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Abstract

Machine learning models have the potential to aid human decision-making in a variety

of domains. However, many cannot be safely deployed because they are so complex that

they are essentially “black boxes” to humans. Given this fact, the need for an independent

method of explaining predictions made by such models arises. This thesis discusses how

local linear approximations can be used to explain complex, blackbox classifiers. The first

part of this thesis draws upon a philosophical account of causal explanation to argue that

local linear approximations derived through sampling methods can be effective causal

explanations of blackbox classifier predictions. The second part of this thesis proposes

an original end-to-end framework for generating actionable counterfactuals that change

classifier predictions. Empirical findings are presented which suggest that this method is

a promising avenue for future work.
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Thesis Structure

This paper is divided into two parts. Part I (Chapters 1-3) discusses the philosophical

requirements of explanations of blackbox classifiers. This section builds heavily upon

James Woodward’s account of causal explanation (2003) to argue that linear approxima-

tions derived through sampling can function as effective causal generalizations of blackbox

classifier predictions. Part II (Chapters 4-6) focuses on the application of linear approx-

imations to obtaining actionable insight into non-linear classifiers: Specifically, I present

original experimental findings suggesting that linear approximations can be used to gen-

erate actionable counterfactuals for non-linear classifiers.

Note: Part I is intended to fulfill the thesis requirements of the Philosophy department.

Part II is intended to fulfill the thesis requirements of the Computer Science department.
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Linear Approximations as Local,
Causal Explanations
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Chapter 1

Introduction

1.1 Motivation: Why do we need explanations?

Machine learning models have the capacity to aid human decision-making in a variety of

domains, including medicine, banking, and criminal justice, and they are in many cases

already in deployment. Such models are useful because they can learn patterns in large

amounts of data–more data than a human could feasibly process to make predictions.

To illustrate the real-world utility of machine learning, suppose a model has been

shown to accurately predict risk of death from pneumonia; specifically, suppose the model

produces accurate predictions on 95% of a data sample held back from the data used to

train the model. A doctor could use the model’s prediction to confirm her own diagnosis

of low risk in a new patient, especially if she has some uncertainty; she might reasonably

think that the model may have learned through the thousands of scans it was trained on

to pick up on very subtle features in scans that she may personally have missed.

A data-driven model would be especially useful to the doctor given that routine clin-

ical judgement has been shown to poorly identify pneumonia severity. One 1996 study

conducted in a New Zealand hospital found that clinical teams underestimated pneumo-

nia severity compared to a set of rules based on criteria published by the British Thoracic

Society in 1987. 20 out of the 250 studied patients with pneumonia died, and while the

BTS rules categorized 19 of them as having severe pneumonia, medical staff identified
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12 of them as having severe pneumonia, five as moderate, and two as mild (Neill et al.,

1996).

Yet despite their potential to aid human decision-making by learning from large

amounts of data, many machine learning models cannot currently be deployed in a safe

manner. This is because many of the most accurate models are represented by such com-

plex mathematical functions that they are essentially “black boxes": Even people who

have full access to the computations underlying a given model often cannot understand

its workings because of the number of its parameters. Such models are said to have low

interpretability. Very complex, uninterpretable models cannot be safely used even when

they have high accuracy because their opacity makes it difficult to determine whether

the models have achieved high accuracy by learning meaningful, general patterns in the

world or by exploiting problematic correlations in the data they were trained on, such

as discriminatory correlations or patterns present only in the specific subset of data they

were trained on that would not generalize to unseen data from another source. Even a

model with 95% accuracy on a held back sample of data may not necessarily produce

accurate predictions on new data if the new data is not adequately represented in the

training data.

Consider the following real-world example that highlights the dangers associated with

deploying black-box models: In 1997, Cooper et al. conducted a study to evaluate how

machine learning models could be used to predict the probability of death for patients with

pneumonia (Cooper et al., 1997). Such models, if successful, could be used to prioritize

hospital treatment for high-risk patients. The study trained and evaluated different types

of models, including logistic regression, a rule-based system, and neural networks, using

data on 14,199 inpatients discharged from hospitals in the United States between 1987

and 1988.

Of these models, a neural network, the least interpretable kind of model achieved

the highest accuracy. Yet, despite its accuracy, this neural network was never deployed
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because of a discovery made by the researchers in another model: They found that the

rule-based system had learned the rule that if a patient has asthma, the patient has a low

risk of death from pneumonia. It turned out that this correlation between asthma and a

low risk of death was an artifact that existed in the training data, since all patients with

asthma were referred by their doctors to intensive care units and thus received intense

care that lowered their risk of death. Since the neural network had been trained on the

same data as the rule-based system, the researchers figured that it too would have learned

this correlation and thus could not be actually used to aid medical decision-making.

Clearly, this correlation is not one we would want a deployed model to be using in

making its predictions, given that a history of asthma actually increases a patient’s risk of

death from pneumonia. Yet fragile correlations like this one exist in data everywhere, and

it is critical that we can rule out that a model is exploiting such a correlation before it is

deployed for real-world use; without ruling out this possibility, we cannot know that our

deployed model will make accurate predictions for novel data, which may not contain the

same correlations present in its training data. With interpretable models, transparency of

model logic comes built-in: In the described case, for instance, it was the interpretability

of the rules in the rule-based system that allowed the researchers to determine that the

models trained on the existing data could not be trusted. In contrast, with uninterpretable

models such as neural networks, the logic of the models themselves is not interpretable. In

order to answer questions such as whether someone with asthma would be more likely to

die from pneumonia than someone without asthma, we need some an independent method

of explaining model predictions.

While interpretable models trained on the same data can be used to understand train-

ing data artifacts to an extent, there is no guarantee that other uninterpretable models will

be exploiting the same patterns in data. For instance, in the particular study discussed,

researchers could infer that the neural network was likely untrustworthy models because

it had been trained on the same data as the rule-based system, which was found to be
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relying on a problematic correlation between asthma and probability of death; however,

even if they had not found any problematic correlations being exploited by the rule-based

system, it is possible that the neural network could have still learned other problematic

patterns in the data. Determining whether it indeed had would require the use of some

independent method of explaining what led to model predictions.

The need for such an explanation method is particularly important given that the

most accurate models are often the least interpretable: Very complex machine learning

models, such as neural networks with thousands of parameters, have more capacity to

capture patterns in data and thus make more accurate predictions than more simple,

interpretable models such as linear models and rule-based systems, which are limited

in the complexities in data they can represent. Thus, though model deployers always

have the choice of using an interpretable model, this choice comes at the cost of model

accuracy and performance. Having a method of explaining even uninterpretable models

would mean we could benefit from complex models’ high capacity to represent data while

also knowing whether and how they should be used. A model such as a neural network

could be deployed, for instance, if doctors could have explanations of how features–such as

asthma–contributed to a prediction–such as low/high-risk–for a given prediction. Then, if

a doctor were deciding whether or not to send a patient home or send them to an intensive

care unit, she could know not to trust the prediction.

There are additional cases where explanations of model predictions would be useful. In

the domain of criminal justice, models that have been trained to predict recidivism rates,

or a convicted criminal’s likelihood of recommitting a crime, are currently being used in

courtrooms to determine convicts, bond amounts and determine sentences. A judge who

is deciding the sentence for a convict for whom a recidivism model gave a prediction of

high risk would need an explanation of its prediction to ensure that it was not in some way

discriminatory. If the prediction of high risk were driven by a legally protected attribute

such as the convict’s race, the judge may want to disregard the prediction. Thus, she
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would find use in an explanation that could point out the extent to which features such

as race causally influenced the model prediction.

In the financial industry, models are currently being used to predict loan candidates’

likelihood of loan repayment. For a candidate denied a loan from a bank employing such

models, an explanation of the model’s prediction would give information to the denied

candidate about what actions could be taken to change the model’s prediction in the

future.

These three different settings in which explanations would be helpful highlight the

need for a method of explaining the predictions of black-box models if they are to be

deployed. In this thesis, I consider what kinds of explanations we would want in each of

these settings and develop a methodology for creating them; I will eventually argue that

different sorts of explanations are useful in different contexts. The specific kind of model

that will be considered in this thesis is a classifier, which assigns labels–such as low/high

risk–to different input data. In Section 2, I discuss features of the kinds of explanations

we would want and use these features to motivate adopting a particular kind of theory of

explanations. In Section 3, I outline this theory, Woodward’s counterfactual account of

causal explanation. In Section 4, I argue for the use of linear models as explanations and

contrast them with explanations consisting of counterfactual conditionals. In Section 5, I

argue that different types of explanations are best suited for different contexts.

1.2 Desiderata for Explanations

The three outlined scenarios in which explanations of model predictions would be useful

highlight three distinct uses of explanations–to determine whether a prediction was made

in a discriminatory manner, whether a prediction was influenced by meaningless artifacts

of data, and how a prediction can be changed in the future.

At the heart of each of these three kinds of explanations is the idea of causality: That

is, a good explanation in each of these contexts would pick out the features that causally
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influenced the prediction and describe their causal influence. With causal explanations,

we could determine whether the causal influences on the model’s predictions are trust-

worthy by comparing them with the causal structure of the phenomena being modeled

in the world. Thus, the first requirement for explanations in the described cases is that

they preserve and highlight causal relations between features of input data and model

predictions.

A second requirement is that the explanations be simple enough to comprehend. The

reason why the mathematical computations underlying the model’s predictions, which de-

scribe the causal relationships of interest between model features and output predictions,

cannot themselves be the explanations is that they are too complex for people to grasp.

Lastly, we can distinguish between model explanations in terms of their scope. An

explanation can apply to different subsets of the data, which can range in size. At one

extreme, an explanation’s scope could consist of only inputs very similar to a given input,

or it could consist of all possible inputs a model could receive. It is necessary to dis-

tinguish between these types of explanations because the specificity of the explanations

will vary greatly by scope. For instance, suppose we had a model–call it M_loan–that

was trained to predict someone’s likelihood of paying back a loan based on two features,

dist_from_center, representing the distance a person lives from the city center in miles,

and savings_balance_thousands, representing how many thousands of dollars they have

in their savings account. Suppose the following logic described how the model made its

predictions:

if dist_from_center < 3 or >= 65:
return high

else if savings_balance_thousands > 30:
return high

else:
return low

Suppose this model made the following two predictions: Upon input x1:
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[savings_balance_thousands = 28, dist_from_center = 22], the model predicted

y1 = low, and upon input x2:[savings_balance_thousands = 5, dist_from_center

= 64] the model predicted y2 = low. The following figure depicts where x1 and x2 fall

on the model’s decision boundaries, or regions of input space partitioning inputs into

different classes of predictions; the red region corresponds to the region of input space

where the model predicts low likelihood, leading to a rejection of loan application, and

the green region corresponds to the region of input space where the model predicts high

likelihood, leading to an acceptance of loan application.

Good explanations of y1 and y2 would pick out different features as being causally

influential. A good explanation of y1 would highlight that savings_balance_thousands

had a stronger causal influence on the model’s prediction than did dist_from_center,

since slight changes to savings_balance_thousands but not dist_from_center would

result in a different model prediction; on the other hand, a good explanation of y2 would

pick out dist_from_center, rather than savings_balance_thousands, as a causal con-

tributor.

These individual explanations of y1 and y2 are examples of local explanations, or

explanations of particular predictions. They are useful in deciding what actions should be

9



taken in response to those particular predictions. The person represented by the instance

x1 who received a prediction of low might want to know, for instance, that it was his

savings account balance, rather than how far he lived from city center, that most strongly

influenced the model’s assessment of his likelihood of loan repayment, since he could

know based on this knowledge to focus on saving more money over the next few years;

furthermore, this person would not find use in an explanation for y2, since he would

not get insight into how to receive a loan from the knowledge that dist_from_center

strongly influences the predictions for people who live far away from the city center. The

explanation of y1, rather than an explanation of some other aspect of the behavior of

M_loan, such as its behavior across other inputs, is what would be most of use to the

person represented by x1. Thus, in this case, it is local explanations, rather than global

explanations–or explanations of model behavior across many predictions–that are needed.

There are analogous uses of model explanations that specifically require local expla-

nations in the contexts of medical diagnosis and recidivism prediction as well. A doctor

who has been given a model’s prediction of an asthmatic patient’s likelihood of dying

from pneumonia might want to know whether the patient’s asthma influenced the pre-

diction in a medically sound way; information about how a prediction for a very different

patient–such as one of a different age–would not help answer this question. Similarly,

a judge interested in determining whether a model’s prediction of a convict’s recidivism

likelihood was influenced by a protected attribute, such as the person’s race, would care

about the attribute’s causal influence on that particular prediction.

Not only do local explanations uniquely satisfy certain needs for explanations such as

the ones just described, but also they provide the building blocks for global explanations.

An explanation meant to apply to both y1 and y2 would have to build upon the individ-

ual explanations for y1 and y2 in some way, either by pointing out the different causal

influences of the features for each of the two inputs or combining them in some way (such

as through the use of an average). The same is true for explanations meant to apply to
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more than two inputs. The question of how best to build global explanations from local

explanations remains open: Does a feature count as a global causal contributor to model

predictions if it is a local causal contributor to some, most, or all predictions? However,

regardless of the answer to this question, since local explanations of features’ causal in-

fluence play a critical role in determining their global causal influence, local explanations

are valuable.

I do not deny that global explanations can provide useful insight into machine learning

models; however, questions about the kinds of insight they provide and about how they

should be constructed from local explanations are questions that I will put aside for this

thesis. I will be limiting the scope of this thesis to local explanations of particular predic-

tions rather than of general model behavior for the two reasons outlined: the usefulness

provided by their specificity and the critical roles they play as building blocks of global

explanations.

To summarize, in this thesis, I will be focusing on local explanations of particular

predictions which are causal and comprehensible. I will ultimately argue that linear

model approximations derived through sampling methods function as the appropriate

local, causal, and comprehensible explanations; this argument makes use of an account of

causal explanation offered by James Woodward. I will also discuss limitations of linear

models and propose a way of dealing with these limitations, which appeals to certain

properties determined by the contexts in which the explanations are being used.

Before outlining what such linear model explanations look like and arguing for their

merit, I describe an account of causal explanation, which first lays out and builds upon an

account of how to determine causality between variables. An account of causality which

allows us to be precise about what it means for a feature to influence a model prediction

is necessary to have an account of causal explanation which allows us to evaluate explana-

tions by their ability to pick out causal relationships. As illustrated by the consideration

above of y1 and y2, we do not consider all features that a model receives as inputs to
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be equal causal contributors to the model’s predictions and thus to have equal weight

in causal explanations. Thus, we need criteria for what exactly it is that makes certain

features causal contributors and other features not. In the next section, I lay out the

causal criteria of James Woodward and discuss how they can be applied to the endeavor

of explaining features’ causal influences on model predictions.
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Chapter 2

An Account of Causal Explanation

In my thesis, I will be building upon counterfactual theories of causation, which derive

causal notions from counterfactual conditionals. At the heart of such theories is the idea

that the causal influence of one variable X on another variable Y can be determined by ob-

serving whether specific kinds of alterations to X produce changes in Y . This idea is able

to explain our intuitions about the differing influences of savings_balance_thousands

and dist_from_center on y1 in the case of M_loan: savings_balance_thousands

strongly influences y1 while dist_from_center does not because slight alterations to

savings_balance_thousands but not dist_from_center lead to a change in model pre-

diction. The same reasoning can be applied to derive the stronger causal influence of

dist_from_center than savings_balance_thousands on y2.

The specific theory I will be working with in this thesis is James Woodward’s account

(Woodward, 2003), which offers both an interventionist account of how to determine

causation and an account of how to assess causal explanations in terms of interventions.

There are four notions central to Woodward’s account of causal explanation: general-

izations, interventions, causal relationships, and testing interventions. Woodward’s high-

level goal is to be able to account for what makes some generalizations–or relationships

between changes in different variables–true causal explanations. To do so, he relies on

the notion of interventions, which are experimental manipulations made on some variable

X with respect to some target variable Y which can be used to derive the nature of the
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causal relationships between X and Y . Causal relationships are derived through the use

of interventions, and generalizations are evaluated through a specific kind of intervention

called a testing intervention.

Woodward’s view is that generalizations describe true causal relations if they are

invariant, or stable and continue to hold, across a specific kind of intervention: testing

interventions. Furthermore, he holds that among true generalizations, some have more

explanatory power than others: A generalization’s explanatory power is determined by the

range of its invariance over interventions, including testing and non-testing interventions.

It is important to note that explanatory power differs from the significance of a causal

relationship between two variables: The latter is determined through interventions on

just the two variables of the causal relationship, while the former is determined through

interventions on any variables featuring in the generalization.

The requirements that Woodward lays out for a generalization to qualify as true and

effective causal explanations are ones that I will eventually argue linear models derived

from a sampling-based method satisfy. But before describing these requirements, I offer an

explication of Woodward’s interventionist account of causation, since Woodward’s notion

of interventions is a central building block in Woodward’s account of how we should think

about causal explanation.

2.1 An Intervention-Based Account of Causality

According to Woodward, what it means for a variable X to cause another variable Y is for

there to be some intervention on X that would change the value of Y . An intervention on

a variable X with respect to a variable Y is a special kind of experimental manipulation

of X which makes it the case that a change in Y can only come about through the

manipulation of X and not through some other causal route (94). Interventions on X

with respect to Y can be used to determine the existence of a causal relationship between

X and Y in the following way: If there is some intervention on X which produces a
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change in Y , then Woodward holds that a causal relationship between X and Y exists.

Woodward offers the following example of an intervention (98): Researchers are inves-

tigating the causal relationship between treatment with a drug (T ) and recovery from a

disease (R). They have access to a population of subjects with the disease. Interventions

that could be used to investigate the causal influence of the drug on recovery would be

the administration or lack of administration of the drug to subjects; if the intervention

of drug administration, which would set the value of T , did lead subjects to recover, a

causal relationship between T and R could be inferred.

Not all manipulations of T would count as legitimate interventions, however. Wood-

ward points out that if subjects learned whether they were administered the drug in the

manipulations, the interventions could affect R independently of T through the effects

of placebo, and so we would not be able to determine the causal effect of T on R (98).

Woodward lists a series of technical requirements for a manipulation on X to count as an

actual intervention; these requirements are meant to address non-intervention manipula-

tions like the one described that may, because of the causal structure of the world, result

in changes to Y that come about through a causal chain except the directed causal path

from X to Y .

I now define these technical requirements and Woodward’s notion of an intervention

more precisely. Woodward introduces the notion of an intervention variable when defining

interventions. I qualifies as an intervention variable for X with respect to Y if and only

if:

I1) I causes X.

I2) I acts as a switch for all other variables that cause X. That is, certain

values of I are such that when I attains those values, X ceases to depend

on the values of other variables that cause X and instead depends only on

the value taken by I.
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I3) Any directed path from I to Y goes through X.

I4) I is (statistically) independent of any variable Z that causes Y and that is

on a directed path that does not go through X.

Woodward then provides the following definition of an intervention :

(IN) I’s assuming some value I = zi is an intervention on X with respect to Y if

and only if I is an intervention variable for X with respect to Y and I = zi

is an actual cause of the value taken by X.

In the case of determining whether T has a causal effect on R, setting T through drug

administration that involved telling subjects whether they received the drug would violate

I3, since it would affect the value of R through a path that did not go through T–a path

involving placebo effects (98). I2 ensures that any interventions on drug treatment entirely

determine the value of T ; so, for instance, if patients normally have the choice to take or

not take the drug, the intervention breaks the connection between this voluntary choice

and whether they receive the drug (97). And I4 is meant to ensure that the interventions

on drug treatment are not correlated with other causes of recovery, which would be the

case if patients receiving treatment had stronger immune systems than those not receiving

treatment (97).

2.2 Making Interventions on Features

In this section, I discuss how interventions can be used to draw causal claims between

input features and model predictions. I first offer a sketch of this application and show

how manipulations of feature values qualify as Woodwardian interventions. I then argue

that simple interventions cannot be used to derive all of our desired causal claims.
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2.2.1 A Sketch

The technical requirements laid out by Woodward are met by the sorts of manipulations

we would be making to determine causal relationships between input features and model

predictions, since it is possible to make completely isolated manipulations of features

that do not alter the causal relationships between other features and model predictions.

In order to determine the causal influence of a feature F on a model’s prediction P

with a Woodwardian intervention, we could alter the value of the feature and see if the

model’s prediction changed. In such an alteration, the intervention variable I would be

the alteration to the value of F of the original input. Such an alteration would meet I1,

since the alteration would cause F to take on a certain value. It would meet I2, since it

would entirely determine the value of F . Additionally, altering the value of F could not

have an effect on P other than through the change in value of F , given that we are making

a completely isolated change to the feature of interest; thus, this sort of alteration would

meet I3. And lastly, this alteration would fulfill I4, since it is a controlled alteration and

so is not correlated with any other cause of Z.

To make clear how such an intervention could be made, let’s return to

the toy model M_loan. Suppose we wanted to determine whether the vari-

able savings_balance_thousands influenced prediction y1 = low for input [x1:

savings_balance_thousands = 28, dist_from_center = 22]. Recall that the model

has the following logic and decision boundary:

if dist_from_center < 3 or >= 65:
return high

else if savings_balance_thousands > 30:
return high

else:
return low
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Changing savings_balance_thousands from 28 to 31 would result in y1 to change

from low to high. This intervention would, on Woodward’s account, enable us

to conclude that savings_balance_thousands does causally influence the predic-

tion, since what Woodward would require is that there be some intervention on

savings_balance_thousands that leads to a change in model prediction to high. Thus,

though there exist other interventions on savings_balance_thousands that would not

lead to such a change in model prediction, such as changes setting it to 29 or 30, the

existence of at least one intervention that leads to a change in model output is enough to

derive a causal relationship between savings_balance_thousands and y1.

Furthermore, interventions can be used to compare the strengths of causes. In this par-

ticular example, interventions on savings_balance_thousands and dist_from_center

could be used to conclude that savings_balance_thousands had a stronger causal in-

fluence than dist_from_center on y1. The minimum change in dist_from_center

that would result in a different model prediction of high would be a change from 22

to 2, a change of 20 miles. On the other hand, the minimum required change in val-

ues for savings_balance_thousands is the change from 28 to 31 thousand dollars. In

order to compare the magnitudes of these changes, we would normalize the feature val-
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ues in these interventions using the means of each feature; this normalization equal-

izes the units of change we are comparing for different features. Suppose the mean

dist_from_center across all instances in the training data were 50, and suppose the

mean savings_balance_thousands were also 50 (in thousands). Then we would com-

pare the magnitudes of values 22/50−2/50 (for dist_from_center and 28/50−31/50 (for

savings_balance_thousands), or 0.4 and −0.06. Since 0.06 < 0.4, we could conclude

that savings_balance_thousands had more causal influence on the prediction y1 than

did dist_from_center. Comparisons across the minimum interventions on features that

will result in changed model predictions can thus in this way be used to derive features’

relative causal influence.

2.2.2 Limitations: Causal Irregularities and Overdetermination

At this point, I would like to address a natural question which may arise: Since interven-

tions can be used to derive causal relations, why do we need generalizations such as linear

model approximations to explain model predictions at all? It might be thought that the

causal relationships derived from interventions on different features can function as causal

explanations.

My answer to this question is the following: Though interventions can be used to de-

termine whether causal relationships exist, single interventions cannot straightforwardly

function as explanations in two sets of cases: cases where the causal relationships are sub-

ject to irregularities and cases of overdetermination. According to the view put forward,

a causal relation between a feature and a prediction holds if there is some intervention

on the feature that produces a change in prediction. I will show that this view fails to

derive the appropriate causal relationships in two sets of cases: cases where the causal re-

lationships are subject to irregularities and cases of overdetermination. Though there are

ways to modify Woodward’s account to derive the appropriate causal relationships using

interventions in these cases–namely by aggregating information given by many different
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interventions–this comes at the cost of cognitive convenience. Furthermore, I will later

argue that linear models implicitly do this aggregation and are cognitively convenient to

understand.

Causal Irregularities We want the causal claims that we draw about features and

model predictions to pick up on underlying patterns in how features influence model

predictions. Let us return to the endeavor of explaining the relative strengths of the

causal influences of dist_from_center and savings_balance_thousands on y1. But

suppose the decision boundaries of M_loan were slightly different so that it looked like

the following:

Before, I suggested that we could conclude that savings_balance_thousands has

a stronger causal influence than dist_from_center on y1 by observing that the mag-

nitude of the (normalized) minimum change to savings_balance_thousands required

to change y1 is smaller than the magnitude of the (normalized) minimal change to

dist_from_center required. However, if the model were characterized by the current

decision boundaries, this observation would not be true: Interventions of equal numerical

magnitude on both dist_from_center and savings_balance_thousands would result
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in changes to y1; specifically, changing dist_from_center from 22 to 23 would result in

a change to y1. (And because the means of both features are assumed to be the same as

described earlier, the magnitudes resulting from comparison with normalization are also

equal.)

Yet I take it that our intuition in this case is that savings_balance_thousands

still has a stronger causal influence than does dist_from_center, since the interven-

tion changing dist_from_center from 22 to 23 is the only one that would cause a

change. Besides this single exception of an intervention, it is true that small interven-

tions on dist_from_center (which are the ones relevant for determining local causal

relationships) do not lead to changes in y1. We would not want to say that there is the

same sort of causal relationship between dist_from_center and y1 as the one between

savings_balance_thousands and y1, as is suggested by the equal magnitudes of the

minimal prediction-changing interventions for both features.

As an analogy, consider the following example, inspired by one formulated by Dupré

(1984): Suppose that in the real world, there is a very rare strain of strawberries, present

in .1% of the world’s strawberries, that when eaten strongly increases people’s chances

of getting stomach cancer. Suppose someone is trying strawberries for the first time.

There are some strawberries, specifically .1% of all possible strawberries, that this person

could eat which would causally influence the person’s getting stomach cancer. But the

person could eat almost all strawberries and not have her risk of getting stomach cancer

change at all. In such a case, we would not conclude that the causal relationship between

eating strawberries and getting stomach cancer is that eating strawberries causes stomach

cancer, even though this causal claim would hold if certain rare strawberries were eaten.

Rather, we would conclude that eating strawberries does not cause stomach cancer and

that there are rare exceptions to this causal relationship.

Similarly, in the case described here, we would not want to conclude from the single

local intervention on dist_from_center changing its value from 22 to 23 that there
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is a causal relationship between dist_from_center and model predictions. We would

instead want to conclude that dist_from_center does not locally causally influence y1,

though there is an exception to this lack of causal relationship. We would thus want to

distinguish between the causal claims drawn about the more regular causal relationship

between savings_balance_thousands and y1 and the less regular causal relationship

between about dist_from_center and y1 holding over only one local intervention.

More generally, we want the causal claims we draw about the relationships between the

features of x1 and y1 to reflect the underlying regularities of these relationships.1 What

this example highlights is that merely finding some intervention on a feature that produces

a change in model prediction is not enough to conclude that the causal relationship

between them is regular.

In order to derive causal relations with the appropriate regularities through interven-

tions, we could modify Woodward’s requirement for a feature to causally influence a model

prediction that there be some intervention on a feature that will bring about a change in

prediction to the requirement that there be a range of interventions to the feature that

will bring about a change. In fact, this is precisely the proposal that David Lewis (2000)

makes. But once we have information from ranges of interventions, we need some way of

aggregating that information, which I will argue is just what linear models do.

Overdetermination. Whenever there are two or more features that are sufficient to

cause a given result, the kinds of Woodwardian interventions on those features just dis-

cussed, which alter one of those features while keeping other features fixed, will fail to

uncover the causes, since the other unaltered feature will still sufficiently cause the model

prediction towards the original prediction.

For instance, suppose we wanted to explain y3, the prediction of high made by M_loan

on instance x3 = [savings_balance_thousands = 31, dist_from_center = 65], de-

picted below.
1A lengthier discussion of why causal robustness is desired can be found in Section 3.4.1.
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This is a case of overdetermination since the values of both

savings_balance_thousands and dist_from_center are independently sufficient

to produce the prediction of high. The sufficiency of savings_balance_thousands =

31 in causing the prediction can be seen by the fact that across all possible changes to

other features–in this case the only other feature is dist_from_center–the prediction

would still be high; that is, across all changes to the vertical position (dist_from_center)

of x3 that keep the horizontal position (savings_balance_thousands) of x3, fixed

the prediction remains the same. Similarly, dist_from_center = 65 is sufficient

to bring about the prediction because the prediction would not change across any

changes to the other features of x3, which here include just x3’s horizontal position

(savings_balance_thousands).

Because the values of both savings_balance_thousands and dist_from_center are

sufficient to bring about the prediction, they both causally influence the model’s pre-

diction. However, the simple approach of using single Woodwardian interventions to

infer causal relationships would fail to uncover their causal influences. In order to de-

termine the influence of savings_balance_thousands, we should, according to Wood-

ward, make slight alterations to its value while keeping the values of other features fixed
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and see whether there exists some alteration that leads to a change in model predic-

tion. Yet, as just discussed, no such alterations would bring about a change, since the

value of dist_from_center was also sufficient to bring about a change. Thus, the lack

of an intervention on savings_balance_thousands that would cause a change in y3

would appear to suggest the wrong conclusion–that savings_balance_thousands did

not causally influence y3. Similarly, no intervention on dist_from_center would lead to

a change in y3, since the value of savings_balance_thousands is also a sufficient cause

of y3 = high. Thus, interventions would fail to highlight the causal influences of both

savings_balance_thousands and dist_from_center on y3.

It is important that we can draw causal claims about causes in cases of overdetermi-

nation in all three uses of explanations outlined earlier: deciding future actions based on

a prediction, determining whether a model made use of protected attribute in reaching

a prediction, and determining whether a model prediction was influenced by meaningless

artifacts in data.

As an illustration of the first case, suppose a person received an output from a loan

repayment prediction model that predicted she had a low likelihood of paying back the

loan and she wanted to figure out how to change the model’s prediction in the future. As

in the just discussed example where causal claims derived from Woodwardian interven-

tions failed to highlight the causal influences of both savings_balance_thousands and

dist_from_center on y3, if the prediction were sufficiently influenced by two features,

an explanation that failed to uncover causes in cases of overdetermination would fail to

highlight either of the two features, and she would be left with no information about what

actions to take to change the model’s prediction, even if such actions existed.

As an example of the second kind of use of explanation, suppose a judge is trying to

determine whether a prediction made for convict’s likelihood of recidivism was influenced

by the convict’s race. If the convict’s race and the value of another feature, such as the

nature of the convict’s crime, were both sufficient causes of the prediction, an explanation
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that failed to uncover causes in cases of overdetermination would fail to highlight that

a protected attribute, race, did in fact influence the model’s prediction. In fact, the

explanation would fail to highlight either of the sufficient causes as causes.

Lastly, suppose a doctor wants to verify that a prediction of a patient’s low risk of death

from pneumonia was made in a medically sound way by making sure that the patient’s

asthma correctly increased the person’s risk of death. Suppose the model actually did not

learn the correct relationship between asthma and pneumonia-induced mortality and had

in fact learned a relationship with an opposite causal direction than the true one in the

real world, and so it in fact was the case that the person’s asthma pushed the model’s

prediction towards a decreased risk of death. Now suppose the patient is old, and so the

model’s prediction had two sufficient causes: the patient’s asthma and the patient’s age.

In such a case, an explanation that failed to highlight causally influential features in cases

of overdetermination would fail to highlight the critical information that the patient’s

asthma actually influenced the prediction in a medically unsound way.

In order to use interventions to find causes in cases of overdetermination, we could con-

sider expanding the notion of interventions to apply to combinations of features. For in-

stance, we could intervene on both savings_balance_thousands and dist_from_center

to see whether y3 changes in response to pair-wise interventions. We might discover with

such pair-wise interventions that changing savings_balance_thousands from 31 to 30

while also changing dist_from_center from 65 to 64 would lead to a change in model

prediction. From this pair-wise intervention, in combination with the knowledge that no

intervention on one of the two features results in a change to y3, we could conclude that

both savings_balance_thousands and dist_from_center had causal influences on y3.

It seems like intervening jointly on multiple features in addition to intervening on

single features gives us a way to address the issue raised about interventions’ inability to

uncover features that are causally relevant when there exist multiple sufficient causal fea-

tures. However, it is unclear how to actually execute such joint interventions, especially
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when the number of features is high. While intervening on pairs of features seems feasi-

ble, intervening on more than two features at a time is a computationally difficult task,

given that there are many ways of intervening on multiple features–There are different

groups of features that can be chosen, and for each, different ways of setting the values

of each individual feature. It would be computationally intractable to execute all such

interventions.

Furthermore, even if we did have a way of executing all, or most, of such interventions,

it would still remain an open question how to derive causal claims from these interven-

tions and their results. Introducing joint interventions into the mix of interventions to

derive causal claims from only increases the need for aggregation of information across

interventions, as well as the likelihood of finding causal irregularities of the sort previously

discussed. Suppose we had a model that acted on 3 features instead of 2: [f1, f2, f3,

..., f15], and suppose the values of f1, f2, and f3 were each sufficient to bring about

the prediction made on a particular instance. In order to use interventions to uncover

each feature’s causal sufficiency, we would need to obtain the following results: that no

intervention on an individual feature brought about a change in model prediction, that

no intervention on pairs of features brought about a change in model prediction, and that

some intervention on all three features brought about a change in model prediction. But

if there were one (and only one) intervention on f1 and f2 that caused a change in model

prediction, would f3 not count as a sufficient cause? It seems like this case would also be

a causal irregularity that we would not want to affect the conclusion we drew about f3’s

causal influence. What I am trying to highlight is that considering joint interventions only

exacerbates the need for our explanations to rule out irregular instances of counterfactual

dependence of model predictions on features.

At a high-level, the discussions of both causal irregularities and overdetermination

highlight that we need to aggregate over interventions to get appropriate causal insight

from them. But this need for aggregation is precisely what gives rise to the need for
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generalizations, or relationships which relate changes in different variables and are meant

to capture underlying causal patterns. I will argue that linear model explanations do

this aggregation and thus can be used to derive causal relationships even in cases of

overdetermination and causal irregularities. But before doing so, I turn to Woodward’s

account of generalizations.

2.3 An Invariance-Based Account of Explanations

Woodward seeks to explain what makes some generalizations–or relationships between

changes in the values of one or more variable and changes in the values of another–qualify

as legitimate causal explanations of the phenomena they model and others not. He wants

to explain what it is that makes the law of gravity a true causal law, for instance (101).

To do so, he appeals to his notion of interventions.

According to Woodward, “invariance under at least one testing intervention (on vari-

ables figuring in the generalization) is necessary and sufficient for a generalization to

represent a causal relationship or to figure in explanations,” where a testing intervention

is a particular kind of intervention which changes an independent variable in a general-

ization enough so that the dependent variable in the generalization is predicted to change

(250). By a generalization’s invariance, Woodward means its reliability: That is, a gener-

alization is invariant over an intervention or testing intervention if it produces the correct

value for its dependent variable even when when that change is made.

The requirement that generalizations be invariant over testing interventions specifically

ensures that the causal structure asserted by a generalization actually exists. To show

how testing interventions specifically give us such insight, consider the following example

offered by Woodward of an equation meant to describe the causal relationship between

whether a light is on or off and the angular displacement of the light switch:

L = [q]
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L is a variable that represents whether the light is on (L = 1) or off (L = 0), q

represents the angular displacement of the switch in radians, and [] represents the floor

function, which outputs the greatest integer less than or equal to its input, such that

[1.677] = 1. According to this equation, the light switch turns on when the switch is at a

position of 1 radian (about 57.3 degrees), or higher.

Suppose the position of the switch was at 15 degrees and we wanted to determine

whether the equation were a true causal explanation of the relationship between the

light’s being on/off and the angular displacement of the light switch. In order to do

so, according to Woodward, we would have to determine whether it was stable over a

testing intervention on one of the variables featuring in the equation–in this case, q.

An intervention that changed the switch position to 56 degrees would not be a testing

intervention, since according to the equation the value of L is not predicted to change.

On the other hand, an intervention that changed the switch position to 58 degrees would

qualify as a testing intervention, since it would project that the light would turn on.

Woodward argues that the equation must be invariant over this latter sort of intervention–

the one changing the switch position to 58 degrees–in order for the equation to be a true

causal explanation because only under that circumstance would the equation capture the

causal relationship between the value of L and the value of q. If we accept Woodward’s

characterization of causation in terms of interventions, what it means for q to causally

influence L is for there to be some intervention on q for which L changes. The testing

intervention setting q to 58 is predicted by the equation to be exactly this sort of inter-

vention. Thus, the equation relating L and q must be invariant over this intervention

to ensure that the causal relationship between L and q asserted in the equation actually

exists–that is, that the causal relationships asserted by the equation capture the true

causal relationships it seeks to model.

On the other hand, the intervention changing the switch position to 15 degrees does

not suffice to make the equation causal, since the lack of change predicted by the inter-
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vention would be compatible with a generalization other than the equation offered–the

generalization asserting that the light switch is broken. If the light switch were actually

broken, the equation could be invariant over–or give the correct prediction for–the inter-

vention setting the value of q to 15 degrees (by properly predicting that the light would

not turn on) while still not describing the actual lack of causal relationship between L

and q. Thus, this intervention would not give insight into whether the equation captured

the underlying causal relationship between q and L; we could only obtain this insight

through an intervention for which the equation would predict a change. More generally,

we can only know that a generalization captures true causal relations if it is invariant over

change-predicting testing interventions.

Though invariance over a single testing intervention is what allows us to determine

that a generalization describes a true causal relationship between variables, invariance

over testing interventions has an additional purpose: It gives insight into the robustness

of the asserted causal relationship. That is, testing interventions can be used to determine

not only whether the causal structure asserted by a generalization holds at all (as just

described), but also the extent to which that causal structure is stable. Consider Wood-

ward’s example of the generalization of the ideal gas law, which describes the relationships

between volume V , pressure P , gas temperature T , the amount of substance of gas n (in

moles), and R, the ideal gas constant:

PV = nRT

According to Woodward, this generalization is a true causal explanation because it

is invariant under some testing interventions on T . However, it is not invariant under

all interventions on T–If T is increased sufficiently, intermolecular forces between the gas

molecules which are otherwise negligible become significant, and so the generalization

will not produce the correct predictions for P or V . Only an intervention on T that set

the temperature sufficiently high would allow us to determine that the causal structure
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asserted by the ideal gas law breaks down at high temperatures. It is thus a range of

testing interventions that allows us to determine how invariant a generalization is.

Woodward also acknowledges that invariance over non-testing interventions contributes

to the explanatory power of generalizations. Better explanations will be invariant not only

over a range of testing interventions, but also a range of other changes in variables. This

is because generalizations that are more invariant can be applied to new situations beyond

the specific “evidential context” in which it was discovered (296). For instance, the ideal

gas law is a good explanation because it holds over a range of changes: It is invariant over

many testing interventions setting the values of T , V , and n, and P and only breaks down

when these testing interventions cross a certain threshold. The ideal gas law would have

substantially less explanatory power if it only held for gases in a particular container.

This two-fold idea–that (1) a generalization’s invariance over testing interventions de-

termines whether it is a causal explanation at all and (2) the range of a generalization’s

invariance over both testing interventions and changes that are non-testing-interventions

determines its explanatory power–will be critical to my argument that linear model ap-

proximations can be good explanations for a few reasons. (1) defines a requirement for

linear models to function as good explanations of model predictions–that they are invari-

ant over local testing interventions; this is something I will show. (2) provides a framework

for creating criteria to choose between linear models, which I will outline later.

In the next section, I will show argue for the use of linear model approximations as

appropriate explanations of model predictions. I will argue first that linear models meet

the requirement outlined by (1) by showing that they are designed to be invariant over

testing interventions. I will then argue that using linear models as explanations overcomes

the shortcomings of using mere testing interventions. I will then discuss limitations of

linear models and offer a way of dealing with such limitations, which involves using the

framework provided by (2).
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Chapter 3

Linear Approximations as Causal
Generalizations of Model Predictions

One useful class of generalizations that can function as explanations of complex models

is the class of linear generalizations, which assign weights to input features and describe

model predictions in terms of a weighted sums of these features. In fact, the idea of

using linear approximations as explanations of model predictions has been explored in

previous computational work. Most notably, Ribeiro et al. (2016) introduced a method

called LIME, or local interpretable model-agnostic explanations, which produces linear

model approximations using local sampling; they argue that such approximations can be

thought of as explanations of model predictions.

In this chapter, I consider whether linear approximations derived through methods

like LIME count as explanations in a philosophical sense. I build upon the account of

causal explanation offered in Chapter 2 to argue that in many explanatory contexts,

linear approximations derived through local sampling methods can function as effective

causal generalizations. I also discuss the limitations of such linear approximations as

explanations and ways they can be addressed. I begin in Section 3.1 with a discussion of

what linear approximations derived through local sampling look like and show how they

are designed to be locally invariant over testing interventions.
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3.1 Local Invariance over Testing Interventions

LIME works in the following way: It samples points near the instance x being explained

and weights them by their distance to x, where the distance metric used is a Euclidean

distance metric based on feature values. A linear regression model is then fit to these

weighted sampled points.1

The key point exploited by LIME and highlighted in the image below is that the

decision boundaries–or regions of input space partitioning inputs into different classes

based on model outputs–of even very complex, non-linear classifiers are often linear within

small regions of space.2 An example of a complex model’s locally linear behavior and the

learned linear approximation in the local linear region are shown in the figure below:

In this figure, the bold red cross represents the point of interest being explained, while

the other red crosses and blue dots represent predictions of different classes made by the

model. The axes correspond to two features of the input data, the red and blue regions

correspond to the subspaces of the data for which the model’s predictions are negative

and positive respectively, and the bold red cross represents the prediction being explained.

Samples’ weights are shown by size of crosses/dots. The linear approximation obtained

through LIME for the point of interest being explained is represented by the dashed line.
1For a more technical discussion of how LIME works, see Section 5.2.3.
2For a more technical discussion of the local linearity of non-linear models’ decision boundaries, see

Section 5.1.
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The linear approximation in this figure captures the patterns of counterfactual depen-

dence of model outputs on input features. In other words, it is invariant over interventions,

some of which are testing interventions. The alterations that are testing interventions in

this image are those that consist of alterations to an individual feature that result in a

change in model prediction. And we can see that the linear model is invariant over at

least some of these testing interventions: There are testing interventions consisting of

slight additions to the horizontal position of the red cross that would, according to the

linear model, result in a different prediction (blue); these testing interventions also result

in an actual change in model prediction. The linear model would similarly be invariant

across interventions to the vertical position of the red cross–namely, those consisting of

subtractions from the vertical position. Though there are also some testing interventions

for which the linear approximation is not invariant, recall that Woodward’s requirement

is that there be only some interventions for which it is, not that the linear approximation

be invariant over all testing interventions.

I claim that the above approximation’s invariance over testing interventions is not co-

incidental: Rather, invariance over testing interventions is in fact built into linear approx-

imations derived from sampling-based linear approximations like LIME. This is because

such linear models are fit to points near a model’s decision boundary, which are just those

alterations which lead to a change in model’s output.

Let us return to the example of M_loan to see how a linear approximation derived

through sampling would be invariant over testing interventions, l. Depicted below are the

equation and graphical depiction of the linear model explanation that would be returned

for the prediction y1, where sign() represents the function that returns green if > 0

and red if <= 0:.

y = sign(savings_account_balance - 30)
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In the figure, the white dots represent the sampled points represent testing inter-

ventions, since they are changes to a single feature (specifically dist_from_center) that,

according to the linear model, are expected to produce a change in model output. (Graph-

ically, we can see that the linear model predicts changes in model output for these white

dots since they are on the right side of the line.) My point here is that the white sampled

points are points that the linear model was designed to produce the correct predictions

for, since they were points that the linear model was fit to. In other words, the linear

model was produced in a way that prioritized invariance over testing interventions (the

white points). And if it is true that built into the process of fitting a linear model with

a sampling-based method is an implicit prioritization of invariance over testing interven-

tions, linear models learned through sampling can count as true causal explanations on

Woodward’s account of causal explanation.

The upweighting of testing interventions in linear approximations derived through

LIME is implicit: Because points are weighted by distance to the original point, samples

which only modify individual features, rather than ones that modify combinations of fea-

tures, will have higher weights, since they will generally be ‘closer’ to the original instance

than the result of an alteration to that feature and another. However, this upweighting
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need not be implicit: The invariance of sampling-based linear approximations over testing

interventions can increased through the explicit upweighting of testing interventions. This

is only one of a few ways in which linear approximations derived through sampling can

be improved upon to create better linear model explanations of model predictions. In

Section 3.5, I offer some additional context-dependent considerations for creating better

linear model explanations. I now turn argue for additional reasons that sampling-based

linear approximations are effective explanations of model predictions. For the sake of sim-

plicity, when I refer to linear approximations throughout the remainder of this chapter, I

will be referring to approximations derived through the sampling method just described.

3.2 Comprehensibility

There is an additional reason why linear approximations can be useful explanatory gen-

eralizations: Their weights encode information about features’ causal influences on model

predictions and thus give rise to natural interpretations of the causal importance of vari-

ous features (when they are applied to normalized feature values such that units of change

across features are considered equal). A positive coefficient for a feature can be interpreted

to mean that as the value of that feature increases, the model’s prediction has a higher

likelihood of being positive; conversely, a negative coefficient can be interpreted to mean

a higher likelihood of being negative. Thus, the direction of causal influence of a feature

can be inferred from its coefficient. Additionally, weights can be used to compare the

relative strengths of different features: The higher a weight’s magnitude, the stronger its

causal influence.

The following would be an example of a linear model that defines a prediction of

low/high risk of pneumonia (where sign() represents the function that returns low if

< 0 and high if > 0):

y = sign((4) * number_days_coughing + (-6) * has_asthma + (3) * is_smoker

+ (-2) * average_hours_slept)
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In this linear model, has_asthma figures into causing the prediction to be low risk,

given that has_asthma has a negative coefficient. Additionally, we can conclude that

has_asthma has a stronger causal effect than is_smoker on the model prediction, since

has_asthma has a coefficient with a larger magnitude (6) than does is_smoker (3).

Furthermore, though the kind of causal significance that can be derived from linear

models’ coefficients differs from the notion of causal significance discussed earlier, which

defined the causal significance of a feature in terms of the minimal change on it required

to change model outcome, significance defined in terms of coefficients very closely tracks

the kind of significance defined in terms of minimal changes. If a linear model is invariant

over testing interventions on features, which I will argue they are designed to be, then

the feature with the minimal intervention that will result in a different model output is

just the feature with the highest coefficient. This is because a change to the feature with

the highest coefficient will make the largest mathematical difference and thus have the

largest effect on the output of the linear model (and thus the output of the model, since

we are assuming invariance).

To make this clear, take the linear model above to be the actual logic of the model, and

suppose the model receives as input x = [number_days_coughing = 12, has_asthma

= 1, is_smoker = 1, average_hours_slept = 9] and predicts y = low. (Again, we

are assuming that the linear model acts on normalized feature values so that its coef-

ficients are comparable across features; assume in this sake that the mean across the

training data for each of the continuous features were: [number_days_coughing: 10,

average_hours_slept = 7]; this means that the linear model is applied to the input

x/mean, or [savings_balance_thousands = 1.2, has_asthma = 1, is_smoker = 1,

average_hours_slept = 1.286]).

In this case, the minimal changes which could result in a changed model prediction

for each of the features (with normalized versions on the right) would be:
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number_days_coughing

• 12→ 14.0, 1.2→ 1.4

has_asthma

• 1→ 0.87, 1→ 0.87

average_hours_slept

• 9→ 6.5, 1.29→ 0.93

For this input, using the minimal changes derived from the coefficients of the linear

model would get us the result that has_asthma had the most significant causal influence on

the model prediction. This result tracks onto the result we can derive from the coefficients

of the linear model, since has_asthma has the coefficient with the largest magnitude.

There is a limitation to the parallel I have just drawn between causal significance

defined in terms of linear model coefficients and significance defined in terms of minimal

changes. These notions only align if the notion of what defines minimal is a purely

mathematical one. If we took into account what it means for an intervention to be possible,

the minimal change to has_asthma that would change the model prediction would be

1 → 0, since having asthma is a binary feature. On this notion of minimal, influenced

by real world possibility, number_days_coughing would be the most minimal change. If

we were interested in deriving this causal insight, about number_days_coughing’s causal

significance, merely comparing its linear coefficient with the coefficients over other features

would not suffice.

More generally, what this example highlights is that the coefficients of features in

linear models do not encode the same causal influences as do the minimal changes on

those features when the distance metric determining minimality does not take into account

real-world possibility. In cases where it is a feature’s causal influence on this latter notion

of causal influence that is desired, investigation beyond a comparison of coefficients is

necessary.

However, coefficients of features in linear models do encode causal influences defined
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in terms of minimal changes when what is minimal is determined purely numerically.

Furthermore, when what is of interest is how features causally influence model predictions

over a range of interventions, and not just the minimal one, linear model coefficients

encode the desired information and are easy to interpret. Thus, it is a general feature

linear generalizations that they make the causal significance of different features easily

comprehensible.

3.3 Addressing Causal Irregularities and Overdetermi-
nation through Aggregation

Not only can linear approximations derived through sampling be easily comprehended

and function as true causal explanations according to Woodward’s framework, I argue

that they are good explanations because they can handle the failures of causal claims

derived from single interventions. That is, they can derive the appropriate causal rela-

tionships between features and model outputs even in cases of causal irregularities and

overdetermination.

In the earlier discussion of how interventions could be extended to derive the ap-

propriate causal relationships in these cases, I established that considering ranges of in-

terventions on features, including interventions on multiple features, would give enough

information to lead to the appropriate insight, though we would need some way of ag-

gregating information across those different interventions. My claim is that LIME linear

explanations aggregate this information through the use of samples. Specifically, the

sampled points that LIME linear regressions are fit to samples that represent the differ-

ent sorts of interventions we would need to consider in cases of overdetermination–joint

interventions–and causal irregularities–ranges of interventions, and their coefficients ag-

gregate the causal relationships that hold across these interventions.
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Causal Irregularities. Let’s return again to the case of causal irregularity, which posed

an issue for merely using Woodwardian interventions on single features. My argument

there was that using a single intervention like Woodward requires to establish a causal

relationship would lead us to conclude that dist_from_center causally influenced the

prediction y1 made for x1, even though our intuition would be that a good explanation of

y1 would not cite dist_from_center as a causally influential feature because the posited

causal relationship between dist_from_center and y1 is not regular across different

interventions on dist_from_center. Thus, I concluded earlier, we need to consider ranges

of interventions in order to draw regular causal claims.

The linear model explanation of y1 would, in fact, not cite dist_from_center as

a causally relevant feature, given that it would be fit to many points sampled around

x1, the majority (all but one) of which would not model this dependence. More specif-

ically, even though the irregularity (represented by the green point) reflects a counter-

factual dependence that an increase in dist_from_center pushes the model prediction

toward low, other sampled points that contained a slightly smaller or larger increase to

dist_from_center (representing a range of other interventions to dist_from_center

would not show this dependence, and so the linear model would reflect the majority of
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these other points; at a maximum, the linear model depicted below would very slightly

learn toward the left because of the single outlying point. By being designed to fit many

samples (and thereby many different interventions), linear model explanations implicitly

aggregate across interventions and thus do not encode causal relationships that are not

robust.

Overdetermination. Linear explanations are also able to encode the correct causal

influences of features in cases of overdetermination through samples. In the discussion

earlier, I established that joint interventions on multiple features are needed to highlight

the causal influences of causes when multiple sufficient causes are involved. My argument

here is just that such joint interventions comprise some of the samples which LIME linear

explanations are fit to.

Thus, in addition to the ranges of single-feature interventions which allow linear ex-

planations to encode only somewhat robust causal relationships, joint interventions on

multiple features also comprise the samples which LIME linear explanations are fit to.

3.3.1 Causal Robustness as a Feature, as a Bug

So far, I have assumed that the fact that sampling-derived linear approximations only

encode robust causal relationships is a strength. I have made this assumption both in the

context of arguing that their coefficients, which aggregate the causal influence of features

across samples, can be interpreted as a measure of causal strength (Section 3.2) and in the

context of arguing that the fact that they do not point out irregular causal relationships

(Section 3.3) is a strength. In this section, I expand upon my argument for why it is in

most cases desirable that linear approximations do not highlight causal irregularities. I

also discuss the few explanatory contexts in which the fact that linear approximations

encode only robust causal relationships is a weakness.

There are a few reasons why this is true. Firstly, as highlighted by the example of

the rare, stomach-cancer-causing strawberries described in Section 2.2.2, we do not draw
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causal claims about all variables in the real world that have mere non-zero chances of

exhibiting a causal dependence. And if we do not draw such causal claims about real-

world variables, why would we draw such claims about features and model predictions?

We would not want our explanations to cite all features that have any chance of affecting

model predictions as being causally relevant.

In addition to real-world causal irregularities, another reason for excluding causal

claims about irregular causal relationships from our explanations of model predictions is

that there exist imprecisions in the data models are trained on. For instance, values for

the feature dist_from_center may be calculated from different city center points each

time. Because of such imprecisions, the data itself may not contain completely robust

causal relationships, and it is to be expected that models trained on such data may learn

causal irregularities.

When we are using explanations of model predictions to determine whether the causal

dependences of the model prediction on features reflects what real-world dependences are,

irregular causal relationships arising from irregularities and imprecisions in the real world

do not seem most of interest. Rather, it is regular causal relationships that are critical to

investigate. For instance, suppose a doctor is trying to determine whether a given pre-

diction made by a stomach cancer diagnosis model was causally influenced by features in

a medically sound way. If a causal relationship between (a feature representing) patients’

eating strawberries and model’s predictions held across only very few interventions, this

finding would be irrelevant for the doctor’s decision of whether to trust the model predic-

tion, given that it might actually reflect the rare causal irregularities that exist in the real

world. If, on the other hand, that relationship held across many interventions on (the fea-

ture representing) patients’ eating strawberries, the doctor would likely not want to trust

the model. Thus, to determine whether a model prediction was reached in a medically

sound way, the doctor would want to receive an explanation which only cites information

about somewhat robust causal relationships between features and predictions.
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It is also critical that our explanations of model predictions only encode robust causal

claims when these causal claims are being used to decide future actions, since causal

claims which hold across different interventions on features will lead to actions that more

robustly will produce intended effects. For instance, if the person represented by x1 in

the figure below were seeking an explanation to figure out how to change the model’s

prediction in the future in order to receive a loan, she would want to know what fea-

tures to change. This person would likely not want to receive an explanation that cited

dist_from_center as having a strong causal influence on y1, since only one change in

value of dist_from_center would result in a change to y1; taking actions based on an

explanation that cited dist_from_center as having a causal influence on y1 might mis-

takenly lead the person to think she should prioritize moving further from the city center,

when really the best course of action for her would be to prioritize saving a bit more

money. Thus, causal claims being used to act should encode robust causal relationships,

since only these will only continue to hold over different possible actions.

In both of these cases, including information about causal irregularities would actually

shroud understanding. This is because there are many irregular causal relationships, only

holding over very few interventions, that can exist between features and model predic-
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tions. It is this fact that makes linear approximations’ limitation to only causally robust

relationships a feature.

However, there are some cases where we in fact would want our explanations of model

predictions to give insight into even very irregular causal dependences between features

and output. In a context where an explanation is being used to determine whether a

prediction was influenced by a protected attribute, it seems we would want information.

For instance, suppose a model predicting recidivism likelihood gave a prediction of high

to a black defendant. The existence of any prediction-changing intervention on race

would suggest that there is some causal dependence of the model’s prediction of recidi-

vism likelihood on the feature race. In such a setting, even if there were only one such

intervention–i.e. changing race from black to white–and all others–such as changing race

from black to asian–we would want an explanation of the model prediction to point out

the causal dependence of the model’s prediction on the protected attribute. It is thus

necessary to consider facts about the context in which an explanation is being used when

determining how considerations about causal robustness should influence what features

are explained as being causally relevant, and thus whether linear approximations will

function as appropriate explanations.

3.4 Limitations of Linear Model Explanations

3.4.1 Non-Linear Model Effects

What are limitations of linear models derived from LIME as explanations of model pre-

dictions? Single local linear models do not function well as explanations for instances

which lie very close to a nonlinear model effect, since slight interventions to the feature

values of the instance might result in a new instance that lies in a part of the input space

for which the model being explained uses very different logic. For instance, in the figure

below, the circled instance is very close to a nonlinear model effect, where the model’s

decision function is characterized by a flip in signs.

43



There are four possible linear models that can be used to explain the circled point,

each of which are numerically equally close to the instance. The following four linear

models are candidates for the four lines pictured, where sign() represents the function

that returns green if < 0 and red if > 0:

1. p = sign(-0.01 * x1 - x2 + 5)
2. p = sign(x1 - 0.1 * x2 - 5)
3. p = sign(-0.25 * x1 + x2 - 5)
4. p = sign(-x1 - 0.1 * x2 + 5)

Each of these linear models has very different coefficients and thus encodes very differ-

ent causal claims. In equations 1 and 3, x2 has a coefficient with a much larger magnitude

(1) than the coefficient of x1 (0.01 and 0.25), suggesting that the causal influence of x2 is

much higher than the causal influence of x1–This is an observation which can also be seen

in the graphical representations of the lines. In contrast, equations 2 and 4 give a larger

coefficient, and thus more causal influence, to x1 than to x2. The signs of the coefficients

also vary across the linear models, suggesting that features have different directions of

causal influence in some than in others. For instance, x2 has a negative coefficient in

equation 1, meaning that an increase in x2 leads to an increased likelihood of a prediction

of red; in contrast, x2 has a positive coefficient in equation 3, meaning that an increase

in x2 leads to a decreased likelihood of a prediction of red and an increased likelihood of

a prediction of green.
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In cases such as this one, where a model’s decision boundary around an instance being

explained has nonlinear effects, a single linear model does not function as an explana-

tion. We are thus stuck with the puzzle of figuring out what the proper explanation

of a prediction such as y3 should be, given that there appear to be multiple qualifying

explanations.

3.4.2 Choosing Between Multiple Linear Models

It is important to note that the puzzle only arises if we are interested in drawing robust

causal claims. There are facts of the matter about specific interventions on features x1 and

x2. However, it is indeterminate what general causal relationship holds between x1/x2 and

the model output in the local vicinity of the point, given that different interventions will

reflect causal dependences with seemingly opposite directions. And it is this indeterminacy

that gives rise to the puzzle of choosing between candidate linear models.

My proposal for how we should address the limitations of linear models in cases where

a model’s decision boundary has a non-linear effect is a two-fold one: We can and should

in fact return multiple linear models as explanations in such cases, since the existence of

multiple linear models that encode very different causal claims offers the insight that the

local causal relationships between features and model predictions are indeterminate and

will vary greatly over different interventions.

But in cases where we want to pick a single linear explanation of multiple candidate

linear explanations, Woodward provides the resources in his theory for doing so. Specifi-

cally, we can build upon Woodward’s idea that generalizations have different amounts of

explanatory power depending on what changes they are invariant over. We can choose

linear models which are invariant over certain desired changes, which are determined

contextually. More specifically, what a linear model explanation will be used for should

determine which changes to features it should be invariant across. When an explanation

is being used to determine future actions based on a prediction, invariance across features
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which are manipulable and likely to occur in the real world should be prioritized. When an

explanation is being used to determine whether a prediction was influenced by a protected

attribute, it should be invariant across changes to that protected attribute. And lastly,

when an explanation is being used to determine whether a prediction was influenced by

meaningless artifacts in the training data, invariance across the specific features that are

suspected to be involved in meaningless artifacts should be prioritized.

Each of the four linear models p1, p2, p3, and p4 count as true causal explanations

because they are invariant over the testing interventions discussed earlier, but they are

each invariant over different sorts of interventions: Models p1 and p3 are invariant specif-

ically over interventions to x2, while models p2 and p4 are invariant over interventions to

x1. When we are choosing between these models, we can choose based on which kind of

invariance matters more for the current use. For instance, suppose x1 represented a fea-

ture that was difficult to change in the real world, such as savings_account_balance. If

x2 on the other hand represented a more actionable feature, such as dist_from_center,

models p2 and p4 might be preferred. We could further choose between models p2 and p4

by considering what ranges of interventions on x2 (dist_from_center) were more likely:

Suppose it was particularly difficult to move to one region of the city because of a short-

age of homes available in that region, and suppose this region were closer to the city

center than the individual in question currently lived. Then p2 would be the preferred

explanation, since it describes the causal relationships between x2 and model outcome for

actionable interventions–moving farther away from the city.

3.5 Chapter Summary

In conclusion, I have argued that linear approximations derived through sampling methods

are effective local causal explanations of model predictions because they are implicitly

locally invariant (and can be made to be explicitly so), comprehensible, and can be used to

derive the desired causal claims in the cases of overdetermination and causal irregularities
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because they encode robust causal claims. Though the robust causal insights that we

get from linear approximations are useful in many contexts, I have also considered a few

contexts in which interventions might be preferred for their ability to get insight into

irregular causal relationships.

I have also suggested a few ways in which such methods can generate better explana-

tions, which can be implemented through the weighting of sampled points. Firstly, as dis-

cussed in Section 3.1, locally sampled points representing testing interventions should be

explicitly upweighted; furthermore, testing interventions which involve smaller alterations

can be prioritized in this upweighting so that the causal claims linear approximations en-

code will be influenced by the notion of causal significance defined in terms of minimal

changes. Secondly, we can improve upon the distance metric that is used to calculate

weights of sampled points to incorporate contextual considerations, such as the real world

feasibility of changes. For instance, if an explanation is being used to determine future

actions, invariance over features which are actionable should be prioritized through an

upweighting of sampled points with changes to those actionable features.
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Part II

Linear Approximations for Actionable
Insight into Blackbox Classifiers
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Chapter 4

Obtaining Actionable Insight into
Linear Models through Counterfactuals

In this chapter, I will show how linear approximations can be used to generate counter-

factuals and thus gain actionable insight into model predictions. I introduce previous

methods of generating counterfactuals for both non-linear and linear classifiers, which I

will draw upon in Chapter 5.

4.1 An Introduction to Counterfactuals for Actionable
Insight

One line of research in explainable machine learning has focused on selecting informative

individual instances to give insight into the behavior of machine learning models. One

primary motivation for such methods is that they give insight into the kinds of actions

someone can take in order to obtain a different outcome.

Counterfactual explanations are one form of example-based explanations. A counter-

factual explanation of an instance x and model prediction f(x) refers to a set of minimal

changes that can be made to x in order to change the model prediction. It describes the

dependencies between features’ values and model ouputs. For instance, suppose a loan

applicant is denied a bank loan. A counterfactual explanation would look something like:

If you were one year older and were applying for $5,000 less in loan amount, you would
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have been approved for a loan. With this information, the loan applicant could apply for

a smaller amount in loan when re-applying for a bank loan in the future. By enumerat-

ing the smallest changes to features that will bring about a different model prediction,

counterfactual explanations can give practical, actionable insight into classifiers.

Suppose we are given a model f and an instance x, and we wish to find a counterfactual

explanation for the point f(x). In other words, we want to find the closest point x′ that

will bring about a different prediction, represented by y′. To find the desired x′, some

previous approaches have centered on minimizing various loss functions.

Wachter et al. (2017) propose minimizing the following loss:

L(x, x′, y′, λ) = λ · ˆf(x′)− y′)2 + d(x, x′)

d(x, x′) is a customizable function measuring the distance between x and x′, for which

they propose using an L1 norm weighted by the inverse median absolute deviation of each

feature k (MADk) in the set of training points P :

MADk = medianj∈P (|xj,k −medianl∈P (xl,k)|)

d(x, x′) =
∑
k∈F

|xk − x′k|
MADk

Laugel et al. (2017) offer an additional approach, the Growing Spheres algorithm,

which finds x′ such that f(x′) = y′ with a generative approach: They draw increasingly

larger spheres around x and sample from those spheres until the model prediction for one

of those sampled points is y′.

There are a couple of limitations in using either of these approaches to gain actionable

insight into model predictions. The first is that the counterfactuals they return are not

specifically constrained to only modify actionable features; a result, some counterfactuals

might involve changes to features that cannot be changed with actions in the real world.

For instance, a counterfactual that returned a change to a person’s marital status or age
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would not give practical insight into how a loan applicant denied a loan could reapply and

be approved for a loan in the future. The second limitation is that a lack of actionable

counterfactual returned by the methods of Wachter et al. (2017) and Laugel et al. (2017)

do not guarantee that such actionable counterfactuals do not exist.

These limitations are what Ustun et al. (2019) seek to define in the optimization

framework they propose for calculating what they call recourse, or the ability to change

a decision of a model. I will describe their framework in the following section.

4.2 Generating Flipsets for Linear Classifiers

Motivated by the need for people to be able to gain actionable insight into model predic-

tions and the limitations of previous methods in addressing this need, Ustun et al. (2019)

propose an integer programming toolkit to measure the recourse, or person’s ability to

obtain a specific outcome from a pre-trained model, of pre-trained linear classifiers. They

formulate an optimization problem that, given an instance x and an undesired outcome,

searches over a grid of possible actions on actionable features and generates a flipset, or

list of actionable changes to features that will lead to the desired outcome.

4.2.1 Optimization Framework

Here, I present their optimization framework and the integer program they use to solve a

discretized version of the optimization problem.

Ustun et al. (2019) assume as inputs the following: a feature vector x = [x1, x2, ..., xd] ⊆

Rd+1; a linear classifier f(x) = 1[〈w, x〉 ≥ 0], where w = [w0, w1, ..., wd] ⊂ Rd+1 is a vector

of coefficients and intercept (w0); and a binary label y ∈ {−1, 1}, where y = 1 is assumed

to be the desired outcome.

Given an instance with an undesired model prediction f(x) = −1, they form the

following optimization problem to find an action a such that f(x+ a) = +1:
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min cost(a;x)

s.t. f(x+ a) = +1,

a ∈ A(x)

Here, A(x) represents a set of feasible actions, where each action a is a vector a =

[0, a1, ..., ad] and each aj is such that xj + aj is a feature value that occurs in the training

set. cost(a, x) represents a function which can be used to prioritize some actions over

others. Ustun et al. (2019) assume the following properties about the cost function: (i)

i.e. no action incurs a cost of 0; (ii) actions that are larger have higher costs.

Ustun et al. (2019) note that solving this optimization problem gives the following

guarantees: If the problem is feasible and a solution is returned, the optimal action a∗

to change an undesired model outcome to a desired one is just the minimal-cost action

returned by the framework. If it is infeasible, then the individual with features x cannot

take any actions to change the received undesired outcome.

Ustun et al. (2019) formulate this optimization problem as an integer program (IP)

such that it can be optimized with a solver1. Ustun et al. (2019) note that this IP

formulation is desirable because it can search over different types of features (binary,

ordinal, and categorical), can optimize a range of cost functions, and has a customizable

action space, which can be used to limit the returned counterfactuals to involve only

manipulations to actionable features. However, a limitation of the method proposed by

Ustun et al. (2019) is that it is only applicable to linear classifiers. In the next chapter,

I propose an extension of their framework to non-linear classifiers.

1For the specific integer program formulation, see the original paper by Ustun et al. (2019)
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Chapter 5

Generating Counterfactuals for
Non-linear Classifiers Using Linear
Approximations

In this chapter, I propose an end-to-end approach for generating counterfactuals for non-

linear classifiers. This framework uses local linear approximations of non-linear complex

classifiers as input into the framework provided by Ustun et al. (2019) in order to mea-

sure classifiers’ recourse and provide flipsets for non-linear models. The novelty in this

approach consists of exploiting models’ local linearity to be able to generate flipsets, or

actionable counterfactuals, with the approach described in the previous section. I experi-

ment with existing methods of creating linear approximations, LIME (Ribeiro et al., 2016)

and MAPLE (Plumb et al., 2018) and show how they can be extended to produce counter-

factuals. I call these extensionsCounterfactual-MAPLE andCounterfactual-LIME.

Furthermore, I propose a novel decision-tree-based approach called Counterfactuals us-

ing Tree-based Local Neighborhoods, or CoTLoN, which approximates non-linear

classifiers with different neighborhoods of points in order to generate flipsets for individ-

uals who receive unfavorable predictions.
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5.1 Experimental Motivation: Non-Linear Classifiers
are Locally Linear

Much previous work on creating local explanations of complex classifiers has made use

of the idea of fitting simpler models in small neighborhoods (Ribeiro et al. (2018)). In

particular, many existing methods exploit the local linearity of non-linear classifiers to

create local explanations of model predictions (Ribeiro et al. (2016); Plumb et al. (2018)).

The premise behind such work is that in small enough regions of a complex decision

boundary, the decision boundary is linear. The following image created by Ribeiro et al.

(2016) provides an example of this phenomenon:

Furthermore, for a particular class of non-linear classifiers–neural networks with piece-

wise activation functions–there has been previous work supporting this claim of local lin-

earity. Hanin and Rolnick (2019) studied the expressivity of neural networks, as measured

by their number of distinct linear regions, and found that the number of linear regions in

deep neural networks with piecewise linear activations (such as ReLU and hard tanh) is

far below its theoretical capacity. They mathematically prove that the average number of

linear regions along one-dimensional partitions of neural networks at initialization grows

linearly in the total number of neurons, rather than exponentially in depth. They also

empirically validate that this result holds also for networks during training–The number of

linear regions stays roughly constant. Additional work from Goodfellow et al. (2014) has
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shown that it is neural networks’ linear behavior in high-dimensional spaces that makes

them vulnerable to various adversarial perturbations.

Because of non-linear classifiers’ local linearity, it is possible to measure recourse and

generate flipsets for predictions made by their predictions using the approach of Ustun

et al. (2019). In what follows, I both exploit and validate this proposal experimentally.

5.2 Experimental Set-Up

The experiments I ran were intended to answer the following questions: Can linear ap-

proximations be used in conjunction with the framework for flipset generation proposed

by Ustun et al. (2019) to generate flipsets for non-linear classifiers as well? The ex-

periments were also designed to compare how well different methods of deriving linear

approximations function for the purpose of returning flipsets for non-linear classifiers.

Let f represent a non-linear classifier trained on a dataset X, and let X̃ represent a

set of instances for which the model gave a negative outcome. Let L represent a linear

approximation method. The experiments I ran took the following form: For each instance

x̃ ∈ X̃ which received an undesired outcome of −1 from f (i.e. f(x̃) = −1), I generated a

set of coefficients w = [w1, ..., wd] and intercept w0 using L. Then, I used the approximated

linear coefficients w as input into the optimization framework of Ustun et al. (2019) to

generate flipsets for the instance x̃. A maximum of 20 possible flipsets were able to be

returned for each x̃. I measured both the accuracy of these flipsets and the portion of

instances in X̃ for which flipsets were returned.

I experimented with model type (f), dataset (X), and linear approximation method

L. Specifically, f was one of three different model types: a neural network, random

forest classifier, and gradient boosted tree. X was one of two datasets: COMPAS, a dataset

used for recidivism risk prediction, and Adult, an income prediction dataset based on

census data. L was one of four main linear approximation methods–a baseline, a cluster-

based approach, LIME (Ribeiro et al., 2016), and MAPLE (Plumb et al., 2018)–with some
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variations. Each of the models, datasets, and linear approximation methods are described

below.

Lastly, I ran 5 experiments for each combination of model, dataset, and linear approx-

imation method. In Section 5.3, I report metrics averaged across these experiments.

5.2.1 Datasets

COMPAS. The Correctional Offender Management Profiling for Alternative Sanctions

(COMPAS) is a dataset that was collected by Propublica (2016) and contains information

about criminal defendants’ likelihood of reoffending their crime. COMPAS includes features

representing defendants’ demographic information and information about their crime, and

the target variable in this dataset is the score as output by the COMPAS algorithm. I used a

processed version of this dataset that contained 6, 907 instances, each with d = 7 features,

3 of which were continuous and 4 of which were categorical. 0.5 of this dataset was used

for training, and the rest was used for validation and flipset generation.

Adult. The Adult dataset from the UCI repository is a credit evaluation dataset, for

which the target variable is an applicant’s credit rating (Dua and Graff, 2017). This

dataset includes features about an applicant’s demographics, credit history, employment,

and financial information. I used a processed version of this dataset that contained d = 10

features, 5 of which were categorical. This processed dataset contained 32, 560 examples.

5.2.2 Models

Three different types of models were trained and used as blackbox classifiers in the fol-

lowing experiments: neural networks, random forests, and gradient boosted trees. Each

of the models were implemented using sklearn.

Neural Network. A multi-layer perceptron was trained using sklearn’s implementa-

tion of MLPClassifier(). This classifier had one hidden layer with 100 neurons and relu
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activations.

Random Forest. A random forest classifier with 100 estimators was trained using

sklearn’s implementation of RandomForestClassifier().

Gradient Boosted Tree. A gradient boosted classifier with 100 estimators was trained

using sklearn’s GradientBoostingClassifier.

5.2.3 Linear Approximation Methods

I now describe the linear approximations methods I experimented with. These methods

differ not only in how the approximated linear coefficients are derived, but also in the

number of unique sets of coefficients which are derived across all x̃ ∈ X̃. Specifically, the

baseline model derives a single set of coefficients shared by all x̃ ∈ X̃, while the TSLC

approach derives a pre-determined set of coefficients shared by X̃. The Counterfactual-

LIME and Counterfactual-MAPLE approaches use LIME and MAPLE approximations

respectively to derive a unique set of coefficients for each x̃.

Baseline. As a baseline, a single linear model was used to approximate the predictions

made by the blackbox model f on Xtrain. The idea behind this baseline model is to treat

the non-linear classifier as a single linear model. Using this approach, the same coefficients

are used to calculate recourse for each x̃ ∈ X̃. sklearn’s Ridge() was used to implement

this baseline linear approximation. Specifically, the ridge regression model was fit to the

probability estimates given by f for the favorable outcome +1.

CoTLoN. Counterfactuals using Tree-based Local Neighborhoods, or CoTLoN, gener-

ates a single linear approximation for different neighborhoods of points, which are de-

termined through the use of a decision tree. To generate these neighborhoods, I trained

a decision tree on the predictions made by f on Xtrain. Then, I trained a distinct lin-
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ear approximation for each leaf node. All points reaching the same leaf node form a

“neighborhood” of points.

I used sklearn’s DecisionTreeRegressor() to implement the decision tree and

sklearn’s Ridge() to implement the linear model learned at each leaf node of the learned

decision tree. Using this approach, the same linear coefficients are used for each cluster

when calculating recourse for each x̃.

I determined the number of neighborhoods (and thus linear approximations) by setting

the parameter min_samples_leaf given to sklearn’s DecisionTreeRegressor(), which

determines the minimum number of samples at each leaf node of the learned decision tree.

Specifically, I determined the value of min_samples_leaf through a fraction nr of the

number of training instances: min_samples_leaf = nr ∗ len(Xtrain), where nr was one of

[0.05, 0.1, 0.15].

Counterfactual-LIME. The Counterfactual-LIME approach to generating flipsets makes

use of Local Interpretable Model-agnostic Explanations, or LIME, a method proposed by

Ribeiro et al. (2016). LIME makes use of local sampling around an instance x to create

a linear approximation of a classifier f around x. More specifically, given an instance x

for which the prediction f(x) is being explained, LIME samples N = 5, 000 points in the

following way: For continuous features, values of the sampled points are drawn from a nor-

mal distribution with features’ mean and standard deviation across the training set. For

categorical features, values are sampled with probabilities determined by the frequency

with which each category appears in the training set. LIME then fits a weighted linear

regression model to the probability estimates output by f for those sampled points. The

weights are determined with the following exponential smoothing kernel:

πx(z) =
√
exp(−D(x, z)2/σ2)

D(x, z) represents the distance between points x and z. LIME’s default distance metric

is a Euclidean distance metric: D(x, z) =
√
(x1 − z1)2 + (x2 − z2)2 + · · ·+ (xd − zd)2. σ
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represents the kernel width, which LIME by default calculates as k = 0.75 times the square

root of the number of features in x: σ =
√
d ∗ k. I used the default implementation of

LIME for tabular data1, which uses sklearn’s implementation of Ridge()) as the default

linear model but experimented with the value of k. k was one of [0.75, 0.25].

Using the Counterfactual-LIME approach, each x̃ ∈ X̃ receives its own set of linear

coefficients which are used when calculating recourses.

Counterfactual-MAPLE. The Counterfactual-MAPLE approach to generating flipsets

relies on linear approximations derived through Model Agnostic suPervised Local Expla-

nations, or MAPLE. MAPLE is a local linear modeling approach proposed by Plumb

et al. (2018) that creates supervised neighborhoods around instances being explained.

The idea behind MAPLE is to fit a tree ensemble to the training data and use this

ensemble to identify the most relevant training points for a particular prediction. The de-

fault tree ensemble is a random forest with 200 estimators, implemented using sklearn’s

RandomForestRegressor(). For each point x being explained, for each training point x′,

a similarity weight is calculated by counting the number of trees in which both x and x′

occur in the same leaf node. The weight is calculated in the following way:

s(x, x′) =
1

k

K∑
k=1

ck(x
′, x

numk(x)

Here, numk(x) =
∑n

i=1 ck(xi, x) represents the number of training points in the same

leaf node as x, and ck(x, x′) = 1 · {leafk(x) = leafk(x
′)}, where leafk(x) represents the

index of the leaf node of tree k that contains x.

I used the default implementation of MAPLE.2 Using the Counterfactual-MAPLE

approach, each x̃ ∈ X̃ receives its own set of linear coefficients which are used when

calculating recourses.
1https://github.com/marcotcr/lime/blob/master/lime/lime_tabular.py
2https://github.com/GDPlumb/MAPLE
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5.3 Results

For each experiment, I calculated the projected flipset accuracy returned using the linear

approximation as input into the flipset generation framework. A flipset item, or action

vector [a1, a2, ..., ad] is said to be accurate if it indeed leads to a flip in prediction to a

desired outcome for the underlying model being approximated, i.e. f(x̃) = −1 but f(x̃+

a) = +1. Projected flipset accuracy is a measure of what percentage of all potential flipsets

that could have been returned were accurate: If a flipset was not returned, it was treated

as inaccurate to account for the fact that some linear approximations returned highly

accurate, but few, flipsets. Projected flipset accuracy, averaged across the 5 experiments

I ran for each combination of model, dataset, and approximation method, are shown in

Figure 5.1.

The main result this figure highlights is that all the examined approaches of deriving

local linear approximations outperform the baseline in each experimental setting investi-

gated: Local linear approximations lead to an increased ability to generate flipsets than

the baseline approach of fitting a global linear model to the predictions made by f . This

finding suggests that the end-to-end framework proposed in this thesis, of using local

linear approximations to generate counterfactuals for non-linear classifiers, is a promising

avenue of work. However, Figure 5.1 also highlights that there is much room for improve-

ment on existing methods of deriving local linear approximations. In the next section, I

discuss some of these avenues.
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Dataset: COMPAS

Neural Network Random Forest Gradient Boosted Tree
Classifier
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Dataset: Adult

Neural Network Random Forest Gradient Boosted Tree
Classifier
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Figure 5.1: Results on the COMPAS and Adult datasets are shown for the following
methods of deriving linear approximations: Baseline CoTLoN (nr = 0.01)
CoTLoN (nr = 0.05) CoTLoN (nr = 0.15) Counterfactual-LIME (k = 0.75)

Counteractual-LIME (k = 0.25) Counteractual-MAPLE. Metrics averaged across 5
experimental runs in each setting are displayed.

5.4 Next Steps and Future Work

Of the linear approximation methods experimented with, Counterfactual-LIME obtained

the highest projected recourse accuracies. One potential explanation for this is that it

makes use of sampling, and thus linear models learned through LIME have more data to

learn from.

However, there are a few inherent disadvantages of sampling-based methods: Firstly,

sampling can result in points that are off-manifold and highly unrealistic. Secondly, the

distance metric used to weight samples is ill-defined; there is no guarantee that the neigh-

borhoods defined using Euclidean distance (the default distance metric used by LIME) are

actually locally linear. The large effects of even slight variations in distance metrics can
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be seen by the performance differences of LIME with a kernel width defined by k = 0.75

and LIME with a kernel width defined by k = 0.25 for the Adult dataset. There is no

known way of knowing apriori which distance metric should be used for different datasets.

One avenue for future work would be to extend the non-sampling methods studied in

this paper to see if the benefits of sampling–namely that it offers more data for accurate

linear approximations can be learned–can be retained without the described disadvantages

with the sampling used by LIME. One such way of doing this would be to extend the

CoTLoN method proposed in this thesis in the following way: Use sampled points in the

creation of the decision tree but not in the creation of linear approximations at each leaf

node. Future experiments could test the hypothesis that such a method would lead to

the generation of more accurate counterfactuals.
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