the uniform prior on the means µk for each arm ak which in this case

is the Beta(1, 1) distribution. By the Beta-Binomial conjugacy, we can im-

mediately obtain the posterior distribution for the mean of any given arm

by observing whether the new sample that we obtained was a success or not.

This is because under the Beta-Binomial conjugacy the first parameter to

the Beta distribution is essentially the count of the successes and the second

is the count of the failures (Blitzstein and Hwang. [5]). We also note that the

mean of a Beta(a, b) distribution is just a
a+b which in words is interpreted as

53

the proportion of successes over total trials. On top of this, as a, b increase,

the beta distribution concentrates more tightly around its mean. Thus, as

intuition for why Thompson Sampling works, we can imagine that as we

perform enough samples from each arm’s reward distribution, the samples

that we obtain will become increasingly close to the true mean of each arm.

Algorithm 7 Thompson Sampling (Bernoulli Bandits)

Input: the number of arms K

Initialization:

Set S(a) = 1, F (a) = 1 for all arms a

t← 1

while true do

For each arm, sample Bi(t) ∼ Beta(S(ai), F (ai)).

Play the arm a that maximizes Bi(t)

Receive a reward R

If R = 1 then S(a) = S(a) + 1 else F (a) = F (a) + 1

t← t+ 1

end while

4.1.1 Aside

The Thompson Sampling algorithm given above is very easy to implement

and we can adapt it to the general case with rewards bounded in [0, 1].

Essentially, we transform the reward that is observed into a probability and

update the parameters to the Beta distribution that way. The idea is that

we have, where fk(x) represents the density of the reward distribution for

arm ak:

P (success) =

∫ 1

0
rfk(r)dr = µk

so, the success probability is essentially the same as in the Bernoulli bandit

case. This essentially allows us to replace the general bounded reward case

with the Bernoulli case because the arms will end up having the same means,

which is the quantity that we want to eventually end up maximizing anyways.

54

With this, we have that the algorithm adapted to the general bounded case

is as follows:

Algorithm 8 Thompson Sampling (General Bounded Case)

Input: the number of arms K

Initialization:

Set S(a) = 1, F (a) = 1 for all arms a

t← 1

while true do

For each arm, sample Bi(t) ∼ Beta(S(ai), F (ai)).

Play the arm a that maximizes Bi(t)

Receive a reward R ∈ [0, 1]

With probability R, S(a) = S(a) + 1 else F (a) = F (a) + 1

t← t+ 1

end while

4.1.2 Notation

For the most part, we will deal with the same notation that was used earlier.

However, we will introduce some new notation. We already defined Sk,s

above, so we can skip that. Let πk,t denote the posterior distribution on

arm ak at the time step t. In other words, we have that πk,t ∼ Beta(Sk,t +

1, Tk(t) − Sk,t + 1). Let Ga,b denote the CDF of the Beta(a, b) distribution

and let Fn,p denote the CDF of the Bin(n, p) distribution. We also have

from Blitzstein and Hwang. [5] that:

Ga,b(y) = 1− Fa+b−1,y(a− 1)

(This result is derived using order statistics). Taking variables from KL-

UCB, we recall:

uk,t = sup{q > X̄k,Tk(t−1)|Tk(t− 1) · d(X̄k,Tk(t−1), q) ≤ log t+ log log t}

and we define Q(α, πk,t) as the quantile function of πk,t where qk,t = Q(1−
1/(t log n), πk,t).

55

4.1.3 Finite time analysis

The main difficulty in the regret analysis of Thompson Sampling, as

stated in Kaufmann et al. [10], is controlling the number of times we select

the optimal arm. However, in Kaufmann et al. [10], they obtain a bound of

the following form. We will also, like in KL-UCB, assume (WLOG) that

the first arm is the optimal arm (aka µ1 = µ∗).

Lemma 4.1 There exists constants b and Cb such that:

∞∑
t=1

P (T1(t) ≤ tb) ≤ Cb

The proof for this will be omitted because it is not necessary to under-

stand the main points of the argument. For the analysis of the expected

regret, let us denote the KL divergence between two Bernoulli distributions

KL(β(p), β(q)) as d(p, q) for ease of notation. With the above, we state:

Theorem 4.2 Fix ε > 0. With b from the above lemma, we have that there

exists constants N(b, ε, µ1, µk) and N0(b) for the suboptimal arm ak such that

the following bound is achieved:

E[Tk(n)] ≤ (1 + ε)(log n+ log log n)

d(µk, µ1)
+D(ε, µ1, µk)+N(b, ε, µ1, µk)+N0(b)+2Cb

Proof (Taken from Kaufmann et al. [10]): (Note: This proof is about 5

pages long so it may be advisable to skip it) Let Yk,t ∼ πk,t. Then we have

that for the suboptimal arm ak:

E[Tk(n)] ≤
n∑
t=1

P
(
Y1,t ≤ µ1 −

√
6 log t

T1(t)

)
+

n∑
t=1

P
(
At = ak, Yk,t > µ1 −

√
6 log n

T1(t)

)
≤

n∑
t=1

P
(
Y1,t ≤ µ1 −

√
6 log t

T1(t)

)
+

n∑
t=1

P
(
At = ak, Yk,t > µ1 −

√
6 log n

T1(t)
, Yk,t < qk,t

)
+

n∑
t=1

P (Yk,t ≥ qk,t)

56

The above two lines follow from Law of Total Probability arguments like we

have used in earlier regret bound proofs. We bound the last sum using the

definition of a quantile:

n∑
t=1

P (Yk,t ≥ qk,t) ≤
n∑
t=1

1

t log n
≤ 1

log n
·
∫ n

1

1

t
dt ≤ log n

log n
= 1

We now bound the first sum which is:

n∑
t=1

P
(
Y1,t ≤ µ1 −

√
6 log t

T1(t)

)
To do so, we use the Probability Integral Transform (PIT). Let Ut be a

sequence of i.i.d Unif(0, 1) random variables. PIT states that since Y1,t ∼
π1,t ∼ Beta(S1,t+1, T1(t)−S1,t+1), thenG−1

S1,t+1,T1(t)−S1,t+1(Ut) ∼ Beta(S1,t+

1, T1(t)− S1,t + 1). This means that:

P
(
Y1,t ≤ µ1 −

√
6 log t

T1(t)

)
= P

(
Ut ≤ GS1,t+1,T1(t)−S1,t+1

(
µ1 −

√
6 log t

T1(t)

))
By Blitzstein and Hwang., we have that the above satsfies:

≤ P
(
Ut ≤ 1− F

T1(t)+1,µ1−
√

6 log t
T1(t)

(
S1,t

)
, T1(t) ≥ tb

)
+ P (T1(t) < tb)

= P
(
F
T1(t)+1,µ1−

√
6 log t
T1(t)

(
S1,t

)
≤ Ut, T1(t) ≥ tb

)
+ P (T1(t) < tb)

However, if is the case that the event
{
F
T1(t)+1,µ1−

√
6 log t
T1(t)

(
S1,t

)
≤ Ut, T1(t) ≥

tb
}

happened, then there must exist an integer s ∈ [tb, t] such that:

F
s+1,µ1−

√
6 log t
s

(
S1,s

)
≤ Ut

In other words, by applying the union bound once again, we obtain that:

≤
t∑

s=dtbe

P
(
S1,s ≤ F−1

s+1,µ1−
√

6 log t
s

(
Ut

))
+ P (T1(t) < tb)

By the PIT, we know that F−1

s+1,µ1−
√

6 log t
s

(
Ut

)
∼ Bin(s + 1, µ1 −

√
6 log t
s).

It is also independent from S1,s ∼ Bin(s, µ1) because we assumed that Ut

57

were independent from the rewards. Let W1,m ∼ Bern(µ1 −
√

6 log t
s), let

W2,m ∼ Bern(µ1), and let Zm = W2,m −W1,m. This means that:

P
(
S1,s ≤ F−1

s+1,µ1−
√

6 log t
s

(
Ut

))
≤ P (

s∑
m=1

Zm ≤ 1)

= P (

s∑
m=1

(Zm − E[Zm]) ≤ 1− sE[Zm])

≤ P (
s∑

m=1

(Zm −
√

6 log t/s) ≤ 1−
√

6s log t)

Let N0(b) be the value such that for all t ≥ N0(b), we have that
√

6tb log t−
1 >

√
5tb log t. We apply Hoeffding’s Inequality, to see that:

P
(
S1,s ≤ F−1

s+1,µ1−
√

6 log t
s

(
Ut

))
≤ e

−10s log t
4s = t−5/2

From this, we have that:

n∑
t=1

P
(
Y1,t ≤ µ1 −

√
6 log t

T1(t)

)
≤
∞∑
t=1

P
(
Y1,t ≤ µ1 −

√
6 log t

T1(t)

)
≤ N0(b) +

n∑
t=1

(t · t−5/2 + P (T1(t) < tb))

≤ N0(b) + 3 + Cb

where the last sum is bounded from the Lemma stated above (at the begin-

ning of this section). Now, we bound the second sum at the beginning of

this proof, which we restate for clarify purposes:

n∑
t=1

P
(
At = ak, Yk,t > µ1 −

√
6 log n

T1(t)
, Yk,t < qk,t

)
This part of the proof basically follows the proof for KL-UCB. Using the

58

fact that uk,t ≥ qk,t (proof omitted), we have that the sum satisfies:

≤
n∑
t=1

P (uk,t > µ1 −

√
6 log n

T1(t)
, At = ak)

≤
n∑
t=1

P (uk,t > µ1 −

√
6 log n

T1(t)
, At = ak, T1(t) ≥ tb) + P (T1(t) < tb)

≤ Cb +
n∑
t=1

P (uk,t > µ1 −
√

6 log n

tb
, At = ak)

Like the proof for KL-UCB, we define d+(x, y) = 1(x < y)d(x, y). Let

fn(t) = log t + log log n. Let γt =
√

6 log t
tb

and dn,k(ε) = (1 + ε) logn+log log n
d(µk,µ1) .

We then have
∑n

t=1 P (uk,t > µ1 − γt, At = ak) satisfies:

= E[

bdn,k(ε)c∑
s=1

n∑
t=s

1(sd+(X̄k,s, µ1 − γt) ≤ fn(t))1(At = ak, T2(t) = s)]

+ E[
n∑

s=bdn,k(ε)c+1

n∑
t=s

1(sd+(X̄k,s, µ1 − γt) ≤ fn(t))1(At = ak, T2(t) = s)]

We note that d+(x, y) is increasing for x fixed and γt is decreasing in t when

t ≥ e1/b. Then for n such that dn,k(ε) ≥ e1/b and t ≥ dn,k:

1(sd+(X̄k,s, µ1 − γt) ≤ fn(t)) ≤ 1(sd+(X̄k,s, µ1 − γdn,k(ε)) ≤ fn(n))

Thus, the sum is bounded by:

≤E[

bdn,k(ε)c∑
s=1

n∑
t=s

1(At = ak, T2(t) = s)]

+ E[

n∑
s=bdn,k(ε)c+1

n∑
t=s

1(sd+(X̄k,s, µ1 − γdn,k(ε)) ≤ fn(n))1(At = ak, T2(t) = s)]

= E[

bdn,k(ε)c∑
s=1

n∑
t=s

1(At = ak, T2(t) = s)]

+ E[
n∑

s=bdn,k(ε)c+1

1(sd+(X̄k,s, µ1 − γdn,k(ε)) ≤ fn(n))
n∑
t=s

1(At = ak, T2(t) = s)]

≤ dn,k +
n∑

s=bdn,k(ε)c+1

P (sd+(X̄k,s, µ1 − γdn,k(ε)) ≤ fn(n))

59

The above was obtained due to the fact that for any action ak and any s,∑n
t=s 1(At = ak, T2(t) = s)] ≤ 1 and the fact that we are considering n such

that dn,k(ε) ≥ e1/b and t ≥ dn,k(ε). By the convexity of d+(x, y) for fixed x,

we have that:

d+(X̄k,s, µ1) ≤ d+(X̄k,s, µ1 − γdk,n(ε)) +
2

µ1(1− µ1)
γdk,n(ε)

If d+(X̄k,s, µ1 − γdk,n(ε)) ≤
d(µk,µ1)

1+ε , then for large n:

d+(X̄k,s, µ1) ≤ d(µk, µ1)

1 + ε/2

Let N be the value such that the inequality above holds for n ≥ N , then we

have that for n ≥ N , the sum is bounded by:

≤ dn,k +

n∑
s=bdn,k(ε)c+1

P (dn,k(ε)d
+(X̄k,s, µ1 − γdn,k(ε)) ≤ fn(n))

≤ dn,k +

n∑
s=bdn,k(ε)c+1

P (d+(X̄k,s, µ1) ≤ d(µk, µ1)

1 + ε
)

= (1 + ε)
log n+ log log n

d(µk, µ1)
+ C2(ε)

The last inequality comes from the lemma that we proved in the KL-UCB

section. We have bounded all the sums, allowing us to obtain the final result

that:

E[Tk(n)] ≤ (1 + ε)
log n+ log log n

d(µk, µ1)
+ C2(ε) + Cb +N0(b) + 1

Thus, the proof is complete.

Again, to re-emphasize, because ε > 0 was arbitrary, we obtain that:

lim
n→∞

E[Tk(n)]

log n
≤ 1

d(µk, µ1)
=

1

d(µk, µ∗)

=⇒ lim
n→∞

E[R(n)]

log n
≤
∑
i:∆i>0

∆i

d(µk, µ1)
=
∑
i:∆i>0

1

d(µk, µ∗)

which is the lower bound established by Lai and Robbins. [12]. Thus, we see

that Thompson Sampling is asymptotically optimal for Bernoulli bandits.

60

4.1.4 Overview

Approaching the multi-armed bandit problem through the Bayesian lens,

we have discovered another asymptotically optimal algorithm for Bernoulli

bandits. On top of this, as we saw earlier, this algorithm can be extended by

the transformation above for the general bounded reward case. Thompson

Sampling and KL-UCB, while both asymptotically optimal, differ in the

fact that Thompson Sampling is infinitely easier to implement. It doesn’t

require any optimization which is what KL-UCB does when finding the

upper confidence bound for a given arm. In fact, Thompson Sampling

with Beta priors is as simple as keeping track of the number of successes

and failures for all the arms ak. However, while Thompson Sampling and

KL-UCB are both optimal in the Bernoulli setting (asymptotically), there

are two things to worry about: their performance for small n (a.k.a for small

number of time steps) and when the reward distributions are not Bernoulli

but bounded. This is addressed in the experiments section of this work.

Thus, Thompson Sampling doesn’t exactly dominate KL-UCB. So for

any given problem setting, it would be wise to compare the performance of

the two.

61

4.2 Bayes UCB

The last algorithm that will be covered will be Bayes UCB. Bayes UCB

as we discussed in the Thompson Sampling section is frequentist optimal

in the Bernoulli setting (asymptotically). We will show this later in the

form of a regret bound for Bayes UCB. It was introduced by Kaufmann

et al. [11] in the context of parametric multi-armed bandits (meaning that

the reward distributions come from parametric distributions). We will see

in the experiments section that this algorithm is actually robust when the

reward distributions are not part of a natural exponential family however.

The most heavily analyzed class of distributions were those that came from

natural exponential families (i.e Normal, Poisson, etc). Natural exponential

families are friendly to deal with because their posterior distributions are

known and very easy to calculate. On top of this, the conjugate priors also

belong to natural exponential families. To name a few conjugacies, there

is the Beta-Binomial conjugacy for the probability parameter p, Normal-

Normal conjugacy for the mean µ, Multinomial-Dirichlet conjugacy for the

probability vector p (the multi-variate analog of the Beta-Binomial conju-

gacy), and Gamma-Poisson conjugacy for the rate parameter λ.

4.2.1 On natural exponential families

*(Adapted from Professor Blitzstein’s STAT210 Textbook [6])

Definition 4.1 A natural exponential family (NEF) is family of distribu-

tions for a random variable Y such that:

dFη(y) = exp{ηy − ψ(η)}dF0(y)

where η is known as the natural parameter for Y , and F0 is a CDF that

is independent of η. For a absolutely continuous random variable Y , let f

denote the density of Y , then Y belongs to an exponential family if its density

can be transformed into the following form:

fη(y) = exp{ηy − ψ(η)}h(y)

62

Lemma 4.2 Suppose that Y comes from an NEF, meaning that: Y ∼
exp{ηy − ψ(η)}dF0(y). Then we have that:

µ = Eη[Y] = ψ′(η) =
d

dη
ψ(η)

V arη(Y) = ψ′′(η) =
d2

dη2
ψ(η)

The transformation of µ and η is one-to-one in a NEF as ψ(η) is differen-

tiable and thus ψ′(η) is continuous. On top of this, ψ′′(η) > 0 because it is

the variance (it is only equal to 0 in degenerate situations like when it is a

constant), so it is strictly increasing. Thus, it must be one-to-one. We also

typically refer to V (µ) = ψ′′((ψ′)−1(µ)) as the variance function.

Lemma 4.3 The KL divergence between two distributions νη and νθ in a

natural exponential family has the closed expression which is:

d(η, θ) = KL(νη, νθ) = ψ′(η)(η − θ)− ψ(η) + ψ(θ)

Because the means and the natural parameters are related one-to-one, we can

consider the KL divergence with respect to only the means of each distribution

νη and νθ. Let E[νη] = µ1 and E[νθ] = µ2, then:

KL(νη, νθ) = d((ψ′)−1(µ1), (ψ′)−1(µ2))

4.2.2 Notation

For this section, the notation from previous sections stays constant. Recall

that πk,t represents the posterior distribution on the mean reward for arm

ak at time step t. We also defined in the Thompson Sampling section

Q(α, πk,t) as the quantile function of πk,t. We redefine qk,t from the previous

section into:

qk,t = Q(1− 1

t(log n)c
, πk,t)

where n is the number of time steps that we are considering (i.e the n from

E[R(n)]) and where c is real valued (it actually is a hyper parameter to

the algorithm). Let Ga,b denote the CDF of the Beta(a, b) distribution and

63

let Fn,p denote the CDF of the Bin(n, p) distribution. We also have from

Blitzstein and Hwang. that:

Ga,b(y) = 1− Fa+b−1,y(a− 1)

4.2.3 The algorithm

Because of the special fact that Ga,b(y) = 1−Fa+b−1,y(a−1), the analysis for

Thompson Sampling was possible for the Bernoulli case. Similarly, the

analysis for Bayes UCB is only known for the Beta-Binomial case, where

the rewards come from a Bernoulli distribution. Like in Thompson Sam-

pling we apply the uniform prior which is Beta(1, 1) for Bayes UCB. The

analysis for the general case with arbitrary prior and posteriors (i.e Gamma-

Poisson, etc) is not currently known. Bayes UCB has a strong similarity

with UCB in the sense that we use the posterior indices and quantiles which

is analagous to the upper confidence bounds used in traditional UCB based

algorithms. The hyperparameter c, as Kaufmann et al. [11] states, is an

artifact of the analysis of the algorithm and for the sake of the analysis c

must be greater than or equal to 5 so that they are able to achieve logarith-

mic regret in the finite time case. However, they acknowledge that c = 0,

performs better in their simulations and in practice.

Algorithm 9 Bayes UCB

Input: the hyperparameter c, the prior on the means P

Initialization:

Set S(a) = 1, F (a) = 1 for all arms a

t← 1

while true do

For each arm ak, compute qk,t

Play the arm ai that maximizes qi,t

Receive a reward R ∈ [0, 1]

Update the posterior distribution for the selected arm accordingly

end while

64

Theorem 4.3 Fix ε > 0 and let c ≥ 5 in Bayes UCB, then the number of

times a suboptimal arm ak is drawn is upper bounded by:

E[Tk(n)] ≤ 1 + ε

KL(νk, ν∗)
log n+ o(log n)

And if we use the notation where we denote the KL divergence through the

function d that takes in the means, we obtain:

E[Tk(n)] ≤ 1 + ε

d(µk, µ∗)
log n+ o(log n)

Proof : The proof for this theorem is for the most part identical to the proofs

for KL-UCB and Thompson Sampling. It requires bounding E[Tk(n)]

using elementary arguments that involve the law of total probability and the

union bound. Then, we isolate the sums provided by the bound and then

bound each individual sum using concentration inequalities. Being that it is

so similar to previous proofs in this survey, this proof will be omitted. It is

provided in Kaufmann et al. [11].

As we see from the above theorem, it is asympotically optimal for the

Bernoulli case as we mentioned earlier. It achieves the lower bound of:

lim
n→∞

E[R(n)]

log n
=

∑
i: ∆i>0

∆i

d(µi, µ∗)

4.2.4 Limitations and Overview

As we see from the algorithm above, we are entirely restricted to paramet-

ric models for the reward distributions. In fact, for ease of computation,

we are really only considering parametric models belonging to natural ex-

ponential families because they have conjugate priors and their posterior

distributions are known. Thus, we are able to apply Bayes UCB in the

situation where there are Bernoulli rewards and as we saw above, it is able to

perform asymptotically optimal for that case. It cannot however be applied

in the general bounded reward setting, unless we make an assumption about

the reward distribution. However, with that, we enter into the philosphi-

cal domain where one may argue that certain priors would make sense in

65

certain environments. And even so, we may incorrectly specify the reward

distribution, which unsurprisingly would compromise the performance of

the algorithm. This is in contrast to UCB-V, KL-UCB, and Thompson

Sampling, which are algorithms that are able to be applied in the general

bounded reward setting and have analysis to go along with it. UCB-V

incorporates the estimated variance inside its upper confidence bound and

KL-UCB/Thompson Sampling have nice theoretical guarantees when

applying them in a general bounded setting. This does not undermine the

efficacy of Bayes UCB however. Being that Bayes UCB makes strong

distributional assumptions about the rewards, we can imagine that Bayes

UCB can potentially perform much better than the other listed algorithms

when the reward distribution is correctly specified. In practice, we do not

know the reward distributions, so it would be wise to experiment with many

different priors for this algorithm and also to compare it to non-parametric

algorithms.

66

5 Experiments

In this section, we compare the performance between the aforementioned

algorithms in different scenarios. For this section, we mainly analyze re-

wards coming from known distributions and not arbitrary bounded reward

distributions for pedagogical purposes. We do however perturb some of the

assumptions of the algorithms. The results from this provide intuition as to

how certain algorithms perform under general circumstances and how they

extend to the general setting.

67

5.1 10-armed Bernoulli Bandit

If we denote the 10 dimensional vector p as the vector whose ith entry

represents the mean for the arm ai of this Bernoulli bandit, we are specifically

considering when (where the entries are listed from the highest mean to the

lowest mean):

p =
[
0.1 0.5 0.5 0.5 0.02 0.02 0.02 0.01 0.01 0.01

]
Here, we use the Bernoulli KL divergence function for KL-UCB and a Beta

prior for Bayes UCB and Thompson Sampling. Graphing the regret of

each algorithm against time, we obtain:

Figure 1: 10-armed Bernoulli Bandit Algorithm Performance

As expected, UCB1 performs the worse, but it still seems to be growing at

roughly a logarithmic rate. UCB-V improves on this growing at a slightly

slower rate; however, the last three algorithms perform roughly the same,

as we know that they are all asymptotically optimal for the Bernoulli case.

However, it is surprising to see how well they perform for small time steps.

68

In the last example, there is a drastic difference between the arm that had

the best expected reward compared to the subtoptimal arms. Let us consider

when the expected rewards are closer to each other in distance. For example,

let us consider:

p =
[
0.3 0.28 0.27 0.27 0.26 0.26 0.26 0.24 0.24 0.24

]

Figure 2: 10-armed Bernoulli Bandit Algorithm Performance

The performance of all the algorithms dramatically decrease. This makes

sense because we increased the magnitude of the means and also made them

closer in distance. Intuitively, this makes it harder to detect any difference in

average reward between arms. It is alarming to see that Thompson Sampling

performs the best in this example considering how easy it is to implement

as opposed to the other algorithms. Unsurprisingly, UCB1 performs the

worst. It is also interesting to see that UCB-V performs almost as well as

Bayes UCB even though Bayes UCB makes distributional assumptions

(which are actually accurate in this scenario). Regardless, the results from

69

this section reconfirm the theory that we discussed earlier in this survey.

5.2 KL-UCB with different divergence functions

Here, we analyze the results of the 10 armed Gaussian bandit. The mean

vector that we considered for the reward distributions was:

µ =
[
0.3 0.27 0.25 0.23 0.23 0.22 0.22 0.15 0.15 0.1

]
with variance 1. Thus, we have that the distribution νk of arm ak was

N(µi, 1). With this, we compare regular KL-UCB (Bernoulli divergence

function) with the modified KL-UCB replacing the Bernoulli divergence

function with the Gaussian one (which is d(x, y) = (x−y)2

2σ2), but σ2 = 1 in

our scenario.

Figure 3: 10-armed Gaussian Bandit Algorithm Performance

Here, it clearly illustrates the drastic performance increase by KL-UCB

modified by the Gaussian divergence function, which was expected by the

results from the KL-UCB section. To further test the theory, we consider

70

the “Truncated Poisson”, where we define a maximum reward R and sample

from the regular Poisson until it is less than or equal to R. We then normalize

the reward so that its in the range of [0, 1]. Following this sampling method,

we show the performance of KL-UCB with the Bernoulli divergence against

KL-UCB with Poisson divergence (d(x, y) = y − x+ x log x
y):

Figure 4: 10-armed Poisson Bandit Algorithm Performance

These experiments show that for KL-UCB, choosing the proper divergence

function is incredibly important for the performance of the algorithm, even

in small time steps. KL-UCB with Bernoulli divergence is robust and out-

performs UCB-V but it is only optimal with respect to Bernoulli reward

distributions. It performs well in other situations, but the best thing to do

is to choose the proper divergence function for the assumed class of distri-

butions the rewards come from.

71

5.3 Bayes UCB and Thompson Sampling in a Beta Bandit

So far, in this experiment section, we have only considered Thompson

Sampling and Bayes UCB in the context of Bernoulli Bandits (a.k.a bi-

nary rewards). Here, we consider reward distributions following arbitrary

Beta distributions. As we know, Beta distributions are supported by [0, 1].

We still assume Beta priors. In this situation, the priors are Beta and the

actual reward distributions are also Beta. The exact reward distributions

we assumed were Beta(a, b) with the following pairs of (a, b):[
(1, 1) (4, 6) (5, 2) (1, 4) (2, 6) (9, 8) (4, 1) (2, 2) (7, 4) (3, 6)

]
The fourth to last arm is the optimal one because it has the highest mean

which is 4/(4 + 1) = 0.8.

Figure 5: 10-armed Beta Bandit Algorithm Performance

The Bayesian based bandit algorithms significantly outperformed the other

ones. Here, we have two “klUCB”. The red line represents KL-UCB with

72

Bernoulli divergence. The bright blue one denotes KL-UCB with Exponen-

tial divergence. This was included to show that we cannot just arbitrarily

select and alter between different divergence functions. In fact, if we are

unsure, more times than not, the Bernoulli divergence will perform just fine.

In this case, it performs almost as well as the Bayesian algorithms. As ex-

pected, UCB1 and UCB-V underperform. However, UCB-V outperforms

UCB1 which is what was heavily implied by our analysis.

5.4 For fun

For this section, we attempt to create a series of convoluted reward distri-

butions that are bounded in [0, 1] in order to study the performance of the

algorithms above in this bandit scenario. We again consider the 10-armed

bandit. The spirit of this is to simulate the unknown and complex reward

distributions in real life situations. All that is necessary for the purpose of

simulation is to describe how to sample from it, which we describe below. We

use the Probability Integral Transform in part to accomplish this. In order

to simplify this, let us find an easily invertible monotonically increasing func-

tion F (x) on [0, 1] that satisfies limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

which will be the CDF. Let

F (x) = 3
− 1

ebx

=⇒ F−1(x) = −1

b
log(− log x

log 3
)

Let U ∼ Unif(0, 1), then we return F−1(U), but if F−1(U) is less than 0, we

return 0 and if it is greater than 1, we return 1. Letting b ∈ {1, . . . , 10}, we

created 10 arms for the bandit and sampled from it. Below in the figure are

the results of running the algorithms. The results mimic eerily the results

from previous experiments.

73

Figure 6: 10-armed “Convoluted” Bandit Algorithm Performance

5.5 Overview

The algorithms that we talked about are all very robust and can be applied

in many circumstances provided that the rewards are bounded. UCB-V did

not perform as well as the rest of the other algorithms, but this was expected

as UCB-V does not satisfy any asymptotically optimal regret bounds. It

was proposed as a significant improvement over UCB1, which it was. From

these experiments, we see that all the algorithms performed well in the spe-

cific environments that they were meant to be used in. However, even by

perturbing those conditions, the algorithms were able to adapt relatively

well. Most notably so, Thompson Sampling was consistently one of the

best performers in each of our experiments. This goes to show its efficacy

and why it was and is so dominantly used in industry, even before formal

analysis of the algorithm was available in bandit literature.

74

6 Conclusion

In this paper, we investigated numerous algorithms for the multi-armed ban-

dit problem. At the beginning, we went through more elementary algorithms

and analyzed their regret bounds. Those algorithms were Explore-First

and UCB1. Although these algorithms are greatly outperformed by existing

algorithms now, they sparked a whole field of literature in the multi-armed

bandit problem. Auer et al. [4] discovered one of the first algorithms that

was able to achieve logarithmic regret by using the principle of “optimism in

the face of uncertainty” which in essence is building upper confidence bounds

for the expected reward of a given arm ak. By selecting the coefficient or bias

factor carefully, we were able to obtain a series of high probability bounds

using concentration inequalities. Auer et al. [4] in the experimental section

created an algorithm by the name of UCB1-Tuned which incorporated

the sample variance of an arm’s reward inside its upper confidence bound.

As one of the first works to improve the expected regret bound on UCB1,

UCB-V was motivated by UCB1-Tuned and was able to bound the ex-

pected regret with a version of the Empirical Bernstein Inequality. It was

not an optimal algorithm but it significantly improved the regret bound that

was associated with UCB1. It confirmed our suspicions that an algorithm

that used the sample variance in the upper confidence bound would be able

to perform well. It was able to achieve a linear dependence on the bound of

the rewards and also the variances of each reward distribution. In the 1985

seminal work by Lai and Robbins. [12], they were able to prove an asymp-

totic lower bound on the number of times a suboptimal arm ak could be

drawn by any reasonable multi-armed bandit algorithm for one-dimensional

parametric reward distributions. As we have seen, it is related to the KL

divergence between the arm ak’s distribution νk and the optimal arm’s dis-

tribution ν∗. This helped inspire the creation of a KL divergence inspired

multi-armed bandit algorithm which was essentially KL-UCB. It was one

of the first asymptotical optimal algorithms. We also saw in our experiment

section that the effectiveness of KL-UCB was very dependent on the KL

75

divergence function that was used. KL-UCB for the most part is very ro-

bust with Bernoulli divergence, but under different situations when we have

a strong belief that the rewards follow certain distributions, it may be wise

to change the divergence function to test the performance of the resulting

modified KL-UCB.

All the algorithms above had approached the multi-armed bandit problem

from the frequentist perspective (i.e the upper confidence bounds were all

related to the sample mean reward of the respective arm). The approach

from the Bayesian perspective began growing track upon the conception of

Thompson Sampling, which although very simplistic, had only only re-

cently been proven to satisfy asymptotic optimality (for the Bernoulli case).

As a result, Thompson Sampling, in the beginning, was not too popular

in the literature for multi-armed bandits. It was, however, very popular in

industry due to its time-tested performance in actual data sets. In our ex-

perimental section, we have seen the strength and robustness of Thompson

Sampling under perturbations of some of its assumptions. Provided as a

fusion of UCB based algorithms and Thompson Sampling, Bayes UCB

attempted to combine the simplicity of upper confidence bounds with the

convenience of Bayesian logic. It addressed this by selecting specific quan-

tiles of the posterior distribution of the arms ak as a high probability bound.

Bayes UCB however was only intended for the parametric reward case (and

specifically for when the rewards come from a natural exponential family).

However, as we have seen in the experimental section, this algorithm is ro-

bust and performs well if the true rewards are “close” enough to a member

of a NEF.

These algorithms are currently the standard for approaching the multi-armed

bandit problem. There is no proven scenario where KL-UCB outperforms

Thompson Sampling or when Thompson Sampling outperforms Bayes

UCB, so the best way to approach a given problem is to test and run the

algorithms all and select the one that performs the best.

76

6.1 Going Further

Building on the ideas from this survey, it would be interesting to explore the

multi-armed bandit problem from the PAC optimality perspective. However,

because the restrictions for PAC optimality are a little looser, with us only

needing to output an arm whose mean is close enough to the true optimal

expected reward with high probability, we lose alot of the motivations behind

approaching it from a regret stand point. This is because using regret as a

metric requires that any given algorithm must find the best arm and also

find that best arm in the shortest amount of time possible.

77

7 References

[1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-

armed bandit problem. In Conference On Learning Theory (COLT),

2012.

[2] S. Agrawal and N. Goyal. Further optimal regret bounds for thompson

sampling. CoRR, abs/1209.3353, 201

[3] J-Y. Audibert, R. Munos, and C. Szepesvari. Exploration-exploitation

trade-off using variance estimates in multi-armed bandits. Theoretical

Computer Science, 410(19), 2009.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the

multiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[5] J. Blitzstein and J. Hwang. Introduction to Probability. CRC Press, 2015.

[6] J. Blitzstein and C. Morris. Probability for Statistical Science. Unpub-

lished. 2019.

[7] A. Burnetas and M. Katehakis. Optimal adaptive policies for sequential

allocation problems. Advances in Applied Math. 17 122–142. 1996

[8] O. Cappe, A. Garivier, O-A. Maillard, R. Munos, G. Stoltz, et al. Kull-

back–leibler upper confidence bounds for optimal sequential allocation.

The Annals of Statistics, 41(3):1516–1541, 2013.

[9] A. Garivier and O. Cappe. The kl-ucb algorithm for bounded stochastic

bandits and beyond. In COLT, 2011.

[10] E. Kaufmann, N. Korda, and R. Munos. Thompson Sampling: An Op-

timal Finite Time Analysis. In International Conference on Algorithmic

Learning Theory (ALT), 2012.

[11] E. Kaufmann, O. Cappe, and A. Garivier. On Bayesian Upper Confi-

dence Bounds for Bandit Problems. In Fifteenth International Confer-

ence on Artificial Intelligence and Statistics (AISTAT), 2012.

78

[12] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation

rules. Advances in applied mathematics, 6(1):4–22, 1985.

[13] O-M. Maillard, R. Munos, G. Stoltz, et al. A finite-time analysis

of multi-armed bandits problems with kullback-leibler divergences. In

COLT, pages 497–514, 2011.

[14] V. Mnih, C. Szepesvári, and J-Y. Audibert. Empirical bernstein stop-

ping. In Proceedings of the 25th international conference on Machine

learning, pages 672–679. ACM, 2008.

[15] A. Slivkins. Introduction to multi-armed bandits. Microsoft Research

NYC. 2017.

[16] R. Sutton and A. Barto. Reinforcement Learning: An Introduction.

MIT Press, 2018.

[17] R. Vershynin. High Dimensional Probability: An Introduction with Ap-

plications in Data Science. Cambridge University Press. 2018.

79

