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Abstract

Prediction markets are a highly successful forecasting method, and they have outperformed

other methods (polls, regressions, etc.) in a variety of settings. Most markets are run with one

of two mechanisms: the continuous double-auction (CDA), which resembles a stock market; and

the logarithmic market scoring rule (LMSR), which has a market maker and a cost function

to determine price. While a good deal is known about various benefits and drawbacks to each

mechanism, relatively little is known about how they compare in terms of accuracy. We use

trader belief data from a set of CDA markets to simulate the corresponding LMSR markets

on those same events, and find that the two mechanisms generally have statistically similar

performance on average. This holds true for a variety of parameter settings for the LMSR.

However, which mechanism is superior in a given market is heavily dependent on liquidity.

Leveraging this fact, we propose a hybrid algorithm that combines the predictions of the two

mechanisms in a liquidity-dependent way. This algorithm is able to obtain better average

accuracy in many cases.
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1 Introduction

Prediction markets are an increasingly popular method of aggregating information to forecast

events, such as elections, sports events, and even corporate decisions. Previous research has

shown that prediction markets do at least as well as, if not significantly better than polls, ex-

pert predictions, and statistical methods. For instance, the Iowa Electronic Markets forecast

election outcomes and have been shown to be more accurate than polls [1]. Corporate prediction

market forecasts at Google and Ford have outperformed expert sales forecasts [5].

Most prediction markets concern trades on a security that realizes value 1 if an outcome

occurs and value 0 if it does not occur, and are set up as a continuous double auction (CDA).

Traders can submit orders to buy or to sell, and if a buy order and sell order are compatible,

they match and trade at the price of the first order to be submitted. However, this raises several

issues, such as possible illiquidity with a low number of traders. Not only could there be a wide

bid-ask spread, but in this setting, any offer to buy or sell might serve as a signal of superior

information, discouraging other parties from accepting [4].

An alternative method which has gained popularity is using an automated market maker

that follows a market scoring rule (this is often a logarithmic market scoring rule; hence the

name LMSR) [8]. By having a market maker that is always willing to buy or sell, trades can be

executed whenever there is a trader willing to trade. Moreover, with a cost function equivalent

to a proper “scoring rule”, this market maker makes it optimal for risk-neutral myopic agents to

report their true assessments of an event’s probability. Given that the goal of prediction mar-

kets is to make accurate predictions, it seems appropriate to investigate whether one of these

mechanisms has superior forecast accuracy to another.

Some previous work has attempted this comparison in the lab ([9], [11]). While this pro-

vides a good baseline from which to think about the comparative accuracy of CDA and LMSR

markets, there are a few issues with generalizing the results. Ledyard et al. mainly focuses on

combinatorial markets in which there are 8 binary variables and up to 256 possible outcomes

[11]. While the authors only run one market for each variable in the double auction, other

mechanisms are set up in a way that allows traders to express their beliefs about the correlation

between different variables. This may have hampered the performance of the CDA, preventing

the results of the paper from being an accurate assessment of CDA and LMSR markets in a

non-combinatorial setting.

Another issue is that both papers only have three or six traders per market. Because there

are so few traders and a large number of states, low liquidity necessarily hampers the perfor-

mance of the CDA, and both groups of authors point out that traders focus on a small subset

of contracts. Only comparing the two mechanisms in settings of low liquidity gives an inherent

advantage to the LMSR, a mechanism that does not require high liquidity in order for trades

to occur.

Finally, laboratory experiments cannot capture many of the complexities of real-life events

on which prediction markets may be run. Even the challenging environments in both papers are
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not comparable to forecasting the outcome of an election or a baseball game, for example. In

Healy et al., the posterior beliefs traders should have after observing information are actually

analytically computable using Bayes’ rule [9]; one can imagine the difficulty of updating one’s

priors after reading the NY Times, the Wall Street Journal, and the past week’s polling data.

Our study is motivated by the lack of an experimental comparison of the two mechanisms in

a setting where they are on roughly equal ground (i.e. a non-combinatorial setting with many

more traders than contracts). Our first idea was to find events for which both LMSR and CDA

prediction markets had been run, and to compare the accuracy of predictions in both markets.

However, several roadblocks arose with this approach. First, instances of markets with different

mechanisms being run on the same event (ex: NFL games) have become rarer, as notable pre-

diction markets like InTrade and TradeSports have shut down in recent years due to regulations.

Other sites, such as Betfair, had data that was hard to access because it required physical pres-

ence outside the U.S. Furthermore, LMSR prediction markets are hard to find data for in general.

Even if we had managed to acquire this data, the comparison would be far from perfect.

Different markets might differ in how informed their traders were, how long markets were open

for, how liquid markets were, the maximum amount traders could risk, etc. In comparing a CDA

market operated by one site and an LMSR market operated by another, we would be seeing

the aggregated effect of these factors in addition to inherent differences in aggregation quality

stemming from the mechanism. Thus, we sought a dataset which effectively allowed identical

traders to participate in both mechanisms simultaneously.

While this may seem difficult outside of an experimental setting, a recent paper (Dana et

al. 2019) provides the opportunity to do exactly this [6]. In the paper, the authors (part of the

Good Judgement Project at Penn) run a series of CDA prediction markets on world political

events. Sample questions include “Will Iran blockade the Strait of Hormuz before 1 January

2014?” and “Will Angela Merkel win the next election for Chancellor of Germany?” In each of

these markets, traders not only have to submit buy and sell orders with quantities and prices,

but they have to report their true beliefs about the probability of the event while doing so. For

instance, a trader who offers to buy 10 shares of “Yes” at $0.70 in the Angela Merkel market

might indicate that they think Merkel actually has an 80% chance of winning the election. In [6],

the authors use these belief reports to compare the accuracy of CDA markets and some of their

belief aggregation algorithms (which involve transformations such as removing old information,

extremizing, and weighting by prior accuracy).

However, we can view the LMSR market maker as just another belief aggregation algorithm—

it operates similarly in that it takes all belief reports and aggregates them with the help of a cost

function. By simulating an LMSR market where agents trade according to the belief reports

they made in the CDA market, we can see whether the LMSR would have yielded more accu-

rate predictions. When doing so, it is important to note that unlike the design of the CDA, the

design of the LMSR gives the market operator the ability to set the value of some parameters.

One important parameter is the liquidity parameter, often referred to as b in the literature.

This parameter determines how easy it is to move the instantaneous price of a contract (i.e.
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how many contracts you have to buy to move the price a certain amount). Furthermore, we

must also choose the coefficient of relative risk aversion (ρ) for the agents trading in the LMSR.

In comparing the two mechanisms, we experiment with the values of these parameters to see if

they affect accuracy and if the results are robust to changes in parameters.

The main contribution of our paper is to provide a direct comparison of the quality/accuracy

of information aggregation provided by the CDA and LMSR mechanisms, with minimal interfer-

ence from confounding factors. This is the first large-scale comparison of accuracy done outside

of the lab (that we know of) and is also the first attempt at a direct comparison in which the

same traders are effectively participating in both markets. By performing this comparison for

several values of parameters relevant to the LMSR (the liquidity parameter b and coefficient of

relative risk-aversion ρ) and investigating factors (most notably liquidity) which correlate with

higher relative accuracy from one mechanism, we also contribute a baseline understanding of

the situations in which one mechanism could outperform the other.

Furthermore, we contribute an approach that can boost prediction accuracy and improve on

the predictions from both models by taking a linear combination of the two predictions where

the coefficient depends on liquidity. This approach is similar to the one taken by Dana et al.,

who report that using the simple mean of the predictions of their belief aggregation algorithm

and the CDA price results in Brier scores that are (statistically) significantly better than pre-

dictions made just by using prices. We take this a step further; rather than taking the average

of the LMSR and CDA predictions, we leverage the fact that we expect the LMSR to be more

accurate (relative to the CDA) in less liquid markets. We find that training the value of the

linear combination coefficient on a training set of markets and applying it to a test set can

result in less error, although the significance is parameter-dependent. This hybrid approach

could be useful to future market operators looking to improve on the performance of individual

mechanisms.

The remainder of the paper proceeds as follows. Section 2 gives a more detailed summary

of related work. Section 3 gives background on how prediction markets are used, and how the

CDA and LMSR mechanisms work. Section 4 presents the model we use for the LMSR and

describes our methodology and dataset in more detail. Section 5 presents the results of the

accuracy comparison between the two mechanisms and presents the effect of liquidity on the

comparative accuracy of both mechanisms. Section 6 proposes a boosted prediction algorithm

and compares its accuracy to that of the CDA and LMSR. Finally, sections 7 and 8 summarize

the main findings and conclude.
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2 Related work

The prediction markets literature contains a great deal of work comparing prediction markets to

other methods, ranging from expert forecasts to regressions. They generally agree that predic-

tion markets outperform more traditional mechanisms, though they disagree about the degree

to which this is the case. For instance, in [1], the authors find that from the 1988 to 2004

presidential elections, the Iowa Electronic Markets (which use the CDA mechanism) predicted

the final vote share more accurately than 74% of polls. Furthermore, when looking at polls

taken more than 100 days before the election, the IEM’s predicted vote share (at the time of

each poll) was significantly more accurate in each of the five elections.

At the other end of the spectrum, Goel et al. compare predictions made on NFL games from

TradeSports (an online prediction market), an incentivized poll, and a basic statistical model

only utilizing home-field advantage and the two teams’ win-loss record [7]. They find that while

TradeSports performed the best in predicting point differential, the poll was only 1% worse

and the statistical model was only 3% worse in terms of RMSE, despite only incorporating two

factors. The authors then compare predictions of opening weekend box office revenues made by

Hollywood Stock Exchange (a prediction market also known as HSX) and a log-log regression

using number of screens and search frequency as independent variables. The log-log regression

is only 6% worse in terms of RMSE.

Studies have also been conducted comparing mechanisms in an experimental/lab setting,

while extending the comparison to include different types of prediction markets (i.e. LMSR and

CDA). The first major paper in this area was arguably Ledyard et al.’s work on combinatorial

prediction markets, where the authors compared the effectiveness of CDA, call markets, opinion

pools, and market scoring rules by looking at Kullback-Leibler distance [11]. They find that the

market scoring rule is more accurate than the other mechanisms in a “training” environment

with three binary variables (8 possible states) and that it is still more accurate (though roughly

tied with opinion pools) in a “challenging” environment with eight binary variables. The au-

thors find that the double auction market performed the worst in both scenarios.

Another key paper in this area is Healy et al. [9]. The authors compare CDA, iterated

polling, parimutuel betting, and the LMSR in a simple setting with two states and a complex

setting with eight states (similar to Ledyard et al.). Unlike in Ledyard et al., the frequency of

predictions inconsistent with Bayes’ rule and number of periods of no trading are also tabulated

and considered alongside accuracy (measured by “distance” from the true posterior distribution)

in determining which mechanism is best. They find that the LMSR has the most error in the

simple setting but that it also has (along with opinion polls) the lowest error in the complex set-

ting. Furthermore, the LMSR outperforms the CDA in the other metrics in the complex setting.
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3 Background on Prediction Markets

The main goal of prediction markets is to aggregate information held by a disparate group of

individuals into an accurate prediction. Traditionally, these predictions could be aggregated by

polling or surveying “experts” and then combining the predictions using an algorithm. However,

this raises several issues. For example, how do we select who to solicit information from? Our

methods for determining who has information may be highly flawed, and we may also be limited

in the number of people we can reach. Once we get reports, new issues arise: how do we know

that the responses reflect truthful beliefs, and how can we accurately aggregate them?

Prediction markets address many of these issues. By setting up a market that anyone can

trade on, we reach a wider audience of respondents without having to make judgement calls

on who to survey. By financially rewarding people for their information (if a person knows the

current price is too low or too high, they can trade accordingly and profit), we incentivize accu-

rate and well-informed responses. Furthermore, markets provide money-weighted predictions,

as traders who buy or sell more shares can move the market price more. Ideally, the willingness

of a trader to risk more money would correlate with the amount and reliability of information

they have, providing an intuitive way to aggregate beliefs.

3.1 CDA

One way to run a prediction market is to use a continuous double auction, which operates

much like a stock market. Traders submit buy orders (bids) or sell orders (asks) requesting to

purchase or sell a certain number of shares at a designated price. These orders are maintained

on an order book, and stay there until the user cancels them or a trade occurs. A trade occurs

when a bid is made at a price greater than or equal to the lowest ask price, or an ask is made

at a price less than or equal to the highest bid. In this scenario, a trade occurs at the price of

the order that was already in the book. Trades keep occurring while there are bid(s) and ask(s)

whose prices overlap in this manner. If an ask is big enough to trade against multiple bids on

the order book, it trades against the highest bid first (and bids trade against the lowest ask first).

Example 3.1. Let the current order book be:

Bid price Bid quantity Ask price Ask quantity

50 100 55 200

60 100

Currently, no trades occur because the highest bid price is lower than the lowest ask price. The

trader willing to buy 100 shares at 50 each is not offering to pay enough for the traders whose

orders are in the ask column to want to sell to him. Now assume trader A places an order to buy

250 shares at 60. This bid overlaps with both asks on the book, as the sellers for both orders

would be happy to sell shares for 60.

The first transaction that occurs is that trader A buys the 200 shares at 55. The price is

55 because this sell order was on the book before the bid was made. After this, trader A still
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wants to buy 50 more shares at 60, so he buys 50 of the shares offered at 60. Following this

trade, there is no more overlap, and the order book looks like this:

Bid price Bid quantity Ask price Ask quantity

50 100 60 50

While this is not exact, we can roughly interpret the prediction market price (as measured

by the price of the last trade, or the midpoint of the bid-ask spread) as the “mean” belief held

by traders. Wolfers and Zitzewitz [16] show that for a variety of utility functions and belief

distributions, the equilibrium price in a prediction market is a good approximation of the mean

belief, although the approximation is not as good when traders are risk-neutral or beliefs are

widely dispersed.

Notice that this structure relies on two agents being willing to trade with each other. One

major issue with CDA markets is that they can be very illiquid when they have few traders. In

this scenario, the bid-ask spread may become very wide (i.e. the highest bid price will be far

below the lowest ask price), discouraging trades and preventing the market from reaching an

equilibrium price that is a useful prediction. Furthermore, even when a trade does occur, the

price (represented by the last trade) moves wildly, resulting in noisy predictions. A well-known

proposed reason for this is the no-trade theorem of Milgrom and Stokey, which suggests that

because CDA markets are zero-sum games (the total sum of everyone’s payoffs must be 0),

rational risk-neutral agents won’t trade, as willingness to trade is an indicator of having better

information [4].

3.1.1 A Real-World Example

One example of a well-known market that uses this mechanism is PredictIt. The user interface

is slightly different than the setup that we have described, suggesting that there are two types

of securities you can buy (“Buy Yes” and “Buy No”), but “buying no” at a price of p cents is

equivalent to making a sell order at a price of 100−p cents. For example, for the Bernie Sanders

“yes” contract, the lowest ask is 65 cents and the highest bid is 64 cents (100 minus the best

offer on “buy no”).
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Figure 1: Screenshot of PredictIt, which runs CDA markets on elections and other political events

3.2 LMSR

An alternative mechanism for operating a prediction market is a market scoring rule (MSR),

of which the logarithmic MSR is the most commonly used. In a market scoring rule, the mecha-

nism starts with a prior distribution q0 (often uniform) over outcomes. Once the market opens,

players can change the market’s distribution to q1,q2, etc. If the current distribution of the mar-

ket is qj and the player changes it to qj+1, they ultimately receive a payment s(qj+1)− s(qj),
where s is a strictly proper scoring rule.

Definition 3.1. A scoring rule s(q, o), where q is a reported probability distribution over the

outcome space O and o is the outcome that occurs, is a function that specifies a real-valued

reward for any q ∈ 4O and o ∈ O.

Definition 3.2. Let a player’s true beliefs over the outcome space be pT . A strictly proper

scoring rule is one for which:

Eo∼pT [s(pT , o)] > Eo∼pT [s(q, o)] ∀q 6= pT .

In other words, your expected payoff from the scoring rule (based on your beliefs) is strictly

maximized if you report your true beliefs as opposed to any other belief distribution.

This property is useful in general because using a strictly proper scoring rule should elicit

truthful responses from agents (barring any behavioral biases or irrational behavior). In the
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context of the market scoring rule, this means that players who are myopic and only look at the

impact of their current report will report their true beliefs. Since agents cannot affect s(qj) with

their report, they seek to maximize s(qj+1), and if s is strictly proper, this involves a truthful

report.

Definition 3.3. The logarithmic scoring rule is:

s(q, ok) = b ln(qk).

In other words, your reward is some multiple of the natural log of the probability you assigned

to the actual outcome.

Theorem 3.1. The logarithmic scoring rule is strictly proper.

Proof. Let your belief distribution be (p1, p2, . . . , pk) over the outcome space. Your expected

payoff from reporting (q1, q2, . . . , qk) is b

k∑
i=1

pi ln(qi), where the qi are subject to the restriction

k∑
i=1

qi = 1. Dropping the constant, the Lagrangian is:

L =

k∑
i=1

pi ln(qi) + λ[1−
k∑
i=1

qi]

Taking the first-order conditions yields:

pi
qi
− λ = 0 ∀i

Thus, qi = pi
λ , and since

k∑
i=1

qi = 1 and

k∑
i=1

pi = 1, we know that λ = 1. This tells us that we

maximize by reporting qi = pi, our true beliefs. This must be the maximum because there’s

only one critical point and the score is concave.

In practice, a logarithmic market scoring rule is implemented using a cost function based

market maker. The market maker offers one contract for each possible outcome, where the

contract expires with value 1 if the outcome occurs and 0 if it does not occur. It tracks the

net quantity q = (q1, q2, . . . , qn) of each contract that has been bought and uses a cost function

C(q) to determine the price at which contracts can currently be bought or sold. Specifically, to

change the quantity from q0 to q1, a trader must pay C(q1) − C(q0) (note that this amount

could be negative, corresponding to the trader receiving a payment).

Definition 3.4. The LMSR market maker is a cost function based market maker with cost

function

C(q) = b ln(

n∑
i=1

e
qi
b )

where b is a parameter chosen by the creator.
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Definition 3.5. The instantaneous price for a cost function is

πi(q) = lim
h→0

C(q−i, qi + h)− C(q−i, qi)

h
=
∂C

∂qi
.

This is the price of buying an infinitesimally small amount of contract i. For the LMSR market

maker,

πi(q) =
e

qi
b

n∑
i=1

e
qi
b

.

The parameter b is important because it determines how sensitive prices are to changes in

quantity. To see this intuitively, consider what happens to the instantaneous LMSR price if

b → ∞. Then all exponents will be ≈ 0, so the price will always be approximately 1
n , reflect-

ing a uniform distribution. On the other hand, if b is very small, then even a small increase in

qi will make e
qi
b very large compared to the other e

qj
b , greatly increasing the instantaneous price.

This formulation has several nice properties:

• Trades can occur at any time. Traders do not need to submit orders and wait to find other

traders willing to take the other side of the order. This can greatly increase liquidity.

• No arbitrage is possible by changing the price to a different value, then changing it back;

your net payment is zero in this case.

• The sum of all instantaneous prices is always 1, so the prices can be interpreted as the

market’s current forecast of the probability of each outcome.

• Myopic risk-neutral traders have incentives to perform transactions that change the mar-

ket forecast (instantaneous prices) to their true belief about probabilities. This trade is

equivalent to reporting a true belief to the market scoring rule.

The equivalence of these two approaches might not be obvious at first glance. In the market

scoring rule, it seems like agents are taking turns reporting beliefs, while with the market maker,

it seems like they are buying and selling shares, making it more like a double auction. However,

we can show that the following holds:

Theorem 3.2. Let ~π denote the instantaneous price vector for the LMSR market maker. If q is

the net quantity of contracts sold by the LMSR market maker, then performing the transaction

h with the market maker gives the same payoff as changing the belief report from ~π(q) to

~π(q + h) using the logarithmic MSR.

Proof. With the market maker, buying h contracts when the market state is q results in a

payoff of

hk + C(q)− C(q + h)

when event k occurs. This can be written as:

hk + b

[
ln

(
n∑
i=1

e
qi
b

)
− ln

(
n∑
i=1

e
qi+hi

b

)]
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using the formula for C.

In the MSR, changing the belief report from ~π(q) to ~π(q+h) when outcome k occurs results

in a payoff of:

b ln(~π(q + h)k)− b ln(~π(q)k) = b ln

(
e

qk+hk
b∑n

i=1 e
qi+hi

b

)
− b ln

(
e

qk
b∑n

i=1 e
qi
b

)

= b ln

(
e

hk
b

∑n
i=1 e

qi
b∑n

i=1 e
qi+hi

b

)

= hk + b

[
ln

(
n∑
i=1

e
qi
b

)
− ln

(
n∑
i=1

e
qi+hi

b

)]

using a few logarithm rules. Since the payoffs for any outcome from a transaction in one

mechanism can be exactly replicated with a corresponding transaction in the other, the two are

equivalent.
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4 Methodology

Our overall methodology consists of obtaining CDA data from actual markets run by the Good

Judgement Project (GJP), then using a model to simulate the LMSR using belief reports from

those same markets. As mentioned in the introduction, this approach allows for a comparison

that comes much closer to isolating the effect of the mechanism than using market data from

two different sources.

4.1 Dataset

Our data is obtained from the GJP’s Year 3 prediction markets, where participants were required

to report their true probability estimate for an event when submitting buy or sell orders. For

example, in Figure 2, the second row represents a trader who wants to buy 20 contracts at a

price of $0.20, and who believes that there is a 35% chance of the relevant event occurring.

Figure 2: 5 sample trades from the GJP dataset

Each row of the data represents one of three operations: (1) an agent making a buy/sell

order at a specified price and quantity; (2) an agent cancelling a previously created order; (3)

two agents’ orders being (fully or partially) matched, as described in Section 3.1.

In the data, there are a few instances of belief reports which are strongly inconsistent with

their associated trades. For instance, there are orders to sell a contract at $0.01 where the true

belief of the probability of the event is reported as 99%. Orders like these are extremely unprof-

itable in expectation, so we suspect that they are due to user error or a misunderstanding of

the question being asked. For the purposes of simulating the LMSR, trades which have a belief

report more than 20 percentage points inconsistent with the order are ignored (i.e. buy orders

where the belief is more than 20 p.p. less than the order price and sell orders where the belief is

more than 20 p.p. greater than the order price). Rows that represent trades occurring are also

ignored, because they correspond to the market operator matching bids and asks, rather than

a new order and belief report being made.

We break down the questions asked by the GJP into three categories. There are (a) binary

questions, (b) conditional binary questions, (c) categorical questions.

• Binary questions are questions with two answers, such as “Will Mahmoud Ahmadinejad

resign or otherwise vacate the office of President of Iran before 1 April 2013?”, with the

choices Yes and No.
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• Conditional binary questions are questions with two answers, but where several binary

markets are open conditional on the outcome of another event. For example, there are

two markets with the question “Will North Korea attempt launch of a multistage rocket

between 7 January 2013 and 1 September 2013?”, but one market is only valid in the case

that the US announces additional sanctions against North Korea, while the other market

is only valid in the case that this does not happen.

• Categorical questions have more than two choices. For example, “When will an Egyptian

Referendum vote approve a new constitution?” with the choices (a) Between 1 Jul 2012

and 30 Sep 2012, (b) Between 1 Oct 2012 and 31 Dec 2012, (c) Between 1 Jan 2013 and

31 Mar 2013, (d) Event will not occur before 1 April 2013.

In performing our comparison, we focus on (a), as conditional binary and categorical ques-

tions may lead to statistical complications. We have 100 binary markets to work with.

4.2 Model

As mentioned in the previous section, the LMSR is really a belief report aggregation mechanism

in that we expect agents to buy/sell some number of shares as a function of their true assessment

of the probability of an event. In order to simulate the LMSR from the belief reports in our

dataset, we have to choose a model for exactly how agents make this choice. In the most simple

model, agents are risk-neutral and myopic, and so they perform the necessary operations to

move the instantaneous price π to their true belief distribution. However, it seems a bit unlikely

that real-world traders would be risk-neutral; most economic research suggests that people are

risk-averse in almost all settings (in fact, some research shows that they are ridiculously risk-

averse in small-stakes settings). Thus, we seek a model in which traders are risk-averse and at

each trade, maximize their expected utility given their beliefs.

A model doing exactly this is proposed by Sethi and Vaughn [14]. Sethi and Vaughn consider

an LMSR market maker with one security that expires with value $1 if the relevant event occurs

and $0 otherwise (this is mathematically equivalent to the formulation in section 3). The market

uses a cost function

C(q) = b log(e
q
b + a)

where q is the total quantity of the contract that has been purchased, b is the liquidity param-

eter, and a = 1−p0
p0

is determined by the market maker’s prior p0 such that the initial price

π(0) = C ′(0) = p0.

The traders in this market are risk averse, with constant relative risk aversion (CRRA) utility

u(c) =
c1−ρ

1− ρ
.

This is a standard utility function used in economics, where ρ measures how risk-averse traders

are (ρ→ 0 represents risk-neutrality).

Each trader i has a portfolio (yi,t, zi,t) indicating the amount of cash and contracts, respec-

tively, that they hold at time t. Agents are given an initial endowment of cash yi,0 and have
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zi,0 = 0 contracts initially. If trader i interacts with the automated market maker at time t,

they choose a quantity rt ∈ R of contracts to purchase, such that their expected utility given

their current belief pi,t is maximized (this differs slightly from the original model, in which pi,t

is assumed to be fixed over time for a given agent).

The exact way we run the model is as follows. We iterate over all trades in a given market

and find the number of unique agents. For each agent, we initialize their portfolio with a certain

amount of cash and 0 contracts. We then proceed through the belief reports in chronological

order. For a given report, we identify the agent i who made the belief report and compute the

number of shares they would purchase to maximize their expected utility. Given their portfolio

(yi,t−1, zi,t−1), their current belief pi,t, and the current market “state” (net contracts purchased)

qt−1, the agent maximizes

E[u(rt)] = pi,tu(zi,t−1+yi,t−1+rt−(C(qt−1+rt)−C(qt−1)))+(1−pi,t)u(yi,t−1−(C(qt−1+rt)−C(qt−1))).

The first term represents the payoff if the event happens (and the value of the security is 1)

and the second term represents the payoff if the event doesn’t happen. After this optimal rt is

calculated, we update the current agent’s portfolio and the market state:

yi,t = yi,t−1 − [C(qt−1 + rt)− C(qt−1)]

zi,t = zi,t−1 + rt

qt = qt−1 + rt

Note that we keep y and z the same for all other agents. The prediction generated at any

point in time is simply

π(qt) = C ′(qt) =
e

qt
b

e
qt
b + a

.

One thing to keep in mind is that the agent is subject to two constraints in choosing rt:

• Agents can never have a short position that might require them to pay more cash than

they have. Mathematically, yi,t + zi,t ≥ 0.

• Agents are not allowed to spend more cash than they have in order to buy contracts.

Mathematically, yi,t ≥ 0.

4.3 Implementation

We program this model in Python. For each real CDA market from the GJP, we simulate an

LMSR market using the beliefs reported with a trade order as an agent’s “true belief”. Agents

interact with the market maker in the same order in which they submitted trade orders in the

CDA, but instead of submitting a trade order, they buy the amount of contracts that will max-

imize their expected utility based on their belief report. This is done by numerically computing

the point where the derivative of expected utility is equal to zero (since CRRA utility is concave).

If an agent has belief report pj,t, cash yj,t−1, and owns zj,t−1 contracts, and the total position
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of the market is qt−1, then the agent’s expected utility from buying rt contracts is:

pj,t
(zj,t−1 + yj,t−1 + rt − C(qt−1 + rt) + C(qt−1))1−ρ

1− ρ
+(1−pj,t)

(yj,t−1 − C(qt−1 + rt) + C(qt−1))1−ρ

1− ρ

where the first term represents the utility from the event happening and the second term rep-

resents the utility from the event not occurring. Let

A(rt) = zj,t−1 + yj,t−1 + rt − C(qt−1 + rt) + C(qt−1)

B(rt) = yj,t−1 − C(qt−1 + rt) + C(qt−1)

Then the derivative of expected utility with respect to rt is:

∂E[u]

∂rt
=

pj,t
1− ρ

(1− ρ)A−ρ(1− C ′(qt−1 + rt)) +
1− pj,t
1− ρ

(1− ρ)B−ρ(−C ′(qt−1 + rt))

= pj,tA
−ρ(1− π(qt−1 + rt)) + (pj,t − 1)B−ρπ(qt−1 + rt)

where π(q) = C ′(q) represents the instantaneous price function. We can set this equal to

zero numerically using Python’s brentq solver.

To make sure that the value of rt chosen is legal, we restrict the search range to rmin < r <

rmax. rmin is the value for which yi,t + zi,t = 0, representing how short (negative) your position

can be before your losses could exhaust all of your cash. rmax is the value for which yi,t = 0,

representing the number of contracts you can buy before using up all of your cash. Note that:

A(rt) = zj,t−1 + yj,t−1 + rt − C(qt−1 + rt) + C(qt−1)

= yj,t + zj,t

B(rt) = yj,t−1 − C(qt−1 + rt) + C(qt−1)

= yj,t

Thus, rmin is a solution to A(r) = 0 and rmax is a solution to B(r) = 0.

One potential problem is that numerical root-finders require an input where a function is

negative and another input where the function is positive (in order to guarantee a solution); it

isn’t certain whether the range (rmin, rmax) satisfies this. However, we know that ∂E[u]
∂rt

> 0

as r → rmin because the first term goes to positive infinity (we are dividing by A → 0+, and

p(1−π) > 0) and the second term is finitely negative. We also know that ∂E[u]
∂rt

< 0 as r → rmax

because the second term goes to negative infinity (we are dividing by B → 0+, and p− 1 < 0)

and the first term is finitely positive. This means that we can just use the solutions to A(r) = 0

and B(r) = 0 as our search range for the brentq solver, and that the maximum is guaranteed

to be found.

4.4 Possible Criticism

One possible criticism of the model is that traders myopically maximize expected utility each

time they trade; in reality, we might expect them to take their expectations about other traders’
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behavior into account. For instance, a trader who wants to buy, but thinks recent events will

cause a large amount of selling, might wait for the price to drop before buying. While there

are theoretical results ([2], [3]) suggesting that truthful reporting is not always an equilibrium

with the LMSR, empirical work by Jian and Sami [10] suggests that actual behavior might be

more complex, especially in unstructed markets where traders are not forced to trade in a pre-

determined, commonly known order. In the absence of better understanding about equilibria in

LMSR markets, myopic maximization seems like a reasonable baseline assumption.

Another criticism is that the beliefs traders reported in the CDA might not be the beliefs

they would have had if the LMSR mechanism had been used. If beliefs are not only a function of

outside information but are also influenced by the current market price and recent transactions,

we might think that the different evolution of prices over time in the LMSR might cause beliefs

to be slightly different. However, choosing a model for belief updating based on the price would

necessarily entail making some assumptions (do traders take a linear combination of their prior

and the price or use some other model?); without a broad consensus on how this occurs, it seems

like preserving the belief reports from the CDA will still provide a useful baseline.

Also, one might note that we don’t know the value of the liquidity parameter b or the

coefficient of relative risk-aversion ρ, and our results might be influenced by our (somewhat

arbitrary) choice of these parameters. To address these concerns, we compare performance for

several different values of b and ρ.
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5 Accuracy Comparison

To evaluate the accuracy of a prediction (i.e. the current market price), we mainly use Brier

score.

Definition 5.1. If the predicted probability of an event happening is p and Ik is the indicator

of whether the event actually occurred, then the Brier score is

(p− Ik)2 + ((1− p)− (1− Ik))2.

If the event occurs, this can be simplified to 2(1 − p)2, and if the event does not occur, this is

equivalent to 2p2. The best score possible is 0, which is achieved if you assign probability 1 to

the actual outcome (forecasting p = 1 when the event occurs or p = 0 when it does not) and the

worst score possible is 2, which is achieved if you assign probability 0 to the actual outcome.

This is a well-known metric that has been used in previous evaluations of prediction market

accuracy ([6], [7]) and is also a strictly proper scoring rule. To compute the Brier score associated

with a given market, we take the price at the end of each day the market is open as a separate

prediction. We then compute the Brier score of each end-of-day price and average these scores

over the time the market was open (following [6]). Mathematically, let the score on day t for

market i be si,t, and let market i be open for Ti days. We are computing:

si =
1

Ti

Ti∑
t=1

si,t.

While only using the final price may seem like a better indicator of a market’s predictive

accuracy, we argue that the day-average score is more useful for several reasons:

• We don’t just care about the accuracy on the last day a market is open. If the market is

horribly inaccurate for 99% of the time it is open and rapidly converges to the correct price

1 day before the event occurs, this is not as useful (though this is somewhat application-

dependent) as a market which is slightly less accurate but is near the correct price almost

the entire time it is open.

• Only looking at the price on the last day makes our results susceptible to noise. For

instance, in an LMSR market, if the price of a very unlikely event (the Knicks winning

the NBA championship) is close to zero but one irrational trader buys a huge number of

shares at the last minute, the price may rise substantially, causing the market to look less

accurate than it really was. Averaging over time doesn’t completely ignore this noise, but

smooths it out so that accuracy isn’t overly penalized.

We also consider the percentage of markets in which one mechanism is more accurate than

another. This can be computed by calculating the number of markets in which the day-average

score of the CDA, si,CDA, is lower than the day-average score of the LMSR, si,LMSR.

5.1 Results: Uniform Cash

We compute the average Brier score for all binary CDA markets and their corresponding LMSR

simulations, using parameter values b ∈ {1, 5, 10, 15, 20, 25} and ρ ∈ {0.5, 1, 2, 5}. Note that the
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CDA does not take in any parameters, so its predictions and Brier score remain the same for

any parameter choice. We also set yi,0 = 10 for all agents, representing a hypothetical LMSR

market where each agent is initially endowed with 10 units of cash (hence the title “uniform

cash”).

We indicate the CDA’s average day-averaged Brier score across markets with a dotted line.

For the LMSR, we obtain the day-average Brier score for each market and average over mar-

kets to get one observation for each parameter value. We plot this observation along with an

error bar indicating two standard errors of the difference in Brier score (between the LMSR and

CDA). If the average Brier score for the CDA is outside the error bars of the LMSR score, this

(approximately) indicates that the difference in average scores is significant at the 5% level via

a two-sided paired-t test. Exact values and significance levels for our t-tests can be found in the

provided tables.

(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 3: Comparison of LMSR and CDA Brier score (means with ±2 standard errors of difference)
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ρ
b

1 5 10 15 20 25

0.5 3.38∗∗ 1.64 0.72 0.18 -0.15 -0.35

1.0 2.83∗∗ 0.43 -0.57 -0.98 -1.16 -1.23

2.0 2.06∗ -0.94 -1.74 -1.89 -1.87 -1.78

5.0 0.41 −2.31∗ −2.32∗ −2.00∗ -1.65 -1.32

Table 1: t-statistics when comparing LMSR and CDA performance for the uniform cash model;
positive values mean the CDA was more accurate. * indicates significance at 5% level, ** indicates
significance at 1% level.

On the whole, neither mechanism dominates the other. There are three combinations of

(b, ρ) for which the CDA is more accurate at the 5% level, and there are three combinations

for which the LMSR is more accurate at the 5% level. For the remaining 18 combinations,

we fail to reject the null hypothesis that both mechanisms have equal average accuracy (across

markets). In terms of simply comparing means, the LMSR has the lower mean Brier score in

16 parameter combinations, while the CDA has a lower score in the remaining 8. Higher risk

aversion coefficients and higher liquidity parameters seem to be correlated with improved LMSR

accuracy, though there appear to be diminishing returns to increasing b past 20 or so.

We also record the proportion of markets in which one mechanism outperforms the other for

each parameter combination, and plot it in the heatmap below:

Figure 4: Plotting the proportion of markets in which the LMSR had a lower Brier score, for all
parameter combinations.

Interestingly, we see that the LMSR is outperformed by the CDA in a majority of markets

for all parameter combinations except for (b, ρ) = (5, 5), where they are tied. Reconciling this

with the observation that the LMSR had a lower mean Brier score for many of these parameter

combinations, it seems that the LMSR is sacrificing small losses in accuracy in a large number

of markets for large accuracy gains in a small number of markets.
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5.2 Results: Actual Cash

One problem with assuming that all agents start with the same amount of cash is that in the

GJP’s CDA markets, agents were given an initial endowment of cash and allowed to allocate it

over all markets. In other words, an agent could choose to use 10% of their cash in one market,

30% in another, and 60% in a third market. This means that in any individual market, agents

are willing to risk vastly different sums of money. Because the LMSR prediction (with risk-

averse agents) depends on agents’ budget constraints (the intuition is that with more money,

you can afford to move the market price closer to your true belief), the “uniform cash” model

might not be a totally accurate representation of what a hypothetical market with these traders

would have looked like.

To address this issue, we estimate the budget each agent allocated to each market by com-

puting how much money they would have needed to cover all of their submitted trades in that

market. For a buy order, this represents how much money they would have needed to execute

the buy order. For example, if an agent’s only order in a market was to buy 50 shares at $0.20,

their budget is 50(0.2) = $10. For sell orders, we look at how much the agent would have lost if

the event occurred. For example, if an agent made an order to short sell 50 shares at $0.20, they

would need 50(1 − 0.20) = $40 in case the event occurred. Finally, when an order is cancelled,

we no longer count it against the agent’s budget: if the agent submitted an order to buy $10 of

shares, then cancelled the order and submitted an order to buy $20 of shares, their “necessary

budget” would be $20, not $30.

After computing each trader’s budget in each market, we run the simulation again, setting

yi,0 to our estimated values. Once again, exact values and significance levels for our t-tests can

be found in the tables following the graphs.
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 5: Comparison of LMSR and CDA Brier score (means with ±2 standard errors of difference)

ρ
b

1 5 10 15 20 25

0.5 3.06∗∗ 1.29 -0.02 -0.7 -1.12 -1.4

1.0 2.52∗ 0.41 -0.76 -1.37 -1.7 -1.89

2.0 1.76 -0.56 -1.47 -1.84 −2.01∗ −2.09∗

5.0 0.48 -1.58 -1.95 −2.02∗ −2.00∗ -1.93

Table 2: t-statistics when comparing LMSR and CDA performance for the actual cash model;
positive values mean the CDA was more accurate. * indicates significance at 5% level, ** indicates
significance at 1% level.

The results are largely similar to the “uniform cash” case, but are slightly more favorable to

the LMSR. The LMSR has a lower mean Brier score in 18 out of 24 parameter combinations,

but it is only significantly better (at the 5% level) for 4 parameter combinations. This provides

further evidence that on average, neither mechanism strictly dominates the other; this is true for

a variety of risk-aversion coefficients and liquidity parameters, suggesting that market operators

may not need to worry too much about agents’ risk attitudes or precisely tuning b when creating

a prediction market. As with the uniform cash case, having more risk-averse agents makes the

LMSR more accurate, and having a higher liquidity parameter is also helpful, though there are
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still diminishing returns.

We once again record the proportion of markets in which one mechanism outperforms the

other for each parameter combination, and plot it in the heatmap below:

Figure 6: Plotting the proportion of markets in which the LMSR had a lower Brier score, for all
parameter combinations.

Our results here are more consistent with the average Brier scores than in the uniform cash

case. In most cases where the LMSR has a lower average Brier score, it is also more accurate in

a majority of markets. However, there are still quite a few cases where the LMSR has a lower

score in just 40-50% of markets, but still has a lower average Brier score. As in the uniform

cash case, it seems that the LMSR is sacrificing small losses in accuracy in a large number of

markets for large accuracy gains in a small number of markets.

5.3 Other Metrics

Even though the mechanisms seem to be similar in Brier score, we need to make sure that they

are also comparable in other metrics. First, we make sure that both methods are well-calibrated.

Calibration error measures how well predicted probabilities compare with actual probabilities

(for example, that events predicted to occur 80% of the time actually occur around 80% of the

time). To compute it, we divide up probabilities into several bins: (0, 0.1), (0.1, 0.2), (0.2, 0.4),

(0.4, 0.6), (0.6, 0.8), (0.8, 1.0). The reason for splitting (0, 0.2) into two bins is that many of our

final prices are close to 0. Following the notation of Goel et al. [7], let p̃i be the midpoint

probability of the bin in which market i falls. Then let bp̃i be the fraction of markets in market

i’s bin for which the event actually occurred. If we have n markets, then our calibration error is√√√√ 1

n

n∑
i=1

(p̃i − bp̃i)2.

We also use discrimination, which penalizes uninformative predictions by measuring how

much predicted probabilities vary. For instance, a method for predicting all MLB games that

predicts a 50% win probability for each team in each game will necessarily have zero calibration

error (all games go into the bin centered at 50%, and since each game results in one win and
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one loss, the observed probability will also be 50%) but it will not be useful. Discrimination

addresses this by measuring how much bp̃i varies across bins. If b is the fraction of events that

occur across all markets, then discrimination is√√√√ 1

n

n∑
i=1

(bp̃i − b)2.

Higher discrimination is generally better.

For each of our parameter combinations (b, ρ), we plot the calibration error and discrimina-

tion for the closing price in each market:

(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 7: Comparison of LMSR and CDA calibration error, Uniform cash
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 8: Comparison of LMSR and CDA calibration error, Actual cash
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 9: Comparison of LMSR and CDA discrimination, Uniform cash
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 10: Comparison of LMSR and CDA discrimination, Actual cash

The CDA has higher calibration error for a majority (19 out of 24) of parameter values in the

uniform cash simulation, but lower calibration error for a majority (22 out of 24) of parameter

values in the actual cash simulation. For some combinations, the two mechanisms differ substan-

tially (for instance, (b, ρ) = (10, 0.5) in the uniform cash case); however, we don’t have a notion

of statistical significance for this metric, so it is difficult to conclude whether this is meaningful

or not. This is especially true because our estimates can be a bit noisy due to small sample size.

Going back to the example of (b, ρ) = (10, 0.5), the 60% to 80% bin only has 1 market for the

LMSR and 4 markets for the CDA. Our main takeaway is that there is no conclusive evidence

suggesting one mechanism strictly dominates the other in terms of calibration.

In terms of discrimination, the CDA has higher discrimination for all but one parameter

choice in the uniform cash simulation and all but six in the actual cash simulation. Despite this,

there is never more than a 16.3% gap between the discrimination values of the two mechanisms.

Again lacking a standard definition of statistical significance, we suspect that the CDA may be

somewhat better with respect to discrimination, but can’t guarantee that it offers a significant

benefit.
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5.4 Effect of Liquidity

It is important to distinguish from the two mechanisms having similar average accuracy across

markets and the mechanisms having similar accuracy in any individual market. Taking one set

of parameters (ρ = 2, b = 10), if we plot the difference in Brier score between mechanisms for

each individual market, we obtain the following:

Figure 11: Plotting the difference in LMSR and CDA Brier score for each market

To get a sense of how large these differences are, note that the average CDA score across

markets is 0.289. Even a score that is 0.05 lower represents a 17% improvement over the av-

erage. Thus, even though the markets generally have statistically similar accuracy on average,

their performance can differ substantially for individual markets. One topic of interest might

be exactly when one mechanism is more accurate than the other. This would allow market

designers to choose which mechanism to use in a given situation and potentially increase overall

accuracy.

The main variable that we suspect would be correlated with performance is liquidity. As we

discussed in the background section, we know that CDA markets can fail to give meaningful

predictions when liquidity is very low; this implies that the LMSR might be more accurate (have

lower Brier scores) in less liquid markets. We compute the daily average bid-ask spread (the

price of the lowest ask minus the price of the highest bid at the end of each day) of each market

as a measure of liquidity, ignoring days where there are either no asks or no bids currently on

the order book. We then regress the difference in LMSR and CDA Brier scores for each market

on the spread of the market.
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Figure 12: Regressing the difference in Brier score (LMSR-CDA) on bid-ask spread for ρ = 2, b = 10.
This graph is fairly typical for all parameter values.

The coefficient on spread in this regression is significant at the 1% level for all possible pa-

rameter combinations, and the value of the coefficient ranges from −0.22 to −0.36. One sample

regression is plotted above for visualization. The significantly negative slope indicates that the

LMSR has a lower score (and is more accurate) in markets with a higher spread (less liquidity).

We suspect that by using the LMSR in markets that are less liquid and the CDA in markets

that are more liquid, we will obtain significant gains in accuracy.
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6 Aggregating the Algorithms

Another way to utilize the relationship between liquidity and accuracy is to consider what will

happen if we run both mechanisms simultaneously and combine their predictions in a way that

is dependent on liquidity. This would give us a “boosted” or “hybrid” algorithm that may give

significantly better predictions than either individual mechanism on average.

6.1 Boosted Algorithm

Our proposed method is to take a linear combination of the two mechanisms’ predictions, where

the coefficient of the linear combination depends on liquidity. Let pLMSR,i,t and pCDA,i,t repre-

sent the prediction made by each mechanism in market i on day t. Furthermore, let di represent

the daily average bid-ask spread in market i. To generate the boosted prediction in market i on

day t, we take a linear combination

pi,t = α(di) · pLMSR,i,t + (1− α(di)) · pCDA,i,t

for the final prediction on each day, where α(d) = Φ(b0 + b1 · d).

The reason for the probit function is that it forces the coefficient to be between 0 and 1; this

prevents our aggregated prediction pi,t from being outside the range defined by [min(pLMSR,i,t,

pCDA,i,t),max(pLMSR,i,t, pCDA,i,t)]. While this has the slight downside of preventing extrem-

ization, it gives our coefficient an intuitive interpretation: a coefficient closer to 1 implies that

we should trust the LMSR prediction more, while a coefficient close to 0 implies that we should

trust the CDA prediction. It could also be viewed as an estimate of the probability that the

LMSR prediction will be more accurate than the CDA prediction, given the liquidity of the

market.

The parameters of the model are (b0, b1), which capture the effect of the spread on α. To

estimate these values, we create a loss function and minimize it with respect to our parameters.

Our choice of loss function is the total day-average Brier score across all markets for a given

choice of (b0, b1); we can write this as:

S(b0, b1) =

N∑
i=1

1

Ti

Ti∑
t=1

si,t

=

N∑
i=1

1

Ti

Ti∑
t=1

2(pi,t − Ik)2

=

N∑
i=1

1

Ti

Ti∑
t=1

2(α(di) · pLMSR,i,t + (1− α(di)) · pCDA,i,t − Ik)2

=

N∑
i=1

1

Ti

Ti∑
t=1

2(Φ(b0 + b1 · di) · pLMSR,i,t + (1− Φ(b0 + b1 · di)) · pCDA,i,t − Ik)2

Since all other quantites are known, we can numerically compute the value of (b0, b1) that

will minimize the loss.
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6.2 Results

To test whether this approach is promising, we divide up our 100 markets into test and training

sets and perform cross-validation for each (b, ρ) combination. We perform ten rounds of ten-fold

cross validation. In each round, we randomly divide the markets into ten groups of 10; we then

iterate through the groups, using one group as test data and the other nine groups as training

data that we compute our optimal (b0, b1) from. Using this (b0, b1), we compute the boosted

predictions in both the test and training markets. In each of the ten rounds, we choose a differ-

ent random partition of the 100 markets so that our results are robust to any correlations that

might be present in the ordering of the markets.

First, we display the results from our training data. In each round of cross-validation, a given

market is used nine times as training data, so we have 90 boosted training predictions for each

market across the ten rounds. We average these predictions to get one training prediction for

each of our 100 markets. As in the previous section, we plot the average (across markets) Brier

score from the boosted algorithm, and test whether it is significantly better than the CDA or

the LMSR through a two-sided paired-t test. For this set of simulations, the LMSR predictions

that we use are from the uniform cash model.
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 13: Comparison of CDA and boosted Brier score on training data (means with ±2 standard
errors of difference)
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 14: Comparison of LMSR and boosted Brier score on training data (means with ±2 standard
errors of difference)

ρ
b

1 5 10 15 20 25

0.5 −1.375 2.83∗∗ 2.153∗ 2.038∗ 2.00∗ 1.981∗

1.0 3.881∗∗ 2.485∗ 2.318∗ 2.368∗ 2.381∗ 2.363∗

2.0 3.495∗∗ 2.591∗ 2.762∗∗ 2.737∗∗ 2.657∗∗ 2.562∗

5.0 2.813∗∗ 2.991∗∗ 2.814∗∗ 2.571∗ 2.353∗ 2.225∗

Table 3: t-statistics when comparing CDA and boosted algorithm performance on training data;
positive values mean the boosted algorithm was more accurate. * indicates significance at 5% level,
** indicates significance at 1% level.
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ρ
b

1 5 10 15 20 25

0.5 3.384∗∗ 4.116∗∗ 3.8∗∗ 3.397∗∗ 3.168∗∗ 3.027∗∗

1.0 2.878∗∗ 4.073∗∗ 3.351∗∗ 3.079∗∗ 2.881∗∗ 2.79∗∗

2.0 4.247∗∗ 3.476∗∗ 2.925∗∗ 2.75∗∗ 2.666∗∗ 2.42∗

5.0 4.267∗∗ 2.426∗ 2.077∗ 2.031∗ 2.124∗ 2.348∗

Table 4: t-statistics when comparing LMSR and boosted algorithm performance on training data;
positive values mean the boosted algorithm was more accurate. * indicates significance at 5% level,
** indicates significance at 1% level.

Our results indicate that we have improved accuracy significantly in almost all cases. The

hybrid algorithm is better than the CDA at the 5% level for 23 out of 24 parameter combina-

tions, and better than the LMSR at the 5% level for all 24 parameter combinations (while also

being better at the 1% level in 18 combinations). This validates our hypothesis that liquidity is

a major factor in determining which method is more accurate. Had we chosen a linear combina-

tion based on some uncorrelated factor, we would not have expected significant improvement.

Of course, the ultimate test in comparing prediction accuracy is on actual test data. In each

round of cross-validation, a given market is used once as test data, so we have 10 boosted test

predictions for each market in total. We average these predictions for each of our 100 markets,

and compare the average Brier scores of these test predictions against the Brier scores from

using the CDA or the LMSR by itself. We display our results from our test data below. In our

tables, we also indicate significance at the 10% level, as this would be equivalent to significance

at the 5% level in a one-sided test.
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 15: Test data comparison of CDA and boosted Brier score (means with ±2 standard errors
of difference)

35



(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 16: Test data comparison of LMSR and boosted Brier score (means with ±2 standard errors
of difference)

ρ
b

1 5 10 15 20 25

0.5 −1.272 1.248 1.662+ 1.499 1.498 1.519

1.0 −0.426 2.114∗ 1.955+ 1.895+ 1.957+ 1.933+

2.0 1.333 2.192∗ 2.341∗ 2.404∗ 2.318∗ 2.253∗

5.0 2.462∗ 2.635∗∗ 2.567∗ 2.277∗ 2.057∗ 1.907+

Table 5: t-statistics when comparing CDA and boosted algorithm performance; positive values
mean the boosted algorithm was more accurate. + indicates significance at 10% level, * indicates
significance at 5% level, ** indicates significance at 1% level (for a two-sided test).
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ρ
b

1 5 10 15 20 25

0.5 3.384∗∗ 2.543∗ 3.111∗∗ 2.282∗ 1.768+ 1.587

1.0 2.83∗∗ 3.511∗∗ 2.112∗ 1.365 1.154 0.987

2.0 2.748∗∗ 2.099∗ 1.025 0.935 0.687 0.595

5.0 3.841∗∗ 0.505 0.519 0.094 0.39 0.791

Table 6: t-statistics when comparing LMSR and boosted algorithm performance; positive values
mean the boosted algorithm was more accurate. + indicates significance at 10% level, * indicates
significance at 5% level, ** indicates significance at 1% level (for a two-sided test).

The boosted algorithm is more accurate than the CDA at the 5% level for 11 parameter

combinations, and is more accurate at the 10% level (significant in a one-sided test) for six ad-

ditional combinations. It is also more accurate than the LMSR at the 5% level for 10 parameter

combinations, and is more accurate at the 10% level for one additional combination. Overall, in

23 out of 24 parameter combinations, the hybrid algorithm outperforms at least one mechanism

at the 10% level (this holds for 18 out of 24 using the stricter 5% standard).

In addition to generally performing significantly better than the worse of the two mecha-

nisms, the boosted algorithm performs at least as well as the better of the two mechanisms. The

hybrid algorithm is only less accurate than either mechanism for two parameter combinations

(it is less accurate than the CDA for (ρ = 0.5, b = 1) and (ρ = 1, b = 1)), and the difference is

insignificant in both cases. Furthermore, we observe that the mean Brier score is essentially the

same as the CDA in these cases.

Something slightly disappointing is that while the hybrid algorithm outperformed both mech-

anisms simultaneously for 22 out of 24 parameter combinations in the test data, it was only

significantly better than both mechanisms at the 5% level for 3 parameter combinations (as

compared to 23 out of 24 parameter combinations in the training data). While this might seem

like a sign of overfitting, we note that the t-statistics were often quite close to the 5% cutoff

(especially for the CDA) in the training data; thus, even a small drop-off in performance would

lead to statistical insignificance.

To provide further evidence for our argument that we are not overfitting, we plot the percent

reduction in Brier score on training and test data for all parameter values:
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 17: Comparing % decrease in Brier score from boosted algorithm vs. CDA for test and
training data.
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(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 18: Comparing % decrease in Brier score from boosted algorithm vs. LMSR for test and
training data.

From the graphs, we see that while the algorithm reduces Brier score more in training data,

the difference in performance between training and test data is usually just 1-2 percentage

points. On average, across all parameter values, the boosted algorithm outperforms the CDA

by 4.26% on test data and 5.39% on training data. It outperforms the LMSR by 2.69% on test

data and 3.84% on training data.

We also think it is helpful to consider whether the reduction in Brier score is practically sig-

nificant, even though it is not always statistically significant. If a proposed algorithm achieves an

average Brier score improvement of 0.1% that is highly significant, it might have less potential

than one that improves Brier score by 5% but is only borderline significant due to a relatively

small sample size. The following table shows the percentage reduction in Brier score achieved

by the hybrid mechanism over the CDA and LMSR in test data for each parameter choice:
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ρ
b

1 5 10 15 20 25

0.5 (0,−8.47) (−1.13,−5.53) (−2.94,−4.99) (−3.17,−3.73) (−3.53,−3.04) (−3.96,−2.76)
1.0 (0.01,−6.86) (−3.45,−4.51) (−4.10,−2.58) (−4.59,−1.76) (−5.12,−1.56) (−5.34,−1.38)
2.0 (−0.70,−5.45) (−4.23,−2.02) (−5.50,−0.98) (−6.20,−0.86) (−6.35,−0.70) (−6.39,−0.66)
5.0 (−3.44,−4.31) (−5.88,−0.32) (−6.89,−0.31) (−6.60,−0.09) (−6.45,−0.47) (−6.33,−1.12)

Table 7: Ordered pairs showing (% change in Brier score vs. CDA, % change in Brier score vs.
LMSR).

Overall, the results are quite parameter-dependent. While there are some parameter combi-

nations for which the boosted algorithm simultaneously outperforms both mechanisms by 3% or

more, there are also some parameter combinations for which the boosted predictions outperform

one mechanism by around 5% but only beat the other by 1% or less. It seems that the boosted

algorithm has potential for meaningful simultaneous improvements over both mechanisms, but

this potential is strongly dependent on the relative performance of the CDA and LMSR. Re-

ferring back to Table 1, for parameter values where the CDA does significantly better than the

LMSR, the boosted algorithm struggles to substantially improve on the CDA, and for parameter

values where the LMSR does significantly (or almost significantly) better than the CDA, the

boosted algorithm struggles to substantially improve on the LMSR.

Despite this, it seems that given markets run using the CDA and the LMSR, our hybrid

approach is a good way to virtually guarantee (without any user input!) that we will get

predictions as good as the better of the two mechanisms on average. This is important, because

a priori it would be hard to identify which mechanism would be better for a given application

(recall that we are using test data, so we don’t know this). Further improvements beyond

the better mechanism are generally achieved, but are not always statistically or practically

significant.

6.3 Results: Identification of More Accurate Mechanism

We also check whether the boosted algorithm is generally identifying the more accurate mech-

anism and placing more weight on it. The exact criterion we use is that when a coefficient αi

is generated for a market, we check if αi > 0.5 (more weight on the LMSR) when the LMSR is

more accurate and if αi < 0.5 (more weight on the CDA) when the CDA is more accurate. We

then compute the proportion of test data markets for which αi satisfies this criterion. Because

we only have 100 unique markets, and are using each one as test data 10 times, we test if we

are doing better than random by converting our accuracy to a rate per 100 markets. We then

compare it to a binomial distribution with n = 100, p = 0.5. In our plots, we draw a line at 59

as an indicator of the cutoff for significance at the 5% level for a one-sided test.

40



(a) ρ = 0.5 (b) ρ = 1

(c) ρ = 2 (d) ρ = 5

Figure 19: Rate at which boosted algorithm selects more accurate mechanism in test and training
data.

These results are more favorable in terms of significance; the boosted algorithm is signifi-

cantly better than random (at the 5% level) at selecting the more accurate mechanism in 21

out of 24 parameter combinations. Once again, while we generally see declines in performance

from training to test data, it is usually on the order of a few percentage points or less, providing

more evidence that we are not overfitting.
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7 Discussion

One conclusion we draw from our results in Section 5 is that the LMSR (even our simplified

model of it) has the potential to be just as accurate as the CDA on average. The result that

the average Brier scores are not significantly different from each other with the vast majority

of parameter combinations suggests that in most settings, we might be relatively indifferent

between the two mechanisms. We think this result is especially robust because there is no bias

introduced by different trader populations or different market features (for example, how long

the market is open or how many traders there are). Furthermore, our results are derived from

markets run on a realistic question in a non-laboratory setting and are not affected by extremely

low liquidity or combinatorial outcome spaces.

This result contrasts somewhat with Ledyard et al. and Healy et al., which found that the

LMSR outperformed the CDA in accuracy in “complex” settings. However, it is more consistent

with the observations of Dana et al., as we have also found that a belief aggregation mechanism

(the LMSR) can perform just as well as CDA market prices in terms of Brier score.

The similarity in accuracy seems to be driven by two offsetting effects. While the CDA

is often more accurate than the LMSR in a slight majority of markets, the LMSR is able to

overcome this disadvantage by having large accuracy gains in those markets where it is more

accurate. One reason why this might occur is that risk-aversion and budget constraints play

a large role in the LMSR; it could be the case that LMSR prices are not as extreme as CDA

prices in markets where the outcome is very obvious from the start. This would result in small

penalties in a large number of markets, but it could benefit the LMSR greatly in a market where

the outcome is less certain.

With regards to parameter choices, we find that the LMSR generally improves relative to

the CDA as agents become more risk-averse. This suggests that market creators may wish to

operate LMSR markets if they know their agents are especially risk-averse and CDA markets if

they suspect their agents are relatively risk-neutral. We also find that increasing the liquidity

parameter makes the LMSR more accurate up to a certain point; the best values were b = 10, 15

for the “uniform cash” model and b = 15, 20 for the “actual cash” model. Though the literature

contains relatively little concrete knowledge about how to set an optimal b (in fact, it is referred

to as “more art than science” [4]), one takeaway is that there does seem to be a sweet spot for

b that maximizes accuracy.

An important caveat is that our comparison uses a simulated LMSR market; it’s entirely

possible that a real LMSR market (or a more sophisticated model) could have even better accu-

racy. Thus, we might consider our results a demonstration of the potential accuracy the LMSR

mechanism could achieve. One example of how a real market could differ is that in a true LMSR

market, agents would see the current price and could update their beliefs accordingly, diluting

the impact that outliers have on our current results. Another interpretation of our results is

that a mechanism that simulates the LMSR given belief reports from risk-averse agents can

aggregate information just as well as the CDA. This could be useful on its own as another belief

aggregation algorithm, similar to the algorithm considered by Dana et al.
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From Section 6, we conclude that a relatively simple hybrid mechanism can virtually guar-

antee performance on par with the better of the CDA and LMSR on test data, where we don’t

know which mechanism will be more accurate. It also has the potential to meaningfully outper-

form both mechanisms, even on test data. This is an encouraging result, as it indicates that we

can leverage the strengths of both mechanisms to build a hybrid mechanism that is better on

average without overfitting. Our conclusion is similar to that of Dana et al., who find that the

simple average of “Prices” (CDA prices) and “Beliefs” (their algorithm applied to belief reports)

is significantly more accurate than Prices alone. Going forward, prediction market operators

may wish to simultaneously operate LMSR and CDA markets on events (alternatively, they

could operate only the CDA but request belief reports). The fact that this improvement was

largely preserved in cross-validation indicates that they could estimate values of (b0, b1) on some

training markets, then apply the algorithm to other markets, and still achieve accuracy gains.

We now take some time (and space) to address possible concerns and criticisms:

1. The model for the LMSR could be improved—agents aren’t just risk-averse myopic utility

maximizers. They exhibit strategic behavior and may try to “game” the market by timing

trades.

We addressed this at a high level in Section 4.4. The main issue is that (to the best of our

knowledge), no model of strategic behavior exists that would extend to a market on a real-world

event where the information structure is unknown and there are hundreds of traders. Further-

more, it is unclear whether a significant amount of traders would attempt this behavior (or be

successful at it) in a complex setting like this; previous research has found that when markets do

not impose a trading order, strategic behavior is not very predictable. We emphasize that our

model shows the potential of the LMSR, rather than being an absolute proof that the LMSR is

as accurate as the CDA.

2. Agents’ belief reports in an actual LMSR market would be different from their belief

reports in a CDA market.

This may be true; there is evidence to suggest that some agents misunderstood the task or

were careless in reporting beliefs (a clear example being the agent who tried to sell shares at

$0.01 but reported their belief as 99%). We attempted to account for this by eliminating clearly

erroneous reports (i.e. those inconsistent with orders by a margin of 0.20 or more). It’s entirely

possible that with real money at stake in the LMSR, there would be less of these user errors,

and we might find that the LMSR becomes even more accurate.

Another argument could be made that agents would not have reported the same belief in an

LMSR market because the price evolution would be different. If the CDA price were $0.05, but

the LMSR price simulated from belief reports was $0.20 at the same point in time, the current

trader (assuming they update their priors based on the current price) would hold different

beliefs in the LMSR simulation than they reported in the CDA. We elected not to use a model

of belief updating in the LMSR simulation, as this would likely involve many more questionable
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assumptions than we have made—one example would be the choice of belief updating mechanism

agents are assumed to use (since Bayes’ rule is clearly intractable here). Do they take a linear

combination of their prior and the current price? However, we encourage those who would like

to build on this work to consider this as a possible modification.

7.1 Future Work

One direction for future work is to consider other dimensions along which the two mechanisms

(CDA and LMSR) differ. There may be other properties strongly correlated with which mech-

anism is more accurate; for instance, Dana et al. find that Prices are more accurate closer to

the market’s closing date, while Beliefs are more accurate earlier in the market. By also making

the weights a function of the time until the market closes, market operators may achieve even

more accurate boosted results.

Furthermore, alternative methods for aggregating the predictions should be considered. We

took a linear combination of the two mechanisms while bounding the coefficient between 0 and

1; future work may relax this constraint to allow for the aggregated prediction to be outside the

interval determined by the CDA and LMSR predictions. It may also be fruitful to consider other

modifications to boost accuracy, such as extremizing predictions or adding a third mechanism to

the linear combination. Care must be taken to prevent overfitting, but we suspect that adding

more models to the aggregation may be helpful.

In the experimental domain, an interesting experiment might be to run a large number of

prediction markets (as the GJP did), but to set up a CDA and an LMSR market for each event.

Experimenters could randomize participants to have access to exactly one of the two mecha-

nisms on each event; person A might have access to the CDA market for event 1, the LMSR

market for event 2, and the CDA market for event 3. The accuracy of each mechanism could

then be compared without worrying about bias introduced by having different events (since

each mechanism covers the same events) or different trader characteristics (since the traders

are drawn from the same pool and randomized into each mechanism). This would provide an

excellent experimental verification of the results obtained in this paper via simulation.

Finally, we think a more in-depth exploration of effect of parameter values would be of great

interest. Given the theoretical difficulty of determining the effect of ρ and b on the LMSR

mechanism, it seems that the best course of action would be an empirical study in which traders

are randomly assigned to LMSR markets with different b values.
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8 Conclusion

Overall, our work provides an empirical demonstration that the LMSR mechanism has the po-

tential to be just as accurate as the CDA when running prediction markets, and that this result

is relatively robust to the risk attitudes of traders, as well as some choices of the liquidity pa-

rameter b. Our work also shows that a belief aggregation mechanism simulating the LMSR

given belief reports has similar accuracy to the CDA while also being comparable in other met-

rics like calibration error and discrimination. This provides two contributions to the existing

literature: giving the first (to our knowledge) direct comparison of the two mechanisms done in

a real-world non-laboratory setting and providing another belief aggregation mechanism with

strong performance.

We have also verified the claim that LMSR markets have improved accuracy relative to the

CDA in less liquid environments and leveraged this information to create a hybrid model that

aggregates the predictions of the two markets in a unique way. In doing so, we have contributed

a new mechanism that can augment the accuracy of predictions.

Going forward, people and organizations interested in making accurate predictions may want

to spend less time thinking about their choice of mechanism, especially if they plan to run a

large number of markets; instead, they may want to consider using multiple mechanisms and

aggregating their predictions.
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