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Abstract

The diagnosis of multidrug resistant and extensively drug resistant tuberculosis is a global health
priority. Whole genome sequencing of clinicalMycobacterium tuberculosis isolates promises to cir-
cumvent the long wait times and limited scope of conventional phenotypic antimicrobial suscep-
tibility testing, but gaps remain in predicting phenotype accurately from genotypic data especially
for certain drugs. My primary aim was to implement and explore statistical methods and deep learn-
ing algorithms using a rich dataset to build a high performing and fast predicting model to detect
anti-tuberculosis drug resistance.

I collected targeted or whole genome sequencing and conventional drug resistance phenotyping
data from 3,601Mycobacterium tuberculosis strains enriched for resistance to first- and second-line
drugs. I investigated the utility of (1) rare variants and variants known to be determinants of resis-
tance for at least one drug and (2) statistical methods and deep learning architectures in predicting
phenotypic drug resistance to 10 anti-tuberculosis drugs. Performance was validated on an indepen-
dent validation set, as well as compared to a convolutional neural network approach on an expanded
set of 10,198Mycobacterium tuberculosis strains.

The highest performing machine and statistical learning methods included both rare variants and
those known to be causal of resistance for at least one drug. Both simpler L2 penalized regression
and a multidrug wide and deep neural network (MD-WDNN) had high predictive performance.
The average AUCs for the highest performing model, the MD-WDNN, were 0.979 for first-line
drugs and 0.936 for second-line drugs during repeated cross-validation. On an independent valida-
tion set, the highest performing model showed average AUCs, sensitivities, and specificities, respec-
tively, of 0.937, 87.9%, and 92.7% for first-line drugs and 0.891, 82.0% and 90.1% for second-line
drugs. The method has higher predictive performance compared to previously reported machine
learning models during cross-validation, with higher AUCs for 8 of 10 drugs. High performance re-
mained on the expanded set of 10,198 strains, and the extension to a convolutional neural network
approach showed promising results with interpretable saliency map visualizations.

Overall, the machine learning models described in this work significantly improve the accuracy of
antibiotic resistance prediction and hold promise in bringing sequencing technologies closer to the
bedside.
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1
Introduction

1.1 Motivation

Tuberculosis remains a global health threat as the tenth leading cause of death worldwide in

20181. Antibiotics serve as the main method for treating tuberculosis, and the use of antibiotics

within healthcare has grown significantly since 2005 and is projected to continue to grow dramat-
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ically over the next 10 years2. The development of antibiotic resistance to one or multiple drugs

poses a significant barrier to providing effective care to patients with tuberculosis. Clinical isolates

of tuberculosis that are rifampicin-resistant or multidrug-resistant, defined as being resistant to ri-

fampicin and isoniazid (the two leading antibiotics used to treat tuberculosis), account for 18% of

the current tuberculosis cases and 3.4% of the new tuberculosis cases in 20181. Furthermore, clin-

ical tuberculosis isolates that are extensively drug-resistant, defined as being resistant to rifampicin,

isoniazid, one second-line injectable drug, and one fluoroquinolone, account for approximately

6.2% of the multidrug-resistant cases1. The rates of favorable treatment outcome for tuberculo-

sis patients with multidrug-resistant or extensively drug-resistant strains are significantly lower at

56% and 39%, respectively, because of the challenges in treating these strains clinically1. TheWorld

Health Organization has deemed multidrug-resistant tuberculosis as a global public health crisis1.

The accessibility of antibiotic resistance detection for tuberculosis is one major barrier to treating

tuberculosis patients effectively. The current gold standard for identifying antibiotic resistance is

through culture-based antimicrobial susceptibility testing1. There are three major issues with re-

liance on culture-based testing. First, the laboratory resources required for culture-based testing are

available in fewer than half of the countries that have a high burden of multidrug-resistant tuber-

culosis3. Second, culture-based testing can take up to 12 weeks before the susceptibility results are

available due to the slow growth ofMycobacterium tuberculosis4. Third, conducting the cultures is

a biohazard, potentially resulting in laboratory personnel and health care workers getting infected

by tuberculosis themselves. The ratio of healthcare workers to the general adult population who re-

ported getting infected by tuberculosis is high for many low-income countries, reported at ratios of

between 2 and 6, indicating a need for safer alternatives to laboratory testing1.

Molecular diagnostic tests are one alternative to conventional cultures, but the narrow scope of

molecular diagnostics presents a number of key challenges in effectively identifying antibiotic resis-

tance. First, the molecular tests often rely on one or few genetic loci, which results in a low sensitiv-
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ity for these tests5. Second, molecular tests rely on common loci, but there has been evidence that

rare loci can contribute to antibiotic resistance. For example, the acquisition of resistance by rare

loci has been shown for pyrazinamide, one of the four first-line antibiotics used in treating tubercu-

losis6. Third, approved tubercular molecular tests by the World Health Organization are limited to

five antibiotics, which does not include two key first-line agents that are used in the standard start-

ing regimen to treat tuberculosis. These molecular tests also omit 5 other antibiotics that are used to

treat tuberculosis. Fourth, molecular tests do not process information from gene-gene interactions

despite allelic exchange experiments illustrating that gene-gene interactions contribute to resistance

in rifampicin, ethambutol, and fluoroquinolones7.

The development of whole genome sequencing has shown potential as a robust alternative to

culture-based and molecular testing. Whole genome sequencing information for tuberculosis is be-

coming increasingly accessible, with sequencing technologies like MinION serving as a portable and

affordable means for sequencing8. Whole genome sequencing captures common and rare variants

within the tubercular genome, thus broadening the genetic scope of the test. One past study has

used the whole genome sequencing of tuberculosis combined with an analytical direct association

approach9. This simple method of finding direct correlations between a genetic locus and antibi-

otic resistance for multiple drugs showed good performance for rifampicin and isoniazid due the

fact that resistance to these drugs is conferred through the large effect of few variants. However, the

performance in other first-line drugs, second-line injectables, and fluoroquinolones was consider-

ably lower, especially because many tuberculosis isolates contained “indeterminate” variants that

were not within the set of variants used for training the direct association model. In addition, phe-

notypic information is more sparse for second-line drugs and fluoroquinolones, making this direct

association approach difficult for drugs with limited data. The inverse relationship between order

of resistance (i.e. number of antibiotics to which one tuberculosis isolate is resistant) and predictive

performance of the direct association model illustrates the need for a more sophisticated approach
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to combat multidrug-resistant and extensively drug-resistant tuberculosis.

1.2 Approach

I hypothesize that the limited predictive performance with the direct association method can be im-

proved by using a large dataset containing many multidrug-resistant strains. I aim to build a model

that will improve predictive performance for a set of 11 antibiotics that are currently used to treat

tuberculosis. The 11 antibiotics include the four first-line drugs (rifampicin, isoniazid, ethambutol,

and pyrazinamide), streptomycin, three second-line injectable drugs (capreomycin, amikacin, and

kanamycin), and three fluoroquinolones (ciprofloxacin, moxifloxacin, and ofloxacin).

In Chapter 2, I describe the data collection and data processing methods used in further anal-

yses. I describe two main datasets: the variant-style dataset (used in Chapters 3, 4, and 5), and the

sequence-style dataset (used in Chapter 5).

In Chapter 3, I describe the process of building a computational model on the variant-style

dataset to predict antibiotic resistance to a panel of 11 anti-tubercular drugs. Specifically, I address

the following key points in accurately identifying antibiotic resistance: 1) incorporate an expanded

set of variants compared to molecular diagnostic tests, 2) incorporate the effect of rare variants that

may appear in few isolates, 3) learn additive effects and gene-gene interactions that contribute to

antibiotic resistance, and 4) allow for a shared architecture amongst antibiotics through a multi-

task structure, allowing drugs with limited phenotypic data to “learn” even for tuberculosis isolates

where the resistance phenotype is unavailable. I present an ablation analysis, in which I vary one of

the dimensions above and keep the other dimensions constant, for the dimensions above. The ab-

lation analysis is performed using sequencing data processed into the form of tabular variant data. I

also investigate the effect of different statistical and deep learning models throughout the ablation

analysis.
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In Chapter 4, I present a validation of the highest performing models on an independent vali-

dation set. I interpret which genetic variants within the chosen model are the most important for

predictive performance and visualize the model representation of antibiotic resistance.

In Chapter 5, I present an alternative approach and the justification for this approach based on

analyzing the nucleotide sequences of reconstructed tuberculosis genome segments. This analysis,

which is done on an expanded dataset of tuberculosis isolates, is compared to the previously chosen

model in Chapter 4 re-trained on the expanded dataset. I also present an interpretation of the model

and its results through saliency maps.

In summary, the following is an assessment of statistical methods and deep learning models with

the goal of building a quick, accessible, and clinically-relevant algorithm for detecting antibiotic

resistance from targeted and whole genome sequencing tuberculosis data.
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2
Data

2.1 Variant-style data

The variant-style dataset is used for the modeling and further analyses conducted in Chap-

ters 3, 4, and 5.
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2.1.1 Sequencing collection

The total training set used for the analysis with variant data included 3,601 tuberculosis isolates. Of

the 3,601 isolates, 1,379 tuberculosis isolates were sequenced using molecular inversion probes that

targeted 28 genes within the tubercular genome that are known to confer resistance to at least one

antibiotic. The gene list, descriptions of each gene, drug resistance association(s), and coordinates

for each gene are available in Appendix Table A.8. For each of the 28 genes, the entire gene and 100

base-pairs flanking the gene were sequenced. The remaining 2,222 isolates had whole genome se-

quencing information for the tubercular genome. The sequencing data was made available by the

ReSeqTB data platform, which provides genetic and phenotypic information based onWHO-

endorsed assays10. For further analyses with this dataset, the variants used to predict antibiotic

resistance were limited to 32 candidate genes: 28 that were available in targeted sequencing, and 4

that were not available but were previously deemed to be causative of resistance. Variants in these

regions, eis and rpsA, were added into the set of predictors. For those isolates with missing genotype

data, I coded an intermediate status of 0.5 for the missing variant information.

The independent validation set used to validate performance accuracy of the highest perform-

ing models included 792 tuberculosis isolates. The data did not contain any overlap with isolates

from the training set, and all the mutational features of the validation set were unique from the

training set. The data for these isolates were curated from distinct sources from the following ref-

erences: Lieberman et al. (2016), Chatterjee et al. (2017), Gardy et al. (2011), and Zhang et al.

(2013)11,12,13,14.

The sequencing information was converted to a tabular list of variants using a custom bioinfor-

matics pipeline to analyze the raw filter reads.
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2.1.2 Determining predictors

I split the predictors used in the analysis into three categories for the purposes of ablation analyses,

in which I evaluated performance for three different subsets of data. Data Category 1 (the small-

est subset) included predictors that were previously implicated in the acquisition of resistance for

that particular drug. For example, the antibiotic pyrazinamide has only two genes associated with

resistance (rpsA and pncA), so only variants associated with these genes are selected. Data Category

2 included predictors that were implicated in the acquisition of resistance for any of the 11 drugs

tested. Data Category 3 includes all variants within the second category but also includes “derived”

features, in which I fold “rare” variants into higher-level categories based on the nature of the vari-

ant. The process for creating these derived categories is described below.

All candidate variants to be used as predictors included single nucleotide polymorphisms (SNPs),

insertions, and deletions within the 32 genes’ promoters, intergenic, and coding regions. Within the

3,601 tuberculosis isolates, there were 6,342 unique variants that fit the criteria. In order to distin-

guish between “rare” and “common” mutations for the purposes of ablation, I defined “common”

mutations as those variants that are present in at least 30 of the 3,601 isolates within the training

dataset. Of the 6,342 variants, 166 variants were deemed “common” mutations. Of the remaining

“rare” mutations, I grouped the mutations by the gene locus (coding, intergenic, or promoter re-

gions). For the coding region variants, I further split the group by mutation type (SNP, frameshift

insertion or deletion, and non-frameshift insertion or deletion). For the non-coding region vari-

ants, I split the groups into SNPs and insertions/deletions. The final “derived” categories that were

contained in at least 30 isolates within the training set included 56 predictors. I combined these 56

predictors with the “common” mutations of Data Category 2 into the final largest predictor set,

Data Category 3, which included a final total of 222 predictors (166 “common” mutations and 56

“derived” categories).
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In summary, Data Category 1 includes a number of predictors that depends on the antibiotic

(and its associated resistance-determining genes). Data Category 2 includes 166 “common” muta-

tions, and Data Category 3 includes 222 “common” and “derived” predictors.

2.1.3 Phenotype data

All the resistance phenotype information used in modeling was curated from culture-based, WHO-

approved antibiotic susceptibility testing to at least two antibiotics. The eleven antibiotics of in-

terest used to treat tuberculosis are rifampicin, isoniazid, ethambutol, pyrazinamide, streptomycin,

amikacin, capreomycin, kanamycin, ciprofloxacin, moxifloxacin, and ofloxacin. For each isolate-

drug pair, the phenotype was one of three options: resistant (coded as 0), susceptible (coded as 1),

or unavailable (coded as -1). The performance and phenotypic data is not reported for ciprofloxacin

because of limited susceptibility testing within the validation set, thus limiting generalizability in

findings. All results are reported on the remainin 10 anti-tuberculosis drugs.

Resistance to isoniazid, one of the first-line drugs, was tested in the highest proportion of the

training set at 3,564 isolates. Rifampicin resistance phenotyping was done in 3,542 isolates, and all

antibiotics except for ofloxacin had resistance phenotyping in at least 1,204 isolates. Ofloxacin had

the lowest number of isolates with susceptibility testing at 739 isolates. The final training dataset

that I used was enriched for drug resistance, in which a proportion of between 19.9% and 47.0% of

isolates were resistant for each of the 11 drugs. The number of resistant and susceptible isolates per

drug is available in Appendix Table A.1.

Within the validation set of 792 isolates, ten of the drugs had between 198 and 736 isolates with

available phenotypic data. Ciprofloxacin only had 2 isolates with phenotyping available, so the

predictive performance could not be validated on ciprofloxacin. Thus, predictive performance for

ciprofloxacin resistance is not reported throughout. The phenotypic information for the indepen-

dent validation set is available in Appendix Table A.2.
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2.2 Sequence-style data

The sequence-style dataset is used for the modeling and further analyses conducted in Chap-

ter 5. This dataset is an expanded dataset compared to the variant-style data and is used for testing a

different type of model, a convolutional neural network, that can incorporate spatial information of

the tuberculosis genome.

2.2.1 Sequencing collection

The dataset included 10,198 tuberculosis isolates. All of the isolates underwent whole genome se-

quencing for the full tubercular genome. The data was compiled from a number of public sources,

including PATRIC15 and the ReSeqTB platform10. The models trained on the sequence-style data

were evaluated using the validation fold performance from cross-validation.

2.2.2 Determining predictors

I created subsets of smaller sequences from the whole genome sequences based on the regions of

interest for predicting antibiotic resistance for four antibiotics: two first-line drugs (rifampicin and

pyrazinamide) and two second-line injectables (capreomycin and kanamycin). For each drug, I used

sequencing regions that included the intergenic, regulatory, and coding regions of the genes of inter-

est. For rifampicin, I used regions of the rpoB-rpoC genes; for capreomycin, I used regions of the rrs-

rrl and tlyA genes; for kanamycin, I used regions of the eis and rrs-rrl genes; and for pyrazinamide, I

used regions of the pncA and rpsA genes. For antibiotics with more than one locus, the two regions

were concatenated together along the same dimension. The final length of the input sequences were

as follows: rifampicin (7,816 base pairs), pyrazinamide (3,565 base pairs), capreomycin (6,646 base

pairs), and kanamycin (8,212 base pairs).
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Because the convolutional neural network approach requires sequences of fixed length, the se-

quences were formatted by inserting a null character to denote insertions and deletions relative to

the longest strain sequence with all insertions. For the insertions within a strain, all other strains

with the dataset were coded to have null characters in the positions of insertions. For deletions

within a strain, that particular strain was coded with null characters in the position of deletions.

Thus, each position in the sequence contained one of 5 characters: A, C, T, G, (the four nitroge-

nous bases), or the null character. The final isolates’ genotypes were represented as a fixed length

one-hot encoded vector,N xM x 5, whereN represents the number of isolates,M represents the

number of base pairs within the genetic regions of interest, and 5 represents the encoding of the

four bases and the null character.

All isolates used in the sequence-style analysis for the convolutional neural network approach

were also formatted into the variant-style data described in the section above. This data was used

for a comparison of the convolutional neural network to the prior wide and deep neural network

re-fit through cross-validation on the larger set of data. This enables a direct comparison of the two

approaches (variant-style and sequence-style) within the same dataset of tuberculosis isolates.

2.2.3 Phenotype data

Likewise to the phenotypic data for the variant-style dataset, the resistance phenotype information

is available from antibiotic susceptibility testing. For the sequence-style genotype analysis, the four

antibiotics tested are rifampicin, pyrazinamide, capreomycin, and kanamycin. All phenotypic infor-

mation is resistant, susceptible, or not available.

Of the four antibiotics, rifampicin had resistance information available in the highest percentage

of the 10,198 isolates (97.1%). Kanamycin had the smallest amount of resistance information avail-

able at 32.3% of the isolates. The four drugs had between 7.2% and 34% of isolates resistant. The

number of susceptible and resistant isolates for each drug is available in Appendix Table A.3.
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3
MD-WDNN and Variant-Style Analysis

3.1 M. tuberculosis lineage diversity

The geographic diversity within the dataset is an important consideration to assess the

generalizability of the findings to new and distinct populations ofMycobacterium tuberculosis. To

evaluate the geographic diversity within the 3,601 isolates, I used hierarchical clustering to deter-
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mine the main lineages within the dataset.

Based on a previous study byWalker et al. (2015)9, I identified a total of 33 variants that deter-

mine the lineages of each isolate. The list of variants is available in Appendix Table A.4. Each isolate

was represented as a single vector each of length 33 (one entry for each lineage-defining variant).

Each entry was one of two options: 0 or 1, depending on the absence or presence of that variant

within a particular tuberculosis isolate.

I conducted the hierarchical clustering process as follows. The dataset originally had dimensions

ofN x L, whereN represents the number of isolates and L is 33, representing the number of lineage-

defining variants. I computed the genetic-lineage similarity between each pair of isolates with a Eu-

clidean distance metric, resulting in anN xN distance matrix. On the distance matrix, I applied

Ward’s method of hierarchical clustering, which joins clusters using a bottom-up approach based

on the within-cluster squared sum of distances. The final groupings were mapped back to the rec-

ognized tuberculosis lineage classifications by matching the expected mutational patterns from the

previous study inWalker et al. (2015)9.

Figure 3.1 shows the results of the lineage analysis. The distance matrix is represented as a heatmap,

where the darker colors correspond to a closer relationship between the isolates. The isolates are

grouped into five well-defined clusters, which correspond to the followingMycobacterium tubercu-

losis lineages: East Asian (Green), Euro-American with Latin America Mediterranean sub-lineage

(Purple), Euro-American with other sub-lineages (Orange), Central Asian (Yellow), and Indo-

Oceanic &M. africanum (Blue). All 5 lineages were well represented: 632 isolates were from the

Euro-American Latin America Mediterranean sub-lineage, 1501 from other Euro-American sub-

lineages, 331 from the Indo-Oceanic or Mycobacterium africanum, 643 from the Central Asian

lineage, and 494 from the East Asian lineage.

Compared with the training data, the independent validation dataset was geographically distinct

and contained a higher proportion of East Asian lineage, 351 isolates (44%), but a lower proportion

13



Figure 3.1: Agglomera ve clustering and lineage diversity heatmap of 3,601 MTB isolates by gene c similarity. Using
the Euclidean distances between isolates represented by their lineage-defining variants, I used hierarchical clustering to
construct a dendrogram. The 5 clusters correspond to 5 known lineages: East Asian (Green), Euro-American with La n
America Mediterranean sub-lineage (Purple), Euro-American with other sub-lineages (Orange), Central Asian (Yellow),
and Indo-Oceanic &M. africanum (Blue).
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of other lineages. The Euro-American Latin America Mediterranean sub-lineage had 63 isolates,

other Euro-American lineages had 253 isolates, the Central Asian lineage had 32 isolates, and all

other lineages had 93 isolates.

3.2 Model training process

Towards the goal of building a comprehensive diagnostic tool to identify multidrug-resistant tuber-

culosis with respect to a large panel of antibiotics, I assessed a number of machine learning mod-

els trained on different feature sets as described in the following sections. To assess each model, I

performed ten-fold cross-validation within the training set, repeated 5 times, with performance re-

ported on the validation fold. The average over the 50 different validation folds was reported as the

cross-validation performance. All single drug (single-task) models were stratified by class label to

match the class imbalances within each drugs’ phenotype distribution.

The main performance metric to evaluate each model during the cross-validation procedure was

the area under the receiver-operator curve (AUC) with 95% confidence intervals based on the 50 val-

idation folds. Due to the class-imbalance for some of the antibiotics within the dataset, I also mea-

sured and reported the average precision (AP) score, which is a summary metric for the precision-

recall curve.

I trained all models on a NVIDIA GeForce GTX Titan X graphics processing unit (GPU).

3.3 MD-WDNN architecture

Neural networks have shown promise as a predictive tool in several areas of biology and biomedicine.

In the current analysis, I evaluated several neural network architectures, which includes variants of

the wide and deep neural network (WDNN) model16. The multitask (multidrug) wide and deep

neural network (MD-WDNN) is the most complex model within the set of WDNNmodels tested.
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A schematic representation of the MD-WDNN architecture is shown in Figure 3.2. There are a

few mathematical features of the MD-WDNNmodel that suggest it would be a good fit for antibi-

otic resistance identification. First, the MD-WDNN is a multitask model that predicts antibiotic

resistance for all 11 drugs simultaneously. The multitask feature allows drugs with less phenotypic

data to borrow pathway information from other drugs with a higher amount of phenotyped iso-

lates. The network is thus able to learn from isolates even for which phenotypic information is not

available for a particular drug. Each of the 11 nodes in the final layer represented one drug (top of

the schematic) and its output value for each node was the probability that the MTB isolate was resis-

tant to the corresponding drug.

Second, I used a “wide and deep” approach, which combines two models: logistic regression and

a deep multilayer perceptron. Logistic regression defines the “log odds” as the linear combination

of predictors, Xn, as below, whereN represents 222, the number of variants, and wn represents the

weights corresponding to each of the predictors:

ln(
p̂

1− p̂
) = w0 +

N∑
n=1

wn ∗ Xn

Within the context of genomic data, the “wide” logistic regression model can be thought of as

modeling the additive portion of the genotype-phenotype relationship.

The “deep” multilayer perceptron portion can capture non-linear relationships within the input

genetic variants. The multilayer peceptron contains 3 hidden layers that are connected sequentially

via two main operations, described below. Wn represents the weights of the nth layer, Xn represents

the values of the nth layer, bn is the bias, and z is an intermediate matrix:

zn+1 = Wn+1Xn + bn+1

Xn+1 = ReLU(zn+1)
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Figure 3.2: Schema c of the mul drug wide and deep neural network architecture. Data flows from bo om to top
through the wide (le ) and deep (right) paths of the neural network. Nonlinear transforma ons, where applied, are
depicted on the corresponding nodes. Each of the 11 nodes in the output layer represents resistance status predic ons
in all MTB isolates for one of the 11 an -tuberculosis drugs.
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The first equation is analogous to logistic regression without the final sigmoid activation, as

nodes in the subsequent hidden layer are a linear combination of nodes from the previous layer.

However, the second equation involves a non-linear activation function called a rectified linear unit

(ReLU), allowing for non-linear relationships to be modeled within the multilayer perceptron.

Within genomic data, the “deep” portion can thus capture epistatic effects, which are thought to

be important in the acquisition of antibiotic resistance7. The “wide” and “deep” portions of the

MD-WDNN are trained simultaneously and merged in a final classification layer before the output

prediction of antibiotic resistance, allowing the MD-WDNN to leverage both the logistic regression

and multilayer perceptron approaches.

Third, I built a custom loss function variant of traditional binary cross-entropy. Because there

were some isolates without full phenotypic information for the full panel of drugs, the loss function

does not penalize the model during training for isolate-drug pairs without resistance information.

Due to imbalance between the susceptible and resistant classes within each drug, I adjusted the loss

function to upweight the sparser class according to the susceptible-resistant ratio within each drug.

The final loss function was a class-weight binary cross entropy that masked outputs where the resis-

tance status was missing.

The procedure for calculating the loss is outlined below, where α is the proportion of isolates

resistant to a particular drug, ytrue is the true phenotypic label (0 = resistant and 1 = susceptible),

and ypred is the prediction probability by the network (a probability closer to 1 means predicting

susceptible).

First, set the loss equal to zero for any isolate i and drug d pair that does not have known resis-

tance status:

Lossid = 0, for unknown yidtrue.

18



Second, calculate the following loss for each of the remaining isolate-drug pairs:

Lossid = −αd(yidtrue) log (yidpred)− (1− αd)(1− yidtrue) log (1− yidpred)

Third, sum over the drugs to get the loss associated with each isolate (or batch of isolates):

Lossi =
∑
d

Lossid

The final value is used to calculate the final loss and is used to update network weights through

backpropagation.

I determined the hyperparameters for the MD-WDNN using a Bayesian optimization routine

as implemented by Spearmint and described in Snoek et al. (2012)17. The final MD-WDNN had

three hidden layers each with 256 rectified linear units (ReLU)18, dropout19, batch normaliza-

tion20, and L2 regularization. Dropout and L2 regularization are used to prevent overfitting of the

models to the training data. I applied L2 regularization to the wide model, the hidden layers of the

deep model, and the output sigmoid layer. I trained the network via stochastic gradient descent us-

ing the Adam optimizer for 100 epochs with randomized initial starting weights as determined by

the Xavier uniform initialization scheme. All hyperparameters are available in Appendix Table A.5.

3.4 Architecture ablation analysis and baseline models

In order to investigate the empirical performance of the MD-WDNN, I performed a comparative

ablation analysis following the model training procedure outlined above. The ablation analysis in-

cluded the following models: the MD-WDNN, a single-task (single drug) wide and deep neural

network (SD-WDNN), and a deep multilayer perceptron (MLP). The SD-WDNN has the same

architecture as the MD-WDNNwith the only difference being that resistance is predicted to one
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Table 3.1: Tuberculosis drug resistance predic on AUROC performance of the models examined using repeated cross-
valida on. A table of predic ve performance across all nine models during repeated cross-valida on. The MD-WDNN,
SD-WDNN, deep MLP, random forest, and logis c regression models were trained on the full set of predictors. The
MD-WDNN (Common Muta ons) and logis c regression (Common Muta ons) models were trained on muta ons not
including the derived categories. The kSD-WDNN (Preselected muta ons) and logis c regression (Preselected muta-
ons) models were trained on preselected muta ons known to be determinants of resistance for each drug. Perfor-

mance is shown in average AUC and 95% confidence interval across all cross-valida on folds. The cells are colored by
rank of the model for each drug, colored from lightest to darkest corresponding with lowest to highest AUC value.
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antibiotic at a time rather than in a multitask structure. TheMLPmatches the MD-WDNN except

that it does not contain the “wide” logistic regression portion of the model. I included other simpler

models for comparison, such as a single drug L2-regularized logistic regression and a single drug ran-

dom forest classifier. For this portion of the analysis, all models were trained on the full predictor set

of features of “common” variants and derived categories of “rare” variants.

The results are shown in Table 3.1. I found the performances across the different neural net

model architectures were not significantly different in the data when trained on the full feature

set (Table 3.1). The random forest model had inferior performance to either L2 regularized logistic

regression or any of the neural net models for three of the four first line drugs, and as a result, I did

not examine this model further. The most complex neural net model, the MD-WDNN, showed

the highest average performance across both first and second line drugs with an AUC of 0.953, and

the highest performing simple model, L2 regularized logistic regression, showed only slightly lower

performance, with an average AUC of 0.949.

To directly compare the effect of building a single model for all drugs vs. individual models for

each drug (e.g. multi-task vs single-task), I compared the performance of the SD-WDNN to the

MD-WDNN. The predictive performance of the MD-WDNN and the SD-WDNN during re-

peated cross-validation are shown in Figure 3.3. The average AUC for the SD-WDNNwas 0.978

for first-line drugs and 0.928 for second-line drugs; the multidrug architecture of the MD-WDNN

resulted in a higher average AUC for both first-line drugs (AUC = 0.979) and second-line drugs

(AUC = 0.936), although these differences were not significant. The largest gains were observed for

the drugs kanamycin and ofloxacin, with AUC differences of 0.023 and 0.017, respectively.
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Figure 3.3: Comparison of tuberculosis drug resistance predic ve performance between single drug and mul drug
models. Area under the ROC curve classifica on performance and 95% confidence intervals during repeated cross-
valida on for the MD-WDNN predic ng resistance for all drugs simultaneously and for the SD-WDNN.
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3.5 Effect of rare, common, and drug-specific variants on performance

I investigated the effect of different feature sets (Data Category 1, 2, and 3) on the two highest-

performing models selected from the previous section, i.e. L2-regularized logistic regression and the

MD-WDNN. As described in section 2.1, Data Category 1 includes variants implicated in resistance

only for the particular drug at hand, which requires a different predictor set for each antibiotic. A

multidrug architecture cannot be used when training on Data Category 1, so I use a single-drug

WDNN, which I term the kSD-WDNN (short for known-mutation SD-WDNN). For Data Cate-

gory 2 and 3, which have “common” mutations and “common and derived” mutations, respectively,

the multidrug architecture can be used, so the MD-WDNN is used in this analysis. L2-regularized

logistic regression is a single drug classifier, so the same classification structure is used across all three

Data Categories.

Figure 3.4 shows the performance results on the three feature sets. The largest step up in AUC

across any of the models and feature sets was observed between the models trained using genetic re-

gions known to be causative of resistance for each particular drug and the models trained on the full

predictor set of variants known to be determinants of resistance to at least one drug (Figure 3.4, Ta-

ble 3.1). For the second-line drugs, the average AUCwas 0.887 for L2 regularized logistic regression

using the preselected variants vs. 0.929 for L2 regression using the full predictor set. The impor-

tance of using rare genetic variation in predicting resistance is highlighted by the loss of performance

seen with theWDNN or L2-regularized logistic regression built without the derived variables (Fig-

ure 3.4). This performance gap was most notable for the drugs pyrazinamide, capreomycin, and

moxifloxacin.
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Figure 3.4: Comparison of tuberculosis drug resistance predic ve performance based on input feature set. Area under
the ROC curve classifica on performance and 95% confidence intervals during repeated cross-valida on is reported.
The WDNN and logis c regression models are trained on all features (common and derived muta ons), on just the
common muta ons, and on variants occurring in genes known to be resistant determinants for each drug (Preselected
Muta ons).
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3.6 Overall comparison

I demonstrated here that the highest-performing models included the MD-WDNN and L2-regularized

logistic regression trained on the full feature set of “common” and “derived” mutation categories.

The highest performing model was the MD-WDNNwith an average AUC of 0.953 across the full

panel of antibiotics, and L2-regularized logistic regression had an average AUC of 0.949, which was

not significantly different from theMD-WDNN’s performance. Both models exceeded the perfor-

mance of the previously published direct-association approach9, as well as my home department’s

previously published random forest model6.
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4
Independent Validation and Interpretation

4.1 Independent validation

Given the high performance of the MD-WDNN and L2-regularized logistic regression, I pro-

ceeded to validate the models on an independent validation set. For each model on the full predictor

set of “common” and “derived” features, I reported ROC curves, AUC values, and two pairs of sen-
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Figure 4.1: Tuberculosis drug resistance ROC performance curve of the MD-WDNN and L2-regularized logis c re-
gression. A ROC plot of MD-WDNN (top) and logis c regression (bo om) predic ve performance on the independent
valida on set for first-line (le ) and second-line (right) an -tuberculosis drugs.
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Table 4.1: Tuberculosis drug resistance predic ve performance of the MD-WDNN and logis c regression on the inde-
pendent valida on set. Area under the ROC curve classifica on performance on the independent valida on set. I also
report sensi vity and specificity performance with the probability threshold chosen to maximize the sum of sensi vity
and specificity for all an -tuberculosis drugs. The cells are colored from lightest to darkest for lowest to highest AUC
across the 10 drugs for each model.

sitivity (Sn) and specificity (Sp) performance on the independent validation set. While the ROC

curve and AUC score are useful for summarizing performance at different probability thresholds,

Sn and Sp are useful in understanding the performance of the models given a probability thresh-

old used to distinguish resistance versus susceptibility. For Sn and Sp, the first pair I reported used

a probability threshold to maximize the sum of Sn and Sp for each drug. For the second pair, I de-

termined the probability threshold to maximize Sn given that the Sp is at least 90%. The 90% speci-

ficity threshold stems from the value assessment that over-diagnosis of antibiotic resistance is more

harmful than under-diagnosis due the treatment toxicity and side effects, e.g. renal failure and hear-

ing loss, for the drugs used in antibiotic resistant cases.

The ROC curves for the two final models on the independent validation data across the 10
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anti-tuberculosis drugs are shown in Figure 4.1, illustrating the different Sn and Sp performance

values at probability thresholds between 0 and 1. Table 4.1 shows the AUC corresponding to the

ROC curves for each drug. The average AUCs for the MD-WDNNwere 0.937 for first-line drugs

and 0.891 for second-line drugs on an independent validation set, which were slightly lower than

the AUCs during repeated cross-validation (AUC = 0.979 for first-line drugs, AUC = 0.936 for

second-line drugs). The AUCs for L2 regularized logistic regression were 0.941 for first-line drugs

and 0.879 for second-line drugs.

Due to class imbalance for some of the drugs, I also measured and reported performance using

the precision-recall curve (Appendix Figure B.1), as this metric may be more informative for rare

events21. The comparison between the MD-WDNN and logistic regression performance accord-

ing to the precision-recall curve largely aligns with the AUCmetric during cross-validation (Table

3.1 and Appendix Table A.6). I do note, however, there is a sizeable gap in average precision (AP)

between the MD-WDNN and logistic regression models for three drugs on the independent vali-

dation set: capreomycin, amikacin, and moxifloxacin. TheMD-WDNN achieved APs of 0.5, 0.74,

0.63 while logistic regression had APs of 0.45, 0.64, and 0.55 for those three drugs, respectively.

Table 4.1 shows the Sn, Sp, and corresponding probability threshold that maximizes the sum of

Sn and Sp for each model-drug combination. For the MD-WDNN, the average Sn and Sp, respec-

tively, on the independent validation set were 87.9% and 92.7% for first-line drugs and 82.0% and

90.1% for second-line drugs. For L2 regularized logistic regression, the average Sn and Sp, respec-

tively, on the independent validation set were 90.1% and 90.5% for first-line drugs and 76.7% and

91.0% for second-line drugs. Notably, the two models perform similarly, with L2 regularized logis-

tic regression slightly higher on average, for drugs except amikacin. For amikacin, the MD-WDNN

significantly outperforms L2 regularized logistic regression, with an increased AUC of 0.107 and

increased sum of Sn and Sp of 22.4%. Sn and Sp values for the second probability threshold, which

maximizes Sn given that Sp is at least 90%, are available in Appendix Table A.7.
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Figure 4.2: t-SNE visualiza on for the final output layer of the MD-WDNN. The final layer predic ons, originally in
11 dimensions, were projected onto two dimensions. Each point is an MTB isolate, colored according to its resistance
status with respect to the corresponding drug.

I also tested the prediction run time for each model on the independent validation set. TheMD-

WDNN prediction time was 0.0352 seconds, and the L2 regularized logistic regression prediction

time was 0.00291 seconds.

4.2 t-SNE visualization

One method to visualize the components of a deep learning model with high dimensionality is

through the t-distribution stochastic neighborhood embedding (t-SNE) method, which is a non-

linear dimensionality reduction technique22. I applied t-SNE separately to (1) the input genetic

predictors, which included the 222 “common” mutations and “derived” features and (2) the MD-

WDNN final output layer predictions, which was originally in 11 dimensions. Each point repre-

sented oneMTB isolate and was colored based on its phenotypic status for each drug. t-SNE on
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the input genetic markers showed well-defined clusters, and each cluster contained both susceptible

and multidrug resistant isolates with little discernable pattern of resistance classification as shown in

Appendix Figure B.2. Conversely, Figure 4.2 demonstrates clear separation by the MD-WDNN’s

output representation between resistant and susceptible isolates, consistent with my reported mea-

surements of high model Sn and Sp.

The t-SNE plots demonstrate the multitask WDNN’s ability to classify resistance across multiple

drugs, separating them into nested groups of pan-susceptible isolates, followed by mono-isoniazid

resistant isolates, multidrug resistant isolates, pre-XDR isolates, and XDR isolates. This is consis-

tent with the order of administration of the drugs clinically as well as the usual order ofMycobac-

terium tuberculosis drug resistance acquisition23. The second-line injectable drugs, amikacin, capre-

omycin, and kanamycin, also show similarly-classified clusters, highlighting the moderate level of

cross resistance between them. I also observe moderate levels of cross resistance among the fluoro-

quinolones despite the fact that fewer isolates were tested for resistance to these agents24.

I overlaid the lineage clustering on the two t-SNE plots to determine the effect of lineage on both

the input genetic marker representation andMD-WDNN final layer representation of the isolates.

The input genetic data t-SNE coordinates largely recapitulated the genetic clustering due to lineage

(Figure 4.3), which aligns with the understanding that the largest genetic differences between iso-

lates were related to lineage. On the other hand, overlying t-SNE coordinates for the MD-WDNN’s

probabilistic representation (Appendix Figure B.3) with lineage coloring showed little pattern be-

tween t-SNE’s representation of the MD-WDNN output layer and the determined lineage. The

lack of association confirmed that the MD-WDNN’s prediction of phenotype was not simply pre-

dicting on the basis of lineage-related variation.
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Figure 4.3: t-SNE visualiza on for input markers colored by lineage clustering. t-SNE plot of the 222 input gene c
markers, including “common” muta ons and “derived” categories. The coordinates are the same as in Appendix Fig-
ure B.2. Each isolate is colored based on the five lineage clusters determined in Figure 3.1, illustra ng that the largest
gene c differences between isolates were related to lineage.
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4.3 Genetic variant importance to resistance

I examined predictor importance to resistance by analyzing the prediction outputs of the MD-

WDNN and the presence or absence of mutations through permutation testing. I investigated the

following null and alternative hypotheses:

H0: MD-WDNN’s probability of resistance unrelated to presence of variant

HA: MD-WDNN’s probability of resistance related to presence of variant

To build the reference distribution, I permuted the resistance labels randomly and calculated the

distribution of the following difference as the desired test statistic, S, whereR represents the event

where the isolate is resistant,V represents the event that a given variant is present in an isolate, and

VC is the complement ofV:

S = P(R|V)− P(R|VC)

Note that each term, P(R|V) or P(R|VC), is the MD-WDNN’s predicted probability of resis-

tance after permuting the resistance labels.

I then compared the actual difference above with the permutation distribution of test statistics.

I created the sampling distribution with 100,000 randomized permutations per mutation and the

actual differences were evaluated at a significance level of α = 0.05 using a Bonferroni correction

for the 222 multiple comparisons. I conducted the permutation test for each predictor (“common”

mutations and “derived” categories) that was present in at least 30 tuberculosis isolates.

Of the 156 mutations and 56 derived categories, the majority were found to be significant “re-

sistance predictors” for one or more drug: rifampicin (103 mutations, 40 derived), isoniazid (102

mutations, 42 derived), pyrazinamide (94 mutations, 38 derived), ethambutol (96 mutations, 44

derived), as well as the second-line drug streptomycin (98 mutations, 42 derived). Of the remaining
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Figure 4.4: Intersec on of predictors correlated with resistance by an -tuberculosis drug subgroups. I permuted the
resistance labels and calculated the distribu on of the difference of resistance probability given the presence or absence
of each predictor. I show the number of muta ons per subgroup of drugs ordered from most to least muta ons per
subgroup. Number of significant predictors per drug is also shown.
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predictors, the highest number of “susceptibility predictors” were found in isoniazid (39 mutations,

0 derived), rifampicin (37 mutations, 1 derived), streptomycin (37 mutations, 0 derived), ethamb-

utol (36 mutations, 0 derived), and pyrazinamide (32 mutations, 2 derived). Figure 4.4 illustrates

the number of significant resistance predictors per drug in the MD-WDNN and their intersec-

tions among different drug subsets. Subsets of drugs that included a second-line injectable drug

and shared at least two predictors consistently included both INH and RIF. This is consistent with

previous findings that tuberculosis isolates acquire resistance to first-line drugs before second-line

drugs23 and indicates that the multidrug model was able to capture these relationships. The subset

of fluoroquinolones shared 3 resistance-correlated predictors not found in other first-line or second-

line drugs, and reflect that fluoroquinolones have a mechanism of action that differs from those of

first-line and second-line drugs25.

I also examined predictor importance to the L2 regularized logistic regression model using boot-

strapping of the models’ fitted coefficients. The evalulation of predictor performance was as follows:

first, I created a bootstrap sample of isolates equal to the size of the original dataset of 3,601 isolates.

Second, I exponentiated the β coefficients of the logistic regression model to obtain the odds-ratio

for each mutation. These odds-ratios are directly interpretable to determine the importance of the

variant, where an odds-ratio greater than 1 indicates association with susceptibility and an odds-

ratio less than 1 indicates association with resistance. Third, I repeated this process for 10,000 boot-

strapped samples. Fourth, I built a confidence interval for each predictor-drug pair’s exponentiated

β coefficient using a significance level of α = 0.05 and a Bonferroni correction for the 222 multiple

comparisons. I made the final determination of a variant’s importance to resistance or susceptibility

based on whether the confidence interval contained 1, where a confidence interval containing only

values less than 1 meant that the variant was associated with antibiotic resistance.

There was a large degree of overlap between important predictors for the MD-WDNN and L2

regularized logistic regression. The number of significant resistance predictors in overlap between
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the two models were 141 predictors for isoniazid, 128 for pyrazinamide, and 139 for streptomycin,

including multiple derived categories. Both models successfully excluded variables known to be

neutral or lineage markers, such as excluding gyrA S95T from association with fluoroquinolone re-

sistance. TheMD-WDNN and permutation measure of importance classified a larger proportion of

the variants as associated with susceptibility than did L2 regularized logistic regression. For example,

39 mutations in the MD-WDNNmeasure were associated with isoniazid susceptibility, whereas 2

mutations were associated with isoniazid susceptibility by L2 regularized logistic regression. Overall,

52 genetic variants were associated with susceptibility to one or more drugs, including 19 known

lineage markers. Both lists included non-canonical and rare variants among the top most important

variables for resistance prediction.
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5
Extension to CNN

5.1 CNN architecture

Convolutional neural networks (CNNs) are more complex alternatives to deep neural networks and

have seen great success in many areas of medicine, including in identifying skin cancer from clinical

images26 and in identifying diabetic retinopathy from retinal images27. One benefit of a CNN is

its ability to incorporate spatial information from the training data. In the case of images, CNNs
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Figure 5.1: Schema c of 1D convolu on and gene c sequence encoding. The key difference in the CNN compared to
the wide and deep neural network is the existence of convolu onal layers, which contain 1D filters. These filters slide
across the gene c sequence with a stride length of one nucleo de. The schema c depicts the first convolu onal layer
of my CNN, with a filter of length 12 and the one-hot encoding of a gene c sequence.

capture relative spacing of pixels; in the case of genomic sequencing, CNNs capture relative spacing

of nucleotides and genetic motifs. Using sequence-formatted data rather than variant-formatted

data, I hypothesize that one major benefit of a CNN approach on sequence-style whole genome

sequencing data is its ability to capture more complex genetic spatial interactions. By design, the

CNNwill also aim to capture genetic motifs that contribute to antibiotic resistance.

The key architectural feature of CNNs in genomic data analyses is convolutional layers, which

contain one-dimensional filters that are scanned across the sequence of nucleotides. Figure 5.1

shows a schematic representation of how a filter moves, where the filter placement is designated

by the grey region. Since the filter overlaps the genetic sequence, the actual values of the filter are

not shown. The schematic shows a filter of size 12 nucleotides that has scanned one nucleotide

across the genetic sequence represented in a one-hot encoding. The fifth base, N, represents the null
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character. The presence of the null character means there is a relative deletion in the particular tu-

berculosis isolate compared to the full-length reference strain. After each one-nucleotide translation

of the filter, the Hadamard product,

H = F⊙ S

is calculated between the filter (F) and the nucleotide encoding (S) within the current filter window.

All elements are summed in theHmatrix:

o =
∑
i

∑
j
hij

The output, o, is then used in downstream calculations within the network; in the current case,

this includes adding a bias term, downsampling through a max pooling layer, and either continuing

through another convolutional layer or proceeding onto the fully connected layers of the network.

All filters within the convolutional layers are fit through backpropagation. While the dimensions of

the second convolutional layer change, the same intuitive concept of fitting feature-detecting filters

upon the previous layer’s output applies.

Table 5.1 shows the architectural features of the CNN. As mentioned in Chapter 2, the four

antibiotics of interest for resistance prediction in this section are rifampicin, pyrazinamide, capre-

omycin, and kanamycin. A new CNNwas trained for each antibiotic, since the input genetic se-

quence differed for the each antibiotic based on previously known genetic regions that are impor-

tant for resistance for each particular drug (details are available in Chapter 2).

5.2 Empirical analysis

In the expanded set of 10,198 tuberculosis whole genome sequences, I investigated the performance

of the convolutional neural network approach (Table 5.2). TheMD-WDNN shows high perfor-
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Layer Hyperparameters Activation
Input layer Input size = length of nucleotide sequence

1D-Convolutional layer
Number of filters = 64
Filter size = 12
Stride length = 1

ReLU

1D-Max pooling layer Pool size = 3

1D-Convolutional layer
Number of filters = 32
Filter size = 3
Stride length = 1

ReLU

1D-Max pooling layer Pool size = 3
Flatten layer
Dense layer Number of nodes = 256 ReLU
Dense layer Number of nodes = 256 ReLU
Dense layer Number of nodes = 1 Sigmoid

Table 5.1: Convolu onal neural network architecture. All hyperparameters and nonlinear transforma ons, where ap-
plicable, are shown above. No padding is added in convolu onal layers. The final output layer contains one node with
a sigmoid ac va on, represen ng the final predicted probability of an bio c resistance for one drug. A different CNN
model with the same architecture is trained for each an bio c, because the input genomic sequences differ for each
drug of interest.

mance across all four drugs on the expanded dataset, with an average AUC of 0.939. The CNN

shows promising but slightly lower predictive performance for all four antibiotics tested, with an

average AUC of 0.918.

Compared to the independent validation results for the MD-WDNN in Chapter 4, the MD-

WDNN and CNN both show a higher AUC for all antibiotics except for rifampicin. For rifampicin,

the MD-WDNN had an AUC of 0.982 during independent validation, whereas on the expanded

dataset, the AUCs weere 0.979 and 0.970 for the MD-WDNN and CNN, respectively. The average

increase in AUC across the remaining 3 drugs for the CNNwas 0.044, whereas the average increase

for the MD-WDNNwas 0.068. This provides evidence that with an expanded and enriched set of

isolates, there can be large gains in performance, especially in the context of second-line drugs and

multidrug resistance.
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Table 5.2: AUROC performance of MD-WDNN and CNN models on expanded dataset. A table of predic ve perfor-
mance across the MD-WDNN and CNN during five-fold cross-valida on. The MD-WDNN was trained on the variant-
style format of whole genome sequencing data, whereas the CNN was trained on the sequence-style format. Perfor-
mance is shown in average AUC across all cross-valida on folds. The cells are colored by rank of the model for each
drug, colored from lightest to darkest corresponding with lowest to highest AUROC value.

One important note is the limited genetic scope of the CNN. I trained the CNN on only 1-2

genes per antibiotic based on previously known genetic regions that inform resistance. As shown

in Chapter 3, the incorporation of “common” mutations and “derived” predictors results in a sig-

nificant increase in predictive performance. For future work, I believe with the incorporation of

more genomic regions and potential multidrug modifications to the model, the CNN is a promising

model architecture for identifying multidrug resistance.

5.3 Saliency map

Understanding which regions of the genome are associated with which resistance phenotypes can

help identify resistance-determining regions, which can provide insight into the biological mecha-

nisms behind the acquisition of resistance28. Because the CNN’s sequence data has a linear spatial

representation, interpreting the CNNmodel is possible through a saliency map. A saliency map

provides a visualization of the importance of each nucleotide position of the input genetic sequence

to the possible output classes (in my case, resistance or susceptibility). I implemented a procedure

for building a saliency map, with adaptation of prior research by Zou et al. (2018)29, for each of the

four drugs and their corresponding genetic regions as follows:
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1. For the antibiotic of interest, extract the gradients of the loss function (L) with respect to

each nucleotide, j, in the input sequence (Si) for each tuberculosis isolate:

grad =
∂L
∂Sij

2. Determine the contribution of the gradient, Cij, for the particular input sequence by con-

ducting element-wise multiplication of the one-hot encoded genetic sequence with the gradi-

ent sequence. I do so by taking the Hadamard product of the gradient and genetic sequence:

Cij = grad⊙ Sij

3. Due to the one-hot encoding structure, there exists only one non-zero contribution value

per nucleotide position. Take the only non-zero value per position and place into a one-

dimensional vector the length of the sequence:

Ci =
∑
j
Cij

4. (a) If determining nucleotide positions that are correlated with resistance, take only con-

tributions from resistant isolates. This is justified because it is reasonable to look at

contributors of resistance only if the isolate is actually phenotypically resistant. For

those isolates, take only negative contributions of the gradient, as 0 encodes resistance:

Ci =

 min(Ci, 0) i is resistant

0 i is susceptible

(b) If determining nucleotide positions that are correlated with susceptibility, take only
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contributions from susceptible isolates. For those isolates, take only positive contribu-

tions of the gradient, as 1 encodes susceptibility:

Ci =

 max(0,Ci) i is susceptible

0 i is resistant

5. Visualize the results in a one-dimensional saliency map averaged over all relevant isolates,

with x-coordinates shown as the coordinates in relation to theMycobacterium tuberculosis

H37Rv reference strain. The y-axis shows the magnitude of the gradients’ contribution,

which is a measure of importance to antibiotic resistance or susceptibility.

The saliency map showing the important predictor regions of resistance is reported in Figure 5.2.

All values of the saliency map are negative by design (see above procedure for justification), and a

larger magnitude of saliency means that a particular mutation in that position is more highly asso-

ciated with antibiotic resistance. One notable feature of the figure is that rifampicin, capreomycin,

and kanamycin have generally well-defined regions within each gene that are important to resistance.

On the other hand, pyrazinamide shows less-defined regions of importance to resistance within

the two genes analyzed. This is in line with the fact that resistance to pyrazinamide is thought to

be caused by the aggregation of a number of mutations6. On the other hand, there are known to

be tight genetic regions within the rpoB gene that are causative of resistance for rifampicin28. The

findings from the saliency map are thus corroborated by the molecular understanding of genetic

acquisiton of resistance, and the saliency map serves as a potential gateway for identifying new deter-

minants of resistance.

The genetic predictors that are important to susceptibility within susceptible tuberculosis strains

are also informative for understanding antibiotic resistance. By design, all saliency values are posi-

tive. The results for the susceptible strains show agreement with Figure 5.2. The full saliency map
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Figure 5.2: Rela ve importance of genomic coordinates to resistance phenotype within each an bio c for the CNN. A
visualiza on showing the rela ve importance, as measured in a gradient-based calcula on of saliency, of each coordi-
nate within the input gene c sequence. The x-axis shows the genomic coordinates rela ve to the H37Rv strain, which
is standard prac ce within tuberculosis genomics. Any inser ons rela ve to the H37Rv strains are given a frac onal
coordinate value between the two flanking H37Rv coordinates for ease of visualiza on and numerical consistency with
the reference strain.
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regarding importance to susceptibility is available in Appendix Figure B.4.
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6
Discussion

The primary aim of this thesis was to construct a highly accurate model of drug resistance through

the implementation and analysis of different statistical and deep learning methods trained on both

genomic variant-style and sequence-style data. I demonstrated that L2 regression andMD-WDNN

trained on a large diverse dataset using a method of aggregating rare variants outperforms my de-

partment’s previously reported random forest model6. The CNN approach showed promising

performance as well, especially in context of the limited genomic data available to the model.
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A few prior studies have utilized algorithmic or machine learning methods using genomic data

to account for the complex relationship between genotype and drug resistance in MTB6,9,30,14,31.

Compared to one study that used a direct association (DA) algorithm, the machine learning ap-

proaches presented here offer improvement in Sn and Sp for the majority of drugs when prediction

is attempted on all isolates, including those with rarer and not previously observed variants9. For

example, DA had Sn and Sp for predicting pyrazinamide resistance of 24% and 99%, respectively, if

prediction was attempted on all isolates including those with uncharacterized variants. TheMD-

WDNN performance on an independent dataset achieved Sn of 75.2% and Sp of 91.2%. The best

sum of Sn and Sp for the L2 regularized logistic regression model showed Sn of 81.2% and Sp of

82.5%, and fixing Sp to at least 90% for comparability with MD-WDNN results in LR Sn of 70.7%.

Similarly, the MD-WDNN and logistic regression Sn and Sp were 69.6%/93.7% and 71.7%/91.7%,

respectively, for ofloxacin, whereas with DA, the Sn and Sp were 45% and 100%, respectively9. An-

other study used single-task machine learning, demonstrating the validity of this approach for iden-

tifying MDR and XDR-TB, but the study did not verify their findings using independent valida-

tion data, raising concerns about generalizability31. Additionally, the best models in the study used

dimensionality reduction (sparse PCA) for two drugs (capreomycin and amikacin) to address the

problem of rare and sparse inputs, limiting the interpretability for models of these drugs. In con-

trast, the MD-WDNN and CNN approaches used an interpretable set of inputs (no-dimensionality

reduction), while also achieving substantially higher MD-WDNN performance in cross-validation

with AUCS of 0.96 and 0.95 for CAP and AMK, compared to AUCs of 0.85 and 0.91 reported in

their study31. Across all drugs tested, the MD-WDNN approach showed higher performance in 8

of the 10 drugs during cross-validation compared to their highest performing model for each drug

(Table A.9). The increase in average AUC of the MD-WDNNwas 0.014 for first-line drugs and

0.025 for second-line drugs. Third, their analysis did not demonstrate the lack of confounding by

lineage and report some lineage variants as predictive of resistance.
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The current MD-WDNN approach has several novel features. First, I included all variants in the

set of 32 genetic loci as potential predictors of resistance to any drug and did not subset the vari-

ants according to a priori knowledge of causative relationships between genetic loci and drugs. The

predictive performance gains offered by this more “permissive” approach were considerable espe-

cially for the second line drugs, and the first-line drug pyrazinamide. Second, I utilized rare variants

through the method of forming derived groups of mutations, resulting in large performance gains

for certain drugs. Third, this is the first neural network model for resistance prediction fromMTB

genotypic data. I attempted to incorporate prior information about the genetic etiology of MDR

and XDR directly into the structure of the deep neural network, as it is known that both individual

markers and gene-gene interactions confer resistance7. The wide portion of the network allows the

effect of individual mutations (e.g. marginal effects) to be easily learned, while the deep portion of

the network allows for arbitrarily complex epistatic effects to influence the predictions. Fourth, I

am the first to examine a multidrug approach that allows drugs with less phenotypic data to borrow

pathway information from others with a higher number of phenotyped isolates. To some extent,

this proved to be true as demonstrated by Figure 3.3.

I acknowledge that with the use of a more complex model, there is an increased risk of overfitting

to the data during repeated cross-validation. I used techniques such as dropout and L2 regulariza-

tion at each layer of the MD-WDNN to mitigate the effect of overfitting. Furthermore, I sought to

evaluate potential overfitting through the analysis on an independent validation set, which showed

performance with high clinical relevance. Finally, I re-trained the MD-WDNN on an expanded

dataset of 10,198 isolates and showed high performance through cross-validation as well. In light of

these considerations, the MD-WDNNmodel presented here is the first multitask tool that provides

the full antibiogram for 10 anti-tuberculosis drugs in one run. I successfully built high performing

deep learning models to predict anti-tuberculosis drug resistance, although the performance gains

from these more complex methods are not yet fully justified over simpler models, except in the case
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of amikacin, where the improvement was considerable. I expect the benefits of these deep learning

models to increase when incorporating more genetic loci into the predictor set.

Although the gains that I attribute to the multitask architecture per se were not significant, the

gains were quantitatively larger for second line drugs like kanamycin and ofloxacin. As second-line

injectables and fluoroquinolones are cornerstone agents for the treatment of MDR-TB treatment,

and accurate prediction of susceptibility to these agents is key in determining a patient’s candidacy

for the recently recommended shortenedMDR-TB regimen, this approach holds promise as more

genomic data is incorporated32. Prediction of resistance to second-line injectables has thus far been

challenged by a limited genetic knowledge base and consequently limited Sn when using simple di-

rect association approaches9. Thus, in aggregate, the use of a more complex approach, such as the

multidrugWDNN, shows promise for performance gains in pyrazinamide and second line drugs.

Furthermore, even for drugs like isoniazid and rifampicin that had high performance across the

model architectures and the feature categories I tested, the multidrugWDNN validation perfor-

mance exceeds prior models. This is likely a result of using a larger and richer TB dataset than has

been previously used and using a multivariate approach to prediction.

In addition to the approach of the MD-WDNN, I am the first to my knowledge that investi-

gated a convolutional neural network approach. There are a couple notable features to the CNN.

First, this is the first model to my knowledge that directly analyzes genomic sequences to identify

Mycobacterium tuberculosis antibiotic resistance. Second, I incorporated spatial features of the ge-

netic regions to inform the prediction. Third, I implemented a visualization method that makes

the CNN highly interpretable. I believe that by adding more genetic regions into the training data

and through incorporating prior information into the structure of the model, such as using dilated

convolutions, the performance of the CNN approach will improve.

The translation of the modeling approach is also a function of advancements in whole genome

sequencing and accessibility to more MTB isolate data. Improvements in whole-genome sequencing
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technologies have significantly reduced costs33, allowing for more routine whole genome sequenc-

ing in MTB isolates34,35. The prediction time for MTB drug resistance depends primarily on the

sequencing turnaround time, which is significantly shorter than phenotypic susceptibility testing36.

In addition, as more routine sequencing increases the amount of MTB isolate data, all reported

models can be rapidly updated as the datasets become accessible. I expect that as more data are in-

corporated, the Sn and Sp gap in second-line injectable drugs and fluoroquinolones will become

smaller.

I acknowledge some limitations of my thesis work. First, one source of bias could be errors dur-

ing phenotyping, as susceptibility testing for some drugs has been shown to have low reproducibil-

ity and high variance37,38. However, I used strains with phenotypic data measured at national or

supranational TB reference laboratories following strict quality control or carefully curated from

research and reference laboratories6,10. Beyond technical or laboratory limitations in testing, cer-

tain resistance mutations, especially for ethambutol and second-line drugs, may result in minimum

inhibitory concentrations (MICs) very close to the clinical testing concentration, which may re-

sult in lower Sn and Sp39 when predicting a binary resistance phenotype. The use of MIC data for

building future learning models may help circumvent this. Second, I only included mutations that

occurred in over 0.8% (30 of 3601 isolates) individually or when aggregated with other rare variants

in the same gene or intergenic region. Although I may have missed some important predictors, this

threshold amounted to only ignoring variants that are very rare in a diverse sample of MTB genomes

with good representation from the major genetic lineages. Third, I did not include third-line anti-

tuberculosis drugs such as cycloserine or para-aminosalicylic acid due to the lack of phenotypic data.
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7
Conclusion

In summary, I present an implementation and exploration of deep learning and traditional statis-

tical models to identify the resistance of MTB isolates to 10 anti-tuberculosis drugs from whole

genome sequencing data. The models were trained on rare and common genetic variants, as well

as on sequence-formatted genetic sequences. The models achieved state-of-the-art performance on

large, aggregated TB datasets, with prediction times of less than a tenth of a second, demonstrating

the efficacy of the models as diagnostic tools for MTB drug resistance. TheMD-WDNN repre-
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sented the first multidrug model to my knowledge that incorporated a high number of genotypic

predictors known to be important to determining resistance for one or more included drugs. The

extension to the CNN approach laid a promising foundation for future work to incorporate more

advanced techniques and larger regions of the tuberculosis genome. Further work identifying the

impact of a wide range of genetic determinants will not only allow for improved predictive perfor-

mance but may also provide a greater understanding of the biological mechanisms underlying drug

resistance in MTB isolates.
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Drug Susceptible Isolates Resistant Isolates
RIF 2257 1285
INH 2011 1553
PZA 2445 702
EMB 2551 975
STR 1155 1025
CAP 799 589
AMK 1174 235
MOXI 1118 268
OFLX 651 88
KAN 1060 272

Table A.1: Phenotype of 3,601 tuberculosis isolates during training for 10 an -tuberculosis drugs using variant-style
genome sequencing data.

Drug Susceptible Isolates Resistant Isolates
RIF 453 282
INH 384 330
PZA 434 133
EMB 576 160
STR 433 152
CAP 420 32
AMK 273 19
MOXI 178 20
OFLX 363 92
KAN 396 53

Table A.2: Phenotype of 792 tuberculosis isolates in independent valida on set for 10 an -tuberculosis drugs using
variant-style genome sequencing data.

Drug Susceptible Isolates Resistant Isolates
RIF 6427 3471
PZA 5393 1504
CAP 2836 737
KAN 2500 796

Table A.3: Phenotype of 10,198 tuberculosis isolates in cross-valida on for 4 an -tuberculosis drugs using sequence-
style genome sequencing data.

54



Lineage-defining mutations
inhA_V78A
ndh_R284W
ndh_V18A
katG_R463L
pncA_H57D
iniA_H481Q
embC_V104M
embC_T270I
embC_N394D
embC_R567H
embC_R738Q
embC_V981L
embA_V206M
embA_T608N
embA_P913S
embB_Q139H
embB_E378A
gid_A119T
gid_S100F
gid_E92D
gid_L16R
gyrB_M330I
gyrB_A442S
gyrB_C48T
gyrA_E21Q
gyrA_T80A
gyrA_S95T
gyrA_G247S
gyrA_A384V
gyrA_G668D
rrs_C492T
ahpC_G-88A
rpoB_C-61T

Table A.4: Table of 33 variants that were used in the hierarchical clustering analysis. These variants were used to deter-
mine the geographic diversity of the isolates within the variant-style dataset.
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MD-WDNN,MD-WDNN (CommonMutations), SD-WDNN, and kSD-WDNN
Hyperparameter Value
L2 regularization 10^-8
Hidden units per layer 256
Number of hidden layers 3
Dropout 0.5
Learning rate e^(-9)
Optimizer Adam
Epochs 100
Weight Initialization Xavier uniform initializer

Random Forest
Hyperparameter Value
Number of trees 1000
Percentage of predictors to consider for best split 20%
Percentage of samples to split a node 0.2%

Regularized Logistic Regression
Hyperparameter Value
L2 regularization Best penalty factor between 10^-5 and 10^5

Table A.5: A table of hyperparameters for each model. The L2 regulariza on factor for logis c regression was deter-
mined using cross-valida on to maximize the AUC within the 80% training data for each fold.
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Table A.6: Tuberculosis drug resistance predic on precision-recall performance of the models examined using repeated
cross-valida on. A table of average precision, which summarizes the precision-recall curve, across all nine models during
repeated cross-valida on. The MD-WDNN, SD-WDNN, deep MLP, random forest, and logis c regression models were
trained on the full set of predictors. The MD-WDNN (Common Muta ons) and logis c regression (Common Muta ons)
models were trained on muta ons not including the derived categories. The kSD-WDNN (Preselected muta ons) and
logis c regression (Preselected muta ons) models were trained on preselected muta ons known to be determinants
of resistance for each drug. Performance is shown in average precision and 95% confidence interval across all cross-
valida on folds.
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WDNN Logistic Regression
Drug Sensitivity Specificity Threshold Sensitivity Specificity Threshold
Rifampicin 0.968 0.921 0.03 0.968 0.914 0.1
Isoniazid 0.924 0.906 0.03 0.9454 0.901 0.1
Pyrazinamide 0.752 0.901 0.31 0.707 0.901 0.11
Ethambutol 0.819 0.903 0.67 0.813 0.905 0.34
Streptomycin 0.895 0.901 0.27 0.908 0.903 0.21
Capreomycin 0.594 0.902 0.36 0.625 0.9045 0.14
Amikacin 0.895 0.908 0.2 0.579 0.908 0.1
Moxifloxacin 0.900 0.904 0.36 0.850 0.923 0.1
Ofloxacin 0.717 0.904 0.51 0.717 0.917 0.12
Kanamycin 0.792 0.909 0.33 0.773 0.907 0.12

Table A.7: Tuberculosis drug resistance maximum sensi vity with a specificity greater than 90% of the MD-WDNN and
L2 regularized logis c regression on the independent valida on set.
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Table A.8: List of genomic regions used for resistance predic on. Regions marked with (*) were not sequenced in 1,379
isolates, but are known to be associated with resistance to kanamycin and pyrazinamide. Thus, these strains were as-
signed a status of 0.5 for variants within these four regions. This allowed the model to learn the contribu on of these
regions in the remaining 2,222 isolates to an bio c resistance.
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Table A.9: Comparison of performance to prior study. A table containing the AUCs for the best performing model in
Kouchaki et al. for each drug and models’ performances during cross-valida on. The MD-WDNN showed higher per-
formance for 8 of the 10 drugs. For the drugs in which Kouchaki et al. used dimensionality reduc on (capreomycin and
amikacin), the MD-WDNN showed significantly higher performance.
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Figure B.1: Precision-recall performance curve of the MD-WDNN and logis c regression on the independent valida on
set. A precision-recall plot of MD-WDNN (top) and logis c regression (bo om) predic ve performance on the indepen-
dent valida on set for first-line (le ) and second-line (right) an -tuberculosis drugs.
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Figure B.2: t-SNE visualiza on for inpu ed gene c markers colored by resistance status. The input gene c markers,
originally in 222 dimensions, were projected onto two dimensions. The t-SNE plots have the same coordinates as in
Figure 4.3. Each point is an MTB isolate, colored according to its resistance status with respect to the corresponding
drug. t-SNE on the input gene c markers showed well-defined clusters with li le discernable pa ern of resistance
classifica on between clusters.
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Figure B.3: t-SNE visualiza on for the final output layer of the MD-WDNN colored by lineage clustering. t-SNE plot
with the same coordinates as in Figure 4.2. Each isolate is colored based on the five lineage clusters determined in
Figure 3.1, illustra ng the diversity of MTB isolates within the MD-WDNN’s resistance-suscep bility clustering.
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Figure B.4: Rela ve importance of genomic coordinates to the suscep ble phenotype within each an bio c for the
CNN. A visualiza on showing the rela ve importance, as measured in a gradient-based calcula on of saliency, of each
coordinate within the input gene c sequence. The x-axis shows the genomic coordinates rela ve to the H37Rv strain,
which is standard prac ce within tuberculosis genomics. Any inser ons rela ve to the H37Rv strains are given a frac-
onal coordinate value between the two flanking H37Rv coordinates for ease of visualiza on and numerical consistency

with the reference strain.
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