
Coarse-to-Fine Circular Sequence Alignment

Citation
Rogge, Emma Kathryn Adelaide. 2020. Coarse-to-Fine Circular Sequence Alignment. Bachelor's
thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364711

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364711
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Coarse-to-Fine%20Circular%20Sequence%20Alignment&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=c441013daa15e4b6973e056f81798b7f&departmentComputer%20Science
https://dash.harvard.edu/pages/accessibility

Coarse-to-fine sequence alignment 1

Senior Thesis:

Coarse-to-fine Sequence Alignment Project

Emma K. A. Rogge

Harvard University School of Engineering & Applied Science

Department of Computer Science

Advisor: Dr. Stuart M. Shieber

Coarse-to-fine sequence alignment 2

Introduction 3

An Upper Bound for Pairwise Circular Sequence Alignment 4

Existing Algorithms for Pairwise Circular Sequence Alignment 4

Improving Upon Naive Circular Sequence Alignment 5

Circular Alignment via Rolling Hash 5

Experimental Results of Parameter Search 7

Circular Alignment via Locality-Sensitive Hashing 9

Complexity Analysis 9

Implementation of caLSH 10

Experimental Results 10

Choosing Sequences for Evaluating the caLSH Algorithm 10

Experimental Results of Coarse Step Only 12

Viroid Sequence Outcomes 15

Viroid Phylogenetic Distance Matrix 16

Questions for Future Research 18

Google CoLab Implementation of Algorithms Error! Bookmark not defined.

References 19

Coarse-to-fine sequence alignment 3

Introduction

 When I began working on my thesis in fall of 2019, I had no idea I’d be finishing this

project not in the Lowell House library or the hallway outside my advisor’s office in Maxwell

Dworkin but in the basement of my family home in Cincinnati, Ohio. All year, I have tried to

explain why my thesis topic, a novel algorithm for the faster approximate alignment of small,

circular sequences, is interesting to friends, family and each person whose invitation to do

something fun I’ve declined in favor of working on this project. Suddenly, people all over the

world are talking about viruses, the very organisms whose genomes have occupied my attention

since September. Specifically, this project aims to speed up the process of pairwise sequence

alignment for small (20,000 base pairs), circular genomes.

Pairwise sequence alignment, a central process in the field of bioinformatics, is the

comparison of two biological sequences to identify regions of similarity that may indicate

functional, structural, or evolutionary relationships between them (Fernandes et al., 2009). While

effective algorithms exist for the pairwise alignment of linear biological sequences, an additional

challenge is posed by the alignment of circular biological sequences, though such sequences

occur frequently in nature. Prokaryotes’ primary genomic information is circular in structure;

human mitochondria and plant chloroplasts possess circular genomes that enable metabolism and

thus survival. Yet despite the importance and prevalence of cyclic sequences throughout nature,

most algorithms for pairwise alignment require the manual rotation of the circular information to

the ‘correct’ start index based on known genomic features before any alignment can occur, an

additional step which requires preexisting knowledge about the genomes to be aligned, the most

accurate of which has a time-complexity for two sequences a and b with lengths m and n of

O(mn) (Grossi et al., 2016). While some algorithms reliant upon heuristics exist for aligning

Coarse-to-fine sequence alignment 4

cyclic sequences specifically, the search for a sub- time-complexity solution to the

problem of approximate circular sequence alignment has not been exhausted, particularly for

approximate alignment (Panagiotis, Charalampopoulos et al., 2019). The following report will

detail existing algorithms for optimal and approximate circular sequence alignment and propose

two new algorithms for this problem. I will discuss the proposed algorithms’ theoretical time-

complexity, implementations of the algorithms in Python and experimental results thus far.

 An Upper Bound for Pairwise Circular Sequence Alignment

 To establish an upper bound on the time-complexity of an algorithm for the approximate

pairwise alignment of circular biological sequences, let us discuss the naive solution. The

pseudocode for the naive algorithm is listed below.

1. For a sequence of length , there exist possible linearizations of the original sequence.

This step has a time-complexity of .

2. Compute, for each linearization, a global alignment. This step has a time-complexity of n

times the complexity of the alignment. We will use the Needleman-Wunsch algorithm to

find the optimal, global alignment, which for two sequences of length and ,

respectively, has complexity . Thus this step has time-complexity of .

Therefore, the total complexity of the naive solution to the problem of pairwise circular sequence

alignment is .

Existing Algorithms for Pairwise Circular Sequence Alignment

 For many years, the Maes algorithm reigned as the best known optimal circular sequence

alignment algorithm, with time-complexity O(nm log n) and O(nm) space required [Maes 1990].

However, it produces an optimal rather than approximate alignment.

Coarse-to-fine sequence alignment 5

Improving Upon Naive Circular Sequence Alignment

 To improve on the step requiring linearizations of a circular sequence, let us consider

whether an optimal global alignment is most appropriate in the specific case of circular

sequences. While the Needleman-Wunsch algorithm guarantees the optimal global alignment for

a given scoring system, it also assumes that the optimal alignment is a global one versus a local

one. Could a reasonable yet quick global alignment be achieved by first identifying the areas of

greatest local similarity, then refining this coarse alignment using any number of the myriad edit

distance techniques available? The two algorithms proposed in this project take advantage of

segmentation and hashing, techniques of great utility in natural language processing applications,

to produce an approximate global alignment which can then be refined via a traditional edit

distance mechanism, such as Levenshtein edit distance, the Needleman-Wunsch algorithm, et

cetera (Needleman and Wunsch, “A General Method Applicable to the Search for Similarities in

the Amino Acid Sequence of Two Proteins.”). Pseudocode for the two proposed algorithms

follows.

Circular Alignment via Rolling Hash

 This approach utilizes the Rabin-Karp rolling hash algorithm, which reduces the

complexity of hashing individual snippets of text by taking advantage of the fact that they

overlap in the context of sequence alignment (Rec06.pdf, n.d.). Specifically, we utilize the rolling

hash algorithm to discover common substrings of length between our sequences and ,

which we assume here have length . The algorithm proceeds as described below.

1. Hash the first length substring of . The complexity of this step is .

Coarse-to-fine sequence alignment 6

2. Using the rolling hash technique, compute the hashes of each subsequent substring in ,

of which there are . Add each substring and its hash into a hashtable. This step has the

time-complexity due to the frugality of the rolling hash technique.

3. Hash the first length substring of . This step has time-complexity O(k).

4. As in Step (2), compute the hashes of each subsequent length- substring in , of which

there are , adding each substring and hash to the hashtable as before. The time-

complexity of this step is O(k).

5. Perform for each of and : In a sliding window of size , selecting the minimum hash

value. As these have already been computed, this step is O(1).

a. If the minimum of the current window is the same as that of the previous window,

continue.

b. Else a new minimum has been found; record the index and value of that minimum

to a table.

At the completion of this step, we have a pair of hash tables HT and HS .

of the form {minimum hash value: (start_index, stop_index)} that record the intervals for

which the minimum hash value is a particular number for each sequence.

6. Sort the contents of with respect to the indices. This has a worst-case complexity of

.

7. Using the lookup time of our hash table , align all chunks with matching local

widow minima from to the corresponding intervals in sorted . This concludes the

coarse step of the alignment. In the worst-case scenario, in which the minimum changes

in every window, this step has time-complexity of . Experimentally,

I have found that this is much larger than the usual value for 4-base-pair DNA sequences.

Coarse-to-fine sequence alignment 7

One challenge of this stage of algorithm development is that the nature of the biological

sequences being aligned will most likely require differently tuned parameters for different kinds

of sequences. For instance, mitochondrial DNA is highly conserved such that even a single

deletion may be of great significance, whereas bacteria and viruses evolve extremely rapidly,

suggesting that insertions and deletions are likely more common and should be less costly in that

context. Additionally, the algorithm will need to handle situations where no match is found for a

given segment. One way of handling this would be to introduce a gap of equal length to the

unmatched segment at a location adjacent to another segment whose indices neighbor those of

the unmatched segment; another way would be to divide such unmatched segments from both

sequences into smaller pieces and attempt an alignment of those pieces. The latter idea would be

feasible if it could be guaranteed that only a small fraction of the segments were unmatched;

otherwise, it could result in huge time-complexity. For the purposes of this research project,

therefore, I will leave the biology to the biologists by utilizing the widely-accepted EMBOSS

Needle pairwise alignment algorithm, with its defined default parameters, as the gold truth of the

success of an alignment (F et al., 2019).

Experimental Results of Parameter Search

 I performed a parameter search for the appropriate roll and window sizes for the coarse

step of the algorithm, utilizing samples of human and chimpanzee mitochondrial DNA (hence

‘MtDNA’). The MtDNA sequences are between 16,000-17,000 base pairs in length and

represent the entire mitochondrial genome. For ground truth, I performed a sequence alignment

using the ‘Pairwise Align DNA’ tool on the website Sequence Manipulation, which utilizes the

naive rotation-based algorithm that derives from the Needleman-Wunsch algorithm (Needleman

& Wunsch, 1970). This achieved a result of 94% similarity between the genomes and served as

Coarse-to-fine sequence alignment 8

the maximum possible similiarity, for an operation with overall complexity of O(mn) where m, n

are the lengths of sequence a and b.

The parameter search reflected the expected outcome that if we take each base pair and

match it with another, we should approach 100% segment alignment, but as we increase roll and

window size, we reduce the granularity of information available for mapping as a tradeoff for the

increased efficiency of reduced numbers of comparison. The parameter search found that setting

w between 50 and 250 is optimal for sequences longer than approximately one thousand base

pairs, especially as mitochondrial DNA is slower-changing and exhibits less frequent mutation

than viral genomes (A. Mosig, IL Hofacker, PF Stadler, 2006). The figure below shows the

results of one parameter search performed for shorter viroid sequence alignment.

The performance most reflective of the baseline standard for shorter sequences occurred

when both the roll and window size were 5 base pairs wide.

Coarse-to-fine sequence alignment 9

Circular Alignment via Locality-Sensitive Hashing

This approach first hashes the two sequences S and T using a Rabin-Karp rolling hash on

overlapping shingles of size k. Next, the hash sequences that result are reduced to a ‘fingerprint’

for each sequence by selecting the minimum hash value in a given window of size w. This

produces fingerprints FS and FT. We then compute the Levenshtein edit distance for each rotation

of FT with FS and select the rotation for which the Levenshtein edit distance from FT is

minimum. This concludes the coarse step.

 For the refining step, we linearize sequence T at the index for which the fingerprints’

Levenshtein distance is minimum and search within a window of size 2w for the best alignment

of the original sequences.

Complexity Analysis

1. Computing a rolling hash over each subsequence of size k for two sequences of lengths

m and n occurs in roughly linear time, 𝑂(𝑚 + 𝑛).

2. The upper bound of the length of the fingerprints 𝐹𝑆and 𝐹𝑇is produced when the

minimum hash in each window changes for every single window of size q, producing

fingerprints of length n/q and m/q. We select q such that 𝑚, 𝑛 >> 𝑞 e.g. √𝑚, √𝑛 >

𝑞 > 3.Therefore, the worst-case complexity for calculating the Levenshtein edit distance

of each rotation 𝐹𝑇𝑅, which has length at most
𝑚

√𝑚
, with 𝐹𝑆, which has length at most

𝑛

√𝑛
,

is therefore𝑂(√𝑚𝑛). There are at most
𝑚

 √𝑚
 such rotations possible, so the overall

complexity of this step is 𝑂(𝑚√𝑛).

3. Once the best rotation is found, refining the alignment of the original sequence T split at

the point identified in step (2) within a window of 2𝑤to the original sequence S using

Levenshtein distance takes 𝑂(4𝑤2). Since 𝑚, 𝑛 >> 𝑤, this term is negligible.

Coarse-to-fine sequence alignment 10

 Therefore, we have achieved an approximately best alignment of two sequences using

locality-sensitive hashing with overall complexity of 𝑂(𝑚√𝑛).

Implementation of caLSH

 I implemented the locality-sensitive hashing algorithm described previously in Python,

leveraging existing Python libraries for the reading and writing of biological sequences to

commonly used formats, such as FASTA. I implemented the Rabin-Karp rolling hash algorithm

in addition to helper methods to make experimental application of the alignment algorithm,

henceforth referred to as caLSH (circular alignment via Locality Sensitive Hashing).

Experimental Results

Choosing Sequences for Evaluating the caLSH Algorithm

For comparison, I looked to the literature to find the genomes used to test recently

published algorithms for the alignment of circular biological sequences. Since the Grossi lab

published both simulated and real DNA and RNA sequences used in their 2017 paper on GitHub,

I chose to utilize those in order to achieve data that could be directly compared to their results

(Grossi et al., 2016). Specifically, I used the human, chimpanzee and gorilla mitochondrial DNA

sequences (henceforth referenced as, respectively, NC_001807, NC_001643 and NC_011120)

and eighteen related viroid RNA sequences curated in the RefSeq database, henceforth

referenced by their RefSeq identifier (Pruitt et al., 2007).

Coarse-to-fine sequence alignment 11

 The graph below shows the result of sanity-checking the algorithm on viroid sequence

NC_001464, with default linearization from the BLAST database, against a rotation at that same

sequence with split point at the 154th nucleotide. This sequence is 371 base pairs long; with

parameters k = 5 and q = 5, caLSH produces a fingerprint of length 123. Intuitively, the

algorithm should identify the local minimum at which the original sequence’s fingerprint and its

rotation’s fingerprint are perfectly aligned; and indeed, this is shown in the graph of the results,

below.

 In order to have a meaningful comparison of the efficacy of this new method of

identifying the optimal split point for linearizing the sequence to the methods used by Grossi, I

ran the algorithm on the same mammalian mitochondrial DNA sequences used by that group,

namely, human, chimpanzee and gorilla mitochondrial genomes approximately 16,000-17,000

base pairs in length.

Coarse-to-fine sequence alignment 12

Experimental Results of Coarse Step Only

The following figures display the results of the coarse step of the algorithm for finding

the approximately best split point for alignment of a sequence given another sequence. I used the

human, chimpanzee and gorilla MtDNA sequences from GenBank, also utilized by Grossi et al.,

in order to facilitate the most direct comparison possible between the algorithm described in their

article, caCSC, and the novel algorithm described in this document, caLSH (Benson et al., 2000;

Grossi et al., 2016).

 For the coarse step of the human-chimpanzee sequence alignment, the results for

different window sizes w are shown below.

Coarse-to-fine sequence alignment 13

The split points for human-chimpanzee and human-gorilla alignments identified by the

coarse step of the novel algorithm are detailed in Table 1. I computed the Levenshtein minimum

edit distance between the first sequence and the rotated second sequence for each method and

parameter value listed, and utilized the EMBOSS Needle API to compute the biologically-

relevant EMBOSS Needle similarity of the sequences, which is widely used for pairwise

sequence alignment in the biological science (Madeira et al., 2019).

Table 1: Experimental alignment of primate mitochondrial DNA sequences

Sequences

Aligned

Algorithm for

Determining Split Point

Index of

Split

Point

Sequence

Similarity

(EMBOSS Needle)

Levenshtein

Edit

Distance

NC_001807

(human),

NC_001643

(chimpanzee)

None None 85.1%

2509

caCSC (Grossi et al.) 578 91% 3591

caLSH (coarse step only,

w = 50)

15995 89.6% 1495

caLSH (coarse step only,

w = 125)

15855 89.7% 1717

caLSH (coarse step only,

w = 250)

15805 89.1% 1719

caLSH (w = 50) 16513 90.7% 1529

caLSH (w = 125) 15855 89.7% 1719

caLSH (w = 250) 15805 89.1% 1719

NC_001807

(human),

NC_011120

(gorilla)

None None 83.5 % 2692

caCSC (Grossi et al.) 578 88.4%

caLSH (coarse step only,

w = 50)

15832 90.9% 2055

caLSH (coarse step only,

w = 125)

15832 87.5% 2055

caLSH (coarse step only,

w = 250)

192 89.1% 3031

caLSH (w = 50) 16401 87.3% 2041

caLSH (w = 125) 15839 87.5% 2041

caLSH (w = 250) 16407 81.5% 3022

 In the human-chimpanzee MtDNA alignment, the Grossi algorithm found a rotation for

alignment resulting in 91% similarity, just a hair better than that found by the than the caLSH

Coarse-to-fine sequence alignment 14

algorithm, which found, given a window size of 50, a rotation with 90.7% similarity. Using the

coarse step of the caLSH algorithm alone, a respectable rotation resulting in 89.6% similarity

was identified, improving upon the default alignment of the original sequences, which had

similarity 85.1%. For all parameter values, the caLSH algorithm produced a rotation that resulted

in greater similarity after pairwise sequence alignment using EMBOSS Needle than did the

original GenBank linearizations, although caLSH did not perform as well as the caCSC

algorithm on this alignment.

 In the human-gorilla MtDNA alignment, the coarse step alone of the caLSH algorithm

outperformed the caCSC algorithm for all values of w. Interestingly, for this pair of sequences,

application of only the coarse step of caLSH to find the rotation point resulted in a better

EMBOSS Needle alignment for all parameters than did application of the full caLSH algorithm

in terms of producing rotations with greatest similarity. Upon inspection of the human-gorilla

alignment FASTA files, I suspect this is because there is no true alignment at the beginning of

this pairing in their original form, so any shifting of the overall alignment to reflect a common

subsequence within the first window is not effective. Thus, a future investigation into how better

to refine the coarse algorithm while keeping the overall complexity of that step low could further

improve the performance of caLSH.

Coarse-to-fine sequence alignment 15

Viroid Sequence Outcomes

In order to evaluate the efficacy of my algorithm for identifying the approximately best

rotation of a sequence for pairwise alignment with another sequence, I chose to utilize the

workflow presented in Grossi et al.’s review in order to compare this technique with existing

ones, both optimal and approxmiated. This entailed the following steps.

1. For each pair (a, b) of the N sequences, use the algorithm previously described to

compute the approximately best rotation of sequence b.

2. Using EMBOSS Needle for pairwise sequence alignment with default

parameters, compute a similarity score for (ai, b), placing the result in cell [a, b] of

an N x N similarity score matrix ((F et al., 2019).

3. Scale the similarity score matrix by converting the similarity score measures to a

distance relative to the maximum similarity score in the matrix.

4. Utilize neighbor-joining clustering on the scaled similarity scores matrix to create

a phylogenetic tree.

5. Compare the tree to the known, actual phylogenetic tree.

The matrix that follows contains the results of performing caLSH with each sequence as

the alignment. I utilized neighbor-joining to cluster the lineages via the Phylip package

(Dereeper et al., 2008)

Coarse-to-fine sequence alignment 16

Viroid Phylogenetic Distance Matrix

N
C

_0
00

88
5.

1

N
C

_0
03

68
3.

1

N
C

_0
11

59
0.

1

N
C

_0
01

46
4.

1

N
C

_0
03

61
2.

1

N
C

_0
21

72
0.

1

N
C

_0
01

55
8.

1

N
C

_0
02

01
5.

1

N
C

_0
03

55
3.

1

N
C

_0
03

53
8.

1

N
C

_0
04

35
9.

1

N
C

_0
03

61
3.

1

N
C

_0
03

63
7.

1

N
C

_0
02

03
0.

1

N
C

_0
27

43
2.

1

N
C

_0
14

12
9.

1

N
C

_0
01

55
3.

1

NC_000885.1 0.00 0.41 0.41 0.41 0.41 0.41 0.43 0.44 0.41 0.44 0.41 0.39 0.41 0.45 0.40 0.36 0.42

NC_003683.1 0.41 0.00 0.42 0.41 0.44 0.40 0.43 0.41 0.41 0.41 0.43 0.40 0.44 0.41 0.39 0.37 0.42

NC_011590.1 0.41 0.42 0.00 0.42 0.41 0.41 0.42 0.43 0.41 0.41 0.42 0.39 0.41 0.41 0.39 0.40 0.43

NC_001464.1 0.41 0.41 0.42 0.00 0.42 0.40 0.43 0.43 0.39 0.40 0.41 0.39 0.43 0.42 0.40 0.38 0.44

NC_003612.1 0.41 0.44 0.41 0.42 0.00 0.40 0.43 0.42 0.40 0.40 0.44 0.40 0.44 0.42 0.40 0.38 0.42

NC_021720.1 0.41 0.40 0.41 0.40 0.40 0.00 0.40 0.42 0.40 0.41 0.40 0.38 0.40 0.41 0.41 0.37 0.41

NC_001558.1 0.43 0.44 0.42 0.43 0.43 0.40 0.00 0.44 0.42 0.44 0.42 0.39 0.43 0.42 0.39 0.36 0.44

NC_002015.1 0.44 0.00 0.43 0.43 0.41 0.42 0.44 0.00 0.41 0.44 0.41 0.41 0.42 0.44 0.41 0.37 0.44

NC_003553.1 0.41 0.41 0.39 0.39 0.40 0.40 0.42 0.41 0.00 0.41 0.41 0.38 0.41 0.41 0.39 0.37 0.43

NC_003538.1 0.44 0.43 0.41 0.40 0.40 0.41 0.44 0.44 0.41 0.00 0.41 0.39 0.43 0.44 0.40 0.36 0.44

NC_004359.1 0.41 0.43 0.42 0.41 0.44 0.40 0.42 0.41 0.41 0.41 0.00 0.38 0.43 0.42 0.40 0.38 0.42

NC_003613.1 0.39 0.40 0.39 0.39 0.40 0.38 0.39 0.41 0.38 0.39 0.38 0.00 0.41 0.40 0.44 0.37 0.41

NC_003637.1 0.41 0.44 0.41 0.43 0.44 0.40 0.43 0.42 0.41 0.43 0.43 0.41 0.00 0.43 0.40 0.36 0.43

NC_002030.1 0.45 0.41 0.41 0.42 0.42 0.41 0.42 0.44 0.41 0.44 0.42 0.40 0.43 0.00 0.42 0.37 0.42

NC_027432.1 0.40 0.39 0.39 0.40 0.40 0.41 0.39 0.41 0.39 0.40 0.40 0.44 0.40 0.42 0.00 0.39 0.40

NC_014129.1 0.36 0.37 0.40 0.38 0.38 0.37 0.36 0.37 0.37 0.36 0.38 0.37 0.36 0.37 0.39 0.00 0.37

NC_001553.1 0.42 0.42 0.43 0.44 0.42 0.41 0.44 0.44 0.43 0.44 0.42 0.41 0.43 0.42 0.40 0.37 0.00

Leveraging the distance matrix above, I utilized the Phylip software package to construct

a tree based on nearest-neighbor clustering (Dereeper et al., 2008). This tree can be viewed in

Figure 4. This tree is in agreement with the tree produced by Grossi et al.’s caCSC algorithm in

that paper, indicating that caLSH is a valid method for producing alignments that can be used in

phylogenetic tree construciton.

Coarse-to-fine sequence alignment 17

Figure 2: Phylogenetic tree constructed from caLSH distance matrix

Coarse-to-fine sequence alignment 18

Conclusion

 In conclusion, the utilization of locality-sensitive hashing for the compression of

biological sequences in order to find the best possible sequence linearization for pairwise

alignment is promising. On samples of both longer, mitochondrial sequences and shorter, viroid

sequences, the caLSH algorithm performed faster and with quite reasonable accuracy, improving

upon the baseline alignment of database linearizations of genomes to a significant degree. Much

further work exists in the exploring whether the algorithm can be used generally for sequence

alignment improvement, including examination of the refining step, which produced good results

for some sequences and actually reduced similarity between the sequences for some pairings.

Additionally, I leveraged existing Python libraries to handle the parsing of FASTA-formatted

files, one of many formats used for biological sequences. These may have reduced the overall

efficiency of my program, which could ideally take advantage of dynamic programming to

increase speed if rewritten with that goal in mind. Implementation in a language such as OCaml

was a stretch goal discussed that I believe would render the algorithm even more efficient.

Coarse-to-fine sequence alignment 19

References

A. Mosig, IL Hofacker, PF Stadler. (2006). Comparative Aligment of Cyclic Sequences: Viroids

and other Small Circular RNAs. German Conference on Bioinformatics, 83, 93–102.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., & Wheeler, D. L.

(2000). GenBank. Nucleic Acids Research, 28(1), 15–18.

https://doi.org/10.1093/nar/28.1.15

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F.,

Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M., & Gascuel, O. (2008). Phylogeny.fr:

Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web

Server issue), W465-469. https://doi.org/10.1093/nar/gkn180

F, M., Ym, P., J, L., N, B., T, G., N, M., P, B., Arn, T., Sc, P., Rd, F., & R, L. (2019). The

EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research,

47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268

Fernandes, F., Pereira, L., & Freitas, A. T. (2009). CSA: An efficient algorithm to improve

circular DNA multiple alignment. BMC Bioinformatics, 10, 230.

https://doi.org/10.1186/1471-2105-10-230

Grossi, R., Iliopoulos, C. S., Mercas, R., Pisanti, N., Pissis, S. P., Retha, A., & Vayani, F. (2016).

Circular sequence comparison: Algorithms and applications. Algorithms for Molecular

Biology : AMB, 11. https://doi.org/10.1186/s13015-016-0076-6

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,

48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4

Coarse-to-fine sequence alignment 20

Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2007). NCBI reference sequences (RefSeq): A

curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic

Acids Research, 35(Database issue), D61-65. https://doi.org/10.1093/nar/gkl842

Rec06.pdf. (n.d.). Retrieved April 3, 2020, from

http://courses.csail.mit.edu/6.006/spring11/rec/rec06.pdf

	Introduction
	An Upper Bound for Pairwise Circular Sequence Alignment
	Existing Algorithms for Pairwise Circular Sequence Alignment
	Improving Upon Naive Circular Sequence Alignment
	Circular Alignment via Rolling Hash
	Experimental Results of Parameter Search

	Circular Alignment via Locality-Sensitive Hashing
	Complexity Analysis
	Implementation of caLSH

	Experimental Results
	Choosing Sequences for Evaluating the caLSH Algorithm
	Experimental Results of Coarse Step Only
	Table 1: Experimental alignment of primate mitochondrial DNA sequences

	Viroid Sequence Outcomes
	Viroid Phylogenetic Distance Matrix
	Figure 2: Phylogenetic tree constructed from caLSH distance matrix

	Conclusion
	References

