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Abstract

Euclidean dimensionality reduction is a commonly used technique to scale up algorithms
in machine learning and data science. The goal of Euclidean dimensionality reduction is
to reduce the dimensionality of a dataset, while preserving Euclidean distances between
data points. Given the high-dimensionality of modern datasets, Euclidean dimensionality
reduction serves as an effective pre-processing technique: it enables a significant speedup of
computational tasks (such as clustering and nearest neighbors) while preserving their accu-
racy. Beginning with a seminal work by Johnson and Lindenstrauss in the 1980s, Euclidean
dimensionality reduction has been studied for decades in the theoretical computer science
and mathematics literatures. Recently, the performance of Euclidean dimensionality reduc-
tion has been studied in settings that depart from the classical framework, motivated by
machine learning and neuroscience considerations.

In this undergraduate thesis, we continue the study of how Euclidean dimensionality
reduction performs in settings beyond the classical framework. Our first result is a char-
acterization of the performance of the standard dimensionality reduction schemes (called
sparse Johnson-Lindenstrauss transforms) on “well-behaved” datasets; we generalize a line
of work in the machine learning literature initiated by Weinberger et al. (ICML ’09). Our sec-
ond result is an analysis of neuroscience-motivated dimensionality reduction schemes (called
sparse, sign-consistent Johnson-Lindenstrauss transforms); we build on work by Allen-Zhu
et al. (PNAS ’15). A shared technical theme between our results is a new perspective on
analyzing Johnson-Lindenstrauss transforms.

Comments on Published Work

Our results in this undergraduate thesis have been published at NeurIPS 2019 [23] and at
RANDOM 2019 [22].
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Chapter 1

Introduction

The high-dimensionality of modern datasets has posed significant computational challenges
in machine learning and data science. For example, machine learning tasks such as text-based
classification and image clustering often must handle data with hundreds of thousands of
features (i.e. dimensions). The fundamental issue is that algorithms for computational tasks
often suffer from the curse of dimensionality : that is, the runtime and memory usage grow
quickly with the dimension of the data. As a result, these algorithms incur a prohibitively
high computational cost on high-dimensional data.

Dimensionality reduction is a powerful pre-processing technique that enables a drastic
speedup of these algorithms without compromising their accuracy. The key idea of dimen-
sionality reduction is to produce a low-dimensional projection of a dataset that preserves
of the “geometry” of the original dataset. The algorithm is then given this projection of
the dataset, and since the projection has low dimension, the algorithm can achieve a fast
runtime and low memory usage. Moreover, the algorithm’s accuracy is often preserved since
the projected dataset retains aspects of the “geometry” of the original dataset. For example,
in settings such as clustering and nearest neighbors, the algorithm only needs to understand
the distances between data points. These distances are preserved by the projected dataset,
thus enabling the algorithm to achieve a high accuracy.

In this undergraduate thesis, we investigate the design and analysis of dimensionality
reduction schemes that preserve the geometry of datasets. We focus on a fundamental goal,
called Euclidean dimensionality reduction: reduce the dimensionality of a dataset with real-
valued entries, while preserving the Euclidean distances between data points. In particular,
we consider Euclidean dimensionality reduction in settings motivated by machine learning
and neuroscience considerations, and prove new results for each of these settings. (Our
results have been published in the following papers [23, 22].)

1.1 History of Euclidean dimensionality reduction

Dimensionality reduction for Euclidean distances has been studied since the 1980s. Given a
set of n-dimensional points with real-valued entries, the classical goal is to project to a set
of m-dimensional points such that distances are preserved. More specifically, the goal is as
follows: given a set S = {x1, . . . , xN} of data points in Rn, construct a function f : S → Rm
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such that for any pairs of points xi, xj ∈ S, the distance between xi and xj is close to the
distance between f(xi) and f(xj).

The primary objective is to make the projected dimension m as small possible. Sur-
prisingly, a seminal result in the mathematics literature by Johnson and Lindenstrauss [25]
showed that it is possible to achieve a projected dimension m that is independent of the
original dimension n. (In particular, it’s possible to achieve m that grows logarithmically
with the number of points N and grows inverse-polynomially with the permitted error in
distance preservation.) The standard construction of these dimensionality reduction schemes
are based on random projections. The idea is to project the original dataset using a random
matrix A drawn from a probability distribution over m×n dimensional matrices. In particu-
lar, the (random) matrix A is used to project each data point x ∈ S to a m-dimensional point
Ax ∈ Rm. The random projection is constructed so that with high probability, the projected
data points preserve distances. Random projections that achieve this distance-preserving
condition are called Johnson-Lindenstrauss transforms.

In the past two decades, computer scientists have become particularly interested in dimen-
sionality reduction for Euclidean distances as a pre-processing step for algorithmic tasks. The
algorithmic setting creates a computational constraint on the Johnson-Lindenstrauss trans-
forms: the projection time of applying the (random) matrix A to a data point x ∈ Rn needs
to be low. In particular, computing Ax needs to be fast, so that pre-processing doesn’t create
too much of an overhead in computational cost. Unfortunately, the Johnson-Lindenstrauss
transforms considered in [25] do not lend themselves well to efficient projection.

A line of work [2, 46, 3, 33, 15, 28] in the theoretical CS literature designed Johnson-
Lindenstrauss transforms that achieve faster projection. An elegant way to achieve a fast
projection time is to make the (random) matrix A sparse (i.e make A have few nonzero
entries per column). In this context, it is useful to consider random projections over sparse
matrices. The state-of-the-art Johnson-Lindenstrauss transforms over sparse matrices, called
sparse Johnson-Lindenstrauss transforms, were constructed and analyzed by Kane and Nel-
son [28]. Sparse Johnson-Lindenstrauss transforms simultaneously allow for substantial di-
mensionality reduction and a fast projection time, achieving a near-optimal sparsity in some
contexts [37].

1.2 Beyond the classical framework

In this undergraduate thesis, we consider how Johnson-Lindenstrauss transforms perform in
two settings that depart from the classical framework. The first setting explores whether
better dimensionality reduction is possible when the dataset is known to be well-behaved; the
second setting explores whether dimensionality reduction is still possible under neuroscience-
motivated restrictions. Our main contribution is new results for each of these settings.
Moreover, as a shared technical theme between these two settings, we offer a new perspective
on analyzing random projections.
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1.2.1 Setting 1: “Well-behaved” datasets

The classical results in the CS theory literature consider dimensionality reduction schemes
that need to preserve distances even on “badly behaved” datasets. Nonetheless, these “badly
behaved” datasets may not arise in many machine learning tasks. In the spirit of “beyond
worst-case analysis”1, a natural question to ask is whether better and faster dimensionality
reduction can be achieved, when the dataset is known to be “well-behaved”. A line of work
[46, 15, 27, 13, 28, 16] in the machine learning literature considers this question in the context
of a restricted family of dimensionality reduction schemes (called “feature hashing”). This
line of work shows that feature hashing can achieve a much lower projected dimension when
the dataset is known to have a certain structure.

Our contribution. We generalize the previous line of work [46, 15, 27, 13, 28, 16] to
a much larger family of dimensionality reduction schemes: the family of sparse Johnson-
Lindenstrauss transforms. We demonstrate that sparse Johnson-Lindenstrauss transforms
can achieve much better and faster dimensionality reduction on well-behaved datasets. In
particular, we prove tight bounds on the tradeoff between projected dimension, sparsity of
the random matrix, accuracy, and `∞-to-`2 norm ratio of the data points (i.e. the formal
measure of the extent to which data is “well-behaved”).

We show the following:

Theorem 1.1 (Informal) Consider a sparse Johnson-Lindenstrauss transform with pro-
jected dimension m and sparsity s. For accuracy parameters ε and δ, let v(m, ε, δ, s) be the
maximal value in [0, 1] such that the sparse Johnson-Lindenstrauss transform achieves Eu-
clidean norm preservation on vectors in Sv = {x ∈ Rn | ‖x‖∞ ≤ v ‖x‖2}. Then, v(m, ε, δ, s)
is of the following form:

v(m, ε, δ, s) =


1 High m
√
sB1 Medium-high m
√
smin (B1, B2) Medium-low m

0 Small m,

where p = ln(1/δ), B1 =
√

ln(mε2/p)/
√
p and B2 = ln(mε/p)/p.

(See Theorem 3.2 for a formal statement of the result.)
Theorem 1.1 takes a step towards explaining why dimensionality reduction schemes in

practice can outperform the classical results. We also show empirical results that confirm
the findings in Theorem 1.1 on synthetic and real-world data.

1.2.2 Setting 2: Neuroscience-motivated restrictions

Dimensionality reduction provides a promising framework to model information compression
in the brain, where a large number of input neurons are connected to a small number of

1As discussed in a survey by Roughgarden [41], worst-case analysis captures the worst-possible perfor-
mance of an algorithm on any given input (i.e. in our setting, any set S of vectors in Rn). “Beyond worst-case
analysis” is about identifying properties of real-world inputs and proving stronger guarantees for inputs with
these properties.
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target neurons, but somehow, information is sufficiently preserved. In particular, the data
at the input neurons can be modeled as a high-dimensional vector, and the data at the
output neurons can be modeled as a low-dimensional vector [18]. The challenge is that
the dimensionality reduction schemes need to satisfy constraints imposed by the biological
restrictions of these convergent pathways (i.e. neurons are usually either purely excitatory or
purely inhibitory). Previous work [4] demonstrates that a low projected dimension is indeed
possible, even with these restrictions, using a sparse, sign-consistent Johnson-Lindenstrauss
transform.

Our contribution. We generalize the analysis of sparse, sign-consistent Johnson-
Lindenstrauss transforms to a larger class of dimensionality reduction parameters, thus
capturing a greater spectrum of potential biological restrictions. In particular, we prove
dimension-sparsity tradeoffs, showing that a lower sparsity is possible, with an appropriate
gain in projected dimension.

We show the following:

Theorem 1.2 (Informal) Consider a sparse, sign-consistent Johnson-Lindenstrauss trans-
form with projected dimension m and sparsity s. For accuracy parameters ε and δ and for
any constant e ≤ B ≤ δ−1, Euclidean norm preservation is achieved if s = Θ(ε−1 logB(1/δ))
and m = Θ(Bε−2 log2

B(1/δ)).

(See Theorem 4.4 for a formal statement.)
Theorem 1.2 generalizes the result in [4], which is limited to the case of B = e. In partic-

ular, Theorem 1.2 demonstrates that a reduction in sparsity is possible with an exponential
gain in dimension.

1.2.3 Methods for analyzing random projections

Standard analyses of random projections utilize complicated combinatorial arguments [28,
36, 16, 4]. Moreover, these arguments are fragile in that new combinatorial techniques
are needed to prove each new result. (All of the aformentioned papers involve different
combinatorial techniques.)

Our contribution. Our work offers a new conceptual perspective on analyzing random
projections. In particular, we give a “unified” method for analyzing a class of random pro-
jections that obviates the need for constructing new techniques for each setting. We propose
a non-combinatorial approach2 based on results from the probability theory literature; we
believe our approach is cleaner than the standard combinatorial approaches.

1.3 Outline for the rest of the undergraduate thesis

In Chapter 2, we present the mathematical framework and classical results for dimensionality
reduction. In Chapter 3, we describe our results on the behavior of dimensionality reduction
schemes on well-behaved datasets (Setting 1). In Chapter 4, we describe our results on

2Our methods borrow some intuition from previous non-combinatorial methods [12, 11]. However, previ-
ous approaches turn out not be sufficiently precise for our settings; our bounds have the advantage of being
sufficiently precise to recover tight bounds.
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dimensionality reduction schemes with neuroscience-motivated constraints (Setting 2). In
Chapter 5, we present our new perspective on analyzing Johnson-Lindenstrauss transforms.
In Chapter 6, we describe proof sketches of our main results in Chapter 3 and Chapter 4. In
the Appendix, we describe the details of the proofs for Chapter 3.
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Chapter 2

Background: The Classical Setting

The mathematical goal of Euclidean dimensionality reduction is, for any given set S of N
points living in Rn, to design a function f : S → Rm (for some m � n) that preserves
Euclidean distances between points.1 The distance-preserving requirement is that for every
xi, xj ∈ S, it must hold that ‖f(xi)− f(xj)‖2 ≈ ‖xi − xj‖2. The exact form of the distance-
preserving requirement is parameterized by a constant ε > 0 as follows:

(1− ε) ‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε) ‖xi − xj‖2 . (2.1)

That is, the distance ‖f(xi)− f(xj)‖2 needs to approximate ‖xi − xj‖2 up to a muliplicative
error of ε.

The Johnson-Lindenstrauss lemma [25], a cornerstone result in the dimensionality re-
duction literature, shows that there exists a function f that projects into m = Θ

(
logN
ε2

)
dimensions. More specifically:

Lemma 2.1 ([25]) For any positive integers n,N ≥ 2, any parameter 0 < ε < 1, and any
set S of N points in Rn, there exists a function f : S → Rm with m = Θ

(
logN
ε2

)
that achieves

(2.1) with error ε.

In particular, the projected dimension m is independent of n, the original number of di-
mensions! Moreover, it is logarithmic in the number of points N in the dataset and grows
inverse-polynomially with the error ε.

The proof of Lemma 2.1 relies on constructing a random projection (i.e. a probability
distribution over m × n matrices) to avoid having to explicitly construct a function f for
each set S. More specifically, in the proof of Lemma 2.1 in [25], a probability distribution
A over m× n real matrices is constructed such that for any given pair of points y1, y2 ∈ Rn,
the distance ‖Ay1 − Ay2‖2 is close to ‖y1 − y2‖2 with high probability over the choice of A.
Since A is linear, this requirement can be expressed as follows.

Requirement 2.2 For error ε ∈ (0, 1) and failure probability δ ∈ (0, 1), the requirement is
that for each x ∈ Rn:

PA∈A[(1− ε) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε) ‖x‖2] > 1− δ.
1For a vector y = [y1, . . . , yn] ∈ Rn, the Euclidean norm, also called the `2-norm, is defined so ‖y‖2 =√∑n
i=1 y

2
i . The Euclidean distance between vectors x, y ∈ Rn is ‖x− y‖2.
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We will often use the shorthand PA∈A[‖Ax‖2 ∈ (1 ± ε) ‖x‖2] to denote PA∈A[(1 − ε) ‖x‖2 ≤
‖Ax‖2 ≤ (1 + ε) ‖x‖2].

Observe that random projections achieving Requirement 2.2 can yield the N -point ver-
sion of the dimensionality reduction requirement for a set S as follows. Consider a probability
distribution A that achieves Requirement 2.2 with failure probability δ = 0.01/N2 and error
ε. Now, we can union bound over all N2 differences {xi − xj}xi,xj∈S to see that with proba-

bility at least 0.99, it will hold that (1 − ε) ‖xi − xj‖2 ≤ ‖Axi − Axj‖2 ≤ (1 + ε) ‖xi − xj‖2

for all xi, xj ∈ S, so (2.1) is achieved. (In fact, when S has infinitely many points, random
projections can sometimes still achieve (2.1), and thus achieve distance-preservation for S,
although the proofs become significantly more involved [10, 11, 36, 6].)

Constructing dimensionality reduction schemes using random projections has a number
of nice consequences.

1. The dimensionality reduction scheme is linear and thus enjoys a simple structure (i.e.
Euclidean distance preservation boils down to Euclidean norm preservation).

2. The dimensionality reduction scheme is data-oblivious and thus can be constructed
without seeing the dataset S ahead of time.

3. The projection time can be directly tuned via the sparsity of matrices in the support
of the random projection.

Random projections that are successful in achieving Requirement 2.2 are sometimes referred
to as Johnson-Lindenstrauss transforms.

2.1 The gaussian construction

The proof of Lemma 2.1 boils down to designing an appropriate random projection achieving
Requirement 2.2. In particular, it turns out that there is a random projection with projected
dimension m = Θ(ε−2 log(1/δ)) that achieves Requirement 2.2.

Lemma 2.3 (Distributional JL lemma [25]) For any positive integer n and parameters
0 < ε, δ < 1, there exists a random projection over m×n matrices with m = Θ(ε−2 log(1/δ))
that satisfies Requirement 2.2.

After Johnson and Lindenstrauss’s seminal paper [25], the proof of Lemma 2.3 has been
distilled down to a random projection that lends itself to a simple analysis [45]. In particular,
the random projection can be taken to be a probability distribution over m × n matrices
with i.i.d. gaussian entries.

Proof. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let gi,j be i.i.d. standard gaussians with mean 0 and
variance 1. Now, the (i, j)th entry of A is defined to be the random entry Ai,j = 1√

m
gi,j. We

claim that for some m = Θ(ε−2 log(1/δ)), Requirement 2.2 is satisfied. Since A is linear, it
suffices to consider each x in the unit `2 ball, i.e. such that ‖x‖2 = 1.

Since it is easier to reason about the `2
2 than `2, we consider ‖Ax‖2

2 − 1. It is straight-
forward to see that if P[| ‖Ax‖2

2 − 1| ≤ ε] > 1 − δ, then we know that PA∈A[‖Ax‖2 ∈

11



(1± ε′) ‖x‖2] > 1− δ] is satisfied2 for some ε′ = Θ(ε). Thus, it suffices to consider the error
term ‖Ax‖2

2 − 1. Notice that

‖Ax‖2
2 − 1 =

1

m

m∑
j=1

(
n∑
i=1

gi,jxi

)2

− 1.

Let’s consider Gj =
∑n

i=1 gi,jxi, Since ‖x‖2 = 1, each Gj is itself distributed as a gaussian
with mean 0 and variance 1. Moreover, the independence of the gi,j tells us that G1, . . . , Gm

are independent. Thus, we can just consider

1

m

(
m∑
j=1

G2
j

)
− 1 ∼ 1

m
χ2
m − 1,

where χ2
m is a chi-squared random variable with parameter m. Now, the result follows from

tail bounds on the chi-squared random variables [45]. In particular, it follows that:

P
[∣∣∣∣ 1

m
χ2
m − 1

∣∣∣∣ ≥ ε

]
< 2e−mε

2/8.

We bound 2e−mε
2/8 by δ by taking m = Θ(ε−2 log(1/δ)), as desired.

The dimensionality reduction achieved by Lemma 2.3 is surprising and substantial.
Nonetheless, a natural question is whether a different Johnson-Lindenstrauss transform
(i.e. a different random projection achieving Requirement 2.2) might enable an even bet-
ter projected dimension. The answer turns out to be no: it turns out that dimension
m = Ω(ε−2 log(1/δ)) is necessary for random projections achieving Requirement 2.2 [26, 24].
Hence, the dimensionality reduction achieved by Lemma 2.3 is optimal! In fact, an even
stronger result holds [30]: there exists a set S of N points in Rn such that any function
f : S → Rm that achieves (2.1) requires m = Ω(ε−2 log(N)). This result has a surprising
consequence: we can restrict to considering linear maps without incurring any cost in the
projected dimension m.3

2.2 Sparse Johnson-Lindenstrauss transforms

In this section, we consider dimensionality reduction as a pre-processing step for algorithmic
tasks, where it is useful from a computational perspective to achieve a fast projection time.
In particular, we describe sparse Johnson-Lindenstrauss transforms [28]: state-of-the-art
Johnson-Lindenstrauss transforms over sparse matrices that enable fast projection.

From a computational perspective, the issue with the i.i.d. gaussian construction is that
the matrix can be very dense. As a result, for a vector x ∈ Rn, the time required to compute

2Recall that this is shorthand for PA∈A[(1− ε) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε) ‖x‖2] > 1− δ.
3Allowing non-linear maps does enable a much stronger guarantee on points outside of the set of data-

points. In particular, terminal embeddings [35] exploit the fact that non-linear maps can have no kernel in
order to provide guarantees on distances to datapoints outside of the dataset.
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the projection Ax is O(m ‖x‖0) (where ‖x‖0 is the number of nonzero entries in x). Indeed,
if the error is very small or the number of points N is large, this will unfortunately result in
a high projection time. In this context, over the past two decades, the CS theory literature
has developed dimensionality reduction schemes that enable a fast projection time.

An elegant way to reduce the projection time is to restrict the support of A to sparse
matrices, and thus design sparse random projections.4 Here, sparsity of a matrix is defined
to the maximum number of nonzero entries in any column. If A has sparsity s, then the
projection time on a vector x goes down to O(s ‖x‖0). (This can be seen by expressing Ax
as
∑

i∈supp(x) A
ixi, where Ai is the ith column of A.) Thus, the objective is to set s to be

as low as possible while still satisfying Requirement 2.2. To get some intuition for why the
distance-preserving properties become harder to satisfy when s is small, let’s consider the
case of s = 1. In this case, the nonzero entries in a matrix with sparsity 1 can represented
as a hash function h : {1, . . . , n} → {1, . . . ,m}. Now, unless m is very large, with nontrivial
probability, there will be a collision (i.e. h(i) = h(j)) between two entries where xi and xj
are large. In this case, the `2 norm of the projected data point will intuitively be far from
the `2 norm of the original data point.

The idea is that there is a sweet spot where the sparsity is large enough to avoid having
to increase the dimension m. Using this intuition, Kane and Nelson [28] constructed a family
of sparse random projections, improving upon a line of previous work [46, 2, 33, 15]. These
sparse random projections are called sparse Johnson-Lindenstrauss transforms (sparse JL
transforms). Roughly speaking, a sparse JL transform, as constructed in [28], boils down to
drawing a random m×n matrix where each column contains exactly s nonzero entries, each
equal to −1/

√
s or 1/

√
s.

The sparse JL transform is easy to visualize in the case of s = 1, as we show in Figure
2.1. The distribution over m×n matrices can be viewed as follows. A uniformly chosen hash
function h : {1, . . . , n} → {1, . . . ,m} is used to select the nonzero entries in each column,
so (h(i), i) is the position of the nonzero entry in column i. Each column 1 ≤ i ≤ n is also
given its own random sign σi, in order to handle collisions. With these components in place,
the entry yj of the projected vector can be written as the weighted sum

∑
i∈h−1(j) σjxj. In

fact, this construction (i.e. sparse JL for s = 1) is also known as “feature hashing” in the
machine learning literature.

The sparse JL transform for s > 1 can be viewed as selecting s hash functions h1, . . . , hs,
rather than just 1 hash function. These hash functions are anti-correlated in order to avoid
an entry colliding with itself (i.e. in order to avoid hj1(i) = hj2(i) for two different hash
functions hj1 and hj2).

5 Moreover, collisions are handled by s sets of independent column
signs. (We formally define sparse JL transforms in Definition 2.6.)

Kane and Nelson show that sparse JL transforms satisfy Requirement 2.2 with the same
(optimal) dimension as Lemma 2.3, while also achieving a sparsity property (in particular,

4Ailon and Chazelle [3] proposed a dimensionality reduction scheme (called a Fast Johnson–Lindenstrauss
Transform) that achieves projection time O(n log n). This construction can beat the sparse JL construction
of Kane and Nelson [28] on dense vectors. However, it is much slower on sparse vectors, which are common
in many machine learning applications (e.g. a bag-of-words model).

5If this anti-correlation is not introduced and the hash functions are instead chosen independently, the
resulting distribution is called “multiple hashing” [46, 15]. However, it turns out that a greater sparsity is
actually needed for this construction than for sparse JL transforms [28].
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Figure 2.1: A hash function depiction of sparse JL with s = 1, n = 10, and m = 5.

only an ε-fraction of the matrix entries are nonzero).

Theorem 2.4 (Sparse JL [28]) For any n ∈ N and ε, δ ∈ (0, 1), a sparse JL trans-
form As,m,n (defined formally in Definition 2.6) over m × n matrices, with dimension m =
Θ(ε−2 ln(1/δ)) and sparsity s = Θ(ε−1 ln(1/δ)), satisfies Requirement 2.2.

Sparse JL transforms are state-of-the-art sparse random projections, and achieve a spar-
sity that is nearly optimal when the dimension m is Θ(ε−2 ln(1/δ)). In particular, Nelson and
Nguyen [37] showed that any distribution over matrices satisfying Requirement 2.2 requires
sparsity Ω(ε−1 ln(1/δ)/ ln(1/ε)) when the dimension m is Θ(ε−2 ln(1/δ)).6 As a result, we
cannot hope for much better sparse random projections with dimension m = Θ(ε−2 ln(1/δ))
that satisfy Requirement 2.2.

Despite this barrier, it can be necessary in practice to utilize a much lower sparsity s, since
the projection time is linear in s. For example, if ε is very small, the sparsity s = log(1/δ)/ε
may still be very high, even though it is much lower than the dimension m. Resolving
this issue, Cohen [11] extended the upper bound in Theorem 2.4 to show that sparse JL
transforms can achieve a lower sparsity with an appropriate gain in dimension. He proved
the following dimension-sparsity tradeoffs:

Theorem 2.5 (Dimension-Sparsity Tradeoffs [11]) For any n ∈ N and ε, δ ∈ (0, 1), a
uniform sparse JL transformAs,m,n (defined formally in Definition 2.6), with s ≤ Θ(ε−1 ln(1/δ))

and m ≥ min
(

2ε−2/δ, ε−2 ln(1/δ)eΘ(ε−1 ln(1/δ)/s)
)

, satisfies Requirement 2.2.

This result can be viewed as a tradeoff between projection time (tuned via the sparsity s)
and projected dimension (described by m). Theorem 2.5 enables an application to select its
own tradeoff between projection time and projected dimension.

2.2.1 Formal definition of Sparse JL transforms

Sparse JL transforms, as constructed by Kane and Nelson [28], are defined as follows.

6Kane and Nelson [28] also showed that the analysis of sparse JL transforms in Theorem 2.4 is tight
at m = Θ(ε−2 ln(1/δ)). Thus, closing this (small) gap would either require moving to a different family of
sparse random projections or improving the lower bound.
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Definition 2.6 Let As,m,n be a sparse JL transform if the entries of a matrix A ∈ As,m,n
are generated as follows. Let Ar,i = ηr,iσr,i/

√
s where {σr,i}r∈[m],i∈[n] and {ηr,i}r∈[m],i∈[n]

satisfy the following conditions:

• The families {σr,i}r∈[m],i∈[n] and {ηr,i}r∈[m],i∈[n] are independent from each other.

• The variables {σr,i}r∈[m],i∈[n] are i.i.d Rademachers (±1 coin flips). (These random

variables assign signs to entries in the matrix.)

• The variables {ηr,i}r∈[m],i∈[n] are identically distributed Bernoullis ({0, 1} random vari-

ables) with expectation s/m. (These random variables determine the nonzero entries
in the matrix.)

• The {ηr,i}r∈[m],i∈[n] are independent across columns but not independent within each

column. For every column 1 ≤ i ≤ n, it holds that
∑m

r=1 ηr,i = s. Moreover, the
random variables are negatively correlated : for every subset S ⊆ [m] and every column
1 ≤ i ≤ n, it holds that E

[∏
r∈S ηr,i

]
≤
∏

r∈S E[ηr,i].

We describe two common constructions of sparse JL transforms satisfying Definition 2.6.
The first construction is a uniform sparse JL transform, generated as follows: for every
1 ≤ i ≤ n, we uniformly choose exactly s of these variables in {ηr,i}r∈[m] to be 1. When s = 1,
every sparse JL transform is a uniform sparse JL transform, but for s > 1, this is not the
case. The second common construction is a block sparse JL transform, which produces
a different construction for s > 1. In this construction, each column 1 ≤ i ≤ n is partitioned
into s blocks of

⌊
m
s

⌋
consecutive rows. In each block in each column, the distribution of the

variables {ηr,i} is defined by uniformly choosing exactly one of these variables to be 1.

2.2.2 Overview of proofs of Theorem 2.4

We describe, at a high-level, the standard proofs of Theorem 2.4. Since A is linear, it suffices
to consider x in the unit `2 ball, i.e. such that ‖x‖2 = 1. Like in the proof of Theorem 2.3, it
is easier to reason about `2

2 than `2, so we consider ‖Ax‖2
2 − 1. For this setting, notice that:

‖Ax‖2
2 − 1 =

1

s

m∑
r=1

(
n∑
i=1

σr,iηr,ixi

)2

− 1

=
1

s

m∑
r=1

( ∑
1≤i 6=j≤n

σr,iσr,jηr,iηr,jxixj +
n∑
i=1

σ2
r,iη

2
r,ix

2
i

)
− 1

=
1

s

m∑
r=1

∑
1≤i 6=j≤n

(σr,iσr,jηr,iηr,jxixj) +
1

s

(
n∑
i=1

m∑
r=1

ηr,ix
2
i

)
− 1

=
1

s

m∑
r=1

∑
1≤i 6=j≤n

(σr,iσr,jηr,iηr,jxixj) +
1

s

(
n∑
i=1

sx2
i

)
− 1

=
1

s

m∑
r=1

∑
1≤i 6=j≤n

σr,iσr,jηr,iηr,jxixj.
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We define the error term R(x1, . . . , xn) to be

R(x1, . . . , xn) =
1

s

m∑
r=1

∑
1≤i 6=j≤n

σr,iσr,jηr,iηr,jxixj.

Thus, we need to show tail bounds for R(x1, . . . , xn). The challenge is that unlike the proof
of Theorem 2.3, we can’t relate the distribution of R(x1, . . . , xn) to that of a nice random
variable with known tail bounds.

The standard approach is to obtain a bound on the Θ(log(1/δ))th moment of this random
variable, and use this to obtain a tail bound. Markov’s inequality, a standard tool, enables
us to move from a moment bound to a tail bound. The driving idea of Markov’s inequality
is the probability that a nonnegative random variable is far from its mean must be small.

Lemma 2.7 (Markov’s inequality) If X is a nonnegative random variable, then for any
b > 0, it holds that:

P[X > b] ≤ E[X]

b
.

We can use Markov’s inequality to relate a high moment of R(x1, . . . , xn) to a tail bound
as follows. Let p = Θ(log(1/δ) be an even integer. We can apply Markov’s inequality to
R(x1, . . . , xn)p to obtain that:

P[R(x1, . . . , xn) > ε] = P[R(x1, . . . , xn)p > εp] ≤ ε−pE[R(x1, . . . , xn)p].

The idea is that if E[R(x1, . . . , xn)p] ≤ 0.5εp, then we know that ε−pE[R(x1, . . . , xn)p] ≤ δ.
As a result, the analysis boils down to bounding E[R(x1, . . . , xn)p]. This is technically

challenging since the ηr,i random variables are not independent. Due to the interaction of
these correlations with the potentially differing weights xi, the behavior of this random vari-
able is difficult to reason about. The original analysis of sparse JL [28] handled the moment
bounds via expanding out R(x1, . . . , xn)p as a sum of a large collection of monomials. They
then carefully rearranged and bounded sums of these monomials, and wrote this expression
as a sum of certain graphs. Then, they counted the number of graphs and used this to bound
the overall expression. The resulting analysis was quite intricate and delicate.

Cohen et al. [12] later showed a much simpler and cleaner proof of Theorem 2.4. They give
an elegant approach for bounding the moments of R(x1, . . . , xn) that utilizes the structure of
R(x1, . . . , xn). The random variables can be peeled off in layers, as follows: E[R(x1, . . . , xn)p] =
Eη [Eσ [R(x1, . . . , xn)p]]. First, they write R(x1, . . . , xn) as a quadratic form of the m ·
n Rademachers (±1 random variables), i.e. it’s of the form 1

s

∑
k,l ak,lσkσl for a m · n-

dimensional block-diagonal matrix with a zero-diagonal, where the (i, j)th entry of the rth
block is ηr,iηr,jxixj. While (ak,l)k,l is a random matrix, for a fixed instantation of the ηr,i, it
becomes a scalar matrix.

The quantity Eσ [R(x1, . . . , xn)p] can then be handled using that Rademachers are sub-
gaussian random variables. In particular, they consider:

Rg(x1, . . . , xn) =
1

s

m∑
r=1

∑
1≤i 6=j≤n

gr,igr,jηr,iηr,jxixj,
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and use that Eσ[R(x1, . . . , xn)p] ≤ Eg[Rg(x1, . . . , xn)p] since the σ are subgaussian. Then,
they use gaussian bounds7 on Eg[Rg(x1, . . . , xn)p] to obtain an upper bound B(η). As a
result, they deduce that E[Rg(x1, . . . , xn)p] ≤ EηB(η), and then they handle EηB(η) using
binomial random variable moment bounds.

7See Lemma 5.3.
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Chapter 3

Machine Learning: JL on Feature
Vectors

In this chapter, we consider how sparse Johnson-Lindenstrauss transforms perform on well-
behaved datasets, in the context of a model inspired by machine learning applications [46].
In Section 3.1, we review previous results. In Section 3.2, we present our tight bounds on the
tradeoff between projected dimension, sparsity of the matrix, accuracy, and `∞-to-`2 norm
ratio of the data points.

3.1 Framework and previous results

In machine learning settings, feature hashing and other random projection schemes are in-
fluential in helping manage large data [14], since dimensionality reduction enables a classifier
to process vectors in Rm, instead of vectors in Rn. In this context, feature hashing was first
introduced by Weinberger et. al [46]. Feature hashing has close ties to sparse JL transforms,
and the feature hashing scheme in [46] can be viewed as a sparse JL transform with s = 1.

Feature hashing was initially proposed in [46] for document-based classification tasks
such as email spam filtering. For such tasks, feature hashing yields a lower dimensional
embedding of a high-dimensional feature vector derived from a bag-of-words model (i.e. a
vector representation of a text document consisting of the number of occurrences of each
word). Since then, feature hashing has become a mainstream approach, applied to numer-
ous domains including ranking text documents [5], compressing neural networks [9], and
protein sequence classification [7]. Indeed, feature hashing (also called the “hashing trick”)
is considered one of the key techniques in scaling up machine learning algorithms [16, 43]!

Interestingly, in practice, feature hashing can do much better than theoretical results,
such as Theorem 2.4 and Theorem 2.5, would indicate [16]. A line of work in the machine
learning literature [46, 15, 27, 13, 28] considers whether feature hashing can provide better
distance-preservation guarantees on “well-behaved” datasets. This line of work fits nicely
into the “beyond worst-case analysis” framework [41] that has recently become a main theme
in the computer science literature. In particular, the condition in Requirement 2.2 can be
viewed as a worst-case guarantee since it requires good norm-preservation guarantees on any
given vector x ∈ Rn. In the N -point setting, Requirement 2.2 translates to requiring good
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distance-preservation guarantees on any set of N points. Looking at distance-preservation
guarantees on “well-behaved” datasets can be viewed as “beyond worst-case analysis” (which
is about identifying properties of real-world inputs and proving stronger guarantees for inputs
with these properties).

The model for well-behaved datasets considered in this line of work [46, 15, 27, 13, 28] is
based on the fact that mass of real-world feature vectors is likely to be spread out between
many coordinates. For example, consider a feature vector for a text document obtained from
a bag-of-words model with the standard tf-idf pre-processing.1 It’s unlikely that a single
coordinate of a feature vector has all of the mass, and the mass is likely distributed between
a set of document-specific terms. While the highest error terms in sparse JL often stem from
vectors with mass concentrated on two entries (i.e. [1, 1, 0, . . . , 0]), it is unlikely in practice
for such a vector to occur. This motivates studying the performance of sparse JL on vectors
with mass spread out between a set of coordinates, i.e. vectors with low `∞-to-`2 ratio.2

More formally, take Sv to be
{
x ∈ Rn | ‖x‖∞‖x‖2 ≤ v

}
, so that S1 = Rn and Sv ( Sw for

0 ≤ v < w ≤ 1. Let v(m, ε, δ, s) be the supremum over all 0 ≤ v ≤ 1 such that a sparse JL
transform with sparsity s and dimension m satisfies PA∈A[‖Ax‖2 ∈ (1± ε) ‖x‖2] > 1− δ for
each x ∈ Sv.3 (That is, v(m, ε, δ, s) is the maximum v ∈ [0, 1] such that for every x ∈ Rn, if
‖x‖∞ ≤ v ‖x‖2 then PA∈A[‖Ax‖2 ∈ (1± ε) ‖x‖2] > 1− δ holds.)

When v(m, ε, δ, s) = 0, this means that the performance in distance preservation is poor:
there exist vectors with arbitrarily small `∞-to-`2 norm ratio where PA∈A[‖Ax‖2 ∈ (1 ±
ε) ‖x‖2] is smaller than 1−δ. When v(m, ε, δ, s) = 1, this means that there is full performance
in distance preservation: all vectors in Rn satisfy PA∈A[‖Ax‖2 ∈ (1 ± ε) ‖x‖2] > 1 − δ, so
Requirement 2.2 is satisfied. When v(m, ε, δ, s) ∈ (0, 1), this means that there is good
performance in distance preservation for x ∈ Sv(m,ε,δ,s), but there can be poor performance
for x 6∈ Sv(m,ε,δ,s).

Technically, the quantity v(m, ε, δ, s), as defined here, also depends on n. In particular,
every vector x ∈ Rn satisfies ‖x‖∞ ≥ ‖x‖2 /

√
n, so `∞-to-`2 norm ratios below 1/

√
n are

not possible in Rn. To avoid this dependence on n and thus make the bounds cleaner, the
quantity v(m, ε, δ, s) is actually defined to be the infimum over all n ∈ N of the supremum
over all 0 ≤ v ≤ 1 such that a sparse JL transform with sparsity s and dimension m
satisfies PA∈A[‖Ax‖2 ∈ (1 ± ε) ‖x‖2] > 1 − δ for each x ∈ Sv. (That is, v(m, ε, δ, s) is the
maximum v ∈ [0, 1] such that for every n ∈ N and every x ∈ Rn, if ‖x‖∞ ≤ v ‖x‖2 then
PA∈A[‖Ax‖2 ∈ (1± ε) ‖x‖2] > 1− δ holds.)

For s = 1, a line of work [46, 15, 27, 13, 28] improved bounds on v(m, ε, δ, 1), and was
recently closed by Freksen et al. [16].

Theorem 3.1 ([16]) For any m ∈ N and ε, δ ∈ (0, 1), the function v(m, ε, δ, 1) is equal to

1This is the term frequency-inverse document frequency, which adjusts for the fact that some words occur
frequently in general, in order to highlight document-specific terms.

2One might imagine other models for vectors with mass spread out between several coordinates, such as
the `p-to-`2 norm ratio for some other values of p. This would be an interesting direction for future work.
Selecting p = ∞ enabled the analysis of sparse JL to be tractable, since `∞-to-`2 ratio is largely a local
property of the vector.

3Recall that this is shorthand for PA∈A[(1− ε) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε) ‖x‖2] > 1− δ.
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f(m, ε, ln(1/δ)) where:

f(m, ε, p) =


1 if m ≥ 2ε−2ep

Θ

(
√
εmin

(
ln(mε

p
)

p
,

√
ln(mε

2

p
)

√
p

))
if Θ(ε−2p) ≤ m < 2ε−2ep

0 if m ≤ Θ(ε−2p).

While Theorem 3.1 is restricted to the case of s = 1, dimensionality reduction schemes
constructed using sparse random projections with sparsity s > 1 have been used in practice
for projecting feature vectors. For example, sparse JL-like methods (with s > 1) have been
used to project feature vectors in machine learning domains including visual tracking [42],
face recognition [34], and recently in ELM [8]. Now, a variant of sparse JL is included in the
Python sklearn library.4

In this context, it is natural to explore how constructions with s > 1 perform on feature
vectors, by studying v(m, ε, δ, s) for sparse JL with s > 1. In fact, a related question was
considered by Weinberger et al. [46] for “multiple hashing,” an alternate distribution over
sparse matrices constructed by adding s draws from A1,m,n and scaling by 1/

√
s. More

specifically, they show that v(m, ε, δ, s) ≥ min(1,
√
s · v(m, ε, δ, 1)) for multiple hashing.

However, Kane and Nelson [28] later showed that multiple hashing has worse geometry-
preserving properties than sparse JL: that is, multiple hashing requires a larger sparsity
than sparse JL to satisfy Requirement 2.2.

3.1.1 Discussion of combinatorial analysis in [16]

An upper bound on the tail probability of R(x1, . . . , xn) is needed to prove the lower bound
on v(m, ε, δ, s) in Theorem 3.2, and a lower bound is needed to prove the upper bound
on v(m, ε, δ, s) in Theorem 3.2. It turns out that it suffices to tightly analyze the random
variable moments E[(R(x1, . . . , xn))q]. For the upper bound on the tail probability, they use
Markov’s inequality, like in Section 2.2.2. For the lower bound on the tail probability, they
use the Paley-Zygmund inequality, which gives a lower bound on the tail probability from
upper and lower bounds on moments.

Thus, the key ingredient of their analysis is a tight bound on the moments of R(x1, . . . , xn)

on Sv =
{
x ∈ Rn | ‖x‖∞‖x‖2 ≤ v

}
for the case for s = 1. Unfortunately, the combinatorial

approach in [28] cannot be directly generalized to obtain Theorem 3.1. In [16], they require
a novel graph-counting argument, along with more precise monomial bounds. The analysis
is quite intricate and delicate, and it is not clear how to generalize this analysis to s > 1.

3.2 Our results

Characterizing v(m, ε, δ, s) for sparse JL transforms, which are state-of-the-art, remained
an open problem. We settle how v(m, ε, δ, s) behaves for sparse JL with a general sparsity
s > 1, giving tight bounds. Our theoretical result shows that sparse JL with s > 1, even if s

4See https://scikit-learn.org/stable/modules/random_projection.html.
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is a small constant, can achieve significantly better norm-preservation properties for feature
vectors than sparse JL with s = 1. Moreover, we empirically demonstrate this finding.

3.2.1 Mathematical result

We show the following tight bounds on v(m, ε, δ, s) for a general sparsity s:

Theorem 3.2 For any s,m ∈ N such that s ≤ m/e, consider a uniform sparse JL transform
(defined in Definition 2.6) with sparsity s and dimension m.5 If ε and δ are small enough6,
the function v(m, ε, δ, s) is equal to f ′(m, ε, ln(1/δ), s), where f ′(m, ε, p, s) is7:

1 if m ≥ min

(
2ε−2ep, ε−2pe

Θ

(
max

(
1, pε

−1

s

)))

Θ

(
√
εs

√
ln(mε

2

p
)

√
p

)
else, if max

(
Θ(ε−2p), s · e

Θ

(
max

(
1, pε

−1

s

)))
≤ m ≤ ε−2eΘ(p)

Θ

(
√
εsmin

(
ln(mε

p
)

p ,

√
ln(mε

2

p
)

√
p

))
else, if Θ(ε−2p) ≤ m ≤ min

(
ε−2eΘ(p), s · e

Θ

(
max

(
1, pε

−1

s

)))
0 if m ≤ Θ(ε−2p).

Our main result, Theorem 3.2, significantly generalizes Theorem 2.4, Theorem 2.5, and
Theorem 3.1. Notice our bound in Theorem 3.2 has up to four regimes. In the first
regime, which occurs when m ≥ min(2ε−2/δ, ε−2 ln(1/δ)eΘ(max(1,ln(1/δ)ε−1/s))), Theorem 3.2
shows v(m, ε, δ, s) = 1, so PA∈A[‖Ax‖2 ∈ (1 ± ε) ‖x‖2] > 1 − δ holds on the full space
Rn. Notice this boundary on m occurs at the dimensionality-sparsity tradeoff in Theo-
rem 2.5. In the last regime, which occurs when m ≤ Θ(ε−2 ln(1/δ)), Theorem 3.2 shows
that v(m, ε, δ, s) = 0, so there are vectors with arbitrarily small `∞-to-`2 norm ratio where
PA∈A[‖Ax‖2 ∈ (1 ± ε) ‖x‖2] > 1 − δ does not hold. When s ≤ Θ(ε−1 ln(1/δ)), Theorem 3.2
shows that up to two intermediate regimes exist.

One of the regimes, Θ(
√
εsmin(ln(mε

p
)/p,

√
ln(mε

2

p
)/
√
p)), matches the middle regime of

v(m, ε, δ, 1) in Theorem 3.1 with an extra factor of
√
s, much like the bound for multiple

hashing in [46] that we mentioned previously. However, unlike the multiple hashing bound,

Theorem 3.2 sometimes has another regime, Θ(
√
εs
√

ln(mε
2

p
)/
√
p), which does not arise for

s = 1 (i.e. in Theorem 3.1).8 Intuitively, we expect this additional regime for sparse JL
with s close to Θ(ε−1 ln(1/δ)): at s = Θ(ε−1 ln(1/δ)) and m = Θ(ε−2 ln(1/δ)), Theorem 2.4

tells us v(m, ε, δ, s) = 1, but if ε is a constant, then the branch Θ(
√
εs ln

(
mε
p

)
/p) yields

Θ(1/
√

ln(1/δ)), while the branch Θ(
√
εs
√

ln(mε
2

p
)/
√
p) yields Θ(1). Thus, it is natural that

the first branch disappears for large m.
Our result elucidates that v(m, ε, δ, s) increases approximately as

√
s, thus providing

insight into how even small constant increases in sparsity can be useful in practice. Another

5We prove the lower bound on v(m, ε, δ, s) in Theorem 3.2 for any sparse JL transform.
6By “small enough”, we mean the condition that ε, δ ∈ (0, C ′) for some positive constant C ′.
7Notice that the function f ′(m, ε, p, s) is not defined for certain “constant-factor” intervals between the

boundaries of regimes (e.g. C1ε
−2p ≤ m ≤ C2ε

−2p). See Appendix A for a discussion.
8This regime does not arise for s = 1, since eΘ(pε−1) ≥ ε−2eΘ(p) for sufficiently small ε.
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consequence of our result is a lower bound on dimension-sparsity tradeoffs (Corollary A.1
in Appendix A) that essentially matches the upper bound in Theorem 2.5. Moreover, we
require new techniques to prove Theorem 3.2. (The combinatorial approaches in [28, 16]
do not directly generalize to this setting, and we show that the approach in [12] is also not
sufficiently precise, even for s = 1.)

To prove Theorem 3.2, we give a new perspective on bounding moments of these random
variables. We believe our style of analysis is less brittle than combinatorial approaches [16,
28, 4, 36]: in this setting, once the sparsity s = 1 case is recovered, it becomes straightforward
to generalize to other s values. Moreover, our approach can yield greater precision than the
previous non-combinatorial approach [12], which is necessary for this setting. For this reason,
we believe that our structural approach could be of more general use. Our approach also
shares many common technical ingredients with our proof of Theorem 4.4, and thus takes a
step towards a unified analysis of JL transforms. We discuss the analysis methods in greater
detail in Chapter 5.

3.2.2 Empirical evaluation

We also empirically support our theoretical findings in Theorem 3.2. First, we illustrate
with real-world datasets the potential benefits of using small constants s > 1 for sparse
JL on feature vectors. We specifically show that s = {4, 8, 16} consistently outperforms
s = 1 in preserving the `2 norm of each vector, and that there can be up to a factor of ten
decrease in failure probability for s = 8, 16 in comparison to s = 1. Second, we use synthetic
data to illustrate phase transitions and other trends in Theorem 3.2. More specifically, we
empirically show that v(m, ε, δ, s) is not smooth, and that the middle regime(s) of v(m, ε, δ, s)
increases with s.

Recall that for sparse JL transforms with sparsity s, the projection time for an input
vector x is O(s ‖x‖0), where ‖x‖0 is the number of nonzero entries in x. Since this grows
linearly in s, in order to minimize the impact on projection time, we restrict to small constant
s values (i.e. 1 ≤ s ≤ 16). In Section 3.2.2, we demonstrate on real-world data the benefits of
using s > 1. In Section 3.2.2, we illustrate trends in our theoretical bounds on synthetic data.
Additional graphs can be found in Appendix I. For all experiments, we use a block sparse
JL transform to demonstrate that our theoretical upper bounds also empirically generalize
to non-uniform sparse JL transforms.

Real-world datasets

We considered two bag-of-words datasets: the News20 dataset [1] (based on newsgroup
documents), and the Enron email dataset [38] (based on e-mails from the senior management
of Enron).9 Both datasets were pre-processed with the standard tf-idf preprocessing. In
this experiment, we evaluated how well sparse JL preserves the `2 norms of the vectors in
the dataset. An interesting direction for future work would be to empirically evaluate how
well sparse JL preserves other aspects of the geometry of real-world data sets, such as the `2

distances between pairs of vectors.

9Note that the News20 dataset is used in [13], and the Enron dataset is from the same collection as the
dataset used in [16], but contains a larger number of documents.
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In our experiment, we estimated the failure probability δ̂(s,m, ε) for each dataset as fol-
lows. Let D be the number of vectors in the dataset, and let n be the dimension (n = 101631,
D = 11314 for News20; n = 28102, D = 39861 for Enron). We drew a matrix M ∼ As,m,n
from a block sparse JL transform. Then, we computed

‖Mx‖2
‖x‖2

for each vector x in the dataset,

and used these values to compute an estimate δ̂(s,m, ε) =
number of vectors x such that

‖Mx‖2
‖x‖2

6∈1±ε
D

.

(Here
‖Mx‖2
‖x‖2

6∈ 1 ± ε is short-hand notation for denoting that either
‖Mx‖2
‖x‖2

> 1 + ε or
‖Mx‖2
‖x‖2

< 1− ε.) We ran 100 trials to produce 100 estimates δ̂(s,m, ε).

Figure 3.1: News20: δ̂(m, s, 0.07) v. s Figure 3.2: Enron: δ̂(m, s, 0.07) vs. s

Figure 3.1 and Figure 3.2 show the mean and error bars (3 standard errors of the mean)
of δ̂(s,m, ε) at ε = 0.07. We consider s ∈ {1, 2, 4, 8, 16}, and choose m values so that
0.01 ≤ δ̂(1,m, ε) ≤ 0.04.

All of the plots show that s ∈ {2, 4, 8, 16} achieves a lower failure probability than s = 1,
with the differences most pronounced when m is larger. In fact, at m = 1000, there is a
factor of four decrease in δ between s = 1 and s = 4, and a factor of ten decrease between
s = 1 and s = 8, 16. We note that in plots in the Appendix, there is a slight increase
between s = 8 and s = 16 at some ε, δ,m values (see Appendix I for a discussion of this
non-monotonicity in s); however s > 1 still consistently beats s = 1. Thus, these findings
demonstrate the potential benefits of using small constants s > 1 in sparse JL in practice,
which aligns with our theoretical results.

Synthetic datasets

We used synthetic data to illustrate the phase transitions in our bounds on v(m, ε, δ, s) in
Theorem 3.2 for a block sparse JL transform. For several choices of s,m, ε, δ, we computed an
estimate v̂(m, ε, δ, s) of v(m, ε, δ, s) as follows. Our experiment borrowed aspects of the exper-
imental design in [16]. Our synthetic data consisted of binary vectors (i.e. vectors whose en-
tries are in {0, 1}). The binary vectors were defined by a set W of values exponentially spread
between 0.03 and 110: for each w ∈ W , we constructed a binary vector xw where the first 1/w2

entries are nonzero, and computed an estimate δ̂(s,m, ε, w) of the failure probability of the
block sparse JL transform on the specific vector xw (i.e. PA∈As,m,1/w2 [‖Axw‖2 6∈ (1±ε) ‖xw‖2]).

10We took W =
{
w | w−2 ∈ {986, 657, 438, 292, 195, 130, 87, 58, 39, 26, 18, 12, 9, 8, 7, 6, 5, 4, 3, 2, 1}

}
.
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We computed each δ̂(s,m, ε, w) using 100,000 samples from a block sparse JL transform, as
follows. In each sample, we independently drew a matrix M ∼ As,m,1/w2 and computed the

ratio
‖Mxw‖2
‖xw‖2

. Then, we took δ̂(s,m, ε, w) := (number of samples where
‖Mxw‖2
‖xw‖2

6∈ 1 ± ε)/T .

(Here
‖Mxw‖2
‖xw‖2

6∈ 1 ± ε is short-hand notation for denoting that either
‖Mxw‖2
‖xw‖2

> 1 + ε or
‖Mxw‖2
‖xw‖2

< 1− ε.) Finally, we used the estimates δ̂(s,m, ε, w) to obtain the estimate

v̂(m, ε, δ, s) = max
{
v ∈ W | δ̂(s,m, ε, w) < δ for all w ∈ W where w ≤ v

}
.

Why does this procedure estimate v(m, ε, δ, s)? With enough samples, δ̂(s,m, ε, w) →
PA∈As,m,1/w2 [‖Axw‖2 6∈ (1 ± ε) ‖xw‖2].11 As a result, if xw is a “violating” vector, i.e.

δ̂(s,m, ε, w) ≥ δ, then likely PA∈As,m,n [‖Axw‖2 6∈ (1 ± ε) ‖xw‖2] ≥ δ, and so v̂(m, ε, δ, s) ≥
v(m, ε, δ, s). For the other direction, we use that in the proof of Theorem 1.5, we show that
asymptotically, if a “violating” vector (i.e. x s.t. PA∈As,m,n [‖Ax‖2 6∈ (1± ε) ‖x‖2] ≥ δ) exists
in Sv, then there’s a “violating” vector of the form xw for some w ≤ Θ(v). Thus, the estimate
v̂(m, ε, δ, s) = Θ(v(m, ε, δ, s)) as T →∞ and as precision in W goes to ∞.

Figure 3.3: v̂(m, 0.1, 0.01, s) Figure 3.4: v̂(m, 0.05, 0.05, s)

Figure 3.3 and Figure 3.4 show v̂(m, ε, δ, s) as a function of dimensionm for s ∈ {1, 2, 3, 4, 8}
for two settings of ε and δ. The error-bars are based on the distance to the next highest v
value in W .

Our first observation is that for each set of s, ε, δ values considered, the curve v̂(m, ε, δ, s)
has “sharp” changes as a function of m. More specifically, v̂(m, ε, δ, s) is 0 at small m,
then there is a phase transition to a nonzero value, then an increase to a higher value, then
an interval where the value appears “flat”, and lastly a second phase transition to 1. The
first phase transition is shared between s values, but the second phase transition occurs
at different dimensions m (but is within a factor of 3 between s values). Here, the first
phase transition likely corresponds to Θ(ε−2 ln(1/δ)) and the second phase transition likely

corresponds to min
(
ε−2eΘ(ln(1/δ)), ε−2 ln(1/δ)eΘ(ln(1/δ)ε−1/s)

)
.

Our second observation is that as s increases, the “flat” part occurs at a higher y-
coordinate. Here, the increase in the “flat” y-coordinate as a function of s corresponds to

11With 100,000 samples, running our procedure twice yielded the same v̂(m, ε, δ, s) values both times.
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the
√
s term in v(m, ε, δ, s). Technically, according to Theorem 3.2, the “flat” parts should

be increasing in m at a slow rate: the empirical “flatness” likely arises since W is a finite set
in the experiments.

Our third observation is that s > 1 generally outperforms s = 1 as Theorem 3.2 suggests:
that is, s > 1 generally attains a higher v̂(m, ε, δ, s) value than s = 1. We note at large m
values (where v̂(m, ε, δ, s) is close to 1), lower s settings sometimes attain a higher v̂(m, ε, δ, s)
than higher s settings (e.g. the second phase transition doesn’t quite occur in decreasing
order of s in Figure 3.3): see Appendix I for a discussion of this non-monotonicity in s.12

Nonetheless, in practice, it’s unlikely to select such a large dimension m, since the `∞-to-`2

guarantees of smaller m are likely sufficient. Hence, a greater sparsity generally leads to a
better v̂(m, ε, δ, s) value, thus aligning with our theoretical findings.

12In Appendix I, we also show more examples where at large m values, lower s settings attain a higher
v̂(m, ε, δ, s) than higher s settings.
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Chapter 4

Neuroscience: JL for Sign-Consistent
Matrices

In this chapter, we consider dimensionality reduction as a model for information compression
in the brain. In Section 4.1, we review the motivation for and construction of random
projections, called sparse, sign-consistent JL transforms [4], that satisfy certain biological
restrictions. In Section 4.2, we present our novel dimension-sparsity tradeoffs that result
from our simplified and generalized analysis of these JL transforms.

4.1 Framework and previous results

Neuroscience-based constraints give rise to the additional condition of sign-consistency on
the matrices in the probability distribution. Sign-consistency refers to the constraint that
the nonzero entries of each column are either all positive or all negative. The relevance
of dimensionality reduction schemes in neuroscience is described in a survey by Ganguli
and Sompolinsky [18]. In convergent pathways in the brain, information stored in a massive
number of neurons is compressed into a small number of neurons, and nonetheless the ability
to perform the relevant computations is preserved. Modeling this information compression
scheme requires a hypothesis regarding what properties of the original information must be
accurately transmitted to the receiving neurons.

A plausible minimum requirement is that convergent pathways preserve the similarity
structure of neuronal representations at the source area. This requirement is based on the
experimental evidence that semantically similar objects in higher perceptual or association
areas in the brain elicit similar neural activity patterns [29] and on the hypothesis that the
similarity structure of the neural code is the basis of our ability to categorize objects and
generalize responses to new objects [40]. It remains to select the appropriate mathematical
measure of similarity. The candidate similarity measure considered in [18] is vector inner
product, which conveniently gives rise to a model based on the JL transform. It is not
difficult to see that for vectors x and y in the `2 unit ball, a (1 + ε)-approximation of ‖x‖2,
‖y‖2, and ‖x− y‖2 implies an additive error Θ(ε) approximation of the inner product 〈x, y〉.

Suppose there are n “input” neurons at a source area and m “output” neurons at a target
area. As shown in Figure 4.1, in this framework, the information at the input neurons is
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Figure 4.1: A model for information compression in the brain

represented as a vector in Rn, the synaptic connections to output neurons are represented as
a m×n matrix (with (i, j)th entry corresponding to the strength of the connection between
input neuron j and output neuron i), and the information received by the output neurons
is represented as a vector in Rm. The similarity measure between two vectors v, w of neural
information being taken to be 〈v, w〉 motivates modeling a synaptic connectivity matrix as a
random m× n matrix drawn from a probability distribution that satisfies Requirement 2.2.
Certain constraints on synaptic connectivity matrices arise from the biological limitations of
neurons: the matrices must be sparse since a neuron is only connected to a small number
(e.g. a few thousand) of postsynaptic neurons and sign-consistent since a neuron is usually
purely excitatory or purely inhibitory.

This biological setting motivates the mathematical question: what is the optimal di-
mension and sparsity that can be achieved by a probability distribution over sparse, sign-
consistent matrices that satisfies Requirement 2.2? Notice that the sparse JL transforms
given in Definition 2.6 are far from sign-consistent: each nonzero entry is a column is given
its own random sign. Nonetheless, as observed by Allen-Zhu, Gelashvili, Micali, and Shavit
[4], a sparse, sign-consistent JL transform can be constructed with a modification: draw a
single random sign for each column.1 They proved that this distribution surprisingly permits
efficient dimensionality reduction.

Theorem 4.1 (Sparse, sign-consistent JL [4]) For every ε > 0, and 0 < δ < 1/e, a
sparse, sign-consistent JL transform A′s,m,n (defined formally in Definition 4.2) over m × n
matrices with dimension m = Θ(ε−2 log2(1/δ)) and sparsity s = Θ(ε−1 log(1/δ)) satisfies
Requirement 2.2.

In [4], it was also proven that the additional log(1/δ) factor on m is essentially necessary:
namely, any distribution over sign-consistent matrices satisfying Requirement 2.2 requires
m = Ω̃(ε−2 log(1/δ) min(log(1/δ), log n)). Thus, the dimension in Theorem 4.1 is essentially
optimal. However, in order to achieve these upper bounds on m and s, the proof presented
in [4] involved complicated combinatorics even more delicate than in the analysis of sparse
JL in [28].

In Section 4.1.1, we describe how to construct the probability distribution of sparse,
sign-consistent matrices analyzed in Theorem 4.1. In Section 4.1.2, we briefly describe the
combinatorial proof of Theorem 4.1 presented in [4].

1Related mathematical work includes a construction of a dense, sign-consistent JL transform [39, 19].
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4.1.1 Construction of Sparse, Sign-Consistent JL

Sparse, sign-consistent JL transforms, as constructed by Allen-Zhu et al. [4], are defined as
follows.

Definition 4.2 Let As,m,n be a sparse, sign-consistent JL transform if the entries of
a matrix A ∈ As,m,n are generated as follows. Let Ar,i = ηr,iσi/

√
s where {σi}i∈[n] and

{ηr,i}r∈[m],i∈[n] satisfy the following conditions:

• The families {σi}i∈[n] and {ηr,i}r∈[m],i∈[n] are independent from each other.

• The variables {σi}i∈[n] are i.i.d Rademachers (±1 coin flips).

• The variables {ηr,i}r∈[m],i∈[n] are identically distributed Bernoullis ({0, 1} random vari-

ables) with expectation s/m.

• The {ηr,i}r∈[m],i∈[n] are independent across columns but not independent within each

column. For every column 1 ≤ i ≤ n, it holds that
∑m

r=1 ηr,i = s. Moreover, the
random variables are negatively correlated : for every subset S ⊆ [m] and every column
1 ≤ i ≤ n, it holds that E

[∏
r∈S ηr,i

]
≤
∏

r∈S E[ηr,i].

The key difference between Definition 4.2 and Definition 2.6 is that there is one random sign
per column, rather than one random sign per entry in each column.

4.1.2 Discussion of the combinatorial analysis of [4]

Since A is linear, it suffices to consider x ∈ Rn such that ‖x‖2 = 1. Like in Section 2.2.2, it
is easier to reason about `2

2 than `2, so we consider ‖Ax‖2
2− 1. By a similar calculation to in

Section 2.2.2, for sparse, sign-consistent JL, this becomes

T (x1, . . . , xn) := ‖Ax‖2
2 − 1 =

1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσiσjxixj.

Like in Section 2.2.2, it suffices to bound E[T (x1, . . . , xn)p] for an even integer p = Θ(log(1/δ)).
In the analysis in [4], a complicated combinatorial argument was used to prove the fol-

lowing lemma, from which Theorem 4.1 follows:

Lemma 4.3 ([4]) If s2 ≤ m and p < s, then ‖T (x1, . . . , xn)‖p .
p
s

for all vectors x ∈ Rn.

The argument in [4] to prove Lemma 4.3 was based on expanding E[Zp] into a polynomial
with≈ n2p terms, establishing a correspondence between the monomials and the multigraphs,
and then doing combinatorics to analyze the resulting sum. The approach of mapping
monomials to graphs is commonly used in analyzing the eigenvalue spectrum of random
matrices [47, 17] and was also used in [28] to analyze sparse JL. The analysis in [4] borrowed
some methods from the analysis in [28]; however, the additional correlations between the
Rademachers imposed by sign-consistency forced the analysis in [4] to require more delicate
manipulations at several stages of the computation.
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The expression to be analyzed was spE[T (x1, . . . , xn)p], which was written as:

∑
i1,...,ip,j1,...,jp∈[n],i1 6=j1,...,ip 6=jp

(
p∏

u=1

xiuxju

)(
Eσ

p∏
u=1

σiuσju

)(
Eη

t∏
u=1

m∑
r=1

ηr,iuηr,ju

)
.

After layers of computation, it was shown that

spE[Zp] ≤ ep
p∑
v=2

∑
G∈Gv,p

(
(1/pp)

v∏
q=1

√
dq
dq

) ∑
r1,...,rp∈[m]

w∏
i=1

(s/m)vi

where Gv,p is a set of directed multigraphs with v labeled vertices and t labeled edges, where
dq is the total degree of vertex q ∈ [v] in a graph Gv,p, and where w and v1, . . . , vw are
defined by G and the edge colorings r1, . . . , rt. The problem then boiled down to carefully
enumerating the graphs in Gv,p in six stages and analyzing the resulting expression.

4.2 Our results

We present a simpler, combinatorics-free proof of Theorem 4.1. This analysis shares common
technical ingredients with our proof of Theorem 3.2, and thus takes a step towards a unified
analysis of JL transforms. We discuss the analysis methods in greater detail in Chapter 5.

Moreover, our analysis also yields dimension/sparsity tradeoffs, which were not previously
known.2 We prove the following:

Theorem 4.4 For every ε > 0, 0 < δ < 1, and e ≤ B ≤ 1
δ
, there exists a probability

distribution A over m × n real, sign-consistent matrices with m = Θ(Bε−2 log2
B(1/δ)) and

sparsity s = Θ(ε−1 logB(1/δ)) that satisfies Requirement 2.2.

Notice Theorem 4.1 is recovered if B = e. For larger B values, Theorem 4.4 enables a
logB factor reduction in sparsity at the cost of a B/ log2 B factor gain in dimension. These
dimension-sparsity tradeoffs bear a strong resemblance to the dimension-sparsity tradeoffs
(Theorem 2.5) for the standard sparse JL transform.

2In Appendix A of [22], we point out the limiting lemma in the combinatorial analysis in [4], which
prevents dimension-sparsity tradeoffs from being attainable through this approach, due to an assumption
that is implicitly used in the analysis. For sparse JL, it is similarly not known how to obtain these tradeoffs
via the combinatorial approach of [28].
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Chapter 5

A Perspective on Analyzing
Johnson-Lindenstrauss transforms

The core ingredient in analyzing Johnson-Lindenstrauss transforms is understanding the
error term ‖Ax‖2

2−1. Since tail bounds are related to moment bounds by Markov’s inequality
(Lemma 2.7), the analysis boils down to analyzing moments of this error term.

For sparse JL, as discussed in Section 2.2.2, the error term becomes:

R(x1, . . . , xn) =
1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσr,iσr,jxixj =
1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσr,iσr,jxixj.

For sparse, sign-consistent JL, as discussed in Section 4.1.2, the error term becomes:

T (x1, . . . , xn) = ‖Ax‖2
2 − 1 =

1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσiσjxixj.

Standard proofs [28, 4, 16, 36] bound moments via expanding out the pth power of the
error term as a sum of a large collection of monomials. Then, the sum of monomials is
written as expressed as a sum of a certain collection of multigraphs, which are carefully
enumerated and handled. (See Section 4.1.2 for an overview of this combinatorial analysis
for sparse sign-consistent JL.) Each of the aformentioned papers uses a different, delicate
method to enumerate the graphs and bound each term, due to the specific constraints of
each setting.

In this chapter, we describe a new conceptual perspective on analyzing Johnson-Lindenstrauss
transforms that we believe provides a greater degree of simplicity and unification. In par-
ticular, we believe our unified approach obviates the need to build entirely distinct analyses
for each setting.

High-level approach

Our approach builds on the framework for Cohen et al. [12] for giving a cleaner proof of
Theorem 2.4 for sparse JL. As described in Section 2.2.2, the idea in [12] is to view the error
term R(x1, . . . , xn) as a quadratic form of Rademacher random variables. That is, it can
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be expressed as
∑

k,l ak,lσkσl for an appropriate (random) matrix (ak,l)k,l. Now, the random
variables are peeled off in layers by expressing

E[R(x1, . . . , xn)p] = Eη[Eσ[R(x1, . . . , xn)p]].

For each instantiation of the η random variables, the inner expression Eσ[R(x1, . . . , xn)p] is
a quadratic form of Rademachers with a non-random matrix. In [12], this quadratic form is
handled by using that that Rademachers are sub-gaussian variables, and applying gaussian
quadratic form bounds (Lemma 5.3).

Our approach diverges from [12] in how we handle the expression Eσ[R(x1, . . . , xn)p].
As we will describe in Section 5.2, it turns out that using gaussian quadratic forms is too
weak to result in the desired results in our settings in Chapter 3 and Chapter 4. While
the analysis in [12] achieves the optimal dimension for Theorem 2.4 using a tight bound on
gaussian quadratic form moments, we give counterexamples that show that this bound is too
loose in our settings to result in the desired results. We thus require a separate treatment of
quadratic forms of Rademachers. As we will discuss in Section 5.1, Rademacher quadratic
forms can have much smaller moments than gaussian quadratic forms, and we need to take
advantage of that distinction in our proofs to recover the desired results.

There has been a thorough study of tight bounds on Rademacher linear and quadratic
forms in the probability theory literature [21, 31, 32]. However, it is not clear how to
directly apply these bounds in our settings since they suffer from tractability issues. The
crux is that while these bounds are focused on obtaining tight estimates for quadratic forms
with scalar coefficients, our analysis needs to be tractable for quadratic forms with random
variable coefficients. In particular, to bound Eσ[Eη[||Ax||22 − 1]], we need to be able take an
expectation over the η random variables of our bound on the Rademacher quadratic form
Eη[||Ax||22 − 1].

With these restrictions in mind, our analysis boils down to constructing bounds on
Rademacher quadratic form moments that borrow intuition from previous bounds [21, 31, 32],
while being sufficiently tractable for our setting. For the remainder of the thesis, we use the
notation ‖X‖T for a random variable X to denote the T -norm of X, i.e. E[|X|T ]1/T . Our
main technical ingredient is bounds on the T -norm of Rademacher quadratic forms that are
tractable to analyze when the coefficients are random variables.

In Section 5.1, we give intuition for why gaussian bounds can be very loose in the
Rademacher setting, and review known Rademacher bounds. In Section 5.2, we give coun-
terexamples that demonstrate that gaussian bounds are too weak for our settings in Chapter
3 and Chapter 4. In Section 5.3, we describe our cleaner bounds on Rademacher quadratic
forms and other related sums of random variables.

5.1 Rademachers versus gaussians: the distinction

We give some intuition for the distinction between Rademacher and gaussian moment bounds.
In Section 5.1.1, we describe the structure of these bounds for the linear form setting. In Sec-
tion 5.1.2, we draw upon the intuition from the linear form setting to describe the structure
of these bounds for the quadratic form setting.
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5.1.1 Linear forms

At first glance, it may seem surprising that (sub)-gaussian moment bounds can become very
loose for Rademachers. The concept that drives this difference can be illustrated in the
linear form setting. Gaussian moment bounds yield the following bound on linear forms of
Rademachers:

Lemma 5.1 (Khintchine) Suppose σ1, σ2 . . . , σn are i.i.d Rademachers, x = [x1, . . . , xn]
is a vector in Rn such that |x1| ≥ |x2| ≥ . . . ≥ |xn|. Suppose g1, . . . , gn are i.i.d gaussians.
Then, for any even integer T ≥ 2, it holds that:∥∥∥∥∥

n∑
i=1

σixi

∥∥∥∥∥
T

.

∥∥∥∥∥
n∑
i=1

gixi

∥∥∥∥∥
T

'
√
T ‖x‖2 .

Proof. Since the Rademachers σi are subgaussian, we can easily see (from expanding) that
‖
∑n

i=1 σixi‖T . ‖
∑n

i=1 gixi‖T . Notice that
∑n

i=1 gixi is itself a gaussian with mean 0 and

variance ‖x‖2
2. As a result, it follows from gaussian moment bounds that ‖

∑n
i=1 gixi‖T '√

T ‖x‖2.

While
√
T ‖x‖2 is tight for gaussian linear form moments, this bound cannot be a tight

bound on ‖
∑n

i=1 σixi‖T for the following reason: As T → ∞, the quantity
√
T ‖x‖2 goes

to infinity, while for any T ≥ 1, the quantity ‖
∑n

i=1 σixi‖T is bounded by ‖x‖1. The
fundamental issue is that the gaussian bound does not take advantage of the fact that
Rademachers are bounded, while gaussians have tails that extend to infinitely. For sufficiently
high moments, which are determined by tail behavior, this distinction causes gaussian bounds
to fail to capture Rademacher moments.

A result due to Hitczenko [21] indicates that the tight bound for Rademacher linear forms
is actually the following combination of the `2 and `1 norm bounds:.

Lemma 5.2 (Hitczenko [21]) Suppose σ1, σ2 . . . , σn are i.i.d Rademachers, x = [x1, . . . , xn]
is a vector in Rn such that |x1| ≥ |x2| ≥ . . . ≥ |xn|. Then, for any even integer 2 ≤ T ≤ n,
it holds that: ∥∥∥∥∥

n∑
i=1

σixi

∥∥∥∥∥
T

'
T∑
i=1

|xi|+
√
T

√∑
i>T

x2
i .

In this bound, the “big” terms (i.e. terms involving x1, x2, . . . , xT ) are handled with an
`1-norm bound, while the remaining terms are approximated as gaussians and bounded with
an `2-norm bound. The upper bound can be seen easily by splitting into “big” and “small”
terms. Indeed, we can express:∥∥∥∥∥

n∑
i=1

σixi

∥∥∥∥∥
T

.

∥∥∥∥∥
T∑
i=1

σixi

∥∥∥∥∥
T

+

∥∥∥∥∥
n∑

i=T+1

σixi

∥∥∥∥∥
T

.
T∑
i=1

|xi|+
√
T

√∑
i>T

x2
i .

The fact that this simple bound is tight is surprising, and we refer the reader to the proofs
of the lower bound in [31, 21].
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5.1.2 Quadratic forms

The situation is similar for quadratic form bounds, though the resulting bounds become
much more complex. First, we recall the standard bound for gaussian quadratic forms, that
yields the following bound for Rademachers:

Lemma 5.3 (Hanson-Wright bound [20]) Let σ be a d-dimensional vector of indepen-
dent Rademachers, and let g be a d-dimensional vector of gaussians. Let A = (ak,l) be a
symmetric d× d matrix with zero diagonal. Then, for any even integer T ≥ 2, it holds that:

∥∥σTAσ∥∥
T
.
∥∥gTAg∥∥

T
∼
√
T

√√√√ d∑
k=1

d∑
l=1

a2
k,l + T

(
sup
‖y‖2=1

|yTAy|

)
.

Notice that the gaussian quadratic form bound in Lemma 5.3 is already far more complicated
than the gaussian linear form bound in Lemma 5.1.

A complication similar to the linear form setting arises when the Hanson-Wright bound is
applied to Rademachers. While the Hanson-Wright bound is tight for gaussians, this bound
can’t be a tight bound on

∥∥σTAσ∥∥
T

for the following reason: As T → ∞, the quantity
√
T
√∑d

k=1

∑d
l=1 a

2
k,l goes to ∞, while for any T ≥ 1, the quantity

∥∥σTAσ∥∥
T

is bounded by

the entrywise `1-norm
∑d

k=1

∑d
l=1 |ak,l|.

There is analogously a closed-form tight bound for the Rademacher quadratic forms,
though the expression is not nearly as intuitive as in the linear form case. Lata la showed
the following moment bounds on Rademacher quadratic forms [32].1

Lemma 5.4 ([32]) Let T be an even natural number. Let σ1, . . . , σn be independent
Rademachers and let (ai,j) a symmetric matrix with zero diagonal. Then:∥∥∥∥∥ ∑

1≤i,j≤n

ai,jσiσj

∥∥∥∥∥
T

'

(
sup

‖b‖2,‖c‖2≤
√
T ,‖b‖∞,‖c‖∞≤1

∑
1≤i,j≤n

ai,jbicj

)
+
∑

1≤i≤T

A(i) +
√
T

√ ∑
T<i≤n

(A(i))2

where Ai =
√∑

1≤j≤n a
2
i,j and A(1) ≥ A(2) . . . ≥ . . . A(n) is a permutation of A1, . . . , An.

The challenge in applying Lemma 5.4 in our setting is that the terms can become intractable
when (ai,j) is a random matrix.

In the case of random variable coefficients, we observe that Lata la’s bound takes the
following form.

Lemma 5.5 Let T be an even integer, {σi}1≤i≤n be independent Rademachers, and (Yi,j)1≤i,j≤n
be a n × n symmetric, nonnegative random matrix with zero diagonal (i.e. Yi,i = 0) such

that {Yi,j}1≤i,j≤n is independent from {σi}1≤i≤n. If Wi =
√∑

1≤j≤n Y
2
i,j, then:∥∥∥∥∥ ∑

1≤i,j≤n

Yi,jσiσj

∥∥∥∥∥
T

'

∥∥∥∥∥ sup
‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
1≤i,j≤n

Yi,jbicj

∥∥∥∥∥
T

+

∥∥∥∥∥∥
∑

1≤i≤T

W(i) +
√
T

√ ∑
T<i≤n

W 2
(i)

∥∥∥∥∥∥
T

1In fact, Lata la shows moment bounds for much more general quadratic forms, but for the application to
JL, we only need the following bound in the special case of Rademachers.
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where W(1) ≥ W(2) ≥ . . . ≥ . . .W(n) is a permutation of W1, . . . ,Wn.

Proof of Lemma 5.5. To prove Lemma 5.5, we apply Lemma 5.4 to the case where the ai,j
are themselves random variables. Let Q =

∑
1≤i 6=j≤n Yi,jσiσj. Applying Lemma 5.4, we have

that:(
EY,σ[QT ]

)1/T
=
(
EYEσ[QT ]

)1/T

=

EY

∥∥∥∥∥ ∑
1≤i 6=j≤n

Yi,jσiσj

∥∥∥∥∥
T

T

1/T

'

∥∥∥∥∥∥ sup
‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
1≤i 6=j≤n

Yi,jbicj +
∑

1≤i≤T

W(i) +
√
T

√ ∑
T<i≤n

W 2
(i)

∥∥∥∥∥∥
T

'

∥∥∥∥∥ sup
‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
1≤i 6=j≤n

Yi,jbicj

∥∥∥∥∥
T

+

∥∥∥∥∥∥
∑

1≤i≤T

W(i) +
√
T

√ ∑
T<i≤n

W 2
(i)

∥∥∥∥∥∥
T

where the last line follows from the fact that the the Yi,j are nonnegative, so each term is
nonnegative, so the triangle inequality results in at most a factor of 2 of gain.

In Lemma 5.5, notice that term
∥∥∥sup‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
1≤i,j≤n Yi,jbicj

∥∥∥
T

can be

viewed as a generalization of the operator norm to the `2-ball truncated by `∞ planes. Due to
the asymmetrical geometry of the `2 ball truncated by `∞ planes, this term becomes especially
messy in our setting where the coefficients are random variables. In particular, this operator-
norm-like term can become intractable to directly handle when taking an expectation over
the η random variables.

5.2 Failure of Hanson-Wright bound for our settings

We show that the Hanson-Wright bound (Lemma 5.3) is too loose for our settings in Chapter
3 and Chapter 4.

5.2.1 Hanson-Wright is too loose for Chapter 3

We show that applying the Hanson-Wright bound (Lemma 5.3) to analyze Eσ[R(x1, . . . , xn)p]
is not sufficiently precise for the setting in Chapter 3, even for the simplest case where s = 1.
Notice that applying the Hanson-Wright bound to analyze Eσ[R(x1, . . . , xn)p] effectively
approximates R(x1, . . . , xn) as

Rg(x1, . . . , xn) =
1

s

m∑
r=1

∑
i 6=j

ηr,iηr,jgr,igr,jxixj

where the gr,i are i.i.d standard gaussians. However, we need different technical tools for two
reasons.
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1. First, in order to upper bound v(m, ε, δ, s), we need to lower bound ‖|R(x1, . . . , xn)‖q,
and thus cannot simply consider ‖Rg(x1, . . . , xn)‖q.

2. Second, even to lower bound v(m, ε, δ, s), using ‖Rg(x1, . . . , xn)‖q as a upper bound
for ‖R(x1, . . . , xn)‖q is not sufficiently strong. Below, we give a counter-example, i.e.
a vector x, where ‖Rg(x1, . . . , xn)‖q is too large to recover a tight lower bound.

Thus, we cannot use the Hanson-Wright bound in this setting, and need to come up with a
better bound on ‖R(x1, . . . , xn)‖q that does not implicitly replace Rademachers by gaussians.
The second point is similar in flavor to the conceptual point made in [22], where a sign-
consistent variant of sparse JL was analyzed using an upper bound for Rademacher quadratic
forms. However, the bound in [22] also turns out to be loose in this setting and also can’t
be used to obtain either a sufficiently tight upper bound or a lower bound for R(x1, . . . , xn).

We now show point 2: that the Hanson-Wright bound is not sufficiently strong to obtain a
tight lower bound v(m, ε, δ, s). We consider Rg(x1, . . . , xn) = 1

s

∑m
r=1

∑
i 6=j ηr,iηr,jgr,igr,jxixj,

as above, where the gr,i are i.i.d standard gaussians. We consider p equal to ln(1/δ) rounded
up to the nearest even integer, and we consider a vector of the form [v, . . . , v, 0, . . . , 0] where
1
v2

is an integer and v ≥ 0. We show ‖Rg(v, . . . , v, 0, . . . , 0)‖p & ω(ε) for a certain v value,
where we know it to be true that ‖R(v, . . . , v, 0, . . . , 0)‖p . ε.

Let’s consider a vector [v, . . . , v, 0, . . . , 0] where 1
v2

is an integer and v ≥ 0. We apply the
Hanson-Wright bound (which is tight for gaussians) to obtain:

‖Rg(v, . . . , v, 0, . . . , 0)‖p & pv2

∥∥∥∥∥ sup
‖x‖2,‖y‖2≤1

m∑
r=1

∑
1≤i 6=j≤N

ηr,iηr,jxr,iyr,j

∥∥∥∥∥
p

≥ pv2

∥∥∥∥∥ sup
‖x‖2,‖y‖2≤1

∑
1≤i 6=j≤N

η1,iη1,jxiyj

∥∥∥∥∥
p

.

Let M =
∑N

i=1 η1,i. Let S ⊆ [N ] be the set of indices where η1,i = 1. We can set the vector
to xi = yi = 1√

M
for all i ∈ S and 0 elsewhere. This gives us:∥∥∥∥∥ sup

‖x‖2,‖y‖2≤1

∑
1≤i 6=j≤N

η1,iη1,jxiyj

∥∥∥∥∥
p

≥ ‖M − 1‖p =

∥∥∥∥∥
N∑
i=1

η1,i − 1

∥∥∥∥∥
p

&

∥∥∥∥∥I∑N
i=1 η1,i≥2

N∑
i=1

η1,i

∥∥∥∥∥
p

.

We can expand out this moment to obtain:

E

[(
I∑N

i=1 η1,i≥2

N∑
i=1

η1,i

)p]
≥ Cp

p∑
M=2

(
N

M

)
Mp

( s
m

)M (
1− s

m

)M
≥ Cp

p∑
M=2

(
N

p

)M ( p
M

)M
Mp

( s
m

)M (
1− s

m

)M
= Cp

p∑
M=2

(
s

pmv2

)M
Mp

( p
M

)M (
1− s

m

)M
.
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Since M ≤ p, we know that
(
p
M

)M ≥ 1. Moreover, as long as p ≥ se
mv2

, we know that(
1− s

m

)M/p ≥
(
1− s

m

)N/p ≥ (1− s
m

)m
s ≥ 0.3. Thus we obtain a bound of

Dp

p∑
M=2

Mp

(
s

pmv2

)M
.

If 2 ≤ p
ln(pmv2/s)

≤ p (which can be written as 1 ≤ ln(pmv2/s) ≤ p
2
), then we know that:

pv2

∥∥∥∥∥ sup
‖x‖2,‖y‖2≤1

∑
1≤i 6=j≤N

η1,iη1,jxiyj

∥∥∥∥∥
p

&
p2v2

ln(pmv2/s)
.

We show that when s = 1, the bound v =
√
ε

ln(mε
p

)

p
will produce ‖R(v, . . . , v, 0, . . . , 0)‖p &

ω(ε). At this v value, we know that:

1 ≤ pmv2

e
= ln2(

mε

p
)
mε

pe
.

If we have that ln(mε
p

) ≤ √p, then we know that v ≤ 1√
p

and ln(pmv2) ≤ p
2
. However, the

bound
p2v2

ln(pmv2)
&
ε ln2(mε/p)

ln(mε
p

)
≥ ε ln(

mε

p
) = ω(ε).

5.2.2 Hanson-Wright is too loose for Chapter 4

We show that applying the Hanson-Wright bound (Lemma 5.3) to analyze Eσ[T (x1, . . . , xn)p]
is not sufficiently precise for the setting in Chapter 4. We view the random variable
T (x1, . . . , xn) as a quadratic form 1

s
σTAσ, where σ an n-dimensional vector of indepen-

dent Rademachers and A is a symmetric, zero-diagonal n×n matrix where the (i, j)th entry
(for i 6= j) is xixj

∑m
r=1 ηr,iηr,j. We let Qi,j =

∑m
r=1 ηr,iηr,j, so that we can write the (i, j)th

entry as Qi,jxixj. Applying the Hanson-Wright bound followed by an expectation over the
η values yields

∥∥σTAσ∥∥
p
.

∥∥∥∥∥∥√p
√√√√ n∑

i=1

∑
j≤n,j 6=i

Q2
i,jx

2
ix

2
j + p sup

‖y‖2=1

∣∣∣∣∣
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjyiyj

∣∣∣∣∣
∥∥∥∥∥∥
p

=: Up. (5.1)

We show that the vector x = [ 1√
2
, 1√

2
, 0, . . . , 0] ∈ Rn forces Up to be too large to yield the

optimal m value, thus proving that the Hanson-Wright bound does not provide a sufficiently
tight bound on

∥∥T (1/
√

2, 1/
√

2, 0, . . . , 0)
∥∥
p

to achieve Theorem 4.1. The main ingredient in

our proof is the following lemma, which we prove in subsection C.1:

Lemma 5.6 For every column 1 ≤ i ≤ n, suppose that the random variables {ηr,i}r∈[m],i∈[n]

have the distribution defined by uniformly choosing exactly s of the variables per column.

If x =
[

1√
2
, 1√

2
, 0, . . . , 0

]
, p < s and B = m/s2 ≤ ep

p
, then

Up '

{
p2

logBp
if B ≥ e

p
p
B

if B < e
p
.
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We can obtain bounds on s and m from Lemma 5.6 via Markov’s inequality. We disregard
the case where B ≥ ep

p
, since this case would yield a value for m that is not polynomial in

log(1/δ). If B < e/p, then it follows that s = Θ(ε−1B−1 log(1/δ)) = Ω(ε−1 log2(1/δ))
and m = Θ(ε−2B−1 log2(1/δ)) = Ω(ε−2 log3(1/δ)). If B ≥ e/p, then it follows that s =
Θ(ε−1p2/ log(Bp)) = Ω(ε−1 log(1/δ)) and m = Θ(ε−2p4B/ log2(Bp)) = Ω(ε−2 log3(1/δ)).
These bounds on m incur an extra log(1/δ) factor, and thus the Hanson-Wright bound is
too weak for this setting. Now, it suffices to prove Lemma 5.6.

We assume that x =
[

1√
2
, 1√

2
, 0, . . . , 0

]
and that the random variables {ηr,i}r∈[m],i∈[n] have

the distribution defined by uniformly choosing exactly s of the variables per column. We
first show the following computation of ||Qi,j||p.
Proposition 5.7 Assume that the random variables {ηr,i}r∈[m],i∈[n] have the distribution
defined by uniformly choosing exactly s of the variables per column. Then, if p < s and
X ∼ Bin(s, s/m), we have that ||Qi,j||p ' ||X||p.

Proof. We condition on the even that the nonzero locations in column i are at r1, r2, . . . , rs.
Notice that the random variable (Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1) is distributed as
Zr1 + Zr2 + . . . + Zrs where Zrk is an indicator for the kth entry in the jth column being
nonzero. Let Z ′rk for 1 ≤ k ≤ s be i.i.d random variables distributed as Bern(s/m). Now,
observe that

E[(Zr1 + Zr2 + . . .+ Zrs)
p] =

∑
0≤t1,t2,...,ts≤p
t1+t2+...+ts=p

E[
s∏
i=1

Zti
ri

] =
∑

0≤t1,t2,...,ts≤p
t1+t2+...+ts=p

E[
∏
i|ti>0

Zri ].

Notice that E[(Z ′r1 +Z ′r2 + . . .+Z ′rs)
p] =

∑
0≤t1,t2,...,ts≤p,t1+t2+...+ts=p

E[
∏

i|ti>0 Z
′
ri

]. Thus, it

suffices to compare E[
∏

i|ti>0 Zri ] and E[
∏

i|ti>0 Z
′
ri

]. We see that E[
∏

i|ti>0 Z
′
ri

] =
(
s
m

)|{i|ti>0}|
.

Since p < s, we see that E[
∏

i|ti>0 Zri ] =
∏|{i|ti>0}|−1

j=0
s−j
m−j . It is not difficult to verify that

this ratio is bounded by 2O(p) as desired, so

E[(Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1)p]

E[Xp]
=

E[(Zr1 + Zr2 + . . .+ Zrs)
p]

E[Xp]
≥ 2−O(p).

Now, by the law of total expectation, we know that

E[Qp
i,j]

E[Xp]
≥ 2−O(p)

as desired.

We now prove the following relation between Up and ‖Q1,2‖p:
Lemma 5.8 Assume the notation and restrictions above. Then Up ' p ‖Q1,2‖p.
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Proof of Lemma 5.8. For ease of notation, we define

S1 := p sup
‖y‖2=1

∣∣∣∣∣
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjyiyj

∣∣∣∣∣
S2 :=

√
p

√√√√ n∑
i=1

n∑
j=1

Q2
i,jx

2
ix

2
j .

Our goal is to calculate Up = ‖S1 + S2‖p. We make use of the following upper and lower
bounds on ‖S1 + S2‖p:∣∣∣‖S1‖p − ‖S2‖p

∣∣∣ ≤ ‖S1 − S2‖p ≤ ‖S1 + S2‖p ≤ ‖S1‖p + ‖S2‖p . (5.2)

In order to compute
∣∣∣‖S1‖p − ‖S2‖p

∣∣∣ and ‖S1‖p + ‖S2‖p, we first compute ‖S1‖p and ‖S2‖p.
For our choice of x, notice

‖S1‖p ' p

∥∥∥∥∥ sup
‖y‖2=1

|Q1,2y1y2|

∥∥∥∥∥
p

' p ‖Q1,2‖p

‖S2‖p '
√
p
∥∥∥√Q2

1,2

∥∥∥
p

=
√
p ‖Q1,2‖p .

From these bounds, coupled with (5.2), it follows that ‖U‖p ' p ‖Q1,2‖p as desired.

We now show Lemma 5.6 follows from Lemma 5.8 and Proposition 5.7.

Proof of Lemma 5.6. After applying Lemma 5.8, it suffices to calculate ‖Q1,2‖p. It follows
from Proposition 5.7 that ‖Q1,2‖p ' ‖X‖p where X is distributed as Bin(s, s/m). Now, the

following calculation ‖X‖p for p < s and B = m/s2 ≤ ep

p
follows from the lower and upper

bounds of Lemma 5.11 (Lata la’s bound on moments of sums of i.i.d nonnegative random
variables):

‖X‖p '

{
p

logBp
if B ≥ e

p
1
B

if B < e
p

.

From this, Lemma 5.6 follows.

5.3 Rademacher moment bounds

The main ingredient in our proofs is to design moment bounds for Rademacher quadratic
forms that are tractable when the coefficients are random variables. As mentioned in Section
5.1, the tight bound on quadratic forms of Rademachers in Lemma 5.4 becomes particularly
messy when the coefficients are random variables. We give cleaner (though weaker) bounds
that take further advantage of structure of the error terms R(x1, . . . , xn) and T (x1, . . . , xn).
Due to the ubiquity of moment bounds in theoretical computer science, we hope that these
bounds can be of more general use.
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5.3.1 Revisiting the linear form setting

As a starting point, we revisit the linear form setting, considering linear forms of symmetric
random variables. Linear forms naturally arise in the sparse JL error term R(x1, . . . , xn)
since ∑

i 6=j

ηr,iσr,iηr,jσr,jxjxi =

( ∑
1≤i≤n

ηr,iσr,ixi

)2

−
∑

1≤i≤n

ηr,ix
2
i ≤

( ∑
1≤i≤n

ηr,iσr,ixi

)2

.

Notice that Eσ
[∑

1≤i≤n ηr,iσr,ixi
]

falls within scope of Lemma 5.2. Let’s imagine though

that we use Lemma 5.2 to handle Eσ
[∑

1≤i≤n ηr,iσr,ixi
]
. The issue is that the bound involves

sorting the weighted terms ηr,ixi in ascending order; however, this becomes somewhat messy
since it requires reasoning about the order statistics of these random variables. We provide
an alternate (though potentially weaker) bound for linear forms of symmetric random vari-
ables that avoids these complications. Moreover, this bound also turns out to be of use for
analyzing the sparse, sign-consistent error term.

Proposition 5.9 Suppose that T ≥ 1 is an integer. Suppose that Y1, Y2, . . . , Yn are i.i.d
symmetric random variables and suppose that x = [x1, . . . , xn] satisfies ‖x‖2 ≤ 1 and ‖x‖∞ ≤
v. Then, we have that ∥∥∥∥∥∑

i

Yixi

∥∥∥∥∥
2T

. v

(
sup

1≤t≤T

T

t

(
1

Tv2

) 1
2t

‖Yi‖2t

)
.

Theoretically, moments of the form in Proposition 5.9 can be bounded using Lemma
5.2 (or from Theorem 2 in [31], a tight bound on moments of weighted sums of symmetric
random variables). However, reducing the tight bound to the form that we want would
require some simplifications. Instead, we give a direct proof of our weaker bound that is
sufficiently tight for our setting.

Proof of Proposition 5.9. Let k = 2v
(

sup1≤t≤T
T
t

(
1
Tv2

)1/(2t) ‖Yi‖2t

)
. Observe that

E[

(∑
i Yixi
k2

)2T

] =
∑

d1+d2+...+dn=T,di≤T

2T !

2d1! . . . 2dn!

n∏
i=1

E

[(
Yixi
k

)2di
]

≤ CT
∑

d1+d2+...+dn=T,di≤T

(2T )2T

(2d1)2d1 . . . (2dn)2dn

n∏
i=1

E

[(
Yixi
k

)2di
]

≤ CT

n∏
i=1

∑
0≤di≤T

(2T )2di

(2di)2di
E

[(
Yixi
k

)2di
]

= CT

n∏
i=1

(
1 +

∑
1≤di≤T

(
Txi ‖Yi‖2di

v

vdik

)2di
)

Now, we use the fact that |xi| ≤ v and the condition on k to obtain that this is bounded by

CT

n∏
i=1

(
1 +

x2
i

v2

∑
1≤di≤T

(
Tv ‖Yi‖2di

dik

)2di
)
≤ CT

n∏
i=1

(
1 + Tx2

i

)
≤ CT

n∏
i=1

eTx
2
i ≤ CT eT .
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Proposition 5.9 provides a bound on linear forms of symmetric random variables that

can be used to obtain a bound on
(∑

1≤i≤n ηr,iσr,ixi
)2

, and thus on
(∑

1≤i≤n ηr,iσr,ixi
)2 −∑

1≤i≤n ηr,ix
2
i . However, observe that

(∑
1≤i≤n ηr,iσr,ixi

)2−
∑

1≤i≤n ηr,ix
2
i is actually a square

of a linear form with a zero diagonal. It turns out that bounding the moments of this random
variable using Proposition 5.9 is weak in some parts of the analysis in Chapter 3.

In this context, we give a bound on moments of squares of linear forms with a zero
diagonal, i.e.

∑
i 6=j YiYjxixj. Since random variables with a zero diagonal are common in

the JL literature [28, 4, 36], we believe this moment bound could be of broader use.

Lemma 5.10 Suppose that Y1, Y2, . . . , Yn are i.i.d symmetric random variables and suppose
that x = [x1, . . . , xn] satisfies ‖x‖2 = 1 and ‖x‖∞ ≤ v. Let T be an even natural number.
Then, we have that∥∥∥∥∥∑

i 6=j

YiYjxixj

∥∥∥∥∥
T

. v2

(
sup

1≤t≤T/2

T 2

t2

(
1

Tv2

)1/t

‖Yi‖2
2t

)
.

The structure of random variable in Lemma 5.10 theoretically falls under the scope of
Lemma 5.5. However, the first term of the bound in Lemma 5.5, which is an operator-norm-
like term for an asymmetric random matrix in this setting, becomes intractable to manage.
We give an alternate (weaker) upper bound that is both tractable to analyze and sufficiently
tight for our setting. Our proof of this bound is similar to our proof of Proposition 5.9
presented above.

Proof of Lemma 5.10. Let k = 2v
(

sup1≤t≤T/2
T
t

(
1
Tv2

)1/(2t) ‖Yi‖2t

)
. Observe that

E

[(∑
i 6=j YiYjxixj

k2

)T]
≤

∑
d1+d2+...+dn=T,di≤T/2

2T !

2d1! . . . 2dn!

n∏
i=1

E

[(
Yixi
k

)2di
]

≤ CT
∑

d1+d2+...+dn=T,di≤T/2

(2T )2T

(2d1)2d1 . . . (2dn)2dn

n∏
i=1

E

[(
Yixi
k

)2di
]

≤ CT

n∏
i=1

∑
0≤di≤T/2

(2T )2di

(2di)2di
E

[(
Yixi
k

)2di
]

= CT

n∏
i=1

1 +
∑

1≤di≤T/2

(
Txi ‖Yi‖2di

v

vdik

)2di


Now, we use the fact that |xi| ≤ v and the condition on k to obtain that this is bounded by

CT

n∏
i=1

1 +
x2
i

v2

∑
1≤di≤T/2

(
Tv ‖Yi‖2di

dik

)2di

 ≤ CT

n∏
i=1

(
1 + Tx2

i

)
≤ CT

n∏
i=1

eTx
2
i ≤ CT eT .
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Lata la [31] gives the following nice bound on sums of i.i.d symmetric random variables
that turns to be generally useful in our proofs.

Lemma 5.11 ([31]) Suppose that q is an even natural number. Suppose that Y1, . . . , Yn
are i.i.d symmetric random variables. Then:∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
q

. sup
2≤T≤q

q

T

(
n

q

)1/T

‖Yi‖T .

We give a proof of this result using Proposition 5.9.

Proof of Lemma 5.11. Consider [x1, . . . , xn] = [1/
√
n, . . . , 1/

√
n]. Notice that:∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
q

=
√
n

∥∥∥∥∥
n∑
i=1

Yixi

∥∥∥∥∥
q

. sup
2≤T≤q

q

T

(
n

q

)1/T

‖Yi‖T

by Proposition 5.9.

We give a general lower bound on moments of certain (potentially correlated) sums of
identically distributed random variables, that is useful in our analysis of sparse JL.

Proposition 5.12 Let Y1, . . . , Yn be identically distributed (but not necessarily indepen-
dent) random variables, such that the joint distribution is a symmetric function of Y1, . . . , Yn
and for any integers d1, . . . dn ≥ 0, it is true that E[

∏
1≤i≤n Y

di
i ] ≥ 0. For any natural number

q and natural number T that divides q, it is true that∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
q

≥ T

(
n

q

)T/q
‖Y1Y2 . . . YT‖1/T

q/T

Proof of Proposition 5.12. The proof follows from expanding E[(
∑n

i=1 Yi)
q
] and using the

fact that E[
∏

1≤i≤n Y
di
i ] ≥ 0 so that we can restrict to a subset of the terms. By the

symmetry of the joint distribution, we know that for 1 ≤ r1 6= r2 6= rT ≤ n, we know that
E[Y

q/T
r1 . . . Y

q/T
rT ] = E[Y

q/T
1 . . . Y

q/T
T ]. The number of terms of the form E[Y

q/T
r1 . . . Y

q/T
rT ] in

E[(
∑n

i=1 Yi)
q
] is: (

n

T

)(
q

q/T, q/T, . . . , q/T

)
≥ Cq

(n
T

)T q!

((q/T )!)T

≥ Cq
(n
T

)T
T q

≥ Cq
2

(
n

q

)T ( q
T

)T
T q

≥ C ′q
(
n

q

)T
T q.

This implies that

E

[(
n∑
i=1

Yi

)q]
≥ C ′q

(
n

q

)T
T qE

[
Y
q/T

1 . . . Y
q/T
T

]
and the statement follows from taking 1/qth powers.
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5.3.2 A simpler quadratic form bound

For the sparse, sign-consistent JL, the error term T (x1, . . . , xn) can’t be decomposed into
linear forms, so the results from the previous subsection do not suffice in handling the error
term. For this setting, we give an alternate quadratic form that enjoys a greater degree of
simplicity than Lemma 5.4. Using this bound, combined with the bounds in the previous
subsection, gives us the necessary technology to analyze sparse, sign-consistent JL.

Our bound is based on a degree-2 analog of Hitczenko’s observation in Lemma 5.2.
We analogously handle the “big” terms with an `1-norm bound and bound the remaining
terms by approximating some of the Rademachers by gaussians. From this, we obtain a
combination of `2 and `1 norm bounds, similar to the linear form setting. Our simple bound
has the surprising feature that it yields tighter guarantees than the Hanson-Wright bound
(Lemma 5.3) yields for sparse, sign-consistent JL. While our bound is weaker than Lata la’s
tight bound on the moments of Rademacher quadratic forms (Lemma 5.4) in the general
case, it provides a greater degree of simplicity: our bound avoids the operator-norm-like
term in Lemma 5.4 that is especially difficult to analyze when A is a random matrix, as is
the case in this setting. Moreover, our bound still retains the necessary precision to recover
the optimal dimension for sparse, sign-consistent JL.

We derive the following moment bound on quadratic forms of Rademachers2 that yields
tighter guarantees than the Hanson-Wright bound yields for ‖T (x1, . . . , xn)‖p:
Lemma 5.13 If A = (ai,j) is a symmetric square n× n matrix with zero diagonal, {σi}i∈[n]

is a set of independent Rademachers, and even q ≥ 1, then∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥
q

.

min(q,n)∑
i=1

min(q,n)∑
j=1

|ai,j|

+
√
q

√√√√√ n∑
i=1

∥∥∥∥∥∑
j>q

ai,jσj

∥∥∥∥∥
2

q

.

Observe that our bound avoids the weakness of the Hanson-Wright bound in the limit as

q → ∞. As discussed in Section 5.1, we know that
∥∥∥∑n

i=1

∑n
j=1 ai,jσiσj

∥∥∥
q

can be bounded

by the entrywise `1-norm bound
∑n

i=1

∑n
j=1 |ai,j| for any q ≥ 1. While the Hanson-Wright

bound goes to ∞ as q → ∞, the bound in Lemma 5.13 approaches the entrywise `1 bound
in the limit: for q > n, the second term in Lemma 5.13 vanishes since the summand

∑
j>q

is empty. As a result, the bound becomes the first-term, which becomes
∑n

i=1

∑n
j=1 |ai,j| as

desired. Our simplified bound, though weaker in the general case, consists of much easier-
to-analyze terms and has a cleaner proof, while still being sufficiently tight for this setting.
For 1 ≤ q < n, our bound becomes an interpolation of `1 and `2 norm bounds that bears
resemblance to Hitczenko’s Rademacher linear form bound in Lemma 5.2.

Although our bound is weaker than Lemma 5.4 in the general case, it is much simpler to
analyze, especially when A is a random matrix. While the bound in Lemma 5.4 is focused
on obtaining tight estimates for quadratic forms where A is a scalar matrix, our bound is

2As mentioned before, Lata la [32] provides a tight bound on the moments of σTAσ (and on the moments
of more general quadratic forms). However, his bound consists of terms that are difficult to analyze when
the quadratic form coefficients are random variables. Moreover, his proof is quite complicated, though the
bound can be used in a black box to generate a much messier solution (by unravelling some of his proof to
avoid the operator-norm-like term).
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much more tractable when A is a random matrix. Recall that the main complication in
the bound in Lemma 5.4 arises from the operator-norm-like term. Observe that our bound
in Lemma 5.13 manages to avoid this term altogether. Moreover, our `1 norm term is
straightforward to calculate, and our `2 norm term can be handled cleanly even when the
ai,j are themselves random variables, through a bound that we describe later in this section

The following lemma allows us to decouple the two sets of Rademachers in our quadratic
form so that we can reduce analyzing the moments of the quadratic form to analyzing the
moments of a linear form.

Lemma 5.14 (Decoupling, Theorem 6.1.1 of [44]) If A = (ai,j) is a symmetric, zero-
diagonal n× n matrix and {σi}i∈[n] ∪ {σ′i}i∈[n] are independent Rademachers, then∥∥∥∥∥

n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥
q

.

∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥
q

.

Now, we are ready to prove Lemma 5.13.

Proof of Lemma 5.13. By Lemma 5.14 and the triangle inequality, we know∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥
q

.

∥∥∥∥∥∥
min(q,n)∑
i=1

min(q,n)∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

α

+

∥∥∥∥∥
n∑
i=1

∑
j>q

ai,jσ
′
iσj

∥∥∥∥∥
q︸ ︷︷ ︸

β

+

∥∥∥∥∥∑
i>q

q∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥
q︸ ︷︷ ︸

γ

.

We first bound α. Since a Rademacher σ satisfies |σ| = 1, it follows that α can be upper

bounded by the entrywise `1-norm bound
∑min(q,n)

i=1

∑min(q,n)
j=1 |ai,j| as desired. Using Lemma

5.1, we know that β can be upper bounded by:

√
q

∥∥∥∥∥∥
√√√√ n∑

i=1

(∑
j>q

ai,jσj

)2
∥∥∥∥∥∥
q

=
√
q

√√√√√
∥∥∥∥∥∥

n∑
i=1

(∑
j>q

ai,jσj

)2
∥∥∥∥∥∥
q/2

≤ √q

√√√√√ n∑
i=1

∥∥∥∥∥∑
j>q

ai,jσj

∥∥∥∥∥
2

q

.

We now bound γ. An analogous argument shows γ ≤ √q
√∑q

j=1

∥∥∥∑i>q ai,jσi

∥∥∥2

q
. Thus:

γ ≤ √q

√√√√√ q∑
j=1

∥∥∥∥∥∑
i>q

ai,jσi

∥∥∥∥∥
2

q

≤ √q

√√√√√ n∑
j=1

∥∥∥∥∥∑
i>q

ai,jσi

∥∥∥∥∥
2

q

=
√
q

√√√√√ n∑
i=1

∥∥∥∥∥∑
j>q

ai,jσj

∥∥∥∥∥
2

q

.
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Chapter 6

Proof of Main Results

In Section 6.1, we provide a proof sketch of our main result in Chapter 3. In Section 6.2, we
provide a proof of our main result in Chapter 4.

6.1 Proof sketches for Chapter 3

We sketch a proof of Theorem 3.2. (The full proofs of the supporting lemmas can be found
in the Appendix.) For every [x1, . . . , xn] ∈ Rn such that ‖x‖2 = 1, we need to analyze tail
bounds of

R(x1, . . . , xn) = ‖Ax‖2
2 − 1 =

1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσr,iσr,jxixj.

An upper bound on the tail probability of R(x1, . . . , xn) is needed to prove the lower bound
on v(m, ε, δ, s) in Theorem 3.2, and a lower bound is needed to prove the upper bound
on v(m, ε, δ, s) in Theorem 3.2. It turns out that it suffices to tightly analyze the random
variable moments E[(R(x1, . . . , xn))q]. For the upper bound, we use Markov’s inequality
(Lemma 2.7) like in [16, 28, 4, 36], and for the lower bound, we use the Paley-Zygmund
inequality (Lemma 6.1) like in [16]: Markov’s inequality gives a tail upper bound from upper
bounds on moments, and the Paley-Zygmund inequality gives a tail lower bound from upper
and lower bounds on moments.

More specifically, the Paley-Zygmund inequality says the following:

Lemma 6.1 (Paley-Zygmund) Suppose that Z is a nonnegative random variable with
finite variance. If 0 < θ < 1, then:

P[Z > θE[Z]] ≥ (1− θ)2E[Z]2

E[Z2]
.

The Paley-Zygmund inequality essentially says that when the 1-norm ‖Z‖1 is close to the
2-norm ‖Z‖2, the random variable can’t have significant mass below the mean.

Analogously to how we applied Markov’s inequality to Θ(log(1/δ))th moments in Section
2.2.2 to upper bound the failure probability by δ, we wish to apply the Paley-Zygmund in-
equality to Θ(log(1/δ))th moments to lower bound the failure probability by δ. In particular,
we use the following corollary:
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Lemma 6.2 Suppose that K > 0 and Z is a nonnegative random variable, such that
‖Z‖q ≥ 2K and ‖Z‖2q is finite. Then,

P[Z > K] ≥ 0.25

(
‖Z‖q
‖Z‖2q

)2q

.

Proof of Lemma 6.2. We apply Lemma 6.1 with θ = 1/2 to Zp to obtain that:

P[Zq > 2−1E[Zq]] ≥ 0.25
E[Zq]2

E[Z2q]
= 0.25

(
‖Z‖p
‖Z‖2q

)2q

.

If ‖Z‖q ≥ 2K, then we know that

P[Z > K] = P[Zq > Kq] ≥ P[Zq > 2−qE[Zq]] ≥ P[Zq > 2−1E[Zq]]

and then we can apply the above result.

For both the upper and lower tail bounds, the key ingredient of our analysis is thus a

tight bound for ‖R(x1, . . . , xn)‖q on Sv =
{
x ∈ Rn | ‖x‖∞‖x‖2 ≤ v

}
at each threshold v value.

For the upper bound on moments, we need to analyze ‖R(x1, . . . , xn)‖q for general vectors
[x1, . . . , xn]. We analyze ‖R(x1, . . . , xn)‖q using the bounds in Chapter 5. For the lower
bound on moments, we only need to show ‖R(x1, . . . , xn)‖q is large for single vector in each

Sv, and we show we can select the vector in the `2-unit ball with 1/v2 nonzero entries, all
equal to v. For ease of notation, we denote this vector by [v, . . . , v, 0, . . . , 0] for the remainder
of the paper.

Our strategy for bounding ‖R(x1, . . . , xn)‖q is to break down into rows. We define

Zr(x1, . . . , xn) :=
∑

1≤i 6=j≤n

ηr,iηr,jσr,iσr,jxixj

so that R(x1, . . . , xn) = 1
s

∑m
r=1 Zr(x1, . . . , xn). We analyze the moments of Zr(x1, . . . , xn),

and then combine these bounds to obtain moment bounds for R(x1, . . . , xn). In our bounds,
we use the notation f . g (resp. f & g) to denote f ≤ Cg (resp. f ≥ Cg) for some constant
C > 0.

6.1.1 Bounding ‖Zr(x1, . . . , xn)‖q
We show the following bounds on ‖Zr(x1, . . . , xn)‖q. For the lower bound, as we discussed
before, it suffices to bound ‖Zr(v, . . . , v, 0, . . . , 0)‖q. For the upper bound, we need to bound
‖Zr(x1, . . . , xn)‖q for general vectors as a function of the `∞-to-`2 norm ratio.

Lemma 6.3 Let As,m,n be a sparse JL transform such that s ≤ m/e. Suppose that x =
[x1, . . . , xn] satisfies ‖x‖∞ ≤ v and ‖x‖2 = 1. If T is even, then:

‖Zr(x1, . . . , xn)‖T .


Ts
m
, for T = 2, 3 ≤ T ≤ se

mv2

min
(

T 2v2

ln(mTv2/s)2
, T

ln(m/s)

)
for T ≥ 3, T ≥ se

mv2
, ln(Tmv2/s) ≤ T

v2
(

s
mTv2

)2/T
, for T ≥ 3, T ≥ se

mv2
, ln(Tmv2/s) > T.
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Lemma 6.4 Let As,m,n be a sparse JL transform. Suppose 1
v2

and T are even integers.
Then, ‖Zr(v, . . . , v, 0, . . . , 0)‖2 &

s
m

. Moreover, if s ≤ m/e and T ≥ se
mv2

, then∥∥∥Zr(v, . . . , v, 0, . . . , 0)I∑1/v2

i=1 η1,i=2

∥∥∥
T
& v2

( s

mTv2

)2/T

and

‖Zr(v, . . . , v, 0, . . . , 0)‖T &

 T 2v2

ln2(mv2T/s)
for 1 ≤ ln(mv2T/s) ≤ T, v ≤

√
ln(m/s)
√
T

v2
(

s
mTv2

)2/T
for ln(mv2T/s) > T.

We now sketch our methods to prove Lemma 6.3 and Lemma 6.4. For the lower bound
(Lemma 6.4), we can view Zr(v, . . . , v, 0, . . . , 0) as a quadratic form

∑
t1,t2

at1,t2σt1σt2 where
(at1,t2)t1,t2∈[mn] is an appropriately defined block-diagonal mn dimensional matrix. We can
write Eσ,η[(Zr(v, . . . , v, 0, . . . , 0))q] as Eη [Eσ[(Zr(v, . . . , v, 0, . . . , 0))q]]: for fixed ηr,i values,
the coefficients are scalars. We make use of Lemma 5.4 to analyze Eσ[(Zr(v, . . . , v, 0, . . . , 0))q]
as a function of the ηr,i. Then, we handle the randomness of the ηr,i by taking an expectation
of the resulting bound on Eσ[(Zr(v, . . . , v, 0, . . . , 0))q] over the ηr,i values to obtain a bound
on ‖Zr(v, . . . , v, 0, . . . , 0)‖q.

For the upper bound (Lemma 6.3), since Lemma 5.4 is tight for scalar quadratic forms, the
natural approach would be to use it to upper bound Eσ[(Zr(x1, . . . , xn))q] for general vectors.
However, when the vector is not of the form [v, . . . , v, 0, . . . , 0], the asymmetry makes the
resulting bound intractable to simplify. Specifically, the first term, which can be viewed as a
generalization of an operator norm to an `2 ball cut out by `∞ hyperplanes, becomes prob-
lematic when taking an expectation over the ηr,i to obtain a bound on Eσ,η[(Zr(x1, . . . , xn))q].
Thus, we utilize our simpler estimates (Proposition 5.9 and Lemma 5.10). These estimates
take advantage of the structure of Zr(x1, . . . , xn) and enable us to show Lemma 6.3.

6.1.2 Obtaining bounds on ‖R(x1, . . . , xn)‖q
Now, we use Lemma 6.3 and Lemma 6.4 to show the following bounds on ‖R(x1, . . . , xn)‖q:

Lemma 6.5 Suppose As,m,n is a sparse JL transform such that s ≤ m/e, and let x =

[x1, . . . , xn] be such that ‖x‖2 = 1. Then, ‖R(x1, . . . , xn)‖2 ≤
√

2√
m

. Now, suppose that 2 <

q ≤ m is an even integer and ‖x‖∞ ≤ v. If se
mv2
≥ q, then ‖R(x1, . . . , xn)‖q .

√
q√
m

. If se
mv2

< q

and if there exists a constant C2 ≥ 1 such that C2q
3mv4 ≥ s2, then ‖R(x1, . . . , xn)‖q . g

where g is:

max

( √
q√
m
,

C
1/3
2 q2v2

s ln2(qmv2/s)

)
if ln( qmv

4

s2
) ≤ 2, ln( qmv

2

s ) ≤ q
√
q√
m

if ln( qmv
4

s2
) ≤ 2, ln( qmv

2

s ) > q

max

( √
q√
m
, qv2

s ln(qmv4/s2)
,min

(
C

1/3
2 q2v2

s ln2(qmv2/s)
, q
s ln(m/s)

))
if ln( qmv

4

s2
) > 2, ln( qmv

2

s ) ≤ q

max
( √

q√
m
, qv2

s ln(qmv4/s2)

)
if ln( qmv

4

s2
) > 2, ln( qmv

2

s ) > q.

46



Lemma 6.6 Suppose As,m,n is a uniform sparse JL transform. Let q be a power of 2, and
suppose that 0 < v ≤ 0.5 and 1

v2
is an even integer. If qv2 ≤ s, then ‖R(v, . . . , v, 0, . . . , 0)‖q &√

q√
m

. If m ≥ q, 2 ≤ ln(qmv4/s2) ≤ q, 2qv2 ≤ 0.5s ln(qmv4/s2), and s ≤ m/e, then

‖R(v, . . . , v, 0, . . . , 0)‖q & qv2

s ln(qmv4/s2)
. If s ≤ m/e, v ≤

√
ln(m/s)
√
q

, and 1 ≤ ln(qmv2/s) ≤ q,

then ‖R(v, . . . , v, 0 . . . , 0)‖q &
q2v2

s ln2(qmv2/s)
.

We now sketch how to prove bounds on ‖R(x1, . . . , xn)‖q using bounds on ‖Zr(x1, . . . , xn)‖T .
To show Lemma 6.5, we show that making the row terms Zr(x1, . . . , xn) independent does
not decrease ‖R(x1, . . . , xn)‖q, and then we apply Lemma 5.11 for moments of sums of i.i.d
symmetric random variables. For Lemma 6.6, handling the correlations between the row
terms Zr(x1, . . . , xn) requires more care. We show that the negative correlations induced by
having exactly s nonzero entries per column do not lead to significant loss, and then stitch
together ‖R(v, . . . , v, 0, . . . , 0)‖q using Proposition 5.12.

6.1.3 Proof of main result from moment bounds

We now sketch how to prove Theorem 3.2, using Lemma 6.5 and Lemma 6.6. First, we
simplify these bounds at the target parameters to obtain the following:

Lemma 6.7 Let As,m,n be a sparse JL transform, and suppose ε and δ are small enough,
s ≤ m/e, Θ(ε−2 ln(1/δ)) ≤ m < 2ε−2/δ, v ≤ f ′(m, ε, ln(1/δ), s), and p = Θ(ln(1/δ)) is even.
If x = [x1, . . . , xn] satisfies ‖x‖∞ ≤ v and ‖x‖2 = 1, then ‖R(x1, . . . , xn)‖p ≤

ε
2
.

Lemma 6.8 There is a universal constant D satisfying the following property. Let As,m,n be
a uniform sparse JL transform, and suppose ε, δ are small enough, s ≤ m/e, f ′(m, ε, ln(1/δ), s) ≤
0.5, and q is an even integer such that q = min(m/2,Θ(ln(1/δ)). For each ψ > 0, there exists

v ≤ f ′(m, ε, ln(1/δ), s) + ψ, such that ‖R(v, . . . , v, 0, . . . , 0)‖q ≥ 2ε and
‖R(v,...,v,0,...,0)‖q
‖R(v,...,v,0,...,0)‖2q

≥ D.

Now, we use Lemma 6.7 and Lemma 6.8 to prove Theorem 3.2.

Proof of Theorem 3.2. Since the maps in As,m,n are linear, it suffices to consider unit vec-
tors x. First, we prove the lower bound on v(m, ε, δ, s). To handle m ≥ 2ε−2/δ, we take
q = 2 in Lemma 6.7 and apply Chebyshev’s inequality. Otherwise, we take p = ln(1/δ)
(approximately) and apply Lemma 6.7 and Markov’s inequality (Lemma 2.7). We see that
P[| ‖Ax‖2

2 − 1| ≥ ε] can be expressed as:

P[|R(x1, . . . , xn)| ≥ ε] = P[R(x1, . . . , xn)p ≥ εp] ≤ ε−pE[R(x1, . . . , xn)]p ≤ δ.

Thus, P[| ‖Ax‖2
2 − 1| ≥ ε] is satisfied for unit vectors x ∈ Sv when v ≤ f ′(m, ε, ln(1/δ), s) as

desired.
Now, we prove the upper bound on v(m, ε, δ, s). We need to lower bound the tail proba-

bility of R(v, . . . , v, 0, . . . , 0), and to do this, we use Lemma 6.2 (the Paley-Zygmund in-
equality applied to qth moments). Let D be defined as in Lemma 6.8, and take q =

min(m/2,max(2, ln(1/δ)−2
−2 ln(D)

)). By Lemma 6.2 and Lemma 6.8, there exists v ≤ f ′(m, ε, ln(1/δ), s)+
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ψ such that:

P[|R(v, . . . , v, 0, . . . , 0)| > ε] ≥ 0.25

(
‖R(v, v, . . . , v, 0, . . . , 0)‖q
‖R(v, v, . . . , v, 0, . . . , 0)‖2q

)2q

≥ 0.25D2q > δ.

Thus, it follows that supx∈Sf ′(m,ε,ln(1/δ),s)+ψ ,‖x‖2=1 P[| ‖Ax‖2
2 − 1| > ε] > δ as desired.

6.2 Proofs for Chapter 4

We prove Theorem 4.4. Our main lemma is the following bound on the moments of
T (x1, . . . , xn).

Lemma 6.9 Let B = m/s2. If p ≥ 2, then

‖T (x1, . . . , xn)‖p .

{
p

s logB
, if B ≥ e

p
sB

if B < e.

In order to analyze ‖T (x1, . . . , xn)‖p, we view T (x1, . . . , xn) as a quadratic form 1
s
σTAσ,

where the vector σ is an n-dimensional vector of independent Rademachers, and A =
(ai,j) is a symmetric, zero-diagonal n × n matrix where the (i, j)th entry (for i 6= j) is
xixj

∑m
r=1 ηr,iηr,j. Since Z is symmetric in x1, . . . , xn, we can assume WLOG that |x1| ≥

|x2| ≥ . . . ≥ |xn|. For convenience, we define (like in [12]),

Qi,j :=
m∑
r=1

ηr,iηr,j (6.1)

to be the number of collisions between the nonzero entries of the ith column and the nonzero
entries of the jth column. Now, the (i, j)th entry of A (for i 6= j) can be written as Qi,jxixj.

We now use Lemma 5.13 and the triangle inequality to obtain the following bound on
||T (x1, . . . , xn)||p:

||T (x1, . . . , xn)||p =
1

s

(
EηEσ

[
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjσiσj

]p)1/p

.
1

s

Eη


p∑
i=1

∑
j≤p
j 6=i

|Qi,jxixj|+
√
p

√√√√√√√ n∑
i=1

Eσ

∑
j>p
j 6=i

Qi,jxixjσj


p

2/p

p

1/p

≤ 1

s



∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j 6=i

|Qi,jxixj|

∥∥∥∥∥∥∥∥
p︸ ︷︷ ︸

(∗)

+
√
p

√√√√√√√ n∑
i=1

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxixjσj

∥∥∥∥∥∥∥∥
2

p︸ ︷︷ ︸
(∗∗)


.
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We first discuss some intuition for why using this bound to analyze ‖T (x1, . . . , xn)‖p
avoids the loss incurred by the Hanson-Wright bound here. In the Hanson-Wright bound, all
of the Rademachers are essentially approximated by gaussians. In our bound, we make use
of Rademachers in the appropriate places to avoid loss. For 1 ≤ i ≤ p and 1 ≤ j ≤ p (the
upper left p × p minor where the |xi| and |xj| values are the largest), our approach utilizes
an `1-norm bound rather than

√
p times an `2 bound, which turns out to allow us to save

a factor of
√
p in the resulting bound on ‖T (x1, . . . , xn)‖p. Now, since the original matrix

is symmetric, it only remains to consider 1 ≤ i ≤ n and p + 1 ≤ j ≤ n. In this range, we
approximate the σi Rademachers by gaussians and use an `2-norm bound. It turns out that
approximating the σj Rademachers by gaussians as well would yield too loose of a bound for
our application, so we preserve the σj Rademachers. For the remaining Rademacher linear
forms, the interaction between the xj values (all of which are upper bounded in magnitude
by 1√

p
) and the σj Rademachers yields the desired bound.

Now, it remains to bound (∗) and (∗∗). Bounding these quantities requiring understand-
ing the moments of Qi,j. We use the binomial-like properties of the Qi,js coupled with
standard moment bounds involving the binomial distribution to analyze the moments.

First, we analyze the independence structure of the Qi,j random variables.

Proposition 6.10 Let X be a random variable distributed as Bin(s, s/m). For any 1 ≤
i ≤ n, given any choice of s nonzero rows r1 6= r2 6= . . . 6= rs in the ith column, the set
of n − 1 random variables1 {(Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1)}1≤j≤n,j 6=i are independent.
Moreover, for any even q ≥ 1 and any j 6= i:

‖Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1‖q ≤ ‖X‖q .

The independence properties use that the nonzero entries in different columns are inde-
pendent. Moreover, the binomial bound on the moments of Qi,j follows from the decompo-
sition of Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1 into a sum of Bernoulli random variables.

Proof of Proposition 6.10. Let A be a matrix drawn from A, and pick any 1 ≤ i ≤ n. We
condition on the event that the s nonzero entries in column i of A occur at rows r1, . . . , rs.
For 1 ≤ j ≤ n, j 6= i and 1 ≤ k ≤ s, let Yk,j = ηrk,j, so that (Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i) =∑s

k=1 Yk,j. Notice that the sets {Yk,j}k∈[s] for 1 ≤ j ≤ n, j 6= i are independent from each

other, which means random variables in the set {Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1}1≤j≤n,j 6=i
are independent. For 1 ≤ j ≤ n, j 6= i, and 1 ≤ k ≤ s, let Zk,j be distributed as i.i.d Bernoulli
random variables with expectation s/m. Notice that for a fixed j, each Yk,j is distributed
as Zk,j and the random variables {Yk,j}1≤k≤s are negatively correlated (and nonnegative),
which means

‖Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1‖q =

∥∥∥∥∥
s∑

k=1

Yk,j

∥∥∥∥∥
q

≤

∥∥∥∥∥
s∑

k=1

Zk,j

∥∥∥∥∥
q

= ‖X‖q .

1See Appendix A of [22] for a formal discussion of viewing these quantities as random variables over a
different probability space.
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Proposition 6.10 relates the moments of Qi,j to the moments of binomial random vari-
ables. In order to bound the moments, we thus bound the moments of binomial random
variables. This is an application of Lemma 5.11.

Proposition 6.11 Suppose that X is a random variable distributed as Bin(N,α) for any
α ∈ (0, 1) and any integer N ≥ 1. If q ≥ 1 and C = q

αmax(N,q)
, then

‖X‖q .

{
q

logC
if B ≥ e

q
C

if B < e
.

Proof. The main tool that we use in this proof is Lemma 5.11 (Lata la’s bound on moments
of sums of i.i.d nonnegative random variables). Notice that it suffices to obtain an upper
bound on ‖X‖q for all N ≥ q. (Since ‖X‖q is an increasing function of N , an upper bound
on ‖X‖q at N = q is also an upper bound on ‖X‖q for all N < q). For the rest of the proof,
we assume N ≥ q.

Notice X has the same distribution as
∑N

j=1 Zj where Z,Z1, . . . , ZN are i.i.d Bernoulli

random variables with expectation α. Since ‖Z‖t = α1/t, we know by Lemma 5.11,

‖X‖q ' sup
1≤t≤q

q

t

(
N

q

)1/t

α1/t

= sup
1≤t≤q

q

t

(
1

B

)1/t

At t = 1, this quantity is equal to q
C

, and at t = q, this quantity is equal to
(

1
C

)1/q
= elog(1/C)/q.

The only t ∈ R for which this quantity has derivative 0 is t = logC. Notice that 1 ≤ logC ≤ q
if and only if e ≤ C ≤ eq. Thus

‖X‖q '

{
max( q

C
, q

logC
, elog(1/C)/q) if e ≤ C ≤ eq

max( q
C
, elog(1/C)/q) if C < e or if C > eq.

.

For C ≥ e, we want to show ‖X‖q . q/ logC. Since logC > 0, we see elog(1/C)/q =

e− logC/q ≤ q/ logC and q/C ≤ q/ logC.

For C < e, we want to show ‖X‖q . q/C. Since 1
C
> 1

e
, we see elog(1/C)/q =

(
1
C

)1/q ≤
e
C
. q

C
.

Now, we are ready to bound the quantities (∗) and (∗∗). We prove the following sublem-
mas, which assume the notation used throughout the paper:

Lemma 6.12 If m/s2 = B, then∥∥∥∥∥
p∑
i=1

∑
j≤p,j 6=i

|Qi,jxjxi|

∥∥∥∥∥
p

.

{
p

logB
if B ≥ e

p
B

if B < e
.

Lemma 6.13 If m/s2 = B, then

√
p

√√√√√ n∑
i=1

∥∥∥∥∥ ∑
j>p,j 6=i

Qi,jxixjσj

∥∥∥∥∥
2

p

.

{
p

logB
if B ≥ e

p
B

if B < e
.
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We now use Proposition 6.10 as well as the moment bound on binomial random variables
from Proposition 6.11 to prove Lemma 6.12 and thus bound (∗).

Proof of Lemma 6.12. We carefully use the triangle inequality to see2:∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j 6=i

|Qi,jxjxi|

∥∥∥∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j>i

Qi,j|xj||xi|

∥∥∥∥∥∥∥
p

.

∥∥∥∥∥∥∥
p∑
i=1

x2
i

∑
j≤p
j>i

Qi,j

∥∥∥∥∥∥∥
p

.
p∑
i=1

x2
i

∥∥∥∥∥∥∥
∑
j≤p
j>i

Qi,j

∥∥∥∥∥∥∥
p

.

Let X ∼ Bin(s, s/m) and Y ∼ Bin(sp, s/m). By Proposition 6.10, for any i and any
r1 6= r2 6= . . . 6= rs, the random variables {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent
and ‖Qi,j | ηr1,i = . . . = ηrs,i = 1‖p ≤ ‖X‖p. It follows from taking pth powers of both sides
that∥∥∥∥∥∥∥

∑
j≤p
j>i

Qi,j

 | ηr1,i = . . . = ηrs,i = 1

∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥
∑
j≤p
j>i

(Qi,j | ηr1,i = . . . = ηrs,i = 1)

∥∥∥∥∥∥∥
p

≤ ‖Y ‖p .

Now, Proposition 6.11 gives us a bound on ‖Y ‖p, and the result follows from the law of total

expectation.3

We now use Proposition 6.10 as well as the moment bound on weighted sums of binomial
random variables from Proposition 5.9 to prove Lemma 6.13 and thus bound (∗∗).

Proof of Lemma 6.13. Observe that

√
p

√√√√√√√ n∑
i=1

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxixjσj

∥∥∥∥∥∥∥∥
2

p

=
√
p

√√√√√√√ n∑
i=1

x2
i

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxjσj

∥∥∥∥∥∥∥∥
2

p

≤ √p max
1≤i≤n

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxjσj

∥∥∥∥∥∥∥∥
p

.

Let X ∼ Bin(s, s/m). By Proposition 6.10, for any i and any r1 6= r2 6= . . . 6= rs, the random
variables {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent and

‖Qi,j | ηr1,i = . . . = ηrs,i = 1‖p ≤ ‖X‖p .

Moreover, |xj| ≤ 1√
p

for j > p. Now, we consider
∥∥∥∑j>p,j 6=iQi,jxjσj | ηr1,i = . . . = ηrs,i = 1

∥∥∥
p

which is equal to∥∥∥∥∥ ∑
j>p,j 6=i

(Qi,j | ηr1,i = . . . = ηrs,i = 1)(σj | ηr1,i = . . . = ηrs,i = 1)xj

∥∥∥∥∥
p

.

2Naively applying the triangle inequality yields a suboptimal bound, so we require this more careful
treatment.

3See Appendix A of [22] for a formal discussion of why a uniform bound on the conditional p-norm implies
a bound on the p-norm here.
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Now, we use the fact that (σj | ηr1,i = . . . = ηrs,i = 1) is distributed as a Rademacher and
that the set of n − 1 random variables {σj | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent and
also independent of {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i.

We apply Proposition 5.9.4 Let Yi = (Qi,j | ηr1,i = . . . = ηrs,i = 1)(σj | ηr1,i = . . . =
ηrs,i = 1). Using that ‖y‖∞ ≤

1√
q

and setting T = q/2, we have that:

1
√
q

(
sup

1≤t≤q/2

q

2t

(
2q

q

) 1
2t

‖Yi‖2t

)
=

1
√
q

(
sup

1≤t≤q/2

q

2t
2

1
2t ‖Yi‖2t

)
≤ 1
√
q

(
sup

1≤z≤q, z even

q

z
‖Yi‖z

)
.

Let’s bound ‖Yi‖z. Using the above properties, we know that

‖Yi‖z = ‖(Qi,j | ηr1,i = . . . = ηrs,i = 1)(σj | ηr1,i = . . . = ηrs,i = 1)‖ ≤ ‖X‖z .

We can apply Proposition 6.11 to bound ‖X‖z. Let’s consider z
(s/m) max(s,z)

. If s ≤ z, then

this is equal to z
αz

= 1
(s/m)

= m
s

. If s ≥ z, then this is equal to z
(s/m)s

≥ 1
(s/m)s

= m
s2

. Thus, we
know that z

(s/m) max(s,z)
≥ B. Since the bound in Proposition 6.11 is a decreasing function of

C, we can upper bound by the case where C = B.
When B ≥ e, the expression is thus bounded by:

1
√
q

(
sup

1≤t≤q/2

q

2t

2t

logB

)
=

√
q

logB
.

When B < e, the expression is thus bounded by:

1
√
q

(
sup

1≤t≤q/2

q

2t

2t

B

)
=

√
q

B
.

Thus, we obtain a bound on the conditional p-norm
∥∥∥∑j>p,j 6=iQi,jxjσj | ηr1,i = . . . = ηrs,i = 1

∥∥∥
p
.

Now, the result follows from the law of total expectation.

We now show the bound on ||T (x1, . . . , xn)||p follows from the bounds on (∗) and (∗∗) in
Lemmas 6.12, 6.13.

Proof of Lemma 6.9. Applying Lemmas 6.12, 6.13 after the following simplification proves
the lemma:

‖T (x1, . . . , xn)‖p .
1

s

∥∥∥∥∥
p∑
i=1

∑
j≤p,j 6=i

|Qi,jxixj|

∥∥∥∥∥
p

+

√
p

s

√√√√√ n∑
i=1

∥∥∥∥∥ ∑
j>p,j 6=i

Qi,jxixjσj

∥∥∥∥∥
2

p

.

We show Lemma 6.9 implies Theorem 4.4, completing the proof.

4Approximating the σj by gaussians yields a suboptimal bound, so we require the bound given in Propo-
sition 5.9.
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Proof of Theorem 4.4. It suffices to show Pη,σ[|T (x1, . . . , xn)| > ε] < δ. By Markov’s in-
equality, we know

Pη,σ[|T (x1, . . . , xn)| > ε] < ε−pE[|T (x1, . . . , xn)|p] =

(‖T (x1, . . . , xn)‖p
ε

)p
.

Suppose that B ≥ e. Then by Lemma 6.9, we know(‖T (x1, . . . , xn)‖p
ε

)p
≤
(

Cp

(logB)sε

)p
.

Thus, to upper bound this quantity by δ, we can set s = Θ(ε−1p/ logB) = Θ(ε−1 logB(1/δ))
and m = Θ(Bs2). We impose the additional constraint that B ≤ 1

δ
to guarantee that s ≥ 1.

This proves the desired result.5

5If we set B < e, if we use Lemma 6.9, we know that in order to obtain an upper bound of δ, we would
have to set s = Θ(ε−1p/B) = Θ(ε−1 log(1/δ)/B) and m = Θ(ε−1 log2(1/δ)/B). This yields no better s or m
values than those achieved when B = e.
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Appendix A

Proof Details for Chapter 3

In Appendix A.1, we prove our corollary regarding dimension-sparsity tradeoffs and discuss
some of the subtleties of Theorem 3.2. In Appendix A.2, we prove our moment bounds
for Zr(x1, . . . , xn) in Lemma 6.3 and Lemma 6.4. In Appendix A.3, we prove our moment
bounds for R(x1, . . . , xn) in Lemma 6.5 and Lemma 6.6. In Appendix A.4, we prove auxiliary
lemmas needed in the proof of Lemma 6.5. In Appendix A.5, we prove auxiliary lemmas
needed in the proof of Lemma 6.6. In Appendix A.6, we prove our simplified moment bounds
for R(x1, . . . , xn) in Lemma 6.7 and Lemma 6.8. In Appendix A.7, we provide additional
experimental results on real-world and synthetic datasets as well as additional discussion.

A.1 Discussion of theoretical results

We discuss some of the subtleties of Theorem 3.2. When m ≥ min(2ε−2ep, ε−2peΘ(max(1,pε−1/s))),
where p = ln(1/δ), we show that v(m, ε, δ, s) = 1, which means that the norm-preserving
condition holds on the full space. This generalizes Cohen’s bound [11] to a slightly more
general family of sparse JL transforms, as we discuss below. When m ≤ Θ(ε−2 ln(1/δ)), we

show that v(m, ε, δ, s) = 0. For the remaining regimes,
√
εs
√

ln(mε
2

p
)/
√
p and

√
εsmin

(
ln(mε

p
)/p,

√
ln(mε

2

p
)/
√
p
)

, our upper and lower bounds on v(m, ε, δ, s) match up to

constant factors.
In terms of the boundaries between regimes, we emphasize that in Theorem 3.2, the func-

tion f ′(m, ε, δ, s) may not be defined for certain intervals between the boundaries of regimes,
since there may be different absolute constants in different boundaries. More specifically,
these intervals are C1ε

−2p ≤ m ≤ C2ε
−2p, ε−2eC1p ≤ m ≤ 2ε−2ep, and s · eC1 max(1,pε−1/s) ≤

m ≤ s · eC2 max(1,pε−1/s). These gaps arise because the boundaries between the regimes on our
upper and lower bounds on v(m, ε, δ, s) can have different absolute constants, so we don’t
have precise control on v(m, ε, δ, s) in these gaps. Nonetheless, the gaps only span a constant
factor range on the exponent in the dimension m.

We now state the dimension-sparsity tradeoffs that follow from our bounds:

Corollary A.1 Suppose that ε and δ are sufficiently small and s ≤ m/e. If As,m,n is any

sparse JL transform, then v(m, ε, δ, s) = 1 whenm ≥ min
(

2ε−2/δ, ε−2 ln(1/δ)eΘ(max(1,ln(1/δ)ε−1/s))
)

.
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If As,m,n is a uniform sparse JL transform, then v(m, ε, δ, s) ≤ 1/2 when

m ≤ min
(
ε−2eΘ(ln(1/δ)), ε−2 ln(1/δ)eΘ(max(1,ln(1/δ)ε−1/s))

)
, apart from a constant-factor inter-

val C1ε
−2 ln(1/δ) ≤ m ≤ C2ε

−2 ln(1/δ) where we do not have a bound on the behavior of
sparse JL.

Proof of Corollary A.1. The first statement follows from the fact the lower bound in Theo-
rem 3.2 holds for any sparse JL transform. For the upper bound, we also use Theorem 3.2.

Let’s set Cv
√
εs

√
ln(mε2
√
p

= 1
2
, where Cv is the implicit constant in the upper bound. This

solves to m = ε−2pe
CLpε

−1

s for some constant CL as desired. We also have the condition that
m ≤ ε−2eΘ(ln(1/δ)) for this regime to be reached. We can obtain the max with 1 on the expo-
nent, by using that v(m, ε, δ, s) = 0 when m ≤ Θ(ε−2 ln(1/δ)). To avoid having a gap when
m = s·eΘ(max(1,ln(1/δ)ε−1/s)), we implicitly use that our lower bound actually doesn’t have a gap
between these regimes (though there may be a gap in the boundary between the lower bound
and upper bound). Thus, we only have to keep the gap C1ε

−2 ln(1/δ) ≤ m ≤ C2ε
−2 ln(1/δ)

where we do not have a lower bound.

Notice that the upper and lower bounds in Corollary A.1 also match up to constant factors
on the exponent in the dimension m.

A.2 Proofs of Lemma 6.3 and Lemma 6.4

We analyze the moments of Zr(x1, . . . , xn), proving Lemma 6.4 and Lemma 6.3. Our lower
bound in Lemma 6.4 holds for ‖Zr(v, . . . , v, 0, . . . , 0‖q as well as∥∥∥Zr(v, . . . , v, 0, . . . , 0)I∑1/v2

i=1 ηr,i=2

∥∥∥
T

(for technical reasons discussed in Appendix A.3). Our

upper bound in Lemma 6.3 holds for ‖Zr(x1, . . . , xn)‖q. In Appendix A.2.1, we prove
Lemma 6.4. In Appendix A.2.2, we prove Lemma 6.3.

A.2.1 Proof of Lemma 6.4

The key ingredient of the proof is Lemma 5.5 (for Rademacher quadratic forms). We can
view Zr(v, . . . , v, 0, . . . , 0) as the following quadratic form:

Zr(v, . . . , v, 0, . . . , 0) = v2
∑

1≤i 6=j≤N

ηr,iηr,jσr,iσr,j,

where N = 1
v2

. Since the support of ηr,i is {0, 1} and due to symmetry of this random
variable, it is tractable to analyze the expressions in Lemma 5.5.

Proof of Lemma 6.4. First, we handle the case of T = 2:

E[Zr(v, . . . , v, 0, . . . , 0)]2 = v4E

(∑
i 6=j

ηr,iηr,jσr,iσr,j

)2
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= 2v4E

[∑
i 6=j

ηr,iηr,j

]
= 2v4

( s
m

)2

N(N − 1) ≥ v4N2s2

m2
=

s2

m2

as desired.
Now we consider T > 2, and we prove a bound on ‖Z1(v, . . . , v, 0, . . . , 0)‖T . We see

that ‖Z1(v, . . . , v, 0, . . . , 0)‖T = v2
∥∥∥∑i 6=j η1,iη1,jσ1,iσ1,j

∥∥∥
T

. Fix 1 ≤M ≤ min(N, T ). We use

Lemma 5.5 with Yi,j = η1,iη1,jIM=
∑N
k=1 η1,k

to compute
∥∥∥∑i 6=j η1,iη1,jσ1,iσ1,jIM=

∑N
k=1 η1,k

∥∥∥
T

.

We will then aggregate over 2 ≤ M ≤ T and not even count M = 1 or T < M ≤ N . We
only use the operator-norm-like term in Lemma 5.5. Observe that

IM=
∑N
k=1 η1,k

sup
‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
i 6=j

η1,iη1,jbicj

is equal to

IM=
∑N
k=1 η1,k

sup
‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
i,j|η1,i=1,η1,j=1

bicj ≥ IM=
∑N
k=1 η1,k

M(M − 1),

where we set bi = 1 on all i such that η1,i = 1 and cj = 1 on all j such that η1,j = 1.

Since the events M =
∑N

k=1 η1,k are disjoint across different M values, we know that:

∥∥∥∥∥∑
i 6=j

η1,iη1,jσ1,iσ1,j

∥∥∥∥∥
T

&

min(T,N)∑
M=2

∥∥∥∥∥∑
i 6=j

η1,iη1,jσ1,iσ1,jIM=
∑N
k=1 η1,k

∥∥∥∥∥
T

T

1/T

&

min(T,N)∑
M=2

∥∥∥∥∥IM=
∑N
k=1 η1,k

sup
‖b‖2,‖c‖2≤

√
T ,‖b‖∞,‖c‖∞≤1

∑
i 6=j

η1,iη1,jbicj

∥∥∥∥∥
T

T

1/T

&

min(T,N)∑
M=2

∥∥∥IM=
∑N
k=1 η1,k

M2
∥∥∥T
T

1/T

=

min(T,N)∑
M=2

P[M =
N∑
i=1

η1,i]M
2T

1/T

=

min(T,N)∑
M=2

(
N

M

)( s
m

)M (
1− s

m

)N−M
M2T

1/T

&

min(T,N)∑
M=2

(
Ns

mT

)M (
T

M

)M (
1− s

m

)N−M
M2T

1/T

&

min(T,N)∑
M=2

( s

mTv2

)M (
1− s

m

)N−M
M2T

1/T
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&

min(T,N)∑
M=2

( s

mTv2

)M
M2T

1/T

,

where the last line follows from the fact that since T ≥ se
mv2

and s ≤ m/e, we know that:

(
1− s

m

)N−M
T ≥

(
1− s

m

)N
T ≥

(
1− s

m

)Nmv2
se ≥

(
1− s

m

)m
s ≥ 0.25.

Setting t = T/M , we obtain, up to constants:

sup
2≤M≤min(T,N)

( s

mTv2

)M/T

M2 = sup
max(1,T/N)≤t≤T/2

(
T 2

t2

)( s

mTv2

)1/t

.

We can take a derivative to obtain the two expressions in the lemma statement at the
following regimes of parameters: max(1, T v2) ≤ ln(Tmv2/s) ≤ T and ln(Tmv2/s) > T .
The second regime aligns with the lemma statement. Thus it suffices to show that when

v ≤
√

ln(m/s)
√
T

, it is true that Tv2 ≤ ln(Tmv2/s). This is a straightforward calculation1.

Now, let’s consider the case where we want to bound
∥∥∥Z1(v, . . . , v, 0, . . . , 0)I∑N

k=1 η1,k=2

∥∥∥
T

.

It follows from the above calculations, without taking the sum that we obtain a lower bound
of ((

N

2

)( s
m

)2 (
1− s

m

)N−2
)1/T

&
( s

mTv2

)2/T

.

A.2.2 Proof of Lemma 6.3

In the paper, we discussed the tractability issues with using the general quadratic form
moment bound Lemma 5.5 to upper bound ‖Zr(x1, . . . , xn)‖q. Thus, we require simpler
bounds that are easier to analyze. Linear forms naturally arise in the upper bound since

Zr(x1, . . . , xn) =
(∑

1≤i≤n ηr,iσr,ixi
)2 −

∑
1≤i≤n ηr,ix

2
i ≤

(∑
1≤i≤n ηr,iσr,ixi

)2
. However, it

turns out that a vanilla linear form bound (e.g. Proposition 5.9) here is weak due to the
loss arising from ignoring the

∑
1≤i≤n ηr,ix

2
i term. Thus, we use Lemma 5.10 (our generalized

bound tailored to squares of linear forms with a zero diagonal) to obtain:

Lemma A.2 If ‖x‖∞ ≤ v and ‖x‖2 ≤ 1, then we have that:

‖Zr(x1, . . . , xn)‖T =

∥∥∥∥∥∑
i 6=j

ηr,iηr,jσr,iσr,jxixj

∥∥∥∥∥
T

. v2

(
sup

1≤t≤T/2

T 2

t2

( s

mTv2

)1/t
)
.

Proof. This can be seen by simply taking Yi = ηr,iσr,i in Lemma 5.10.

1In fact, v =

√
ln(m/s)√
T

is very close to the value where Tv2 = ln(Tmv2/s), so this approximation is

essentially tight.
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It turns out that using only this bound would lose the m ≥ s · e
Θ

(
max(1, pε

−1

s
)

)
branch

in the lower bound on v(m, ε, δ, s) in Theorem 3.2. The lower bound on moments of
‖Zr(v, . . . , v, 0, . . . , 0)‖T in Lemma 6.4 sheds light on where this loss may be arising. We see

that the problematic case is when v ≥
√

ln(m/s)
√
T

=: v1, and so we require a new bound for

this regime. Since the vector [v1, . . . , v1, 0, . . . , 0] is in Sv when v1 ≤ v, we can’t hope to beat

the bound of ||Zr(v1, . . . , v1, 0, . . . , 0)||T & T 2v21
ln2(Tmv21/s)

' T
ln(m/s)

from Lemma 6.4. We show

that we can match this value:

Lemma A.3 Suppose that x = [x1, . . . , xn] satisfies ‖x‖2 = 1 and ‖x‖∞ < v. If s ≤ m/e,
T ≥ se

mv2
, T ≥ 3, T ≥ ln(mv2/s), then:

‖Zr(x1, . . . , xn)‖T =

∥∥∥∥∥∑
i 6=j

ηr,iηr,jσr,iσr,jxixj

∥∥∥∥∥
T

≤

∥∥∥∥∥∑
i

ηr,iσr,ixi

∥∥∥∥∥
2

2T

.
T

ln(m/s)
.

The proof of this bound requires a new technique that handles larger |xi| entries, while
still managing the many smaller |xi| that are still allowed to be present. We separate out

|xi| ≥
√

ln(m/s)
√
T

and |xi| ≤
√

ln(m/s)
√
T

. In the quadratic form formulation of Zr(x1, . . . , xn), this

separation cannot be carried out, since there would be cross-terms between |xi| ≥
√

ln(m/s)
√
T

and |xi| ≤
√

ln(m/s)
√
T

. As a result, we require the linear form bound (Proposition 5.9) for

|xi| ≤
√

ln(m/s)
√
T

, and it turns out to be sufficiently tight in this regime.

Proof of Lemma A.3. WLOG, assume that |x1| ≥ |x2| ≥ . . . ≥ |xn|. Let P =
⌈

T
ln(m/s)

⌉
. We

know that ∥∥∥∥∥∑
i

ηr,iσr,ixi

∥∥∥∥∥
2T

≤

∥∥∥∥∥ ∑
1≤i≤P

ηr,iσr,ixi

∥∥∥∥∥
2T

+

∥∥∥∥∥∑
i>P

ηr,iσr,ixi

∥∥∥∥∥
2T

.

For 1 ≤ i ≤ P , we use the bound |
∑p

i=1 ηr,iσr,ixi| ≤
∑p

i=1 |xi| ≤
√⌈

T
ln(m/s)

⌉
≤ 2

√
T

ln(m/s)
.

For the remaining terms, we take Yi = ηr,iσr,i in Proposition 5.9 to obtain the following

upper bound2 for |xi| ≤ v′ :=

√
ln(m/s)
√
T

and ‖x‖2 ≤ 1:∥∥∥∥∥∑
i

ηr,iσr,ixi

∥∥∥∥∥
2T

. v′
(

sup
1≤t≤T

T

t

( s

mTv′2

) 1
2t

)
.

Based on the conditions in this lemma statement, we know that mTv′2

s
= mT ln(m/s)

sT
=

m
s ln(m/s)

≥ e. Thus taking a derivative, we obtain that this can be upper bounded by taking

2Observe that the upper endpoint of T on the sup expression does not match with the upper endpoint of
T/2 on the sup expression in Lemma A.2, and in fact, it turns out that this bound is not sufficiently strong
to recover Theorem 3.2. This is sufficiently tight here, since we are focusing on the case where ln(Tmv′2/s)
is small.
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t = ln(mTv′2/s) which yields:

Tv′

ln(mTv′2/s)
=

Tv′

ln(m/s)− ln ln(m/s)
≤ Tv′

0.5 ln(m/s)
= 2

√
T√

ln(m/s)
.

Finally, combining Lemma A.2 and Lemma A.3 yields Lemma 6.3:

Proof of Lemma 6.3. We apply Lemma A.2 at T = 2 to directly obtain Ts
m

, and for T ≥ 3,
we apply Lemma A.2 and take a derivative to obtain:∥∥∥∥∥∑

i 6=j

ηr,iηr,jσr,iσr,jxixj

∥∥∥∥∥
T

. v2


Ts
mv2

, for se ≥ mTv2

T 2

ln(mTv2/s)2
, for se ≤ mTv2, ln(Tmv2/s) ≤ T(

s
mTv2

)2/T
, for ln(Tmv2/s) ≥ T, se ≤ mTv2

.

To obtain the desired bound, we also include the bound from Lemma A.3 in the middle
regime.

A.3 Combining rows to bound ‖R(x1, . . . , xn)‖q
Now, we show to move from bounds on moments of individual rows (i.e. Zr(x1, . . . , xn))
to bounds on moments of R(x1, . . . , xn). In Appendix A.3.1, we obtain an upper bound on
‖R(x1, . . . , xn)‖q, thus proving Lemma 6.5. In Appendix A.3.2, we obtain a lower bound on
‖R(x1, . . . , xn)‖q, thus proving Lemma 6.6.

A.3.1 Proof of Lemma 6.5

Since the ηr,i are negatively correlated and q is even, we can always upper bound the moments
of R(x1, . . . , xn) by the case of a sum of independent random variables3 Z ′r(x1, . . . , xn) ∼
Zr(x1, . . . , xn). We see that:

s · ‖R(x1, . . . , xn)‖q ≤

∥∥∥∥∥
m∑
r=1

Zr(x1, . . . , xn)

∥∥∥∥∥
q

(A.1)

≤

∥∥∥∥∥
m∑
r=1

Z ′r(x1, . . . , xn)

∥∥∥∥∥
q

(A.2)

. sup
2≤T≤q

q

T

(
m

q

)1/T

‖Z1(x1, . . . , xn)‖T , (A.3)

where the last inequality follows from Lemma 5.11. Thus, it remains to analyze the sup
expression. It turns out that each regime of bounds in Lemma 6.3 collapses to one value,
so the different regimes in Lemma 6.3 correspond to different parts of the max expressions
in Lemma 6.5. Depending on the parameters, some of these regimes may not exist, as is
reflected by branches of the max expression sometimes vanishing in Lemma 6.3. We defer
the computation to Appendix A.4.

3This can easily be seen by expanding.
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A.3.2 Proof of Lemma 6.6

Moving from a lower bound on the moments of individual rows given by Lemma 6.4 to
moments of
R(v, . . . , v, 0, . . . , 0) is more delicate. Unlike in the upper bound, the negative correlations
between random variables require some care to handle, even with the simplification that the
s nonzero entries in a column are chosen uniformly at random. For example, the conditional
distribution of ηs+1,1 | η1,1 = η2,1 = . . . = ηs,1 = 1 is 0, while the marginal distribution of
ηs+1,1 has expectation s/m. One aspect that simplifies our analysis is that we know from
our proof of Lemma 6.5 which moments of Zr(x1, . . . , xn) are critical in the sup expression in
(A.1). We only need to account for these particular moments in our lower bound approach.
It turns out that the three critical values are q/T = 2, q/T = q, and q/T = ln(qmv4/s2).

For q/T = q, where rows are isolated, we can directly obtain a bound from Lemma 5.12
and Lemma 6.4 to obtain.

Lemma A.4 Suppose As,m,n is a uniform sparse JL transform. Suppose that q is even,

s ≤ m/e, q ≥ se
mv2

, 1 ≤ ln(qmv2/s) ≤ q, v ≤
√

ln(m/s)
√
q

and 1
v2

is an even integer. Then it is

true that:

‖R(v, . . . , v, 0, . . . , 0)‖q &
q2v2

s ln2( qmv
2

s
)
.

Proof. By Lemma 5.12 with T = 1, we have that:

‖R(v, . . . , v, 0, . . . , 0)‖q ≥
m1/q

s
‖Z1(v, . . . , v, 0, . . . , 0)‖q ≥

1

s
‖Z1(v, . . . , v, 0, . . . , 0)‖q .

Now, we apply Lemma 6.4 to obtain the desired expression.

For q/T = 2 and q/T = ln(qmv4/s2), we make use of the Lemma A.5 that relates
moments of products of rows to products of moments of rows by taking advantage of either
s and 1

v2
being sufficiently large. The method essentially uses a counting argument to show

that not too many terms vanish as a result of negative correlations, and requires adding in
an indicator for the number of nonzero entries in a row being 2 for some cases (which is
sufficient to prove Lemma 6.6).

Lemma A.5 Suppose As,m,n is a uniform sparse JL transform. If 1 ≤ T ≤ q/2 is an integer,
q/T is an even integer, 1

v2
is an even integer, and 2Tv2 ≤ s, then:∥∥∥∥∥

T∏
i=1

Zi(v, . . . , v, 0, . . . , 0)

∥∥∥∥∥
1/T

q/T

&

‖Z1(v, . . . , v, 0, . . . , 0)‖2 if T = q/2∥∥∥Z1(v, . . . , v, 0, . . . , 0)I∑N
i=1 η1,i=2

∥∥∥
q/T

if 1 ≤ T ≤ q/2
.

We defer the proof to Appendix A.5.
Now we can use Lemma 5.12 coupled with Lemma A.5 and Lemma 6.4 to handle the

cases of q/T = 2, ln(qmv4/s2) and obtain the following bounds. For q/T = 2, we obtain:

Lemma A.6 Suppose As,m,n is a uniform sparse JL transform. If q is an even integer,
qv2

s
≤ 1, and 1

v2
is an even integer, then it is true that:

‖R(v, . . . , v, 0, . . . , 0)‖q &
( q
m

)1/2

.

64



Proof of Lemma A.6. Take T = q
2

and qv2 ≤ s. By Lemma A.5 and Lemma 5.12, we have
that:

‖R(v, . . . , v, 0, . . . , 0)‖q &
q

s

(
m

q

)1/2

‖Z1(v, . . . , v, 0, . . . , 0)‖2 .

Now, by Lemma 6.4, we can see that ‖Z1(v, . . . , v, 0, . . . , 0)‖2 & s
m

. Thus, our bound be-
comes:

q

s

(
m

q

)1/2
s

m
=
( q
m

)1/2

.

For q/T = ln(qmv4/s2), we similarly obtain the following bound using Lemma 5.12
coupled with Lemma A.5.

Lemma A.7 Suppose As,m,n is a uniform sparse JL transform. Suppose that q is a power
of 2, s ≤ m/e, 2qv2 ≤ 0.5s ln(qmv4/s2), 1

v2
is even, 2 ≤ ln(qmv4/s2) ≤ q, and m ≥ q. Then

it is true that:

‖R(v, . . . , v, 0, . . . , 0)‖q &
qv2

s ln( qmv
4

s2
)
.

Proof. Let’s let f(x) be the function that rounds x to the nearest power of 2. By the
conditions, we know that 2 ≤ f(ln(qmv4/s2)) ≤ q. Now, we want the condition 2qv2 ≤
sf(ln(qmv4/s2)) to be satisfied. If f(ln(qmv4/s2)) ≥ ln(qmv4/s2), then this is implied by
2qv2 ≤ s ln(qmv4/s2) = smax(ln(qmv4/s2), 2), which is a strictly weaker condition than the
one given in the lemma statement. If f(ln(qmv4/s2)) ≤ ln(qmv4/s2), then f(ln(qmv4/s2)) ≥
0.5 ln(qmv4/s2) and so 2qv2 ≤ 0.5s ln(qmv4/s2) ≤ sf(ln(qmv4/s2)) gives the desired condi-
tion.

We use the fact that ln(qmv4/s2)/2 ≤ f(ln(qmv4/s2)) ≤ 2 ln(qmv4/s2). We apply
Lemma A.5 and Lemma 5.12, with T = q

f(ln(qmv4/s2))
and Lemma 6.4 to see that if we

have the additional condition that f(ln(qmv4/s2)) ≥ se
mv2

, then we know that:

‖R(v, . . . , v, 0, . . . , 0)‖q &
q

sf(ln( qmv
4

s2
))

(
m

q

)1/f(ln( qmv
4

s2
))

‖Z1(v, . . . , v, 0, . . . , 0)IM=2‖f(ln( qmv
4

s2
))

&
qv2

2s ln( qmv
4

s2
)

(
m

q

)1/f(ln( qmv
4

s2
))
(

s

mf(ln( qmv
4

s2
))v2

)2/f(ln( qmv
4

s2
))

=
qv2

2s ln( qmv
4

s2
)

(
s2

qmv4

)1/f(ln( qmv
4

s2
))(

1

f(ln(qmv4/s2))2

)1/f(ln(qmv4/s2))

&
qv2

s ln( qmv
4

s2
)

(
s2

qmv4

) 2

ln(
qmv4

s2
)
.

&
qv2

s ln( qmv
4

s2
)
.
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Now, we see that

mv2

se
=

√
qmv4

s2

1

e

√
m
√
q
≥
√
m
√
q
≥ 1.

This implies that se
mv2
≤ 1, so the condition of f(ln(qmv4/s2)) ≥ 2 ≥ se

mv2
is automatically

satisfied.

With these bounds, Lemma 6.6 follows.

Proof of Lemma 6.6. We combine Lemma A.4, Lemma A.6, and Lemma A.7.

A.4 Proofs of auxiliary lemmas for Lemma 6.5

First, we use Lemma 5.11 and Lemma 6.3 to prove a upper bound ‖R(x1, . . . , xq)‖q that is
not quite in the desired form for Lemma 6.5.

Lemma A.8 Let 2 ≤ q ≤ m be an even integer and |xi| ≤ v and ‖x‖2 = 1. If se
mv2
≥ q,

then:
‖R(x1, . . . , xn)‖q . α1(q, v, s,m).

If ln(qmv2/s) > q then we have

‖R(x1, . . . , xn)‖q . max(α1(q, v, s,m), α2(q, v, s,m)).

In all other cases, we have that

‖R(x1, . . . , xn)‖q . max(α1(q, v, s,m), α2(q, v, s,m),min(α3(q, v, s,m), α4(q, v, s,m))).

The functions are defined as follows.

α1(q, v, s,m) =

√
q

√
m

α2(q, v, s,m) =

{
eqv2

s ln(qmv4/s2)
for ln(qmv4/s2) ≥ 2

√
q√
m

for ln(qmv4/s2) ≤ 2

α3(q, v, s,m) =
qv2e

s
sup

T≤q,T≥max( se
mv2

,3,ln(mv2T/s))

T

ln2(mv2T/s)

(
s

qv2

)1/T

α4(q, v, s,m) =
qe2

s ln(m/s)

1 for ln(qmv4/s2) ≥ 2(
s
qv2

)1/ ln(mv2/s)

else

Proof of Lemma A.8. As we discussed in Appendix A.3, it suffices to bound

1

s
sup

2≤T≤q

q

T

(
m

q

)1/t

‖Z1(x1, . . . , xn)‖t .
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Our bounds on ‖Z1(x1, . . . , xn)‖t are based on Lemma 6.3. We split into cases based on the
T value, and how it separates into different cases in Lemma 6.3. Let

β1(q, v, s,m) =
1

s
sup

T=2,3≤T≤ se
mv2

q

T

(
m

q

)1/t

‖Z1(x1, . . . , xn)‖t .

β2(q, v, s,m) =
1

s
sup

max(3, se
mv2

)≤T≤ln(mv2T/s)

q

T

(
m

q

)1/t

‖Z1(x1, . . . , xn)‖t .

β34(q, v, s,m) =
1

s
sup

T≥max(3, se
mv2

,ln(mv2T/s))

q

T

(
m

q

)1/t

‖Z1(x1, . . . , xn)‖t .

Let β3 branch arise when we use the T 2v2

ln(Tmv2/s)2
for the ‖Z1(x1, . . . , xn)‖t bound, and let the

β4 branch arise when we use Tv2

s ln(m/s)
for the ‖Z1(x1, . . . , xn)‖t bound. Thus, we know that

β34(q, v, s,m) ≤ min(β3(q, v, s,m), β4(q, v, s,m)).

Let’s first consider se
mv2
≥ q. In this case, only the β1 branch arises. Now, suppose that

se
mv2

< q.
Suppose that ln(qmv2/s) > q. Then we show that the β34 branch does not arise. It

suffices to show that ln(Tmv2/s) > T for all T ≥ se
mv2

. Let x = Tmv2/s. It suffices to show

that s
mv2

x
lnx

< 1 for all e ≤ x ≤ qmv2

s
. Since s

mv2
x

lnx
< 1 at x = qmv2

s
and this is an increasing

function of x, we know that the condition is true.
We now produce bounds α1(q, v, s,m), . . . , α4(q, v, s,m) such that βi(q, v, sm) . αi(q, v, s,m),

which is what we do for the remainder of the analysis.
First, we handle the β1(q, v, s,m) term. We see that

β1(q, v, s,m) =
1

s
sup

2≤T≤ s
mv2

q

T

(
m

q

)1/T
Ts

m
=

1

s

qs

m

(
m

q

)1/T

≤ q

m

(
m

q

)1/2

=

√
q

√
m
.

Now, we handle the β2(q, v, s,m) term. We obtain a bound for ‖Zr‖T . v2
(

s
mTv2

)2/T
.

The expression becomes:

β2(q, v, s,m) =
1

s
sup

T≥max( se
mv2

,3),T≤ln(mv2T/s)

qv2

T

(
m

q

)1/T ( s

mTv2

)2/T

=
1

s
sup

T≥max( se
mv2

,3),T≤ln(mv2T/s)

qv2

T

(
s

√
qmTv2

)2/T

≤ 1

s
sup

T≥max( se
mv2

,3),T≤ln(mv2T/s)

qv2

T

(
s2

qmv4

)1/T

.

Suppose that ln(qmv4/s2) ≥ 2. In this case, we have that this expression is upper bounded by

T = ln(qmv4/s2). When we plug this into the expression, we obtain qv2

s ln(qmv4/s2)
. Otherwise,
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if ln(qmv4/s2) ≤ 2, then this expression is upper bounded by T = 3:

qv2

s

(
s2

qmv4

)1/3

=
C1C5q

2/3v2/3

s1/3m1/3
.

We know that that q2/3v2/3

s1/3m1/3 ≤
√
q√
m

because this reduces to

q1/6v2/3m1/6

s1/3
=

(
qmv4

s2

)1/6

≤ e1/3.

Now, we handle the β4(q, v, s,m) term when ln(qmv2/s) ≤ q.

β4(q, v, sm) =
1

s
sup

T≥max( se
mv2

,3,ln(mv2T/s))

q

T

(
m

q

)1/T
T

ln(m/s)

≤ sup
T≥max( se

mv2
,3,ln(mv2T/s))

q

s ln(m/s)

(
mv2

s

)1/T (
s

qv2

)1/T

≤ qe

s ln(m/s)
sup

T≥max( se
mv2

,3,ln(mv2T/s))

(
s

qv2

)1/T

If s ≤ qv2, this is bounded by 1, and if s ≥ qv2, this is bounded by
(

s
qv2

)1/ ln(mv2/s)

. We see

that s
qv2
≤ mv2

s
, so

(
s
qv2

)1/ ln(mv2/s)

≤
(
mv2

s

)1/ ln(mv2/s)

≤ e. Thus this is bounded by qe2

s ln(m/s)
.

Now, we handle the β3(q, v, s,m) term. In this case, the expression becomes:

β3(q, v, s,m) =
1

s
sup

T≥max( se
mv2

,3,ln(mv2T/s))

qv2

T

(
m

q

)1/T
T 2

ln2(mv2T/s)

≤ sup
T≥max( se

mv2
,3,ln(mv2T/s))

qv2T

s ln2(mv2T/s)

(
mv2

s

)1/T (
s

qv2

)1/T

≤ qv2e

s
sup

T≥max( se
mv2

,3,ln(mv2T/s))

T

ln2(mv2T/s)

(
s

qv2

)1/T

We use some function bounding arguments to come with a simpler bound for α3 for
sufficiently large v.

Lemma A.9 Assume that C2q
3mv4 ≥ s2 for some C2 ≥ 1. Then it is true that

qv2e

s
sup

T≤q,T≥ se
mv2

,3,ln(mv2T/s)

T

ln2(mv2T/s)

(
s

qv2

)1/T

≤ C
1/3
2 q2v2e5

s ln2(mv2q/s)
.
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Proof of Lemma A.9. With the assumptions that we made we know that s
q3v2C2

2
≤ mv2

s
. This

implies that our expression becomes:

E =
qv2e

s
sup

T≤q,T ≥max( se
mv2

,3,ln(mv2T/s))

T

ln2(mv2T/s)

(
s

qv2

)1/T

=
qv2e

s
sup

T≤q,T≥max( se
mv2

,3,ln(mv2T/s))

C
1/T
2

T

ln2(mv2T/s)

(
s

C2q3v2

)1/T

q2/T

≤ qv2e2

s
C

1/3
2 sup

T≤q,T≥max( se
mv2

,3,ln(mv2T/s))

T

ln2(mv2T/s)
q2/T

.

It suffices to show that supT≤q,T≥max( se
mv2

,3,ln(mv2T/s))
T

ln2(mv2T/s)
q2/T ≤ qe3

ln2(mv2q/s)
.

Let Tmin be the minimum T such that T ≥ max( se
mv2

, 3, ln(mv2T/s)). We just need to
bound

sup
Tmin≤T≤q

Tq2/T

ln2(mv2T/s)
≤ max

(
sup

Tmin≤T≤ln q

Tq2/T

ln2(mv2T/s)
, sup

max(Tmin,ln q)≤T≤q

Tq2/T

ln2(mv2T/s)

)

≤ max

(
sup

Tmin≤T≤ln q

Tq2/T

ln2(mv2T/s)
, e2 sup

max(Tmin,ln q)≤T≤q

T

ln2(mv2T/s)

)

First, we handle the second term. Let Q = mv2T
s

. We use that Tmin ≥ se
mv2

, so mv2Tmin
s

≥ e
to conclude Q ≥ e. We see that

e2 sup
max(Tmin,ln q)≤T≤q

T

ln2(mv2T/s)
≤ e2 s

mv2
sup

e≤Q≤ qmv2
s

Q

ln2(Q)
.

We see that setting Q to its maximum value achieves within a factor of e of the maximum
value of Q

ln2(Q)
. Thus, we obtain that this is upper bounded by e3 q

ln2(mv2q/s)
.

Now, we just need to handle the first term. If Tmin ≥ ln q, then this term doesn’t exist.
Let’s take a log of the expression to obtain:

ln

(
T

ln2(mv2T/s)

)
= lnT − 2 ln ln(mv2T/s) +

2

T
ln(q)).

The derivative is:
1

T
− 2

T ln(mv2T/s)
− 2

T 2
ln(q).

The sign of the derivative is the same as:

1− 2

ln(mv2T/s)
− 2 ln q

T
.
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Since Tmin ≥ se
mv2

, we know that ln(mv2T/s) ≥ 0. Thus, we know that 1 − 2
ln(mv2T/s)

≤ 1.

Since T ≤ ln q, we know that ln q
T
≥ 1, so −2 ln q

T
≤ −2. Thus, the derivative is negative, so

the sup is attained at Tmin = T , where the expression is:

e3 Tminq
2/Tmin

ln2(mv2Tmin/s)
≤ e3 (ln q)q2/3

ln2(mv2Tmin/s)
≤ e3 q3/4

ln2(mv2Tmin/s)
.

Thus, to upper bound by q
ln2(mv2q/s)

, it suffices to show:

ln2(mv2q/s)

ln2(mv2Tmin/s)
≤ q0.25.

If s
mv2
≤ 1, the ratio is at most

ln(mv2q/s)

ln(mv2Tmin/s)
≤ ln(mv2/s) + ln q

ln(mv2/s) + lnTmin
≤ ln q

ln e
= ln q ≤ q0.25.

If s
mv2
≥ 1, then qmv2/s ≤ q. Using this and mv2Tmin

s
≥ e, we know:

ln(mv2q/s)

ln(mv2Tmin/s)
≤ ln(q)

ln(e)
= ln q ≤ q0.25.

Now, we combine Lemma A.8 and Lemma A.9 to prove Lemma 6.5.

Proof of Lemma 6.5. First, we compute the second moment by hand:

E[R(x1, . . . , xn)]2 =
1

s2
E

( m∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj

)2


=
2

s2
E

[
m∑
r=1

∑
i 6=j

ηr,iηr,jx
2
ix

2
j

]

≤ 2

m

(
n∑
i=1

x2
i

)2

=
2

m
.

For 2 < q ≤ m, we apply Lemma A.8 and Lemma A.9. We only include α4 when
ln(qmv4/s2) ≥ 2 to simplify the bound. The bound follows.

A.5 Proof of auxiliary lemma for Lemma 6.6

We prove Lemma A.5.
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Proof of Lemma A.5. First, we show the following fact: Suppose that there are T distin-
guishable buckets and we want to a assign an ordered pair of 2 unequal elements in [N ] to
each bucket so that the total number of times that any element i ∈ [N ] shows up is ≤ s.
We show that the number of such assignments is at least CTN2T for some constant C. To
prove this, we first consider the case where N ≥ 2T . In this case, we have that the number
of such assignments is at least:

N(N − 1)(N − 2) . . . (N − 2T + 1) ≥ C2T
1 N2T .

Now, if N < 2T , then we define:

β =

⌈
2T

N

⌉
=
⌈
2Tv2

⌉
≤ s.

We partition 2T into β blocks, each of size N , until potentially the last block, which may be
smaller. We can read off ordered pairs assigned to each bucket from this formulation. Let’s
assume that each block is a permutation of 1, . . . , N , and the last block is 2T − (β − 1)(N)
non-equal numbers drawn from 1, . . . , N . (this satisfies the unequal ordered pair condition).
Then the number of assignments is (N !)β−1 · (N)(N − 1) . . . (N − (2T − (β − 1)(N)) + 1).
This is at least as big as C2T

1 N2T for some constant C1.
First, we handle the case where q/T = 2. Since we have a uniform sparse JL transform,

we know that for 1 ≤ x ≤ s:

E[η1,1 . . . ηx,1] ≥ s(s− 1) . . . (s− x+ 1)

(m)(m− 1) . . . (m− x+ 1)
≥ C−x2

( s
m

)x
.

We know that

Z2
r = 2

(∑
i 6=j

ηr,iηr,j

)
+ Yr,

where Yr has expectation 0. In this case we have that

Z2
1 . . . Z

2
T = 2T

( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

ηk,ikηk,jk

)
+Q.

where Q consists of terms that contain a factor of some Yr. Due to the independence of the
Rademachers, the expectation of any term that contains a factor of Yr has expectation 0,
which implies that:

E[Z2
1 . . . Z

2
T ] = v2T2TE

[( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

ηk,ikηk,jk

)]
.

Let η′r,i ∼ ηr,i be independent random variables. Suppose that

Z ′r := v2T
∑
i 6=j

η′r,iη
′
r,jσr,iσr,j.
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We know that

Z
′2
r = 2

(∑
i 6=j

η′r,iη
′
r,j

)
+ Y ′r ,

where Y ′r has expectation 0. This means that:

Z
′2
1 . . . Z

′2
T = v2T2T

( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

η′k,ikη
′
k,jk

)
+Q′

where Q′ consists of terms that contain a factor of some Y ′r . For similar reasons, this implies
that

E[Z
′2
1 . . . Z

′2
T ] = v2T2TE

[( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

η′k,ikη
′
k,jk

)]
.

Let’s view
∏T

k=1 η
′
k,ik
η′k,jk and

∏T
k=1 ηk,ikηk,jk as terms in a sum. In the second expression,

every term has expectation
(
s
m

)2T
, and there are at most N2T terms. In the first expression,

if there are > s copies of any ik value, then the expectation is 0. Otherwise, the expectation

varies between C−2T
2

(
s
m

)2T
and

(
s
m

)2T
. By the counting argument at the beginning of the

proof, we know that there are at least C2T
1 N2T terms. This implies that

‖Z1 . . . ZT‖2 & CT ‖Z ′1 . . . Z ′T‖2 = CT ‖Z ′1‖
T
2 = CT ‖Z1‖T2

as desired.
Now, we handle the case of the general q/T . Since we have a uniform sparse JL transform,

we know that for 1 ≤ x ≤ s:

E[η1,1 . . . ηx,1] ≥ s(s− 1) . . . (s− x+ 1)

(m)(m− 1) . . . (m− x+ 1)
≥ C−x2

( s
m

)x
.

We know that
(Zr)

q/T = 2q/T−1
∑
i 6=j

(ηr,iηr,j)
q/T + Yr,

where Yr has expectation ≥ 0. In this case we have that

(Z1 . . . ZT )q/T = 2q−T

( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

(ηk,ikηk,jk)
q/T

)
+Q.

where Q has expectation ≥ 0. This implies that:

E[Z
q/T
1 . . . Z

q/T
T ] ≥ v2T2q−TE

[( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

(ηk,ikηk,jk)
q/T

)]
.

Let η′r,i ∼ ηr,i be independent random variables, and let M ′
r =

∑N
i=1 η

′
r,i. Suppose:

Z ′r := v2T
∑
i 6=j

η′r,iη
′
r,jσr,iσr,j.
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We know that
(Z ′rIM ′r=2)q/T = 2q/T−1

∑
i 6=j

(
η′r,iη

′
r,jIM ′r=2

)q/T
+ Y ′r ,

where Y ′r has expectation 0. In this case we have that

(Z ′1IM ′1=2 . . . Z
′
T IM ′T=2)q/T = 2q−T

( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

(
η′k,ikη

′
k,jk

IM ′k=2

)q/T)
+Q′.

where Q′ consists of terms that contain a factor of some Y ′r . For similar reasons to the above,
we have that:

E[Z
′q
1 . . . Z

′q
T ] = v2T2q−TE

[( ∑
i1 6=j1,...,iT 6=jT

T∏
k=1

(
η′k,ikη

′
k,jk

IM ′k=2

)q/T)]
.

Let’s view
∏T

k=1 (ηk,ikηk,jk)
q/T and

∏T
k=1

(
η′k,ikη

′
k,jk

IM ′k=2

)q/T
as terms in a sum. In the second

expression, every term has expectation ≤
(
s
m

)2T
(the indicator can only reduce the expecta-

tion), and there are at most N2T terms. In the first expression, if there are > s copies of any

ik value, then the expectation is 0. Otherwise, the expectation varies between C−2T
2

(
s
m

)2T

and
(
s
m

)2T
. By the counting argument, we know that there are at least C−2T

1 N2T terms.
This implies that

‖Z1 . . . ZT‖q/T & CT
∥∥Z ′1IM ′1=2 . . . Z

′
T IM ′T=2

∥∥
q/T

= CT
∥∥Z ′1IM ′1 = 2

∥∥T
q/T

= CT ‖Z1IM1=2‖Tq/T

as desired.

A.6 Proof of Lemma 6.7 and Lemma 6.8

Recall that our proof of Theorem 3.2 requires cleaner bounds on moments of ‖R(x1, . . . , xn)‖q
that follow simplifying the bounds in Lemma 6.5 and Lemma 6.6 at the target values of v.
The proofs of these lemmas boil down to function bounding and simplification.

A.6.1 Proof of Lemma 6.7

First, we show how Lemma 6.5 implies Lemma 6.7. The proof involves simplifying and
bounding the function at the target v value.

Proof of Lemma 6.7. We plug q = p into Lemma 6.5. We use this relaxed version of the
bound: If se

mv2
≥ q, then ‖R(x1, . . . , xn)‖q .

√
q√
m

. Otherwise, if there exists C2q
3mv4 ≥ s2,

then

‖R(x1, . . . , xn)‖q .


max

(
√
q√
m
,

C
1/3
2 q2v2

s ln2(qmv2/s)

)
if ln(qmv4/s2) ≤ 2

max

(
√
q√
m
, qv2

s ln(qmv4/s2)
,min

(
C

1/3
2 q2v2

s ln2(qmv2/s)
, q
s ln(m/s)

))
if ln(qmv4/s2) > 2
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Suppose that the absolute constant on the upper bounds is ≤ C ′. Let C = max(C ′, 1)
(we take C to be the constant on the upper bounds). Let’s take Cv,2 = 0.25√

C
, Cv,1 =

min
(

0.1
C3/2 , Cv,2

)
, CS = 4C, CM = max

(
e

1

C2
v,1 , 16C2, e

1

C2
v,2 , e2

)
. For the remainder of the

analysis, we assume that m ≥ CMε
−2p and m < 2ε−2δ.

First, observe m ≥ 16C2ε−2p gives us that C
√
p√
m
≤ 0.25ε regardless of v.

Now, let f1 = Cv,1
√
εs

ln(mε
p

)

p
, and f2 =

Cv,2
√
εs
√

ln mε2

p√
p

.

First, let’s analyze v = f2. We show that ln(pmf 4
2 /s

2) ≥ 2. Observe that ln(pmf 4
2 /s

2) =

ln(C4
v,2 ln2(mε2/p)) + ln(mε2/p). Using the fact that m ≥ e

1

C2
v,2 ε−2p, we see that

C4
v,2 ln2(mε2/p) ≥ C4

v,2

1

C4
v,2

= 1.

Now, since m ≥ e2ε−2p, this implies that

ln(pmf 4
2 /s

2) = ln(C4
v,2 ln2(mε2/p)) + ln(mε2/p) ≥ ln(mε2/p) ≥ 2.

Moreover, we know that p3mf 2
2 ≥ s2, since pmv4 ≥ e2s2. Now, we show that C

pf22
s ln(pmf42 /s

2)
≤

0.25ε. Let’s observe that

Cpv2

s ln(pmf 4
2 /s

2)
≤
CC2

v,2ε ln(mε
2

p
)

ln(mε
2

p
)

= CC2
v,2ε

Since Cv,2 = 0.25√
C

, we get a bound of 0.25ε.

Now, we handle the case where m ≥ s · e
CSpε

−1

s . We first show that C p
s ln(m/s)

≤ 0.25ε. If

s ≥ Θ(ε−1 ln(1/δ)), using that m ≥ se, this immediately follows from p
s ln(m/s)

≤ p
s
≤ 0.25ε.

Otherwise, we need it to be true that s ln(m/s) ≥ 4Cpε−1. This can be written as ln(m/s) ≥
4Cpε−1

s
. Since CS = 4C, this can be written as: m ≥ s · e

CSpε
−1

s , as desired. This, combined

with the above analysis, implies that when m ≥ s · e
CSpε

−1

s , taking v = f2:

‖R(x1, . . . , xn)‖q ≤ C max

( √
q

√
m
,

qv2

s ln(qmv4/s2)
,min

(
C

1/3
2 q2v2

s ln2(qmv2/s)
,

q

s ln(m/s)

))

≤ C max

( √
q

√
m
,

qv2

s ln(qmv4/s2)
,

q

s ln(m/s)

)
≤ 0.25ε.

Now, we just need to handle the case where m ≤ s·eCSpε−1/s, m ≥ Θ(ε−1 ln(1/δ)), m ≥ se.
Such values only exist if s ≤ Θ(ε−1 ln(1/δ)). Observe that we can set C2 = 1

C4
v,1

and using

the fact that Cv,1 ≤ Cv,2, we obtain that

C2p
3mv4

s2
≥ C2p

3m

s2
min (Cv,1, Cv,2)4

(√
εs

p

)4

= C2C
4
v,1

mε2

p
≥ C2C

4
v,1.
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Thus, this is lower bounded by 1 when C2 = 1
C4
v,1

.

First, we analyze the case of v = f1. We show that
CC

1/3
2 p2v2

s ln2(pmv2/s)
≤ 0.1ε. Observe that

CC
1/3
2 p2v2

s ln2(pmv2/s)
=
εCC

1/3
2 C2

v,1 ln2(mε
p

)

ln2(
C2
v,1mε ln2(mε

p
)

p
)

=
εCC

1/3
2 C2

v,1 ln2(mε
p

)(
ln(mε

p
) + ln(C2

v,1 ln2(mε
p

)
)2 .

Now, since m ≥ e1/C2
v,1ε−2p, we know that ln(C2

v,1 ln2(mε
p

)) ≥ 0. Thus we can bound the
above expression by:

εCC
2/3
v,1 ln2(mε

p
)

ln2(mε
p

)
= εCC

2/3
v,1 ε ≤ 0.1ε,

where the last inequality uses the fact that Cv,1 ≤ 0.1
C3/2 .

Let’s now consider how the term pv2

s ln(pmv4/s2)
how changes as a function of v. This term

only arises in the bound if ln(pmv4/s2) ≥ 2. First, we show this is an increasing function

of v. Let w = pmv4/s2. We see that pv2

s ln(pmv4/s2)
= s√

pm

√
w

lnw
. We observe that this is an

increasing function of w as long as w ≥ e2, which is exactly our restriction on w. Thus,
pv2

s ln(pmv4/s2)
is an increasing function of v in this range.

Now, we consider how the
C

1/3
2 p2v2

s ln2(pmv2/s)
term changes a function of v. This term only

arises in the bound if ln(pmv2/s) ≥ 1. First, we show that f(v) ≤ 2f(v′) if v ≤ v′. Let

w = pmv2/s. We see that p2v2

s ln(pmv2/s)
= p

m
w

ln2 w
. We observe that this is an increasing function

of w as long as w ≥ e2. When e ≤ w ≤ e2, observe that this is bounded by at most a factor
of 2 above any other w value.

Now, for the remainder of the analysis, let v = min(f1, f2). We show that ‖R(x1, . . . , xn)‖q ≤
0.25ε.

If ln(pmv2/s) ≤ 1 (i.e. se
mv2
≥ p), then we know that the bound is actually

√
p√
m

, and we’ve

already shown that ‖R(x1, . . . , xn)‖q ≤ 0.25ε.

For the remainder of the analysis, we assume that ln(pmv2/s) > 1.
First, suppose that v = f1. If ln(pmv4/s2) ≤ 2, then we know that

‖R(x1, . . . , xn)‖q ≤ C max

( √
q

√
m
,

C
1/3
2 q2v2

s ln2(qmv2/s)

)
≤ 0.25ε.

Otherwise, we know that ln(pmv4/s2) > 2. First let’s show that that C pv2

s ln(pmv4/s2)
≤ 0.25ε.

We know that v ≤ f2. At v = f2, we know that the expression is upper bounded by 0.25ε.
Since the pv2

s ln(pmv4/s2)
term is an increasing function of v in this regime, this means that we

get a bound of 0.25ε in this case too. Thus, we know that:

‖R(x1, . . . , xn)‖q ≤ C max

( √
q

√
m
,

qv2

s ln(qmv4/s2)
,min

(
C

1/3
2 q2v2

s ln2(qmv2/s)
,

q

s ln(m/s)

))

≤ C max

( √
q

√
m
,

qv2

s ln(qmv4/s2)
,

C
1/3
2 q2v2

s ln2(qmv2/s)

)
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≤ 0.25ε.

Now, suppose that v = f2. We’ve already shown that ln(pmv4/s2) ≥ 2 here (near the
beginning of the proof). Since v ≤ f1, we obtain a bound of 2 · 0.1ε = 0.2ε. This means:

‖R(x1, . . . , xn)‖q ≤ C max

( √
q

√
m
,

qv2

s ln(qmv4/s2)
,min

(
C

1/3
2 q2v2

s ln2(qmv2/s)
,

q

s ln(m/s)

))

≤ C max

( √
q

√
m
,

qv2

s ln(qmv4/s2)
,

C
1/3
2 q2v2

s ln2(qmv2/s)

)
≤ 0.25ε.

A.6.2 Proof of Lemma 6.8

Now, we show how Lemma 6.5 and Lemma 6.6 imply Lemma 6.8. The proof simply involves
bounding and simplifying the functions in the original lemmas at the target v value.

Proof of Lemma 6.8. We use Lemma 6.5 but put in an absolute constant. Let D2 > 0 be
such that: if se

mv2
≥ q, then

‖R(x1, . . . , xn)‖q ≤ D2

√
q

√
m
.

Otherwise, if q3mv4 ≥ s2, then ‖R(x1, . . . , xn)‖q is upper bounded by:

D2



max
( √

q√
m
, q2v2

s ln2(qmv2/s)

)
if ln(qmv4/s2) ≤ 2, ln(qmv2/s) ≤ q

√
q√
m

if ln(qmv4/s2) ≤ 2, ln(qmv2/s) > q

max
( √

q√
m
, 4096qv2

s ln(qmv4/s2)
,min

(
q2v2

s ln2(qmv2/s)
, q
s ln(m/s)

))
if ln(qmv4/s2) > 2, ln(qmv2/s) ≤ q

max
( √

q√
m
, 4096qv2

s ln(qmv4/s2)

)
if ln(qmv4/s2) > 2, ln(qmv2/s) > q.

We use Lemma 6.6 but put in an absolute constant D1 > 0 (which we take to be ≤ 1).
Let 2 ≤ q ≤ m be an even integer, and suppose that 0 < v ≤ 0.5 and 1

v2
is an even integer.

If qv2 ≤ s, then

‖R(x1, . . . , xn)‖q ≥ D1

√
q

√
m
.

If m ≥ q, 2 ≤ ln(qmv4/s2) ≤ q, 2qv2 ≤ 0.5s ln(qmv4/s2), and s ≤ m/e then:

‖R(x1, . . . , xn)‖q ≥ D1
4096qv2

s ln(qmv4/s2)
.

If v ≤
√

ln(m/s)
√
q

and 1 ≤ ln(qmv2/s) ≤ q/2, and s ≤ m/e, then:

‖R(x1, . . . , xn)‖q ≥ D1
q2v2

s ln2(qmv2/s)
.
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Let D = D1

2048D2
. It suffices to show that for v defined in the lemma statement:

‖R(v, v, . . . , v, 0, . . . , 0)‖q ≥ 2ε

and
‖R(v, v, . . . , v, 0, . . . , 0)‖q
‖R(v, v, . . . , v, 0, . . . , 0)‖2q

≥ D.

First, we handle the case where m ≤ Θ(ε−2 ln(1/δ)). Let’s take v = ψ for any sufficiently
small ψ. By sufficiently small, we mean v2 ≤ se

2mq
and 0 < v ≤ 0.5. This implies that

se
mv2
≥ 2q and qv2 ≤ s. Thus we know (using that q ≤ m) that ‖R(x1, . . . , xn)‖2q ≤ D2

√
2q√
m

and ‖R(x1, . . . , xn)‖q ≥ D1

√
q√
m

. This means that:

‖R(v, v, . . . , v, 0, . . . , 0)‖q
‖R(v, v, . . . , v, 0, . . . , 0)‖2q

≥ D

as desired. Suppose that m ≤ Θ(ε−2 ln(1/δ)). Based on the setting q, this means that

‖R(v, . . . , v, 0 . . . , 0)‖q ≥ D1

√
q√
m
≥ 2ε as desired.

Now, we handle the cases wherem ≥ Θ(ε−2 ln(1/δ)). Notice that the condition f ′(m, ε, δ, s) ≤
0.5 allows us to assume that s ≤ Θ(ε−1 ln(1/δ)) and m ≤ ε−2ep. Let f1 = 4

√
εs

ln(mε
q

)

q
and

let f2 =
√
εs

√
ln(mε

2

q√
q

. We will consider v = Cv,1f1 =: v1 and v = Cv,2f2 =: v2. First, we

handle the condition of q3mv4 ≥ s2. We enforce the condition Cv,1, Cv,2 ≥ 1. Assuming that

v ≥
√
εs
q

(which is true at the two values of v that we consider), we know q3mv4

s2
≥ mε2

q
≥ 1.

Also, we make m ≥ 2C2ε−2q, so that
√

2q
m
≤
√

2q
2C2ε−2q

= ε
C

.

Consider v = v2. We first check that the conditions for the upper bound are satisfied.
We have that qmv4

s2
= C4

v,2
mε2

q
ln2(mε

2

q
). Observe that when m ≥ e2ε−2q and Cv,2 ≥ 1, this

is lower bounded by e2, so ln(qmv4/s2) ≥ 2. Also, we have that qmv2

se
=
√
qm
√

qmv4

s2
1
e
≥ 1.

Now, we check the additional conditions needed for the lower bound. Observe that

2qv2

s
= 2εC2

v,2 ln(
mε2

q
) ≤ 0.5C4

v,2

mε2

q
ln2(

mε2

q
) = 0.5 ln(qmv4/s2)

as desired. We check that ln(qmv4/s2) ≤ q. It suffices to show that

mε2

q
ln2

(
mε2

q

)
≤ eq

C4
v,2

.

Using the condition that m ≤ ε−2 eq

qC4
v,2

where we obtain that

mε2

q
ln2(

mε2

q
) ≤ eq

q2C4
v,2

ln2(
eq

q2C4
v,2

) ≤ eq

q2C4
v,2

ln2(eq) ≤ eq

C4
v,2

as desired. Now, we compute the value of qv2

s ln(qmv4/s2)
at v = Cv,2f2. We obtain:

qv2

s ln(qmv4/s2)
= C2

v,2ε
ln(mε2/q)

ln
(
mε2

q

)
+ ln

(
C4
v,2 ln2

(
mε2

q

)) .
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Consider v = v1. We first check that the conditions for the upper bound are satisfied.
In this case, we have that qmv2

s
= 16C2

v,1
mε
q

ln2(mε
q

). Observe that when Cv,1 ≥ 1 and

m ≥ e2ε−2q ≥ e2ε−1q, this is lower bounded by e2, so ln(qmv2/s) ≥ 2. Now, we claim that
when f1 ≤ f2, we show that ln(qmv2/s) ≤ q/2. In this case, using that m ≤ ε−2qeq, we have:
4 ln(mε/q)

q
≤
√

ln(mε2/q)
√
q

. This means that ln(mε/q) ≤ √q
√

ln(mε2/q)/4 ≤ q/4. Observe that

ln(qmv2/s) = ln(16C2
v,1) + ln(mε/q) + 2 ln ln(mε/q)

≤ ln(16C2
v ) +

q

4
+ 2 ln ln q

≤ q

2
.

At this value, observe that:

q2v2

s ln2(qmv2/s)
= 16C2

v,1ε

 ln(mε/q)

ln
(
mε
q

)
+ ln

(
16C2

v,1 ln2
(
mε
q

))
2

.

Let C = D1. Let’s set
√

1
C
≤ Cv,2 = Cv,1 = Cv ≤ 4

√
1
C

. Using the fact that v2 ≤ 0.5 (so
1
v2
≥ 2), this means that 1

v2
has can take on at least 3 different powers of 2. Let’s observe

that when 16C2
v ln2(mε

q
) ≤ mε

q
(we can get this condition by saying that m ≥ CM,2ε

−2q for

a sufficiently large CM,2) and 16C2
v ln2(mε/q) ≥ 1 (we can get this condition by saying that

m ≥ CM,2ε
−2q for a sufficiently large CM,2), we know that

4ε

C
≤ 4C2

v ε ≤
q2v2

1

s ln2(qmv2
1/s)

≤ 16C2
v ε ≤

256ε

C
.

Suppose that C4
v ln2(mε2/q) ≤ mε2

q
(we can get this condition by saying that m ≥ CM,2ε

−2q

for a sufficiently large CM,2) and C4
v ln2(mε2/q) ≥ 1 (we can get this condition by saying that

m ≥ CM,2ε
−2q for a sufficiently large CM,2). Let’s observe that

4096C2
v ε ≥

4096qv2
2

s ln2(qmv4
2/s

2)
≥ 2048C2

v ε ≥
2048ε

C
.

Let m′ = s · eCε
−1q

1024s . When m ≥ m′, we know that q
s ln(m/s)

≤ 1024ε
C

and when m ≤ m′, we

know that q
s ln(m/s)

≥ 1024ε
C

.

In order to plug in v = v1 and use the q2v2

s ln2(qmv2/s)
lower bound, we need to show that

v ≤
√

ln(m/s)
√
q

. At v =

√
ln(m/s)
√
q

, we have that qmv2

s
= m

s
ln
(
m
s

)
. Observe that when m ≥ e2s,

this is lower bounded by e2, so ln(qmv2/s) ≥ 2. At this value, observe that:

q2v2

s ln2(qmv2/s)
=

q ln(m/s)

s ln2
(
m
s

ln
(
m
s

)) ≥ q ln(m/s)

4s ln2
(
m
s

) =
q

4s ln
(
m
s

) .
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We can write q2v2

s ln2(qmv2/s)
= q

m
w

ln2 w
, where w = qmv2/s. We observe that this is an increasing

function of w as long as w ≥ e2. Thus, it suffices to show that
q2v21

s ln2(qmv21/s)
≤ q2v2

s ln2(qmv2/s)
.

When m ≤ m′, we know that

q2v2
1

s ln2(qmv2
1/s)

≤ 256ε

C
≤ q

4s ln
(
m
s

) ≤ q2v2

s ln2(qmv2/s)
.

Thus, we have that v1 ≤ v =

√
ln(m/s)
√
q

as desired.

The first case is m ≤ m′ and f2 ≤ f1. We set v = Cvf2.

‖R(v, . . . , v, 0, . . . , 0)‖q ≥ D1
4096qv2

s ln(qmv4/s)
.

For the upper bound, we see that ln(2qmv4/s2) > ln(qmv4/s2) ≥ 2 and
√

2q
m
≤ ε

C
. Here, we

have that

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤

D2 max
(√

2q√
m
, 8192qv2

s ln(2qmv4/s)
, 4q2v2

s ln2(2qmv2/s)

)
if ln(2qmv2/s) ≤ 2q

D2 max
(√

2q√
m
, 8192qv2

s ln(qmv4/s)

)
if ln(2qmv2/s) > 2q

.

Now, we use the fact that v ≤ Cvf1 := v1 to see that:

4q2v2

s ln(2qmv2/s)
≤ 4q2v2

s ln(qmv2/s)
≤ 8q2v2

1

s ln(qmv2
1/s)

≤ 2048ε

C
.

We also observe that since 2qmv4/s ≤ (qmv4/s)2, we know:

8192qv2

s ln(2qmv4/s)
≥ 8192qv2

2s ln(qmv4/s)
≥ 2048ε

C
.

This, coupled with the guarantee on
√

2q√
m

, implies we have an upper bound of:

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤ D2
8192qv2

s ln(2qmv4/s)
.

Thus, we have that
‖R(v, . . . , v, 0 . . . , 0)‖q
‖R(v, . . . , v, 0, . . . , 0)‖2q

≥ D1

2D2

≥ D.

Moreover, we have that

‖R(v, . . . , v, 0, . . . , 0)‖q ≥ D1 ·
4096qv2

s ln(qmv4/s)
≥ D1

2048ε

C
= 2048ε

The next case is f1 ≤ f2 and m ≤ m′. We set v = v1. Since f1 ≤ f2, we know that
ln(qmv4/s2) ≤ q. Thus we know:

‖R(v, . . . , v, 0, . . . , 0)‖q ≥

D1 max
(

4096qv2

s ln(qmv4/s)
, q2v2

s ln2(qmv2/s)

)
if ln(qmv4/s2) ≥ 2, qv2 ≤ s

D1
q2v2

s ln2(qmv2/s)
else

.
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For the upper bound, we know that:

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤

D2 max
(√

2q√
m
, 8192qv2

s ln(2qmv4/s)
, 4q2v2

s ln2(2qmv2/s)

)
if ln(2qmv4/s) > 2

D2 max
(√

2q√
m
, 4q2v2

s ln2(2qmv2/s)

)
if ln(2qmv4/s) ≤ 2

.

To make these bounds compatible, we need to handle the case where ln(qmv4/s) ≥ 2, qv2 ≥ s

better. Let v′ = Cvf2. Assuming that ln(qmv4/s) ≥ 2, we know that 8192qv2

s ln(2qmv4/s)
can be

upper bounded by:

8192qv2

s ln(qmv4/s)
≤ 8192qv′2

s ln(qmv′4/s)
=

8192C2
v ε ln(mε2/q)

ln(mε2/q) + ln(C4
v ln2(mε2/q))

≤ 8192C2
v ε ≤

8192ε

C

as long as ln2(mε/q)C4
v ≥ 1 (which we can make true by appropriately setting the constants

on the bound for m). Observe also that:

4q2v2

s ln2(2qmv2/s)
≥ q2v2

s ln2(qmv2/s)
≥ 4ε

C
.

Thus:
8192qv2

s ln(qmv4/s)
≤ 8192q2v2

s ln2(2qmv2/s)
.

This, coupled with the guarantee on
√

2q√
m

, implies that our upper bound becomes:

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤


D2

8192q2v2

s ln2(2qmv2/s)
if ln(2qmv4/s) ≤ 2

D2
8192q2v2

s ln2(2qmv2/s)
if ln(qmv4/s) ≥ 2, qv2 ≥ s

D2 max
(

8192qv2

s ln(2qmv4/s)
, 4q2v2

s ln2(2qmv2/s)

)
else.

We now show that we can tweak Cv within the factor of 21/4 range permitted to show that
we can ensure that it is not true that 2 − ln 2 < ln(qmv4/s) ≤ 2. Observe that multiplying
by a factor of 21/4 in this case yields ln(2qmv4/s) > 2 and dividing by a factor of 21/4 yields
ln(qmv4/s) ≤ 2 − ln 2. Thus, at least one of the Cv values that yields a power of 2 for 1

v2

will work. Thus, we have that

‖R(v, . . . , v, 0 . . . , 0)‖q
‖R(v, . . . , v, 0, . . . , 0)‖2q

≥ D1

8192D2

=
D

2048
.

Moreover, we have that:

‖R(v, . . . , v, 0, . . . , 0)‖q ≥ D1 ·
q2v2

s ln2(qmv2/s)
≥ D1

4ε

C
= 4ε

The next case is that m > m′. We set v = Cv
√
εs

√
ln
(
mε2

q

)
√
q

. We know:

‖R(v, . . . , v, 0, . . . , 0)‖q ≥ D1
4096qv2

s ln(qmv4/s)
.
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For the upper bound, we see that ln(2qmv4/s2) > ln(qmv4/s2) > 2. We know:

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤

D2 max
(√

2q√
m
, 8192qv2

s ln(2qmv4/s)
, 2q
s ln(m/s)

)
if ln(2qmv2/s) ≤ 2q

D2 max
(√

2q√
m
, 8192qv2

s ln(2qmv4/s)

)
if ln(2qmv2/s) > 2q

.

This can be relaxed to:

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤ D2 max

(√
2q√
m
,

8192qv2

s ln(2qmv4/s)
,

2q

s ln(m/s)

)
.

Now, we know that

2q

s ln(m/s)
≤ 2048ε

C
≤ 4096qv2

s ln(qmv4/s)
=

8192qv2

2s ln(qmv4/s)
≤ 8192qv2

s ln(2qmv4/s)
.

This coupled with what we know about
√

2q√
m

means that:

‖R(v, . . . , v, 0, . . . , 0)‖2q ≤ D2
8192qv2

s ln(2qmv4/s)
.

Thus, we have that
‖R(v, . . . , v, 0 . . . , 0)‖q
‖R(v, . . . , v, 0, . . . , 0)‖2q

≥ D1

2D2

≥ D.

Moreover, we have that

‖R(v, . . . , v, 0, . . . , 0)‖q ≥ D1 ·
4096qv2

s ln(qmv4/s)
≥ D1

2048ε

C
= 2048ε.

We use the condition on q not being more than a constant factor away from p = ln(1/δ),

to conclude that ε−2q = Θ(ε−2p), f2 = Θ

√εs
√

ln
(
mε2

p

)
√
p

, and f1 = Θ

(
√
εs

ln(mεp )
p

)
, and

to conclude that the boundaries move within the Θ notation as well.

A.7 Additional experimental results and discussion

All of the experiments (in Chapter 3 and the Appendix) were run on the default hardware
on a Google Colab notebook. The code is available at https://github.com/mjagadeesan/
sparsejl-featurehashing.

First, we give the results of additional experimental results on real-world and synthetic
datasets, using the same experimental setup as Chapter 3.

For the synthetic datasets, the trends in Figure A.1 and Figure A.2 look quite similar
to the figures in Chapter 3. We see, though, that Figure A.2 experiences more severe non-
monotonic behavior as a function of s in the second phase transition. Consider, for example,
in Figure A.2, the behavior at m = 12000: we see that v̂(m, ε, δ, 4) < v̂(m, ε, δ, 3). In fact,
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Figure A.1: Phase transitions of
v̂(m, 0.2, 0.01, s)

Figure A.2: Phase transitions of
v̂(m, 0.02, 0.05, s)

Figure A.3: δ̂(m, s, 0.1) on News20 Figure A.4: δ̂(m, s, 0.1) on Enron

Figure A.5: δ̂(m, s, 0.03) on News20
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the order of the phase transitions in Figure A.2 is far from decreasing. Nonetheless, the
general patterns and trends in the theoretical result still hold (e.g. the “flat” part occurs at
a lower y-coordinate for lower s values.)

For the real-world datasets, the trends in Figure A.3, Figure A.4, and Figure A.5 look
quite similar to the figures in Chapter 3. One slight difference is that the failure probability
noticeably increases in Figure A.3 and Figure A.4 between s = 8 and s = 16. It turns out
that the failure probability actually increases to a local maximum somewhere in 12 ≤ s ≤ 16,
and then decreases when s ≥ 16, reaching lower than the value at s = 8 by the time s = 20.
There turns out to be a similar local maximum phenomenon when ε = 0.07 and m = 500,
though the local maximum occurs in 24 ≤ s ≤ 32 and thus is not as visible in the graph.

As a general comment on non-monotonicity as a function of s, we emphasize that our
asymptotic theoretical results characterize the macroscopic behavior of v(m, ε, δ, s), and do
not preclude the existence of constant factor fluctuations for small changes in parameters.
An interesting direction for future work would be to look further into this non-mononocity
and try to characterize when it arises.
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