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Abstract

Deep learning literature has witnessed an abundance of proposals for novel models of uncer-
tainty in recent years. However, there has been comparatively little emphasis on the need for
separate estimates for aleatoric and epistemic uncertainty, which are uniquely different types
of uncertainties that arise from different sources and, as such, have different implications for
real-life decision-making, especially in safety-critical contexts such as medical diagnosis.

In this thesis, we contribute to the literature a systematic and comparative evaluation
of different metrics for quantifying aleatoric and epistemic uncertainty. In particular, we
consider estimates for uncertainty that arise from traditional measures of variability in cat-
egorical distributions, decompositions of total uncertainty that are based upon classical sta-
tistical principles, and out-of-distribution detection metrics. We pair evaluation of all of
these metrics with a variety of different models and inference methods that are rooted in
both traditional and Bayesian deep learning.

We extend two separate decompositions of aleatoric and epistemic uncertainty to deep
ensembles and statistical measures of variability in novel ways, and we evaluate both ap-
proaches as providing accurate estimates. Finally, we evaluate Monte Carlo dropout as an
inference method applied to both homoscedastic and heteroscedastic regression models, and
we find that it does not produce accurate aleatoric and epistemic uncertainty estimates as
is suggested in the literature.
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Chapter One

Introduction

At its core, machine learning is a process of inductive learning that seeks to generalize beyond
data. Per this process, models are constructed based upon observed data and attempt
to make predictions that accurately reflect the true mechanisms underlying the domain
from which data is sampled or, in statistical terms, the underlying data-generating process.
However, because the true data-generating processes are not known with certainty in the
domains where machine learning methods are applied—in real-life applications, at the least—
specific models cannot be proven correct. By extension, these models must be inherently
uncertain, and so must their predictions.

While there have been great advances in the accuracy of machine learning models in re-
cent years, less emphasis has been placed historically on accurately representing uncertainty
within such models. In particular, one subset of methods that have achieved renown for their
accuracy as universal approximators (Cybenko, 1989) is the broad category of deep learn-
ing models, in which collections of connected computational units known as artificial neural
networks learn to perform tasks through an iterative updating process of the parameters
of these units. Literature on deep learning often reports models achieving high predictive
accuracy across many domains. At the same time, however, there have been fewer strides
towards quantifying and understanding predictive uncertainties—which may be rooted in
model assumptions or noisy (or, at times, nonexistent) data—accompanied with the indi-
vidual predictions of such models. Given that deep learning is beginning to be deployed in
safety-critical applications—disease diagnosis, autonomous driving to name a few—there is
a clear need for predictive uncertainty estimates that are at once accurate and informative.

Probabilistic modeling is the conventional way to represent uncertainty, but traditional
deep learning models do not adopt this approach. Rather, traditional deep learning models
are trained to minimize some type of loss on training data, which does not necessarily
have probabilistic interpretations. These models do not inherently take uncertainty into
account; instead, model training yields point estimates of parameters and outputs, ignoring
the uncertainty over different model possibilities. Consequently, such models tend to provide
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overconfident predictions, particularly in regions where data is scarce or unavailable.
In light of this, an alternative to traditional deep learning that is rooted in probabilis-

tic modelling—a family of methods known as Bayesian deep learning (BDL)—has gained
popularity in recent years. In contrast to traditional deep learning, BDL methods use prob-
ability distributions to model the weights of a neural network. This equips such models to
represent uncertainty by providing probabilistic estimates for both model parameters and
target variable predictions. Moreover, BDL approaches have become increasingly accessi-
ble as advances in Monte Carlo sampling and variational inference (VI), which are required
practically to explore their intricate posterior distributions, have improved their viability for
application to real-life tasks.

However, insofar as Bayesian approaches offer a way to represent uncertainty probabilis-
tically, one question to which even BDL has not offered a clear solution is the decomposition
and quantification of two inherently different types of uncertainty, referred to as aleatoric
and epistemic uncertainty. Aleatoric uncertainty, often referenced as statistical uncertainty,
refers to an inherent notion of randomness or variability in an experiment or process that
will always exist. On the other hand, epistemic uncertainty, also referenced as systemic
uncertainty, is uncertainty that exists due to a lack of knowledge and, by implication, that
can be eliminated with additional knowledge or information (Hüllermeier and Waegeman,
2019). From a functional viewpoint, we think about these two uncertainties as referring to
the irreducible and reducible components, respectively, of total uncertainty.

An illustrative example that demonstrates both types of uncertainty is the roll of a
biased die, a situation in which some numbers are more likely to be rolled than others but
wherein the die roller—or decision maker—is unaware of the exact bias of the die. In this
scenario, there is an element of uncertainty that exists due to the decision maker’s lack of
knowledge about the exact bias of the die. This component of uncertainty, the epistemic,
can be reduced if the decision maker obtains additional information about the die’s bias
through the collection of additional data; knowing that it is loaded to favor a particular
side, for instance, reduces the decision maker’s uncertainty about outcomes in the long term.
By comparison, there is an element of stochastic uncertainty in the roll of the die that will
always exist irrespective of the decision maker’s epistemic state. Even if the decision maker
were perfectly informed about the exact bias of the die, there is inherent randomness in what
the next roll will yield; this is the irreducible, or aleatoric, component of uncertainty.

While these two uncertainties are typically not distinguished in deep learning, we argue in
the following sections of the introduction that there are clear and important stakes for doing
so. We first provide philosophical background and context for how aleatoric and epistemic
uncertainty are defined across literature in §1.1. Then, having established these definitions,
we argue for the importance of distinguishing these two uncertainties in real-life decision-
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making contexts in §1.2. With these stakes in mind in §1.3, we outline how aleatoric and
epistemic uncertainty are quantified in deep learning, noting that many of the approaches
cannot be applied in a model-agnostic, adaptable way. Finally, in §1.4, we will describe how
this thesis will seek to fill gaps in the existing machine learning literature and will outline
the structure of the thesis.

In short, this thesis sets out to evaluate and compare flexible and model-agnostic metrics
for representing and quantifying aleatoric and epistemic uncertainty. These metrics are
drawn from several domains and applied to multiple synthetic and real downstream tasks.

1.1 Defining aleatoric and epistemic uncertainty

Literature concerning aleatoric and epistemic uncertainty outside of the realm of machine
learning stems from numerous fields, including statistics, philosophy, engineering, and struc-
tural safety. Although works across disciplines define aleatoric and epistemic uncertainty
with slight differences, the underlying common ground is that epistemic uncertainty is at-
tributed to the state of knowledge of the agent and can (and perhaps should) be reduced,
whereas aleatoric uncertainty cannot be reduced and therefore should be managed in some
way.

While many frameworks have been proposed for categorizing uncertainty in literature,
there are two particularly instructive concepts that contextualize the difficulties of using
classical statistical methods—and probabilistic tools more broadly—to represent epistemic
and aleatoric uncertainty. The first pertains to the distinction between the class-based and
continuous nature of aleatoric uncertainty and the case-based and binary nature of epistemic
uncertainty (this also highlights the divergence between frequentist and Bayesian perspec-
tives). The second pertains to the notion of uncertainties as being rooted internally or exter-
nally and to the ways in which decision makers typically handle them, and as such implies
that there are disadvantages to using probability theory to model uncertainty altogether.

1.1.1 Case-based versus class-based uncertainty

C. R. Fox and Ülkümen (2011), in reviewing judgment and decision making literature to
identify the characteristics of epistemic and aleatoric uncertainty, describes epistemic un-
certainty as case-based and aleatoric uncertainty as class-based, a difference that is closely
intertwined with the philosophical split between the frequentist and Bayesian schools of
thought in statistics.

Per C. R. Fox and Ülkümen (2011), epistemic uncertainty corresponds to the evaluation
of single events in terms of binary truth value. One’s state of epistemic certainty regarding
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whether an event is true or false is attributed to insufficient knowledge; uncertainty can be
reduced if the individual searches for further information, patterns, or causality. Moreover,
from a psychological standpoint, an individual’s conception of the epistemic uncertainty
of an event is linguistically linked to the confidence that the individual has regarding the
outcome of the event. This is so much so, in fact, that judgments of events that are purely
epistemic are disproportionately influenced by differences in evidence strength and, as such,
tend toward probabilities of 0 or 1 more often than that of aleatoric events.

By comparison, evaluating aleatoric uncertainty usually entails considering a class of
possible outcomes and evaluation of the propensity of each event on a continuous scale.
Individuals conceptualize the aleatoric uncertainty of events in terms of relative frequency
of outcomes and associate it linguistically with probability and chance. Aleatoric judgment,
in neurobiological terms, entails a cognitive process distinct from the one associated with
epistemic judgment (Volz, Schubotz, and Cramon, 2005).

These distinct patterns of reasoning associated with aleatoric and epistemic uncertainty
have also been described as corresponding to frequentist and nonfrequentist events, which
are conceived to be uniquely different (Howell and Burnett, 1978) and identified in closely
related terms in other literature (Gigerenzer, 1994; Peterson and Pitz, 1988).

Frequentist versus Bayesian perspectives

The categorization of frequentist and nonfrequentist events reflects the difficulty of expressing
epistemic uncertainty with an approach rooted in classical—also known as frequentist—
statistics.

The frequentist school of thought believes that probabilities represent the long-run fre-
quencies with which events occur and thus can be found through a repeatable, objective
process and represented without opinion. By implication, because epistemic uncertainty is
usually framed in terms of the occurrence of single, non-repeating events as being true or
false, it cannot be expressed in frequentist terms and therefore cannot be quantified as a
probability. In this vein, frequentist inference methods such as confidence intervals or sig-
nificance tests, which are commonly misinterpreted as making probability statements about
parameters, only describe potential outcomes in terms of repeated sampling. Indeed, they
do not state anything directly regarding the single, non-repeating event of interest.

By comparison, Bayesian thinking offers a perspective that—unlike the frequentist one—
allows us to express non-repeating events in probabilistic terms. In the Bayesian school
of thought, probabilities represent a degree of belief in the truth of a proposition and are
therefore considered to be subjective. Inference tests in Bayesian statistics describe how
the acquisition of new information, i.e., data, reduces uncertainty about such a proposition
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(O’Hagan, 2004). The process of using data to modify a prior probability, which represents
an initial belief, to compute a posterior probability, which represents an updated belief, is
known as Bayesian updating.

Whereas frequentist inference cannot make direct statements about events of an epistemic
nature because it relies on repeated sampling, Bayesian inference makes statements that are
unambiguously about these very events (O’Hagan, 2004). Moreover, the Bayesian degree-of-
belief interpretation of probability naturally lends itself to expressing the binary truth values
that characterize epistemic uncertainty.

One instructive example that demonstrates the advantage of employing a Bayesian rather
than frequentist approach concerns estimating parameters for deep learning models. Because
model parameters are almost always considered to be epistemically uncertain, frequentist
statistics is unequipped to convey this uncertainty and instead expresses parameters with
point estimates, which are found using maximum likelihood estimation (MLE). Because of
this, traditional deep learning models that are grounded in frequentist thought, as previously
mentioned, are uninformative with respect to epistemic uncertainty.

One solution to this problem that is considered to be frequentist has been proposed
in the form of ensemble methods, which use the outputs of multiple deep learning mod-
els to improve predictive performance and also create distributions over estimates (Laksh-
minarayanan, Pritzel, and Blundell, 2017). Unlike BDL, ensembles can be implemented
without any reliance on priors. For this reason, one might claim that ensembles are more
empirical, allowing for—as frequentists might say—the data to speak for itself. Moreover,
ensembles are more computationally practical than expensive BDL models, which require
the approximation of intractable posterior landscapes.

On the other hand, however, ensemble methods—while advantageous in some respects—
are not principled in the same way that BDL methods are. This is to say, whereas BDL
directly conveys any assumptions regarding the selection of priors, frequentists do not expose
the model assumptions that may intrinsically inform how the data interacts with the model.
For instance, the selection of specific activation functions—for both BDL and ensembles—
alters how the model represents variance in the data, but an ensemble approach can hypo-
thetically allow for the model to demonstrate infinite uncertainty, whereas BDL limits this
possibility, restricting the possible range of uncertainty with the selection of particular pri-
ors. Resultantly, the diversity of model outputs in ensembles tends to be more dependent on
the model class and assumptions, at least in a sense that cannot be expressed theoretically
through the selection of a prior.

We directly compare Bayesian and ensemble approaches in their ability to quantify un-
certainty, as captured with a variety of metrics, in the second half of this work.
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1.1.2 Internal versus external uncertainty and probability theory

Although we have established in the preceding section that probability distributions—whether
constructed by way of Bayesian or ensemble approaches—are commonly used to represent un-
certainty, scholars have questioned whether probability theory is well-equipped to represent
epistemic uncertainty altogether. In fact, the argument that a single probability distribution
is insufficient for representing ignorance is commonly maintained in the literature (Hüller-
meier and Waegeman, 2019). This line of reasoning, which maintains that probabilistic
tools do not inherently differentiate between awareness of statistical randomness and lack of
knowledge, can be attributed philosophically to the distinction between internal and exter-
nal uncertainty and, more fundamentally, to the agency that decision makers have to reduce
each of these uncertainties.

Broadly speaking, internal uncertainty corresponds to one’s state of knowledge, whereas
external uncertainty is attributed to the external world and is further divided into singular
and distributional modes. The singular mode refers to scenarios in which probabilities are
evaluated in terms of the propensity of a particular target event, whereas the distributional
mode refers to scenarios in which the event at hand is thought to be an instance of a class
of similar events (Kahneman and Tversky, 1982). C. R. Fox and Ülkümen (2011) maintains
that the external-distributional mode generally maps to aleatoric uncertainty and the internal
and external-singular modes map to epistemic uncertainty.

This categorization further implies that aleatoric and epistemic uncertainty—in addition
to the extent to which they can be compartmentalized based upon their source—are uniquely
defined based upon how decision makers attempt to handle them. This is to say, because
internal and external-singular uncertainties are intrinsically framed in terms of an individual’s
conception of their truth values, decision makers can reduce both of them with acquisition
of additional information or novel awareness of some pattern or causality, which inform
their interpretation of whether said the associated events will or will not occur (C. R. Fox
and Ülkümen, 2011). Conversely, the same does not hold for uncertainties in the external-
distributional mode. For distributional events, any additional information that the decision
maker obtains only contextualizes the relative propensity of events; it does not point to
the truth value of a single event’s occurrence in the same fundamental way that knowledge
that reduces epistemic uncertainty does. As such, because decision makers cannot reduce
aleatoric uncertainty, they must leverage their awareness of its relative existence to manage
it (C. R. Fox and Ülkümen, 2011).
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Representation of knowledge in probability theory

From a modeling standpoint, the attribution of internal and external-singular uncertainties
to decision makers’ epistemic states further ties into a shortcoming inherent in probabil-
ity theory itself: the inability of probability distributions to represent a lack of knowledge,
which can philosophically be conflated with the distribution’s representation of the relative
propensity of events. One commonly accepted example in statistics that demonstrates this
failure is the use of the uniform distribution to represent complete ignorance in probabilistic
terms. Although frequently adopted in modeling assumptions, this representation of igno-
rance is not entirely discriminative—a uniform distribution might also be used to represent
a decision maker’s complete knowledge that an event has perfectly equal probabilities for
different outcomes and thus does not clearly reflect the decision maker’s state of ignorance.

In general, this flaw of probability theory is intrinsically rooted in the inability to lessen
the amount of knowledge that is contained in a distribution, particularly when compared
to methods of learning that are set-based in nature (Hüllermeier and Waegeman, 2019).
Version space learning, which is a logical approach to machine learning that searches a
predefined hypothesis space, employs such an approach, expressing uncertainty in sets of
candidate hypotheses and sets of candidate outcomes. Knowledge about the ground-truth is
expressed in terms of a subset C within the total space of possible candidates; a larger set C
corresponds to an increasing lack of knowledge and a smaller set C corresponds to increasing
knowledge; as such, a common uncertainty measure that can be applied in such a context is
the information-theoretic metric log(|C|) (Hüllermeier and Waegeman, 2019).

Furthermore, what inherently distinguishes set-based learning from probability theory is
the simple relationship between the size of the set C and the epistemic state of the decision
maker. Whereas in probability theory it is not possible to remove a candidate among the
possible elements without changing the probability or propensity associated with all the other
candidates, in set-based learning it is indeed possible to add or remove candidates without
decreasing the plausibility of other candidates. That is to say, whereas the total amount of
knowledge in a probability distribution remains fixed and is distributed among the possible
candidates, it is variable in a set, in which candidates may remain equally plausible even
as others are added or removed (Hüllermeier and Waegeman, 2019). By extension, because
hypotheses are expressed exclusively in terms of being possible or not, all uncertainty in
version space learning is considered epistemic; no aleatoric equivalent exists at all.

It is important to note that while there are other generalizations of probability theory
that are better suited for uniquely representing epistemic uncertainty, among them imprecise
probability (Walley, 1991), evidence theory (Shafer, 1976), and possibility theory (Dubois
and Prade, 1988), systematically evaluating and benchmarking them is not the focus of this
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work. Rather, we introduce the notion of set-based representations as an alternative to prob-
abilistic modeling from an instructive standpoint—at once to contextualize the difficulties
of fully capturing uncertainty with probabilistic methods and to provide the philosophical
language and background to understand the more technical approaches and metrics outlined
later in this work.

1.2 Importance of uncertainty in decision-making

While the case for accurate uncertainty estimates in applications of deep learning is well-
established in machine learning literature, there is considerably less emphasis on the need
for accurate aleatoric and epistemic uncertainty estimates. This being said, however, if we
examine the commonly cited motivating reasons for accurate uncertainty estimates, we find
that they provide equal—if not greater—rationale for quantifying aleatoric and epistemic
uncertainty as separate entities.

In general, it is maintained in the literature that uncertainty estimates are desirable in
deep learning models that are used for decision making for a number of reasons:

1. They indicate when one should abstain from prediction or, at the very least, be hesi-
tant or tentative in prediction. In fact, Tagasovska and Lopez-Paz (2019) notes that
abstention is one common strategy to handle anomalies, outliers, out-of-distribution
examples, and adversarial examples.

2. They imply that one needs to change the model due to the misspecification of model
structure or assumptions, which is a commonly overlooked factor that contributes to
overall uncertainty (Hüllermeier and Waegeman, 2019). In other words, when a model
is not well specified, large uncertainty estimates might be reflective of high bias.

3. They provide insight into the structure of the noise, such as in the estimation of
predictive intervals (Tagasovska and Lopez-Paz, 2019). In some cases, this might be so
informative so as to indicate that it is worthwhile or necessary to seek out additional
(or better) data to improve predictive accuracy.

4. They provide a step towards model interpretability and improve our understanding of
the domains in which models are generally accurate, which is useful when considering
how one might wish to deploy a model for real-life tasks (Tagasovska and Lopez-Paz,
2019).

However, if we consider these scenarios within the broader framework of aleatoric and
epistemic uncertainty that we have established, we realize that accurate estimates of these
two subtypes of uncertainty would be especially informative—and arguably more useful than
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a general estimate of total uncertainty. We discuss the advantage of having distinct estimates
of aleatoric and epistemic uncertainty for each of these aforementioned cases, maintaining
the same order as above:

1. Accurate aleatoric and epistemic uncertainty estimates equip models to identify inher-
ently different causes for abstention. In the case of a predictive instance with high
aleatoric uncertainty, for example, a model might suggest that it is unlikely—if not
impossible—to improve predictive performance due to the inherent stochasticity of the
case at hand; the data instance might correspond to a part of the domain where there
is heavy class overlap or irreducible noise, for example. By comparison, in the case
of high epistemic uncertainty, a model might suggest that prediction can be improved
with more data or that an outside expert might supply the necessary additional knowl-
edge to reduce uncertainty. Furthermore, distinguishing these reasons for abstention
is useful for detection of anomalies, outliers, out-of-distribution examples, and adver-
sarial examples, which might be based particularly in aleatoric or epistemic sources of
uncertainty.

2. Uncertainty related to specification of model structure and model assumptions is nor-
mally thought to be epistemic in nature. Parameter uncertainty, for one, is considered
to be directly related to the amount and quality of the available information (Der
Kiureghian and Ditlevsen, 2009).

3. Depending on the dataset, noise might be rooted in aleatoric or epistemic uncertainty
(or, in some cases, both). Noise attributed to high epistemic—but not aleatoric—
uncertainty would suggest that one should seek out additional data.

4. Model interpretability by definition improves when decision makers can identify the
distinct philosophical causes underlying the existence of uncertainty. Assessment of
the domains in which models should be deployed, moreover, can be based in part upon
identification of domains with low epistemic or aleatoric uncertainty, depending on the
nature of the downstream task.

Thus, in all of the scenarios discussed above (and in any others that are not explicitly
discussed here), having additional information about the decomposition of uncertainty into
its aleatoric and epistemic components is strictly better for informed decision-making. To
illustrate this point more concretely, we discuss a real-life setting in which control of decision-
making is increasingly being ceded to automated systems: medical diagnosis. In this context,
accurate aleatoric and epistemic uncertainty estimates have the potential to improve AI
safety and prevent adverse outcomes.
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Medical diagnosis

Models that are used for medical diagnosis, which are typically based upon assessment of
electronic health records or medical images of some sort, attempt to automate detection of
specific conditions or identification of high-risk patients. In the simplest sense, diagnostic
models that output high uncertainty estimates for specific patients might opt to abstain from
diagnosis and instead notify a physician, who can provide expert input. There is considerable
rationale for this approach based upon Laves et al. (2019), who find that there is a correlation
of ⇢ = 0.99 between prediction uncertainty and prediction error for computer-aided diagnosis
(CAD) using deep learning for retinal optical coherence tomography (OCT) scans.

Moreover, decomposing uncertainty into its separate aleatoric and epistemic sources is
valuable because it explains the extent to which uncertainty is rooted in the intrinsic diffi-
culty of the diagnostic task or the size of the training data, as demonstrated by Tanno et al.
(2019) for neuroimaging. This is particularly important for diagnostic applications because
obtaining data in healthcare is difficult and intensive—patient privacy is of paramount im-
portance, imaging technology is expensive, and rare diseases have few patients and even fewer
datasets. As such, being able to pinpoint whether diagnostic uncertainty can be attributed
to scarcity of data—i.e., whether it is epistemic—informs whether or not it is desirable to
collect more data or data of a particular type that is especially informative. For example,
understanding the areas in which epistemic uncertainty is highest might suggest where to
focus data-collection efforts, e.g., for specific patient demographics or levels of severity of a
disease.

1.3 Uncertainty in deep learning

The objective of this thesis is to identify, evaluate, and compare model-agnostic and flexible
metrics for quantifying aleatoric and epistemic uncertainty in deep learning—as per the
name of this work. In order to contextualize how we identify such metrics for quantifying
uncertainty, it is important to first understand how uncertainty is generally treated in deep
learning, which is the focus of this section.

First, it is critical to recognize the distinction between modeling uncertainty, quantifying
uncertainty, and evaluating estimates for uncertainty. Modeling uncertainty refers to the way
in which one formally represents uncertainty in a model or, in other words, how uncertainty
is incorporated as an inherent part of the model structure. Quantifying uncertainty, by
comparison, refers to the way in which we measure the amount of uncertainty there is in a
model, which is typically done by applying and computing different metrics, which—as we
will see—vary in their computational complexity. Approaches for quantifying uncertainty can
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be either model-specific or model-agnostic, and the models to which they are applied might
model uncertainty in different ways. We note, however, that this thesis prioritizes approaches
for quantifying uncertainty that are model-agnostic, which is considered desirable because
such approaches can be more broadly and flexibly applied. Finally, evaluating uncertainty
means assessing whether or not the amount of uncertainty estimated from our different
approaches for modeling and quantifying uncertainty (which are usually paired together)
is accurate, appropriate, or useful in light of the dataset and task at hand. Evaluation of
uncertainty is typically done on other machine learning tasks such as reinforcement learning,
active learning, and Bayesian optimization. More recently, work such as Gal (2016) and
AngelosFilos, Gomez, and Rudner (n.d.) has attempted to evaluate uncertainty estimates
directly for real domain-specific tasks.

Now motivated with this understanding, in this section we will first review the existing
approaches that are used to model aleatoric and epistemic uncertainty in machine learning,
noting that many of these approaches require significant adaptations to the conventional
models in which we are most interested (which we will point out explicitly).

Then, having established these models, we will note that the literature lacks a systematic
evaluation of general metrics that can be used to quantify aleatoric and epistemic uncertainty
across many of these models. We will then proceed to highlight in §1.4 how this thesis will
contribute to the literature: documenting and evaluating such uncertainty metrics that can
be flexibly applied to a diversity of models and downstream tasks.

1.3.1 Modeling and quantifying aleatoric and epistemic uncertainty

At a high level, machine learning literature makes a few general assumptions about which
sources of uncertainty are considered aleatoric or epistemic. For instance, aleatoric uncer-
tainty is often thought of as noise that is learned by optimizing the per point model precision
(Gal, 2016). On the other hand, uncertainty about the model itself (that is, uncertainty
stemming from implicit assumptions about the model hypothesis space) and uncertainty
about the weight parameters of the model are commonly understood to be epistemic and are
computed using model averaging (Hüllermeier and Waegeman, 2019). Practically speaking,
capturing epistemic uncertainty is typically predicated upon identifying regions of the input
space that have little or no training data.

These assumptions aside, however, novel approaches for modeling uncertainty—which
have varying levels of underlying justification and foundation in theory—appear in the liter-
ature quite regularly (Hüllermeier and Waegeman, 2019). That being said, however, many
of said approaches fail to identify clearly which components of total uncertainty are aleatoric
or epistemic—a tendency that reflects the overarching difficulty of clearly discriminating
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between the two sources in the model output.
Here, we review the broad range of approaches that are most commonly used for modeling

either of the aleatoric and epistemic components of uncertainty. we note that all of these
approaches are uniquely focused on just one of the two types of uncertainty; many therefore
cannot be deployed with approaches that either model or provide an avenue for quantifying
the complementary type of uncertainty in a unified, easy-to-implement, and model-agnostic
framework. We accredit this review of approaches to Tagasovska and Lopez-Paz (2019).

Aleatoric uncertainty

As mentioned above, existing approaches for modeling aleatoric uncertainty are generally
based upon the premise of learning about the per point conditional distribution of a target
variable. There are a number of ways to approach this, as outlined by Tagasovska and
Lopez-Paz (2019):

1. The conventional approach (which we review closely in §3.2.1) is to assume that the
conditional distribution of the target variable is Gaussian. Per this assumption, one
output layer of a neural network can be trained to model the variance of the Gaussian
at each point (Kendall and Gal, 2017). Although this approach allows for neural
networks to model noise as data-dependent and thus capture heteroscedastic (non-
uniform) variance, the assumption that aleatoric noise is Gaussian means that non-
symmetric, multimodal noise profiles cannot be accurately approximated.

2. A second approach involves the use of non-linear quantile regression, which seeks to
learn the conditional quantiles of the target variable. Models that use quantile re-
gression are either based upon decision trees (which do not fall into our category of
interest) or attempt to train neural networks using pinball loss. Tagasovska and Lopez-
Paz (2019) proposes an example of the latter category that explicitly links quantiles
to aleatoric uncertainty and we review this model in §3.2.4 and implement it alongside
the conventional approach described in the bullet above.

3. A third approach is to train neural networks using learning objectives with metrics that
capture the quality of the prediction interval (PI), such as Mean Prediction Interval
Width (MPIW) and Prediction Interval Coverage Probability (PICP) (Pearce, Zaki,
Brintrup, and Neely, 2018). This produces accurate and high-quality PIs that capture
per point variance, which is treated as aleatoric uncertainty.

4. A fourth approach entails implicit generative models, which define a stochastic pro-
cedure that directly generates data (Mohamed and Lakshminarayanan, 2016). Such
models can output multiple predictions corresponding to an input. One can then use
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this distribution of predictions to capture the aleatoric uncertainty, which—unlike the
first approach—can reflect non-symmetric, multimodal noise.

Considering these strategies, however, we realize that each—with the exception of the
first—requires substantial modifications to any existing, conventional model. The second and
third models require adapting the loss function to incorporate a new learning objective—
which may be incompatible with more complex models applied to real datasets—and the
fourth is a distinct model class that is generally difficult to train and entails separate imple-
mentation altogether. For this reason, this thesis generally adopts use of the first approach,
which adapts the loss function to model aleatoric variance as learned loss attenuation and
only requires the addition of a corresponding output layer. While we consider a variant of
the second approach known as Simultaneous Quantile Regression (SQR), which is used with
basic, single-model NNs and has an available codebase (Tagasovska and Lopez-Paz, 2019),
we largely consider this approach to be adjacent to our primary purpose. We leave evaluation
of the remaining approaches for future work.

Epistemic uncertainty

Epistemic uncertainty is almost always modeled as variance that arises from the posterior
distribution (§3.2.2). Given that the notion of sampling from the posterior distribution is
so widely accepted in the literature, there are no other approaches for modeling epistemic
uncertainty that we consider in this work. However, once we accept this model, there are a
number of ways to quantify epistemic uncertainty:

1. The most traditional approach for quantifying epistemic uncertainty is generating a
posterior predictive distribution, which we formally define in §2.2.1. At a high level, this
involves sampling from the posterior distribution construct a distribution of possible
unobserved values conditional on the values that are observed in the samples.

2. A second strategy for quantifying epistemic uncertainty is detection of out-of-distribution
(OOD) examples (which is more typically applied to classification and has considerably
less literature for regression). We review and implement several OOD detection ap-
proaches in §3.3.3. One more artisanal approach that some OOD methods adopt is to
map in-domain examples to a constant value (the most common of which is zero) and
out-of-distribution examples to other values, thereby signaling epistemic uncertainty.
The Orthonormal Certificates (OCs) method proposed by Tagasovska and Lopez-Paz
(2019), which we discuss in §3.3.3 could be considered an example of such an approach.
Furthermore, Tagasovska and Lopez-Paz (2019) additionally notes that anomaly and
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outlier detection and one-class classification might also be framed as attempts to quan-
tify epistemic uncertainty, although these approaches are not an area of focus in this
thesis and are left for evaluation in future work.

3. One last category of approaches, which encompasses noise-contrastive priors (Hafner
et al., 2018) and generative adversarial networks (GANs) (Goodfellow, Pouget-Abadie,
et al., 2014), entails using data to construct realistic "negative examples" outside of
the training data distribution. A predictor trained to identify such negative examples
could then estimate the epistemic uncertainty associated with specific inputs.

Each of the above strategies varies in its adaptability and ease of application to existing
models. The first approach is considered universal, as it arises as an extension of Bayesian
modeling. It can, however, be easily extended to frequentist models as well. While it is the
basis of comparison for the treatment of epistemic uncertainty in this thesis, it is important
to note that repeatedly sampling from a model as specified above is likely to capture not
only epistemic but also aleatoric variance. Given this, it becomes desirable to derive a
decomposition that can uniquely distinguish aleatoric and epistemic variance within the
posterior predictive. This is a recurring theme within this work.

Furthermore, while the second category of strategies—OOD detection—represents a wide
range of literature, many OOD detection approaches can be applied to the last layer or output
layer of a previously trained neural network; they are therefore relatively simple to implement
and, for this reason, are included in this thesis.

Finally, the last category of strategies, which take on a generative approach, is the least
straightforward to implement on top of existing architectures. GANs are a distinct model
class requiring separate implementation and noise-contrastive priors entail the use of an input
prior, which adds noise to the inputs, and an output prior, which is a wide distribution given
these inputs (Hafner et al., 2018).

1.4 Thesis contributions and structure

Given the different approaches that exist for modeling aleatoric and epistemic uncertainty
and the lack of existing metrics that formalize desiderata for quality estimates of aleatoric
and epistemic uncertainty, it is clearly important to identify metrics for quantifying aleatoric
and epistemic uncertainty that are model-agnostic and can be applied on top of the different
modeling approaches discussed above.

Following this line of reasoning, the following areas for contribution—with respect to
quantifying uncertainty—become evident:
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1. First, the literature lacks a systematic evaluation and comparison of the existing met-
rics for quantifying aleatoric and epistemic uncertainty that indeed are model-agnostic
and easy to implement. The primary goal of this thesis is therefore to gather and
evaluate such metrics for both regression and classification tasks. The main metrics
in which we are interested arise from three categories: statistical measures of variabil-
ity in categorical distributions (as reviewed in §3.3.1), decompositions of aleatoric and
epistemic uncertainty (which we discuss in the third bullet point below), and out-of-
distribution detection metrics, which are proxies for epistemic uncertainty. Historically
speaking, these different categories of metrics have not been evaluated comparatively,
and this thesis is novel in its attempt to evaluate them under one framework.

2. Following the above point, the literature also lacks a systematic evaluation of how met-
rics for quantifying aleatoric and epistemic uncertainty fare when paired with different
models and their accompanying inference methods (the number of which has rapidly
increased in recent years). As such, one of the supporting objectives of this work is to
evaluate the quality of uncertainty metrics when coupled with seven different methods
(which we review in §4) and the models that they approximate, which are carefully
selected to include approaches rooted in both frequentist and Bayesian perspectives.

3. Machine learning literature would benefit from more decompositions of aleatoric and
epistemic uncertainty—i.e., ways to quantify aleatoric and epistemic uncertainty from
estimates of total uncertainty that are model-agnostic, easy to implement, and math-
ematically or statistically principled in some way. Such decompositions would ideally
treat these two uncertainties as contributing parts of total uncertainty. In §3.3.2, we
review the existing decompositions that satisfy these criteria and propose extensions
of these decompositions, although we acknowledge that derivation of novel, principled
decompositions of uncertainty is rather difficult.1

We find a number of interesting results for both regression and classification. First,
we find that metrics based upon neural networks’ last layer representations of uncertainty
provide an attractive and interesting alternative for quantifying epistemic uncertainty for
regression tasks, particularly given that conventional approaches for regression do not con-
sider such metrics or OOD detection approaches, which tend to be reserved for classification
in general. This suggests an exciting avenue for future research.

We obtain accurate estimates for aleatoric and epistemic uncertainty by applying existing
decompositions of uncertainty, as proposed by Depeweg et al. (2017), in novel ways. For

1In light of our preceding discussion on different representations of knowledge, we note that, for the
purposes of this thesis, the decompositions we consider are based in the use of probability distributions,
which we accept—due to their widespread use across literature—as convention for uncertainty quantification.
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one, we find that the law of total variance, when paired with deep ensembles of probabilistic
NNs, provides accurate estimates for both aleatoric and epistemic uncertainty for regression
tasks that outperforms existing models, namely MC dropout. We also adapt an existing
statistical decomposition to propose a way to decompose any statistical metric of variability
for categorical distributions into its aleatoric and epistemic components, which we evaluate
and find to be accurate—and consistent with estimates provided by predictive entropy and
mutual information—for classification.

Finally, with regards to models, we find that the neural linear model, which places priors
only on the last layer of a NN, provides a tractable alternative to Hamiltonian Monte Carlo
(which is considered to be a means of obtaining the ground truth for the posterior of Bayesian
NNs) with comparable uncertainty estimates. We additionally find that MC dropout does
not produce high-quality uncertainty estimates. We evaluate the decomposition of aleatoric
and epistemic uncertainty proposed in Kendall and Gal (2017) to find that it is inconsistent,
inaccurate, and highly dependent on tuning the dropout rate, which perhaps suggests that
we should opt for alternative inference methods for heteroscedastic models.

1.4.1 Thesis structure

The first half of this thesis (§2–4) is focused on exposition. §2 provides the necessary back-
ground on traditional deep learning and Bayesian deep learning. §3 describes different ways
of modeling aleatoric and epistemic uncertainty and reviews the different metrics use to
quantify aleatoric and epistemic uncertainty that we will evaluate in this work. §4 describes
the different models and accompanying inference methods that we will consider.

The second half of this thesis (§5–7) is focused on evaluation. §5 evaluates the metrics
and methods that we review in the expository half of the thesis on synthetic (i.e., toy) data
for both regression and classification. §6 does the same but on real datasets. Finally, §7
presents conclusions from the experiments in the preceding two sections and proposes areas
for future research.
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Chapter Two

Background on Deep Learning

As mentioned in the introduction, the field of deep learning is a subset of machine learning
that is built upon the use of collections of connected computational units known as artificial
neural networks (NNs). In this field, the use of the word "deep" implies that the neural
networks in question have many layers of computational units, which is loosely interpreted
in the literature as indicating at least two layers.

In this chapter, we outline two different classes of approaches for constructing and training
NNs, both of which are used in this thesis. The first class, described in §2.1, is the traditional
view of NNs, which relies upon point estimates of model parameters and forms the backbone
of traditional deep learning. The second class, described in §2.2, is the Bayesian view of
NNs, which models NNs probabilistically within the framework provided by Bayes’ rule and
forms the backbone of Bayesian deep learning (BDL).

This section is not exhaustive in reviewing the field and primarily introduces the aspects
of deep learning that are necessary to understand this thesis. Please note that we accredit
Bishop (2006), Gal (2016), and Moberg (2019) for inspiring these explanation of both neural
networks and Bayesian neural networks. For a more extensive introduction to the field, we
direct the reader to Bishop (2006), Goodfellow, Bengio, and Courville (2016), and Murphy
(2012), the last of which has a special emphasis on BDL.

2.1 Neural networks

At the highest level, neural networks, which can be used for both regression and classifi-
cation tasks, can be thought of as a multi-layer extension of linear and logistic regression,
respectively.

Let us define a set of N observations of inputs and outputs {(x1, y1),..., (xN , yN)} where
xi 2 RD and yi 2 RQ. We wish to apply some transformation f(x) = ŷ from the N by D

matrix x to the N by P matrix ŷ, which is an approximation for y.
A feed-forward neural network, which is visualized in Figure 2.1 and can be conceived
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Figure 2.1 A two layer feedforward neural network with input dimension 5 and
output dimension 1.

as such a function f(x) that is parameterized with W 2 RD and some bias b 2 RQ, seeks
to approximate this output y given some input x. It can be thought as a series of linear
transformations of the form xWi+bi from x 2 RD to y 2 RQ with the following properties:

1. Neural networks include nonlinear transformations on top of the linear transformations
represented byWi and bi. Each layer of the neural network applies some nonlinear, dif-
ferentiable activation function �(·) to the output of the linear transformation xWi+bi

in that layer, such that each layer can be represented with the nonlinear transforma-
tion � (xWi + bi). Commonly used activation functions include the rectified linear
unit (ReLU)1 and sigmoid.2

2. Neural networks apply multiple layers of these nonlinear transformations iteratively.
In other words, the nonlinear transformation of the j-th layer is applied to the output
of the (j�1)-th layer for all layers of the neural network with the exception of the first
layer, which is known as the input layer and is applied to x. Moreover, the last layer
is known as the output layer, and the layers in between the input and output layers
are known as hidden layers.

Then, for example, a two-layer neural network applied to some input x can be defined with
the function f(x), where

f(x) = �2 ((�1 (xW1 + b1))W2 + b2) = ŷ.

1ReLU(x) = max(x, 0).
2�(x) = (1 + exp(�x))�1.
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In order to find the optimal weights W and bias b for this function f(x), we want to
minimize some loss function L(W,b) with respect to W, b between the predictions ŷ and
true output y (which we discuss further in §2.1.1).

Remembering that x 2 RD and y 2 RQ in our introduction, it then follows that W1 must
have dimensionality of D by P , b1 must be a vector of size P , W1 must have dimensionality
of P by Q, and b2 must be a vector of size Q. Extending these principles to a neural
network with k layers, we note that W1 must have D rows when x 2 RD and Wk must
have P columns when y 2 RP . Meanwhile, the dimensions of the hidden layers can vary
but must be such that each layer can feed into the next. It is also typical for the last bias
bk, which in this case would be b2, to be set to zero. Furthermore, in the case of regression,
it is common for the last activation function �k(·) to provide a linear output without any
nonlinear transformation. In this case, �2 would simply output (�1 (xW1 + b1))W2 + b2.

By comparison, in the case of classification, we set the last activation function �k to be
a softmax function. The softmax function outputs the respective probabilities of an input
being classified with a label in the set {1, ..., C}. It can be defined as

�(ŷc) =
exp(ŷc)P
c0 exp(ŷc0)

= p̂c, (2.1)

where ŷ is the C-dimensional last output of the NN prior to this sigmoid function, c denotes
the label for the desired class, c0 denotes the set of all the labels, and p̂c is a C-dimensional
vector containing the probabilities of an input belonging to each class. Furthermore, we
note that in the simplest case of classification (a binary classification task in which our NN
only has one layer with parameters W1, b1), the function f(x) becomes equivalent to binary
logistic regression, as the softmax function is equivalent to the sigmoid function when there
are only two classes.

2.1.1 Loss functions and training

Broadly speaking, the goal of optimizing the parameters W, b of a neural network regression
model with respect to the training dataXtrain,Ytrain is to produce a model that can generalize
to some unobserved test data Xtest,Ytest.In order to find the best approximation of y, we
optimize the neural network by choosing parameters W and b across all k layers of the
neural network to minimize a specified loss function.

The most common loss function used for regression is the mean-squared error (MSE)
between the predictions ŷ and true output y, defined as

L(W,b) =
1

N

NX

i=1

(yi � ŷi)2, (2.2)
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where ŷi is the prediction given by the function f for the i-th observation in the data.
Loss functions differ in the cases of regression and classification. Neural networks that

are used for classification tasks typically seek to minimize a cross-entropy loss with respect
to W,b. The cross-entropy loss takes the negative log of the probabilities predicted for the
observed label, as output by equation (2.7), and is defined as

L(W,b) = � 1

N

NX

i=1

log p̂i,ci , (2.3)

where ci is the observed class label for input i and p̂i,ci is the prediction of the neural network
for input i corresponding to the specified label ci.

Note that the cross-entropy loss is the negative log likelihood (NLL) of the multinomial
distribution, where negative log likelihood is another commonly used cost function that we
will later reference in §3. Note that NLL is a popular cost function and is often used to obtain
maximum likelihood estimates (MLE) in statistical models because maximizing likelihood is
equivalent to minimizing NLL.3

Modeling distributions

By modifying the loss function to be variance-dependent, we can construct a neural network
that outputs estimates for the mean and variance of a normal distribution, such that f(x) =
(µ̂, �̂) is the output of the NN and we can model p(y|x) = N (µ̂, �̂2). We select the NLL of
the normal distribution as the loss function,

L(W,b) =
1

N

NX

i=1

✓
1

2
log �̂2

i +
(yi � µ̂i)2

2�̂2
i

◆
, (2.4)

where we construct the NN to output log �̂i for numerical stability and transform it as
necessary for the loss function.

Such a neural network, although not probabilistic in the same sense as a Bayesian NN
(described in §2.2), provides one means of modeling uncertainty homoscedastically. While
it is possible to use other distributions in these pseudo-probabilistic NNs, we use a normal
distribution out of convention. We use such neural networks to construct deep ensembles,
as described in §4.1.2.

3Most computational frameworks are designed to minimize rather than maximize functions, so we take
the negative of the likelihood to suit this constraint. Moreover, minimizing log likelihood is equivalent to
minimizing likelihood due to the monotonically increasing nature of the log function. Lastly, NLL is used
because applying the log function allows for simpler analytical representation of the likelihood and for more
stable numerical computation.

20



Learning process

NN weights are typically initialized randomly and optimized using gradient-based algorithms
that minimize the specified loss function with respect to NN parameters; this learning pro-
cess is referred to as training the NN and can be viewed as a global optimization problem.
Traditional gradient descent algorithms compute the gradient of the loss function with re-
spect to W and b (typically using backpropagation as a gradient computing technique) and
take small steps, the size of which is defined by a specified learning rate ⌘, in the opposite
direction of the gradient. With a sufficient number of steps, the loss eventually converges to
some local minimum.

However, because loss landscapes for neural networks are not strictly convex, there are
typically many local minima, all of which but one—the global minimum—do not reflect
the optimal model parameters W and b. As such, because local optimization parameters
such as gradient descent are not equipped to find the global minimum of the loss function,
it is more common to use gradient descent algorithms that stochastically approximate the
gradient and thus introduce noise into the gradient descent path. For instance, mini-batch
gradient descent, also known as stochastic gradient descent (SGD),4 uses the same update
rule as traditional gradient descent but approximates the gradient on some small mini-batch
of the data. Resultantly, using mini-batch gradient descent, especially with small batch sizes,
means that the loss will eventually decrease over time, but that individual update steps will
not necessarily shift the loss in the optimal direction, which allows the algorithm to escape
local minima.

2.1.2 Regularization

Because NNs do not require many assumptions—e.g., linearity—about the systems that they
are approximating, they can be applied almost universally and are appropriate for tasks that
lack clearly documented, functional forms. In fact, previous work has demonstrated that NN
architectures can approximate any continuous function as long as a sufficiently large hidden
layer is constructed, and the simple feedforward architecture described earlier can be adapted
to more specialized architectures designed to handle image or text inputs, making NNs as a
model class deeply flexible.

However, the high expressiveness of NNs makes them deeply prone to overfitting to the
training data Xtrain,Ytrain, which limits their ability to generalize well to unseen data. In
order to prevent this phenomenon, it is typical to use regularization techniques, the most
common of which are weight decay and dropout.

4Stochastic gradient descent technically refers to mini-batch gradient descent with a batch size of one,
but the two terms are often used interchangeably.
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Weight decay

Weight decay is applied to NNs by adding a term to the loss function that penalizes the
norm of the weights with the goal of encouraging the weights to be smaller. The two most
common types of weight decay are L1 and L2 regularization, which penalize the absolute
value norm and squared norm of W and b respectively. Applying L2 regularization with
some regularization rate � for the weights W and bias b in a k-layer NN would update the
learning objective for regression to

L(W,b) =
1

N

NX

i=1

(yi � ŷi)2 + �

kX

j=1

||Wj||2 + �

kX

j=1

||bj||2,

where it is also possible to introduce separate rates �j for the parameters Wj and bj on
different layers of the NN.

Dropout

When applying dropout as a regularization technique, the output of individual NN units is
retained with some specified probability p 2 (0, 1) and otherwise set to zero (Srivastava et al.,
2014). Units (and their incoming and outgoing connections) are be randomly dropped in one,
several, or all layers with the intent of preventing units from co-adapting excessively. Dropout
is typically applied during the training process, which can be thought of as comparable to
training an ensemble of thinned networks that adapt to the data in different ways. Then,
during inference, dropout is turned off and predictions are obtained from an unthinned
network with smaller weights, which improves predictive performance when generalizing to
unseen data.

One approach known as Monte Carlo dropout (Gal and Ghahramani, 2016) that we will
review in §2.2.3 and implement as described in §4.2.3 turns dropout on during the inference
process to model uncertainty in what is claimed to be a Bayesian approximation.

2.2 Bayesian neural networks

Whereas traditional neural networks are trained via gradient descent to provide a deter-
ministic output given some input x (or a deterministic output for the mean and variance
of a normal distribution), Bayesian neural networks (BNNs) are neural networks that place
a prior distribution over their weights W (Neal, 2012) and provide a way to represent the
parameter space probabilistically. As such, BNNs are considered to be state-of-the-art for
modeling uncertainty.
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Although exact inference for BNNs is intractable due to the complicated nature of the
posterior landscape, advances in approximate inference approaches have made BNNs more
computationally practical. In this section, we first review the foundations of Bayesian infer-
ence in §2.2.1, describe how neural networks are constructed within the Bayesian framework
in §2.2.2, and finally review approximate inference techniques for BNNs in §2.2.3.

2.2.1 Bayesian inference

Let us once again consider a set of N observations of training data {Xtrain,Ytrain} =

{(x1, y1),..., (xN , yN)}, where xi 2 RD and yi 2 RP , that is generated by some underlying
statistical process. Within the Bayesian inference framework, suppose that we can approx-
imate this underlying data-generating process with some function y = f

✓(x) + ✏, where the
true value of the parameter ✓ 2 ⇥ is unknown and ✏ ⇠ N (0, �2) with some variance �

2.
Further supposing that we have some pre-existing knowledge about ✓, we can represent our
belief about the value of ✓ before any data is observed with some prior distribution p(✓).
Then, ws define the likelihood function p(Y|X, ✓) that represents how the outputs are gen-
erated from the inputs based upon our proposed probabilistic model y = f

✓(x) + ✏, which is
parameterized by ✓. In this vein, we can think of the likelihood as representing the likeliness
that a model with some specific parameters ✓ generated our data (where Gaussian likelihood
is typically used for regression and softmax likelihood for classification).

Using the prior and the likelihood, we compute a posterior distribution describing the
probability of ✓ 2 ⇥ according to Bayes’ rule:

p(✓|X,Y) =
p(Y|X, ✓)p(✓)

p(Y|X)

The posterior distribution represents our belief about the value of ✓ after data is observed,
and analytically or approximately computing it is at the heart of Bayesian inference. Indeed,
in order to make a prediction about the distribution of an output y⇤ corresponding to some
new input x⇤, we marginalize over the posterior to obtain the predictive posterior,

p(y⇤|x⇤
,X,Y) =

Z
p(y⇤|x⇤

, ✓)p(✓|X,Y)d✓.

Because this marginalization often cannot be done analytically, it is common to sample ✓

from p(✓|X,Y) and approximate the posterior predictive:

p(y⇤|x⇤
,X,Y) = Ep(✓|X,Y) [p(y

⇤|x⇤
, ✓)]

⇡ 1

S

SX

s=1

p(y⇤|x⇤
, ✓s), ✓s ⇠ p(✓|X,Y)
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Another component of the posterior that is core to the inference process is the denomi-
nator, also known as the marginal likelihood or model evidence:

p(Y|X) =

Z
p(Y|X, ✓)p(✓)d✓.

Although analytically computing the marginal likelihood is feasible for simple models
such as Bayesian regression, the marginal likelihood is high-dimensional and difficult to
compute—or intractable altogether—for models that are even somewhat more complicated.
As a result, the posterior is often expressed as proportional to the prior and likelihood,

p(✓|X,Y) / p(Y|X, ✓)p(✓),

It then becomes necessary to compute the posterior through approximate inference ap-
proaches, and the marginal likelihood p(Y|X), which is not dependent on ✓, is treated as a
normalizing constant. This is indeed the case for neural networks and the primary constraint
limiting the practicality of BNNs. We discuss the most common methods for approximate
inference in section §2.2.3 after describing the structure of BNNs in §2.2.2 and further con-
textualizing the difficulty of accurate inference.

2.2.2 Bayesian neural networks

Bayesian neural networks (BNNs) are constructed by placing prior distributions on the
weights in the general neural network framework in §2.1. Likelihood functions are selected
per the typical Bayesian approach, with Gaussian likelihood for regression and softmax like-
lihood for classification.

Given this, a BNN model for regression can be defined with

p(W) = N (0, �2
WI) (2.5)

p(y|x,W) = N (y; fW(x), �2
yI), (2.6)

where �
2
W is a scalar selected as the variance for the Gaussian prior, fW(x) is the output

of the neural network for an input x given W, and �
2
y is the model precision, which is also

commonly regarded as an estimate for aleatoric variance (to be discussed in §3.2.1).
By comparison, a BNN model for classification would retain the same prior p(w), but

the likelihood would instead be

p(y = c|x,W) =
exp

�
f
W
c (x)

�
P

c0 exp (f
W
c0 (x))

, (2.7)

where c denotes the label for the desired class and c
0 2 {1, ..., C} denotes the set of all

possible labels.
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Although expressing the model for a BNN is relatively straightforward, deriving an exact
posterior—which is proportional to hundreds, if not thousands, of priors on the network
weights and a likelihood function based upon those weights—is impossible. In fact, Sko-
rokhodov and Burtsev (2019) demonstrated that BNN posteriors are so complex that it is
possible to find two-dimensional projections that replicate any desired pattern therein. As
such, the primary practical challenge of using BNNs is using approximate inference methods
that are at once reliable in obtaining accurate representations of the posterior and scalable
to networks used for real-life applications.

2.2.3 Approximate inference techniques

"Approximate inference" in deep learning refers to the optimization process that is used to
approximate the otherwise intractable integration over model parameters. Broadly speaking,
traditional approximate inference for BNN posteriors can be categorized into two overarching
types of approaches: Markov chain Monte Carlo (MCMC) methods and variational inference
(VI). Although MCMC methods are considered a "gold standard" for inference, they do not
scale well to large datasets; as such, modern approximate inference relies primarily upon
recent developments in VI.

One additional category of methods encompasses Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) and Bayesian ensemble methods (Pearce, Zaki, Brintrup, Anastassacos,
et al., 2018), which have been proposed as approximate Bayesian inference approaches.
Because these approaches do not attempt to approximate the posterior of BNNs directly as
MCMC and VI do and instead apply stochastic sampling to traditional NNs, we consider
them "semi-Bayesian" for the purposes of this thesis.

We broadly survey all three types of approximate inference techniques in this section. We
then dedicate §4.2 to describing the mathematical details of the methods specifically used
in this thesis, which include one from each of the three categories of approximate inference
(HMC, BBB, and MC dropout).

Markov chain Monte Carlo methods

MCMC methods comprise a class of algorithms that sample from a distribution p(✓) by
constructing a Markov chain that has p as its unique equilibrium distribution (equilibrium
meaning that distribution satisfies stationary and limiting properties) and sampling from the
chain. While MCMC methods are commonly used for approximation of intractable integrals,
they are often highly inefficient in high dimensions, in which such samplers struggle to locate
areas of high mass in the target distribution p.
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Hamiltonian Monte Carlo (HMC) is one MCMC method that offers a solution to this
problem by incorporating principles from Hamiltonian dynamics (Neal et al., 2011). By
introducing a Hamiltonian dynamical system of potential energy, kinetic energy, and an
added set of momentum variables, HMC avoids the slow exploration of the state space
by proposing moves to distant states that are not correlated with the current state. This
increases the probability of acceptance for those proposals and requires fewer Markov Chain
samples for accurate approximation. However, while HMC is often cited as the ground truth
for inference in BNNs and is able to rapidly explore state spaces, it is majorly limited by slow
computation of the gradient of the potential energy function, which is needed to simulate
Hamiltonian dynamics, and suffers from its inability to scale to larger networks.

As a potential solution to HMC’s lack of scalability, Chen, E. Fox, and Guestrin (2014)
marry the notion of stochastic mini-batch gradient computation with Hamiltonian dynamics
to propose stochastic gradient HMC (SGHMC). SGHMC is an efficient stochastic approach
to Bayesian posterior sampling that adds a friction term to the momentum update in or-
der to retain stationarity at the target distribution. However, while SGHMC has payoffs in
its improved speed and explorative sampling, which are advantageous when approximating
complex, real-world distributions, the algorithm is not without tradeoffs. Because the added
friction parameter does not have existing heuristics and is not easily defined, it complicates
tuning and slows sampling, resulting in high burn-in times and demanding more precise pa-
rameterizations for the algorithm. Stochastic Gradient Langevin Dynamics (SGLD) (Welling
and Teh, 2011), another mini-batched version of HMC, and cyclical Stochastic Gradient
MCMC (R. Zhang et al., 2019), a generalization of SGHMC and SGLD that uses a cycli-
cal learning rate schedule, suffer from similar issues and are not theoretically guaranteed to
converge when the gradient noise is not well-estimated. For this reason, we limit the use of
MCMC methods in this thesis to HMC (which we review more closely in §4.2.1).

Variational inference

Because sampling methods are computationally expensive and slow to converge, there has
been extensive emphasis in the literature on developing variational methods as a more prac-
tical alternative.

At a high level, variational methods attempt to approximate a target posterior distribu-
tion. Given some target posterior distribution p(W|X,Y) where W 2 RI , we want to find
some variational distribution q✓(W), parameterized by ✓, that best approximates p. This
in turn requires selecting a family of variational distributions for approximating p and a
divergence measure to quantify the difference between p and q, which is typically selected to
be Kullback-Leiber (KL) divergence (Kullback and Leibler, 1951). The procedure known as
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variational inference entails the process of minimizing this divergence to optimize q.
The first attempts at variationally approximating the posterior of BNNs (Hinton and

Van Camp, 1993; Barber and Bishop, 1998) relied upon a fully factorized approximation of
q✓(W). While such methods form the foundation for more modern variational methods, they
scaled poorly due to difficulties in optimization that arose as a consequence of the intractable
log likelihood in multi-layer BNNs.

In response to this limitation, Graves (2011) proposed the idea of applying stochastic
sub-sampling techniques to the fully factorized approximation of q, which provided a way to
apply VI at scale. Blundell et al. (2015) further improved upon the gradient computation
described in Graves (2011) by proposing a method known as Bayes by Backprop (BBB),
which approximates the posterior with diagonal Gaussian distributions and uses a trick
to reparametrize the log likelihoood that was originally proposed in Kingma and Welling
(2013). Although the fully factorized Gaussian variational family used in BBB fails to
capture correlation among the weights in the posterior, we nevertheless implement and use
BBB in this thesis, as it is a standard for variational methods in the field. We further discuss
the technical details of BBB in §4.2.2).

There is a number of works that attempt to improve upon BBB. Probabilistic Back-
propagation (PBP) (Hernández-Lobato and Adams, 2015), Black-box ↵-Divergence (BB-↵)
(Hernández-Lobato and Adams, 2015), and functional variational BNNs (fvBNN) (Sun et
al., 2019) seek to capture important properties of the posterior distribution by using richer
families of divergence measures (Yao et al., 2019). Matrix Gaussian Variate priors (MVG)
(Louizos and Welling, 2016), Multiplicative Normalizing Flows (MNF) (Louizos and Welling,
2017), Bayes by Hypernet (BbH) (Pawlowski et al., 2017), and Noisy Kronecker-factored
Approximate Curvature (K-FAC) (G. Zhang et al., 2017) use structured variational families
with the intent of better capturing correlation in the posterior. As this work is not specially
focused on evaluating different variational methods, we do not implement these methods.

Monte Carlo dropout and Bayesian ensembling

Although dropout was originally proposed as a regularization method for neural networks
(§2.1.2), Gal and Ghahramani (2016) suggested turning on dropout during test time for
traditional NNs. Per this protocol, many stochastic forward passes sample from what is
effectively a distribution over the weights of the NN in an ensemble-like approach, thereby
creating a distribution for the posterior predictive from which it becomes possible to obtain
uncertainty estimates. We refer to this inference process as Monte Carlo dropout.

Although the mathematical premise underlying MC dropout is that the dropout objective
minimizes the KL divergence between the approximate distribution and the posterior of a
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deep Gaussian process (Gal and Ghahramani, 2016), critics have pointed out flaws with
MC dropout. One weakness of MC dropout is the need to tune the dropout rate p, which
typically requires a grid search. Moreover, because the dropout rate does not depend on the
data, the posterior predictive distribution is invariant to duplicates of the dataset (Osband,
Aslanides, and Cassirer, 2018). As such, the posterior achieved via MC dropout does not
concentrate asymptotically and, thus, some have claimed that MC dropout is not a true
Bayesian approximation (Osband, 2016). For this reason, we classify it as "semi-Bayesian,"
as mentioned earlier in this section. That being said, however, we acknowledge that MC
dropout is easy to implement and to scale, particularly when compared to other, more
complicated approximate inference methods. As such, because it is one of the most commonly
used approaches for obtaining uncertainty estimates, we use it as a staple in this thesis and
review it more closely in §4.2.3.

Finally, although ensemble methods are generally considered to be frequentist, Pearce,
Zaki, Brintrup, Anastassacos, et al. (2018) propose a way to modify traditional ensemble
approaches by regularizing parameters about values drawn from the prior distribution, which
they consider to be an anchor distribution. This approach, which is correspondingly called
anchored ensembling, corresponds to a Bayesian inference category known as randomized
MAP sampling (RMS). However, the authors note that anchored ensembling requires two
special conditions—perfectly correlated parameters and extrapolation parameters—for the-
oretical guarantee that the method will recover the posterior, implying that the basis for
applying RMS to NNs may be questionable. Although this thesis does not use Bayesian
ensembling, we implement two types of ensembles (which are described in §4.1) as two non-
Bayesian alternatives for obtaining uncertainty estimates.
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Chapter Three

Uncertainty in Deep Learning

Now equipped with an understanding of traditional and Bayesian deep learning, we will
review the different approaches for modeling and quantifying aleatoric and epistemic un-
certainty that we evaluate in this thesis. We discussed in the introduction the differences
between modeling uncertainty (i.e., the way we represent uncertainty as an inherent part of
the model) and quantifying uncertainty (i.e., the way in which we measure the amount of
uncertainty there is in a model). We note that this chapter is not exhaustive but, rather,
outlines only the approaches for modeling and quantifying uncertainty that are included in
this thesis. We refer the reader to §1.3 for a more high-level overview of how aleatoric and
epistemic uncertainty are treated in deep learning.

In order to contextualize our discussion about modeling and quantifying aleatoric and
epistemic uncertainty, §3.1 first discusses the language surrounding related types of uncer-
tainty that arise in deep learning. Then, §3.2 reviews the most common approaches used
for modeling aleatoric and epistemic uncertainty; we note that all of these approaches were
highlighted in §1.3. §3.3 reviews different approaches for quantifying aleatoric and epistemic
uncertainty, which includes classical statistical measures of variability that can be applied
to discrete distributions to estimate total uncertainty, "decompositions," (principled ways
of estimating aleatoric and epistemic uncertainty as complementary entities), and out-of-
distribution detection metrics. We note that none of the classical statistical measures of
variability are expressly intended to capture aleatoric or epistemic uncertainty, but we eval-
uate their use for classification, as they are flexible and easy to implement on top of existing
models and, to our knowledge, have not been systematically applied in the context of deep
learning.

3.1 Types of uncertainty

Taxonomies of uncertainty in deep learning literature often consider other types of uncer-
tainty in addition to aleatoric and epistemic uncertainty, many of which are semantically re-
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lated. Among the most commonly referenced types of uncertainty are data uncertainty, model
uncertainty, parameter uncertainty, in-between uncertainty, distributional uncertainty, and
approximation uncertainty. We can map these terms to our existing framework of aleatoric
and epistemic uncertainty.

Data uncertainty pertains to uncertainty that arises from inherent properties of the data
and describes how uncertain the relationship between two variables X and Y is, which might
be attributed to class overlap, label noise, and homoscedastic and heteroscedastic noise (to
be defined shortly in §3.2.1). Data uncertainty cannot be reduced with additional data and
can be considered equivalent to aleatoric uncertainty (Malinin and Gales, 2018).

Model uncertainty and parameter uncertainty are closely related and often conflated but
have important underlying differences. Model uncertainty pertains to the uncertainty about
how well a model is matched to the data, whereas parameter uncertainty pertains to the
uncertainty about the parameters of a model given some training data. Both can be reduced
with additional training data and can be considered types of epistemic uncertainty (Der
Kiureghian and Ditlevsen, 2009). Although it is important to recognize that the distribution
over weights in a neural network is epistemic, this thesis is primarily interested in functionally
computing estimates for epistemic uncertainty for prediction and, as such, does not focus in
depth on the uncertainty about estimates for individual weights.

In-between uncertainty pertains to the uncertainty that exists in between separated re-
gions of observations (Foong et al., 2019). We can consider this a type of epistemic uncer-
tainty and can synthetically create datasets that include in-between uncertainty by removing
data points in the middle of the data distribution.

Distributional uncertainty pertains to uncertainty that arises due to a mismatch between
the training and test distributions and describes cases in which a model cannot confidently
generalize to previously unseen test data (Malinin and Gales, 2018). Whereas Bayesian ap-
proaches often implicitly model distributional uncertainty as model uncertainty, Malinin and
Gales (2018) proposes a framework called Prior Networks, which we briefly reviewed in §1.3,
for distinctly handling distributional uncertainty. For the purposes of this thesis, however,
we do not explicitly consider Prior Networks. Instead, we broadly treat distributional uncer-
tainty as a form of epistemic uncertainty because it can be reduced with additional data and
acknowledge that the implications for handling distributional uncertainty differ from those
for handling model or parameter uncertainty. We also note that the concept of distributional
uncertainty is closely related to out-of-distribution (OOD) detection, which we review as an
approach for handling epistemic uncertainty in §3.3.3.

Approximation uncertainty arises from the inability of simple models to fit complex data
and pertains to the difference between model approximations and true output values, as in
the case of a basic linear regression (Tagasovska and Lopez-Paz, 2019). Tagasovska and
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Lopez-Paz (2019) further note that because neural networks can be considered universal
approximators (Cybenko, 1989), approximation uncertainty is negligible and can be omitted
in the context of deep learning. We accept this notion and do not consider approximation
uncertainty in this work.

3.2 Modeling aleatoric and epistemic uncertainty

The first two subsections of this section, §3.2.1 and §3.2.2, discuss approaches for modeling
aleatoric and epistemic uncertainty separately that originate from Bayesian deep learning
but can nevertheless be applied to traditional deep learning. The former applies to regression
and the latter applies to both regression and classification.

The third subsection, §3.2.3, describes an approach proposed in Kendall and Gal (2017)
that attempts to unify the approaches highlighted in §3.2.1 and §3.2.2 in a single framework.
Kendall and Gal (2017) propose variants for both regression and classification.

Then, §3.2.4 discusses modeling aleatoric uncertainty with quantile regression, which
is a more artisanal approach that differs from the preceding methods. We do not pair this
method with any model nor metric for epistemic uncertainty; it remains distinct and provides
a complementary perspective.

3.2.1 Aleatoric uncertainty as output variance in regression

The most common approach for modeling aleatoric uncertainty, as discussed in §1.3, is to
assume that the conditional distribution of the target variable is Gaussian and approximate
aleatoric uncertainty as noise that is learned by optimizing the per point model precision.
This can be done in both traditional and Bayesian deep learning.

In traditional deep learning, we follow the approach mentioned in §2.1.1 and assign one
output layer to estimate the variance of a Gaussian, such that f(x) = (µ̂, �̂2) is the output
of the NN and Equation 2.4 is the variance-dependent training objective.

By comparison, in Bayesian deep learning, we use the standard BNN model outlined in
Equation 2.5, where yi ⇠ N (fW(xi), �2

yI) and estimate the aleatoric uncertainity with the
model precision

ua(xi) = �̂
2
y(xi) (3.1)

However, one downside of this BNN approach is that it is equipped to model homoscedas-
tic but not heteroscedastic variance, unlike the aforementioned traditional deep learning
approach, in which the variance �̂

2 can be modeled as data-dependent.
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Homoscedastic and heteroscedastic variance describe different assumptions about the na-
ture of the noise in a dataset that is used for regression. Whereas homoscedastic variance
assumes that the variance �

2
y is identical for all inputs x, heteroscedastic variance assumes

that the variance �
2
y(xi) varies with the input xi. Although homoscedasticity is a common

assumption in many statistical models, it is important to design models that account for
heteroscedastic noise when certain regions of the domain exhibit more inherent variance
than others. Heteroscedasticity, in general, tends to be an important assumption for real-life
datasets in which we do not know the underlying data-generating process. As such, it is
important to use estimates of aleatoric uncertainty that model heteroscedasticity.

Modeling heteroscedastic variance in Bayesian neural networks

It is possible to adapt BNNs to model heteroscedastic aleatoric variance by constructing a
network that is split to predict the mean f

W(x) and the variance g
W(x), where we also

introduce some prior over the weights used for the variance. Then, the data-dependent like-
lihood can be expressed as yi ⇠ N (µ̂i, �̂

2
i ), where fW(xi) = µ̂i and g

W(xi) = �̂
2
i (Gal, 2016).

Naively speaking, we would then attempt to perform inference using one of the methods
described in §2.2.3 to approximate the resulting posterior, which would be proportional to
the likelihood and priors on the weights. The negative log of this posterior can be expressed
as

� log

 
p(W)

NY

i=1

p(yi|xi,W)

!
= � log p(W)�

NX

i=1

log p(yi|xi,W), (3.2)

where the negative log likelihood (NLL) can be further simplified

�
NX

i=1

log p(yi|xi,W) = �
NX

i=1

log

 
1p
2⇡�̂2

i

exp

 
�(yi � µ̂i)

2

2�̂2
i

!!

=
N

2
log (2⇡) +

1

2

NX

i=1

�
si + exp(�si) (yi � µ̂i)

2�
, (3.3)

where we set si = log �̂2
i to be the NN’s estimate for the variance for numerical stability.

While in theory it is possible to use HMC (§4.2.1) and BBB (§4.2.2) to approximate this
posterior, in practice we find that neither method is able to produce an accurate posterior
predictive. Empirically speaking, it is likely that minimization of the NLL in Equation
3.3 yields weights that produce abnormally large variance estimates si in order to minimize
exp(�si) (yi � µ̂i)

2, in turn allowing the predictive mean µi to deviate wildly from the ground
truth yi.

Thus, given the inability of HMC and BBB to accurately approximate the posterior of
the heteroscedastic aleatoric variance model, we instead opt to use MC dropout (§2.2.3), as
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proposed by Gal (2016). We adapt the NLL in Equation 3.3 to get the tractable minimization
objective

L(W,b) =
1

N

NX

i=1

1

2
exp(�si) (yi � µ̂i)

2 +
1

2
si, (3.4)

which we can use as our loss function in MC dropout.
We then model aleatoric uncertainty as the heteroscedastic variance

ua(xi) =
1

T

TX

t=1

�̂
2
i,t, (3.5)

where we average over T forward passes through the network.

3.2.2 Epistemic uncertainty as variance due to model sampling

Because epistemic uncertainty is most commonly conceptualized in terms of model and pa-
rameter uncertainty (as discussed in §3.1), the most typical approach for obtaining estimates
of epistemic uncertainty entails capturing the range of possible functions that a NN model
approximates. This is usually done by sampling from the model to generate different function
realizations, which can be visualized with a posterior predictive, and subsequently computing
the variance in these realizations as an estimate for epistemic uncertainty (Gal, 2016).

For a NN that performs regression and produces an output fW(xi) as an estimate for the
output yi, the epistemic uncertainty for the input xi can be expressed as the variance of the
model output fW(xi),

ue(xi) =
1

T

TX

t=1

�
f
Wt(xi)

�2 �
 

1

T

TX

t=1

f
Wt(xi)

!2

, (3.6)

where we stochastically sample from the model with T random passes (Gal, 2016). We note
that 1

T

PT
t=1 f

Wt(xi) is the predictive mean.
Although this is not proposed by Gal and Ghahramani (2016), we can also apply this

estimate to binary classification tasks, where we still use the model output fW(xi) = p̂i in
Equation 3.6, noting that the only difference functionally is that p̂i 2 [0, 1].

This estimate can also be extrapolated to multiclass classification in a principled way.
Considering that a NN used for classification outputs a C-dimensional probability vector pi

that contains the probabilities of an input being classified with a label in the set {1, ..., C},
we compute the variance of the neural network prediction p̂i,c for each class c and average
over all the classes, such that

ue(xi) =
CX

c=1

0

@ 1

T

TX

t=1

(p̂i,t,c)
2 �

 
1

T

TX

t=1

(p̂i,t,c)

!2
1

A , (3.7)
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where we are effectively we are averaging over the variance of C binomially distributed
random variables pi,c. Although this epistemic uncertainty estimate is based on Gal and
Ghahramani (2016), it is to our knowledge unprecedented in the literature and, as such, a
novel theoretical contribution.

Finally, we note that while the premise of estimating epistemic uncertainty based on
differences in model sampling was originally applied to BNNs, it can also be applied to
ensembles of deterministic neural networks. To use variance in model sampling as an estimate
for epistemic uncertainty in an ensemble, we stochastically sample T predictions for yi from
the distribution produced by the ensemble.

3.2.3 Combining aleatoric and epistemic uncertainty in one model

Kendall and Gal (2017) propose a model that combines the two preceding approaches to
model aleatoric uncertainty as heteroscedastic variance and epistemic uncertainty as variance
that exists due to model sampling.

For regression, we use the network described in 3.2.1, which is split to predict the mean
f
W(x) and the variance g

W(x). We place a distribution over the weights of this network
and fix a Gaussian likelihood to model aleatoric uncertainty. Then, we use MC dropout to
minimize the objective in Equation 3.4 and model aleatoric uncertainty with Equation 3.5
and epistemic uncertainty with Equation 3.6. We show that this is a generalization of the
law of total variance in §3.3.2.

Heteroscedastic classification

It is possible to extend the approach described above to classification by marginalizing over
intermediate heteroscedastic regression uncertainty placed over the logit space (Kendall and
Gal, 2017). This produces a heteroscedastic classification model different from any model
previously considered.

We set up a NN to output the C-dimensional vectors f
W
i and g

W
i corresponding re-

spectively to each label in a set {1, ..., C} for some input xi. Then, we place a Gaussian
distribution over this vector, such that

ẑi|W ⇠ N
⇣
f
W
i ,
�
�
W
i

�2⌘

p̂i = �(ẑi), (3.8)

where � is the softmax function as defined in Equation 2.7 and
�
�
W
i

�2 is a diagonal matrix
containing the entries of g

W
i . Then, we can interpret this representation to mean that

the model output f
W
i is corrupted with Gaussian noise with some variance

�
�
W
i

�2 at an
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"intermediate" stage before we apply the softmax function to obtain the final class prediction
vector p̂i.

We marginalize over the intermediate heteroscedastic uncertainty to obtain the expected
log likelihood

logEN (zi;fWi ,(�W
i )2) [p̂i,c] ,

where c is the observed class for an input xi. We approximate this log likelihood with Monte
Carlo integration by sampling from a normal distribution, yielding the loss function

L(W,b) =
NX

i=1

log

 
1

T

TX

t=1

exp

 
ẑi,t,c � log

X

c0

exp (ẑi,t,c0)

!!
, (3.9)

where
ẑi,t = f

W
i + �

W
i ✏t, ✏t ⇠ N (0, I)

and ẑi,t,c0 is the element corresponding to the c
0 class in the vector ẑi,t.

We model epistemic uncertainty with Equation 3.6 and can model aleatoric uncertainty in
a few different ways, firstly as proposed by Kendall and Gal (2017) and secondly as adapted
by Kwon et al. (2018) and Shridhar, Laumann, and Liwicki (2018). We also note that Kwon
et al. (2018) and Shridhar, Laumann, and Liwicki (2018) use the same approach as Kendall
and Gal (2017) for modeling epistemic uncertainty.

First, Kendall and Gal (2017) models aleatoric uncertainty with Equation 3.5, using
the intermediate heteroscedastic variance

�
�
W
i

�2. We note, however, because the aleatoric
uncertainty is modeled at an "intermediate" layer, this model is uniquely different from the
previously discussed approaches for regression that model hetereoscedastic aleatoric variance
at the final output. Given this unique model dependence for aleatoric uncertainty and lack
of tractable analytical representations that can be used with other Bayesian approximate
inference methods, we do not pair the heteroscedastic classification model with any methods
that we describe in §4 besides Monte Carlo dropout. Instead, we evaluate this as its own
end-to-end approach for estimating and quantifying aleatoric and epistemic uncertainty in
order to examine the implications of using this intermediate layer representation.

Kwon et al. (2018) similarly note that this approach is deficient because it models the
variance of the intermediate linear predictor ẑi rather than the predictive probability p̂i.
Given this, they claim that this approach does not consider that the covariance matrix of
the multinomial random variable

�
�
W
i

�2 is a function of the mean vector fWi and that the
estimate for aleatoric uncertainty does not account for correlations because the matrix is
diagonal. Instead, they model aleatoric uncertainty at the output layer with

ua(xi) =
1

T

TX

t=1

diag(p̂t)� p̂tp̂
T
t , (3.10)
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which we note is equivalent to computing the variance for the Bernoulli random variable
pi, c for each category c.

Shridhar, Laumann, and Liwicki (2018) similarly use Equation 3.10 to model aleatoric
uncertainty, but replace the softmax function used in Equation 3.8 with a normalized softplus
function, such that the entries in the vector p̂i are instead computed with

p̂i,c =
log (1 + exp(ẑi,c))P
c0 log (1 + exp(ẑi,c0))

.

Shridhar, Laumann, and Liwicki (2018) note that their rationale for using a normalized
softplus function is that the normalized softplus function more easily produces vectors that
are in practice zero, which in theory improves approximation for classification tasks. Whereas
the softmax function rarely outputs predictions of zero because it requires an input logit of
negative infinity to do so, the normalized softplus function only requires an input logit that
is roughly smaller than �4 to output zero.

3.2.4 Aleatoric uncertainty using quantile regression

Quantile regression methods, similar to the Gaussian variance approach discussed in §3.2.1,
are based upon the estimation of uncertainty in a conditional distribution of Y. However,
rather than modeling this conditional distribution using a Gaussian—which can only model
symmetric and unimodal noise—quantile regression methods attempt to model a distribution
function for Y using quantiles, which can more robustly describe the relationship between X

and Y at different points in the conditional distribution and thus are capable of capturing
asymmetry, multimodality, and heteroscedasticity.

A few different applications of quantile regression in deep learning attempt to model
uncertainty in conditional distributions of the target variable (White, 1992; Taylor, 2000;
Tagasovska and Lopez-Paz, 2019). Of these methods, we implement and evaluate the most
modern and flexible model proposed by Tagasovska and Lopez-Paz (2019), called Simultane-
ous Quantile Regression (SQR). The remainder of this section reviews the technical details
of SQR as outlined in Tagasovska and Lopez-Paz (2019).

Simultaneous Quantile Regression

Let F (y) = p(Y  y) be the CDF of the target variable Y and F
�1(⌧) = inf{y : F (y) � ⌧}

be the quantile distribution function of Y for all quantile levels 0  ⌧  1. Then, the goal
of quantile regression is to construct a model ŷ = f̂⌧ (x) that approximates the conditional
distribution function y = F

�1(⌧ |X = x).
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The traditional approach to construct such a model is to use the pinball loss,

`⌧ (y, ŷ) =

(
⌧(y � ŷ), if y � ŷ � 0,

(1� ⌧)(ŷ � y), otherwise,

which provides a theoretical basis for SQR.
Then, the optimal quantile distribution f̂⌧ that minimizes this loss can be computed with

f̂⌧ 2 argmin
f

1

N

NX

i=1

`⌧ (f(xi),yi) . (3.11)

Tagasovska and Lopez-Paz (2019) propose estimating all of the quantile levels ⌧ for this loss
function simultaneously with

f̂ 2 argmin
f

1

N

NX

i=1

E
⌧⇠U(0,1)

[`⌧ (f⌧ (xi),yi)] ,

which is solved in practice by sampling ⌧ ⇠ U(0, 1) and using stochastic mini-batching.
This resulting function f̂⌧ (x) models the conditional distribution of y given some input x.
Aleatoric uncertainty can then be modeled with a 1�↵ prediction interval around the median
estimate produced by f̂⌧ (x),

ua(xi) = f

⇣
xi, 1�

↵

2

⌘
� f

⇣
xi,

↵

2

⌘
. (3.12)

One SQR model constructed in this fashion captures the entire conditional distribution
of Y. Moreover, because no ensembling or approximate inference is required, SQR—which is
deployed with a standard deterministic NN—is attractive from a computational standpoint.

3.3 Quantifying aleatoric and epistemic uncertainty

We consider three categories of approaches for quantifying uncertainty in this section.
The first is traditional measures of variability for categorical data, which generally pro-

duce estimates for total uncertainty. By coupling them with one of the decompositions
described in §3.3.2, we show how many of these metrics can be used to arrive at separate
estimates for aleatoric and epistemic uncertainty.

The second category is decompositions—i.e., ways to decompose total uncertainty into
its aleatoric and epistemic components based on statistical theory and principles. We apply
the first decomposition to the measures of variability for categorical data and demonstrate
that the second decomposition is a generalization of previously discussed approaches in §3.2.

Finally, the third category is out-of-distribution (OOD) detection metrics, which can be
considered as proxies for epistemic uncertainty.
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3.3.1 Measures of variability for categorical data

Although literature from classical statistics and adjacent disciplines has proposed many
different variability measures for summarizing categorical data, few measures have achieved
widespread acceptance by practitioners (Allaj, 2018). We consider four measures in this
thesis, all of which—by their nature—can be applied only in a classification setting.

The first two—variation ratio and predictive entropy—have been applied in a deep learn-
ing context (Gal, 2016). The latter two—the Gini-Simpson index and a closely related
measure to which we will refer as the Allaj index (Allaj, 2018)—are functions of the relative
frequencies of the different categories in a distribution and are not typically considered in
deep learning. We explore application of these metrics in a classification setting in an ef-
fort to examine whether there are statistical alternatives to predictive entropy that exhibit
different properties.

Variation ratio

Variation ratio is a measure of dispersion that is defined as the proportion of cases that are
not in the modal category,

VR[x] = 1� fx

T
, (3.13)

where fx is the number of cases with the mode and T is the total number of cases (Freeman,
1965). In a deep learning context, we collect T stochastic samples from the distribution
produced by a neural network and treat fx =

P
t 1 [yt = c

⇤] as the number of times the
modal class c⇤ was sampled. We note that variation ratio has a minimum of 0 and maximum
of 0.5 in the case of binary classification.

Predictive entropy

Predictive entropy is a metric that stems from information theory and attempts to capture
the amount of information inherent in a predictive distribution (Shannon, 1948). It is defined
as

H[y|x,W] = �
CX

c=1

p(y = c|x,W) log p(y = c|x,W) (3.14)

and is maximized when all classes are equally probable and minimized with a value of 0
when one class has a probability of 1.
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Gini-Simpson index

The Gini-Simpson index was originally proposed as a statistical formula (Gini, 1912) and
later extended to ecology to be used as a measure of biodiversity (Simpson, 1949). We can
define it in the context of deep learning as

GS[y|x,W] = 1�
CX

c=1

p(y = c|x,W)2, (3.15)

where the index is maximized and minimized similarly to predictive entropy.

Allaj index

We coin the term "Allaj index" to refer to the measure proposed in Allaj (2018), which is
closely related to the Gini-Simpson index. We define it in the context of deep learning as

A[y|x,W] = 1�
 

CX

c=1

p(y = c|x,W)2
! 1

2

, (3.16)

noting that it is also maximized and minimized similarly to predictive entropy.

3.3.2 Decompositions

Depeweg et al. (2017) propose the notion of decomposing uncertainty into its aleatoric and
epistemic components in a principled way in the context of BNNs with latent input variables
(BNN+LV), a family of models introduced in Depeweg et al. (2016) to describe complex
stochastic patterns.

The first decomposition is based upon conditioning on a specific value of W to arrive at
an estimate of mutual information from the predictive entropy (as defined in §3.3.1), which
was first proposed in Houlsby et al. (2011) in the context of deep learning. The second
deecomposition is based upon the law of total variance (LOTV).

Instead of relying on the BNN+LV model, we extend these decompositions to the more
general context of NNs that allow us to model outputs with predictive distributions (i.e.,
either Bayesian or ensemble methods). For the first decomposition, we entertain the pos-
sibility of using the Gini-Simpson index and Allaj index as an alternative to the predictive
entropy. For the second decomposition, we demonstrate that the law of total variance is a
generalization of the approaches proposed by Gal (2016), Shridhar, Laumann, and Liwicki
(2018) and Kwon et al. (2018) (as described in §3.2.3).
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Conditioning and mutual information

The total uncertainty present in a probability distribution p(y⇤|x⇤) can be quantified in
terms of predictive entropy with H[y⇤|x⇤] (Depeweg et al., 2017). Then, in the context of a
deep learning model that seeks to approximate p(y⇤|x⇤) with some parameters W, we can
remove the parameter uncertainty by conditioning on a specific value of W. We do this in
a principled way by taking the expectation of the the conditional predictive entropy under
p(W|X,Y), producing

ua(x
⇤) = Ep(W|X,Y) H[y⇤|x⇤

,W] (3.17)

as an estimate for the aleatoric uncertainty present in p(y⇤|x⇤), as we have now removed the
uncertainty about the parameters, which we think of as a source of epistemic uncertainty.

We can then quantify the epistemic uncertainty by taking the difference between the
total and aleatoric uncertainty,

ue(x
⇤) = H[y⇤|x⇤]� Ep(W|X,Y) H[y⇤|x⇤

,W], (3.18)

which is also known as the mutual information between the prediction y
⇤ and the posterior

over the model parameters W (Houlsby et al., 2011). Mutual information is maximized on
points for which the model is generally uncertain but for which there are still parameters W
that produce incorrect predictions with a high level of confidence (Gal, 2016).

In this work, we propose a novel extension of the above decomposition—marginalizing
over W to obtain an estimate for aleatoric uncertainty—to other measures of variability
in categorical data. In principle, given that predictive entropy is a measure of dispersion
that is structurally similar to the Gini-Simpson index and the Allaj index (§3.3.1), we can
marginalize over W as described above to yield the aleatoric and epistemic components of
these indices. For the Gini-Simpson index, we can express this with

ua(x
⇤) = Ep(W|X,Y) GS[y⇤|x⇤

,W] (3.19)

ue(x
⇤) = GS[y⇤|x⇤]� Ep(W|X,Y) GS[y⇤|x⇤

,W], (3.20)

where total uncertainty is the sum of ua(x⇤) and ue(x⇤).
To obtain this decomposition for the Allaj index, we simply substitute GS[ · ] with A[ · ]

in Equation 3.19. We note that we do not apply this decomposition to the variation ratio
because it is a metric that is computed based upon proportion of samples not in the modal
category and for which we therefore cannot condition upon W.

Law of total variance

Depeweg et al. (2017) further proposes using the law of total variance (LOTV) to quantify
the total uncertainty in a distribution. Letting �

2(·) represent variance, we can decompose
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the total uncertainty in a probability distribution p(y⇤|x⇤) with

�
2(y⇤|x⇤) = Ep(W|X,Y)[�

2(y⇤|x⇤
,W)]

| {z }
ua(x⇤)

+ �
2
p(W|X,Y) (E[y⇤|x⇤

,W])
| {z }

ue(x⇤)

. (3.21)

The first term Ep(W|X,Y)[�2(y⇤|x⇤
,W)] represents the average value of �2(y⇤|x⇤) over the

posterior for W. Because it ignores any contribution to the variance of p(y⇤|x⇤) from W

and continues to exist even as we obtain more data and the posterior for W concentrates, it
represents the aleatoric uncertainty.

The second term �
2
p(W|X,Y)E[y⇤|x⇤

,W] represents the uncertainty that exists in p(y⇤|x⇤)

due to variance in W—i.e., epistemic uncertainty. As we gather data and the posterior for
W concentrates, this variance goes to 0, indicating that epistemic uncertainty disappears as
desired.

Considering this decomposition more deeply, we realize that it is mathematically equiv-
alent to the traditional ways of modeling aleatoric and epistemic uncertainty that are de-
scribed in §3.2.1, §3.2.2, and, by extension, §3.2.3. Indeed, Equation 3.5, which computes
the aleatoric uncertainty as the average heteroscedastic variance over T stochastic samples
from the model, corresponds to the first term ua(x⇤) in Equation 3.21 above. Similarly,
Equation 3.6, which computes the epistemic uncertainty as the variance that exists due to
stochastically sampling T different W, corresponds to the second term ue(x⇤) in Equation
3.21. For regression, we semantically refer to the approach described in these sections as the
law of total variance (LOTV) as proposed by Kendall and Gal (2017).

For classification, we semantically refer to the three approaches used for the heteroscedas-
tic classification model in §3.2.3 as the LOTV as proposed by Kendall and Gal (2017),
Shridhar, Laumann, and Liwicki (2018), and Kwon et al. (2018) respectively.1

3.3.3 Out-of-distribution detection

Although the literature on out-of-distribution (OOD) detection is broad and draws from
a number of disciplines, we focus our implementation on some of the most well known
approaches in machine learning, noting that all of these metrics can be treated as estimates
for epistemic uncertainty.

It is important to note that, in general, the literature on OOD detection is focused pri-
marily on classification, whereby traditional classification datasets are split into "in-domain"

1Technically speaking, because Kendall and Gal (2017) model aleatoric uncertainty as heteroscedastic
variance at an interemediate layer rather than the output layer in the heteroscedastic classification model,
their proposed approach for classification is not formally a generalization of the LOTV (which computes the
variance of the true output). However, we refer to it as such for ease of reference.
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and "out-of-domain" classes. Far fewer papers, by comparison, propose methods for OOD
detection for regression, which by definition lacks a formal way to define what is or is not
out-of-domain.

While some novel literature has attempted to model in-distribution features in regression
with generative models (such as simple Gaussian mixture models) and claim to achieve state-
of-the-art OOD detection results, they are not well documented or reviewed. For this reason,
we do not consider them in the scope of this work.

Instead, we consider the following OOD detection metrics, the first five of which are
model-agnostic metrics that are simple to implement on top of existing architectures. The
first (real distance) is exclusive to regression. The second (last layer distance) can be used
for both regression and classification. The third, fourth, and fifth (largest softmax score,
functional margin, and Gaussian) are exclusive to classification. Finally, the last approach,
Orthonormal Certificates, is a more computationally costly, comparatively artisanal approach
that can be applied to both regression and classification but that we evaluate only for re-
gression in this work.

Real distance

We compute the smallest distance from an input xi to the points in the training data Xtrain.
Larger values are interpreted as reflect greater uncertainty. While it is possible to use any
norm in theory, we evaluate only the Euclidean norm in this work.

Last layer distance

We compute the smallest distance from the NN’s last layer representation of an input xi to
the last layer representation of the points in the training data Xtrain, where larger values
reflect greater uncertainty. We again limit ourselves to the Euclidean norm.

Largest softmax score

We take the largest logit prediction for a given class for an input xi and treat it as a proxy for
uncertainty, where (unlike our preceding two metrics) larger values indicate less uncertainty.

Functional margin

We compute the difference between the two largest logit predictions for an input xi and
treat it as a proxy for uncertainty. Similar to largest softmax score, larger values indicate
less uncertainty. We note that for the case of binary classification, this metric produces a
very similar representation of uncertainty as largest softmax score.
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Gaussian covariance

We fit a Gaussian to the NN’s last layer representation of an input xi and use its covariance
as a proxy for epistemic uncertainty, where greater values indicate more uncertainty.

Orthonormal Certificates

Orthonormal Certificates (OCs), as proposed by Tagasovska and Lopez-Paz (2019), are a
collection of diverse, non-constant functions that attempt to map training samples to zero
and OOD examples to non-zero values. Per this approach, larger values reflect greater
epistemic uncertainty. We review the technical details of OC as outlined in Tagasovska and
Lopez-Paz (2019).

Let � = {�(xi)}Ni=1 be a high-level representation of training examples. Then, we can
train a collection of certificates C = (C1, . . . , CK), where each certificate Cj is a simple NN
that is trained to map the training dataset � to zero by minimizing some loss `c (which can
be a typical loss function such as MSE). Then, epistemic uncertainty can be defined as

ue(xi) =
��CT

�(xi)
��2 , (3.22)

which should evaluate to zero near the training distribution and to high values for inputs far
from the training distribution.

We can implement k certificates on top of an h-dimensional representation of the training
examples xi as a single h⇥ k layer, which would output a k-dimensional vector when paired
with some loss `c. We note that the loss function `c is generally specified to be the same one
that is used in the learning task.

Then, our OCs can be constructed with

Ĉ 2 argmin
C2Rh⇥k

1

N

NX

i=1

`c

�
C

T
�(xi), 0

�
+ �

��CT
C � Ik

�� , (3.23)

where � is a rate set to impose an orthonormality constraint between certificates so that the
certificates are diverse and non-constant.

While OCs can be applied to both regression and classification, we apply them only
to regression in this thesis and use the previously discussed distance-based estimators of
epistemic uncertainty for classification. Tagasovska and Lopez-Paz (2019) note that when
MSE is selected as the loss `c, the OCs seek the the directions in the data with the lowest
variance and, by extension, estimate the least-variant components of the training features.
This can be interpreted in terms of Principal Component Analysis (PCA) as corresponding
to the principle components that are associated with the smallest singular values of the
training features.
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Chapter Four

Models and Inference Methods

In recent years, the field of deep learning has witnessed an abundance of novel proposals for
scalable and practical inference methods that can be used to approximate models and obtain
estimates of predictive uncertainty (with many of the approaches for Bayesian NNs reviewed
in §2.2.3). While the rapid increase in the number of inference methods is at once exciting and
promising for the field, there is limited existing literature focused on directly evaluating and
comparing the uncertainty estimates produced for models that are approximated using these
methods. Yao et al. (2019), for one, computes the quality of predictive uncertainty estimates
in terms of commonly used metrics (MSE, NLL, PICP, MPIW) for models approximated
with ten of the most common inference methods, but there is no existing work evaluating
how other uncertainty metrics are affected by selection of inference methods, at least at the
time that this thesis was written.

As such, as mentioned in the introduction, although the overarching goal of this work
is primarily to evaluate different metrics for aleatoric and epistemic uncertainty, one of the
supporting objectives is to assess the quality of these metrics when coupled with different
inference methods. This, in turn, will provide practical knowledge as to which end-to-end
frameworks (meaning model, method, and metric) for quantifying aleatoric or epistemic
uncertainty are most useful.

We consider seven different approaches, which we can categorize under the broad philo-
sophical umbrella of frequentist or Bayesian approaches.

1. The first model is a basic deterministic NN. For regression, the NN can output a
pointwise prediction ŷ or, alternatively, output the mean and variance of a normal
distribution (µ̂, �̂2), as described in §2.1.1; we refer to this latter type of NN seman-
tically as a "probabilistic NN" for the remainder of this thesis. For classification, the
NN outputs a pointwise sigmoid probability p 2 (0, 1); we note that we can treat this
as a proxy for aleatoric uncertainty, simply assuming that a model is more confident
the closer p is to 0 or 1. Because we reviewed traditional NNs—which are neither
frequentist nor Bayesian, strictly speaking—in §2.1, we do not discuss them in this
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chapter.

2. The next two models are two variants of ensemble approaches—traditional ensembles
and deep ensembles (Lakshminarayanan, Pritzel, and Blundell, 2017)—which are rep-
resentative of a frequentist view of uncertainty.

3. The next three—Hamiltonian Monte Carlo (HMC), Bayes by Backprop (BBB), and
Monte Carlo (MC) dropout—are inference methods that correspond to the three cat-
egories of Bayesian approximate inference for BNNs reviewed in §2.2.3.

4. Finally, the last model, known as the neural linear (NL) model, probabilistically models
the weights only in the last layer of the NN and otherwise handles the preceding weights
as in a traditional NN, thereby treating the rest of the network as a feature extractor.
This model can also be regarded as applying Bayesian linear regression to the last
layer.

We do not use all seven approaches for all of our experiments. Some, such as the deter-
ministic NNs, are insufficiently expressive to distinguish aleatoric and epistemic uncertainty,
and others, such as HMC and BBB, do not scale to large datasets. Note that two of the
models—deep ensemble and the neural linear model—can only be applied to regression tasks.

4.1 Ensembles

Ensemble methods are based upon the premise of training many neural networks on the
same data, relying on the stochasticity inherent in weight initialization and the training
process to produce variance in the models’ predictions. While the traditional ensemble
approach models a distribution by combining the deterministic, pointwise outputs of many
differently configured NNs (Hansen and Salamon, 1990), a number of more recent works
have proposed averaging over the outputs of NNs that estimate the mean and variance of a
normal distribution, as described in 2.1.1 (Osband, Blundell, et al., 2016; Lakshminarayanan,
Pritzel, and Blundell, 2017; Tagasovska and Lopez-Paz, 2018). We implement and discuss
both approaches here, referring to the first as traditional ensembles and to the second as
deep ensembles.

4.1.1 Traditional ensembles

Traditional ensembles are simple to implement: we trainM networks, each of which produces
pointwise estimates for ŷ, on the same data (which is randomly sampled or bootstrapped),
randomly initializing weights for each of them. The collection of estimates is treated as a

45



distribution and we compute the mean by averaging over the M estimates uniformly; this is
also referred to as bootstrap aggregation or bagging.

While traditional ensembles are straightforward and practical, Yao et al. (2019) note that
they fail to produce desirable uncertainty estimates because they rely on model diversity. In
other words, because training objectives for ensemble methods do not inherently incorporate
model diversity, it is possible that multiple models find similar local optima and resultantly
produce poor uncertainty estimates. Problems with initialization may further contribute to
this shortcoming.

4.1.2 Deep ensembles

Deep ensembles, also known as probabilistic ensembles, use the same approach as that of
traditional ensembles but instead average over NNs that model normal distributions (which
were described in §2.1.1. The ensemble is treated as a uniformly-weighted mixture model in
which the predictions are combined per

p(y|x) = 1

M

MX

i=1

p✓m(y|x, ✓m),

where p✓m and ✓m correspond to the output of the m-th model (Lakshminarayanan, Pritzel,
and Blundell, 2017). As such, deep ensembles for classification simply average over the
predicted probabilities and thus do not differ from the previously described traditional en-
sembles. By comparison, a deep ensemble for regression, in which we assume the use of a
normal for the likelihood, produces a mixture of normal distributions

1

M

MX

i=1

N
�
µ✓m(x), �

2
✓m(x)

�
,

for which the mean and variance of the mixture are given by

µ(x) =
1

M

MX

i=1

µ✓m(x)

�
2(x) =

1

M

MX

i=1

�
�
2
✓m(x) + µ

2
✓m(x)

�
� µ

2(x)

respectively (Lakshminarayanan, Pritzel, and Blundell, 2017). Given this, we implement
deep ensembles only for regression and not classification.

Lakshminarayanan, Pritzel, and Blundell (2017) argue that this method produces well-
calibrated uncertainty estimates that are on par with BNNs, but note that there is further
potential for improvement by de-correlating networks’ predictions or optimizing ensemble
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weights. Given that this method presumably captures both aleatoric and epistemic uncer-
tainty when paired with the law of total variance decomposition discussed in §3.3.2, we
include it for evaluation and comparison with the others.

4.2 Bayesian models and inference methods

4.2.1 Hamiltonian Monte Carlo

We review MCMC methods as a class of approximate inference techniques (which include
HMC) for BNNs in §2.2.3. Here, we review the technical details of HMC as developed by
Neal et al. (2011).

Let p(✓) be a target posterior distribution with ✓ 2 RD. Then, at a high level, the goal
of HMC is to use Hamiltonian dynamics to sample from p(✓) for parameters ✓. In order
to do this, we introduce an auxiliary momentum variable ⇢, which is typically selected to
be a multivariate normal that is independent of ✓, and sample from the joint distribution
p(⇢, ✓) = p(⇢|✓)p(✓).

The physical properties of this system can be described with a function known as the
Hamiltonian,

H(⇢, ✓) = � log p(⇢, ✓)

= � log p(⇢|✓)� log p(✓)

= K(⇢|✓) + U(✓),

where K(⇢|✓) = � log p(⇢|✓) is the kinetic energy function and U(✓) = � log p(✓) is the
potential energy function. Then, how this system changes over time is described by the
partial derivatives of H:

d✓

dt
=

@H

@⇢
=

@K

@⇢
,

d⇢

dt
= �@H

@✓
= �@U

@✓

We approximate the dynamics represented by this differential equation by using the leap-
frog integrator, a numerical integration algorithm that is reversible and volume-preserving,
two special properties of Hamiltonian dynamics. The leapfrog integrator takes discrete time
steps of some specified size ✏. For each step, it samples a random momentum from K(⇢|✓) =
K(⇢) ⇠ N (0,M), where M = mID⇥D is a matrix representing the mass of the system. Then,
the leap-frog integrator simulates Hamiltonian motion with L leap-frog steps for each time
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step ✏ by iteratively updating the momentum with half-steps and the position with full steps:

⇢  ⇢� ✏

2

@U

@✓

✓  ✓ + ✏
1

m
⇢

⇢  ⇢� ✏

2

@U

@✓

Because the approximation of the leap-frog numerical integrator is inexact, we apply a
Metropolis-Hastings acceptance step to correct for simulation error. The probability ↵ of
accepting a new sample (⇢⇤, ✓⇤) generated from an old sample (⇢, ✓) is computed as

↵ = min (1, exp{H(⇢, ✓)�H(⇢⇤, ✓⇤)}) ,

where the old sample is used again if the new sample is not accepted.
The HMC algorithm begins with some random position ✓

(0) and proceed to sample ✓
(k)

for a given number of iterations k according to the process specified above. In short, the
position ✓ is updated with some randomly sampled momentum ⇢ according to the properties
of Hamiltonian dynamics, which are approximated numerically with a leap-frog integrator.

4.2.2 Bayes by Backprop

Bayes by Backprop (BBB) (Blundell et al., 2015) and other variational methods, as reviewed
in §2.2.3, seek to approximate the target posterior distribution p(W|X,Y) ofo a BNN with
a variational distribution q✓(W), where ✓ represents the parameters we wish to optimize.

The core of variational approaches is therefore to find some ✓
⇤ that minimizes the

Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between q✓(W) and p(W|X,Y),
i.e., such that

✓
⇤ = argmin

✓
KL
⇥
q✓(W) || p(W|X,Y)

⇤
,

where KL divergence, also known as relative entropy, is defined as

KL
⇥
q✓(W) || p(W|X,Y)

⇤
=

Z
q✓(W) log

q✓(W)

p(W|X,Y)
dW

and, since the above integral is intractable and must be approximated using repeated sam-
pling, is often expressed in terms of expectation:

KL
⇥
q✓(W) || p(W|X,Y)

⇤
= Eq✓(W)


q✓(W)

p(W|X,Y)

�
. (4.1)
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We note that minimizing the KL divergence is equivalent to maximizing the evidence
lower bound (ELBO), or variational lower bound, subject to a KL complexity term on the
parameters of the network. This yields the variational objective

L(✓) = Eq✓(W)

⇥
log p(Y|X,W)

⇤
�KL

⇥
q✓(W) || p(✓)

⇤
, (4.2)

where the first term ensures that the variational distribution q✓(W) represents the data well
and the second term acts as a penalty that limits the extent to which q✓(W) can deviate
from the prior p(W).

In order to find the optimal variational parameters, it is necessary to take the gradient
of the ELBO with respect to ✓. This, however, is not trivial to compute, as the gradient
cannot be pushed into the expectation, which is also taken with respect to ✓. As such, in
order to perform this computation, we use the reparametrization trick proposed by Kingma
and Welling (2013) and perform BBB.

Let us assume that we are using the mean-field Gaussian variational family, such that
q(W|µ,⌃) = N (W;µ,⌃). Then, instead of sampling W ⇠ q(W|µ,⌃), we can sample
✏ ⇠ N (0, I) and set the network parameters to W = µ + ✏

T
⌃

1/2, where I and ⌃ have the
same dimensions. We then perform backpropagation ass normal and take the gradients of
f(✏) = µ + ✏

T
⌃

1/2 with respect to W, µ,⌃. Finally, we can update our parameters µ,⌃

according to these gradients,

µ  µ� ⌘

✓
@f

@W
+

@f

@µ

◆

⌃  ⌃� ⌘

✓
@f

@W

✏

⌃
+

@f

@⌃

◆
,

where ⌘ is the learning rate. Practically speaking, we initialize with µ
(0)
,⌃

(0) and iterate
BBB for a given number of iterations k to achieve parameters closer to the optimal µ⇤

,⌃
⇤

that maximize the ELBO.

4.2.3 Monte Carlo dropout

Per Monte Carlo (MC) dropout, as described in 2.2.3 and proposed by Gal and Ghahramani
(2016), we train a traditional NN with dropout, where individual units in a layer i are
retained with some probability pi, effectively applying an independent random Bernoulli
mask to the units. Then, instead of turning off dropout for inference, we apply it as we
sample from the NN with T stochastic forward passes. The resulting distribution of the
outputs from these T passes is the posterior predictive, from which it becomes possible to
compute uncertainty estimates.
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Gal and Ghahramani (2016) further note that because the dropout objective minimizes
the KL divergence between an approximating distribution and the posterior of a deep Gaus-
sian process, a NN with dropout applied before every layer is mathematically equivalent
to an approximation of a deep Gaussian process (Damianou and Lawrence, 2013). It is
possible to perform moment-matching and estimate the first two moments of the predictive
distribution empirically with the sample mean and variance:

1

T

TX

i=1

f
Ŵt(x⇤)

T�1���!Eq✓(W)[y
⇤]

⌧
�1
I+

1

T

TX

i=1

f
Ŵt(x⇤)TfŴt(x⇤)� Ẽ[y⇤]TẼ[y⇤]

T�1���!Varq✓(W)[y
⇤]

where f
W(x⇤) is the NN output for some input x⇤, p(y⇤|fW(x⇤)) = N (y⇤; fW(x⇤), ⌧�1

I), ⌧
is the model precision, Ŵt ⇠ q✓(W), and q✓(W) is the approximate distribution.

We note that this particular version of MC dropout described here assumes homoscedastic
variance, but MC dropout can be extended to incorporate heteroscedasticity as proposed by
Kendall and Gal (2017) and discussed in §3.2.1.

4.2.4 Neural linear model

The neural linear (NL) model, in which we perform exact inference on the last layer of
weights in a NN and treat the remainder of weights as hyperparameters, is a more tractable
alternative to BNNs that has been used in Bayesian optimization, active learning, and re-
inforcement learning (Snoek et al., 2015; Riquelme, Tucker, and Snoek, 2018; Pinsler et al.,
2019; Ober and Rasmussen, 2019). In general, the NL model can be thought of as an approx-
imation for a full BNN that is computationally advantageous and competitive in performance
with BBB and MC dropout but that requires substantial hyperparameter tuning (Ober and
Rasmussen, 2019).

Given a set of N observations of training data {Xtrain,Ytrain} = {(x1, y1),..., (xN , yN)},
where xi 2 RD and yi 2 R, let the outputs of the last hidden layer of the NN, which are
parameterized by all the preceding weights ✓, be represented with the matrix

�✓ = [�✓(x1), . . . ,�✓(xN)]
T
.

Then, our model is defined as

Y = �✓W + ✏, ✏ ⇠ N (0, �2
IN+1),

where W includes a bias term and each �✓(x) is augmented with a one to account for this
term. We use a normal prior for the weights p(W) ⇠ N (0,V0). Then, it follows that the

50



posterior can be expressed as

p(W|X,Y, �
2) = N (W|WN ,VN)

/ N (W; 0,V0)N (Y;�✓W, �
2
IN+1),

where the mean and variance respectively are given by

WN =
1

�2
VN�

T
✓ Y

VN =

✓
V

�1
0 +

1

�2
�T

✓ �✓

◆�1

.

The posterior predictive distribution for an input x⇤ therefore is

p(y⇤|x⇤
,X,Y, �

2) = N (y⇤;WT
N�✓(x

⇤), �2 + �✓(x
⇤)TVN�✓(x

⇤)).

There are a number of ways to learn the hyperparameters ✓. One way to do so is by
following the approach proposed by Snoek et al. (2015), in which we set ✓ to the maximum a
posterior (MAP) estimates for the corresponding weights and biases of a NN that is trained
to maximize the objective

L(✓full) = N (Y;�✓W, �
2)� �||✓full||2,

where ✓full represents the parameters of all weights and biases in the NN, including those in
the output layer, and � is a regularization rate. Then, once we have set ✓, we simply apply
Bayesian linear regression as described above on the weights and bias in the last layer of the
NN.

An alternative the MAP NL model is the regularized NL model, where the features are
learned by optimizing the marginal likelihood with respect to the network weights preceding
the output layer; in other words, the weights are treated and optimized as hyperparameters
(Ober and Rasmussen, 2019).
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Chapter Five

Evaluation on Synthetic Data

In this section, we perform experiments on one-dimensional regression and two-dimensional
binary classification tasks so that it is possible to visualize the ground truth distributions.
We consider three synthetic datasets for regression and classification, which are purposefully
constructed so that we can evaluate whether our methods and metrics accurately capture
the aleatoric and epistemic uncertainty in the data distributions.

We note that the methods and uncertainty metrics used differ for regression and classifi-
cation, given that few of the uncertainty metrics discussed in §3 can be applied to regression.
We consider seven of the methods discussed in §4 for regression and five for classification,
and highlight the specific uncertainty metrics that we use for regression and classification in
§5.1.1 and §5.2.1 respectively.

5.1 Regression

5.1.1 Experimental setup

Given a set of N observations of inputs and outputs {(x1, y1),..., (xN , yN)} where xi 2 R1

and yi 2 R1, we consider two different models.
The first is a homoscedastic noise model (as introduced in §2.1). It assumes a likelihood

of the form y = f
W(x) + ✏, where f

W is a neural network that is parameterized with the
weights W and ✏ ⇠ N (0, �2) is the homoscedastic noise (and is also known as the model
precision).

The second is a heteroscedastic noise model (as introduced in §3.2.1). It assumes a
likelihood of the form yi = N (fW(xi), �2(xi)), where �

2(xi) represents the data-dependent
variance or, i.e., the heteroscedastic noise. Our neural network in this model is split to
predict the mean f

W(xi) and the variance g
W(xi) = �

2(xi).
We acknowledge that model selection is a separate issue from method selection and—as

argued by Yao et al. (2019)—note that issues associated with the approximation gaps arising
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from inference should be addressed separately from model selection. As such, it is important
to consider that the heteroscedastic noise model is more expressive than the homoscedastic
noise model, particularly with regard to its ability to capture variation in the level of noise
across different regions of the data domain. Given that we are practically motivated to
achieve the greatest level of expressiveness possible in order to best capture aleatoric and
epistemic uncertainty, we choose to use the heteroscedastic noise model when possible, unless
otherwise constrained by our selection of inference method.

Methods

We pair seven methods (i.e., all of the methods described in §4) with the two models above.
Given that we established in §3.2.1 that HMC and BBB are not well-suited to approximate

the posterior of the heteroscedastic noise model and that the NL model is implicitly set up
to model homoscedastic noise, we apply these inference methods to the homoscedastic noise
model. We use MC dropout for both the homoscedastic and heteroscedastic noise models.

We use a single probabilistic NN, which models data-dependent variance, for the het-
eroscedastic noise model. Finally, we note that neither ensembles nor deep ensembles—unlike
Bayesian methods—have theoretical guarantees as to how they model noise, although deep
ensembles average over many probabilistic NNs modeling heteroscedastic noise.

Uncertainty metrics

We can compute uncertainty estimates in several different ways for regression. Some of these
estimates arise as a consequence of modeling assumptions (§3.2) and others arise when we
explicitly apply metrics for quantifying uncertainty (§3.3).

First, we can use the variance that results from model sampling for each method as
a proxy for uncertainty. Although we might interpret this variance as corresponding to
epistemic uncertainty per previous discussion (§3.2.2), this variance is typically visualized
with the homoscedastic or heteroscedastic aleatoric noise as part of the posterior predictive.
As such, the variance in the first column of visuals in Figures 5.1, 5.2, and 5.3 in the results,
denoted with ‘+/- 2 std’ in the legend, corresponds to the total predictive uncertainty in the
absence of any decompositions. We note that computing variance from model sampling is
possible for every method except for the probabilistic NN, which is a single-model method
from which sampling is, by definition, not possible. In place of this, however, we use the
probabilistic NN’s estimates for the heteroscedastic noise, although it is technically a model
for aleatoric uncertainty (§3.2.1), similarly denoting it with ‘+/- 2 std’. Then, the variance
in the posterior predictive for each method corresponds primarily to the uncertainty arising
from model sampling for all but the probabilistic NN. We plot this variance against the
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x-inputs in the second column of images in Figures 5.1, 5.2, and 5.3.
Second, we can use two OOD detection metrics (§3.3.3), the real distance to the training

data and the last layer distance to the training data, as proxies for epistemic uncertainty.
We visualize these metrics for all seven methods in the third column of visuals in Figures
5.1, 5.2, and 5.3.

Third, we use the LOTV decomposition as proposed by Kendall and Gal (2017) (Equa-
tion 3.21) to arrive at separate estimates for aleatoric and epistemic uncertainty from the
heteroscedastic noise model. In light of the fact that our other Bayesian inference methods
are not equipped to approximate the heteroscedastic noise model, as discussed earlier, we
use only MC dropout and deep ensembles for this decomposition.

Fourth, we use the two artisanal approaches proposed by Tagasovska and Lopez-Paz
(2019), SQR (§3.2.4) and OCs (§3.3.3), as ways of obtaining estimates for aleatoric and
epistemic uncertainty respectively. We plot the results from these methods alongside the
LOTV decomposition in Figures 5.4, 5.5, and 5.6 so that we can directly compare these
explicit representations for aleatoric and epistemic uncertainty.

Datasets

We use three synthetic datasets used in prior literature to encourage continuity of research
and allow for direct comparison with prior work. Each of the datasets is designed to highlight
different types of uncertainty.

Dataset 1 is from Yao et al. (2019). It is generated with

y = 0.1x2 + ✏, ✏ ⇠ N (0, 0.25),

by uniformly sampling 80 training inputs and 20 validation inputs from [�4,�1] [ [1, 4].
200 test inputs are uniformly sampled from [�6, 6]. The gap in (�1, 1) reflects a region of
in-between uncertainty. As such, the dataset is designed to highlight epistemic uncertainty
with homoscedastic aleatoric uncertainty.

Dataset 2 is from Depeweg et al. (2017). It is generated with

y = 7sin(x) + 3
���cos

⇣
x

2

⌘��� ✏, ✏ ⇠ N (0, 1),

by sampling 600 training inputs and 150 validation inputs from three Gaussians with mean
parameters {µ1 = �4, µ2 = 0, µ3 = 4} and variance parameters {�1 = 2

5 , �2 = 0.9, �3 = 2
5},

with each Gaussian component weighted 1
3 in the mixture. 200 test inputs are sampled from

the same Gaussians, similarly with 1
3 weighting for each Gaussian. This dataset is designed to

highlight a high level of heteroscedastic aleatoric uncertainty with some epistemic uncertainty
at the regions in between the Gaussians.
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Dataset 3 is from Tagasovska and Lopez-Paz (2019). It is generated with

y = sin(2⇡x) + ✏, ✏ ⇠ Exp
✓
1

3

◆
,

by uniformly sampling 800 training inputs and 200 validation inputs from [0, 0.5] [ [1.5, 2]

and, after computing y, normalizing each input x by subtracting the mean of the whole setX
and dividing by the standard deviation of X. This dataset is designed to highlight epistemic
uncertainty with the gap between the two regions of training points and asymmetric aleatoric
uncertainty with noise generated from an exponential distribution.

Experimental parameters

We use ReLU activation functions for all datasets. We use 1 hidden layer with 50 hidden
nodes for Datasets 1 and 3 (as suggested by Yao et al. (2019) for the Dataset 1), and 2
hidden layers with 20 nodes for Dataset 2 (as suggested by Depeweg et al. (2017)).

When using Bayesian inference methods (HMC, BBB, MC dropout, NL) for both the
homoscedastic and heteroscedastic noise models, we place normal priors over the weights
W ⇠ N (0, 1) and use the true output noise for each dataset for the homoscedastic noise
model.

We run each method with 5 random restarts. Given that there are no formal metrics
that formalize desiderata for aleatoric or epistemic uncertainty estimation (Yao et al., 2019),
we select visuals for our results based upon which restart best captures uncertainty from an
intuitive standpoint.

We discuss additional method-dependent parameters, which were selected to optimize
performance, in Appendix A.

Evaluation metrics

We use RMSE and the average marginal log-likelihood as evaluation metrics for validation,
as per convention in the literature. We note, however, that Yao et al. (2019) established
that these metrics are not reliable indicators for quality of posterior approximation nor
uncertainty approximation, and as such do not discuss them in our results, as they are not
the focus of this work.

5.1.2 Results

Figures 5.1, 5.2, and 5.3 provide a comparison of all seven methods for regression on Dataset
1, 2, and 3 respectively. Note that we include the results for the regularized NL model rather
than the MAP NL model in these figures, and instead include the results for the MAP NL
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Figure 5.1 A comparison of all seven methods for regression on Dataset 1, with
the probabilistic NN, ensemble, deep ensemble, and MC dropout approximating
a heteroscedastic regression model and HMC, BBB, and NL approximating a ho-
moscedastic regression model. 56



model in Appendix B. The first column of images displays the posterior predictive for each
method, with 2 standard deviations denoted with ‘+/- 2 std.’ The second column of images
plots the variance (as represented by the ‘+/- 2 std’ in the first column of visuals) against
the x-input. The third column plots the OOD detection metrics against the x-input.

Then, Figures 5.4, 5.5, and 5.6 display the results for the LOTV decomposition of aleatoric
and epistemic variance for deep ensemble and MC dropout, alongside the uncertainty esti-
mates from the artisanal SQR and OC approaches. We discuss results method by method
rather than by dataset, and then discuss the last layer distance estimates for epistemic
uncertainty.

First, the probabilistic NN matches the aleatoric variance inherent in each dataset rel-
atively well but does not capture the epistemic uncertainty well, as reflected by its narrow
posterior predictive over data scarce regions for Dataset 2. This is all consistent with expec-
tation, as the probabilistic NN only models aleatoric variance.

Second, we find that ensemble generally fails to capture any aleatoric uncertainty across
all three datasets, and seems to capture some of the epistemic uncertainty, typically on the
outsides of the dataset rather than the in-between region (as highlighted by Dataset 3).
Moreover, we generally find that ensemble methods often produces similar solutions among
the individual NNs due to initialization and optimization issues, which is consistent with the
findings of Yao et al. (2019). This implies that ensemble methods are unreliable and fail to
accurately capture either aleatoric or epistemic uncertainty.

By comparison, deep ensemble fares better and we find that it provides relatively accurate
representations of the aleatoric and epistemic uncertainty for Datasets 2 and 3 in Figures
5.5 and 5.6 when we apply the LOTV. However, we see that it inaccurately represents the
aleatoric uncertainty for Dataset 1, which we might expect to be a natural consequence given
that it is comprised of probabilistic NNs designed to exclusively capture aleatoric variance.
Furthermore, we find that the estimates for the epistemic are constrained within the bounds
created by the aleatoric variance estimates produced by individual probabilistic NNs, which
suggests that this method would be poorly equipped to capture epistemic uncertainty for
datasets with low levels of homoscedastic noise (as in Dataset 1).

Next, considering HMC and examining the results for Datasets 1 and 3, we notice that
the posterior predictive for HMC captures some of the epistemic uncertainty in the gap
between the training points in both datasets, producing a sort of bubble in the in-between
region. Given that HMC is considered in the literature a way of obtaining a ground truth
approximation for the posterior and that it is applied to a homoscedastic regression model,
we consider this representation desirable. By comparison, BBB does not capture any such
bubble for any of the datasets, which is consistent with the literature (Yao et al., 2019).
Neither HMC nor BBB reflect the heteroscedastic uncertainty implicit in Dataset 2, which
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Figure 5.2 A comparison of all seven methods for regression on Dataset 2, with
the probabilistic NN, ensemble, deep ensemble, and MC dropout approximating
a heteroscedastic regression model and HMC, BBB, and NL approximating a ho-
moscedastic regression model. 58



Figure 5.3 A comparison of all seven methods for regression on Dataset 3, with
the probabilistic NN, ensemble, deep ensemble, and MC dropout approximating
a heteroscedastic regression model and HMC, BBB, and NL approximating a ho-
moscedastic regression model. 59



Figure 5.4 Uncertainty estimates for Dataset 1, obtained from the LOTV decom-
position applied to the heteroscedastic noise model, with deep ensemble and MC
dropout as inference methods, and SQR and OCs.

Figure 5.5 Uncertainty estimates for Dataset 2 from the LOTV decomposition
applied to the heteroscedastic noise model, with deep ensemble and MC dropout as
inference methods, and SQR and OCs.
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Figure 5.6 Uncertainty estimates for Dataset 3 from the LOTV decomposition
applied to the heteroscedastic noise model, with deep ensemble and MC dropout as
inference methods, and SQR and OCs.

is to be expected.
Examining the results for the NL model, we can see that the regularized NL model

produces a posterior predictive that is rather similar to the one produced by HMC for all
three datasets and similarly captures some of the in-between uncertainty for Datasets 1 and
3. We note, however, that HMC produces comparatively smoother and more symmetrical
uncertainties. In this sense, we can think of the NL model as an approximation to the full
Bayesian model, with assumed delta collapse of the weight posterior for the first layers on
which the NL model does not place priors. This might suggest that the NL model—when
constructed with a sufficiently large feature space for the last layer—might be an attractive
alternative to the comparatively intractable HMC and BBB.

We note that MC dropout as displayed in Figures 5.1, 5.2, and 5.3 is applied to a ho-
moscedastic model, and as displayed in Figures 5.4, 5.5, and 5.6 is applied to a heteroscedastic
model and paired with the LOTV decomposition as proposed by Kendall and Gal (2017).
However, despite performing a wide grid search over dropout probabilities p for MC dropout,
we find that it—when applied to the heteroscedastic noise model—fails to represent the in-
between, epistemic uncertainty in Datasets 1 and 3 well in Figures 5.4 and 5.6. While MC
dropout seems to capture aleatoric uncertainty to some extent, its representation of epis-
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temic uncertainty seems to mimic the pattern exhibited by aleatoric uncertainty in all three
datasets, thereby implying that the two uncertainties are perhaps not accurately separated.
Furthermore, we note that MC dropout is extremely sensitive to the dropout rate p, which is
a substantial drawback when dealing with real-world datasets for which the true output noise
is not known. In fact, adjusting p is in some ways comparable to directly tuning the output
noise as represented by MC dropout; it is common for the method to severely overrepresent
or underrepresent the uncertainty depending on the dropout rate.

We find that the last layer distance metric, which is a proxy for epistemic uncertainty,
peaks (or relatively peaks, as demonstrated by the small spikes) for all methods except MC
dropout in regions of data scarcity for Datasets 1 and 2. However, last layer distance does
not accurately reflect epistemic uncertainty for Dataset 3, where it peaks somewhere near
the training points rather than in the in-between region, perhaps due to the asymmetric
nature of the exponentially generated noise.

Finally, we see that the SQR and OCs implementation accurately captures the aleatoric
and epistemic uncertainty in Datasets 1 and 3. However, OCs do not do as well on Dataset
2, where they estimate close to zero epistemic uncertainty for the regions of relative data
scarcity between the means of the Gaussians. This is consistent with expectation, as OCs are
designed to map epistemic uncertainty to zero near the training distribution, but nevertheless
reflects a shortcoming of the approach—that it cannot distinguish between relative levels of
epistemic uncertainty, as demonstrated by its equal epistemic uncertainty estimate of zero
for a region of scarce data and a region of extremely high data density in Dataset 2.

Given that SQR and OCs are artisanal approaches—and not model-agnostic or method-
agnostic ones as we seek—we should be wary of directly comparing their representations of
uncertainty compared to the previously discussed methods.

5.2 Classification

5.2.1 Experimental setup

Given a set of N observations of inputs and outputs {(x1, y1),..., (xN , yN)} where xi 2 R2

and the class label yi 2 {0, 1}, we consider a model where y = �
�
f
W(x

�
), where f

W is our
NN parameterized by W and � is the softmax function as defined in Equation 2.7 (or the
sigmoid, as softmax is a generalization of the sigmoid, which is used for binary classification).

In addition to this conventional model that is very commonly used in the literature, we
also consider the heteroscedastic classification model proposed by Kendall and Gal (2017)
(§3.2.3), where our NN is split to predict fW(x) and the intermediate heteroscedastic variance
g
W(x).
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Methods

We pair five methods with the conventional model described above: a deterministic NN,
an ensemble of deterministic NNs, HMC, BBB, and MC dropout. We use one method,
MC dropout, with the heteroscedastic classification model, as proposed by Kendall and Gal
(2017), given that HMC and BBB are not equipped to tractably approximate its posterior.

Uncertainty metrics

We consider several different kinds of uncertainty estimates.
First, for each of the methods, we visualize the variance of the posterior predictive (two

predictive standard deviations), which is not technically an uncertainty estimate but arises
from the model assumptions and heavily informs the computation of all the other metrics.
Since this represents the variance that arises from model sampling (§3.2.2), this might tech-
nically be considered an estimate for epistemic uncertainty but more realistically is reflective
of total predictive uncertainty for reasons similar to those discussed above for regression.

Second, we apply all of the statistical measures of variability discussed in §3.3.1 (variation
ratio, predictive entropy, Gini-Simpson index, and Allaj index) to obtain total uncertainty
estimates. We then decompose the latter three estimates into their aleatoric and epistemic
components using the decomposition that is based upon the statistical principle of condi-
tioning on W, as discussed in §3.3.2.

Third, we compute estimates for aleatoric and epistemic uncertainty based upon the
three LOTV decompositions proposed by Gal (2016), Kwon et al. (2018), and Shridhar,
Laumann, and Liwicki (2018) (§3.3.2). We note that the first decomposition by Gal (2016),
as discussed in §3.2.3, is only paired with the heteroscedastic classification model (and, by
extension, only with MC dropout), whereas the other two are applied to the conventional
classification model.

Fourth, we compute four OOD detection metrics discussed in §3.3.3—last layer distance,
largest softmax score, functional margin, and Gaussian covariance—as estimates for epis-
temic uncertainty.

Datasets

We use three synthetic datasets. For all three datasets, we sample 80 training inputs, 20
validation inputs, and 100 test inputs equally from two class targets c 2 {0, 1}.

Dataset 1 is from Yao et al. (2019). We sample two balanced class targets from two
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multivariate Gaussian distributions,
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In this dataset, the classes used to construct the training data are clearly separated and
a clear decision boundary—or many—can be drawn between the two classes. We might
consider the region between the two classes, which lacks data, as having high epistemic
uncertainty, but it is also true that the regions that are outside of the classes in other
directions (i.e., not between the two classes) also represent domains with high epistemic
uncertainty due to the lack of data.

For Dataset 2, we sample two balanced class targets from two multivariate Gaussian
distributions that are more closely placed together,
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This dataset is designed to exhibit considerable class overlap, which—in the context of
classification—can be interpreted as aleatoric uncertainty, as it is irreducible uncertainty
that exists as an inherent property of the data.

For Dataset 3, we sample two balanced class targets from four multivariate Gaussian
distributions,
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where p1 and p2 correspond to the first class and p3 and p4 correspond to the second class.
This dataset is constructed such that the two classes have multiple clusters each and therefore
cannot be separated with a single linear decision boundary. Epistemic uncertainty peaks
outside of the four Gaussian clusters of training data and aleatoric uncertainty peaks near
the class boundaries in between the clusters.

Experimental parameters

We use ReLU activation functions for all classification tasks but, naturally, apply a softmax
function to the last layer output to produce a probability estimate. We use 2 hidden layers
with 10 hidden nodes each (as suggested by Yao et al. (2019) for Dataset 1) for all classi-
fication tasks. Otherwise, our experimental parameters are identical to those for synthetic
regression, and tuning for all other method-dependent parameters is discussed in Appendix
A.
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Figure 5.7 The mean predictive probability and two standard deviations of the
posterior predictive of the conventional classification model, with ensemble, HMC,
BBB, and MC dropout as inference methods, for Dataset 2.

Evaluation metrics

We use the average marginal log-likelihood as an evaluation metric for validation, but—
similar to synthetic regression—do not place emphasis on this metric and instead focus
evaluation on the uncertainty metrics described earlier.

5.2.2 Results

We visualize the mean predictive probability and two standard deviations of the posterior
predictive for the ensemble, HMC, BBB, and MC dropout for all three datasets in Figures 5.7,
5.8, and 5.9 respectively. We visualize the mean predictive probability for the deterministic
NN—to which our decompositions of aleatoric and epistemic uncertainty cannot be applied—
in Appendix B.

Based on these figures, it appears that ensemble and HMC seem to produce the best
posterior predictives for each dataset. In particular, both of these methods express wider
possible ranges for the linearized decision boundary between the two classes, as seen per
the more gradual mean predictive probability and the relatively large predictive standard
deviations. We can interpret this as indicating that these methods are better equipped
to model epistemic uncertainty, given that they consider a range of possible thresholds in
regions with no data. By comparison, BBB and MC dropout express relatively thin ranges
for the decision boundaries with low predictive standard deviations—and therefore fail to
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Figure 5.8 The mean predictive probability and two standard deviations of the
posterior predictive of the conventional classification model, with ensemble, HMC,
BBB, and MC dropout as inference methods, for Dataset 2.

Figure 5.9 The maen predictive probability and two standard deviations of the
posterior predictive of the conventional classification model, with ensemble, HMC,
BBB, and MC dropout as inference methods, for Dataset 3.
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Figure 5.10 Statistical measures of variability applied to the posterior predictive
of the conventional classification model, with HMC as the inference method, for
Dataset 1, with measures decomposed into aleatoric and epistemic components by
conditioning on W.

capture epistemic uncertainty. This is the case for all three datasets, and we see that MC
dropout most consistently produces a thin, linear decision threshold, suggesting that it is
limited in its expressiveness.

We highlight the different statistical measures for variability in Figure 5.10, in which we
apply them to the posterior predictive produced by HMC for Dataset 1. It is evident from
this figure that all statistical variability metrics produce functionally similar estimates for
aleatoric and epistemic uncertainty. Generally speaking, aleatoric uncertainty is considered
to correspond to regions of the data domain that exhibit class overlap, and epistemic uncer-
tainty is considered to correspond to regions over which the decision boundary is variable.
We note, however, that none of these metrics predict high levels of epistemic uncertainty for
domains well within the decision threshold, with the single exception of predictive entropy
and mutual information when it is applied to the posterior predictive produced by HMC for
Dataset 2 (Figure 5.11).

Given the similarity between all statistical measures of variability, we limit the metrics
that we visualize in the remainder of this section to predictive entropy and mutual informa-
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Figure 5.11 Predictive entropy and mutual information applied to the posterior
predictive of the conventional classification model, with ensemble, HMC, BBB, and
MC dropout as inference methods, for Dataset 2.

tion out of convention.1. Indeed, because it seems that selection of inference method—as
opposed to metric—primarily informs the computation of uncertainty estimates, we focus
on visual comparisons of estimates for predictive entropy and mutual information produced
by the posterior predictives for different methods.

We visualize predictive entropy and mutual information for Datasets 2 and 3 in Figures
5.11 and 5.12 respectively. In each of these subfigures, the leftmost column is the predictive
entropy and represents total uncertainty, the middle column is the aleatoric component as
computed in Equation 3.17, and the rightmost column is mutual information as computed
in Equation 3.18 and represents epistemic uncertainty.

Next, we compute our four OOD metrics for the conventional classification model, as
approximated with each of the four inference methods, for all three datasets. We visualize
these metrics for Datasets 2 and 3 in Figures 5.13 and 5.14 respectively and for Dataset 1
in Appendix B.

Examining Figures 5.13 and 5.14, we notice that last layer distance and Gaussian covari-
ance capture epistemic uncertainty in a fashion that none of our statistical decompositions
do. In other words, they produce high estimates for epistemic uncertainty in regions that
are far removed from the data, producing a circular ring around the data as opposed to high
uncertainty estimates at class boundaries. Although such estimates may be less helpful for
simple, pedagogical datasets that have clearly separable classes, they are potentially quite
useful for classification tasks that involve complex, high dimensional inputs with classes that
are not immediately separable. Image classification, which we evaluate in §6.2.3 is one such

1Note that we include visualizations of the LOTV as proposed by Kwon et al. (2018) in Appendix B
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Figure 5.12 Predictive entropy and mutual information applied to the posterior
predictive of the conventional classification model, with ensemble, HMC, BBB, and
MC dropout as inference methods, for Dataset 3.

example of a task.
Furthermore, we note that largest softmax score and functional margin peak in uncer-

tainty for lower values; for these two metrics, higher values reflect greater certainty (as
previously discussed in §3.3.3). We also notice that they have similar properties to the
statistical decompositions that we have considered, likely because they are also immediate
functions of the model logit output.

We have hitherto only considered the conventional classification model. For comparison,
we evaluate the heteroscedastic classification model proposed by Kendall and Gal (2017) on
all three datasets in Figure 5.15, using MC dropout as an inference method and the LOTV
decomposition from §3.2.3 to estimate aleatoric and epistemic uncertainty. In general, we
find that the model produces narrow, linear decision boundaries for the first two datasets,
similar to the posterior predictive provided by MC dropout for the conventional classification
model.

Moreover, the uncertainty estimates produced by the model are unlike anything seen up
to this point. The model predicts a large, broad band of aleatoric uncertainty and a thin,
narrow band of epistemic uncertainty—both of which are located at the decision boundary
thresholds—for Datasets 1 and 2. The broad aleatoric uncertainty band can be attributed
to the heteroscedastic regression noise that is artifically injected at an intermediate level in
the model, which yields a high level of aleatoric variance that is not inherently found in the
data itself. Given this, it is unclear from an interpretability standpoint as to how we should
treat the estimates for aleatoric uncertainty for this model class.

Finally, we compute AUC as a function of the proportion of retained data in Figure
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Figure 5.13 OOD metrics applied to the last layer (last layer distance, Gaussian)
and output layer (largest softmax score, functional margin) representations of the
conventional classification model, with ensemble, HMC, BBB, and MC dropout as
inference methods, for Dataset 2.
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Figure 5.14 OOD metrics applied to the last layer (last layer distance, Gaussian)
and output layer (largest softmax score, functional margin) representations of the
conventional classification model, with ensemble, HMC, BBB, and MC dropout as
inference methods, for Dataset 3.
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Figure 5.15 LOTV applied to the posterior predictive of the heteroscedastic clas-
sification model, with MC dropout as an inference method, as proposed by Kendall
and Gal (2017), for Datasets 1, 2, and 3.
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Figure 5.16 AUC vs. retained data based upon different uncertainty decomposi-
tions and OOD metrics applied to the conventional classification model, with HMC
as the inference method, for Dataset 2.

5.16 for Dataset 2, which exhibits the greatest level of class overlap of the three synthetic
datasets. In general, the premise behind this plot is that the methods that best capture
uncertainty score better when less data is retained, deferring the least certain cases.

Based upon the left subplot in Figure 5.16, we find that all the uncertainty decompositions—
including their subcomponents—produce exactly equivalent curves, achieving a maximum
AUC of 0.9 when half of the data is retained. This validates our earlier findings from Fig-
ure 5.10 that all the statistical measure of variability are functionally similar and thus that
predictive entropy is sufficient as one such estimate.

In the right subplot in Figure 5.16, we notice a steady increase in the AUC curve for
Gaussian and functional margin, and a sharp, jagged climb in the AUC for largest softmax
score and last layer distance. We theorize that this zig-zag pattern exists because data points
corresponding to opposing classes are included as the proportion of retained data is increased,
causing the AUC to alternate between high and low values as members of the favorable and
unfavorable class are included. Although the AUC curve is less desirable for the OOD
detection metrics than for the measures of statistical variability, we also recognize that this
is a consequence of the design of our synthetic datasets, which included strongly clustered
groups of points generated by Gaussians. Rather, in order to properly test the performance
of OOD detection metrics, it is necessary to use a more complex real-life classification task
that involve epistemic uncertainty, such as the MNIST task we use in §6.2.3.
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Chapter Six

Evaluation on Real Data

Evaluating different approaches for quantifying uncertainty on synthetic data is instructive
because it allows us to compare estimates relative to the true parameters or properties of a
particular dataset, which in turn exposes flaws in the models, methods, and metrics that we
pair together to arrive at estimates for uncertainty. By comparison, modeling uncertainty on
real data is considerably more challenging due to our ignorance about the true parameters
that underlie the data-generating process in the real world. Thus, while we acknowledge
that application to real data is a critical and warranted component for evaluation of both
methods and metrics in machine learning literature, we also note that under the scope of
this thesis it is necessary to tread carefully when interpreting real-world experimental results
in an evaluative fashion. This is primarily so not only because of our lack of knowledge
(epistemic uncertainty, one might say) of the processes underlying different regions in the
data but also because we lack metrics that formalize that which is desirable for aleatoric
and epistemic uncertainty estimates in the first place (as compared to other real-world tasks
that have clearly delineated objectives and standards).

As such, while this chapter is nevertheless an important part of this thesis, it is important
to frame it as complementary (and perhaps secondary) to §5, in that making evaluative
statements about model and metric performance is difficult—unfounded perhaps—in the
absence of existing norms for the aleatoric and epistemic uncertainty when working with
real data.

This being said, however, we approach the experiments within this chapter from a prac-
tical standpoint, seeking first to understand whether our previously discussed metrics can
capture notions of human uncertainty and second to evaluate which metrics can improve
performance when paired with an abstention criteria, as discussed in AngelosFilos, Gomez,
and Rudner (n.d.) in the context of a diabetic retinopathy diagnosis task.

In this chapter, we use two standard machine learning benchmarks: the Boston Housing
dataset from the UCI Machine Learning Repository (Dua and Graff, 2017), on which we
perform regression, and the MNIST handwritten digit dataset (LeCun, Cortes, and Burges,
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1998), on which we perform classification.

6.1 UCI regression

6.1.1 Experimental setup

Because real-life datasets, including the Boston Housing dataset, typically exhibit consid-
erable variation in the level of noise across different parts of the data domain, we use the
more expressive heteroscedastic regression model, where (as previously discussed in §5.1.1)
we assume a likelihood of the form yi = N (fW(xi), �2(xi)) and model aleatoric noise (also
known as model precision) as the data-dependent term �

2(xi). We select MC dropout as
our inference method given that it is the only tractable Bayesian approximation for this
model and that non-Bayesian alternatives—aside from deep ensembles—do not offer a way
to explicitly model nor attain estimates for aleatoric and epistemic uncertainty (which is the
focus of this work).

Although we would ideally also implement and evaluate deep ensembles in addition to
MC dropout for this task, we reserve this for future work and instead practically consider this
experiment as an evaluation of Kendall and Gal (2017)’s combined heteroscedastic aleatoric
and epistemic uncertainty model (§3.2.3). Given this, we also apply MC dropout to a ho-
moscedastic variance model for comparative purposes to see the empirical difference between
Kendall and Gal (2017)’s proposed model and the more general MC dropout approach.

Datasets

The Boston Housing dataset contains information collected by the U.S. Census regarding
housing near Boston, Massachusetts and contains 506 samples and 13 features, which are
used to predict the median value of a home. Instead of using the standard training split
for the Boston Housing dataset that is proposed in the literature (Hernández-Lobato and
Adams, 2015; Bui et al., 2016; Mukhoti, Stenetorp, and Gal, 2018), which is not informative
for evaluating estimates of aleatoric and epistemic uncertainty, we instead perform regression
on a variant of this dataset that is designed to test for in-between uncertainty.

We adapt the protocol proposed in Foong et al. (2019) to create such a split. For each of
the 13 input dimensions of xn 2 R

13, we sort the datapoints in increasing order as per that
dimension and then remove the middle 1

3 of the datapoints from the training data. However,
whereas Foong et al. (2019) uses the outside 2

3 of the points as the training data and the
middle 1

3 as the test data, we instead take 20% of the data points from each domain (left,
middle, and right) for testing and 80% of the data points from the left and right domains
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Figure 6.1 Average aleatoric and epistemic uncertainty estimates and evaluation
metrics produced by the heteroscedastic uncertainty model, with MC dropout as an
inference method, for the different regions of the 13 Boston Housing gap datasets.

for training. This allows us to compute both evaluation and uncertainty metrics for each of
the domains (left, middle, and right) to assess whether the model captures a higher level of
epistemic uncertainty in the middle, gap domain.

Experimental parameters

We use a similar NN architecture to the one constructed for Datasets 1 and 3 in synthetic
regression. We use exclusively ReLU activation functions and use 1 hidden layer with 50
nodes, but adapt the input layer to handle 13 input features. We use normal priors over the
weights W ⇠ N (0, 1) and use output variance of 9 for the homoscedastic model.

Evaluation metrics

We compute the MSE, average marginal log-likelihood, and average aleatoric and epistemic
uncertainty on the entire test set for the full dataset regression task and for each of the three
test sets corresponding to the three data regions (left, middle, and right) for the gap dataset
regression task.

6.1.2 Results

We plot the evaluation metrics for the heteroscedastic uncertainty model and, for comparison,
the homoscedastic uncertainty model, both paired with MC dropout, in Figures 6.1 and 6.2
respectively. Note that each of the dotted lines (both blue and red) corresponds to one of
thirteen gaps created in the Boston Housing dataset.

Examining Figure 6.1, we notice that the heteroscedastic model, on average, does not
produce higher epistemic uncertainty estimates for the middle region with in-between uncer-
tainty for the gap datasets. Rather, its epistemic uncertainty estimates are about comparable
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Figure 6.2 Average aleatoric and epistemic uncertainty estimates and evaluation
metrics produced by the homoscedastic uncertainty model, with MC dropout as an
inference method, for the different regions of the 13 Boston Housing gap datasets.

for each of the data regions, and aleatoric uncertainty increases slightly as we move from left
to right. Evaluation metrics also remain roughly constant across the three regions.

We can interpret this in a few ways. First, it is likely that creating a gap corresponding to
one input dimension is insufficient to create substantial epistemic uncertainty. Given that the
gap is created based only upon one input dimension, twelve other data dimensions remain,
likely with a density of training points comparable to prior the creation of the in-between
gap (as they are not necessarily sorted in order). This likely provide sufficient information
to recover the certainty lost from constructing a gap based on one dimension. As such, the
design of this experiment is likely inadequate for testing for epistemic uncertainty, especially
when compared to the immediacy of the gaps created in the synthetic regression datasets.
This suggests the need for a better benchmark for testing for in-between uncertainty.

Furthermore, based upon the results of the synthetic regression experiments, in which
MC dropout struggled to express greater epistemic uncertainty—or greater uncertainty at
all—for the in-between regions, it is therefore unlikely that it is able to capture the epistemic
uncertainty in an expressive way for a real-life application.

6.2 MNIST classification

We consider a conventional classification model, as well as the heteroscedastic classification
model proposed by Kendall and Gal (2017), for binary classification on MNIST, leaving
evaluation of multiclass classification for future work.

6.2.1 Experimental setup

With the exception of the choice of dataset, experimental parameters, and evaluation met-
rics, our experimental setup—including our selection of models, methods, and uncertainty
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metrics—is identical to that of the binary classification tasks for the synthetic datasets, as
described in §5.2.1.

Dataset

The full MNIST handwritten digit dataset contains 60,000 training images and 10,000 testing
images, each of which is 28⇥ 28 pixels. In order to allow for evaluation of HMC and BBB—
computationally costly inference methods—we downsample the images to 5 ⇥ 5 pixels to
reduce the input dimensionality ⇠ 31⇥. We furthermore only select two images at a time for
binary classification and train on only 5% of those digits, in part to decrease computational
load and improve tractability and in part to allow for our models to express epistemic
uncertainty for previously unseeen inputs.

We consider two binary classification tasks. The first is classification of digit class 1 vs.
2, which we will refer to as Dataset 1; this task is supposed to be indicative of classes that
have relatively distinct features and should, in theory, have a clearer decision boundary. The
second is classification of digit class 0 vs. 9, which we will refer to as Dataset 2; this task
is representative of classes that are more similarly represented and, by extension, should be
less easily separable than Dataset 1.

Experimental parameters

We use ReLU nonlinearities (except for the output layer) and 1 hidden layer with 50 nodes for
both the conventional and heteroscedastic classification models. Parameters are otherwise
identical to those for synthetic classification, and additional method-dependent tuning is
discussed in Appendix A.

6.2.2 Evaluation metrics

We compute the average marginal log-likelihood, binary classification accuracy, and AUC.
We primarily consider binary classification and AUC as a function of data when retained
based upon different uncertainty estimates. Note that we focus on AUC and, as such, do
not visualize binary classification in the results below, as it does not provide any additional
insights.

6.2.3 Results

We compute and visualize AUC as a function of retained data for the 0 vs. 9 digit classi-
fication task in Figure 6.3, where we consider all of our different decompositions and OOD
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Figure 6.3 AUC vs. retained data based upon different uncertainty decompositions
and OOD metrics applied to the conventional classification model, with HMC as the
inference method, for MNIST Dataset 2.

detection metrics as computed by HMC. Examining this figure, we identify similar find-
ings to those from synthetic classification, where we find that all of the decompositions for
aleatoric, epistemic, and total uncertainty based upon statistical measures of variability are
functionally equivalent. Because this implies that it is unnecessary to consider the estimates
produced by other metrics and their decompositions, we instead we focus our attention to the
effect of pairing different inference methods with predictive entropy and the OOD detection
metrics.

In Figure 6.4, we compare the AUC curve that arises from estimates for predictive entropy
(PE) and Gaussian covariance for each of the methods, as applied to both classification
tasks. We find that HMC and MC dropout paired with predictive entropy tie for the best
performance, closely followed thereafter by BBB with predictive entropy, although the slope,
oddly enough, is slightly skewed. Ensemble, by comparison, severely underperforms, perhaps
suggesting an instance of poor initialization or optimization.

Furthermore, we also find that the Gaussian covariance OOD metric does not necessarily
produce a desirable AUC vs. retained data curve for the 1 vs. 2 digit classification task, but
does so for the 0 vs. 9 retained data curve. This makes sense intuitively because the 1 and 2
digit classes likely have larger differences between their latent representations than the 0 and
9 classes, which the Gaussian covariance picks up on. Therefore, we intuit that Gaussian
covariance can more readily detect input images that depart from the representation for the
0 and 9 digit classes as compared to the differing representations for the 1 and 2 digit classes.

Moreover, in the right subimage in this figure, we plot the LOTV from the heteroscedas-
tic classification model with MC dropout, and surprisingly find that it achieves the best
performance of all metrics considered. We include additional plots of AUC vs. retained data
for metrics not visualized in this section in Appendix B.

Finally, in Figure 6.5, we visualize the relationship between two uncertainty metrics—
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Figure 6.4 AUC vs. retained data based upon predictive entropy (PE) and the
Gaussian covariance OOD detection metric applied to the conventional classification
model, with ensemble, HMC, BBB, and MC dropout as the inference methods, for
MNIST Datasets 1 and 2. The LOTV for the heteroscedastic classification model
with MC dropout is also included in the figure on the right.

predictive entropy and the Gaussian covariance (which is denoted on the y-axis as "Bayesian
linear regression" for this plot)—and the maximum likelihood, i.e. sigmoid probabilities,
corresponding to classification of the digit 9 class. We notice fundamental differences in
the representations of these relationships. Predictive entropy is represented in a desirable
fashion for the correctly classified cases, in that low predictive entropy is generally associated
with extreme sigmoid probabilities and high predictive entropy is generally associated with
intermediate sigmoid probabilities. This suggests that predictive entropy generally performs
well in capturing uncertainty and thus improves prediction when we follow an abstention
criterion based on predictive entropy.

By comparison, the relationship between Gaussian covariance for correctly and incor-
rectly classified classes is less clear, thereby suggesting that it is not a desirable metric for
uncertainty.
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Figure 6.5 Relationship between predictive entropy and Gaussian covariance and
the sigmoid probability of a given digit class output by a model, computed for all
four inference methods for the conventional classification model.
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Chapter Seven

Conclusions and Future Research

We organize conclusions and insights from the experiments in this thesis by regression and
classification, particularly given that regression has considerably fewer uncertainty metrics
than classification and several additional inference methods.

7.1 Regression

7.1.1 Uncertainty metrics

One of the novel propositions of this thesis is the application of the law of total variance
decomposition (as adopted by Kendall and Gal (2017) and described in §3.3.2) to deep en-
sembles to estimate aleatoric and epistemic uncertainty. Per this decomposition, we compute
the variance over the probabilistic NNs’ estimates for the mean to quantify epistemic un-
certainty, and average over the probabilistic NNs’ estimates for heteroscedastic variance to
quantify aleatoric uncertainty. We find that this decomposition is able to capture aleatoric
and epistemic uncertainty with moderate success when applied to pedagogical synthetic re-
gression tasks and outperforms alternatives such as MC dropout, although it suffers from
the same drawbacks that plague all ensemble methods, which we discuss below underneath
methods. It is also important to note that—per this model—it is impossible to obtain es-
timates of epistemic uncertainty that exceed those for aleatoric uncertainty at a particular
x-input, which is a theoretical constraint that substantially limits the practical applications
of the decomposition.

Next, we find that last layer representations may provide an attractive alternative for
quantifying epistemic uncertainty compared to existing alternatives. This is in light of the
fact that there are an abundance of proposed approaches for modeling per-point aleatoric
variance for regression—but comparatively few suggestions for epistemic uncertainty. One
metric that appears promising for obtaining reasonable estimates for epistemic uncertainty
is the last layer distance between an input and the training data (§3.3.3).
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However, it is important to concede that some last layer OOD metrics that map in-
distribution data to zero and out-of-distribution data to non-zero values, such as Orthonor-
mal Certificates (§3.3.3), are unable to differentiate regions with scarce training data as
having some level of epistemic uncertainty. Instead, they practically treat all regions with
any level of training data as possessing zero epistemic uncertainty, which deviates from the
philosophical definition of epistemic uncertainty that we established at the outset of this
thesis.

In general, last layer representations and OOD metrics provide an avenue for thinking
about ways to estimate what is or is not in-distribution for regression, which is not a typi-
cally adopted perspective given that the goal of regression—unlike classification—is typically
accepted to be generalizing beyond known regions to unknown domains, which is at odds
with traditional views of OOD detection. In this sense, adapting OOD metrics from classifi-
cation for regression—particularly at the level of last layer representations—may contribute
a valuable novel perspective towards views on quantifying epistemic uncertainty.

7.1.2 Methods

In general, traditional heteroscedastic models for regression, including the probabilistic NN
and deep ensemble, are able to produce relatively accurate estimates for aleatoric uncertainty
with sufficient tuning and random restarts. That being said, it is true that the representations
of uncertainty in ensembles have no theoretical guarantees due to the nature of stochastic
initialization of model weights. Although not explicitly documented in the results of this
thesis, it was common in our experiments for both the traditional and deep ensemble to
output extreme values for uncertainty estimates, which is a considerable drawback of relying
upon ensemble approaches that is well-documented in the literature.

By comparison, Bayesian heteroscedastic models (§3.2.1) are limited in their ability to
capture aleatoric uncertainty, in part due to the lack of tractable inference methods for this
particular model variant. We found that HMC and BBB cannot accurately approximate the
posterior for the Bayesian heteroscedastic regression model, often outputting extreme values
for the heteroscedastic variance, presumably to minimize the loss function in Equation 3.3.

While these shortcomings necessitate reliance upon MC dropout for the heteroscedastic
uncertainty model, we find that MC dropout generally struggles to provide accurate esti-
mates for epistemic uncertainty for both the homoscedastic and heteroscedastic noise models.
This is especially so for regions with considerable in-between uncertainty, as reflected by our
experiments on both the synthetic datasets and the UCI regression task. Moreover, MC
dropout requires careful tuning of the dropout rate p for accurate representation of aleatoric
noise, another consideration commonly documented in the literature. These concerns there-
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fore imply that it is necessary to tread carefully when applying MC dropout to real-life
regression tasks, in particular tasks with "in-between" gaps present in the data. As such,
in light of these drawbacks, it is surprising to some extent that MC dropout is so heavily
adopted in the literature.

Finally, based upon our synthetic regression experiments, the neural linear model appears
to be an attractive approximation for HMC that can scale more readily to large data tasks
and, by implication, provide a tractable way to approximate ground truth. It would therefore
be desirable to more closely examine the theoretical guarantees of the regularized and MAP
neural linear model, as well as the Bayesian noise neural linear (Ober and Rasmussen, 2019),
which we did not consider in this work.

7.2 Classification

7.2.1 Uncertainty metrics

One novel proposition that this thesis considers is applying the principle of conditioning on
model weights (which is used to estimate mutual information from predictive entropy) to
decompose traditional metrics of variability for categorical distributions into their aleatoric
and epistemic components. We evaluate this decomposition for several different measures
of variability—including the Gini-Simpson index and so-called Allaj index—and find that it
produces representations of aleatoric uncertainty and epistemic uncertainty that are consis-
tent with the more conventional representations produced by predictive entropy and mutual
information. In other words, we find high levels of aleatoric uncertainty in regions that ex-
hibit substantial class overlap and high levels of epistemic uncertainty in regions for which
it is possible to sample several different decision boundaries from the model posterior.

In fact, we find practically that these different statistical measures of variability—including
the predictive entropy, Gini-Simpson index, and Allaj index—produce functionally similar,
if not identical, estimates when applied to the posterior predictive of models designed for
binary classification tasks. Moreover, these estimates are also similar to those provided by
the law of total variance decompositions proposed by Kwon et al. (2018) and Shridhar, Lau-
mann, and Liwicki (2018). This is so much so, actually, that the aleatoric and epistemic
components of all of the aforementioned estimates are also similar, as we visualize in the
results on synthetic classification.

Although this is likely an artifact that exists in part due to the limited dimensionality of
binary classification tasks (and due to the fact that variability can only be expressed in so
many ways for Bernoulli random variables), we also find that all of these estimates—whether
we use their total, aleatoric, or epistemic components—produce identical AUC vs. retained
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data curves. There are two implications that arise from this result. The first is that it
would be instructive to apply these estimates to multiclass classification tasks in order to
better evaluate their ability to capture uncertainty. The second is that it likely would be
both helpful and instructive to consider approaches for quantifying aleatoric and epistemic
uncertainty that fall outside of the purview of classical statistical thinking in order to arrive
at more diverse estimates for uncertainty.

While OOD metrics—including Gaussian covariance, last layer distance, largest softmax
score, and functinal margin—represent one class of approaches that differ from the aforemen-
tioned statistical metrics, we find that they, in practice, do not produce better results when
we use the metrics to follow an abstention criterion, as proposed by AngelosFilos, Gomez,
and Rudner (n.d.). In fact, several of these metrics are wildly inconsistent and result in
highly variable AUC vs. retained data curves. Given this, it is possible that such metrics
might be more useful for more complex classification tasks that involve handling inputs that
tend to be out of distribution rather than the simple binary tasks that we considered, for
which handling data with high epistemic uncertainty was less of a concern. We leave this,
as well as evaluation of other OOD metrics, for future work.

7.2.2 Methods

We find considerable differences in the expressiveness of different inference methods when
constsructing and visualizing posterior predictives. In particular, we find in our synthetic
classification tasks that HMC and ensemble produce posterior predictives with the most
accurate visual representations of uncertainty, at least as interpreted from an intuitive human
standpoint. In contrast, we find that BBB and MC dropout tend to construct narrow
linear decision boundaries in their posterior predictives. While this perhaps matters from a
philosophical standpoint when we consider our pedagogical synthetic classification examples,
we find that the practical performance of our methods provides a different narrative.

While HMC still performs the best out of our methods when paired with predictive en-
tropy when we compute the AUC vs. retained data curve for the MNIST binary classification
task, we find that it is matched competitively by MC dropout applied to a standard classifi-
cation model and even outperformed slightly by MC dropout applied to the heteroscedastic
classification model proposed by Kendall and Gal (2017). Then, in contrast to its superior
posterior predictive representation, ensemble underperforms on the MNIST classification.
This reflects aforementioned concerns about the instability and lack of theoretical guaran-
tees for ensemble methods.

Finally, this result also implies a need to more closely evaluate the heteroscedastic clas-
sification model and its underlying theory.
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7.3 Future research

There are many promising and exciting directions for future research related to many of the
topics discussed in this thesis.

First and foremost, it would be desirable to extend evaluation of all of the metrics and
methods considered in this work to more real-world datasets, including more UCI benchmark
regression tasks (whether with standard or gap datasets) and multiclass classification tasks.
The latter is particularly important given that it is possible that many of the statistical
measures of variability and metrics that we considered may be more expressive and distinct
on multi-class distributions.

Related to this, it would be both interesting and valuable to evaluate how OOD detection
metrics respond to inputs that are synthetically altered to correspond to human notions of
out-of-distribution for classification tasks. One simple example of this is rotating a digit in
the MNIST dataset to be upside down, which might be considered a type of OOD.

Another general research direction is evaluating the use of different metrics in active
learning and reinforcement learning. One simple example of an active learning approach is
computing and comparing the number of acquisition steps to achieve a model error of 5%
on MNIST using any of the uncertainty metrics metrics that we considered as acquisition
functions.

Next, we considered the use of several OOD detection metrics and last layer represen-
tations of epistemic uncertainty for both regression and classification tasks in this thesis,
but there are many other metrics that have not been considered nor evaluated. Some other
metrics, as documented and benchmarked by Tagasovska and Lopez-Paz (2019), include
computing uncertainty as the distance from a sphere, as the distance from the linearized
decision boundary (for classification), with linear random network distillation, with PCA,
with a Deep Support Vector Data Description (DSVDD) model, and by training an oracle.

Furthermore, extending some of these OOD detection approaches (which are typically
reserved for classification) to regression represents an exciting research direction and an
opportunity to bridge traditional representations of uncertainty in regression and literature
on OOD detection.

Finally, in light of the shortcomings of probability theory that we discussed in the in-
troduction, it would be interesting to extend to deep learning one novel decomposition of
aleatoric and epistemic uncertainty that is rooted in a decision-theoretic framework known as
fuzzy preference modeling, in which aleatoric and epistemic uncertainty are computed using
an approach that evaluates the plausibility of events (Senge et al., 2014; Nguyen, Destercke,
and Hüllermeier, 2019). This approach combines concepts from a generalized form of version
space learning and Bayesian inference, thereby providing a bridge to represent epistemic and
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aleatoric uncertainty distinctly.
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Appendix A

Hyperparameter Settings

A.1 Neural networks and ensembles

We use a learning rate of 10�2 for all deterministic and probabilistic NNs for synthetic
regression and classification tasks and 10�4 for MNIST classification, with a regularization
rate � of 0.01 for all experiments. Weights are randomly initialized for each network.

We construct both our ensembles and deep ensembles with 30 NNs and probabilistic NNs
each, respectively. We bootstrap the NNs for the traditional ensembles but not for the deep
ensembles, following the recommendation of Lakshminarayanan, Pritzel, and Blundell (2017)
to let each network in the deep ensemble train on the full set of randomly shuffled training
data.

A.2 Hamiltonian Monte Carlo

We sample the momentum variable in HMC from N (0, I) and use 30 leapfrog steps, with an
initial stepsize ⌘ of 5⇥ 10�3. We check acceptance rate every 100 iterations and decrease it
by a factor of 0.9 if it is less than 0.5 and increase it by a factor of 1.14 if it is greater than
0.8. We use a burn-in of 0.3 of the total number of iterations and a thinning factor of 2.

A.3 Bayes by Backprop

We use a learning rate of 10�3 for all classification tasks, 5⇥ 10�4 for Datasets 1 and 3 and
10�3 for Dataset 2 for synthetic regression.

A.4 Monte Carlo dropout

After performing an extensive gridsearch over different dropout rates, we choose to set the
dropout rates p to 0.2, 0.3, 0.4 for standard MC dropout and 0.1, 0.3, 0.4 for the LOTV
decomposition of MC dropout for Datasets 1, 2, and 3, respectively, in synthetic regression.
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We use a dropout rate of 0.02 for UCI regression and 0.3 for all synthetic and real classification
tasks.

We set the learning rate to 10�4 for all synthetic regression tasks, 10�2 for all classification
tasks, and 10�3 for UCI regression. The regularization rate � is 0.01 for all tasks.

A.5 Neural linear

We use a learning rate of 10�3 for all synthetic regression tasks for both the MAP and
regularized neural linear models.
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Appendix B

Additional Results

B.1 Synthetic regression

We include visual results that were not reviewed in §5.1.2.

B.2 Synthetic classification

We include visual results that were not reviewed in §5.2.2.

B.3 MNIST classification

We include visual results that were not reviewed in §6.2.3.
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Figure B.1 A comparison of the results from the MAP NL method for regression
on Datasets 1, 2, and 3.

Figure B.2 The predictive probability of a deterministic NN for classification on
Datasets 1, 2, and 3.
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Figure B.3 LOTV as proposed by Kwon et al. (2018) applied to the posterior
predictive of the conventional classification model, with ensemble, HMC, BBB, and
MC dropout as inference methods, for Dataset 2.

Figure B.4 LOTV as proposed by Kwon et al. (2018) applied to the posterior
predictive of the conventional classification model, with ensemble, HMC, BBB, and
MC dropout as inference methods, for Dataset 3.
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Figure B.5 OOD metrics applied to the last layer (last layer distance, Gaussian)
and output layer (largest softmax score, functional margin) representations of the
conventional classification model, with ensemble, HMC, BBB, and MC dropout as
inference methods, for Dataset 1.
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Figure B.6 AUC vs. retained data based upon three OOD detection metrics applied
to the conventional classification model, with ensemble, HMC, and BBB as the
inference methods, for MNIST Datasets 1 and 2.
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