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Abstract

Deep image representations learned by CNNs have been shown to successfully separate image content
from style, but the generic feature representations learned by CNNs are far from interpretable. Drawing
upon recent developments in neural network inspired extensions of Dictionary Learning (DL) to multi-
layer models, I present a framework using dictionary learning and sparse code representations to separate
image content and style in natural images. This framework provides an interpretable decomposition
of images into high and low frequency representations that can be used to generate new images by
combining the style and content of any two arbitrary images. These decompositions and visualizations of
convolutional filters provide novel insights into the image representations learned by convolutional neural
networks and demonstrate the potential of DL and sparse code representations for image analysis and
transformation.
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1 Introduction

Advancements in deep learning and convolutional neural networks (CNNs) present a significant paradigm
shift in the landscape of automated image style transfer, in which the semantic content of an image is
rendered in a different style. Deep CNNs have demonstrated the capability to perform neural style transfer
(NST) between arbitrary images [7], which entails training a deep neural network to generate artistic images
by combining the content and style of arbitrary images. Thus, deep learning provides the potential for
broad-ranging and flexible style transfers, but CNN-based approaches are computationally expensive due to
the heavy optimization involved in obtaining synthesized images close to the content image. Furthermore,
the challenge of interpreting the style representations learned by CNNs persists.

In this work, I present a novel framework to address both of these issues that draws upon the theory of wavelet
analysis and dictionary learning. Representation analysis with wavelets is a classical, interpretable, and well
understood theory that allows us to decompose images/signals into a linear combination of basis functions
at different scales to represent an image and recover it perfectly via convolution operations [13, 12], while
sparse coding (SC) [1] finds sparse representations of images, or signals more broadly. Thus, wavelet analysis
and sparse coding provide a way to decompose images into distinct style and content representations, while
dictionary learning provides a framework for learning the shared structure of images. I call this framework
a hierarchical generative model for image analysis and show that this model learns visually interpretable
convolutional filters and highly efficient representations of images that can very faithfully reconstruct even
complex colored images.

The challenges regarding the computational complexity and limited interpretability of CNNs are of great
importance due to the widespread use of CNNs. Reducing the dependence on exceptionally large compu-
tational resources would diminish the financial and environmental impact of training and developing CNN
based models [17], while obtaining more efficient and interpretable representations from CNNs would help
ease the adoption of such models in new application areas. While in this work we focus on a specific use
case in the artistic domain, a more detailed and nuanced understandings of the role of convolutions in image
style transfer would have great significance in the fields of computer graphics, vision, and image processing
more broadly.

1.1 Related Work

The diverse literature on image style transfer has its roots in the simpler task of texture synthesis, in which
the goal is to synthesize a new texture that appears to have been generated via the same process as a
given texture sample. Several techniques, including physical simulation of their generation process [3, 20,
21], Markov random fields with Gibbs sampling [5, 14, 15], and feature matching [2, 8, 16], have all been
successfully applied towards this task.

These developments were followed by demonstrations of texture transfer via techniques like image quilting
[10], image analogies [9], and extensions of texture synthesis algorithms to account for content similarities
[6]. On the machine learning front, several attempts have been made to develop a feedforward style transfer
network that is trained to go from a content image to a stylized image in one pass [19, 11]. Yet a significant
drawback of these style transfer networks is that they are tied to the single style on which they are trained,
which means separate networks need to be trained for each style modeled. Dumoulin et al. (2017) tackled this
issue by introducing conditional instance normalization, in which a single conditional style transfer network
is trained on multiple styles, and while each specific style uses specialized parameters, the convolutional
weights are share across all styles. This extension allows style transfer networks to learn multiple styles
while still maintaining both the qualitative and convergence properties of the single-style transfer networks.
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1.2 Problem Specification

Given two datasets Ds and Dt of images in styles s and t, respectively, our question is twofold. First, can
we separately capture style or texture and content information in images with representation analysis? I
show that the latent representations learned by the hierarchical generative model presented here does indeed
capture image specific texture and content details, while the convolutional filters capture common structural
information that is shared across images in a given dataset. Here, the term ”image texture” refers to the
spatial arrangement of colors or intensities in a given image. This is the first primary contribution of this
project – while previous work in this area has looked at the role of shared filters in convolutional neural
networks for style transfer, to my knowledge this is the first attempt to obtain interpretable decompositions
of an image into style and content representations.

Second, can we synthesize new images by arbitrarily combining the content of one image with the style of
another? Although measures of style are not quantitatively defined, we can assess the extent to which the
style and content aspects of the source images are transferred to the target image through visual inspection.
The second major contribution of this work is a demonstration of arbitrary style transfer using the set of
filters learned by the hierarchical generative model with no additional training.

1.2.1 Motivating Example

To illustrate the task at hand, consider the following setting. I have a photographic portrait of a woman, as
in Fig 1(a), and a copy of Vincent Van Gogh’s Starry Night, as in Fig 1(b). I would like to synthesize a new
image featuring the woman in the portrait but in the style of Van Gogh’s painting. One possible rendition
of such a transfer can be seen in Fig 1, which was generated by [4] using a deep neural network. My goal is
to attempt a similar task but with the proposed hierarchical generative model instead of a neural network,
while maintaining generality so that we can conduct such a style transfer between any two arbitrary images
of the selected styles.

(a) Photographic portrait of a
woman (from Dumoulin et al.
2017)

(b) Vincent Van Gogh’s Starry
Night

(c) Newly generated image com-
bining content from (a) with the
style from (b) (also from Du-
moulin et al. 2017)

Figure 1: Motivating example of style transfer

1.3 Overview of Thesis

The remainder of this thesis is organized as follows. Section 2 provides the background on the technical
concepts that are drawn upon in this project and section 3 specifies the model used. Section 4 details
the simulations used to develop intuition for the application of the hierarchical generative model for image
analysis, while section 5 presents the results of experiments conducted on natural images. Section 5 concludes.
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2 Background

2.1 A Generative Model of Images

Given a dense signal xL and the sparse signals u = [u1, . . . ,uL], I can define the following recursive generative
model proposed by [22]

x`−1 = A` ∗ x` + B` ∗ u` + ε`, ` ∈ {1, . . . , L} (1)

Here ` indicates the layer the signals correspond to, where ` = 0 represents the input image and ` > 0
denotes deeper layers, with a total depth of L. Throughout this manuscript, I will interchangeably refer
to x` and u` as signals, encodings, and latent representations. A` and B` represent texture and content
filters, respectively. Filters are tensors of dimension C` × D` × H` ×W`, denoting the number of output
channels, number of input channels, filter height, and filter width, respectively. The ∗ operation denotes a
full convolution between a filter and a signal, which is more explicitly defined by the following

(A` ∗ x`)(c) =

D∑̀
d=1

A`(c, d) ∗ x`(d), ∀c ∈ 1, . . . , C` (2)

where c indexes the output channels and d indexes the input channels. Throughout this manuscript, the
convolution between A and x, here denoted as A ∗x, may be shortened to just Ax when it is clear that this
operation denotes a convolution.

Furthermore, we assume the following latent prior distributions:

u` ∼ Laplace(0, λ`) (3)

x` ∼ N (0, σ2
x`

) (4)

The Laplacian prior on u` supports its sparsity and facilitates the capture of high frequency information in
u`, while the Gaussian prior on x` supports a non-sparse form and facilitates the encoding of low frequency
information in x`. As textural information primarily takes the form of color and patterns, it presents a source
of low frequency information, whereas content information primarily entails edge detection, and therefore
presents high frequency information. Thus, A` and x` are intended to capture texture information, while
B` and u` are intended to capture content information.

Figure 2 depicts a graphical representation of the generative model defined by Eq. 1 for three layers. As the
sparse signals u` are independent across layers, the sparsity requirement does not impose restrictions on the
depth of the model and any depth is attainable.

Figure 2: Hierarchical model representation for L = 3

In the following sections, I further specify the assumptions of this model and methods for finding the
encodings x` and u`.
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2.2 Convolutional Sparse Coding

While I can synthesize images given the signals xL and u = [u1, . . . ,uL] following the generative model of
Eq 1, recovering these encodings from an input image x0 requires solving the inverse problem. This problem
has its roots in the theory of sparse coding, which refers to a class of algorithms for factoring input data
into a linear combination of over-complete basis vectors, B = [b1, . . . ,bK ]. A commonly used cost function
for this task is

min
B,u

1

2

N∑
n=1

‖yn −Bun‖22 + λ‖un‖1

subject to ‖bk‖22 ≤ 1 for k = 1, . . .K (5)

where λ controls the L1 regularizer and the constraints on bk ensure that the dictionary B doesn’t absorb all
magnitude-related information. This formulation is also commonly known as LASSO [18] and its usefulness
has been demonstrated in a variety of machine learning contexts.

One advantage of over-complete bases over complete bases is that the former are more conducive to capturing
structures and patterns in the data. However, traditional sparse coding assumes that the input vectors
{yn}Nn=1 are independent, which leads to basis vectors that are translations of each other for natural images.
Convolutional sparse coding addresses this problem by incorporating shift invariance into the objective
function:

min
B,u

1

2
‖y −

K∑
k=1

bk ∗ uk‖22 + λ

K∑
k=1

‖uk‖1

subject to ‖bk‖22 ≤ 1 for k = 1, . . .K (6)

Now, when bk ∗ uk is summed over all k, the result should approximate the full input signal y, rather than
independent sections, as would have resulted from the objective in Eq. 5.

2.3 Hierarchical CSC for Image Encodings

To recover the dense signals x` across layers in addition to the sparse codes, I need to solve a derivation
of the sparse coding coding problem developed by [22] and termed hierarchical convolutional sparse coding
(H-CSC). In this setting, an input image x0 is decomposed into both dense scale and sparse detail signal
components by solving the following problem

x̂`, û` = arg min
x`,u`

f(x̂`−1,x`,u`) + λ`‖u`‖1 + γ`‖x`‖22 (7)

where

f(x̂`−1,x`,u`) =
1

2
‖x̂`−1 −A` ∗ x` −B` ∗ u`‖22 (8)

for every ` ∈ {1, . . . , L}. Here, x̂0 = x0 is the given input image and subsequent estimates x̂` are obtained
by solving Eq. 7. The `1-norm enforces sparsity on u` with the parameter λ controlling the level of sparsity.

Note that by setting A` = 0, we return to the traditional sparse coding setting of the previous section.

2.4 Proximal Algorithms

Because Eq. 7 is non-smooth and convex, it can be solved with a proximal gradient method, a common
framework for solving nonsmooth, constrained optimization problems of the form
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min
x
f(x) + g(x) (9)

where both f and g are proper closed convex and f is differentiable. The non-smooth nature of g is handled
via a proximal operator, defined as

proxg(y) = arg min
x

(
g(x) +

1

2
‖x− y‖22

)
(10)

where ‖ · ‖2 is the Euclidean norm. This function is strongly convex and not everywhere infinite, so it has a
unique solution y ∈ RN . For a scaled function λg, where λ > 0, the corresponding proximal operator is

proxλg(y) = arg min
x

(
g(x) +

1

2λ
‖x− y‖22

)
(11)

The proximal operator can be considered to be like a gradient step for g, as we have that

proxλg(y) ≈ y − λ∆g(y) (12)

Furthermore, proxλg(x
∗) = x∗ if and only if x∗ minimizes g. I can therefore minimize g by finding a fixed

point of proxg. In particular, due to the firm nonexpansiveness property of proxg, the iterative proximal
method given by

xk := proxλg(x
k−1) (13)

converges to the set of minimizers of g, provided that g has a minimum. Here k denotes an iteration counter
and xk is the kth iteration of the algorithm. Returning to the motivating minimization problem, the basic
proximal gradient method to solve Eq. 9 is

xk := proxλg
(
xk−1 − λ∆f(xk−1)

)
(14)

By replacing the λ with λk, I can also handle parameter values that change in each iteration. Convergence
is still guaranteed as long as λk > 0 and

∑∞
k=1 λ

k =∞.

2.4.1 FISTA

Adopting the idea behind the basic proximal gradient method presented in Eq. 14 to a nonsmooth regularized
problem of the form

min
x
f(x) + λ‖x‖1 (15)

the gradient iteration can be written as

xk = arg min
x

{
f(xk−1) + 〈x− xk−1,∆f(xk−1)〉+

1

2tk
‖x− xk−1‖2 + λ‖x‖1

}
(16)

As I can drop constant terms and separate the l1 norm, this minimization reduces to solving

xk = Tλtk(xk−1 − tk∆f(xk−1)) (17)

where Tα : Rn → Rn is the shrinkage operator given by

Tα(x) = (|x| − α)+sgn(x) (18)
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The iterative scheme of Eq. 17 forms the basis of a popular proximal gradient method known as ISTA,
or Iterative Shrinkage-Thresholding Algorithm. This method has been extended to an accelerated version
known as FISTA, or the Fast Iterative Shrinkage-Thresholding Algorithm. This procedure is the one we use
and is outlined in Algorithm 1.

Algorithm 1 FISTA for H-CSC

1: Input: x`, α, λ`, γ`
2: Initialize: x1`+1,u

1
`+1, t

1 = 1
3: for k ∈ {1, . . . ,K} do
4: tk+1 ← 1 +

√
1 + 4(tk)2/2

5: ū← uk` + (tk − 1)(uk` − uk−1` )/tk+1

6: x̄← xk` + (tk − 1)(xk` − xk−1` )/tk+1

7: r← A` ∗ x̄ + B` ∗ ū− x`
8: xk+1

` ← x̄− α(r ?A` + γ`x̄)

9: uk+1
` ← Sλ`α(ū− α(r ?B`))

10: end for
11: return xK` ,u

K
`

2.5 Convolutional Dictionary Learning

I have now described how to recover the variables x` and u` across layers assuming the filters A` and B`

are fixed, so it remains to expound on the method for learning the filters A` and B`. To update the filters,
we fix x` and u` and minimize the following loss function:

min
A`,B`

N∑
i=1

‖x̂`−1,i −A` ∗ x̂`,i −B` ∗ û`,i‖22, s.t. A` ?A` = 1,B` ?B` = 1 (19)

where x̂`,i, û`,i represents the estimates of the encodings at depth ` for the ith image in a dataset indexed
by {1, . . . , N}.

I can then update the filters by directly computing the first order gradient of Eq. 19. Since the filters are four
dimensional tensors (C`×D`×H`×W`) whereas the images and intermediate signals are three dimensional
(D` ×H` ×W`), we extend the dimension of the images by one and obtain the following gradients

∂

∂A`
‖x̂`−1,i −A` ∗ x̂`,i −B` ∗ û`,i‖22 = (A` ∗ x̂`,i + B` ∗ u`,i − x̂`−1,i) ∗ x̂`,i

∂

∂B`
‖x̂`−1,i −A` ∗ x̂`,i −B` ∗ û`,i‖22 = (A` ∗ x̂`,i + B` ∗ û`,i − x̂`−1,i) ∗ u`,i (20)

which are then used to update the filters A` and B` appropriately.

Given these methods for recovering both x̂` and û` assuming A` and B` are fixed, as well as for identifying
A` and B` assuming x̂` and û` are fixed, I can solve Eq. 1 by utilizing an optimization procedure that
alternates between these two methods. The following section specifies the framework used to combine these
methods.

8



3 Model

3.1 Notation

Notations and conventions used throughout this manuscript are summarized in Table 1.

Symbol Description

A Matrix (upper-case bold letter)

Â Matrix learned by a model

x Vector (lower-case bold letter)

x̂ Estimation of vector x

x`,i Vector x corresponding to the `th layer of the ith data sample

xi Vector x corresponding to the ith data sample when the # of layers L = 1

xk Vector x at the kth iteration of an iterative algorithm

‖x‖p The `p-norm of vector x

∗ Linear convolution

N (µ, σ2) Gaussian distribution with mean µ and variance σ2

Table 1: Notation and conventions

3.2 Implementation

To incorporate the methods described in the previous section into a cohesive method, I utilize an autoencoder
framework as follows:

1. The filters Â` and B̂` are initialized with values drawn from N (0, 1).

2. A batch of images, I, is drawn from the chosen dataset, D, and is fed into the network.

3. In the first half of the forward pass, the model uses FISTA to estimate the underlying signals x̂`,i and
û`,i for each image yi ∈ I and each layer ` ∈ {1, . . . , L}. This is commonly known as the encoding
step.

4. In the second half of the forward pass, the model reconstructs estimates of the input images, ŷi, from
the encodings x̂`,i and û`,i identified in the previous step following the recursive formula in Eq. 1.
This is commonly known as the decoding step.

5. In the backward pass, the loss function in Eq. 19 is used to measure the discrepancy between the original
images, yi, and the reconstructed images, ŷi, which is then used to update Â` and B̂` accordingly.

6. Steps 3 through 5 are repeated for the specified number of epochs, drawing a different batch from the
image dataset each time.

Note that the filters Â` and B̂` are shared across all images in the dataset, whereas the encodings x̂`,i and
û`,i are image specific.

The entire framework is created using PyTorch and relies heavily on the torchvision package for manipulating
images.
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4 Simulations

To visually illustrate the hierarchical generative model framework, I generate some sample images and provide
intuition for the theory of style transfer in this context.

4.1 Image Data Generation

I focus on the 1 layer case with grayscale images (i.e. one input channel and one output channel), and thus to
simplify notation, I drop the subscripts on the filters and encodings that denote the layer of each component.
This means that the generation process for an image yi is defined as follows:

yi = Axi + Bui (21)

where A,B are the shared texture and content filters, respectively, and xi,ui are the image-specific texture
and content encodings, respectively. yi denotes the final image generated from a linear combination of these
components. Note that in this generation process, I am initializing the latent representations to synthesize
an image, whereas later I will be solving the reverse problem, i.e. decomposing a given image into its latent
representations.

To obtain A, I start with an arbitrarily selected colored texture image T (see Figure 3). I crop T to the
desired dimensions, which is 25×25 pixels in this case. I then convert the cropped image to grayscale, recast
it as a tensor, and normalize the values in the tensor.

(a) Marble (b) Sand

Figure 3: Sample close-up images of textures taken from an opensource database. (a) Marble (b) Sand

For B, I use an edge filter from the Leung-Malik (LM) filter bank, which consists of 48 derivatives of
Gaussians, providing a mix of edge, bar, and spot filters at multiple scales and orientations. For this
simulation I focus on a simple horizontal edge filter for visual clarity.

Next, I initialize ui and xi to two randomly generated sparse vectors. Figure 4 illustrates how A convolved
with the randomly generated x generates an image where A is precisely replicated at each non-zero location
in xi. Figure 5 illustrates the analogous process for the convolution of B and u.

(a) A (b) xi (c) A ∗ xi

Figure 4: Generative process for Axi. (a) Texture filter, A (b) Texture encoding, xi, where the white pixels represent the 5
non-zero values (c) The final product of a linear convolution, A ∗ xi

10



(a) B (b) ui (c) B ∗ ui

Figure 5: Generative process for Bu. (a) Edge filter, B (b) Content signal, u, where the white pixels represent the three
non-zero values (c) The final product of a linear convolution, B ∗ ui

While xi is intended to be a relatively dense signal, for illustration purposes I keep xi sparse in this simulation
so its visual effect is more readily observed. As is seen in Figure 6, increasing the number of non-zero values
in xi leads to a visually incomprehensible overlapping of the texture filter. Here, n-sparse refers to a tensor
with n non-zero values. It appears that the effect of xi appears to be increasingly dominant in the convolution
as xi becomes less sparse. Thus initializing xi to a dense signal would lead to an image in which the values
of xi completely dominate the generated image.

(a) 5-sparse (b) 15-sparse (c) 50-sparse

Figure 6: Visualization of Axi for different sparsity levels of xi, using the same filter A. (a) 5-sparse (b) 15-sparse (c) 50-sparse

Once I have generated Axi and Bui, I perform a linear convolution to generate yi, presented in Figure 7.
As expected, yi looks like a superposition of the visualizations of Axi and Bui from Figures 4 and 5.

(a) Axi (b) Bui (c) yi = Axi + Bui

Figure 7: Generation of the image y through a linear combination of Ax and Bu.

Finally, I demonstrate a very rudimentary example of style transfer using this hierarchical generative frame-
work by taking advantage of the modularity of the model. Figure 8 shows that I can easily exchange A for
a different filter, A∗, to change the appearance of the texture filter replicated at the locations determined
by xi, while the locations and appearance of the edge filter, B, remain exactly the same.

4.2 Dictionary Learning

Having illustrated the data generation process, I now demonstrate the applicability of FISTA and dictionary
learning on the simulated images. Again I stick to the one layer case and start by looking at the texture and
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(a) yi = Axi + Bui (b) A∗ (c) y∗
i = A∗xi + Bui

Figure 8: Demonstration of style transfer, where only the texture filter, A, is changed to A∗ and B,ui, and xi are kept the
same

content components separately. First, I generate images using the yi = Axi framework with a 1 channel
texture filter of size 5 × 5 for A and a randomly generated vector for xi, resulting in an image of size
100 × 100. I generate a total of 1000 such sample images and pass these images through the autoencoder
framework in batches of 64 to learn both the filter and the signal. Here, I denote Â as the filter estimated
through dictionary learning and x̂ as the signal estimated through FISTA. Further details regarding the
hyperparameters used for FISTA and dictionary learning are specified in Table 2. I verify that the model is
capable of recovering both of these components with reasonable accuracy, as can be seen in Figure 9.

(a) Original (b) Reconstruction

Figure 9: Comparison of the original Axi to its reconstruction, Âx̂i

(a) Original A (b) Random initialization of Â (c) Â after training

Figure 10: Comparison of the original texture filter, A, to the filter learned by the model, Â. (a) Original A (b) Random

Gaussian initialization of Â (c) Â after training for 150 epochs with a learning rate of 0.02

I repeat this process with the framework yi = Bui. I begin by generating images using a 5 × 5 edge filter
from the LM filter bank for B and a randomly generated vector for ui and pass the resulting images through
the model. As before, I generate a total of 1000 images of size 100 × 100, split into batches of size 64, and
use the same hyperparameters listed in Table 2. Again, I verify that the model recovers both the filter B
and the signal ui with high accuracy, as is seen in Figure 11.

Of particular significance is the extent to which the learned convolutional filters visually resemble the original
filters. While Figures 12(a) and 12(c) appear to be mirror images of one another, this merely demonstrates
the fact that the model is only concerned with reproducing the edges present in the input image, which may
lead to some variation in the learned filters.
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(a) Original (b) Reconstruction

Figure 11: Comparison of the original Bui to its reconstruction, B̂ûi

(a) Original (b) Randomly initialization of B̂ (c) B̂ after training

Figure 12: Comparison of the original edge filter, B, to the filter learned by the model, B̂. (a) Original B (b) Random Gaussian

initialization of B̂ (c) B̂ after training for 40 epochs with a learning rate of 0.02

Sparseness of code (‖xi‖0 and ‖ui‖0) 3

# layers L 1

# filter input channels Cin 1

# filter output channels Cout 1

Filter kernel size K 5

Dimensions of each sample D 100× 100

# samples N 1000

Batch size B 64

# epochs 40

FISTA iterations T 200

FISTA learning rate α 2× 10−3

FISTA regularizer λ 0.03

FISTA regularizer γ 0

Dictionary learning rate 0.02

Table 2: Details of datasets and training parameters for experiments on simulated data.

Thus, I have demonstrated that both the filters learned by the model and the encodings obtained through
FISTA are visually meaningful and interpretable, and also that the hiearchical image generation process
used in this section is highly intuitive.
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5 Experimental Results

Having demonstrated the viability of the hierarchical generative framework and developed intuition for style
transfer using simulated images, I move to experimenting on natural images. Returning to our original
motivating application in the artistic domain, I train the hierarchical model on datasets of images generated
using paintings by historically prominent artists. To generate the first dataset, DV G, each of the three Van
Gogh paintings shown in Figure 13 are randomly cropped to 100 × 100 sized images 100 times, to generate
a dataset with a total of 300 image croppings (100 per painting). The filters learned from this dataset will

be referred to as ÂV G and B̂V G. To generate the second dataset, DML, the Mona Lisa painting shown in
Figure 14 is similarly randomly cropped to 100 × 100 pixel sized images 100 times, to generate a dataset
with a total of 100 image croppings. The corresponding filters learned from this dataset will be referred to
as ÂML and B̂ML.

(a) Starry Night (b) Cafe Terrace At Night (c) Starry Night Over The Rhone

Figure 13: Set of Vincent Van Gogh paintings used to generate samples in DV G.

Figure 14: Leonardo da Vinci’s Mona Lisa

As before, to solve the inverse problem of obtaining the image encodings outlined in Eq. 7, I use the FISTA
algorithm, and to learn the filters, I use the stochastic gradient descent method from Section 2.5. The
number of layers in the model is kept to L = 1, as I found that increasing the number of layers did not
significantly change the results but significantly increased training time. The texture filters ÂV G and ÂML

have 32 channels, while the content filters B̂V G and B̂ML have just 1 channel. All filters are of size 5 × 5.
The filter training procedure is unsupervised and minimizes the reconstruction error of the input images,
detailed in Eq. 19. Further details of the dataset and hyperparameters used in training are summarized in
Table 3.

Figures 15 and 17 confirm that we can successfully reconstruct images using the filters and encodings learned
from both the DV G and DML datasets. More importantly, Figures 16 and 18 illustrate the type of visual
information learned by the filters ÂV G and ÂML. Figure 16(b) clearly captures the distinctive shades of
blue, yellow, brown, and black present in the Van Gogh paintings while Figure 18(b) represents the more
subdued shades of brown and green present in the Mona Lisa painting. Combined with the intuition for
linear convolutions and combinations developed in the previous section with simulated images, these two
figures also provide some indication as to how a series of such operations can generate an image as varied
and complex as Van Gogh’s Starry Night or Da Vinci’s Mona Lisa.
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(a) Original Samples (b) Reconstructed Samples

Figure 15: Reconstruction of sample images in DV G

(a) Filters ÂV G before training (b) Filters ÂV G after training

Figure 16: Texture filters ÂV G learned from DV G; 32 channels. (a) Random initialization, before training (b) After training

(a) Original samples (b) Reconstructed samples

Figure 17: Reconstruction of sample images in DML

(a) Filters ÂML before training (b) Filters ÂML after training

Figure 18: Texture filters ÂML learned from DML; 32 channels. (a) Random initialization, before training (b) After training

5.1 Style Transfer

Once we have learned the filters ÂV G, B̂V G, ÂML, and B̂ML, I can conduct a style transfer operation much
like in Section 4. Let yML represent the original Mona Lisa painting and let yt represent the output of the
style transfer operation. I start by obtaining the encodings x̂ML and ûML such that the error between the
reconstructed image ŷML = ÂML ∗ x̂ML + B̂ML ∗ ûML and the original image yML is minimized. I do this
via a single pass through the FISTA algorithm using the filters ÂML and B̂ML. Then, I exchange ÂML for
ÂV G and generate yt as follows: yt = ÂV G ∗ x̂ML + B̂ML ∗ û.
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Van Gogh Mona Lisa

# layers L 1 1

# filter input channels for A Cin 3 3

# filter input channels for B Cin 3 3

# filter output channels for A Cout 32 32

# filter output channels for B Cout 1 1

Filter kernel size K 5× 5 5× 5

Dimensions of each sample D 100× 100 100× 100

# samples N 300 100

Batch size B 64 64

# epochs 75 75

Optimizer Adam Adam

FISTA iterations T 1000 1000

FISTA learning rate α 2× 10−4 2× 10−4

FISTA regularizer λ 1× 10−3 1× 10−3

FISTA regularizer γ 0 0

Dictionary learning rate 0.05 0.05

Table 3: Details of datasets and training parameters for experiments on natural images.

The results of this operation are shown in Figure 19. As expected, Figure 19(b) retains most of the content
in the original painting but displays a color palette more in line with the Van Gogh paintings in Figure 13.

(a) yML (b) yt

Figure 19: Visualization of the Mona Lisa before and after conducting a style transfer. (a) Original Mona Lisa painting (b)

Mona Lisa rendered using the filters ÂV G
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6 Conclusion

The primary contribution of this manuscript is a visual illustration and interpretation of the convolutional
filters in the context of dictionary learning. These visualizations were obtained by training an autoencoder
framework based on convolutional sparse coding and dictionary learning first on simplified, grays-scale,
simulated images, and then on more complex, colored, natural images. In both contexts, I also demonstrated
the application of a hierarchical generative model to decompose images into shared filters and image-specific
encodings that can be used both to faithfully reconstruct images and to conduct arbitrary style transfer.

Future work will investigate the extent to which the learned filters can capture diversity in images, i.e.
determining the relationship between the variance in the images of a dataset and the number of filters required
to fully capture relevant information in that dataset. However, style transfer is only one of several potential
applications of the convolutional sparse coding and dictionary learning based autoencoder framework used
in this project. In particular, image segmentation tasks would be a high potential continuation of this work,
as I have already illustrated that the convolutional filters in the model learn recognizable segments of the
input image. Filters with larger sizes may visually align more closely with specific components of an input
image. Image classification is another high potential area, one that [22] has already examined in the context
of the MNIST database but could be extended to more varied and complex datasets, particular ones with
colored images.
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