
Understanding and Collapsing Symmetries in
Neural Network Parameter Spaces

Citation
Sorensen, Hikari. 2020. Understanding and Collapsing Symmetries in Neural Network
Parameter Spaces. Bachelor's thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364688

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364688
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Understanding%20and%20Collapsing%20Symmetries%20in%20Neural%20Network%20Parameter%20Spaces&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=f079d0cda73defb66c3296f737adab81&departmentComputer%20Science
https://dash.harvard.edu/pages/accessibility

Understanding and collapsing symmetries in neural network parameter spaces

With an application to weight averaging

Hikari Sorensen

A thesis submitted in partial fulfillment
of the requirements for the joint degree

of Bachelor of Arts in
Computer Science and Mathematics

Departments of Computer Science and Mathematics
Harvard College
Cambridge, MA
April 10, 2020

Abstract
It has been mentioned numerous times in the deep learning research field that neural network param-

eter spaces contain many redundancies. However, there seems to be little work that addresses specifically
whence redundancy arises, and those papers that do consider redundant parameterizations by and large
address the matter from a statistical perspective, in terms of the frequency at which local optima sampled
from the loss surface seem to have identical or near-identical loss values.

I here consider the redundancy in neural network parameter spaces from a combinatorial perspective
as a matter of symmetries between permutations of nodes in layers of neural networks. Moreover, I
present a way to identify networks that are symmetric in this way by establishing a notion of a “universal
basis” with respect to which networks can be uniquely expressed. This further becomes of great interest
when considering weight averaging.

Contents
1 Introduction 3

1.1 Definitions and notation . 3

2 Permutations and node symmetries 4

3 Collapsing symmetries 7
3.1 Sorted order as a canonical permutation . 8
3.2 An order on nodes and a sorting algorithm . 8

4 Experiments 9

5 An application to averaging 10

2

1 INTRODUCTION

1 Introduction
I will in this paper assume a standard feedforward neural network architecture, however the methods and
results I present can be generalized to networks of other forms, including convolutional neural networks
(CNNs).

1.1 Definitions and notation
Although the term “neural network” is commonly used to refer to both the class of functions specified by a
neural network architecture and any particular member of the class specified by a parameterization, in this
paper it is important that we distinguish these two notions.

Let us define a neural network architecture of depth d ∈ N, m ∈ N inputs and k ∈ N outputs to be a tuple

A = (n0, n1, ..., nd) ∈ Nd+1, N0 = m, Nd = k

where each Ni, i ∈ {0, ..., d} specifies the number of nodes in layer i. Let

Ad = {(n0, n1, ..., nd) ∈ Nd+1}

be the set of all neural network architectures of depth d. We can define the space of parameterizations, or
parameter space, of a neural network with architecture A as

ΘA =
d+1∏
`=1

(Rn`−1×n` ,Rn`) ∈ Θ =
⋃

A∈Ad

ΘA

where Θ is the collection of all such spaces corresponding to architectures in Ad. A neural network parame-
terization is then a sequence of pairs

θ = ((W1, b1,), ..., (Wd, bd)) ∈ ΘA.

Each θ then specifies a function

fθ : X → Y = Hd ◦ σd ◦Hd−1 ◦ ... ◦H1 ◦ σ1 ◦H0,

whereX = Rm and Y = Rk are the input and output spaces, respectively; each σi, i ∈ {1, ..., d} is a (generally,
non-linear) function applied elementwise; and we define the linear map

H` : Rn`−1 → Rn` , H`(x) = xW` + b` (1)

for each layer ` ∈ {0, ..., d} in terms of the weights W` and biases b` corresponding to layer ` specified by the
parameterization θ. The functions σi, known as activation functions, are widely treated as implicit structure
independent of the parameterization θ. Since θ then uniquely specifies the function fθ, there is a realization
map [Berner et al., 2019]

R : Θ→ C(Rm,Rk)
θ 7→ fθ.

Note that R is not injective. [Berner et al., 2019] present as a counterexample the parameterizations

θ1 = ((W1, b1), (W2, b2), ..., (0, 0)) and θ2 = ((V1, c1), (V2, c2), ..., (0, 0)),

for which R(θ1) = R(θ2) regardless of the values of W`, b`, V`, c`. Here, R(θ1) and R(θ2) are both equivalent
to the 0 map - whose equivalence class we can denote [0].

3

2 PERMUTATIONS AND NODE SYMMETRIES

2 Permutations and node symmetries
A more subtle form of equivalence class of neural network parameterizations, and that which will be the main
focus of this paper, comes as a consequence of the following essentially trivial fact about matrix multiplication
and permutation matrices:

Fact 2.0.1. Given matrices A,B such that the matrix product A ·B is well-defined, then we can write A ·B
as

A ·B = (Aπ−1) · (πB)

where π is a permutation matrix.

Now, as trivial as this fact is when stated mathematically, it is of non-trivial consequence when realized in the
context of neural network parameterizations. The important implication of Fact 2.0.1 is that, in particular, if
A is an m1×m2 matrix, and B an m2×m3 matrix, then there are m2! = |Sm2 | (where Sm2 is the symmetric
group on {1, ...,m2}) equivalent ways of writing the product A · B by permuting rows of A and columns of
B.

As somewhat of an aside, note that it is precisely because we distinguish between neural networks as, on
the one hand, objects with some parameterization, and on the other hand, functions that correspond to those
parameterized objects, that the triviality above becomes meaningful. That is, it is because we work with and
manipulate neural networks at the level of their representation1 rather than in terms of their realizations as
functions more generally that we can interpret the statement

A ·B = (Aπ−1) · (πB)

as an equivalence of representations rather than as a mathematical equality.
We can realize this equivalence in graphical form by considering the standard representation of a neural

network architecture as a directed acyclic graph (DAG) (see Figure 1).
In this representation, the node h`,j (the j-th node of layer `, ` ∈ {1, ..., d− 1}) represents the value

h`,j =
n`−1∑
α=1

h`−1,αW`α,j + b`j = H`(h`−1) (2)

where h`−1 = (h`−1,1, h`−1,2, ..., h`−1,n`−1) and H` is as in Equation 1. That is, a node h`,j in a hidden
layer is the linear combination (plus the constant “bias” term b`j) of the values of all the nodes h`−1,α for
α ∈ {1, ..., n`−1} in the previous layer, weighted by the edges from h`−1,α to h`,j for each α. Now, given
this “fully connected”2 structure, in which each hidden layer node has an incoming edge from each node in
the previous layer, and also an outgoing edge to each node in the next layer, we can imagine the following
graph isomorphism: in any fixed layer, permute the nodes within each layer, preserving all edges (that is,
edges move with their endpoints, rather than staying in a rigid layout with only nodes being shuffled). Since
shuffling the nodes only rearranges the terms in any linear combination of those nodes, permuting nodes
within a layer has no effect on the values of the nodes in any following layer.

Thus we can define the analogous map to R for graphs

RG : GΘ → C(Rm,Rk)
Gθ 7→ fθ

where GΘ is the set of all graphs corresponding to neural network parameterizations in Θ. Now if

Gθ(h1, h2, ..., hd−1)
1Here, “representation” is used in the common sense, rather than in the sense of representation theory - although the notion

underlying the technical term is not entirely dissimilar to that of the present usage.
2We can assume fully-connectedness fairly generally, since missing edges can simply be thought of as edges with weight 0.

4

2 PERMUTATIONS AND NODE SYMMETRIES

... ...

· · ·
...

...

x1

x2

xm

h1,1

h1,2

h1,3

h1,n1

hc,1

hc,2

hc,3

hc,nc

y1

yk

Input
layer

Hidden layers Output
layer

Figure 1: A fully-connected feedforward neural network with m inputs, k outputs, and c = d − 1
(notated this way to keep the node labels in the figure tidy) hidden layers, in which each layer
i ∈ {1, ..., d − 1} contains ni nodes. Layers 0 and d are known as the input and output layers,
respectively, while layers 1, ..., d− 1 are known as hidden layers.

is the graph corresponding to the neural network parameterization θ such that h1 = (h1,1, ..., h1,n1), ..., hd−1 =
(hd−1,1, ..., hd−1,nd−1) are the arrangements of hidden layer nodes, and

Gθ(π1(h1), π2(h2), ..., πd−1(hd−1))

is the same graph as Gθ(h1, h2, ..., hd−1), except with the nodes of hidden layer ` permuted according to the
permutation π` (on n` elements), then

RG(Gθ(h1, h2, ..., hd−1)) = RG(Gθ(π1(h1), π2(h2), ..., πd(hd−1))). (3)

Note that if nodes within layers of Gθ(h1, h2, ..., hd−1) are rearranged, then this corresponds to a rearrange-
ment of rows and columns of the matrices ((W1, b1,), ..., (Wd, bd)) that are specified by the parameterization
θ. This is then a different parameterization θ′ = ((W ′1, b′1,), ..., (W ′d, b′d)), such that W ′` , b′` for ` ∈ {1, ..., d}
are some permuted form of W`, b`. That is, for any θ ∈ Θ there exists some θ′ ∈ Θ such that

Gθ(π1(h1), π2(h2), ..., πd−1(hd−1)) = Gθ′(h1, h2, ..., hd−1),

which suggests the following definition: let π = (π1, ..., πd−1) ∈
∏d−1
`=1 Sn` and P be the map

P : Θ×
d−1∏
`=1

Sn` → Θ

θ, π 7→ θ′

that sends a neural network parameterization θ and a sequence specifying a permutation of nodes at each
hidden layer of the graph Gθ(h1, h2, ..., hd−1) to the parameterization θ′ whose matrices are permutations of

5

2 PERMUTATIONS AND NODE SYMMETRIES

those of θ in such a way that the graph Gθ′(h1, h2, ..., hd−1) realizes the permutations π on layers of Gθ. As a
slight abuse of notation, but one that makes for a cleaner and more intuitive symbolism, if π = (π1, ..., πd−1)
we can write

π(θ) = P (π, θ) = θ′, (4)

so that

Gπ(θ)(h1, h2, ..., hd−1) = Gθ(π1(h1), π2(h2), ..., πd−1(hd−1)).

These permutations on nodes can be realized in terms of θ as a sequence of matrices as follows: if we think
of each π`, ` ∈ {1, ..., d − 1} as a permutation matrix (so that left multiplication by π` permutes rows
accordingly), then using the notation of Equation 4, we have

π(θ) = π((W1, b1,), ..., (Wd, bd))
=
(
(W1π

−1
1 , b1π

−1
1), (π1W2π

−1
2 , π1b2π

−1
2), ..., (πd−1Wd, πd−1bd)

)
=

d∏
`=1

(π`−1W`π
−1
` , π`−1b`π

−1
`), (5)

where π0 = πd = 1 (the identity matrix).
We can now state the following

Lemma 2.0.2. Let A = (n0, n1, ..., nd) be a neural network architecture; and let θ be a parameterization
and [θ] its equivalence class of realizations. Then

|[θ]| ≥
d−1∏
`=1

n`! (6)

Proof. Each layer ` containing n` nodes has n`! distinct permutations, each of which corresponds to a distinct
parameterization. Thus the total number of distinct parameterizations achievable by permuting hidden
layer nodes is the product of n`! across all hidden layers ` ∈ {1, ..., d − 1}. By Equation 3, each of these
parameterizations map to the same realization R(θ) = fθ ∈ C(Rn0 ,Rnd), thus permutations of θ alone
account for

∏d−1
`=1 n`! equivalent parameterizations.

There may be many more equivalent parameterizations than permutations, however, since matrix products
can in general factor in numerous different ways, yielding different sequences of weights and biases across
layers that would map to the same realization.

This directly implies the following more general

Theorem 2.0.3. Let A = (n0, n1, ..., nd) be a neural network architecture. Then (a point in) its parameter
space has

∏d−1
`=1 n`! symmetries.

This also implies the following corollary, which is of more obvious relevance in deep learning.

Corollary 2.0.4. Let A = (n0, n1, ..., nd) be a neural network architecture. Then any optimum of a loss
function over the corresponding parameter space has

∏d−1
`=1 n`! redundancies - that is, distinct optima that

do not correspond to meaningfully distinct parameterizations - in the loss surface.

Proof. Because loss functions are defined over neural network predictions, they are functions of realizations,
rather than of parameterizations. Thus if θ∗ is a local optimum in the loss surface, any parameterization
π(θ∗) ∈ [θ∗] in its equivalence class is also a local optimum with identical loss value. Moreover, all such
equivalent local optima share identical local neighborhoods - that is, not only is the value of the loss the
same at every point in [θ∗], but also the entire loss surface near any point in [θ∗] is identical to that at any
other point in [θ∗].

These optima are “redundant” because they occur at distinct points in the parameter space, but do not
actually correspond to different parameterizations that are not simply permutations of one another.

6

3 COLLAPSING SYMMETRIES

The practical implication of Corollary 2.0.4 is that training multiple neural networks with different random
initializations may not result in finding truly different (that is, non-symmetric) optima, even if these optima
as points are far apart in the loss surface. The probability that a collection of randomly chosen local
optima are symmetries of one another is highly problem-specific, as it is dictated by the loss function over a
particular parameter space and corresponding to a particular dataset. However, the notion that the number
of symmetries in the loss surface increases quite dramatically with network size may shed some light on
why, in any given learning task, increasing the size of a network beyond some critical threshold does little
to improve predictive performance - if network size exceeds some “natural” point at which the capacity of
the network in some sense matches the complexity of the learning problem, then additional network layers
or nodes within layers may only increase the number of symmetries in parameter space and the loss surface
over it, without substantially increasing the number of truly different optimal parameterizations.

3 Collapsing symmetries
That symmetry exists among neural network parameterizations will come as no surprise to deep learning
researchers. Indeed, redundancy in network parameterization was addressed even at the outset of research
into loss surfaces in the seminal paper of [Choromanska et al., 2014] (although they addressed it from a
statistical perspective), which has since become an important foundation for the study of loss surfaces in
deep learning. However, although this redundancy has been acknowledged, little work has been done to
systematically identify symmetric parameterizations.

What we would like is to be able to say that two parameterizations θ and θ′ are equivalent if they differ
by permutation. But how are we to check this? We certainly cannot simply generate all permutations of θ
and check if θ′ is equal to one of them - this would be outrageously computationally inefficient, but also, even
if we were able to find permutations, because the weights are real-valued, it is overwhelmingly unlikely that
θ′ would be exactly equal any permutation of θ, even if they did in practice correspond to symmetric optima
in the loss surface. This is simply because if θ and θ′ are found independently in training two differently-
initialized networks, then even if they did indeed correspond to equivalent parameterizations, the training
methods themselves are unlikely to have sufficiently high precision find points that are exact permutations
of one another.

Now, this latter issue of precision can be reduced somewhat by relaxing the check that

θ′ = π(θ), for some permutation π

to
θ′ ≈ π(θ),

or equivalently,
|θ′ − π(θ)| < ε

for some permutation π and some ε > 0. This still, however, does not address the computational issue of
finding which permutation π might give π(θ) = θ′.

Part of the difficulty of making these identifications is that there is no a priori notion of a canonical
choice of representative for the equivalence class of parameterizations under permutation. That is, we would
like to be able to say that two parameterizations θ and θ′ are equivalent if they differ by permutation - but
clearly we can only determine this if we can write them in the same order of permutation. More generally,
the only way to compare any two parameterizations that may or may not be permutations of one another
is to have some fixed, “canonical” permutation according to which we write all parameterizations. Without
such a choice of “universal basis”, so to speak, we have no way to compare any two parameterizations.

7

3.1 Sorted order as a canonical permutation 3 COLLAPSING SYMMETRIES

3.1 Sorted order as a canonical permutation
Fortunately, there is indeed a natural choice of permutation over numbers, in terms of which we can compare
parameterizations: the ordered permutation. Recalling the graph representations

Gθ(h1, h2, ..., hd−1), Gπ(θ)(h1, h2, ..., hd−1) = Gθ(π1(h1), π2(h2), ..., πd−1(hd−1))

of parameterizations θ and π(θ), note that sorting the nodes of each layer in each graph results in two identical
graphs. That is, if τ1, ..., τd−1 are permutations on layers ` ∈ {1, ..., d− 1} such that τ`(h`) is an ordered
sequence of nodes in layer ` (for some notion of order on nodes), and σ1, ..., σd−1 are permutations on layers
` ∈ {1, ..., d− 1} such that σ`(π`(h`)) is an ordered sequence of nodes in layer `, then

Gθ(τ1(h1), τ2(h2), ..., τd−1(hd−1)) = Gθ(σ1(π1(h1)), σ2(π2(h2)), ..., σd−1(πd−1(hd−1))).

Thus if we could implement a map

NodeSort : Θ→ Θ (7)

that maps an input θ to some permutation of its values that corresponds to ordering the nodes in each layer,
then

NodeSort(θ) = NodeSort(π(θ))

for any permutation π(θ) of θ.

3.2 An order on nodes and a sorting algorithm
Of course, implementing an algorithm to sort nodes would be trivial to do if nodes corresponded to real
values. Unfortunately, not only are nodes in a neural network not real-valued, but in fact they do not have,
as such, values at all. As stated in Equation 2, the j-th node h`,j of layer ` represents a linear combination
of the outputs of the nodes in layer `− 1, with coefficients given by the j-th column of matrix W`. That is,
the node h`,j is a functional

h`,j : Rn`−1 → R

(x1, ..., xn`−1) 7→
n`−1∑
α=1

xαW`,(α,j) + b`,j .

In practice, “sorting nodes in layer `” corresponds to sorting rows in the matrix W` whose entries are
coefficients of functionals. We can define an order as follows: given an n×m matrixM and two rowsMi,Mj ,
let

Mi > Mj ⇐⇒ 〈Mi, P 〉 > 〈Mj , P 〉, where P = (p0, p1, ..., pm), p ∈ R, p > 1. (8)

For example, if Mi and Mj have digit entries in {0, 1, ..., 9}, and p = 10, then 〈Mi, P 〉 and 〈Mj , P 〉 write the
entries in Mi and Mj in reverse order, then interprets the resulting string as an integer. More generally, this
method is simply an efficient way to implement lexicographial ordering of vectors (that is, first sorting by
the first coordinate, then sorting by the second, etc.) that attaches a value to each node in a layer. Thus
this order does uniquely and correctly sort rows of a matrix.

Given θ = ((W1, b1,), ..., (Wd, bd)), we can implement the NodeSort map from Equation 7 as follows,
where we seek an output of the form as in Equation 5:

8

4 EXPERIMENTS

Algorithm 1: NodeSort
Input: θ = ((W1, b1,), ..., (Wd, bd))
// iterate backward through layers
for layer ` ∈ {d− 1, ..., 1} do

P = (p0, p1, ..., pn`); // for some p > 1
π` = argsort(P ·W`+1)−1;

end
return

(
(W1π

−1
1 , b1π

−1
1), (π1W2π

−1
2 , π1b2π

−1
2), ..., (πd−1Wd, πd−1bd)

)

An implementation in Python is as follows:

Listing 1: NodeSort
import numpy as np

def nodeSort(theta):

row_orders = [0]*len(theta) # initialize empty list of length the number of layers

ordered_theta = [0]*len(theta)

for i, layer in reversed(list(enumerate(theta))): # assume layer = [weights, bias]
weights, bias = layer
num_cols = weights.shape[1]
p = np.power([base] * num_cols, range(num_cols), dtype=’float128’)
row_order = np.argsort(weights @ p) # ’@’ denotes the matrix product
row_orders[i] = row_order

if i == len(theta)-1:
ordered_theta[i] = [weights[row_order[i]], bias]

elif i == 0:
ordered_theta[i] = [weights[:,row_order[i-1]], bias[row_order[i-1]]]

else:
ordered_theta[i] = [weights[row_order[i]:,row_order[i-1]], bias[row_order[i-1]]]

return(ordered_theta)

Note that in order to maintain the correct mapping of weights from layer to layer while we permute nodes,
the columns of W`−1 must be permuted in the same order as are the rows of W`. This corresponds to the
terms of the form π`−1W`π

−1
` of Equation 5.

Now, when W` is a matrix that is part of a neural network parameterization, its entries are (in general)
< 1 - thus we can use as a base for P any p > 1 and write rows of W` in “base p”. Practically speaking, it is
crucial that we can make p as close to 1 as possible, while still being greater than 1, since powers of p for p
even as large as 2 quickly exceed the number limits in computers. Still, for very large networks, it is possible
that a choice of p that is sufficiently large that it is compatible with the precision of the entries in W` and
such that an inner product 〈W`,i, P 〉 of a row of W` with the resulting P is free of roundoff errors due to
memory limits in computers, will inevitably cause overflow when taken to such high powers.

4 Experiments
Experiments were done using simple feedforward neural networks on MNIST data, in TensorFlow. The
network architecture used was of the form

A = (784, 512, 10)

9

5 AN APPLICATION TO AVERAGING

Distances between parameterizations
W1 W2

Unsorted Sorted Unsorted Sorted
Min 82.12292 81.64965 15.79031 14.64832
Max 83.69969 83.78498 16.77915 15.66162
Mean 82.89585 82.65826 16.28864 15.16187

Table 1: Distances between weight matrices W1,W2, of size 784 × 512 and 512 × 10, respectively, taken as
points in Rn, before and after sorting nodes.

with input size 784, output size 10, and a single hidden layer of 512 nodes, for a total of 407050 trainable
parameters of the form

((W1, b1), (W2, b2)), W1 ∈ R784×512, b1 ∈ R512,W2 ∈ R512×10, b2 ∈ R10.

Among 1000 trained networks, none were found to have distance 0 after sorting nodes. However, unsurpris-
ingly, distance between all networks in general decreased, as shown in Table 1. That the decrease in distance
was not particularly substantial, however, reflects both the sparsity of the space and the relative uniformity
in scale across the weights.

What the small experiment above shows is that even with a network as relatively small as that used on
MNIST, the parameter space grows in dimension so rapidly that even after training thousands of networks,
it is unlikely that any will be redundant parameterizations of one another. Indeed, this seems consistent with
a basic intuition that a selection of size on the order of 103 of random points in a space of dimension on
the order of 105, even when constraining the choice of values in each coordinate to [−1, 1] (which in practice
is generally the case), are still sufficiently distant that their images in the same symmetry region are not
substantially closer to one another than the original points are.

In practice, this may be an indication that, when working with sufficiently large networks, we needn’t
worry too much about redundancy when training many networks with different initializations.

5 An application to averaging
Even if not particularly useful in finding permutations among many different neural network parameteriza-
tions, the ability to sort nodes and write network parameterizations in a “universal basis” corresponding to a
chosen permutation can be useful in applications that require for well-definedness a choice of representative of
an equivalence class of parameterizations, and moreover that require that points all lie in the same symmetry
region.

It is a well-established fact that the performance of neural networks (and more generally essentially
any “supervised learning” model) improves when ensembled - that is, when multiple models are trained
independently, and then their predictions averaged to produce an “ensemble” result. Predictions of this
ensemble nature have long been known to be, in general, more robust to noise and better at generalization
than are predictions of any single model. More recently, as neural network optimization as finding certain
points in loss surfaces has become better understood, interest has piqued in the notion of producing averages
of optimal points in parameter space, rather than in prediction space (also known as model space), as is done in
ensembles. The resulting network, with weights given by the average of points in the parameter space, would
then be used to make a prediction. [Izmailov et al., 2018] introduced such a method of averaging weights,
which they called Stochastic Weight Averaging (SWA), and which they showed to improve the performance of
neural networks beyond those that could be trained using current standard SGD (stochastic gradient descent)
optimization methods. Since then, SWA has been implemented as a part of the machine learning framework
PyTorch.

SWA, however, does not provide a general notion of the average of two points in parameter space: it works
only locally, on points very close in parameter space. To average two points θ = ((W1, b1,), ..., (Wd, bd)) and

10

5 AN APPLICATION TO AVERAGING

θ′ = ((W ′1, b′1,), ..., (W ′d, b′d)), they simply take the elementwise mean

θ + θ′

2 =
d∏
`=1

(
1
2(W` +W ′`),

1
2(b` + b′`)

)

=
d∏
`=1

n`−1∑
i=1

n∑̀
j=1

W`,(i,j) +W ′`,(i,j)

2 ,

n∑̀
j=1

b`,(j) + b′`,(j)

2


where W`,(i,j) is the (i, j)-th matrix entry of W` and b`,(j) is the j-th vector element of b`. This is simply the
Euclidean vector mean if we treat θ and θ′ as “flattened” vectors (that is, as a concatenation of all arrays,
each collapsed into one dimension) in R

∑d

`=1
n`·n`+1 . For points close in parameter space, this ordinary mean

captures what we would like a notion of an average of neural networks parameterizations to capture: the
average of points in parameter space should parameterize a network whose behavior - i.e., as predictions on
test data - is something like the “average behavior” among the averaged networks’ behavior. This works for
points sufficiently close to each other because very locally, two points are almost certainly not permutations of
one another (since permutations require making some form of “reflection” in RN across the axes corresponding
to the permuted coordinates).

More generally, however, the Euclidean mean of two arbitrary parameterizations does not capture the
desired notion of average, because the equivalence of permutations result in parameterizations with identical
behavior (and thus whose “average” we would also like to have similar behavior) whose Euclidean elemen-
twise mean as points yields an entirely different network with in general entirely different behavior. This
problem can be resolved, however, by first writing all parameterizations in the “universal” or “standard basis”
corresponding to the sorted order permutation. This standardization of the representative permutation for
networks forces parameterizations as points in some real space to lie in the same symmetry region. As a
simple example of what this means, consider the following plots of the points

r = (1.4,−3.0, 5.6), g = (5.0, 1.2,−2.4), b = (−3.2, 0.9, 6.0).

Figure 2: Left: points according to original coordinates; right: points with coordinates sorted in increasing
order

On the left is plotted the original points, while on the right is plotted points

r′ = (−3.0, 1.4, 5.6), g′ = (−2.4, 1.2, 5.0), b = (−3.2, 0.9, 6.0),

11

5 AN APPLICATION TO AVERAGING

whose coordinates are the sorted-order permutations of r, g and b, respectively. While the original points lie
in distinct regions separated by the axes, the sorted-order points all lie in the same octant.

Similarly, parameterizations in their sorted-order permutations are forced to occupy the same symmetry
region in parameter space, and thus an average between them is more likely to be a meaningful one - in
particular, it eliminates the possibility that the average is the zero network, and reduces the probability that
many of the weights of the average are zero.

In this way, establishing a fixed permutation as a basis in which to write neural network parameterizations
establishes a more general notion of average for neural networks, not constrained to local points. Of course,
because the loss surface is highly non-convex even within the symmetry region in which sorted-order points
lie, this form of average does not fully capture the notion of average over network behavior. However, it may
be a step toward a better understanding of how to combine neural networks at the level of weights, which is
certainly a matter of great interest in current research.

12

REFERENCES REFERENCES

References
[Berner et al., 2019] Berner, J., Elbrächter, D., and Grohs, P. (2019). How degenerate is the parametrization

of neural networks with the relu activation function?

[Choromanska et al., 2014] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2014).
The loss surfaces of multilayer networks.

[Izmailov et al., 2018] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2018).
Averaging weights leads to wider optima and better generalization.

13

	Introduction
	Definitions and notation

	Permutations and node symmetries
	Collapsing symmetries
	Sorted order as a canonical permutation
	An order on nodes and a sorting algorithm

	Experiments
	An application to averaging

