
If Going to Crash: Don't. RISC-v Architecture for
Motion Planning Algorithms in Autonomous UAVs

Citation
Kenny, Anthony JW. 2020. If Going to Crash: Don't. RISC-v Architecture for Motion Planning
Algorithms in Autonomous UAVs. Bachelor's thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364718

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364718
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=If%20Going%20to%20Crash:%20Don't.%20RISC-v%20Architecture%20for%20Motion%20Planning%20Algorithms%20in%20Autonomous%20UAVs&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=fbbf7e8766e0cbcd99734258026ae25b&departmentElectrical%20Engineering
https://dash.harvard.edu/pages/accessibility

if goingToCrash: don’t
RISC-V Architecture for Motion Planning Algorithms

in Autonomous UAVs
A senior design project submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science at Harvard University

Anthony J.W. Kenny
S.B. Candidate in Electrical Engineering

Faculty Advisor: Vijay Janapa Reddi

Harvard University School of Engineering and Applied Sciences
Cambridge, MA

April 10th, 2020
Version: 5.0

Abstract

This thesis presents an extension for the RISC-V Instruction Set Architecture (ISA) for

the purpose of faster motion planning in autonomous Unmanned Aerial Vehicles (UAVs).

Fully autonomous UAVs have the potential to change the world in which we live, but they

are currently unable to pilot themselves in high-complexity, obstacle-dense environments;

The processors that they employ cannot execute motion planning software quickly enough.

RISC-V is a relatively new ISA that is founded on the principles of open-source and ex-

tendibility, making it an excellent ecosystem for designing application specific processors.

However, as of April 2020, no attempts had been made to develop motion planning archi-

tecture within the RISC-V ecosystem.

This thesis serves as a proof-of-concept for accelerating motion planning with RISC-V ar-

chitecture. It presents the implementation of “HoneyBee”, a microarchitectural unit that

can compute collision detection over 5 times faster than a general-purpose Intel CPU. More

significantly, it defines a motion planning extension for RISC-V that simplifies the number

of instructions required to detect an edge collision from hundreds of thousands to only

one. These promising results demonstrate the viability of the approach, and should en-

courage developers to embrace RISC-V in the development of motion planning processors

for autonomous drones.

Dedication

To my parents, who have always encouraged my academic pursuits.

Anthony J.W. Kenny

Acknowledgments
To my faculty advisor, Prof. Vijay Janapa Reddi, thank you for your guidance and for
inspiring my passion for computer architecture in my Junior year.

To Jon Cruz, I couldn’t have done this without you. Thank you for introducing me to
the tools I needed, for your invaluable advice, and for always being available.

To Patrick Ulrich and the members of my ES100 section, I appreciated our weekly
meetings and the fresh perspectives you offered.

To Isabella Rhyu, thank you for your help with the more mathematically rigourous
parts of this thesis, though I know you found them easy.

To Mr. Trombetta, Jeffrey and Balmore. I thank you with heart and soul for providing
a home to me for the past three weeks. I regret that our time together was cut short, but
I look forward to coming up again soon - I’m sure it will be the same forever.

i

Contents

Preface i
Abstract . i
Dedication . i
Acknowledgments . i
Table of Contents . ii
List of Acronyms . v
List of Algorithms . vii
List of Figures . viii
List of Tables . x
Glossary of Terms . xi

1 Introduction 1
1.1 Problem Summary . 2

1.1.1 Background & Motivation . 2
1.1.2 Problem Definition . 4

1.2 Project Overview . 5
1.2.1 Project Goals . 5
1.2.2 Project Structure . 7

2 Motion Planning in Software 9
2.1 Motion Planning Background . 9

2.1.1 Key Concepts . 10
2.1.2 Rapidly-exploring Random Tree . 11

2.2 Implementation of RRT . 15
2.2.1 Technical Specifications . 15
2.2.2 Implementation Design . 16
2.2.3 Implementation Visualization . 17

2.3 Analysis of RRT . 20
2.3.1 Experimental Methodology . 20
2.3.2 Results . 21

ii

Anthony J.W. Kenny

3 Motion Planning in Hardware 24
3.1 Defining the Collision Detection Unit . 24

3.1.1 Edge Collision Function . 24
3.1.2 Technical Specifications . 26

3.2 HoneyBee . 28
3.2.1 HoneyBee Interface Design . 29
3.2.2 HoneyBee Implementation . 31
3.2.3 HoneyBee Acceleration . 35

4 Motion Planning Architecture 41
4.1 Computer Architecture Background . 41

4.1.1 Instruction Set Architecture . 42
4.1.2 Microarchitecture . 45

4.2 RISC-V Instruction Set . 46
4.2.1 RISC-V . 46
4.2.2 RV32I . 48

4.3 Defining a RISC-V Custom Extension . 49
4.3.1 Xedgcol Specifications . 49
4.3.2 Defining Xedgcol . 50

4.4 PhilosophyV . 53
4.4.1 RV32I Implementation . 54
4.4.2 RV32I_Xedgcol Implementation . 55
4.4.3 Verification . 57

5 Conclusion 58
5.1 Summary of Results . 58
5.2 Evaluation of Success . 59
5.3 Future Work . 60

Appendices 62

A Project Repository 63

B RRT Supporting Documentation 64
B.1 Justification of Modelling UAV as Prism . 64
B.2 Full Technical Specifications for RRT Implementation 65
B.3 Assessment of Existing RRT Implementations 66
B.4 Implementation of Key RRT Functions . 67
B.5 Geometrically Determining Segment-Plane Intersection 70
B.6 Timing Methodology of RRT Analysis . 71
B.7 Execution Time of 2D and 3D RRT for Different Map Sizes 73

iii

Anthony J.W. Kenny

C HoneyBee Supporting Documentation 74
C.1 Prior Work in Hardware Acceleration . 75
C.2 Technical Specifications for Edge Collision Unit 77
C.3 IEEE Standard for Floating-Point Arithmetic 78
C.4 Mapping HoneyBee’s Output Sequence to a Grid-Map 79
C.5 HoneyBee Handshake Control Protocol . 80
C.6 HoneyBee Interface Synthesis Report . 81
C.7 HoneyBee-B Variants . 81

D Xedgcol Non-Standard Extension for Edge Collision Detection 83
D.1 Xedgcol Register State . 83
D.2 Referencing Xedgcol Registers . 84
D.3 Load Immediate Edge Instruction . 84
D.4 Edge Collision Instruction . 84

E PhilosophyV Supporting Documentation 86
E.1 Reduced Instruction Set Computer (RISC) 86
E.2 PhilosophyV Core Schematic for RV32I . 87
E.3 PhilosophyV Core Schematic for RV32I_Xedgcol 87

Bibliography 90

iv

Anthony J.W. Kenny

List of Acronyms
2D 2-Dimensional

3D 3-Dimensional

ALU Arithmetic Logic Unit

API Application Programming Interface

ARM Advanced RISC Machine

ASP Application Specific Processor

CISC Complex Instruction Set Computer

CPU Central Processing Unit

CSV Comma Seperated File

DOF Degree-of-Freedom

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HB-A HoneyBee-A

HB-B HoneyBee-B

HB-C HoneyBee-C

HDL Hardware Description Language

HLS High Level Synthesis

IEEE754 IEEE Standard for Floating-Point Arithmetic

ISA Instruction Set Architecture

LSB Least Significant Bit

LUT Look-Up Table

MSB Most Significant Bit

v

Anthony J.W. Kenny

OGM Occupancy Grid Map

PRM Probabalistic Road Map

RISC Reduced Instruction Set Computer

RRT Rapidly-exploring Random Tree

RRT* Rapidly-exploring Random Tree Star

RTOS Real-Time Operating Systems

RV32I RISC-V 32-Bit Integer

SoC System on Chip

UAV Unmanned Aerial Vehicle

vi

Anthony J.W. Kenny

List of Algorithms

2.1 Rapidly-Exploring Random Tree in Free Configuration Space 12
2.2 Rapidly-Exploring Random Tree with Collision Detection 14

B.1 getRandomConfig() as implemented for Rapidly-exploring Random Tree (RRT) 67
B.2 findNearestConfig() as implemented for RRT 67
B.3 stepFromNearest() as implemented for RRT 68
B.4 configCollision() as implemented for RRT 68
B.5 configCollision() as implemented for RRT for 3D 69

vii

Anthony J.W. Kenny

List of Figures

1.1 Simple Visualization of Computer Implementation Hierarchy 6
1.2 System Diagram of Overall Project . 7

2.1 Example of 2 Robot Configurations in 3D Space for Motion Planning Purposes 10
2.2 Occupancy Grid Maps for a (16×16) Workspace of Different Resolutions . . 11
2.3 Scope of the RRT Algorithm . 12
2.4 Demonstration of RRT Algorithm for 2D robot in 2D space. 13
2.5 Demonstration of the 5 Key Functions that Constitute RRT 17
2.6 Visualization of Workspace in 2D and 3D 18
2.7 Visualization of Obstacles in 2D and 3D . 19
2.8 Complete Visualization of RRT in 2D and 3D 19
2.9 Profile of Computational Load of RRT in 2D 22
2.10 Profile of Computational Load of RRT in 3D 23

3.1 Detecting Grid Intersections by Finding Intersections with Axis Oriented
Planes . 25

3.2 Edge Collision Computation Process . 26
3.3 Megalong Park Honey Bee Pollinating a Weeping Cherry Blossom 28
3.4 HoneyBee in a Motion Planning Processor 29
3.5 General Overview of HoneyBee Interface . 29
3.6 Port Diagram of HoneyBee Interface . 30
3.7 The Impact of ϵ on the Length of the Bit-Collision Sequence 31
3.8 The Harvard Mark I Computer . 32
3.9 The Hardware Development Process . 32
3.10 Hardware Optimization Process . 34
3.11 HB-A Performance Against Benchmark CPU 35
3.12 Timing Diagrams Showing Parallelization in HoneyBee-B 36
3.13 HB-B Performance Against Benchmark CPU 38
3.14 Timing Diagrams Showing Parallelization in HoneyBee-C 39
3.15 HoneyBee-C Performance Against Benchmark CPU 40

4.1 Overview of the Field of Computer Architecture 42
4.2 The ISA is a Contract Between Software and Hardware Developers 42
4.3 Abstract Concept of a Register File . 43
4.4 Updated Abstract Register File . 44
4.5 5-Stage Reduced Instruction Set Computer (RISC) Datapath 45
4.6 RISC-V ISA Modularity . 47
4.7 Updated System Overview . 48
4.8 Empty 32-Bit Instruction . 50

viii

Anthony J.W. Kenny

4.9 ECOL Instruction with Opcode . 51
4.10 ECOL Instruction with Opcode and Destination Registers 51
4.11 Load Immediate Edge Instruction Format 52
4.12 Cover of Philosophy 4 . 53
4.13 Simplified Schematic of the RV32I PhilosophyV Core 54
4.14 Simplified Schematic of the RV32I_Xedgcol PhilosophyV Core 55
4.15 PhilosophyV Register Files . 56
4.16 Implementation of HoneyBee in RV32I_Xedgcol PhilosophyV 57

B.1 Modelling a UAV as a Rectangular Prism 64
B.2 Using Parallel Planes to determine Edge Collisions with Grids 70
B.3 Increasing Total Execution Time of RRT with Map Size 73

C.1 Bit Sequence Mapping for a 2× 2× 2 Grid Space 79

E.1 RV32I PhilosophyV Schematic . 88
E.2 RV32I_Xedgcol PhilosophyV Schematic . 89

ix

Anthony J.W. Kenny

List of Tables

1.1 List of System Components and their Descriptions 8

2.1 Abbreviated Technical Specifications for RRT Implementation 15
2.2 RRT Implementation Parameters . 16
2.3 Optimal RRT Parameters for each Map Size 21

3.1 Performance Specifications for Edge Collision Detection Unit 26
3.2 Interface Specifications for Edge Collision Detection Unit 27
3.3 Synthesis Results for HB-A with ϵ = 4 . 33
3.4 Synthesis Results for HB-B3 with ϵ = 4 . 37
3.5 Synthesis Results for HB-C with ϵ = 4 . 40

4.1 General Specifications for Xedcol RISC-V Extension 49
4.2 Required Bits to Represent Output Collisions For Different Values of Epsilon 50
4.3 Edge Coordinate Registers . 52

B.1 General Technical Specifications for RRT Implementation 65
B.2 Required Parameters for RRT Implementation 66
B.3 Evaluation of Existing Open-Source Implementations of RRT 66
B.4 Comparison of Timing Methods . 72

C.1 Full Technical Specifications for Edge Collision Detection Unit 77
C.2 IEEE-754 Floating Point Examples . 78
C.3 Description of the ports associated with the handshake protocol for HoneyBee 80
C.4 HoneyBee Interface Synthesis Report . 81

D.1 Xedgcol Register State . 84

E.1 Comparison of CISC and RISC ISAs. 86

x

Anthony J.W. Kenny

Glossary of Terms
A priori: relating to or denoting reasoning or knowledge which proceeds from theoretical

deduction rather than from observation or experience.

Application Specific Processor (ASP): A computer processor that has been optimized
for a specific function or set of functions that support a given application.

Arithmetic Logic Unit (ALU): A combinational circuit of a computer processor that
performs basic mathematical calculations on a pair of inputs.

Automata: moving mechanical devices made in imitation of human beings.

Axis-oriented plane: Planes that run parallel to one of the xy plane, the xz plane, or
the yz plane.

Bit: A binary digit, 1 or 0, and the most basic unit of information in computing. Bits are
combined to represent complex information. Every single thing your computer does
is, eventually, represented and implemented in the movement of bits.

Bit-width: The number of binary digits necessary to represent a data type. For instance,
a boolean takes 1 bit (1 or 0), whereas an integer may be represented by any number
of bits (most commonly 32).

Complex Instruction Set Computer (CISC): A computer in which single instruc-
tions can execute several low-level operations (such as a load from memory, an arith-
metic operation, and a memory store) or are capable of multi-step operations or
addressing modes within single instructions.

Configuration: A specification of a robot’s location, position, and setting in a space. For
example, when a robot is represented by a single point in 3D space, its configuration
is merely x, y, and z coordinates. But if a robot is represented as a 3D humanoid
with a head, body, arms and legs, then its configuration would be its position in 3D
space, its orientation in 3D, and the position of all its joints and limbs such that the
space being taken up by the robot can be exactly determined. Consequently, as the
physical complexity of a robot increases, so too does the complexity of representing
it algorithmically.

Degree-of-Freedom (DOF): Refers to the number of independent factors that describe
the configurations in which a robot can exist and motion can occur.

Dijkstra’s algorithm: An algorithm for finding the shortest path between two nodes in
a graph.

xi

Anthony J.W. Kenny

Field Programmable Gate Array (FPGA): An integrated circuit designed to be con-
figured by a designer after manufacturing – hence the term “field-programmable”. Its
behaviour is specified in software, using a Hardware Description Language (HDL).

Hardware acceleration: The process of speeding up the execution of a function by im-
plementing part or whole of that function specifically in hardware.

Hardware Description Language (HDL): A computer language used for designing
computer hardware. It is used to define the behaviour of modules, simulate their
performance, and synthesize them on a Field Programmable Gate Array (FPGA).

High Level Synthesis (HLS): An automated hardware design process that takes soft-
ware written in high-level languages (often C, C++) that algorithmically defines a
function, and converts that into an HDL that implements that function.

IEEE Standard for Floating-Point Arithmetic (IEEE754): The technical standard
for how floating-points are represented and processed in binary, established by the
Institute of Electrical and Electronics Engineers.

Instruction Set Architecture (ISA): An abstract model of a computer, that defines
the instructions, registers, memory, behaviour, and other attributes of a computer
architecture. It can be thought of as the contract between software and hardware
developers, as the ISA lists the instructions that software may be implemented in,
and the instructions that a processor must support.

Look-Up Table (LUT): This is a “truth-table” used in FPGAs that determine what
output to return for a given input. Any amount of combinational logic can be reduced
to a number of truth tables.

Mathematically complete: An algorithm is mathematically complete if it will always
find all solutions.

Occupancy Grid Map (OGM): A method of representing a 2-Dimensional (2D) or 3-
Dimensional (3D) space by dividing it into discrete “grids” and marking each whole
grid as “occupied”, even if only part of it is.

Pragma: From the word “pragmatic”. A programming directive that specifies how the
relevant code should be processed. In the context of High Level Synthesis (HLS),
they are the directives that can be used to optimize how C Code is synthesized into
HDL.

xii

Anthony J.W. Kenny

Probabalistic Road Map (PRM): A motion planning algorithm that randomly sam-
ples free space, and then connects sampled configurations with nearby configurations
to build a map.

Probabilistically complete: Describes an algorithm with a likelihood of finding a solu-
tion that approaches one as its runtime approaches infinity.

Rapidly-exploring Random Tree (RRT): An algorithm designed to efficiently search,
and thus plan a path through, a high-complexity environment by randomly sampling
points and building a tree. The algorithm randomly samples points, draws an edge
from the nearest currently existing node in the tree, to grow the tree in the space.

Reduced Instruction Set Computer (RISC): A computer architecture based on a
small number of instructions executed in a small number of cycles.

RISC-V: (Prounounced “risk-five”) is an open-source and extendible Instruction Set Ar-
chitecture (ISA) developed by the University of California, Berkeley. It is established
on the principles of a RISC, a class of instruction sets that allow a processor to have
fewer Cycles Per Instruction (CPI) than a Complex Instruction Set Computer (CISC).

RISC-V 32-Bit Integer (RV32I): One of the four base ISAs within RISC-V. While
it implements integer values only in 32-bit representations, it contains the minimal
number of instructions for a fully working computer processor.

Time complexity: Refers to the amount of time taken by an algorithm to run as a
function of the length of its input.

Unmanned Aerial Vehicle (UAV): An aircraft without a human pilot on board. It
may be piloted remotely completely by a human pilot, autonomously pilot itself, or
a mixture of the two.

Workspace: The space which a robot and obstacles occupy in motion planning problems.

xiii

Chapter 1

Introduction

If only it were that simple... The above image is an exchange posted on the subreddit
“Programmer Humour”, satirizing the gross oversimplification of the deep complexity of
fully autonomous drone flight. This thesis studies the “coding and algorithms” of the topic
extensively, from the micro-implementation of specialized motion planning processors to
the high-level software that could, theoretically, allow a programmer to write:

if goingToCrash: dont();

1

Anthony J.W. Kenny

1.1 Problem Summary
1.1.1 Background & Motivation
Autonomous Robotics

For well over 2000 years, the concept of robotics, albeit not always with such a term,
has fascinated humans. As early as the first century A.D., the Greek mathematician and
engineer, Heron of Alexandria, described more than 100 different machines and automata
in Pneumatica and Automata [1]. In 1898, Nikola Tesla demonstrated the first radio-
controlled vessel. Since then, the world has seen widespread application of robotics in
manufacturing, mining, transport, exploration, and weaponry. For the last few decades,
robots have operated in controlled, largely unchanging environments (e.g. an assembly line)
where their environment and movements are largely known a priori (prior to execution).

In recent years a new generation of fully autonomous robots has been developed for a
wide range of complex applications. A specific case is the autonomous Unmanned Aerial
Vehicle (UAV). The UAV has been utilised in military applications extensively throughout
the late 20th and early 21st century. Only recently has their potential in industry begun to
be realised. As technology improves, UAVs are moving from remote piloting to being able
to pilot themselves without human control. These autonomous UAVs are required to pilot
themselves through complex, ever-changing environments. This means executing motion
planning software.

Motion Planning

While most creatures in the animal kingdom find it relatively easy to navigate their sur-
roundings, autonomous robots must be taught explicitly how to do so by their program-
mers. Motion Planning refers to the problem of algorithmically determining a collision-free
path between two points in an obstacle-ridden space. Chapter 2 provides a detailed ex-
planation of motion planning and of Rapidly-exploring Random Tree (RRT), a commonly
used motion planning algorithm.

On the algorithmic and software level, motion planning has been extensively studied
and optimized. Even so, current software implementations execute too slowly on regular
Central Processing Units (CPUs) for autonomous UAVs to operate in rapidly changing,
high complexity environments. More powerful, highly parallelized Graphics Processing
Units (GPUs) can be used in tethered robot applications (e.g. robotic arms autonomously
executing pick-and-place functions). However, such GPUs consume far too much power
to be used in autonomous drones, which are untethered and must sustain flight for useful
periods of time. (A typical CPU uses between 65-85 watts, while some GPUs can use up
to 270 watts).

2

Anthony J.W. Kenny

Application Specific Processors

Given the lacking performance in computing motion plans of a CPU, and the untenable
power consumption of a GPU, autonomous drone developers are left with the option of
developing an Application Specific Processor (ASP), optimized for motion planning.

However, designing a functional, high performance processor from scratch is no small
task. It requires expertise in a variety of disciplines (compilers, digital logic, operating
systems, etc), and an extradordinary amount of time and effort to develop and verify before
it can be used. In short, it’s an expensive process, which is why the market for computer
processors is dominated by companies like Intel, AMD, and ARM. The sharing of processor
designs is also not possible, as commercial designs are proprietary and competing designs
are not encouraged.

Finally, even if one were to design an ASP from scratch, or build off an existing com-
mercial design (which means paying royalties), commerical Instruction Set Architectures
(ISAs) are not designed for extendability, meaning that even a highly specialized processor
is limited by general purpose instructions.

RISC-V

RISC-V (pronounced “risk-five”) is an ISA developed by the University of California, Berke-
ley. It is established on the principles of modularity, extendibility, and open-source con-
tribution. RISC-V was started with the philosophy of creating a practical ISA that was
usable in any hardware or software without royalites. The first report describing the RISC-
V Instruction Set was published in 2011[2].

Due to its flexibility, it has excellent potential in the space of application specific pro-
cessors. However, as of April 2020, no attempts have been made to develop a motion
planning processor using the RISC-V ISA. As such, this thesis serves as a proof-of-concept
for this neglected opportunity.

3

Anthony J.W. Kenny

1.1.2 Problem Definition
Problem Statement

Motion planning software running on general purpose CPUs cannot execute quickly enough
for fully autonomous UAVs to operate in high-complexity environments. The common
strategy of using power-hungry GPUs to accelerate the execution of this software requires
too much power to be feasible for UAVs to sustain flight for useful periods of time. While
there are significant barriers to designing application specific processors, RISC-V presents
an excellent, but neglected, ISA with which specialized motion planning processors can be
implemented.

Intended Audience

This thesis has been written such that it can be understood by those with no background
in computer architecture. However, the project was conducted with computer architects
in mind, with the aspiration of proving the merits of the RISC-V ISA in designing motion
planning specific processors.

4

Anthony J.W. Kenny

1.2 Project Overview
1.2.1 Project Goals
This is not the first project to attempt to accelerate motion planning algorithms using
hardware; motion planning optimization has been studied extensively in hardware and in
software. But the problem persists that, due to the nature of conventional ISAs, there are
significant barriers to implementing motion planning specific processors.

RISC-V was released 9 years ago. While it is starting to gain some traction in the
commercial space, RISC-V has not yet been used to develop a motion planning specific
processor. As such, the overall mission of this thesis is as follows:

Mission
To present a proof-of-concept for extending and implementing RISC-V

to develop motion planning specific processors.

To achieve this, the following 4 objectives must be accomplished:

Project Objectives

1. Determine the computational bottleneck of a commonly used motion plan-
ning algorithm.

2. Implement a functional hardware module to replace the bottleneck function.

3. Define a motion planning extension to the RISC-V ISA

4. Build a fully functional motion-planning processor that implements the ex-
tended RISC-V ISA

5

Anthony J.W. Kenny

Computer Implementation Hierarchy

To briefly frame the space in which this thesis operates, consider the hierarchy of computer
implementation, demonstrated in Figure 1.1. User level applications, such as Microsoft
Word, Google Chrome, and Apple’s iTunes, sit at the top of the hierarchy. These applica-
tions are implemented in High/Mid Level Languages, such as C/, C++, Python, Java,
etc. This software is eventually executed on a Processor, otherwise known as a CPU.
A processor does not understand Python, or any other programming language for that
matter. The only thing it can understand is binary values (a one or a zero). Every com-
puter program gets translated into ones and zeros (called machine code) for execution on a
processor. But how are languages like C translated into machine code? The layer between
programming languages and the processor is the Instruction Set Architecture (ISA).
Chapter 4 goes into detail about ISAs and how they work. For now, if unfamiliar with the
topic, it is sufficient to think of an ISA as a translator between programming languages
and machine code. This thesis operates across the lower three levels of this hierarchy.

Figure 1.1: Simple Visualization of Computer Implementation Hierarchy

6

Anthony J.W. Kenny

1.2.2 Project Structure
Chapter 2 details how Rapidly-exploring Random Tree (RRT), a commonly used motion
planning algorithm, is implemented and analysed. From this analysis, it was determined
that the computational bottleneck is edge collision detection. Chapter 3 outlines a process
for implementing this bottleneck function in a hardware module, achieving a 5× speedup.
Chapter 4 defines the RISC-V motion planning extension and describes the build of a
RISC-V processor that implements this extension and the Honeybee unit.

System Overview

Figure 1.2 shows a high level overview of the system this thesis proposes.

Figure 1.2: System Diagram of Overall Project. Motion planning is implemented in
software, compiled into machine code through the extended RISC-V ISA. This is then

executed on the drone’s processor that includes the motion planning accelerator.

Table 1.1 on Page 8 outlines the components of this system and their descriptions.

Measure of Success

This thesis will be considered a success if it can present a compelling argument for the
merits of designing motion planning specific processors with the RISC-V ISA. This will
require:

• Demonstrating a clear performance limiting bottleneck function of motion planning
algorithms.

• Achieving significant performance improvements by implementing the identified bot-
tleneck function in hardware.

• Proving that a custom RISC-V extension can be easily defined and clearly reduces
the complexity of executing the bottleneck function.

7

Chapter 1 Anthony J.W. Kenny

Component Source Description
C-Implementation of RRT

Rapidly-exploring
Random Tree

A.J.W. Kenny Due to lack of available implementations of
RRT suitable for the purposes of this thesis,
RRT was implemented from the ground up in
C. This is detailed in Chapter 2

RISC-V Instruction Set
RISC-V 32-Bit
Integer (RV32I)

Berkeley 40 Instructions defined such that RV32I is suf-
ficient to support modern operating systems
[3].

Motion Planning
Extension

A.J.W. Kenny This is the custom extension defined by this
thesis targeting motion planning instructions.
It is outlined in Chapter 4.

Motion Planning Specific Processor
PhilosophyV A.J.W. Kenny The processor built for this thesis to demon-

strate how the RISC-V extension and hard-
ware unit work together. This is detailed in
Chapter 4

HoneyBee A.J.W. Kenny The functional unit designed specifically for
faster execution of edge collision detection
computations. Outlined in Chapter 3

Table 1.1: List of System Components and their Descriptions

8

Chapter 2

Motion Planning in Software

The first objective of this thesis is to identify a typical motion planning algorithm, profile
its execution, and determine computational bottlenecks.

This chapter introduces the concept of motion planning and details the process of
implementing and analyzing Rapidly-exploring Random Tree (RRT), a commonly used
algorithm, to identify its computational bottlenecks.

2.1 Motion Planning Background
A funny paradox in computer science is the fact that it is relatively easy to teach a computer
to perform tasks that humans find very complicated, but extremely difficult to program
one to execute functions that humans master during infancy. Consider, it was as early
as 1949 that Claude Shannon presented his paper Programming a Computer for Playing
Chess[4], and by 1997 the Deep Blue computer defeated Garry Kasparov, the reigning world
champion, in a six game chess match.[5] Compare that with some of the most advanced
autonomous humanoid robots to date displaying dexterity only comparable with that of a
toddler. The task of finding a collision free path, performed constantly without thought
by a human, is an example of this paradigm. For a robot to plan its own paths, it relies
on a set of Motion Planning Algorithms.

Motion Planning Algorithms refer to the set of algorithms that find possible sequences
of valid configurations for a robot in a space. In more simple terms, they are algorithms
that determine the movements a robot can make in a map, with the intent of eventually
finding a path from one point to another.

9

Chapter 2 Anthony J.W. Kenny

2.1.1 Key Concepts
Workspace

The workspace, more loosely known as the map, is the space which the robot and obstacles
occupy. Obviously, obstacles refer to anything with which the robot cannot intersect.

Configuration

A configuration describes the position and orientation of the robot. The complexity of a
robot’s configuration is dependant on the dimension of the workspace, the complexity of
the robot itself, and in what level of detail the robot must be represented. For example:

• Most simply, a robot can be represented as a point; by the Cartesian coordinates
(x, y) in 2D space and (x, y, z) in 3D space.

• More realistically, a robot such as a drone may be represented in 3D as a 3D rect-
angular prism; by an origin point (x, y, z) and 3 Euler angles (α, β, γ) describing its
orientation.

• In a more complex form, a fixed-base, N Degree-of-Freedom (DOF) robot would
require an N -dimensional configuration.

(a) A robot represented by just a point
in 3D space, requiring only 3 Cartesian
coordinate (x, y, z) points to describe

its configuration

(b) A robot represented as a cube in
3D space, now requiring 3 Euler angles

(α, β, γ) along with the original
Cartesian coordinates.

Figure 2.1: Example of 2 Robot Configurations in 3D Space for Motion
Planning Purposes

10

Chapter 2 Anthony J.W. Kenny

Occupancy Grid Map

An Occupancy Grid Map (OGM) is a method of representing the obstacles present in
a workspace. Obstacles are often irregularly shaped and computing collisions with such
obstacles is near impossible. Therefore, the workspace is discretized into grids, with grids
that contain any part of the obstacle marked as occupied, even if only a small part of
the grid is occupied. An OGM will more accurately represent a workspace with a higher
resolution, shown in Figure 2.2.

(a) (b)

Figure 2.2: Occupancy Grid Maps for a (16×16) Workspace of Different
Resolutions. Figure 2.2a shows how an OGM with low resolution, while simpler to

construct and analyse, will over-represent the obstacle density of a workspace. Figure 2.2b
shows how a higher resolution will more accurately reflect the obstacles of a workspace.

2.1.2 Rapidly-exploring Random Tree
Rapidly-exploring Random Tree (RRT) is an algorithm designed to efficiently build a tree
of collision-free paths in a high-complexity environment. The algorithm grows the tree by
randomly sampling points and connecting them to the nearest existing node in the tree.
It is inherently biased to grow towards large unsearched areas of the workspace. RRT was
developed by S. LaVelle[6] and J. Kuffner[7]. It is frequently used in autonomous robotic
motion planning problems such as autonomous drones.

Scope

RRT takes an initial configuration, a goal point, and an Occupancy Grid Map (OGM) as
its input. This OGM may be built and updated using a priori knowledge, sensor data from

11

Chapter 2 Anthony J.W. Kenny

the robot, and other inputs. The algorithm will output a tree of collision free paths toward
the goal, as demonstrated in Figure 2.3. It does not calculate the fastest path from
that tree; that can be accomplished using algorithms such as Dijkstra’s algorithm.

Figure 2.3: Scope of the RRT Algorithm: Takes an OGM as input and outputs a tree
of collision free paths. The tree is shown in blue on the right.

Algorithm

Put simply, RRT finds a path from start to finish by randomly exploring a workspace.
Put more technically, it builds a tree of possible configurations (also known as a graph),
connected by edges, for a robot of some physical description. It does so by selecting
random configurations and adding them to the graph. From this graph, a path from the
initial configuration to some goal configuration can be found, given a high enough number
of iterations. As such, RRT can be considered probabilistically complete. The pseudo-code
for RRT can be seen in Algorithm 2.1

Algorithm 2.1: Rapidly-Exploring Random Tree in Free Configuration Space
Inputs: Initial configuration qinit,

Number of nodes in graph K,
Incremental Distance ϵ

Output: RRT Graph G with K configurations [q] & edges [e]

G.init() for k = 1 to K do
qrand ← randomConfiguration()
qnear ← findNearestConfiguration(qrand, G)
qnew ← stepFromNearest(qnear, qrand, ∆q)
G.addVertex(qnew)
G.addEdge(qnear, qnew)

end

12

Chapter 2 Anthony J.W. Kenny

Algorithm 2.1 can be visually represented in Figure 2.4 for a 2D robot.

(a) (b)

(c) (d)

Figure 2.4: Demonstration of RRT Algorithm for 2D robot in 2D space. In this
example, the graph G begins with an initial configuration and a goal. In (b), the first
random configuration is generated. In this case, the nearest configuration is the inital

configuration. The random configuration is more than ϵ from the initial configuration, so
a new configuration in the direction of the random configuration is generated and added

to the graph in (c). This is repeated K times, until the graph in (d) is generated.

13

Chapter 2 Anthony J.W. Kenny

Algorithm 2.1 shows how RRT builds a graph of possible configurations connected
by edges in a completely free configuration space. However, in real-world applications, a
robot’s workspace will contain obstacles. As such, collision detection must be included in
the algorithm. The two types of collisions the algorithm must check for are configuration
collisions (those where the robot’s configuration is in the same spot as the obstace, i.e. a
position the robot could not physically occupy) and edge collisions (where the robot would
collide when moving between two collision free configurations).

RRT with configuration and edge collision detection can be seen in Algorithm 2.2. The
method of implementing RRT with collision detection to model a drone in 3D space is
detailed in Section 2.2.

Algorithm 2.2: Rapidly-Exploring Random Tree with Collision Detection
Inputs: Initial configuration qinit,

Number of nodes in graph K,
Incremental Distance ϵ,
Space S containing obstacles

Output: RRT Graph G with K configurations [q] & edges [e]

G.init();
for k = 1 to K do

while !configCollision(qnew) do
qrand ← randomConfiguration();
qnear ← findNearestConfig(qrand, G);
qnew ← stepFromNearest(qnear, qrand, ∆q);

end
enew ← newEdge(qnear, qnew)
if !edgeCollision(enew) then

G.addVertex(qnew);
G.addEdge(qnear, qnew);

else
k = k − 1;

end
end

14

Chapter 2 Anthony J.W. Kenny

2.2 Implementation of RRT
2.2.1 Technical Specifications
With RRT selected as the benchmark algorithm against which to test specialized hard-
ware, this project required an implementation of the algorithm that satisfied the following
criteria shown in Table 2.1. Appendix B.2 is a more thorough description of the technical
specifications for the implementation of RRT.

Requirement Brief Description and Justification
Implemented in
C/C++

Implementations in C allow for more accurate analysis of compu-
tational bottlenecks, unlike higher-level languages like Python.

3D Workspace The computational requirements of RRT in 3D differ somewhat to
that of 2D. Since autonomous UAVs operate in 3D space, it was
neccesary to have a 3D implementation to analyse.

UAV modelled as
a 3D rectangular
prism

In theory, it is possible to model a UAV much more precisely than
a rectangular prism. However, in reality, modelling a UAV as a
3D rectangular prism, defined by coordinates {x, y, z} and Euler
angles {α, β, γ}, is more than sufficient (and more computationally
efficient). See Appendix B.1 for justification.

Mathematically
Complete Colli-
sion Detection

When RRT is implemented for educational purposes, the edge col-
lision calulations are often simplified to a sampling model which
is probabilistically complete but not mathematically complete. In
other words, it will catch most collisions by sampling a number
of points along each edge, but there is always a possibility of an
undetected collision. In real world applications, collisions must be
calculated by method of geometric intersection to ensure all colli-
sions are detected.

Highly Parame-
terizable

Accurate analysis of the algorithm required the ability to vary the
following parameters:

• ϵ (Maximum distance between two configurations)

• K (Maximum number of configurations)

• DIM (The upper bound of each dimension for a DIM ×
DIM ×DIM workspace)

• Goal Bias (How biased RRT is to move towards goal point)

Table 2.1: Abbreviated Technical Specifications for RRT Implementation

15

Chapter 2 Anthony J.W. Kenny

The original intention was to find an existing implementation of RRT that could fulfill
these requirements. However, no open-source implementations were suitable. Appendix
B.3 shows an evaluation of existing implementations.

As a result, it was necessary to build a C implementation of RRT from the ground up
to the aformentioned specifications.

2.2.2 Implementation Design
The design and implementation of RRT, while neccessary, was significant and time con-
suming. Since this was not the main object of this thesis, only a brief description of key
design choices has been included here. Appendix B contains a more detailed account.

Parameterization

Table 2.2 shows the parameters that were included in the implementation and compiled
by way of a C header file.

Parameter Data Type Description
ϵ Integer Maximum distance between two configurations
K Integer Maximum number of configurations in the graph

DIM Integer Upper bound of each axis of workspace
Goal Bias Float Percentage likelihood of stepping towards goal node

OGM File Pointer CSV of booleans to represent grids

Table 2.2: RRT Implementation Parameters

Dimensionality

RRT was implemented in both 2D and 3D. Not only did a 2D implementation provide a
good development checkpoint, it was also interesting to see the difference in computational
load between 2D and 3D, shown in Section 2.3.

Modelling a UAV

The UAV was modelled as a 3D rectangular prism, with its configuration represented by
Cartesian coordinates (x, y, z) and Euler angles (α, β, γ).

Key Functions

Algorithm 2.2 shows that there are 5 key functions that constitute RRT. Figure 2.5 demon-
strates each of these functions: getRandomConfig(), findNearestConfig(),
stepFromNearest(), configCollisions(), and edgeCollisions(). Appendix B.4 shows
in detail how each of these functions was implemented.

16

Chapter 2 Anthony J.W. Kenny

(a) getRandomConfig() (b) findNearestConfig() (c) stepFromNearest()

(d) configCollision() (e) edgeCollision() (f) Discard

Figure 2.5: Demonstration of the 5 Key Functions that Constitute RRT, where
configuration is a node in a 2D workspace. A new node is generated in (a) with

getRandomConfig(), and the closest existing node is found with findNearestConfig()
in (b). In this case, the new node is further than ϵ from the nearest node, and so a new
node is generated with stepFromNearest() in (c). configCollision() determines that
the new node is not in an occupied grid (d) and draws an edge between the two nodes.

edgeCollision() determines that, in this case, there is a collision (e) and the new node
is discarded (f).

2.2.3 Implementation Visualization
With the back end functionality of RRT designed and implemented, it was neccesary to
develop a way to visualize it. Many existing implementations had the visualization interface
run synchonously alongside RRT. This would distort any performance analysis results, and
so in this implementation it was left until after RRT had finished executing and then plotted
using Python.

17

Chapter 2 Anthony J.W. Kenny

Plotting Configurations and the Workspace

Plotting the workspace using the “matplotlib” library was relatively simple in both 2D and
3D, shown in Figure 2.6. It was decided that the UAV’s’ configuration would be visualized
only as its origin point, rather than plotting a 3D rectangular prism at each configuration,
in order to maintain simplicity. Nevertheless, the UAV was still modelled as a 3D prism in
the backend. Note: The 2D space and 3D space have different start and end points and
different OGMs to better demonstrate how RRT functions.

(a) Workspace in 2D (b) Workspace in 3D

Figure 2.6: Visualization of Workspace in 2D and 3D, with configuration
represented by only a point, and Start and Goal nodes shown

Plotting Obstacles

Obstacles were plotted in accordance to the input OGM, shown in Figure 2.7

Plotting RRT Graph

To keep the plot simple, it was decided to not show the origin point of each configuration
in the graph produced by RRT. Instead, only the edges of the graph were plotted, seen in
Figure 2.8

18

Chapter 2 Anthony J.W. Kenny

(a) Obstacles in 2D (b) Obstacles in 3D

Figure 2.7: Visualization of Obstacles in 2D and 3D, Obstacles shown in yellow and
red for 2D and 3D respectively.

(a) RRT in 2D (b) RRT in 3D

Figure 2.8: Visualization of Obstacles in 2D and 3D, with Graph shown in blue.

19

Chapter 2 Anthony J.W. Kenny

2.3 Analysis of RRT
Having implemented a functioning version of RRT that adhered to the specifications set
out in Table 2.1, analysis of its computational profile could begin. The purpose of this
analysis was to identify the biggest bottleneck of RRT and therefore the best opportunity
for hardware acceleration.

2.3.1 Experimental Methodology
Experiments were set up to determine which of the 5 key functions of RRT take up the
biggest share of computational load. The only fair way of determining the computational
load of each function was to measure the percentage of CPU time each function takes for
the fastest possible execution of RRT for a given map size. This is explained in more
detail in Section 2.3.1.

Measuring Performance

The “performance” metric of interest is the percentage of total time the CPU spends
executing each of the 5 key functions. CPU analysis of a program can often be more
complicated than merely timing how long each function takes to execute. Software can
be written with inbuilt multithreading and other optimizations that require special CPU
analysis software, such as Intel’s VTune Profiler[8]. This software is designed to find
computational bottlenecks in large, complex programs. However, it takes significantly
longer to run (which was unsuitable for running hundreds of thousands of tests), and is less
customizable, than adding performance timers directly to the program’s code. It was also
hypothesized that, since this project’s implementation of RRT did not use multithreading
or any other timing distorting optimizations, custom performance tracking should yield
the same results as VTune Profiler. As such, custom performance tracking was added
to the RRT implementation. This custom performance tracking method was verified by
conducting a χ2 test against data from VTune Profiler, and was found to be accurate.
Appendix B.6 gives more detail on timing methodology.

Optimal Parameters

Extensive testing was undertaken to determine the optimal parameters for a given map
size. The goal was to find the set of parameter values for which RRT would reach its goal
with ≥ 98% probability, for a wide variety of OGMs, in the shortest possible time.

For each map size {4, 8, 16, 32, 64}, the parameters that were varied were ϵ, K, and
Goal Bias. The success rate and average execution time was measured by running RRT
100 times for each set of parameter values. Thus, with 5 different map sizes, if 4 values
were tested for each parameter, and 4 different OGMs were tested, the total number of
tests = 44 × 5 = 1280 (with each test running RRT 100 times!)

20

Chapter 2 Anthony J.W. Kenny

As such, only the optimal parameter values for each map size are in included in Table
2.3.

DIM K ϵ Goal Bias (%) Success Rate (%)
2D

4× 4 75 1 10 100
8× 8 100 2 25 98
16× 16 125 4 25 99
32× 32 250 8 10 100
64× 64 500 16 25 100

3D
4× 4× 4 75 1 10 99
8× 8× 8 100 2 25 100

16× 16× 16 100 4 25 100
32× 32× 32 250 8 10 99
64× 64× 64 500 16 25 100

Table 2.3: Optimal RRT Parameters for each Map Size, shows the optimal set of
parameters after extensive testing, alongside their respective success rates over 100

executions of RRT for different OGMs.

2.3.2 Results
As expected, the total execution time of RRT for optimal parameters increased with the
size of the map, shown in Figure B.3 on in appendix B.7. This was to be expected. The
more significant results are the breakdowns of CPU time for each function, detailed on the
following 2 pages.

21

Chapter 2 Anthony J.W. Kenny

2D Computational Load Profile

Figure 2.9 shows that the two biggest computational loads are findNearestConfig() and
edgeCollisions(), with the latter increasing as the size of the map increases. The fact
that the load of edgeCollisions() takes the majority of execution in bigger map sizes
means that, at least in 2D, it can be considered the bottleneck function.

Figure 2.9: Profile of Computational Load of RRT in 2D

22

Chapter 2 Anthony J.W. Kenny

3D Computational Load Profile

The computational load of edgeCollisions() was even greater in 3D, starting at 40% for
4× 4× 4 maps and increasing to 70% for 64× 64× 64 maps, as shown in Figure 2.10.

Figure 2.10: Profile of Computational Load of RRT in 3D

As such, it is safe to say that the bottleneck function for RRT is edgeCollisions().
This conclusion is strengthened by the fact that edgeCollisions() was implemented in the
fastest possible way (without relying on approximations or implementing multithreading),
whereas findNearestConfig() was implemented without any optimizations (a possible
optimization was the K-nearest node algorithm, for instance). Finally, this conclusion
supports prior research that collision detection takes up the vast majority of CPU execution
time. As such, this is the function that was targeted for hardware acceleration.

23

Chapter 3

Motion Planning in Hardware

The second objective of this thesis was to design and implement a functional hardware
unit that accelerates the execution of RRT in 3D. With the bottleneck function having
been identified in Chapter 2 as edge collision detection, Chapter 3 details the specification,
design, implementation, and analysis of a hardware unit that implements the edge collision
function.

3.1 Defining the Collision Detection Unit
3.1.1 Edge Collision Function
To briefly examine the edge collision detection function in general terms; Given an edge
e, RRT finds where e intersects with grids in the OGM. If any of the grids intersected are
“occupied”, a collision is returned. This is shown in Figure 3.2 on Page 26.

Calculating intersections between a segment and grids is very computationally intense.
This is because it is a fairly involved geometric process. Figure 3.1 on Page 25 shows how
grid intersections are detected by computing the point at which the segment intersects
certain axis-oriented planes.

Time Complexity

With the steps of the edge collision algorithm understood (explained graphically in Figure
3.1, algorithm included in Appendix B.4), its time complexity may be quantified. For an
edge e of maximum length ϵ, it must check for intersections with ϵ × ϵ × ϵ grids. (i.e the
only grids that are checked are the ones that the e could possibly intersect with). It first
iterates through the three dimensions of axis-oriented planes (xy, xz, and yz). This is a
constant of 3. Within each of these dimensions, it must iterate through ϵ planes. This
makes its time complexity O(3ϵ).

24

Chapter 3 Anthony J.W. Kenny

(a) (b)

(c) (d)

Figure 3.1: Detecting Grid Intersections by Finding Intersections with Axis
Oriented Planes

Consider an edge e that spans the width of a 2× 2× 2 grid map, as shown in Figure 3.1
(do not consider if the grids are occupied, this is just to determine which of them the edge

intersects). Just by eyeballing Figure 3.1a it seems odd that so many of the grids have
been intersected (denoted by red shading) by the yellow edge. The algorithm executes by
checking one set of axis-oriented planes at a time. Figure 3.1a shows how the xy-oriented
planes are checked for 3 different values of z (going into the page), finding two intersection

points. There is only one intersection for the xz oriented planes (3.1c). In Figure 3.1d,
the segment intersects 2 grids in the second yz-oriented plane, and one in the third plane.

The intersected grids are thus any grid where a point-of-intersection falls on its face.

25

Chapter 3 Anthony J.W. Kenny

Figure 3.2: Edge Collision Computation Process. Most of the computational load is
found in determining the grids with which an edge intersects (as seen on the left of the
figure). Once these grids have been found, it is very simple (and fast) to lookup if these

grids are occupied in the OGM

3.1.2 Technical Specifications
Performance Specifications

When accelerating motion planning algorithms, it is often difficult to quantify a goal for
how much faster one would like the function to run - the answer is usually “as fast as
possible!” For this thesis, the performance specification was set that the edge collision
function run fast enough that it was no longer the bottleneck function. This translated
to a desired speedup of about 3 times (when compared to benchmark performance of a
typical CPU). Table 3.1 quantifies this in terms of latency and throughput.

Metric Benchmark CPU∗ Accelerated
Latency (µseconds/edge) 2.6 0.9

Throughput (edges/second) 384,615 1,111,111

Table 3.1: Performance Specifications for Edge Collision Detection Unit.
∗Benchmark CPU is an Intel 3.1 GHz i7 Dual Core processor, typical of a laptop

computer.

26

Chapter 3 Anthony J.W. Kenny

Area Specifications

Generally, an inverse relationship exists between latency and area. While it may be possible
to make the unit much faster than the latency specification, this may become prohibitive
with regards to the amount of area on chip it would occupy. It was decided to limit the area
to that which would fit on an FPGA typical in drone applications (those of the Kintex-7
Low Voltage family were chosen, but there are many possible options).

Logic area on an FPGA is largely determined by Look-Up Tables (LUTs). This is a
“truth-table” used in FPGAs that determine what output to return for a given input. Any
amount of combinational logic can be reduced to a number of truth tables As such, the
upper bound on area was set at 274,080 LUTs.

Interface Specifications

As shown in Figure 3.2, the computationally intensive part of the process of edge colli-
sion detection is finding points of intersection between an edge and the grids of the map.
Comparing this result to an OGM is simple and fast. Therefore, it was decided that the
hardware unit would simply take an edge and determine the grids with which it intersects.
Whether the edge intersects a given grid can be represented as a binary {0, 1}, and thus
the intersections found in a ϵ × ϵ × ϵ gridspace can be represented as an ϵ3 sequence of
binary values. Table 3.2 outlines the required interface specifications for the functional
unit.

Element Description/Justification
Constraints

Length ϵ ϵ defines the max edge length. The space being checked and the
output sequence has the dimensions ϵ× ϵ× ϵ

Inputs
Edge e An Edge e defined for a 3D configuration space by two points

{p1, p2}, each defined by a set of 3D coordinates {x, y, z}.
Control Inputs The functional unit must have ports for control signals: clock, reset,

start. These are required for adding the unit to a processor.
Outputs

Return Value ϵ3 bit sequence: 1 if collides with grid at that index, 0 otherwise.
Control Outputs Output ports for control signals: idle, done, ready. These are re-

quired for adding the unit to a processor.

Table 3.2: Interface Specifications for Edge Collision Detection Unit

27

Chapter 3 Anthony J.W. Kenny

3.2 HoneyBee

Figure 3.3: Megalong Park Honey Bee Pollinating a Weeping Cherry Blossom.
Photographed by Emma Kenny in the Southern Highlands of New South Wales, Australia

The honey bee, Apis mellifera, has long been renowned for its tireless work ethic. However,
the it is rarely given credit for its remarkable navigation and collision avoidance strategies
during flight. Recent research[9] suggests that honey bees, interestingly enough, explore
their workspace randomly in order to find paths from their hive to sources of pollen.
Sound familiar? As such, it is quite appropriate that this functional unit, designed to
work tirelessly, rapidly and efficiently to execute collision detection computations for robot
motion planning, was named HoneyBee.

HoneyBee is a hardware unit that will eventually be incorporated into a processor,
demonstrated in Figure 3.4. In Chapter 4, the HoneyBee unit is implemented in a simple
RISC-V processor and invoked using custom RISC-V instructions. For now, however, con-
sider HoneyBee as a standalone unit that computes the grids with which an edge collides.
Its resulting output can be compared to an OGM, as explained in section 3.1.1.

28

Chapter 3 Anthony J.W. Kenny

Figure 3.4: HoneyBee in a Motion Planning Processor. Shown is an abstraction of
how HoneyBee would become an extension of the normal processor datapath.

3.2.1 HoneyBee Interface Design
The interface for the HoneyBee functional unit, following on from the interface specifica-
tions outlined in Section 3.1.2 can be simply represented by Figure 3.5.

Figure 3.5: General Overview of HoneyBee Interface. The functional unit takes an
edge e, defined by two points p1 and p2, as an input, and outputs a series of collisions.
These collisions describe which grids an edge intersects. Its control interface allows for

communication with a processor’s main control unit.

However, when designing hardware (the method of doing so is described in section
3.2.2), how these inputs and outputs are implemented must be considered at the bit level.
Figure 3.6 shows all input, output, and control ports, and their bit-widths.

29

Chapter 3 Anthony J.W. Kenny

Figure 3.6: Port Diagram of HoneyBee Interface. The edge input is represented by
6 32-bit floats, following the IEEE 754 Single Precision 32-bit protocol, with each float
representing one of its coordinate points. The output sequence of collisions is an e3-bit

sequence, with each bit in the sequence representing one of the grids that was checked for
intersections. It has input control signals for start and reset, and output control signals

for done, idle, and ready. These control signals make up the necessary signals for a
handshake protocol between HoneyBee and a processor’s main controller.

Inputs

The inputs to HoneyBee collectively describe a single edge. This is done with 6 32-bit
floating point numbers. How floating points (non-integer numbers) are represented in
binary is defined by the IEEE Standard for Floating-Point Arithmetic (IEEE754). How
this is actually represented is not neccesary to understand, but is explained in Appendix
C.3. The important point is that the input edge is determined by 6 32-bit coordinate
points.

Output

HoneyBee outputs a sequence of “collision-bits,” with each bit in the sequence representing
any collisions between the input edge with its corresponding grid. How this sequence of bits
is mapped to a 3D grid-map is explained in Appendix C.4. It is important to note that in
the design and implementation of HoneyBee, the length of this sequence was parameterized
to be variable, corresponding to a variable value of ϵ. Recall that the optimal edge collision
algorithm only checked ϵ3 grids. HoneyBee, as well, only checks the grids with which the
edge could possibly intersect.

Since the number of grids being checked is parameterized, so must the number of
collision-bits. This is demonstrated in Figure 3.7.

Note: The output bit-width is parameterized not variable. Upon synthesis (building)
of HoneyBee, the output bit-width is set at a constant value. Different syntheses may have

30

Chapter 3 Anthony J.W. Kenny

(a) For ϵ = 2, an output collision-bit
sequence of length 8 is required.

(b) For ϵ = 4, an output collision-bit
sequence of length 64 is required.

Figure 3.7: The Impact of ϵ on the Length of the Bit-Collision Sequence

different output bit-widths. When the time comes to add HoneyBee to a processor, it is
synthesized with a certain bit-width.

Control Interface

The control interface is designed to give HoneyBee the ability to be included in a processor,
and implements a commonly used “handshake” protocol between HoneyBee and the control
unit of the processor in which it resides. Put simply, this is a method that allows the control
unit to tell HoneyBee when to start executing the computation, and for HoneyBee to tell
the control unit when it has finished its computation and the output value is ready. This is
explained in detail in Appendix C.5. The control interface also has a clock and reset port.

3.2.2 HoneyBee Implementation
Hardware Description Languages

Designing computers and their constituent parts has come a long way from its arduous
beginnings. “Victory”, the enigma-breaking machine designed by Alan Turing at Bletchley
Park during World War II, was a large electro-mechanical computer made up of storage
wheels, electromagnetic relays, and rotary switches, assembled by hand.[10] So too was
“Mark I”, the 816 cubic feet computer designed by Harvard University’s Dr. Howard
Aiken, which, on March 1944, computed the viability of implosion for detonating the
atomic bomb.[11]

Computers nowadays measure in the order of millimeters rather than meters. What’s
more, they are now “built” in software, using a Hardware Description Language (HDL).

31

Chapter 3 Anthony J.W. Kenny

Figure 3.8: The Harvard Mark I Computer, photographed in the Harvard Science
Center in April 2014 (Source: Harvard University)

HDLs are a family of computer programming languages that are used to specify the func-
tion of electronic circuits. Tools allow for simulation of such circuits to verify design
correctness and performance. Modules defined in HDLs may then be synthesized for a
type of integrated circuit called a Field Programmable Gate Array (FPGA). This FPGA,
“programmed” in HDL code to behave in a certain way, can then serve the purpose of a
processor or other functional processing unit. Figure 3.9 demonstrates this process.

Figure 3.9: The Hardware Development Process, Defining Hardware Units in
Hardware Description Languages for FPGAs.

HoneyBee was implemented eventually in an HDL called Verilog. However, no Verilog
for HoneyBee was ever explicitly written by a human. It was generated by a tool called
High-Level Synthesis.

32

Chapter 3 Anthony J.W. Kenny

High Level Synthesis

HLS is an automated hardware design process that takes design files (written in high-level
languages, such as C, C++ or SystemC) specifying the algorithmic function of a piece
of hardware, interprets those files, and creates digital hardware designs that execute this
function. In short, it effectively translates programming languages into hardware descrip-
tion languages. Some key advantages of using HLS are speed and verification. It is much
faster and easier to define functionality in C than it is in a HDL such as Verilog, and thus
design iterations are faster. It is also much simpler to verify one’s design, as the functional
units can be put through test benches written in C.

The most important benefit of using HLS, however, is the ability to use “pragmas.”
These are directives given to the HLS tool that tell it what optimizations to use when
translating C code into an HDL. This allows the same funtionality to be synthesized in
many different ways, optimizing the synthesis for speed, area, memory, etc. As such, this
hardware development process allows developers to experiment quickly with different ways
to implement the same functionality. This is demonstrated graphically by Figure 3.10 on
Page 34.

HoneyBee-A Synthesis

With the functionality of HoneyBee implemented in C, the first optimization iteration
(designated HoneyBee-A (HB-A)) was synthesized. HB-A had no pragmas, and was merely
a basic hardware implementation of the defined functionality. HB-A (and all subsequent
iterations) synthesized correctly and satisfied the interface specifications (See Appendix C.6
for technical interface report of synthesis). Table 3.3 shows the result of HB-A’s synthesis
compared with its performance and area specifications. Obviously, the synthesis is well
below the area limit, but nowhere near the specifed performance metrics. This is where
the beauty of High-Level Synthesis optimization comes in.

Metric Specification Synthesis Result
Latency (µseconds/edge) 0.9 6.66

Throughput (edges/second) 1,111,111 150,150
FPGA Area LUTs 274,080 10,593

Table 3.3: Synthesis Results for HB-A with ϵ = 4

33

Chapter 3 Anthony J.W. Kenny

(a) Hardware Optimization without HLS

(b) Hardware Optimization with HLS

Figure 3.10: Hardware Optimization Process. Figure 3.10a shows how, without
using HLS, the hardware developer must write multiple different implementation of the

same functionality to acheive different performance. Figure 3.10b shows how, when using
HLS, the hardware developer only must write one implementation (in a higher-level
language like C), and then use “pragmas” to create different implementations (with

different optimizations) for synthesis.

34

Chapter 3 Anthony J.W. Kenny

3.2.3 HoneyBee Acceleration
This section steps through the process of using HLS pragmas in 2 major optimization iter-
ations, HoneyBee-B (HB-B) and HoneyBee-C (HB-C) and how these iterations compared
to benchmark and specified performance.

Benchmarking

The benchmark performance was based on a Dual-Core Intel 3.1GHz i7 processor. In an
ideal world, this processor would have been chosen after a rigourous process of determining
the most suitable benchmark. In reality, this processor was chosen because it was the one
found in the computer running the simulations (an early 2015 MacBook Pro). Nevertheless,
it serves as a suitable benchmark, demonstrating performance typical of general purpose
CPUs.

Examining latency, the benchmark was set at the average execution time for the bench-
mark CPU to compute 1 edge. Tests were run and averaged over 1000 trials. The average
latency was 2.6 µseconds, with a standard deviation of 0.1 µseconds. This is shown, along
with the performance of HB-A in Figure 3.11.

Figure 3.11: HB-A Performance Against Benchmark CPU. Standard deviation of
CPU average performance is shown by width of the line for easier interpretation.

35

Chapter 3 Anthony J.W. Kenny

HoneyBee-B

The first step in accelerating HoneyBee was taking advantage of the inherent parrallelism
available to the algorithm. Recall that the edge collision algorithm checks the xy-oriented
planes, the xz-oriented planes, and finally the yz-oriented planes. These operations are
completely independent, and can thus be performed simultaneously. Figure 3.12 shows
how the process of checking each set of planes was done sequentially in HB-A, but are
executed in parallel in HB-B.

(a) HoneyBee-A Timing Diagram. Check_Planes executed sequentially.

(b) HoneyBee-B Timing Diagram. Check_Planes executed in parallel. Different colors are to
represent slightly different implementations of the same function.

Figure 3.12: Timing Diagrams Showing Parallelization in HoneyBee-B. Note,
these are simlified timing diagrams for easy explanation of the concept of hardware

parallelization.

The timing diagram does not only show the use of parallelism, it also shows how this is
actually implemented in hardware. In HB-A (Figure 3.12a), there is a single module named
Check_Plane. Since there is only one of them, it must calculate intersections with each set
of planes sequentially. On the other hand, in HB-B (Figure 3.12b), there are three separate
instances of this module (Check_Planes_XY, Check_Planes_XZ, and Check_Planes_YZ),
allowing HoneyBee to execute computation on all three sets of planes in parallel.

36

Chapter 3 Anthony J.W. Kenny

Moreover, notice that in HB-B, execution time of each of these three instances is shorter
than that of the single instance in HB-A. When a single module instance is used for different
purposes (in this case, checking the xy, xz, and yz oriented planes), it has some variability.
To control this variability, it must execute a certain amount of control logic at the begin-
ning of the function. On the other hand, when there are seperate instances of the module,
what was once variable can now be made constant. As a result, each instance can be
slightly specialized and the control logic eliminated. In this case, a general Check_Planes
module was replaced with the three specialized Check_Planes_XY, Check_Planes_XZ, and
Check_Planes_YZ. Each of these has less variability, thus less control logic, and therefore
a slightly faster overall latency. Figure 3.12 shows how theoretically, this should result in
a reduction in overall latency of more than 3 times.

Comparing HoneyBee-B against our benchmark, the success of this optimization can
be seen. Figure 3.13 shows the performance of multiple variants of HB-B in yellow. These
variants were the result of experimenting with slightly different pragmas, but all fell in
roughly the same area. Appendix C.7 lists the details of each HB-B variant.
HB-B3 showed the best performance/area relationship. It was of acceptable area and had
latency marginally lower than the benchmark, but was not as fast as the defined specifica-
tions. Table 3.4 shows the result of HB-B3’s synthesis compared with its performance and
area specifications.

Metric Specification Synthesis Result
Latency (µseconds/edge) 0.9 2.05

Throughput (edges/second) 1,111,111 487,805
FPGA Area LUTs 274,080 26,524

Table 3.4: Synthesis Results for HB-B3 with ϵ = 4

37

Chapter 3 Anthony J.W. Kenny

Figure 3.13: HB-B Performance Against Benchmark CPU
Variants of HB-B shown in Yellow.

HoneyBee-C

A similar concept was applied to optimize the computation of each set of planes. Consider
synthesis of HoneyBee for ϵ = 4. HoneyBee will need to compute intersections with 4
xy-oriented planes, 4 xz-oriented planes, and 4 yz-oriented planes. HB-B computes each
set of 4 planes simultaneously, but the computing intersections with each of the 4 planes
in one orientation are also independent operations. As such, they can also be parallelized
with the instantiation of more hardware modules. Figure 3.14 shows the timing diagrams
for the Check_Planes_XY module that was shown in the last set of timing diagrams.

38

Chapter 3 Anthony J.W. Kenny

(a) HoneyBee-B Timing Diagram for Check_Planes_XY. One instance of Check_Planes_XY
module executed sequentially 4 times (ϵ = 4.

(b) HoneyBee-C Timing Diagram. 4 instances of Check_Planes_XY module executing in
parallel.

Figure 3.14: Timing Diagrams Showing Parallelization in HoneyBee-C. Again,
these are simplified versions of timing analysis for easy explanation of the concept of

hardware parallelization.

Just focussing on the computation of the xy-oriented planes, Figure 3.14 shows how
HB-B has only one instance of the module execute 4 times sequentially. HB-C, on the
other hand, implements greater parallelism by instantiating 4 module instances to exe-
cute sequentially. HB-C, as a result, exceeded the performance benchmark and was of an
acceptable area, as shown in Table 3.5 and Figure 3.15.

39

Chapter 3 Anthony J.W. Kenny

Metric Specification Synthesis Result
Latency (µseconds/edge) 0.9 0.53

Throughput (edges/second) 1,111,111 1,886,792
FPGA Area LUTs 274,080 185,663

Table 3.5: Synthesis Results for HB-C with ϵ = 4

Figure 3.15: HoneyBee-C Performance Against Benchmark CPU
HB-B variants shown in yellow, HB-C in green.

40

Chapter 4

Motion Planning Architecture

To recap, the bottleneck function of a common motion planning algorithm, RRT, was
identified as edge collision detection. The functional hardware unit, HoneyBee, successfully
accelerated this function by almost 5 times. The remaining two objectives of this thesis
were:

• To define a RISC-V Extension Instruction Set for the purposes of accelerating motion
planning.

• To verify the RISC-V Extension and the functional hardware unit in a complete
RISC-V Processor.

4.1 Computer Architecture Background
Recall the computer implementation hierarchy in Figure 1.1, made up of user-level ap-
plications, programming languages, the instruction set architecture, and the processor.
Computer Architecture encompasses the two lower levels of this hierarchy. It comprises
the design of the Instruction Set Architecture and Microarchitecture of a computer. Earlier,
the Instruction Set was described as the “translator” between software and the processor.
The Instruction Set is in reality a document defining the behaviour of a computer. The
Microarchitecture is the implementation of the ISA; the physical computer processor
that behaves in the way the ISAdefines.

41

Chapter 4 Anthony J.W. Kenny

Figure 4.1: Overview of the Field of Computer Architecture

4.1.1 Instruction Set Architecture
An Instruction Set Architecture (ISA) is an abstract model of a computer. On a broad
level, it defines the instructions that it can execute, along with the data types, memory
model, and registers of the computer.
In more human terms, it can be thought of as a “contract” between hardware and software
developers. It is a list of all the instructions that a computer will implement; all software
will be compiled into these instructions, and all processors will be built to implement these
instructions.

Figure 4.2: The ISA is a Contract Between Software and Hardware Developers

The two most important things that an ISA defines are a computer’s instructions and
registers. Instructions are the operations that the computer can execute. Registers can
be thought of as slots in which the processor can store values, such as in Figure 4.3.

42

Chapter 4 Anthony J.W. Kenny

Figure 4.3: Abstract Concept of a Register File as a collection of slots in which a
processor can store values.

Consider the RISC-V assembly instruction, add:

add rd, rs1, rs2

rs1 and rs2 stand for Source Register 1 and Source Register 2. rd stands for Destination
Register. This instruction computes rs1 + rs2 and stores the result in rd. For example,
consider an assembly program with the following three instructions and the register file
from Figure 4.3 (note that r0 is initialized to the value of 0 and r1 to the value of 1.)

add r2, r1, r1
add r3, r1, r2
add r4, r2, r2

The first instruction computes r1 + r1 and stores the result in r2. Since r1 is initialized
to 1, this results in the value of 2 being stored in r2. The second instruction stores r1 +
r2 in r3. Finally, the last instruction stores r2 + r2 in r4. When the program finishes

43

Chapter 4 Anthony J.W. Kenny

executing, registers 2, 3, and 4 have all been updated, as shown in Figure 4.4. I.e. new
values have been stored in the computer’s slots.

Figure 4.4: Updated Abstract Register File after having registers 2, 3, and 4
updated by an assembly program.

To recap, the above is an explanation of instructions and registers. The Instruction Set
Architecture defines what registers a processor has and what instructions it can execute.

44

Chapter 4 Anthony J.W. Kenny

4.1.2 Microarchitecture

Figure 4.5: 5-Stage RISC Datapath. Combinational logic stages are shown in yellow,
and registers between stages are shown in green.

Microarchitecture refers to the actual implementation of the behaviour defined in the ISA.
It is the design of the actual computer processor. Processors are typically implemented
in stages, where each instruction goes through a certain number of stages to complete
execution. Figure 4.5 shows the most simple layout of a 5-stage RISC Datapath (RISC is
the computing principle on which RISC-V was founded. Appendix E.1 gives a background
on RISC). In the Instruction Fetch stage, the processor gets the next instruction from
memory for it to be decoded in the Instruction Decode stage. Here, the instruction
is split into its constituent parts and has certain minor operations performed that are
neccesary for the next stage. The Execution stage is where most computation occurs.
This is where the Arithmetic Logic Unit (ALU) resides, and the result of this computation
goes to the Memory stage. This is where values are stored into or loaded from the
processor’s memory. The values from memory or from the Execution stage are saved to
one of the processor’s registers in the Writeback stage.

45

Chapter 4 Anthony J.W. Kenny

4.2 RISC-V Instruction Set
4.2.1 RISC-V
RISC-V (pronounced “risk-five”) was developed at the University of California, Berkeley.
It is established on the principles of RISC as an open-source and extendable ISA for
research and education. It was designed with application specific processors in mind,
as they developed a highly flexible and extendable base ISA around which research and
acceleration efforts could be based.

The motiviation behind designing RISC-V was largely due to the following disadvan-
tages of commercially popular ISAs.[2].

• Commercial ISAs are proprietary. Owners of commercial ISAs carefully guard
their intellectual property and will not share implementations.

• Commercial ISAs come and go. Many once-popular commercial ISAs have since
fallen out of fashion or are not even in production any more. Lingering intellectual
property issues interefere with the ability of third-parties to continue supporting
the ISA. While an open source ISA may also lose popularity, interested parties can
continue to use and support the ISA without interference.

• Popular commercial ISAs were not designed for extendibility. There exist
almost no ISAs that support extendibility for general purpose computing systems,
allowing for no application specific optimizations at the instruction set level.

The overall design of RISC-V can be broken down into 3 characteristics that address
the aforementioned limitations of commercial ISAs: Open-source, extendibility, and mod-
ularity.

Open-Source

Open-source refers to software that the owner of which has granted permission for anybody
to study, alter, or distribute the software for any purpose. Often, this means projects
are developed in a collaborative public manner. What this means for an ISA is that
RISC-V implementations are often publicly available and improved upon by developers for
their own purposes. Building a high-performance processor from scratch is an arduous,
expensive project. Open-source implementations allow developers to build upon existing
implementations without the legwork of implementing a processor from scratch.

Extendability

RISC-V is designed to be extendable. This means that developers can add their own
instructions to the Instruction Set and implement those new instructions in a processor.
This processor should still be able to run all other RISC-V compiled programs, along with a

46

Chapter 4 Anthony J.W. Kenny

set of programs for which it is specifically optimized. This backwards compatibility means
that an extended ISA is not just a new ISA.

Modularity

Finally, RISC-V was designed to be relatively easy to implement. It is broken down into
small “base” ISAs which can then have any number of standard and non-standard exten-
sions added to them. These base ISAs are not designed in such a way to overarchitect for
a certain type of microarchitecure. Standard extensions are those that are generally
useful and that are designed to not conflict with any other standard extensions. Non-
standard extensions are those that may be highly specialized and may conflict with
other standard or non-standard extensions. One way to think about it is that standard
extensions would improve any computer and are endorsed by the RISC-V organization,
whereas non-standard extensions are developed for very specific purposes, such as motion
planning acceleration. This modularity and flexibility is part of what makes RISC-V such
an attractive proposition for specialized computer architecture. Figure 4.6 demonstrates
this modularity.

Figure 4.6: RISC-V ISA Modularity. It is clear that the RISC-V ISA is in fact a
family of ISAs. Each is based on one of the “base” ISAs, which are each the smallest
possible ISA to run just about any program. For more instructions and thus, better

performance, any number of Standard or Non-Standard Extensions can be implemented
on top of a base ISA.

47

Chapter 4 Anthony J.W. Kenny

4.2.2 RV32I
The RV32I (Short for RISC-V 32-Bit Integer) base ISA is a small ISA of only 40 unique in-
structions, but sufficient to support modern operating systems. It has 32 registers, x0-x32,
each 32-bits wide. x0 is a hard-wired 0, and there is also another register dedicated for the
program count.

The following is an excerpt from the RISC-V Specification, outlining the RV32I base
integer instruction set [3]:

RV32I was designed to be sufficient to form a compiler target and to support modern
operating system environments. The ISA was also designed to reduce the hardware
required in a minimal implementation. RV32I contains 40 unique instructions, though
a simple implementation might …[reduce] base instruction count to 38 total. RV32I
can emulate almost any other ISA extension …
Subsets of the base integer ISA might be useful for pedagogical purposes, but the base
has been defined such that there should be little incentive to subset a real hardware
implementation …

RV32I was chosen as the base ISA for this project. The edge collision custom extension
would be defined primarily extend the RV32I base ISA. Figure 4.7 is an updated system
diagram of the overall project.

Figure 4.7: Updated System Overview showing how RRT is compiled through the
RV32I ISA with the edge collision extension.

48

Chapter 4 Anthony J.W. Kenny

4.3 Defining a RISC-V Custom Extension
The goal of defining a custom extension in this context is to reduce the number of instruc-
tions necessary to compute collisions for a given edge. According to RISC-V convention,
the extension is designated “Xedgcol” (X for non standard, edgcol as an abbreviation
for its purpose). When it is implemented along with RV32I, the processor can be said to
implement the RV32I_Xedgcol ISA.

4.3.1 Xedgcol Specifications
Table 4.1 outlines the general specifications for the Xedgcol extension. The specifications
listed below reflect what was determined before the process of formally defining Xedgcol
begun. As such, the specifications in the table are relatively vague. The rest of this section
details the design decisions and the exact definition of each instruction and register.

Instructions
Instruction Description
Edge Collision An instruction that commences edge collision detection com-

putation. The information that is required is the coordinates
of the edge and the destination registers for the result of the
computation.

Load Edge An instruction that loads the coordinate values that define the
edge, (x0, y0, z0), (x1, y1, z1), into the processor.

Registers
Register Description
Edge Registers The 6 coordinate points need to be stored. Since the RV32I

registers are only defined to hold integers and the coordinate
values are floating point values, 6 new registers would need to
be defined.

Table 4.1: General Specifications for Xedcol RISC-V Extension

Fixing Epsilon

Recall that the HoneyBee unit was parameterized for different values of ϵ, and that this
would influence the number of bits in its output sequence. When defining an instruction,
this value has to be constant. You may have also noticed that the results presented for
HoneyBee in Chapter 3 were all for ϵ = 4. This value was chosen because 43 = 64. This
can be stored in 2 32-bit registers. Table 4.2 lists the number of output bits required for
each value of ϵ and how many 32-bit registers would be needed to store this result. No
other values were suitable, so 4 was the obvious choice for the value of ϵ.

49

Chapter 4 Anthony J.W. Kenny

ϵ Bits Registers
1 1 1/32 bits
2 8 8/32 bits
4 64 2
6 216 6.75
8 512 16

Table 4.2: Required Bits to Represent Output Collisions For Different Values
of Epsilon. ϵ values of 1 and 2 underutilise both the register space available and the

benefits of more parallelization that would come from larger values. Values larger than 4
would use up far too many of the available registers. ϵ = 4 completely utilizes only two

registers.

4.3.2 Defining Xedgcol
Edge Collision Instruction

The following instruction was defined:

ECOL rd1, rd2

ECOL runs the edge-collision detection function and stores the result in two destination
registers . The 32 Least Significant Bits (LSBs) are stored in rd1 and the 32 Most Signifi-
cant Bits (MSBs) in rd2. The above assembly instruction is (somewhat) human readable,
but in the processor, every instruction is represented as a 32-bit sequence of binary values.
Consider an empty 32-bit instruction, shown in Figure 4.8

Figure 4.8: Empty 32-Bit Instruction. Reads left to right, Most Significant Bit (MSB)
to Least Significant Bit (LSB)

The first piece of information to put in this instruction is the opcode. An opcode (short
for operation code) is the instructions identity. It tells the processor which operation to
execute. The opcode for the ecol instruction was defined as the 3-bit sequence 100. The
opcode is stored in the 3 LSBs of the instruction, as shown in Figure 4.9

50

Chapter 4 Anthony J.W. Kenny

Figure 4.9: ECOL Instruction with Opcode

Next, the two destination registers must be added to the instruction. These are the
regular RV32I registers. They are addressable with 5-bit values, shown in Figure 4.10.

Figure 4.10: ECOL Instruction with Opcode and Destination Registers. The
position of two destination register addresses is such that it minimized the extra logic and

instruction decoding necessary to implement this instruction.

The ECOL instruction specifies two destination registers, but no source registers. In
other words, how does the processor know the coordinates of the edge? These coordinates
are stored in the newly defined edge registers.

Edge Registers

Consider, an edge must be represented by 6 32-bit floating-point (i.e. fractional) numbers.
This information, 192 bits in total, cannot all fit in a single 32-bit instruction. They also
can’t be stored in existing RV32I registers, which are defined to only store integers. Storing
floating-point numbers in integer registers, while theoretically possible, is extremely bad
practice. To store the floating point coordinates in registers, a new register set would need
to be defined.

6 floating point registers were defined for the Xedgcol extension. These registers are
specifically for the purpose of holding the coordinates of the edge for which intersections
will be calculated. Table 4.3 lists these registers.

51

Chapter 4 Anthony J.W. Kenny

Register ABI Name Description
e0 px0 X coordinate of edge’s first point
e1 py0 Y coordinate of edge’s first point
e2 pz0 Z coordinate of edge’s first point
e3 px1 X coordinate of edge’s second point
e4 py1 Y coordinate of edge’s second point
e5 pz1 Z coordinate of edge’s second point

Table 4.3: Edge Coordinate Registers as defined in the Xedgcol ISA extension

Load Immediate Edge Instruction

Since Xedgcol was designed to be implemented alongside only RV32I (which, as stated, does
not support floating-point binary representation), the Load Edge Immediate instruction
was defined to load an immediate float value into one of the 6 edge registers.

LI.e rd, imm

The LI.e instruction takes a destination register and an immediate floating-point value.
It stores the immediate value imm in the destination register rd. To build this instruction,
an opcode (000) and a destination register is required. Xedgcol has an opcode width of
3, and since there are only 6 edge registers, they are addressable by a 3-bit address. This
leaves 26 bits remaining in the instruction for the immediate.

A floating point immediate is 32 bits, so the 6 LSBs are cut-off (which does result in
some loss of precision, but only slightly) in the instruction.

The format for the LI.e is shown in Figure 4.11

Figure 4.11: Load Immediate Edge Instruction Format

The formal Xedgcol definition decoument can be found in Appendix D. The extension
has been documented following RISC-V conventions.

52

Chapter 4 Anthony J.W. Kenny

4.4 PhilosophyV
Philosophy 4 was written in 1903 by Mr. Owen Wister of the Class of 1882 (author of
The Virginian and the founder of the Western literary genre). It recounts the antics of
two Harvard students and their last minute attempts to study (or avoid studying) for a
Philosophy exam for which they are hopelessly ill-prepared. Similarly, this section details
the process of building a RISC-V processor, by far the most intricate engineering challenge
of this Thesis, and a task for which I was hopelessly ill-prepared. As such, this processor
was named PhilosophyV; both in reference to the RISC-V ISA for which it was designed,
and to the process of its implementation, which at times seemed very much like a sequel
to Mr. Wister’s novel.

Figure 4.12: Cover of Philosophy 4. Source: Houghton Library, Harvard University

53

Chapter 4 Anthony J.W. Kenny

The purpose of implementing a functional RISC-V processor was to verify that the
design of the Xedgcol extension was viable. Initially, the hope was to find an existing
open-source implementation, of which there are many, that I could build on. A significant
period of time was spent trying to become familiar with the Rocket Core[12], a large open-
source RISC-V implementation. However, the project was so sophisticated that learning
its infrastructure and the neccesary tool-chains became a massive project in itself. This
was the case for many open-source projects. Those that lacked such sohpisticated code
bases also lacked proper documentation and were not verified to be correct. As a result,
it ended up being faster and simpler to implement a lightweight RISC-V processor from
scratch.

4.4.1 RV32I Implementation
The first step was implementing a processor that implemented the RV32I Base ISA. Figure
4.13 shows a highly simplified schematic of the RV32I PhilosophyV Core. Appendix E.2
provides a detailed schematic.

Figure 4.13: Simplified Schematic of the RV32I PhilosophyV Core

The design was that of a simple 5-stage non-pipelined processor with no branch-
prediction or other optimizations. In other words, it’s slow. However, speed was somewhat
irrelevant in this implementation, as its only purpose is to prove the validity of the Xedgcol
ISA extension (implementing a processor with comparable performance to an Intel i7 CPU,
for example, would be well beyond the scope of this thesis).

PhilosophyV was implemented in Verilog (an HDL). Simulations were carried out in
Vivado Design Suite. The processor’s correctness was verified at the module level and at the
core level. Module testing was fulfilled by Verilog test benches that checked the functional
correctness of each module (e.g. the ALU). The overall core was tested by running different

54

Chapter 4 Anthony J.W. Kenny

complex assembly programs through the processor. At the end of the program’s execution,
the state of its register file was compared to its expected state.

4.4.2 RV32I_Xedgcol Implementation

Figure 4.14: Simplified Schematic of the RV32I_Xedgcol PhilosophyV Core

Implementing the Xedgcol extension was relatively simple. First, a new register file had
to be implemented to support the new registers e0-e5. The register file was implemented
slightly differently to normal; It was implemented with a write address port, a write data
port, and then 6 data read ports that always output the value of the 6 registers. This is
shown in Figure 4.15.

55

Chapter 4 Anthony J.W. Kenny

(a) (b)

Figure 4.15: PhilosophyV Register Files. The 32RVI register file contains 32
registers. The ports readData0 and readData1 output the data held at the address
provided to rdAddr0 and rdAddr1 respectively. The Xedgcol register file is able to

constantly output all 6 values held within it. Since the Xedgcol ISA only defines their use
for one instruction, these ports can be wired directly to the HoneyBee unit.

The LI.e instruction writes to this register file. In the instruction, the float immediate
is only in fact the 26 most significant bits, as room must be left in the instruction for the
3 bit register address and the 3 bit opcode. As such, this float is extended with zeros in
the least significant bit range before being wired to the wrData port of the register file.

Secondly, to implement the ecol instruction, the HoneyBee unit was added. Its 6 input
ports, defining the coordinates of the edge, were wired directly to the output ports of the
Xedgcol register file. Its 64 output bits were split to be written to the two destination
registers. The 32 MSBs are written to rd2 in the memory stage, and the 32 LSBs are
written to rd1 in the writeback stage. Its control interface was wired to the main controller
and the main controller’s logic was updated. In this unoptimised processor design (to
keep things simple) the processor stalls while it waits for the HoneyBee unit to complete
execution.

56

Chapter 4 Anthony J.W. Kenny

Figure 4.16: Implementation of HoneyBee in RV32I_Xedgcol PhilosophyV. The
data written to the register file is extended with zeros. The values of each of the 6

Xedgcol register are wired directly to the 6 input ports of HoneyBee. HoneyBee’s output
is written to two destination registers.

4.4.3 Verification
With the PhilosphyV core implementing the RV32I_Xedgcol ISA, assembly tests were
written to verify the viability of the Xedgcol extension. Consider an edge that is defined
by the points (0.5, 0.75, 0.25) and (1.75, 1.25, 1.5). The assembly instructions to execute
the edge collision functionality are as follows:

Load immediate coordinate values
LI.e px0 0.5
LI.e py0 0.75
LI.e pz0 0.25
LI.e px1 1.75
LI.e py1 1.25
LI.e pz1 1.5
Execute edge collision function
ECOL x6, x7

The collision bit sequence stored in registers x6 and x7 can be compared against an
occupancy grid map. Over multiple tests, the correct collision bits were stored in the
correct registers. It was concluded from these tests that the Xedgcol extension was a
viable solution.

57

Chapter 5

Conclusion

5.1 Summary of Results
Motion Planning in Software

The Rapidly-exploring Random Tree algorithm was successfully implemented in C.
Rigourous experimentation was conducted to determine the optimal set of parameter values
for quickly finding a collision-free path with high probability for a given map size. Once
these optimal parameters were determined for different map sizes, thousands of simulations
were run to find the bottleneck function of RRT. It was found that the edge collision
detection function consumed as much as 70% of CPU execution time in 3D.

Motion Planning in Hardware

The HoneyBee unit was designed to implement the computation of edge intersections.
High levels of hardware parallelization were utilized to reduce the latency of computing
one edge from 6.66 µseconds to 0.53 µseconds. This translated to an improved throughput
of 1,886,792 edges/second from (150,150 edges/second). Moreover, this was achieved in an
acceptable area-on-FPGA.

Motion Planning Architecture

The Xedgcol non-standard RISC-V extension was defined. This ISA extension introduces
two new instructions (ECOL and LI.e), along 6 new floating-point registers e0-e5. This
extension reduces the number of instructions required to compute collisions for one edge
from tens of thousands to only one (if you include the 6 LI.e calls to load the coordinate,
then it requires seven). Philosophy V, a RISC-V processor, was implemented from the
ground up to verify the extension. HoneyBee was implemented into PhilosophyV and tests
of the Xedgcol extension conducted. The extension performed as defined.

58

Chapter 5 Anthony J.W. Kenny

5.2 Evaluation of Success
This thesis had four objectives:

Project Objectives

1. Determine the computational bottleneck of a commonly used motion plan-
ning algorithm.

2. Implement a functional hardware module to replace the bottleneck function.

3. Define a motion planning extension to the RISC-V ISA

4. Build a fully functional motion-planning processor that implements the ex-
tended RISC-V ISA

The first objective was achieved. RRT was implemented from scratch, which may cast
doubt as to how accurately its performance reflects real world implementations. The edge
collision function was in fact implemented very realistically. The UAV was represented as a
3D rectangular prisim and edge collision detection was based on solid geometric principles.
If anything, more time was spent making sure that the edge collision function was as fast
as possible in software, rather than on the other 4 key functions. The function that finds
the nearest node in the graph was the second most computationally intense. There are
many proven algorithmic optimizations for this function that were not applied in this im-
plementation. Therefore, any uncertainty in the results of RRT analysis would in fact
under-represent the computational load of edge collision detection.

The second objective was also succesfuly completed. HoneyBee acheived a reduction
in latency that was greater than its specification. HB-C could compute edge collisions 5
times faster than a professionally developed multi-core processor from Intel. Admittedly,
once this performance was achieved, no further development was attempted. There still
exists the opportunity for slight area optimizations and potentially even greater reductions
in latency, though they would most likely be marginal.

Of most significance to the overall goal of this thesis is the third objective. Successfully
defining a RISC-V extension is the most compelling evidence for the future application of
RISC-V in developing motion planning specific processors.

59

Chapter 5 Anthony J.W. Kenny

The Xedgcol extension is simple and effective. This thesis took the approach of defining
an instruction that would execute an entire function of RRT (edge collision). Since edge
collision detection is required in most motion planning algorithms, the Xedgcol extension
is widely applicable in the space. Another benefit of the Xedgcol design is how easy it is
to implement in microarchitecture. The instructions were formatted in a way that reduced
the the extra logic required for instruction decoding. Furthermore, designing a hardware
unit like HoneyBee, while somewhat challenging, is made quite easy with tools such as
HLS.
To cite some disadvantages of its design, it is perhaps not very elegant. It condenses
an entire function into one instruction, which, while simple, does not afford an assembly
programmer much flexibility. It also “overarchitects” for a certain implementation. There
isn’t really any other way to implement this particular extension other than implementing
a hardware unit similar to HoneyBee (this does show, however, just how specific custom
extensions can be).
That being said, it does serve its purpose. It follows RISC-V convention and it correctly,
simply, and effectively defines instruction set architecture for motion planning purposes.

The fourth objective was to desiging a RISC-V motion plannning processor. It was
alluded to in Chapter 4 that this was not a fast processor. This is true; however, it was
designed with simplicity in mind, for the purpose of verification, not performance. It
correctly implements the RV32I_Xedgcol instruction set, and verifies that the Xedgcol
extension is compatible with the RV32I base intruction set. For the scope of this thesis,
this was a success.

5.3 Future Work
The overall mission of this thesis was:

Mission
To present a proof-of-concept for extending and implementing RISC-V

to develop motion planning specific processors.

The driving motivation for this mission is that RISC-V has not yet been embraced by com-
puter architects looking to improve computation of motion planning. Autonomous robots,
and in particular, autonomous UAVs, have the potential to change the world in which we
live. Imagine warehouses filled with swarms of autonomous UAVs, picking and packing
orders without a human in sight. Imagine operations being carried out in dangerous, com-
plex environments by drones with full autonomy. For this to be realised, however, motion
planning specific processors need to be developed. Whereas commercial ISAs present many

60

Chapter Anthony J.W. Kenny

barriers for doing this; RISC-V is all but designed for it. Suprisingly though, at the time
of writing, there has been no published work on the application of RISC-V for developing
motion planning specific processors. It is hoped that this thesis may encourage efforts to
be made in this space, perhaps in one of the following areas.

Edge Collision Hardware

As mentioned above, the optimization of HoneyBee stopped once performance specifica-
tions for this project were met. It is feasible that there is a non-trivial amount of latency
reduction still available with further optimization. Alternatively, perhaps there are other
approaches to accelerating edge collision in hardware. Even if not within the RISC-V
ecosystem, achieving faster motion planning will at some level depend on reducing the
computational load of edge collision detection.

Production Quality RV32I_Xedgcol Processor

It was well beyond the scope of this thesis to implement a production quality processor. It
would be an interesting experiment to run comparison tests of RRT execution time between
a general purpose Intel CPU and a professionally developed, multi-core RISC-V processor
that implements the Xedgcol extension.

Better Motion Planning Extensions

The Xedgcol extension has some drawbacks that were highlighted above. As a proof of
concept, it was very successful, but the biggest opportunity for future work lies in the
development of better motion planning extensions. As more computer architects work
on these extensions and better extensions are defined, the more of a developer following
they get. This developer community builds, shares, and improves the extension and the
toolchains for implementing that extension. For example, there is no compiler support for
the Xedgcol extension - using it has to be done manually in assembly code, rather than high
level languages. Compiler support may be implemented for a very popular non-standard
extension. Of all potential future work to come from this thesis, it is hoped that the active
development of RISC-V motion planning extensions occurs.

To conclude with a call to arms: This thesis provides a proof-of-concept for developing
application specific processors for RISC-V with relative ease. Instruction Set Architecture
is the most important interface of a computer, and RISC-V is the first commerically viable
opportunity to open up this interface to the wider developer community. It is not an
opporunity to be neglected. If this humble prototype can be a convincing argument for
this, then it will be considered a success by its author.

61

Appendices

62

Appendix A

Project Repository

This project’s repository can be found at github.com/AnthonyKenny98/Thesis and con-
tains mutliple subrepositories. It has the following structure.

Research
This folder holds the academic papers that constitute the background research of this
Thesis.

Writeups
This folder holds the writeups required for this Thesis, including checkpoints in fulfillment
of Harvard’s ES100hf class and this Final Report

RRT
github.com/AnthonyKenny98/RRT
This subrepository holds both the 2D and 3D implementations of RRT used for this thesis,
along with the tools required for both VTune Profiler and internal timing analysis.

HoneyBee
github.com/AnthonyKenny98/HoneyBee
This subrepository holds the HoneyBee functional unit, a hardware implementation of
collision detection.

PhilosophyV
github.com/AnthonyKenny98/PhilosophyV
This subrepository holds the PhilosophyV RISCV chip

63

Appendix B

RRT Supporting Documentation

B.1 Justification of Modelling UAV as Prism
While it is possible for a UAV to be modelled in precise detail, taking into account its
exact shape, more often UAVs are modelled as a 3D prism in motion planning problems,
for the following reasons:

• It is a rare case that the negative space gained by modelling in such detail is utilised

• Representation of the drone’s configuration is much more complex.

• Computing edge collisions is much more computationally intensive.

(a) (b)

Figure B.1: Modelling a UAV as a Rectangular Prism. Red highlights demonstrate
the configuration model, overlayed over the exact schematic. Figure B.1a shows how a
drone can be modelled in high detail, but gains little useful free space when compared

with Figure B.1b, which models a drone as a rectangular prism.[13]

64

Appendix B Anthony J.W. Kenny

B.2 Full Technical Specifications for RRT Implementation

General Specifications
Requirement Description and Justification
Implemented in
C/C++

As outlined in Section 1.2.2, the critical step in determining the de-
sign of specialized hardware to accelerate RRT is CPU performance
analysis of the algorithm to determine computational hot-spots.
Implementations in C allow for the use of certain CPU profiling
tools, unlike higher-level languages such as Python.

3D Workspace The computational requirements of RRT in 3D differs somewhat to
that in 2D. Since autonomous UAVs operate in 3D space, it was
neccesary to have a 3D implementation to analyse.

UAV modelled in
3D as a rectangu-
lar prism

In theory, it is possible to model a UAV much more precisely than
a rectangular prism, taking into account its shape and negative
space. However, in reality, modelling a UAV as a 3D rectangular
prism, defined by coordinates {x, y, z} and Euler angles {α, β, γ},
is more than sufficient (and more efficient). See Appendix B.1 for
justification of this.

Mathematically
Complete Colli-
sion Detection

When RRT is implemented for educational purposes, the edge col-
lision calulations are often simplified to a sampling model which
is probabilistically complete but not mathematically complete. In
other words, it will catch most collisions by sampling a number
of points along each edge, but there is always a possibility of an
undetected collision. In real world applications, collisions must be
calculated by method of geometric intersection to ensure all colli-
sions are detected.

Table B.1: General Technical Specifications for RRT Implementation

65

Appendix B Anthony J.W. Kenny

Required Parameters
Parameter Description and Justification
ϵ (a.k.a. ∆q) The maximum difference between two configurations. Larger values

of ϵ can solve less obstacle dense problems faster, but take longer
to solve problems with tight corners.

K The maximum number of configurations. This is largely correlative
to the amount of time the user will allow the algorithm to run.
Larger values of K will take longer but generate better paths, while
smaller values will execute for less time but generate more jagged
paths or may not reach the goal node. The value of K was varied
to find the minimum execution time while still reaching the goal
with high probability.

DIM The upper bound of each axis of a DIM×DIM×DIM Workspace.
Larger values leave more space to be explored, and thus require
larger values of K to reach the goal with high likelihood.

Goal Bias The given probability that the graph will extend the graph ϵ dis-
tance from an existing configuration to a new configuration in the
direction of the goal.

Table B.2: Required Parameters for RRT Implementation

B.3 Assessment of Existing RRT Implementations

General Requirements Parameters
Repository Language 2D/3D Object

Model
Collision
Detect

ϵ K DIM Goal
Bias

RoboJackets[14] C++ 2D Point Complete Yes Yes Yes No
Motion-
Planning[15]

Python ND Point Incomplete Yes Yes No Yes

Sourishg[16] C++ 2D Point Incomplete Yes Yes No No
Vss2sn[17] C++ 2D Point Complete Yes Yes No No
olzhas[18] Matlab 2D Point Complete Yes Yes No No

Table B.3: Evaluation of Existing Open-Source Implementations of RRT. Links
to Github repositories can be found in the Bibliography.

66

Appendix B Anthony J.W. Kenny

B.4 Implementation of Key RRT Functions

Algorithm B.1: getRandomConfig() as implemented for RRT
Inputs: Dimensionality N ,

Upper Axis Bound DIM
Output: Random Configuration q

q.x← randomFloat(DIM)
q.y ← randomFloat(DIM)
q.α← randomFloat(2π)
if N == 3 then

q.z ← randomFloat(DIM)
q.β ← randomFloat(2π)
q.γ ← randomFloat(2π)

end
return q;

Where randomFloat(max) returns a float between 0 and max.

Algorithm B.2: findNearestConfig() as implemented for RRT
Inputs: Graph G,

New Configuration qnew
Output: Nearest Configuration qnearest

qnearest ← G.qinit
for k = 0 to G.existing_nodes do

if distance(qnew, G.q[k]) < distance(qnew, qnearest) then
qnearest ← G.q[k]

end
end
return qnearest

Where distance(q1, q2) returns the Euclidean distance between two configurations.

67

Appendix B Anthony J.W. Kenny

Algorithm B.3: stepFromNearest() as implemented for RRT
Inputs: Configuration in Graph qnearest,

New Configuration qnew,
Goal Bias B,
Maximum Step Distance ϵ,
Graph G

Output: Updated New Configuration qnew
if distance(qnearest, qnew) > ϵ then

if randomFloat(1) < B then
qnew ← stepTowardConfig(qnearest, G.qgoal)

end
else

qnew ← stepTowardConfig(qnearest, qnew)
end

end
return qnew;

Where stepTowardConfig(q1, q2) returns a configuration ϵ from q1 in the direction
of q2.

Algorithm B.4: configCollision() as implemented for RRT
Inputs: Dimensionality N ,

Occupancy Grid Map (N -Dimensional Array) O,
Configuration q

Output: Boolean
if N == 2 then

return O[gridLookup(q.x)][gridLookup(q.y)]
end
else

return O[gridLookup(q.x)][gridLookup(q.y)][gridLookup(q.z)]
end

Where O is a N -Dimensional array of booleans, with True representing an occupied
grid and false representing an unoccupied one. gridLookup() is a function that maps a
floating point coordinate to the correct integer of the grid in which it resides. For a map
resolution of one, this is as simple as rounding a float down to an integer.

While seemingly complex, the above algorithm merely steps through the mathematical
process of checking the relevant x, y, and z planes for a point of intersection with the
edge e. It then looks up the OGM O to see if the grid corresponding with the point of

68

Appendix B Anthony J.W. Kenny

Algorithm B.5: configCollision() as implemented for RRT for 3D
Inputs: Edge e,

Occupancy Grid Map (3-Dimensional Array) O,
Maximum Step Distance ϵ

Output: Boolean
qmin ← minConfig(e.q1, e.q2)
for (x = qmin.x to qmin.x+ ϵ) do

qintersection ← = edgeIntersectsPlane(e, x)
if O[qintersection.x][qintersection.y][qintersection.z] then

return true
end

end
for (y = qmin.y to qmin.y + ϵ) do

qintersection ← = edgeIntersectsPlane(e, y)
if O[qintersection.x][qintersection.y][qintersection.z] then

return true
end

end
for (z = qmin.z to qmin.z + ϵ) do

qintersection ← = edgeIntersectsPlane(e, z)
if O[qintersection.x][qintersection.y][qintersection.z] then

return true
end

end
return false

intersection is occupied. If so, then it reports a collision by returning True. The func-
tion edgeIntersectsPlane follows the geometrical process of detecting a segment-plane
intersection outlined in Appendix B.5. qmin is calculated to be the origin point of the
grid closest to the origin. In other words, the algorithm does not check for intersections
throughout the entire map, only the maximum number of grids that could possible be in-
tersected by the edge e, given the location of the two points of the edge, e.p1 and e.p2, and
the maximum edge length ϵ. The algorithm for edgeCollision() in 2D can be inferred
from the above, checking segment-line intersections for x and y lines.

69

Appendix B Anthony J.W. Kenny

B.5 Geometrically Determining Segment-Plane Intersection
The method of edge collision detection in this project’s implementation of RRT relies on
detecting segment-plane intersections. The planes are always set up to be parallel with
either the xy plane, the xz plane, or the yz plane. Figure B.2 demonstrates this point.

Figure B.2: Using Parallel Planes to determine Edge Collisions with Grids

A plane can be defined by 3 points, Pa, Pb, and Pc. In practice, the points defining a
plane parallel to the xy plane would have the following points:

Pa = (x, y, z)

Pb = (x+∆x, y, z)

Pc = (x, y +∆y, z)

Two vectors, A⃗B and A⃗C can be determined.
The normal to the plane is the cross product:

A⃗B × A⃗C

And the equation of the plane written as:

a(x− x0) + b(y − y0) + c(z − z0) = 0

ax+ by + cz = ax0 + by0 + cz0

Where < a, b, c > is the normal to the plane and (x0, y0, z0) is one of the points Pa, Pb,
or Pc. The RHS can be set to equal d, leaving:

ax+ by + cz = d

70

Appendix B Anthony J.W. Kenny

Now, the equation of a line can be written in the form:

ax+ by + cz = 0

And can be parameterized in the following form:
x = x1 + t(x2 − x1)

y = y1 + t(y2 − y1)

z = z1 + t(z2 − z1)

To find the point of intersection, we substitute the equation of the line into the equation
of the plane, yielding:

a(x1 + t(x2 − x1)) + b(x1 + t(x2 − x1)) + c(x1 + t(x2 − x1)) = d

Rearranging to find an expression for t:

t =
d− (ax1 + by1 + cz1)

a(x2 − x1) + b(y2 − y1) + c(z2 − z1)

Knowing t, we can find the point of intersection, PX to be:
xX(t) = x1 + t(x2 − x1)

yX(t) = y1 + t(y2 − y1)

zX(t) = z1 + t(z2 − z1)

Finally, the following equalities are evaluated to see if the point lies on the segment:

x1 ≤ xX ≤ x2

y1 ≤ yX ≤ y2

z1 ≤ zX ≤ z2

If so, then the grids corresponding to the point of intersection can be marked as inter-
sected.

B.6 Timing Methodology of RRT Analysis
VTune Profiler

VTune Profiler is an application for software performance analysis. It provides functionality
to examine hot-spots for CPU execution time through a top down analysis. The top down
analysis tool shows the percentage of CPU time taken up by each function. It was used to
initially profile the algorithm’s performance.

71

Appendix B Anthony J.W. Kenny

Internal Timing

There are several limitations to using VTune Profiler. First, it can only profile software
running on Intel processors, which implement the x86 ISA. In anticipation of potentially
needing to run performance analysis on a RISC-V processor, another method was required.
Secondly, VTune Profiler takes a long time to run, as it needs to conduct a lot of analysis
that is extraneous to the purpose of this thesis. This became prohibitive when it came to
conducting hundreds of tests for different parameterizations, with each test running RRT
a minimum of 100 times. Finally, it was not customizable to ignore certain parts of the
implementation, such as logging functionality. While the implementation was designed in
such a way that these should not intefere, it led to a lot of irrelevant data. A simple and
effective alternative for measuring execution performance was to insert timing functionality
into the software itself.

Internal timing was implemented based on the inbuilt C clock() function and
CLOCKS_PER_CYCLE macro, and wrapping each function of interest in a performance track-
ing struct. This can be seen in the project’s RRT sub-repository under performance.h.

Comparison

Before proceeding to use the internal timing method, it was important to verify that
this method yielded similar results to VTune Profiler for the same program. Table B.4
summarizes the results of analysis of a simple C executable. The program calls 5 functions,
{A,B,C,D,E}, each a simple iteration in which a integer is incremented. Since the Internal
Timing method returned similar results to the (trusted) VTune Profiler, it was considered to
be a reliable method. While it was encouraging to see both methods returned similar results
for absolute execution time, the more important metric was the similarity in percentage
of total execution time. For good measure, a χ2 test of hypothesis was conducted and for
one degree of freedom showed more that acceptable results.

function Vtune Profiler Internal Timing
χ2

time (s) time (% total) time (s) time (% total)
A 0.488 57.4% 0.497 57.6% 0.00016
B 0.2 23.5% 0.198 23.1% 0.00002
C 0.102 12.0% 0.099 11.5% 0.00009
D 0.048 5.7% 0.049 5.6% 0.00002
E 0.012 1.4% 0.019 2.2% 0.00408

Table B.4: Comparison of Timing Methods

72

Appendix B Anthony J.W. Kenny

B.7 Execution Time of 2D and 3D RRT for Different Map
Sizes

Figure B.3: Increasing Total Execution Time of RRT with Map Size

73

Appendix C

HoneyBee Supporting
Documentation

74

Appendix C Anthony J.W. Kenny

C.1 Prior Work in Hardware Acceleration
Hardware acceleration refers to the strategy of using computer hardware specifically de-
signed to execute a function more efficiently than can be achieved by software running on
a general purpose CPU. Specialized hardware designed to perform specific functions can
yield significantly higher performance than software running on general purpose processors,
and lower power consumption than GPUs.

Acceleration of Motion Planning

Accelerating motion planning with hardware is a fairly well studied problem.
A Motion Planning Processor on Reconfigurable Hardware [19] studied the performance
benefits of using FPGA-based motion planning hardware as either a motion planning pro-
cessor, co-processor, or collision detection chip. It targeted the feasibility checks of motion
planning (largely collision detection) and found their solution could build a roadmap using
the Probabalistic Road Map (PRM) algorithm up to 25 times faster than a Pentium-4
3Ghz CPU could.
In A Programmable Architecture for Robot Motion Planning Acceleration [20], Murray et
al. built on the work of the aformentioned paper, to accelerate several aspects of motion
planning in an efficent manner.
FPGA based Combinatorial Architecture for Parallelizing RRT [21] studies the possibil-
ity of building architecture to allow multiple RRTs to work simultaneously to uniformly
explore a map. Taking advantage of hardware parallelism allows systems such as this to
compute more information per clock cycle.
Finally, in the paper Robot Motion Planning on a Chip [22], Murray et al. describe a
method for contructing robot-specific hardware for motion planning, based on the method
of constructing collision detection circuits for PRM that are completely parallelised, such
that edge collision computation performance is independent of the number of edges in the
graph. With this method, they could compute motion plans for a 6-degree-of-freedom
robot more than 3 orders of magnitude faster than previous methods.

Accelerating RISC-V Processors

Having only been released in 2011, RISC-V is still a relatively unexplored opportunity
for non-education applications. However, it shows promise in the commercial space, with
Alibaba recently developing the Xuantie, a 16-core, 2.5GHz processor, currently the fastest
RISC-V processor. Recently there has been promising research into accelerating computa-
tionally complex applications, particularly in edge-computing, with RISC-V architecture.
Towards Deep Learning using TensorFlow Lite on RISC-V, a paper co-written by the fac-
ulty advisor of this thesis, V.J. Reddi, presented the software infrastructure for optimizing
the execution of neural network calculations by extending the RISC-V ISA and adding
processor support for such extensions. A small number of instruction extensions achieved

75

Appendix C Anthony J.W. Kenny

coverage over a wide variety of speech and vision application deep neural networks. Reddi
et al. were able to achieve an 8 times speedup over a baseline implementation when us-
ing the extended instruction set. GAP-8: A RISC-V SoC for AI at the Edge of the IoT
proposed a programmable RISC-V computing engine with 8-core and convolutional neural
network accelerator for power efficient, battery operated, IoT edge-device computing with
order-of-magnitude performance improvements with greater energy efficiency.

76

Appendix C Anthony J.W. Kenny

C.2 Technical Specifications for Edge Collision Unit

Element Requirement Description/Justification
Performance

Latency
(µseconds/edge)

0.9 3 times faster than benchmark CPU latency.

Throughput
(edges/second)

1,111,111 follows from latency.

Area
FPGA Area 274,080 LUTs Maximum number of LUTs on a Kintex-7

Low Voltage FPGA
Interface

Constraints
Length ϵ 4 ϵ defines the max edge length. The space be-

ing checked and the output sequence has the
dimensions ϵ× ϵ× ϵ 4 was chosen after deter-
mining what was feasible for given area.

Inputs
Edge e {(x1, y1, z1),

(x2, y2, z2)}
An Edge e defined for a 3D configuration
space by two points {p1, p2}, each defined by
a set of 3D coordinates {x, y, z}.

Control Inputs clk, rst, start The functional unit must have ports for con-
trol signals: clock, reset, start. These are re-
quired for adding the unit to a processor.

Outputs
Return Value ϵ3 bit sequence Grids are represented by their index in the

sequence. 1 if collides with grid at that index,
0 otherwise.

Control Outputs done, idle,
ready

Output ports for control signals: idle, done,
ready. These are required for adding the unit
to a processor. These ouput signals are part
of the “handshake” interface protocol.

Table C.1: Full Technical Specifications for Edge Collision Detection Unit

77

Appendix C Anthony J.W. Kenny

C.3 IEEE Standard for Floating-Point Arithmetic
Integers can be represented in binary very easily. The LSB carries the value of 20, the
next, 21, and so on. Examples shown below for a 32-bit integer:

00000000000000000000000000000001 = 1
00000000000000000000000000000100 = 4
00000000000000000000000000010101 = 21

Representing a floating-point fractional number in binary is also simple. Consider the
fractional number 1.75. It can be represented in point binary as 1.11. This is converted
back into decimal using the same logic as above:

20 + 2−1 + 2−2 = 1.75

However, in computers, there is no way to represent the decimal point. All that is
available is a (32-bit, for example) sequence of 1s or 0s. How does a processor know
where to put the decimal point? IEEE754 is a technical standard for representing floating-
point numbers and conducting floating-point arithmetic. A 32-bit floating-point number
is represented by a 1-bit sign, an 8-bit exponent, and a 23-bit fraction, or “mantissa”.
The sign is simple; 0 for a positive number, 1 for a negative number. Now consider the
fractional binary number 1111.11 (= 15.75). Similarly to regular scientific notation, this
can be represented with an exponent:

1111.11 = 1.11111× 23

Since we are working with binary values, we use base 10. To prove this:

1.11111→
(
20 + 2−1 + 2−2 + 2−3 + 2−4 + 2−5

)
× 23 = 1.96875× 23 = 15.75

In this same way, the mantissa is multiplied by 2 to the power of the exponent and the
sign is added. The mantissa has an implied leading 1, so the 23 bits shown are those to
the right of the decimal point. Examples are included below:

sign exponent mantissa Decimal
0 01111111 1100000 00000000 00000000 1.75
1 01111111 1100000 00000000 00000000 -1.75
0 01111111 0000000 00000000 00000000 1
0 10000001 0110000 00000000 00000000 5.5

Table C.2: IEEE-754 Floating Point Examples

78

Appendix C Anthony J.W. Kenny

C.4 Mapping HoneyBee’s Output Sequence to a Grid-Map
For an ϵ×ϵ×ϵ grids, the grid space can be represented by an ϵ3 bit sequence. A grid’s index
in the sequence is a function of its coordinates. This can be thought of as a 3 dimensional
nested loop, incrementing most frequently on the x-axis, then the y-axis, then the z-axis.
An index of 0 is the LSB and an index of ϵ3 − 1 is the MSB.

Mathematically, this can be thought of as the following:

f(x, y, z) = x+ ϵy + ϵ2z

In HoneyBee, this can computed efficienty by using shifts rather than multiplications,
as long as ϵ is an even number. For ϵ = 2, SHAMT = 1.

f(x, y, z) = x+ (y << SHAMT) + (z << SHAMT << SHAMT

Graphically, this can be represented as shown in Figure C.1 for ϵ = 2.

Figure C.1: Bit Sequence Mapping for a 2× 2× 2 Grid Space

79

Appendix C Anthony J.W. Kenny

C.5 HoneyBee Handshake Control Protocol

Port Description
start This signal controls the block execution and must be asserted

to logic 1 for the design to begin operation. It should be held at
logic 1 until the associated output handshake ready is asserted.
When ready goes high, the decision can be made on whether
to keep start asserted and perform another transaction or set
start to logic 0 and allow the design to halt at the end of the
current transaction. If start is asserted low before ready is
high, the design might not have read all input ports and might
stall operation on the next input read.

ready This output signal indicates when the design is ready for new
inputs. The ready signal is set to logic 1 when the design
is ready to accept new inputs, indicating that all input reads
for this transaction have been completed. If the design has
no pipelined operations, new reads are not performed until the
next transaction starts. This signal is used to make a decision
on when to apply new values to the inputs ports and whether to
start a new transaction should using the start input signal. If
the start signal is not asserted high, this signal goes low when
the design completes all operations in the current transaction.

done This signal indicates when the design has completed all op-
erations in the current transaction. A logic 1 on this output
indicates the design has completed all operations in this trans-
action. Because this is the end of the transaction, a logic 1 on
this signal also indicates the data on the return port is valid.
Not all functions have a function return argument and hence
not all RTL designs have an return port.

idle This signal indicates if the design is operating or idle (no op-
eration). The idle state is indicated by logic 1 on this output
port. This signal is asserted low once the design starts oper-
ating. This signal is asserted high when the design completes
operation and no further operations are performed.

Table C.3: Description of the ports associated with the handshake protocol for
HoneyBee. Adapted from Vivado HLS User Guide[23]

80

Appendix C Anthony J.W. Kenny

C.6 HoneyBee Interface Synthesis Report

RTL Ports Direction Bits Protocol C Type
ap_clk in 1 ap_ctrl_hs return value
ap_rst in 1 ap_ctrl_hs return value
ap_start in 1 ap_ctrl_hs return value
ap_done out 1 ap_ctrl_hs return value
ap_idle out 1 ap_ctrl_hs return value
ap_ready out 1 ap_ctrl_hs return value
ap_return out 64 ap_ctrl_hs return value
edge_p1_x in 32 ap_none scalar
edge_p1_y in 32 ap_none scalar
edge_p1_z in 32 ap_none scalar
edge_p2_x in 32 ap_none scalar
edge_p2_y in 32 ap_none scalar
edge_p2_z in 32 ap_none scalar

Table C.4: HoneyBee Interface Synthesis Report for ϵ = 4. Results taken from
Vivado HLS synthesis report.

C.7 HoneyBee-B Variants
HoneyBee-A

Calling each Line Intersects plane from within the honeybee() function. max latency =
6.66 us and no overlap between checking each plane. No Pragmas used, one instance of the
Check_Planes module, computing collisions for xy, xz, and yz oriented planes sequentially.

HoneyBee-B1

By tweaking the way the C Code was laid out, 3 different instances of the same Check_Planes
module were instantiated, executing in parallel.

HoneyBee-B2

Added HLS PRAGMA “function_instantiate” to minimise control logic depending on in-
puts. Instantiate an instance of 3 slightly different modules: Check_Planes_XY, Check_Planes_XZ,
and Check_Planes_YZ Marginally faster but significantly smaller.

81

Appendix C Anthony J.W. Kenny

HoneyBee-B3, B4, B5

HB-4, HB-5, and HB-6 were all attempts at using the HLS UNROLL Pragma to unroll the
ϵ deep loop for checking a set of planes, to not much avail. This failed to result in much of
a speedup because the loop writes to the collision variable.

HoneyBee-C

Use HLS PRAGMA “PIPELINE” to execute the ϵ iterations in parallel.

82

Appendix D

Xedgcol Non-Standard Extension
for Edge Collision Detection

This chapter describes version 1.0 of the Xedgcol Non-Standard ISA Extension for RISC-V.
The Xedgcol extension is designed to be implementable alongside any base ISA without

reliance on any other extensions. For example, the Xedgcol instruction set requires support
for floating point registers, which are not provided in the RV32I ISA. As such, it defines 6
new registers specifically for use with this ISA.

Xedgcol is a highly specialized ISA extension, designed explicitly for accelerating motion
planning. Specifically, it is designed for the invocation of logic to compute the intersections
of an edge with a grid space. The maximum length of the edge is 4 times the length of a
single grid. This is relevant as a 4x4x4 gridspace can be saved to two 32-bit x-registers.

D.1 Xedgcol Register State
The Xedgcol extension defines 6 new 32-bit floating-point registers, e0-e5. The term
XELEN is used to desrive the width of these floating-point registers in the RISC-V ISA,
and XELEN=32 for this extension. Table D.1 shows the additional register state defined
by Xedgcol.

83

Appendix D Anthony J.W. Kenny

Register ABI Name Description
e0 px0 X coordinate of edge’s first point
e1 py0 Y coordinate of edge’s first point
e2 pz0 Z coordinate of edge’s first point
e3 px1 X coordinate of edge’s second point
e4 py1 Y coordinate of edge’s second point
e5 pz1 Z coordinate of edge’s second point

Table D.1: Xedgcol Register State

D.2 Referencing Xedgcol Registers
Since only 6 registers are defined and they are only referenced by the instructions defined
in this ISA, it is possible for them to be referenced using only 3-bit values. This allows for
more bits in the instructions to be used for immediate values.

D.3 Load Immediate Edge Instruction
The Load Immediate Edge (LI.e) Instruction allows for a floating point number to be
loaded directly into the register rd. LI.e loads a single-precision value into the specified
register.

imm[31:6] rd 000
26 3 3

Floating-Point Immediate dest LI.e

Only the 26 MSB of the floating-point immediate are stored in the instruction.
This should then be extended in the instruction decode stage for storage in the
destination register.

D.4 Edge Collision Instruction
The Edge Collision Instruction computes the grids with which the edge defined by registers
e0-e5 collides. The result is a 64-bit sequence of collision bits that can be saved in two
32-bit destination registers.

84

Appendix D Anthony J.W. Kenny

000000000000 rd2 000 rd1 0000 100
12 5 3 5 4 3

null dest2 null dest1 null ECOL

The ECOL instruction was structured the way it was in order to simplify in-
struction decoding in a processor. The 32 LSB are stored in rd1. The way the
instruction is structured means that this can occur in the normal writeback
stage of a processor with minimal extra logic. Similarly, only minimal extra
instruction decoding and control logic needs to be implemented to facilitate
saving the 32 MSB to rd2.

85

Appendix E

PhilosophyV Supporting
Documentation

E.1 Reduced Instruction Set Computer (RISC)
There are two broad classifications of ISAs: Complex Instruction Set Computer (CISC) and
Reduced Instruction Set Computer (RISC). Table E.1 outlines the key differences between
the two.

CISC RISC
Emphasis on Hardware Implementation Emphasis on Software
Multi-cycle, complex instructions.
Different Instructions take different
amounts of time to execute.

Single-cycle, simple instructions. All
base instructions take the same amount
of time to execute.

Operations can be performed directly on
values stored in memory.

Memory must be loaded into registers,
operated on, and then stored back into
memory.

Higher number of cycles per second Lower number of cycles per second
Smaller Assembly code sizes Larger code sizes

Table E.1: Comparison of CISC and RISC ISAs.The operating philosophy of the
two can really be broken down as follows: CISC has more complex instructions, higher

cycles per second, and more cycles per instruction. RISC has fewer, more simple
instructions, fewer cycles per second, and generally only one execution cycle per

instruction.

86

Appendix E Anthony J.W. Kenny

E.2 PhilosophyV Core Schematic for RV32I
See Page 89.

E.3 PhilosophyV Core Schematic for RV32I_Xedgcol
See Page

87

Figure E.1: RV32I PhilosophyV Schematic

Figure E.2: RV32I_Xedgcol PhilosophyV Schematic

Bibliography

[1] H. (Alexandrinus), De gli automati, overo machine se moventi, Volume 2.

[2] V. I. B. U.-l. Isa, A. Waterman, Y. Lee, D. Patterson, K. Asanovi, and B. U.-l. Isa,
“The RISC-V Instruction Set Manual v2.1,” 2012 IEEE International Conference on
Industrial Technology, ICIT 2012, Proceedings, vol. I, pp. 1–32, 2012.

[3] A. Waterman, K. Asanovic, and SiFive Inc, “The RISC-V Instruction Set Manual,”
vol. Volume I:, 2019.

[4] C. E. Shannon, “XXII. Programming a computer for playing chess,” The London, Ed-
inburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, pp. 256–
275, mar 1950.

[5] M. Campbell, A. J. Hoane, and F. H. Hsu, “Deep Blue,” Artificial Intelligence, vol. 134,
pp. 57–83, jan 2002.

[6] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,”
In, vol. 129, pp. 98–11, 1998.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” International
Journal of Robotics Research, vol. 20, pp. 378–400, may 2001.

[8] Intel, “VTune Profiler,” 2019.

[9] R. Menzel, U. Greggers, A. Smith, S. Berger, R. Brandt, S. Brunke, G. Bundrock,
S. Hülse, T. Plümpe, F. Schaupp, E. Schüttler, S. Stach, J. Stindt, N. Stollhoff, and
S. Watzl, “Honey bees navigate according to a map-like spatial memory,” Proceed-
ings of the National Academy of Sciences of the United States of America, vol. 102,
pp. 3040–3045, feb 2005.

[10] “The man who knew too much: Alan Turing and the invention of the computer,”
Choice Reviews Online, 2006.

90

Appendix 5 Anthony J.W. Kenny

[11] F. Elsabbagh, B. Asgari, H. Kim, and S. Yalamanchili, “Vortex RISC-V GPGPU
System: Extending the ISA, Synthesizing the Microarchitecture, and Modeling the
Sooware Stack,” tech. rep., 2019.

[12] Chips Alliance, “Rocket Chip,” 2020.

[13] Thingbits, “LynxMotionHQuad500 Drone.”

[14] RoboJackets, “RRT,” 2019.
https://github.com/RoboJackets/rrt.

[15] M. Planning, “rrt-algorithms,” 2019.
https://github.com/motion-planning/rrt-algorithms.

[16] Sourishg, “rrt-simulator,” 2017.
https://github.com/sourishg/rrt-simulator.

[17] Vss2sn, “Path Planning,” 2019.
https://github.com/vss2sn/path_planning.

[18] Olzhas, “RRT Toolbox,” 2017.

[19] N. Atay and B. Bayazit, “A motion planning processor on reconfigurable hardware,” in
Proceedings - IEEE International Conference on Robotics and Automation, vol. 2006,
pp. 125–132, 2006.

[20] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J. Sorin, “A Programmable Archi-
tecture for Robot Motion Planning Acceleration,” tech. rep.

[21] G. S. Malik, K. Gupta, K. M. Krishna, and S. R. Chowdhury, “FPGA based combi-
natorial architecture for parallelizing RRT,” in 2015 European Conference on Mobile
Robots, ECMR 2015 - Proceedings, Institute of Electrical and Electronics Engineers
Inc., nov 2015.

[22] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, G. Konidaris, and D. Robotics, “Robot
Motion Planning on a Chip,” tech. rep.

[23] Xilinx, “Vivado Design Suite User Guide for High-Level Synthesis,” tech. rep., 2014.

91

https://github.com/RoboJackets/rrt
https://github.com/motion-planning/rrt-algorithms
https://github.com/sourishg/rrt-simulator
https://github.com/vss2sn/path_planning

BO
M
 (B

ill
of
 M

at
er
ia
ls)

U
ni
t C
os
t $

U
ni
t

of
 U
ni
ts

To
ta
l $

Ex
ac
t o
r e

st
im
at
ed
?

No
 m
at
er
ia
ls
w
er
e
pu
rc
ha
se
d
in
 th
e
pr
od
uc
tio
n
of

Ex
ac
t

th
is
th
es
is

Pl
ea
se
 d
o
yo
ur
 b
es
t t
o
fil
l in

 th
e
fo
llo
w
in
g
de
ta
ils
 o
n

yo
ur
 b
ud
ge
t

To
ta
l $

Ex
ac
t o
r e

st
im
at
ed
?

If
yo
u
ha
d
to
 u
se
 C
NS

 sp
ac
e
an
d
eq
ui
pm

en
t p
le
as
e
an
sw

er
 th
e

fo
llo
w
in
g
qu
es
ito
ns
:

To
ta
l D
ev
el
op
m
en
t c
os
t:
ev
er
yt
hi
ng
 th
at
 w
as
 sp

en
t

on
 y
ou
r p

ro
je
ct
 in
clu

di
ng
 p
ro
to
ty
pe
s,
 tr
an
sp
or
ta
tio
n
0

Ex
ac
t

W
hy
 d
id
 y
ou
r p
ro
je
ct
 re
qu
ire
 th
e
us
e
of
 C
NS

 fa
cil
ite
s?

W
ha
t i
s t
he
 m
in
im
um

 co
st
 to
 m
ak
e
on
e
pr
ot
ot
yp
e
of

yo
ur
 p
ro
je
ct
 ($
0
is
an
 o
pt
io
n)
?

0
Ro
ug
hl
y
m
uc
h
tim

e
di
d
yo
u
sp
en
d
us
in
g
CN

S
fa
cil
iti
es
?
[s
pe
cif
y
ho
ur
s o

r d
ay
s]

To
ta
l c
os
t o
f i
te
m
s p

ur
ch
as
ed
 th
ro
ug
h
th
e
A
ct
iv
e

Le
ar
ni
ng
 L
ab
s
(A
LL
),
if
an
y

0
W
ha
t e
qu
ip
m
en
t d
id
 y
ou
 n
ee
d
to
 u
se
?

To
ta
l c
os
t c
ov
er
ed
 b
y
th
e
H
ar
va
rd
 R
es
ea
rc
h

La
b(
s)
 y
ou
 a
re
 a
ffi
lia
te
d
w
ith
, i
f a
ny

0
W
ho
 d
id
 y
ou
 in
te
ra
ct
 w
ith
 a
t C
NS

 a
nd
 h
ow

?
To
ta
l c
os
t o
f i
te
m
s p

ur
ch
as
e
pe
rs
on
al
ly
, i
f a
ny

0
If
yo
u
ar
e
af
fil
ia
te
d
w
ith
 a
 re
se
ar
ch
 la
b
th
at
 a
rra

ng
ed
 fo
r y
ou
r u
se
 o
f

CN
S
fa
cil
iti
es
, p
le
as
e
sp
ec
ify
 w
hi
ch
 la
b
(a
nd
 re
sa
rc
h
ad
m
in
ist
ra
to
r w

ho

To
ta
l c
os
t c
ov
er
ed
 b
y
a
no
n-
H
ar
va
rd
 la
b
 a
nd
/o
r

co
m
pa
ny
, i
f a
ny

0
If
yo
u
di
dn
't
w
or
k
th
ro
ug
h
a
re
se
ar
ch
 la
b
di
re
ct
ly
, d
id
 th
e
Ac
tiv
e

Le
ar
ni
ng
 La

b
sp
on
so
r/
ar
ra
ng
e
yo
ur
 u
se
 o
f C
NS

 re
so
ur
ce
s?

W
ha
t c
ou
ld
 w
e
ha
ve
 d
on
e
be
tte

r t
o
m
ak
e
yo
ur
 C
NS

 e
xp
er
ie
nc
e
m
or
e

pr
od
uc
tiv
e?

P
le
as
e
lis
t b
el
ow
 a
ll
m
at
er
ia
l u
se
d
in
 A
LL

th
at
 w
er
e
no
t
ac
co
un
te
d
fo
r i
n
yo
ur
 b
ud
ge
t /

	Preface
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Acronyms
	List of Algorithms
	List of Figures
	List of Tables
	Glossary of Terms

	Introduction
	Problem Summary
	Background & Motivation
	Problem Definition

	Project Overview
	Project Goals
	Project Structure

	Motion Planning in Software
	Motion Planning Background
	Key Concepts
	Rapidly-exploring Random Tree

	Implementation of RRT
	Technical Specifications
	Implementation Design
	Implementation Visualization

	Analysis of RRT
	Experimental Methodology
	Results

	Motion Planning in Hardware
	Defining the Collision Detection Unit
	Edge Collision Function
	Technical Specifications

	HoneyBee
	HoneyBee Interface Design
	HoneyBee Implementation
	HoneyBee Acceleration

	Motion Planning Architecture
	Computer Architecture Background
	Instruction Set Architecture
	Microarchitecture

	RISC-V Instruction Set
	RISC-V
	RV32I

	Defining a RISC-V Custom Extension
	Xedgcol Specifications
	Defining Xedgcol

	PhilosophyV
	RV32I Implementation
	RV32I_Xedgcol Implementation
	Verification

	Conclusion
	Summary of Results
	Evaluation of Success
	Future Work

	Appendices
	Project Repository
	RRT Supporting Documentation
	Justification of Modelling UAV as Prism
	Full Technical Specifications for RRT Implementation
	Assessment of Existing RRT Implementations
	Implementation of Key RRT Functions
	Geometrically Determining Segment-Plane Intersection
	Timing Methodology of RRT Analysis
	Execution Time of 2D and 3D RRT for Different Map Sizes

	HoneyBee Supporting Documentation
	Prior Work in Hardware Acceleration
	Technical Specifications for Edge Collision Unit
	IEEE Standard for Floating-Point Arithmetic
	Mapping HoneyBee's Output Sequence to a Grid-Map
	HoneyBee Handshake Control Protocol
	HoneyBee Interface Synthesis Report
	HoneyBee-B Variants

	Xedgcol Non-Standard Extension for Edge Collision Detection
	Xedgcol Register State
	Referencing Xedgcol Registers
	Load Immediate Edge Instruction
	Edge Collision Instruction

	PhilosophyV Supporting Documentation
	Reduced Instruction Set Computer (RISC)
	PhilosophyV Core Schematic for RV32I
	PhilosophyV Core Schematic for RV32I_Xedgcol

	Bibliography

