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Making Decisions under High Stakes: Trustworthy and Expressive
Bayesian Deep Learning

ABSTRACT

Machine learning models applied to high-stakes domains must navigate the trade-

off between (i) having enough representation power to learn effectively from high-

dimensional, high-volume datasets, while (ii) avoiding cost-prohibitive errors due

to model overconfidence and poor generalization. This need has led to growing in-

terest in Bayesian neural networks (BNN), models that perform Bayesian inference

on deep neural networks. BNNs are able to quantify predictive uncertainty over an

inherently rich hypothesis space, which is crucial for high-stakes decision-making.

In this thesis, we present two contributions that tackle the shortcomings of BNNs.

First, BNN priors are defined in uninterpretable parameter space, which makes it

difficult for end users to express functional prior knowledge independent of train-

ing data. We formulate two novel priors that incorporate functional constraints (i.e.

what values the output should hold for any given input) that can easily be specified

by end users. The resulting model is amenable to black-box inference. We demon-

strate its efficacy on two high-stakes domains: (i) enforcing physiologically feasible

interventions on a clinical action prediction task, and (ii) enforcing racial fairness

constraints on a recidivism prediction task where the training data is biased.

Next, variational approximations that are typically used for BNN posterior infer-

ence do not come with provable error guarantees, making it difficult to trust their

predictive estimates. By exploiting the functional form of BNNs, we bound the pre-

dictive mean error of such approximations via maximum mean discrepancy on a

reproducing kernel Hilbert space. Our bound is easily estimable and directly useful

to end users as it is specified in predictive space.
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... salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.

E quindi uscimmo a riveder le stelle.

... up we climbed, he first and I second, until I saw,
the beautiful things the heavens carry, through a
round opening.

And thence we came forth to look again at the stars.

— Dante Alighieri, Inferno
(transl. Robert Durling)

WHAT SPECTACLE CONFRONTED THEM WHEN THEY, FIRST THE HOST,

THEN THE GUEST, EMERGED SILENTLY, DOUBLY DARK, FROM OBSCURITY

BY A PASSAGE FROM THE RERE OF THE HOUSE INTO THE PENUMBRA OF

THE GARDEN?

The heaventree of stars hung with humid nightblue fruit.

— James Joyce, Ulysses

Then there was wind and violent thunder. There was a star riding
through clouds one night, and I said to the star, “Consume me.”

— Virginia Woolf, The Waves
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0
A Summary for the Layperson

Author’s note: During my time at Harvard, I have been asked by several friends
and acquaintances (many without STEM backgrounds) about my research. I have
always believed in the importance of communication across academic disciplines, and
explaining one’s work at all levels of abstraction. This section represents my efforts at
writing a completely non-technical abstract of the thesis that anyone can understand.

Tom Stoppard’s absurdist play Rosencrantz and Guildenstern Are Dead begins with

the two eponymous characters flipping a coin that repeatedly lands: Heads, Heads,
Heads... After about 76 such repetitions, the characters begin pondering the nature

of their existence in a world where the laws of probability do not quite seem to

hold true. It takes them another 16 Heads before their suspicions are fully aroused,

allowing the rest of the play to proceed in earnest.

STATISTICAL INFERENCE

What Rosencrantz and Guildenstern engaged in is the process of inference from data.
Presented with evidence (the results of 92 coin tosses), they deduced certain likeli-

hoods about the world around us. For example, 92 consecutive Heads might imply

that one is in an alternate universe where the laws of physics are different. The

same data is also far stronger evidence for the (narrower) conclusion that the coin

in question is biased. In our day-to-day lives, our brains are constantly engaged in

inference. When we communicate, we infer intent from speech and gestures, which
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might be less conclusive if the words used are ambiguous. On the road, we infer the

future actions of other drivers based on their current actions, which might be less

conclusive if one is driving in Massachusetts.

Inference from data is deeply intertwined with the manipulation of probabilities.

Performing and understanding this process is the key concern of statistics. We do so

by specifying models that describe the mathematical relationship (or what we think

is the correct relationship) between the input we have and the output we want.

For example, in the clinical setting, we want to build a model that takes as input a

patient’s symptoms and vitals, and generates as output the correct medical action to

be taken.

MACHINE LEARNING

Specifying the correct model isn’t quite the end of the story. This is where the data

comes in. We will use our observed data to solve or tune the model, so that it

matches input to output correctly (i.e. infers the correct conclusion). For example,

a simple clinical model might specify that likelihood of hypertension is a function of

blood pressure. Using the data we have, we will tune this model so that it knows the

precise value of blood pressure that results in hypertension. The more complicated

the model we specify, and the more data we have, the harder it is to tune the model.

It will take us ages to do this by hand. In most cases, we develop algorithms, to be

run on computers, to do this task for us. The use of algorithms and models to infer

relationships from data is precisely the field of machine learning, which lies at the

intersection of computer science and statistics.

In recent years, one particular class of models, known as deep neural networks,

have gained particular interest. These models are capable of tackling a wide variety

of problems ranging from image detection to language translation, so long as they

can be tuned correctly. Even though neural networks were invented in the 1980s,

it is the recent improvements in computational hardware and algorithms that have

made tuning them a practical possibility, catapulting their widespread use.

HIGH-STAKES MACHINE LEARNING

Today, machine learning models are used in a vast number of domains, from spam

filtering to self-driving cars. However, not all domains carry equal risk. Wrongly

classifying a spam email as authentic does negligible harm. Wrongly accelerating
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at a traffic junction can be fatal. This thesis considers the application of machine

learning for high-stakes decision-making – domains where an erroneous prediction

can be disastrous.

To build models that perform well in high-stakes settings, we need our models

to reason under uncertainty. In other words, not only must the model be able to

generate predictions from data, it must quantitatively express how confident it is

about these predictions. This allows us to choose whether to trust the model’s output

or return control to a human expert to make the final decision. As it turns out, a

statistical framework known as Bayesian inference allows us to do just that. Applying

Bayesian inference to neural networks result in (the succinctly named) Bayesian
neural networks (BNNs), versatile models that can both (i) reason under uncertainty

and (ii) be applied towards a vast set of domains.

While the concept of a BNN was first proposed in the mid-1990s, interest in these

models have resurfaced in the past few years, due to (again) the general improve-

ment in computational hardware (that has made inference practical and scalable),

as well as the growing need for models that function well over high-risk domains.

This thesis contributes to the growing body of BNN research literature by tack-

ling two core problems.

PROBLEM 1: ENFORCING DOMAIN CONSTRAINTS

In many high-stakes scenarios, domain experts are privy to prior knowledge that is

not found in the data. For example, in the healthcare setting, a doctor might know

that certain classes of drugs like statins are contraindicated in pregnant women. As

models infer solely from data, the only way for a model to learn these rules is to

hope that our data contains plenty of examples of, say, pregnant women that were

not prescribed statins. This is clearly not an effective approach. We thus propose

methods for explicitly incorporating these prior expert knowledge (which we call

domain constraints) into the inference process.

Why is this important? Many datasets that machine learning models are trained

on are incomplete or biased. The ability to explicitly enforce constraints allow us

to counteract problematic datasets. As a prominent example, in some areas of the

United States, machine-learned models aid judges in reaching sentence and bail de-

cisions based on likelihood of recidivism. The datasets that these models are trained

on often reflect the demographic biases rampant in history. To prevent the model

3



from learning these biases, one could explictly enforce a fairness constraint across

race or gender. In general, enforcing constraints are a way of imposing desiderata

like safety and fairness on models.

PROBLEM 2: DIAGNOSING INFERENCE ALGORITHMS

The versatility of BNNs come with a trade-off, which is that it is almost impossi-

ble to “tune” these models perfectly to the theoretically correct degree. In practice,

most BNN users employ a clever method that approximates the true tuned model,

known as variational inference. While empirical experiments have shown that vari-

ational inference generally works quite well in practice, a rigorous characterization

of inference solutions coming from variational inference has not been well-studied.

Furthermore, recent research has also shown that variational inference can be quite

problematic in many situations.

This is an important problem, because in order to trust BNNs to perform well in

high-stakes settings, we need to have proof that the tuning algorithms we use return

reliable and correct solutions. As such, we tackle this problem by mathematically

analyzing variational inference, and coming up with methods to diagnose how well

variational inference performs during the BNN tuning process.

F • f

The theme of this thesis is reliable and safe machine learning for high-stakes

decision-making. Consequentially, both of the problems above are broadly related

in the sense that the goal is to increase our trust in BNNs as models that not only

operate in risky domains, but do so in a reliable and safe manner. The rest, as they

say, are details.
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1
Introduction

A junior doctor makes her morning rounds. For each patient, she consults her notes,

which summarize the symptoms and initial diagnosis given to that patient, along

with the details of the hospital stay: medications given, interventions taken. If the

patient is conscious, she may ask them some questions about their current condition.

With all of this information, she will make an initial decision on the patient’s prog-

nosis and subsequent medical actions to be taken. Each patient she treats increases

her confidence and knowledge about the correct medical decisions to be made.

Learning functions, which are maps from a set of inputs (e.g. symptoms, diagno-

sis, past actions) to outputs (e.g. prognosis, future actions), is an task ubiquitous in

our daily lives. In machine learning, this is formalized as the problem of supervised
learning. Given access to a finite and possibly noise-corrupted set of input-output

pairs (the “data” or “evidence”), we specify statistical models that formalize our hy-

pothesis about the input-output relationship, and we perform statistical inference to

learn various statistics, e.g. model parameters if the model is parametric. We call

the supervised task regression if the output is real and scalar, and classification if the

output is categorical. More complicated output codomains are studied under the

aegis of structured learning; this is beyond the scope of this thesis.

A class of parametric models known as (deep) neural networks (NN) has gar-

nered immense interest and attention over the past decade. The simplest neural

networks, known as multilayer perceptrons, describe alternating compositions of
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linear and non-linear transformations applied to the initial input vector. The re-

sulting model is an universal approximator [34] with substantial model capacity.

More complicated NN architectures incorporate compositions such as convolutions,

which further allows us to exploit the structures of complex input data like images

or text. As a result, NNs have outperformed traditional statistical models in many

important applications such as computer vision and natural language processing

[30, 45, 54, 55, 72]. However, these models have their limitations: (i) they are

computationally costly to train (often requiring vast amounts of data and dedicated

hardware), (ii) their theoretical properties are poorly understood and still remain a

field of active research, and (iii) they do not generalize well and are therefore prone

to issues such as adversarial attacks [24].

The overconfidence of classical NNs has, in part, spurred recent interest in a dif-

ferent paradigm of training them – namely, via Bayesian inference. In the Bayesian

setting, one learns a conditional distribution over the network parameters with re-

spect to the data (the posterior), instead of the usual local optimum of the loss

landscape. The posterior can then be marginalized in the predictive setting. The

resulting model, known as a Bayesian neural network (BNN), acts using many sets

of parameters (weighed by their posterior probabilities) instead of a point estimate

[52, 56]. This naturally accounts for model (epistemic) uncertainty and is crucial in

settings where (i) training data is sparse, and therefore multiple hypotheses explain

the data equally well, and (ii) high-stake applications where overconfident model

predictions are unacceptable. In the latter, BNNs have seen success in areas such as

autonomous driving [38, 39] and medical diagnostics [76].

Bayesian inference is a well-understood framework in statistical literature. How-

ever, its application to NNs is not seamless and several core challenges remain. This

thesis tackles two such challenges. First, the expressivity and accuracy of BNNs de-

pend on the ability to specify prior distributions that (i) are interpretable and (ii)

can encode versatile functional forms. In practice, priors used for BNN inference are

vague and uninterpretable, in part due to the high-dimensional parameter space in

which these models operate. We introduce a novel prior formulation that allows

the user to encode functional constraints. The ability to specify constraints, ranging

from safety to fairness, will greatly improve the applicability of BNNs. We show

concrete applications to healthcare and criminal justice. Second, as exact posterior

inference is intractable for BNNs, practitioners typically use a technique known as

6



variational inference to learn an approximate distribution. These approximations,

however, do not come with provable guarantees on their performance. Trusting

inference quality is a crucial prerequisite for the safe and reliable deployment of

BNNs, which motivates bounds on the predictive error of these approximations.

THESIS STRUCTURE The remainder of this chapter concisely builds a self-contained

description of BNNs from first principles and motivates the specific problems that

the thesis investigates. Chapter 2 describes Output-Constrained BNNs, which en-

able functional constraints to be specified as prior knowledge on BNNs. Chapter 3

describes KEBO-VPME, a kernelized bound on the variational predictive mean error.

Lastly, Chapter 4 offers a concluding discussion and outlines future work.

1.1 SUPERVISED LEARNING

Let X ∈ X be a predictor (input) variable. In this thesis, we consider the typical

setting X = RQ, where the dimensions of RQ are the Q individual predictors. We

will assume that all necessary feature transformations, e.g. dummy encoding of

categorical features or standardization of continuous features, have been carried

out. Let Y ∈ Y be the response (output) variable. For regression tasks, Y = R.
For K-classification tasks, Y is any set with a bijection to {0, 1, . . . ,K − 1}. In

supervised learning, we suppose that some true (or ideal) mapping f∗ : X → Y
exists which we seek. We also specify that X × Y ∼ D such that p(Y = f∗(X)|X)

is high. In other words, D is an accurate data-generating distribution. For example,

Y |X ∼ N (f∗(X), σ2
ϵ ) represents data corrupted by Gaussian noise. While we do not

know either f∗ or D, we have access to observed data Dtr = {xi, yi}Ni=1, which are

N independent samples from D. The response values in Dtr are also called labels.

The goal is to inductively learn f∗ within the function space YX = {f | f : X →
Y} using Dtr. Without further statistical assumptions, such induction is impossible.

Instead, we specify a model that encodes our beliefs on Y |X, such as continuity or

linearity. This restricts our search to a hypothesis space H ⊆ YX , which represents

the subset of functions with the specific relationship between X and Y that the

model describes. Here we consider only parametric models, where H = {fθ | θ ∈
RM} and fθ(x) is fully determined from x ∈ X and a real-valued vector θ (the

model’s parameter). Next, we need to quantify the discrepancy between the model’s

output and the true target value for all x ∈ X . This is done via a loss function L

7



where L(fθ(x), y) is the error for x ∈ Dtr. Then the optimal parameter θ∗ is the one

that minimizes the expected loss (or risk) of the model:

θ∗ = argmin
θ

EX×Y∼D
[
L(fθ(X), Y )

]
(1.1)

Without access to D, and given that our data is i.i.d., we estimate (1.1) as:

θ̂ = argmin
θ

N∑
i=1

L(fθ(xi), yi) (1.2)

This is known as empirical risk minimization [71]. For most cases, there are com-

monly used loss functions with important statistical interpretations.

The choice of model is crucial, as we have to make statistical assumptions that (i)

are expressive enough to capture the ground-truth (so that H contains f∗ itself, or

some close approximation f ′ where f ′ ≈ f∗ 1), (ii) make induction possible (so that

θ̂ is close to θ∗) and (iii) are tractable (so that we can devise efficient algorithms

to learn θ̂). The common caveat is that models with higher capacity (richer H)
are more likely to induce poorly by overfitting the data: this is the so-called bias-

variance tradeoff. The reader may refer to standard texts such as [17] or [3] for a

more thorough treatment of supervised learning and common statistical models.

1.2 DEEP NEURAL NETWORKS

The particular parametric model that we consider in this thesis is known as the

(artificial) neural network. While historically inspired by efforts to mimic the neural

circuitry found in the brain [53], NNs should simply be viewed as mathematical

constructs capable of modeling a diverse set of relationships. We will introduce the

simplest type of NN, the multilayer perceptron (MLP), here in two equivalent ways:

graphically and functionally.

THE GRAPHICAL INTERPRETATION A MLP is a directed graph (V,W). The nodes

V = (L0,L1, . . . ,LH ,LH+1) are organized into layers, where the input layer L0

consist of the individual input predictors, the H intermediate layers Lh:h/∈{0,H+1}

are called hidden layers, and LH+1 is the final output layer. For regression, LH+1

1So that even if it is not possible to learn f∗ exactly, we can learn a “similar” function f ′.
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Figure 1.2.1: A typical diagram depicting the NN as a graph. This NN has an input layer
(4 nodes including the bias term, i.e. X = R3), a single hidden layer (3 nodes including the
bias term) and an output layer (3 nodes, i.e. Y = {0, 1}). The bias nodes are squares. Taken
from: https://stats.stackexchange.com.

contains a single node representing the final output; for K-classification, LH+1 con-

tains K nodes, where each node denotes the output probability for that class, i.e.∑
u∈LH+1

u = 1. We add nodes with a nominal value of 1 to every layer except

LH+1; these nodes represent the bias or intercept term. There is a weighted edge

from every u ∈ Lh−1 to every v ∈ Lh, with the exception that bias nodes have

no incoming edges. W is therefore the set of all edges, represented as a vector of

weights (the MLP’s parameters). Each node can be seen as a unit of computation,

receiving as input the weighted sum of all nodes in the previous layer, and applying

a non-linear transformation to this weighted sum. This value is then passed on to

the nodes in the next layer, and so on. In essence, the MLP can be considered as

a model defined by hierarchical layers of computation, proceeding from the input

vector all the way to the output vector, consisting of successive compositions of lin-

ear basis function regression models. Figure 1.2.1 shows an example of a MLP with

a single hidden layer. MLPs with more than one hidden layer are called deep.

Since the MLP is an acyclic graph, it belongs to the class of NNs known as feedfor-
ward neural networks, where computation proceeds in a single direction from input

layer to output layer. Many other variants of NNs exist, where the graphs have more

complicated connectivity; this is referred to as the architecture of the NN. For the

purpose of this thesis, we will consider only MLPs since the problems and applica-

tions herein will not require more complex architecture. Hereafter, we will use the

term NN to describe only MLPs.
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THE FUNCTIONAL INTERPRETATION A 1-layer MLP 2 can be represented with the

parametric equation:

ΦW(x) = W2

[
σ
(
W1

[
x , 1

]⊤ )
, 1

]⊤
(1.3)

where W1 is the |L1| × |L0| matrix (representing all input-to-hidden weights) and

W2 is the |L2| × |L1| matrix (representing all hidden-to-output weights) 3. W =

(W1,W2) is the set of all network weights. Eq. (1.3) makes explicit what we earlier

described in the graphical view: a non-linear transformation, represented by σ, is

applied element-wise to the nodes of the hidden layer:

σ
( [

x , 1
]⊤ )

j
= σ

( [
x , 1

]
j

)
∀j ∈ {0, 1, . . . , |L1| − 1} (1.4)

Why are these non-linear transformations (also called activation functions) neces-

sary? Note that without a non-linear component, MLPs would simply reduce to

linear models since the set of linear functions is closed under composition. Histori-

cally, σ were chosen to be threshold functions on the node’s value 4. For example, a

common activation function is the rectified linear unit (ReLU):

σRELU (x) = max(0, x) (1.5)

More importantly, under certain (mild) assumptions on the choice of σ, a 1-layer

MLP is able to approximate every continuous function defined on compact sets of

the input space X = RQ, i.e. H generated by 1-layer MLPs is dense in C(RQ) [11].

This is the so-called Universal Approximation Theorem that gives neural networks

their rich model capacity.

Generalizing (1.3) to the multilayered setting is straightforward:

ΦW(x) = WH+1

[
σ
(
WH

[
σ
(
. . .σ

(
W1

[
x , 1

]⊤ )
. . .
)
, 1

]⊤ )
, 1

]⊤
(1.6)

We simply compose further linear combinations and nonlinear activations on each

successive MLP layer. Note that we do not apply any nonlinear component to the
2Note the convention here that we refer to a MLP only by the number of hidden layers, H.
3In other literature, the term “weight” strictly refer to non-bias connections. Here, we use “weights”

and “parameters” interchangeably since the distinction is unimportant from an inference standpoint.
4Hence the name activation function, a reference to the action potential in biological neuron firing.
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final output layer. The exception to this is the K-classification setting, where we

apply the softmax function to the |LH+1| = K > 1 nodes of the final layer:

softmax(uj) =
exp{uj}∑

l∈{0,1,...,K−1} exp{ul}
∀uj ∈ LH+1 (1.7)

to ensure that the values of the output layer sum to 1, corresponding to classification

probabilities. When the actual class label is desired, we typically choose the class

corresponding to the node with the largest probability.

The parameters of the MLP are W = (W1, . . . ,WH+1), which hereafter we sim-

ply represent as a flattened vector W ∈ RM . The hypothesis space generated by

MLPs is HNN = {ΦW |W ∈ RM}. Similar to other parametric models, we learn the

globally optimal parameter Ŵ by minimization of (1.2). Because the loss landscape

of MLPs is highly nonconvex, provably finding Ŵ is NP-complete [4]. Instead,

a local optimum W̃ is typically learned using an iterative optimization algorithm

such as gradient descent; the most common method is stochastic gradient descent

(SGD) [6] since the size of Dtr can reach up to the order of millions. Gradients of

W are computed using the backpropagation algorithm [31], which utilizes the chain

rule to differentiate across layers of the NN. Backpropagation can be easily imple-

mented via automatic differentiation in most modern programming languages (e.g.

the PyTorch framework in Python [59]), allowing for efficient learning of NNs.

Because the Universal Approximation Theorem generalizes to the multilayered

setting [34], we are assured that MLPs are powerful function approximators and

HNN is large enough to learn most functions that we care about practically. In some

sense, if our goal is to learn an efficient model, by which we mean a model that is

polynomial in both sample and runtime complexity, then we can do no better than

MLPs, which have polynomial sample complexity and can approximate any other

efficient model over Q predictors [66, Chapter 20]. Unfortunately, the drawbacks

are also significant. As we noted earlier, learning Ŵ is difficult. Algorithms like

SGD tend to find reasonable solutions in many situations. However, they come with

few provable guarantees and often generalize poorly outside the data distribution

D. The choice of MLP depth H and size of each hidden layer Lh are also “hyper-

parameters” that the practitioner must specify, and it is not always clear what the

reasonable choices are for the application at hand. The reader is invited to consult

[46] or Chapter 20 of [66] for a deeper discussion of neural networks.
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1.3 ONWARDS TO THE BAYESIAN PARADIGM

Up to this point, we have described supervised learning using the tools of frequen-

tist inference. In the frequentist setting, estimands of interest associated with a

statistical model have fixed, ground-truth values that are unknown. We construct

estimators that are correct with high probability (c.f. confidence intervals) based on

the finite set of data that we observe, and we test these estimators with respect to

some baseline or hypothesized value (c.f. hypothesis testing) 5.

In the context of supervised learning with neural networks, we assume that the

ground-truth function f∗ : X → Y exists and corresponds to a NN with the param-

eter W∗. As W∗ is unknown, we estimate it as Ŵ via empirical risk minimization

(1.2). In fact, as noted above, Ŵ itself is difficult to obtain and we instead solve for

the local optimum W̃ with the gradient descent algorithm. Compared to traditional

statistical models, there are some differences when performing frequentist inference

for NNs. In particular, hypothesis testing and construction of confidence intervals

are typically not carried out in NN literature, due to both the complexity of NNs as

well as minimal statistical assumptions applied to D. Instead, W̃ is evaluated on a

held-out test set Dte ∼ D, which is an independent set of observations not used to

learn W̃ earlier.

This last approach raises concerns for training NNs in the classical manner. With

sufficient free parameters (i.e. hidden layers and nodes), NNs are expressive enough

to model the noise in Dtr and can do so under empirical risk minimization. The re-

sulting learned function may be overfitted on Dtr, generalizing poorly to regions of

X not represented in Dtr. As W̃ is a point estimate with few theoretical guarantees

besides empirical success on Dte, one can only hope that generalizing well to Dte

is an indication of generalization everywhere on X . In particular, if we happen to

choose some Dte out-of-distribution (i.e. Dte ̸∼ D), it is quite possible that test error

will be significantly higher than the training error.

Overfitting on NNs is a well-known problem and many approaches exist that im-

prove robustness. For example, NNs can be trained via structural risk minimization,
5Technically, frequentism describes both a philosophical approach to probability as well as a spe-

cific methodology for carrying out inference. As the former, frequentists treat probability as the (limit
to infinity of the) frequency of an outcome, if the experiment is run infinitely many times. However,
having a frequentist interpretation of probability does not imply that one has to use frequentist in-
ference (and similarly so for Bayesian interpretation vs inference, as we will soon describe). It is the
mode of inference that we are primarily concerned with.
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whereby regularization terms are added to (1.2). This penalizes excessively large

parameter values and deters learning overly expressive functions [71]. Regulariza-

tion is widely studied in simpler statistical models. Another commonly used tech-

nique (unique to NNs) is dropout [68], where NN parameters are randomly zeroed

during each iteration of gradient descent. However, most of these techniques do not

come with theoretical guarantees such as confidence intervals, and ultimately, we

still rely on evaluation of Dte as an empirical measure of generalization.

Unfortunately, as HNN is such an expressive hypothesis space, enforcing strong

generalization in NNs is still an open problem 6. While empirical success on Dte is

sufficient for applications where threshold levels of error are tolerable, in the high-

stakes applications motivated at the beginning of this chapter, we cannot afford

overconfident but erroneous NN predictions resulting from poor generalization. To

compound the issue, these settings typically involve high-dimensional X = RQ.

Under such a large input space, it is quite possible that the real-life data that the NN

is deployed on comes from a distribution different from D — this is the so-called

curse of dimensionality. Therefore, we need the system to possess the ability to

reason about its own confidence — the model should be able to recognize a test

point out-of-distribution and return prediction control to a human domain expert.

We can push this argument further. In some cases, generalization is not only

difficult but inherentlymeaningless. For example, what if a NN trained on classifying

various functional magnetic resonance imaging (fMRI) scans is erroneously shown

an electroencephalography (EEG) scan instead? 7 Given any input image, the NN

will, of course, output a label — after all, we’re simply running an input through

(1.6). It is clear, however, that any prediction resulting from an EEG scan as input

makes no sense for a NN trained on fMRI scans.

The futility of pursuing perfect generalization also challenges our earlier method-

ology. Thus far, we have assumed that some ground-truth function f∗ exists, which

corresponds (one-to-one) to an ideal parameterW∗ that we seek to learn from data.

It is quite possible, however, that multiple sets of parameters W explain the data

equally well. In fact, since NNs represent such a rich hypothesis space, it is likely

6For example, the 2019 (most recent as of the publication of this thesis) iteration of the International
Conference on Machine Learning (ICML) features a workshop dedicated to research in NN generaliza-
tion; see https://sites.google.com/view/icml2019-generalization/home.

7Here, the input space is the space of all images (of a fixed size), typically represented as a W ×
H × 3 real tensor of pixel values.
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that these models are underspecified by the data on hand, implying that multiple

parametrizations exist that will perform well [74]. Without further data, it may be

impossible to distinguish between these competing hypotheses, and there is no rea-

son to rely solely on one such solution (W̃). We are faced with an irreducible source

of uncertainty, known as epistemic uncertainty, resulting from equally compelling

sets of parameters 8. Furthermore, even if a ground-truth parameter W∗ exists and

we have enough data to eliminate other hypotheses, learning W∗ exactly is still an

impossible task under finite, noise-corrupted data. The noise represents another

inherent source of randomness that cannot be accounted for — this is aleatoric

uncertainty, i.e. uncertainty due to measurement imprecision.

Being able to reason coherently with these sources of uncertainty is useful for

statistical modeling in general but especially crucial for NNs. The trade-off for the

ability to model expressive functions that mirror the complexity of real-life domains

is the difficulty or impossibility of finding an ideal W∗. This warrants a pivot away

from the frequentist setting, particularly in high-stakes situations where such fail-

ure to generalize can be prohibitively costly. Instead, the solution is to construct a

system that is capable of quantitatively reasoning about its confidence (both with

respect to the parameter W as well as the predicted output Y for any x), so as to

make predictions in line with its uncertainty. Formally, we consider models that can

learn probability distributions for both W and Y |x.

Bayesian inference is one such coherent system. Instead of treating quantities

of interest as having fixed but unknown values that we can estimate, the Bayesian

framework casts them as random variables with probability distributions that we can

infer. 9 Consider the joint probability space of the evidence Dtr and the variable of

interest W. We seek the conditional distribution W|Dtr, which can be computed

using Bayes’ Rule:

p(w|Dtr) =
p(w)p(Dtr|w)

p(Dtr)
(1.8)

We call p(w|Dtr) the posterior (distribution), p(w) the prior (distribution) and

p(Dtr|w) the likelihood (distribution). Since Dtr are i.i.d. by assumption, we can

8Technically, epistemic (model) uncertainty comprises both parameter uncertainty and structural
uncertainty (in the case of NNs, variables like number of nodes and network depth). We consider
only parameter uncertainty and treat NN architecture as a hyperparameter. More complex modelling
choices such as a hierarchical Bayesian model can also incorporate structural uncertainty rigorously.

9Again, Bayesian inference is related to, but distinct from, the Bayesian interpretation of probabil-
ity, where probabilities quantify our degree of belief in some outcome based on observable evidence.
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decompose the likelihood into individual observations:

p(Dtr|w) =

N∏
i=1

p(Yi|xi,w) (1.9)

The likelihood p(Yi = yi|xi,w) is closely related to the loss function L(Φw(xi), yi)

and both measure how well w explains the observation (xi, yi). The prior p(w)

models our initial belief of how W is distributed prior to any observation of data.

The evidence probability p(Dtr) is the integral

p(Dtr) =

∫
W

p(Dtr|w′)p(w′)dw′ (1.10)

Note that the prior and likelihood are both modelling choices. Having specified

them, (1.8) can be easily derived from the fundamental axioms of probability.

Treating W|Dtr as a random variable allows us to quantify uncertainty, which

is effectively the spread of the posterior distribution. With appropriately defined

priors and likelihoods, W|Dtr accurately models both epistemic and aleatoric 10

uncertainty. The greater V ar[W|Dtr] is, the more uncertain we are about what the

correct value of W should be.

Our probabilistic setting carries directly to prediction. For a new point x′, the

predictive distribution over output Y ′ is:

p(Y ′|x′, Dtr) =

∫
W

p(Y ′|x′,w)p(w|Dtr)dw (1.11)

where p(Y ′|x′,w) is the same likelihood as in (1.9) 11. p(Y ′|x′, Dtr) is known as the

posterior predictive (distribution) and allows for uncertainty quantification in Y
directly. Greater V ar[Y ′|x′, Dtr] indicates greater uncertainty about what the output

for x′ should be. Having access to V ar[Y ′|x′, Dtr] along with an actual label estimate

(say, E[Y ′|x′, Dtr]) allows us to model predictions and their corresponding confi-

dences, which can aid us in deciding whether the prediction itself should be trusted.

Note that large V ar[W|Dtr] does not necessarily imply large V ar[Y ′|x′, Dtr] for all

points. We will expect V ar[Y ′|x′, Dtr] to be smaller for x′ near observations in Dtr,

and larger when further away from the training distribution.
10Note that the noise is actively modelled by defining p(Yi|xi,w).
11Except that we now replace the true label yi with the NN output Φw(x).
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We have described a coherent system that not only models sources of uncertainty

in the learning process but is quantitatively able to generate confidence measures

for individual predictions. While Bayesian inference can be applied to any model

(and readers are referred to a standard text like [21] for a comprehensive treat-

ment), we stress again that it is particularly useful for working with NNs. From

an application standpoint, NNs are used to model complex, high-stakes scenarios,

where functions that generalize well across high-dimensional input spaces are hard

to find and so confidence measures on predictions are necessary. From a modelling

standpoint, NNs represent a rich hypothesis space where there are likely multiple

competing hypotheses W that explains the data equally well, i.e. W|Dtr is diffuse.

These various W may lead to different predictive distributions Y ′|x′,W for a new

test point x′, which means using the full distribution W|Dtr will generate better

predictions than the point estimate W̃.

1.4 BAYESIAN NEURAL NETWORKS

We name the resulting model a Bayesian neural network (BNN) when we carry out

Bayesian inference on NNs via (1.8). The complete process for supervised learning

with BNNs is as follows:

1. We specify the prior and likelihood.

2. We infer the posterior. An analytical evaluation of (1.8) is not possible, due

to both the integral in (1.10) as well as the complicated prior and likelihood

distributions. We will instead rely on algorithms for approximate inference.

3. For prediction of a new test point x′, we compute the posterior predictive

distribution using (1.11). As (1.11) is also intractable due to the integral, we

typically sample a finite set of parameters from W|Dtr as an approximation.

Notice that we can choose to use point estimates. Moving from Step 2 to Step 3, we

can use the posterior mean E[W|Dtr] or the maximum a posterior (MAP) esti-

mate mode[W|Dtr] to approximate (1.11) instead of the full posterior. For decision-

making, we can also use the posterior predictive mean E[Y ′|x′, Dtr] or the predic-

tive MAP mode[Y ′|x′, Dtr] to approximate the final output distribution. Choosing

to take point estimates offsets the advantage of using Bayesian inference, but will

be computationally cheaper. The frequentist estimator W̃ can be viewed as a point

estimate as well. We will now describe each of the three steps above in detail.
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1.4.1 LIKELIHOODS FOR BNNS

The likelihood is purely a function of the model prediction ΦW(x) and the correct

target y and does not depend on W directly. As such, BNN likelihood distributions

follow the standard choices used in other probabilistic models. In this thesis, we

will use the likelihood distributions presented below:

REGRESSION We would expect Y |x,W to be a Dirac delta function centered on

ΦW(x). However, this is unrealistic as target labels for most applications are noisy.

As such, we typically model output noise to be (zero-meaned) Gaussian-distributed:

ϵ ∼ N (0, σ2
ϵ ) where σϵ is the variance of the noise, treated as a hyperparameter. The

likelihood PDF is then simply a Gaussian centered on ΦW(x):

p(Y = y|x,w) =
1

σϵ
√
2π

exp{−1

2

(y − Φw(x)

σϵ

)2
} (1.12)

Another benefit of modeling noise is that the resulting posterior expression is amenable

to gradient-based inference algorithms. A discontinuous PDF like the Dirac delta

function, or a non-Lipschitz continuous approximation, can cause numerical com-

putation issues.

CLASSIFICATION Unlike the regression setting, labels in Dtr are discrete and typi-

cally assumed to be correct. As such, we do not explictly model for “noise” (in the

sense that the label is wrong with some small probability). As noted in Section 1.2,

since the NN outputs class probabilities in the final layer LH+1 (instead of directly

predicting classes), then

p(Y = k|x,w) = Φw(x)k (1.13)

i.e. simply the value of the node representing class k (after the application of the

softmax function).

1.4.2 PRIORS FOR BNNS

In the Bayesian framework, the prior p(W) expresses our initial belief about the

value of the unknown W. One might suggest using a non-informative prior, since

it is difficult a priori to determine the relationship between specific values of indi-

vidual NN weights and the type of resulting functions ΦW we believe to be true. A
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reasonable choice for a non-informative prior would be a uniform distribution over

W = RM . However, this prior is improper since RM is unbounded and there are no

guarantees that the posterior will be proper and contain no pathologies.

Instead, we can consider weakly informative priors over Rm. The common choice

is an isotropic (multivariate) Gaussian W ∼ N (0, σ2
ωI), first proposed by MacKay

[52]:

p(w) = (2πσ2
ω)

−M
2 exp{− 1

2σ2
ω

w⊤w} (1.14)

where σω is the shared variance for all individual weights 12. It was shown by Neal

[56] that in the regression setting, the isotropic Gaussian prior for a BNN with a

single hidden layer approaches a Gaussian process prior 13 as the number of hidden

units tend to infinity, so long as the activation function chosen is bounded. This is

an important theoretical connection since Gaussian processes are well-understood

Bayesian models for regression. For all BNNs considered in this thesis, we will use

the Gaussian radial basis function (RBF) activation

σRBF (x) = e−x2
(1.15)

which is bounded in (0, 1]. In Section 1.5 we will motivate more complicated priors

for BNNs, including the constrained prior discussed in Chapter 2.

1.4.3 POSTERIOR INFERENCE AND PREDICTION

As exact posterior inference via (1.8) is intractable, we instead rely on approximate

inference algorithms, which can be grouped into a few classes based on their method

of approximation. Different classes of algorithms also lead to different ways of doing

prediction. Below, we present the two main classes of inference algorithms and

explain how prediction can be carried out using the results of inference. We will

also introduce the specific algorithms used in the experiments in this thesis; their

exact details can be found in Appendix B. Figure 1.4.1 shows an example of the

posterior predictive distribution that a BNN yields, in comparison to classical NNs.
12One may recall Bayesian linear regression, where the posterior MAP estimate from specifying an

isotropic Gaussian prior is equivalent to L2-regularization in the frequentist setting.
13A Gaussian process is a set S of random variables such that every finite subset of S follows a

multivariate Gaussian distribution. Hence a Gaussian process may be considered as a distribution
over real-valued functions. The Gaussian process prior is the distribution over functions prior to
observation of data, i.e. prior to instantiation of any r.v. in S.
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Figure 1.4.1: An example of the BNN posterior predictive distribution (blue) as well as a
classical NN (black line) trained on the same dataset. We show the posterior predictive mean
function (blue line) as well as the empirical at credible interval σ = 3 (blue shading) Whereas
the classical NN simply fits all data points, the BNN gives us variance estimates that increase
when further away from Dtr, representing greater predictive uncertainty. The prior used for
the BNN is (1.14) and HMC was used for inference.

MARKOV CHAIN MONTE CARLO (MCMC) MCMC algorithms rely on sampling from

a Markov chain whose equilibrium distribution is the posterior. In the context of

BNNs, our Markov chain is a sequence of random parameters W(1),W(2), . . . de-

fined overW, where the transition probability has the Markov property:

p(W(n+1)|W(1), . . . ,W(n)) = p(W(n+1)|W(n)) (1.16)

The Markov chain is (i) positive-recurrent if the expected amount of time to return

to w given W(1) = w is finite for all states w ∈ W , (ii) irreducible if it is possible

to get to any state from any other state in W and (iii) aperiodic if for every state

w, gcd{n | p(W(n) = w|W(1) = w) > 0, n > 0} = 1. An irreducible, aperiodic

and positive-recurrent chain has an equilibrium distribution, which is the limiting

distribution of states w ∈ W visited. The goal of MCMC is therefore to construct

a Markov chain (by defining the transition kernel) whose equilibrium distribution

is the posterior, such that a (finite) set of samples from this chain is approximately

distributed according to the posterior 14. MCMC algorithms are well-studied in

statistical literature and texts such as [7] provide more details.
14As the number of samples tend to infinity, the empirical distribution of samples is closer to the

posterior.
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In this thesis, we use Hamiltonian Monte Carlo (HMC), an MCMC variant

that employs Hamiltonian dynamics to generate proposals on top of a Metropolis-

Hastings framework [13, 57]. HMC is thus often seen as the gold standard for

approximate BNN inference. This is because (i) MCMC algorithms sample from the

true posterior (which makes them more accurate than VI approximations, discussed

below) and (ii) HMC is the canonical MCMC algorithm for BNN inference 15. How-

ever, as HMC is inefficient and cannot scale with large or high-dimensional datasets
16, it is generally reserved for low-dimensional synthetic examples.

Since MCMC algorithms return a finite set of samples {w(1), . . . ,w(S)}, prediction
using (1.11) exactly is impossible. Instead, we compute the Monte Carlo estimator:

p(Y ′|x, Dtr) ≈
1

S

S∑
i=1

p(Y ′|x′,w(i)) (1.17)

We can construct credible intervals for any given x′ using the empirical quantiles of

{w(1), . . . ,w(S)}, which allows us to quantify how confident the BNN is at x′.

VARIATIONAL INFERENCE (VI) Variational learning for NNs [25, 33] approximates

the true posterior p(w|Dtr) with a variational distribution qθ(w), which has the

same supportW and is parametrized by θ ∈ Θ. The variational family Q = {qθ|θ ∈
Θ} is typically chosen such that analytical expressions for qθ exist and so qθ is a

viable proxy for sampling and prediction. 17 To find the value of θ such that qθ(w)

is as similar as possible to p(w|Dtr), we minimize the Kullback-Leibler (KL) diver-

gence [42]:

DKL

(
p(·|Dtr) || qθ(·)

)
= EW∼qθ

[
log

qθ(W)

p(W|Dtr)

]
(1.18)

θ∗ = argmin
θ∈Θ

DKL

(
p(·|Dtr) || qθ(·)

)
(1.19)

KL divergence has information-theoretic roots and can be thought of as a measure

of similarity between probability distributions. In variational literature, minimizing

KL divergence is equivalent to maximizing a quantity known as the evidence lower
15MCMC methods “simpler” than HMC, such as naive Metropolis-Hastings or Gibbs sampling, are

intractable on high-dimensional parametric models such as BNNs. As such, HMC is in some ways the
simplest algorithm used for approximate BNN inference.

16This is because the likelihood term cannot be batched; see Appendix B.1.
17In this way, MCMC can be seen as the approximation of the exact posterior whereas VI is an exact

solution of an approximate posterior.
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bound (ELBO):

LELBO(θ) = EW∼qθ

[
log p(Dtr|W)

]
+DKL

(
p(·) || qθ(·)

)
(1.20)

θ∗ = argmax
θ∈Θ
LELBO(θ) (1.21)

We typically refer to (1.21) instead of (1.19) in VI literature. Appendix A provides

a derivation of (1.21) from (1.19). Solving for θ∗ exactly is intractable due to the

expectation term, and estimators for the integral in (1.20) are necessary. Once a

tractable proxy is formulated, standard algorithms such as SGD can be used for the

actual optimization process.

Different VI algorithms construct different estimators for optimization and con-

sider different variational families. VI can be thought of as simplifying the process

of marginalization (c.f. (1.8)) by optimization. While this seemingly brings us back

to the classical framework, note that we still preserve the Bayesian advantage since

we are optimizing for a distribution rather than a parameter.

In this thesis, we use Bayes by Backprop (BBB), a VI algorithm that makes use of

so-called reparametrization trick [40] to compute a Monte Carlo estimator of (1.20),

where the variational family is Gaussian [5]. Unlike HMC, BBB is scalable and fast

and therefore can be applied to high-dimensional and large datasets in real-life

applications. It is the most commonly used variational approach [70]. However, as

discussed in Chapter 3, VI methods like BBB can yield problematic approximations

and part of this thesis deals with characterizing the quality of such approximations.

We will also use Stein Variational Gradient Descent (SVGD), a VI algorithm

that relies on applying successive transforms to an initial tractable distribution, in

a way that incrementally minimizes the KL divergence between the transformed

distributions and p(w|Dtr) [47]. SVGD is also scalable to high-dimensional, large

datasets. Furthermore, as the transforms that SVGD applies implicitly define a richer

variational family than Gaussian approximations, SVGD tends to learn better quality

posteriors than BBB.

Similar to MCMC methods, SVGD returns a set of optimized samples and predic-

tion can be done using (1.17). In contrast, as BBB optimizes a simpler variational

family, we have access to the analytical form of the final Gaussian approximation.

Nevertheless, due to the nonlinearity of ΦW, closed-form evaluation of (1.11) for

prediction is still difficult (even with a Gaussian posterior). In the interest of directly
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comparing all posterior inference methods, we typically sample S times from qθ and

compute (1.17) when doing prediction using BBB 18.

1.5 SURVEYING THE CURRENT SCENE

BNNs are not yet fully compelling as a widespread approach to supervised learning.

Below, we summarize the major areas of shortcoming and the lines of research

addressing them. At the same time, we will also motivate the research discussed in

Chapters 2 and 3.

1.5.1 RICHER PRIORS

The difficulty in specifying priors with richer (more expressive) functional forms is

a challenge in BNN research. The isotropic Gaussian prior (1.14) is a dissatisfac-

tory prior that does not fully reflect the beliefs that a human user or expert might

possess about the underlying function to be learned. To be clear, (1.14) is not a
poor choice of prior because it is vague and weakly-informative. As noted in Wil-

son [74], a vague prior over parameter space still leads to a structured prior over

function space due to the structured functional form ΦW of the NN. Instead, the

fundamental difficulty is translating our prior beliefs, usually expressed in function

space (X ,Y), into the matching distribution in parameter spaceW. In other words,

the distribution over functions that (1.14) induces does not correspond to the com-

plicated distributions that human experts might express.

Much work has been done on specifying better priors by making smarter assump-

tions in parameter space. For example, [49] exploits the correlations between in-

dividual BNN weights (e.g. intra-layer correlations) instead of treating them as

independent like (1.14) does. [23] applies a horseshoe prior that zeroes nodes that

do not help explain the data Dtr when the BNN is over-specified.

A recent strain of research aims to specify BNN priors directly in function space.

[28] introduces a Gaussian prior in function space for the purpose of detecting out-

of-distribution data. One approach to specifying functional priors is to consider

stochastic processes, which are functional, nonparametric analogues to the para-

metric BNNs. To this end, [70] uses a variational approach that defines the ELBO
18If qθ is Gaussian, Equation (5.172) in Bishop [3] provides a stronger analytical approximation of

(1.11) than the Monte Carlo estimation in (1.17).
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directly over stochastic processes. Also, [51] performs inference over a family of

stochastic processes, parametrized in such a way that allows for functional priors

yet enjoys the speed and flexibility of BNNs.

HOW THIS THESIS CONTRIBUTES The research discussed in Chapter 2 contributes

to this latter area of specifying functional priors. We introduce output-constrained

priors, which are specified in parameter space but can incorporate functional as-

sumptions in the form of output constraints (i.e. for some x, we specify a prior on

Y |x). This directly allows human users to encode their rich functional beliefs in

an intuitive manner while still allowing for the simplicity of parameter space in-

ference. We demonstrate real-life applications on high-stakes domains like clinical

action prediction and criminal justice.

1.5.2 BETTER INFERENCE

The intractability of exact inference is the other major challenge to working with

BNNs, and several strands of current research are dedicated to designing tractable

but accurate approximate inference algorithms. There are two measures by which

we evaluate these algorithms. The first is the quality of approximation, i.e. we want

to learn approximate distributions as close to the true posterior as possible. The

other is scalability, i.e. the algorithm should be time-efficient as BNNs are normally

applied to high-dimensional, large datasets. MCMC approximations are typically

seen as producing “higher-quality” approximations (since they are correct to the

limit of sampling) but VI approaches are generally more scalable.

Some key pieces of research on scalable inference include [73] and [8], which are

both MCMC approaches that are scalable since they can compute batched updates of

the likelihood. [18, 35] considers a Bayesian interpretation of dropout regulariza-

tion, which is widely used on classical BNNs. The advantage of this method is that

dropout can be easily and cheaply implemented, even for complex NN architecture

such as convolutional or recurrent NNs.

Research towards improving the quality of VI includes normalizing flows [41, 50,

62], which iteratively transform an initial, simple distribution into one that is simi-

lar to the posterior. This is a VI approach with a richer variational family implicitly

defined by the transformations. SVGD, introduced earlier, is closely related to nor-

malizing flows as both algorithms use variable transforms. [32] describes another

variational approach via probabilistic backpropagation of NN weights.
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A concern that has gained weight in recent years is how these various algorithms

are evaluated experimentally. While scalability can be easily measured with metrics

like runtime, characterizing the quality of posterior approximation is much more

poorly defined. For example, should we look at over- or under-estimation of poste-

rior predictive variance? Should we measure the accuracy of the posterior predictive

mean? Why is KL divergence (and not other divergence metrics) the correct objec-

tive to minimize? Given that we do not have access to an analytic form of the

posterior, is it even possible to fully characterize the quality of approximation?

This concern has been exacerbated by recent research such as [77] and [15],

which have theoretically and empirically shown that variational learning can be

pathological, including the miscalibration of posterior variance in interpolated input

regions. While it is generally well-known that VI methods tend to underestimate the

posterior variance, these results are concerning since VI methods are widely used,

and it is important that we can trust the posterior approximation. This is espe-

cially pertinent for high-stakes domains where we desire more rigorous measures of

uncertainty.

HOW THIS THESIS CONTRIBUTES Due to the rich representation power of neural

networks and the complex, multimodal posteriors that result, there are few provable

guarantees on the performance of VI approximations, especially in the predictive

setting. Inspired by recent efforts such as [36] and [78], the research in Chapter 3

proposes a theoretical bound on the predictive mean error of the VI approximation

that is easily estimable.
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2
Output-Constrained BNN

The ability to specify informative prior distributions that encode rich functional as-

sumptions contributes significantly to the quality of the resulting BNN posterior

[74]. Such priors accurately reflect the various complicated beliefs that human ex-

perts hold about the task at hand, especially for high-dimensional real-life applica-

tions. The effects of such a targeted prior would be most keenly felt by reducing the

bias and uncertainty of the posterior predictive distribution in regions of X sparse

in training data. As we have previously motivated, predictive distributions that are

accurate everywhere in X are vital for high-stakes domains.

The range of functional assumptions that we might wish to impose on the prior is

diverse. For example, one might possess a priori knowledge that any correct func-

tion must be monotonic or Lipschitz continuous. In this thesis, we tackle functional

assumptions in the form of output constraints — the set of values y is constrained

to hold for any given x. Output constraints exist for many real-life applications and

are a form of knowledge about the task that domain experts can easily specify. In

particular, we can use output constraints to impose additional desiderata like safety

or fairness on the BNN. For example, one can specify the safety constraint that a

patient with symptoms x should not be prescribed drug y.

Incorporating output constraints as a BNN prior presents a number of challenges.

We first need to formalize a system for specifying constraints. In particular, as BNNs

learn probabilistically, we must translate deterministic constraints into equivalent
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probabilistic formulations. Next, BNN inference algorithms operate in parameter

space W. However, output constraints are, by definition, specified in input-output

space (X ,Y). In line with recent research on function-space inference [28, 48, 51],

we propose a sampling-based approach that assigns probability mass to w based

on how well Φw obeys constraints on drawn samples. We describe two ways of

constructing such a prior; the resulting model is an Output-Constrained BNN (OC-

BNN). Our approach is highly interpretable since an OC-BNN user can specify any

output constraint directly in its functional form. The other major benefit is that OC-

BNNs are amenable to all existing black-box BNN inference algorithms as we are

constructing an evaluable prior function that can be substituted into the expression

p(w). Sections 2.1 to 2.3 will introduce the core theory, and Section 2.4 compares

OC-BNNs to existing literature on functional BNN priors.

Synthetic experiments in low dimensions are introduced in Section 2.5, which

will provide a proof-of-concept using visualizable posterior predictive distributions

and various ablation tests. In Sections 2.6 and 2.7, we demonstrate OC-BNNs on two

high-stakes, high-dimensional domains: clinical action prediction and recidivism

prediction. We show that the ability to incorporate constraints with OC-BNNs lead

to safer and fairer machine learning.

Parts of the work introduced in this chapter has been previously published as

[75]. This thesis introduces a novel mathematical framework that describes more

formally the concepts in [75] and expands on the analysis of experiments carried out

in [75]. The variational formulation of the output-constrained prior as well as the

high-dimensional application to recidivism prediction are also novel. The code for

the work in this chapter is available at https://github.com/dtak/ocbnn-public.

2.1 OUTPUT CONSTRAINTS

Constraints are primarily studied under constrained optimization, where the goal is

to optimize a function f over x ∈ X , subject to a set of constraints g1, . . . , gm. These

can be classified into one of two types:

• An equality constraint is a relationship g(x) = 0 that must hold true for the

optimization solution.

• An inequality constraint is a relationship g(x) ≥ 0 that must hold true for the

optimization solution.
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In the setting of supervised learning with BNNs, we are primarily interested in

constraining the output y for any set of inputs x. Constraints g(x, y) are therefore

defined jointly over the input-output space (X ,Y). In the discriminative setting

where we learn the conditional Y |x (and x is typically an independent variable), we

are seldom interested in modeling the constraints between individual input variables.

As such, g(x, y) can be expressed equivalently as the relationship between y and

some g(x). We will term this form of constraint as an output constraint.

Next, inequality constraints are not well-defined for classification as defining a

total order does not make sense for most discrete Y. To generalize the notions

of “equality” and “inequality” for supervised learning, we instead consider positive
constraints, which specify the set of values that y can take, and negative constraints,
which specify what values y cannot take.

Lastly, an important distinction from the optimization setting is that, here, x ∈ X
itself is not being constrained. Rather, it shapes what the constraint on y is via

the function g. In fact, x also serves another purpose in determining where in X
the constraint should be obeyed. Putting these considerations together, we formally

introduce:

Definition 2.1.1. A deterministic output constraint C on y is a tuple (Cx, Cy, ◦)
where Cx ⊆ X , Cy : Cx → 2Y and ◦ ∈ {∈, /∈}. C is satisfied iff ∀x ∈ Cx, y ◦ Cy(x) 1.

C+ := C is a positive constraint if ◦ is ∈. C− := C is a negative constraint if ◦ is
/∈. C is a global constraint if Cx = X . C is a local constraint if Cx ⊂ X .

Positive and negative constraints can be loosely viewed as analogues to equality

and inequality constraints respectively. For example, the inequality y ≥ 1 is equiv-

alent to y /∈ (−∞, 1). Even though y ∈ Cy(x) ⇔ y /∈ Y − Cy(x), the distinction

between positive and negative constraints is not trivial because the user typically

has access to only one of the two forms of knowledge. Positive constraints also tend

to be more informative than negative constraints. For example, in regression, prior

knowledge that y = k for a particular value k (or some small interval around k) is

more likely than the knowledge that y ̸= k.

As our goal is not optimization over y ∈ Y , Definition 2.1.1 is not sufficient and

wemust define what it means for a BNN to satisfy a constraint C. Since BNNs express
1Note the explicit dependence of Cy on x, i.e. Cy replaces the constraint function g we have been

using up until now.
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predictive distributions over Y |x, a natural approach is to determine the probability

mass of the prior predictive that satisfies a constraint. The prior predictive is simply

the analogue of (1.11) that replaces W|Dtr with W:

p(Y ′|x′) =

∫
W

p(Y ′|x′,w)p(w)dw (2.1)

Definition 2.1.2. A deterministic output constraint C = (Cx, Cy, ◦) is ϵ-satisfied by a
BNN with prior p(w) if ∀x ∈ Cx and for some ϵ ∈ [0, 1]:

p(Y ◦ Cy(x)|x) =
∫
W

p(Y = y|x,w) I[y ◦ Cy(x)] p(w) dw ≤ ϵ (2.2)

The strictness parameter ϵ can be related to hard and soft constraints in optimiza-

tion literature; the constraint is hard iff ϵ = 0. Note that while ϵ-satisfaction is useful

for formalizing the goal of constrained BNN inference, ϵ is not an parameter of our

prior. Instead, we use (2.2) largely as an empirical measure of success on Dte.

Since BNNs operate in the probabilistic setting and learn a distribution Y instead

of a value y, we can in fact generalize Definition 2.1.1 further. Instead of a subset

Cy(x) ⊆ Y indicating (non)-membership of y, we can specify a constraint directly as

some distribution over Y :

Definition 2.1.3. A probabilistic output constraint C on y is a tuple (Cx,Dy, ◦)
where Cx ⊆ X , Dy(x) is a distribution over Y (dependent on x ∈ Cx) and ◦ ∈ {∈, /∈}.
C is ϵ-satisfied by a BNN with prior p(w) if ∀x ∈ Cx and for some ϵ ∈ [0, 1]:

DDIV

(
p(Y |x) , Dy(x)

)
≤ ϵ (2.3)

where DDIV is any valid measure of divergence between two distributions over Y. 2

The type of constraint we choose to specify is application-specific. For example,

for classification tasks where we might have a prior belief over the individual likeli-

hoods of each class, probabilistic constraints (e.g. a categorical distribution) may be

more useful than their deterministic counterparts. Together, Definitions 2.1.1 and

2.1.3 represent a general formulation that allows for the incorporation of versatile

and interpretable functional beliefs on Y .
2The same definitions of positive, negative, global and local constraints on Definition 2.1.1 apply

here as well.
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We now seek to construct a prior on W such that the BNN ϵ-satisfies, for some

small ϵ, a set of deterministic or probabilistic constraints C(1), . . . , C(m) that we spec-

ify. Note that satisfying some C on the prior predictive does not necessarily guaran-

tee that C is still satisfied on the posterior predictive, which infers from both C and

Dtr. Most of the time, we might assume that Dtr is consistent with C, which implies

ϵ-satisfaction on the posterior predictive distribution. However, there are certain

scenarios where we might to specify C to correct a possibly undesirable or biased

Dtr. Ablation experiments in Section 2.4 and the application to criminal justice in

Section 2.7 are examples.

Since the desired prior is to be expressed in parameter space, a natural way to

connect it to some C (defined in input-output space) is to evaluate how well the

implicit distribution of ΦW, induced by the distribution of W, satisfies C. We will

present two prior formulations over W that do so — (i) by conditioning the prior

on C and explicitly factoring in the likelihood p(C|W) of constraint satisfaction, and

(ii) by learning a variational approximation q(W) via optimization of objective (2.2)

directly.

2.2 CONDITIONAL OUTPUT-CONSTRAINED PRIOR

A fully Bayesian approach of conditioning requires us to construct a probability

distribution that concretely describes the extent to which W (and ΦW) satisfies C.
To do so, we must develop a framework that describes C in probabilistic terms, i.e. to

define terms like p(C) and p(C|w). We will do so by defining C as a stochastic process
indexed on Cx. We begin by establishing the measure-theoretic formalization of the

BNN setup introduced in Chapter 1.

Let x ∈ Cx be any fixed input variable. A random variable Z : Ω → Y is de-

fined on the probability space (Ω,F ,P) for the measurable space (Y,ΣY). Ω is the

sample space such that for any Z(ω) = z, ω is interpreted as the event where the

output for x is z. F is the typical σ-algebra we consider, i.e. the Borel σ-algebra

on R for regression or the power set 2Y for classification. P is any valid probability

measure. For regression where Y = R, ΣY is simply the Lebesgue measure on R.
For classification, ΣY = 2Y . 3

3While not defined earlier, Ω,BΩ,ΣY are identical to the setting for supervised learning with tar-
get variable Y that we set up in Chapter 1. We simply describe the measure-theoretic assumptions
explicitly here.
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Let Sx ⊆ X be any set of inputs. Let (Ω,F,Pg) where Ω =
∏

x∈Sx
Ω is the

Cartesian product of the sample space Ω (defined above) on every x ∈ Sx, F is the

product σ-algebra and Pg =
∏

x∈Sx
Pg,x is the product measure such that each Pg,x

corresponds to some probability distribution pg(·|x) over Y (a pushforward measure

from Pg,x). Then

CP : Ω→ YSx (2.4)

is the stochastic process indexed by Sx, where YSx denotes the set of all measurable

functions from Sx into Y. The law of the process CP is

p(S) = Pg ◦ CP−1(S) for any S ∈ YSx (2.5)

such that for any finite subset {Z1, . . . , ZT } ⊆ CP indexed by {x(1), . . . ,x(T )} ⊆ Sx,

we have

p(Z1, . . . , ZT ) =

T∏
t=1

pg(Zt = zt|xt) (2.6)

Note that CP is a valid stochastic process as it satisfies both (finite) exchangeabil-

ity and consistency, which are sufficient conditions via the Kolmogorov Extension

Theorem [58]. As the BNN output Φw(x) can be evaluated for all x ∈ Cx, the
stochastic process indexed by choosing Sx = Cx allows us to formally describe how

much ΦW satisfies C — by determining the measure of ΦCx
w ∈ YCx . Since Cx can be

uncountable, for practical computation we will choose a finite subset of Cx and com-

pute (2.6) as an approximation. We are now ready to define the output-constrained

prior:

Definition 2.2.1. Let C be any (deterministic or probabilistic) constraint and CP the
the stochastic process defined on YCx according to (2.4) for some probability measure
Pg. The conditional output-constrained prior (COCP) on W is defined as

pC(w) = pf (w)p(ΦCx
w ) (2.7)

where pf (W) is any distribution on W that is independent of C, and ΦCx
w ∈ YCx is the

realization of CP where {CP(x) = Φw(x) : x ∈ Cx}.

(2.7) can loosely be viewed as an application of Bayes’ Rule, where the realization

ΦCx
w of the stochastic process CP is the evidence of C being satisfied by w. Hence

p(ΦCx
w ) can be interpreted as a likelihood term, pf (w) is the “true” prior on W and
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pC(w) is a “posterior” distribution W|CP 4. This implies that the posterior that we

are inferring is, instead, a distribution over W|Dtr, CP:

pC(w|Dtr) := p(w|Dtr, CP) =
p(w|CP)p(Dtr|w, CP)

p(Dtr|CP)

=
p(w|CP)p(Dtr|w)

p(Dtr)
(2.8)

Note that p(Dtr|w) = p(Dtr|w, CP) and p(Dtr|CP) = p(Dtr) since Dtr is indepen-

dent of C. To ease the burden on notation, we will drop the explicit conditioning on

CP and treat pC(w) as the unconditional prior over W, consistent with our setup in

Chapter 1. We also denote the constrained posterior as pC(w|Dtr).

Definition 2.2.1 generalizes to multiple constraints C(1), . . . , C(m), by conditioning

on all C(i) and evaluating Φw for each constraint. Assuming the constraints to be

mutually independent, (2.7) simply generalizes to:

pC(1),...,C(m)(w) = pf (w)
m∏
i=1

p(ΦC(i)
x

w ) (2.9)

It remains to describe what measure Pg (or, equivalently, what distribution pg

over CP(x) for all x ∈ Cx) we should choose such that p(ΦCx
w ) is a likelihood distri-

bution that faithfully evaluates the extent to which C is satisfied. For probabilistic

output constraints, we simply set pg(·|x) to be Dy(x). For deterministic output con-

straints, we propose a number of distributions over Y that corresponds well to Cy,
the set of permitted (or excluded) output values.

POSITIVE GAUSSIAN CONSTRAINT A positive constraint C+ for regression, where

Cy(x) = {y∗} is a singleton for all x ∈ Cx, corresponds to the situation where we

know the ground-truth values over the constrained input region Cx. A natural choice

is therefore a Gaussian distribution centered on these value:

CP(x) ∼ N (y∗, σ2
C) (2.10)

where σC is a hyperparameter for the standard deviation of the Gaussian, corre-

sponding to how strict we want C to be enforced.
4Technically, pC(w) is the joint distribution. We have omitted the term p(ΦCx) =∫

W p(ΦCx
w )pf (w)dw, which, like (1.10), is unimportant (and intractable) since it is a constant for

a fixed constraint C.
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We can also generalize this for the case where Cy = {y1, . . . , yK} contains multiple

values; the equivalent distribution is the Gaussian mixture model:

CP(x) ∼
K∑
k=1

ωkN (yk, σ
2
C) (2.11)

for some set of mixing weights ωk such that
∑K

k=1 ωk = 1.

NEGATIVE EXPONENTIAL CONSTRAINT A negative constraint C− for regression takes

Cy(x) to be the set of values that cannot be the output of x. Informally, we desire

a distribution for CP(x) with a PDF that is 0 for every y′ ∈ Cy(x) and some con-

stant value otherwise. Unlike C+, there is no natural distribution corresponding to

such a specification, which would be both improper (if Y − Cy is unbounded) and

discontinuous. For the case where Cy is determined from a set of inequalities of the

form {g1(x, y) ≤ 0, . . . , gl(x, y) ≤ 0} 5, where obeying these inequalities implies that

y ∈ Cy(x) and hence C− is not satisfied, we can artificially construct an exponential

distribution that penalizes y based on how each inequality is violated:

pg(CP(x) = y′|x) = exp
{
− γ ·

l∏
i=1

στ0,τ1(gi(x, y
′))
}

(2.12)

where στ0,τ1(·) is the constraint classifier defined as:

στ0,τ1(z) =
1

4
(tanh(−τ0z) + 1)(tanh(−τ1z) + 1) (2.13)

and γ is a scale hyperparameter. The sigmoidal function στ0,τ1(gi(x, y
′)) is close

to 1 if gi(x, y′) ≤ 0, resulting in pg(CP(x) = y′|x) having a small value if every

gi(x, y
′) ≤ 0 (i.e. all inequalities obeyed and C− is violated). γ controls the rate

of decay. Here στ0,τ1(gi(x, y
′)) is a soft indicator of whether gi ≤ 0 is satisfied, and

τ0, τ1 are both hyperparameters controlling the smoothness of στ0,τ1 .
6 Figure 2.2.1

shows στ0,τ1(z) for τ0 = 15, τ1 = 2, which are the values used in this thesis.

POSITIVE DIRICHLET CONSTRAINT For K-classification, the natural distribution to

consider is the Dirichlet distribution, whose support is the K-tuple of prior proba-
5For example, Cy(x) = (−∞, 3) ∪ (5,∞) can be represented as {3− y ≤ 0, y − 5 ≤ 0}.
6In general, softening constraints in this manner allows for more tractable posterior sampling

than having sharp constraints. See, for example, [12], that proposes a soft exponential kernel on
parameter-space constraints for Bayesian inference.

32



Figure 2.2.1: The graph of the constraint classifier function στ0,τ1(z) for z = [−5, 5]. The
black line shows the setting where τ0 = 15, τ1 = 2 and the blue line shows the baseline setting
where τ0 = 1, τ1 = 1. Our choice of hyperparameters is stricter than the naive tanh(−z)
function and allows for a more abrupt transition between the inequality being obeyed (z ≤ 0)
vs violated (z > 0).

bilities on all classes 7. For a positive constraint C+, we specify:

CP(x) ∼ Dir(α) (2.14)

where

αi =

c if i ∈ Cy(x)

0 otherwise
where c > 0 (2.15)

is the concentration parameter, a vector of lengthK. Using the Dirichlet distribution

blurs the distinction between a positive and negative constraint, because we are

specifying both Cy and Y − Cy at the same time.

2.2.1 INFERENCE WITH COCPS

A complete specification of (2.7) is sufficient for inference using COCPs, as the ex-

pression pC(w) can simply be substituted for that of p(w) in all black-box BNN in-

ference algorithms. Since (2.7) cannot be computed exactly due to the intractability

of p(ΦCx
w ) for uncountable Cx, we will draw a finite sample {x(t)}Tt=1 of x ∈ Cx (e.g.

uniformly across Cx or Brownian sampling if Cx is unbounded) at the start of the
7Recall that for classification, Φw is a vector of length K representing the K BNN output nodes.
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inference process and compute (2.6) as an estimator of p(ΦCx
w ) instead:

p̃C(w) = pf (w)
T∏
t=1

pg(Φw(x
(t))|x(t)) (2.16)

(2.16) will be computed every iteration of an MCMC algorithm, or every epoch of VI

optimization. 8 The trade-off of using COCPs is that (2.16) is computationally more

expensive than a naive prior like (1.14), and its computational runtime increases

with the input dimensionality Q and the size of Cx. However, we note that many

sampling techniques from statistical literature can be applied to COCPs in lieu of

naive uniform sampling. We will also need to specify the C-independent prior term
pf (w). In this thesis, we will simply use the naive Gaussian prior (1.14).

Note that BNN inference algorithms can be applied for prior inference as well

as posterior inference. In the former, we are inferring pC(w) solely instead of

pC(w|Dtr), which we can use to visualize the prior predictive distribution. For the

experiments in Section 2.5, we will demonstrate both the prior predictive and the

posterior predictive distribution learnt using pC(w).

2.3 VARIATIONAL OUTPUT-CONSTRAINED PRIOR

In contrast to COCPs, a different approach for incorporating C into the prior can

be motivated from VI. Instead of constructing a PDF over w with terms explicitly

dependent on Φw and Cy, we can use a variational approximation qλ(w) where we

optimize λ with respect to our objectives, (2.2) and (2.3), for deterministic and

probabilistic constraints respectively.

Both definitions of ϵ-satisfaction, (2.2) and (2.3), compute the prior predictive

(2.1), which contains an expectation over W. As such an integral is intractable,

we will need to find a closed-form approximation for the prior predictive. For the

regression and binary classification settings, there are reasonable and well-known

approximations which we present below. A complete derivation, taken from [3],

can be found in Appendix D.
8An interesting extension may be to consider stochastic subsampling of Cx every iteration of (2.16),

however, there may no longer be thereotical guarantees for inference, e.g. existence of MCMC equi-
librium distribution.
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APPROXIMATION PRIOR PREDICTIVE FOR REGRESSION Let λ = (µ,σ) be the varia-

tional parameters for the mean and standard deviation of each wi. Then a Gaussian

approximation of the prior predictive is:

Ŷ |x ∼ N (Φµ(x), σ
2
ϵ + g⊤(σ2 · g)) (2.17)

where

g =
[
∇wΦw(x)

∣∣∣
w=µ

]
(2.18)

and recall that σϵ is the standard deviation of the output noise that we model.

APPROXIMATION PRIOR PREDICTIVE FOR BINARY CLASSIFICATION The case for bi-

nary classification is more involved. Before we present the approximation, we will

need to make a slight modification to the BNN setup. Recall that a BNN for K-

classification has K output nodes, over which a softmax function (1.7) is applied

such that the output values sum to 1 (representing predicted class probabilities).

Here, instead of using a BNN with 2 output nodes, we will use a BNN with a single

output node, over which we apply the logistic sigmoid function 9:

σL(x) =
ex

ex + 1
(2.19)

The resulting value is then interpreted as the probability that the predicted output

is 1 (the “positive” class):

Φw(x) = p(Y = 1|x) = σL(ϕw(x)) (2.20)

where ϕw(x) represents the output node’s value before applying the sigmoid func-

tion. Note that p(Y = 0|x) = 1 − p(Y = 1|x). With this, the approximation for the

prior predictive is given as:

p(Ŷ = 1|x) = σL

((
1 +

π(g⊤(σ2 · g))
8

)−1/2
g⊤µ

)
(2.21)

where

g =
[
∇wϕw(x)

∣∣∣
w=µ

]
(2.22)

Note that the first-order derivative g here is taken w.r.t. ϕ(x), not Φ(x).

9The logistic sigmoid function derives its name from logistic regression, a simpler statistical model
used for classification. The softmax function can be seen as a generalization of the logistic sigmoid
function for K > 2. 35



Optimization of λ can now be carried out by maximizing the probability mass

of (2.17) or (2.21) that satisfies some constraint C. The respective corresponding

objectives are:

λ∗ = argmax
λ∈Λ

∫
Y
I[y ◦ Cy] · p(Ŷ = y|x)dy (2.23)

λ∗ = argmin
λ∈Λ

DDIV

(
p(Ŷ |x) , Dy(x)

)
(2.24)

Note that (2.23) and (2.24) are defined for a specific x ∈ Cx, hence we need to

stochastically optimize w.r.t. all x ∈ Cx. While (2.23) is an integral over Y, it is
tractable since we only need to compute the CDF corresponding to the boundary

elements of Cy. The resulting learnt distribution qλ∗(w) is known as the variational

output-constrained prior (VOCP).

2.3.1 INFERENCE WITH VOCPS

Unlike COCPs, where pC(w) is directly evaluated during posterior inference, the

variational learning process for VOCPs can be done prior to inference and we can

apply the optimal parameter λ∗ independently to any number of training datasets

Dtr. Algorithm 1 presents the full learning procedure 10. Again, since the constraints

are conditional on x, it will still be necessary to sample from an arbitrary distribution

over Cx at each iteration of the optimization process.

Algorithm 1: Variational Output-Constrained Prior
Input: (2.17) or (2.21), qλ(w), C, Niter (no. of epochs), α (learning rate)

λ = (µ,ρ)← random initialization from any reasonable distribution;

for n← 0 to Niter − 1 do

x← random sample from an arbitrary distribution over Cx;
f = objective in (2.23) or (2.24);

∇µ ← ∂f
∂µ ;

∇ρ ← ∂f
∂ρ ;

µ← µ+ α · ∇µ;

ρ← ρ+ α · ∇ρ;

end

return λ;

10Note that similar to the BBB algorithm presented in Appendix B.2, we use a different parametriza-
tion λ = (µ,ρ) where σ = log(1 + eρ) element-wise. This is because σ must be non-negative, which
can present computational issues for practical optimization algorithms.
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2.4 ANALYSIS AND RELATED WORK

COCPs and VOCPs are two variants of output-constrained priors (OCP), and the

resulting model is known as an output-constrained Bayesian neural network

(OC-BNN). While COCPs and VOCPs both aim to learn a prior overW that obeys a

constraint C, there are some important differences between the two approaches.

Unlike COCPs, which evaluates pC(w) for every instance of inference (with or

without Dtr), learning VOCPs is a one-time cost as the optimized variational param-

eter λ∗ can be saved for future use. In particular, one can sequentially optimize λ

for a new constraint C(t+1) by initializing the parameter of the (t + 1)th run of Al-

gorithm 1 to λ(t), the optimized parameter from the previous t constraints. VOCPs

are also faster than COCPs as (i) the objectives in (2.17) and (2.21) can be quickly

computed, and (ii) modern automatic differentiation and optimization packages are

efficient.

However, VOCPs are less robust than COCPs as variational inference is sensitive to

initialization of λ and multiple runs may be necessary 11. The use of various approx-

imations, such as the Gaussian variational family as well as approximate closed-form

expressions of the prior predictive, also limits the ability of VOCPs to learn compli-

cated constraints. Finally, VOCPs do not generalize to K-classification for K > 2

due to the difficulty of finding a good approximation for the prior predictive.

An important similarity tying together both approaches is the necessity of sam-

pling from Cx. As Definitions 2.1.1 and 2.1.3 do not impose any structure over

Cy(x) with respect to the topology on X , we are not assured that any two distri-

butions ϵ-satisfying the points x1,x2 ∈ Cx respectively are bounded in divergence.

However, such an assumption is implicit in both COCPs and VOCPs, which maximize

the expected ϵ-satisfaction with respect to an arbitrarily chosen (typically uniform)

distribution over Cx. This is generally a reasonable assumption to make for most

constraints of practical interest, and for Cx sufficiently bounded in size. For ex-

ample, a regression constraint C+ in the form of a continuous ground-truth function

implies that anyw that ϵ-satisfies x1 will also ϵ-satisfy a neighbouring x2, since Φw is

continuous. Exploiting additional structures on Cy can lead to more sample-efficient

ways (w.r.t. x ∈ Cx) of computing COCPs and VOCPs. Table 2.4.1 summarizes both

approaches.
11This is a problem that also plagues VI algorithms such as BBB.
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Output-Constrained Priors
COCP VOCP

Sampling from Cx Necessary Necessary

Constraint Type
Valid on all output

constraints
Valid on all output

constraints
Applicable for multiple
constraints C(1), . . . , C(m) Yes Yes

Supervised Task Valid on all tasks
Valid on regression and
binary classification only

Runtime
Every instance of
posterior inference

One-time optimization
before posterior inference

Table 2.4.1: A summary of the similarities and differences between COCPs and VOCPs.

Our work can also be situated in relation to existing literature on BNN functional

priors and inference. Below, we present some key research and discuss them within

the context of OC-BNNs.

NOISE CONTRASTIVE PRIORS Motivated by the similar need for BNNs to make rea-

sonable predictions out-of-distribution, Hafner et al. [28] proposes a generative

“data prior” in function space, where both X ∼ DPX and Y |X ∼ DPY |X are mod-

eled as noisy Gaussians and EDP [Y |x] = 0 if x is OOD. Hence the data prior directly

specifies a predictive distribution that is robust to noise but not overconfident OOD.

VI is used for inference, where the learning objective to maximize is:

L(θ) = EW∼qθ

[
log p(Dtr|W)

]
+ EX∼DPX

[
DKL

(
qθ(Y |X) || pDP (Y |X)

)]
(2.25)

Hence the goal is to maximize the training likelihood, while learning a prior predic-

tive distribution that is close to the data prior. Since the KL divergence term above is

taken w.r.t. predictive distributions on Y , and VI is conducted overW, Hafner et al.

[28] faces the similar challenge of expressing a function-space prior inW. However,

as the data priors are Gaussians, (2.25) can be expressed in terms of KL divergence

of distributions on θ.

NCPs are similar to OC-BNNs as both methods involve placing a prior on function

space but performing inference ultimately in parameter space. However, OC-BNNs

model output constraints, which encode a richer class of functional beliefs than the

simpler zero-mean Gaussian assumptions encoded by NCPs.
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EQUALITY/INEQUALITY CONSTRAINTS FOR DEEP PROBABILISTIC MODELS Most sim-

ilar to OC-BNNs is the work by Lorenzi and Filippone [48], which considers equality

and inequality constraints for (multivariate) regression for various deep probabilis-

tic models. Constraints of their form are specified as hth-order differential equations:

C =
{
f(t)

∣∣∣dhfi(x)
dth

◦ Cf
}
, ◦ ∈ {=, >} (2.26)

where t indexes times at which the observation y is collected from some input x,

and the value Cf is a function of t, f and qth-order derivatives. Similar to COCPs,

Lorenzi and Filippone [48] enforces the constraints by defining a joint probability

distribution p(Y, C|x), where p(C|x) is modeled as Gaussian and Student-t distri-

butions for equality constraints and logistic distributions for inequality constraints.

However, p(C|x) is interpreted as a likelihood rather than a prior.

The main differences between Lorenzi and Filippone [48] and OC-BNNs are that:

(i) their methods are applied to deep Gaussian processes (GPs), which are non-

parametric models where inference is carried out directly in function space 12, (ii)

their experiments focus on low-dimensional systems where the constraints originate

from simulated ordinary differential equations, (iii) their method do not extend to

the classification setting. In contrast, OC-BNNs present a generalized framework

for incorporating constraints, and are meant to be tractable for real-life applications

with high input dimensionality and large datasets.

NEURAL PROCESSES A recent class of models known as neural processes (NP), first

introduced in Garnelo et al. [20] and Garnelo et al. [19], aims to combine the com-

putational tractability of BNNs with the ability of deep GPs to carry out function-

space inference. NPs are trained on sequences of input-output tuples {(x, y)i}mi=1

constructed from the dataset and therefore learn a distribution over functions. How-

ever, they are computationally efficient since the underlying model is a NN. Building

on NPs, Louizos et al. [51] introduces the functional neural process, which improves

on vanilla NPs by modeling the correlation structure of X as dependency graphs, re-

sulting in the ability to specify richer functional assumptions.

Compared to OC-BNNs, NPs represent a largely distinct direction of work, since

inference is carried out directly in function space. The set of functional assumptions

induced by NPs is different from OC-BNNs; in particular, NPs do not have the ability

to encode output constraints of the form that OC-BNNs consider.
12Since deep GPs are closely related to BNNs, an extension of their approach for BNNs is viable.
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2.5 LOW-DIMENSIONAL SIMULATIONS

As a proof-of-concept for OC-BNNs, we simulate synthetic constraints and datasets

for small input dimension and visualize the prior/posterior predictive distributions.

GENERAL EXPERIMENTAL SETUP All regression experiments are 1D (X = R) and

all classification experiments are 2D (X = R2), with either K = 2 (binary) or

K = 3 classes. For each experiment, we will simulate either C+ or C−, and use

either COCPs or VOCPs. A baseline BNN using the naive Gaussian prior (1.14) is

also shown for comparison. As all experiments are low-dimensional, we run HMC

for inference. The only exception is the experiment in Figure 2.5.3b, where we use

SVGD to capture the multiple posterior modes. The empirical predictive distribution

is computed according to (1.17). Refer to Appendix E for hyperparameters and

setup details.

PLOT LEGEND For all regression plots, the x-axis represents X = R, a one-
dimensional input space. The y-axis represents Y = R. For each predictive
distribution, we plot the mean function (bold line) as well as the credible intervals
for σ = 1 (darker shading) and σ = 2 (lighter shading). The predictive distribu-
tion using OC-BNNs is plotted in blue and the baseline distribution is plotted in
grayscale. Negative constrained regions, defined by C−x and C−y (x), are shaded
in red. Positive constrained regions, defined by C+x and C+y (x), are shaded in green.

For classification plots, the x- and y-axes represent X = R2, the two-dimensional
input space. If K = 3, the output classes are color-coded red, green and blue.
If K = 2, the output classes are color-coded blue (0) and orange (1). Each
point on the graph is shaded the corresponding color for a class k if: (i) ≥ 0.9

of the predictive mass is assigned to k (darker shading), or if (ii) ≥ 0.65 of the
predictive mass is assigned to k (lighter shading). WLOG we consider only positive
constraints, where C+x is delineated by a black border shaded by the desired class
color(s). Since each plot is able to represent only a single predictive distribution,
the baseline distribution is included as an inset.

All observed data points in Dtr are marked as crosses. If a ground-truth function
exists (from which Dtr is generated), it is denoted as a thick green line.
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(a) Prior predictive plots. (b) Posterior predictive plots.

Figure 2.5.1: 1D regression with the negative constraint: C−x = [−0.3, 0.3] and C−y =
(−∞, 2.5] ∪ [3,∞). The negative exponential COCP (2.12) is used. Even with such a restric-
tive constraint, the predictive uncertainty of the OC-BNN (blue) drops sharply to fit within
the permitted region of Y compared to the baseline (gray). In particular, note that the OC-
BNN posterior uncertainty matches the baseline everywhere except near Cx.

2.5.1 KEY RESULTS

OC-BNNs model uncertainty in a manner that respects constrained regions and
explains training data, without making overconfident predictions outside Cx.
Figure 2.5.1 shows the prior and posterior predictive plots for a negative output

constraint in regression. A large Cy (i.e. the permitted region Y −Cy is narrow) was

intentionally chosen to demonstrate the ability of OC-BNNs to fit highly restrictive

constraints. Unlike the naive baseline BNN, the prior predictive satisfies the speci-

fied constraint, with the predictive variance smoothly narrowing as x approaches Cx
such that the entire probability mass of the predictive distribution is fully confined

within Y − Cy. Outside Cx, the predictive variance remains wide to reflect uncer-

tainty everywhere else in X prior to observing data. After learning from Dtr, the

posterior predictive distribution adjusts to fit all data points closely. Near or within

Cx, the predictive variance remains narrows to keep probability mass constrained

inside Y − Cy, reflecting our increased confidence in the constrained region. In re-

gions of X far from Cx, the OC-BNN does not become overconfident, maintaining a

similarly wide variance to the baseline naive BNN.

Figure 2.5.2 shows the predictive plots for a positive output constraint in classi-

fication. The results are analogous to regression and show the OC-BNN prior pre-
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(a) Prior predictive plots. (b) Posterior predictive plots.

Figure 2.5.2: 2D 3-classification with the positive constraint: C+x = (1, 3) × (−2, 0) and
C+y = {green}. The positive Dirichlet COCP (2.14) is used. Dtr contains 8 data points in
each class, generated from the Gaussian means (3, 1),(0, 3) and (2, 3). In both the prior and
posterior, the constrained region (green rectangle) enforces the prediction of the green class.

dictive respecting the positive constraint. Importantly, outside Cx, the OC-BNN does

not show a strong preference for any class (Ew∼W[Φw(x) = k] < 0.65 for all k).

Just like a naive BNN would, the OC-BNN avoids making overconfident predictions

in areas of X it has little knowledge about. The posterior predictive distribution

behaves similarly, except that all points in Dtr are also well-fitted.

Both of these examples demonstrate how OC-BNNs perform strictly better than

naive BNNs, in that they adequately enforce constraints without (i) sacrificing pre-

dictive accuracy under the training distribution or (ii) making overconfident predic-

tions outside Cx (that a normal BNN would not have made).

OC-BNNs can capture global relationships between X and Y, subject to sam-

pling efficacy. Instead of the local constraints presented in the two examples above,

OC-BNNs are also able to model global structural constraints between input and out-

put. Figure 2.5.3a shows an example where we enforce the constraint that xy ≥ 0.

Even though the training data themselves adhere to this constraint, learning from

Dtr alone is insufficient. The OC-BNN posterior predictive distribution significantly

narrows (compared to the baseline) to fit the constraint, particularly near x = 0.

The caveat is that OC-BNNs can only learn as well as sampling from Cx permits.

OC-BNNs can capture posterior multimodality. As NNs are highly expressive,

BNN posteriors can contain multiple modes of significance. For OC-BNNs to make
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(a) Posterior predictive plots. (b) Posterior predictive plots.

Figure 2.5.3: (a) 1D regression with the positive constraint: C+x = R and C+y (x) = {y |x·y ≥
0}. The VOCP (2.23) is used. Unlike the baseline, the OC-BNN has most of its probability
mass constrained within the permitted (green) region. (b) 1D regression with the negative
constraint: C−x = [−0.3, 0.3] and C−y = (−∞, 2.5] ∪ [3,∞). The negative exponential COCP
(2.12) is used. Instead of HMC, SVGD is used for inference here to allow efficient mode explo-
ration. The 50 SVGD particles represent functions that pass above and below the constrained
region, corresponding to two distinctly significant predictive modes. ϵ-satisfaction is not per-
fectly achieved as SVGD particles tend to repel each other; see Appendix B.3 for details.

accurate predictions, they must be able to capture most or all such predictive modes.

Figure 2.5.3b demonstrates such an example. The negative constraint is specified

in such a way as to allow for functions that fit Dtr passing above or below the

constrained region. Indeed, the resulting OC-BNN posterior predictive distribution

contains significant probability mass on either side of Cy, affirming the presence

of both significant posterior modes. Importantly, note that the negative exponen-

tial COCP does not explicitly indicate the presence of multiple modes 13. The fact

that OC-BNNs encourage mode exploration without needing them to be explicitly

specified in the prior is promising for high-dimensional applications.

OC-BNNs can model interpretable desiderata represented as output con-

straints. OC-BNNs can be used to enforce important desiderata or qualities that the

system should possess, so long as these considerations can be expressed as output

constraints. Figure 2.5.4 demonstrates a fairness constraint known as demographic

parity:

p(Y = 1|xA = 1) = p(Y = 1|xA = 0) (2.27)

13This is in contrast to the positive multimodal Gaussian COCP, where each y′ ∈ Cy represents a
mode.
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(a) Baseline posterior predictive plot. (b) OC-BNN posterior predictive plot.

Figure 2.5.4: 2D binary classification. Suppose a hiring task where X represents features of
potential candidates. X1 is a binary feature indicating the membership of a protected trait,
e.g. gender or race. X2 denotes skill level. Hence a positive (orange) classification should be
correlated with higher values of X2. The dataset Dtr displays historic bias, where members
of the protected class (x1 = 1) are discriminated against (Y = 1 iff x1 = 1,x2 ≥ 0.8, but
Y = 1 iff x1 = 0,x2 ≥ 0.2). A naive BNN (a) would learn an unfair linear separator from
Dtr. However, learning the probabilistic constraint: Dy(x) as the distribution where p(Φ(x) =
1) = x2 with a VOCP (2.24) allows the OC-BNN (b) to learn a fair separator, despite the
presence of a biased dataset.

where xA is a protected feature such as race or gender. (2.27) is expressed as a

probabilistic output constraint in Figure 2.5.4. We can see that the OC-BNN not only

learns to respect this constraint, it does so in the presence of conflicting training

data (Dtr is an unfair dataset). Hence OC-BNNs may be used to model a diverse

range of output desiderata that the human user may wish to impose on the learning

system.

2.5.2 ABLATION EXPERIMENTS

We briefly present the results of a number of “ablation” experiments below to high-

light some insights about how OC-BNNs operate.

CHOICE OF INFERENCE ALGORITHM Figure 2.5.5 shows the same negative con-

straint presented in Figure 2.5.1b, but using BBB and SVGD for inference. The three

plots show that there is little difference in the three posterior predictive plots (be-

sides the individual quirks of each inference method, see figure caption for details),

and that all inference methods are well-suited for use with OC-BNNs.
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(a) Posterior predictive plot. (b) Posterior predictive plot.

Figure 2.5.5: Same experimental setup as in Figure 2.5.1, except that (a) uses SVGD for
posterior inference, and (b) uses BBB. Like HMC, both posterior predictive plots obey the
constraints and fit Dtr. However, SVGD posterior violates the constraint more than HMC
or BBB, as SVGD particles are optimized to be as far from each other (in W) as possible.
The BBB posterior has smaller variance than HMC or SVGD everywhere in X , which is an
empirically well-documented problem for VI.

CHOICE OF OCP In general, COCPs are more versatile than VOCPs because the lat-

ter can only represent a diverse range of output constraints using Gaussian approx-

imations. For example, Figure 2.5.6a shows the same negative constraint presented

in Figure 2.5.3b, but learnt using a VOCP instead of a COCP. As can be seen, the

VOCP fails to capture both posterior predictive modes. Despite these limitations,

VOCPs work well on simpler constraints (for which the Gaussian approximation is

a reasonable one) and present significant speedups compared to COCPs. Improving

VOCPs by using advanced variational techniques that avoid Gaussian approxima-

tions (e.g. normalizing flows) is also a promising direction for future work.

CHOICE OF DATASET In real-life applications, we might expect specified constraints

to be consistent with Dtr. In the case that C and Dtr are incompatible (e.g. adver-

sarial or noisy data), the resulting posterior depends on (i) model capacity (whether

it is possible for the BNN to fit both Dtr and C) as well as (ii) factors such as volume

of data or COCP/VOCP hyperparameters, which affects the prior and likelihood dis-

tributions. For example, Figure 2.5.6b shows a BNN with enough capacity to fit both

the noisy data as well as ground-truth constraints, resulting in overfitting of the pos-

terior predictive distribution. However, the earlier example in Figure 2.5.4 shows

the OC-BNN ignoring Dtr labels to satisfy the fairness constraint, as the small num-
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(a) Posterior predictive plot. (b) Posterior predictive plot.

Figure 2.5.6: (a) Same experimental setup as in Figure 2.5.3b. Here, SVGD only captures
one of two possible modes. The other mode can be captured by adjusting the initialization
of VOCP parameter λ (not depicted here), but not both modes at the same time. (b) The
ground-truth function is y∗ = 5 cos(x/1.7). Dtr contains 6 points perturbed by large Gaussian
noise around ground-truth values. Three positive constraints (vertical green bands) are also
placed using positive Gaussian COCPs (2.10) around the corresponding ground-truth values.
The resulting OC-BNN posterior predictive distribution fits both the noisy data and all three
constraints.

ber of data points constitutes weaker evidence than the constrained prior. Tuning

hyperparameters such as COCP variance/smoothness, or the number of optimiza-

tion epochs for VOCPs, can give us control over the interplay of factors.

2.6 APPLICATION 1: CLINICAL ACTION PREDICTION

To demonstrate the efficacy of OC-BNNs, we simulate meaningful and interpretable

output constraints on real-life datasets. In this section, we consider clinical action

prediction from physiological features of intensive care unit (ICU) patients.

DATA SOURCE The MIMIC-III database [37] is a freely accessible, benchmark database

for healthcare research, developed by the MIT Lab for Computational Physiology.

It consists of de-identified health data associated with 53,423 distinct admissions

to critical care units at the Beth Israel Deaconess Medical Center in Boston, Mas-

sachusetts, between 2001 and 2012. Multiple classes of data are available, such

as (i) time-stamped, nurse-verified bedside physiological measurements, (ii) time-

stamped interventions taken, (iii) laboratory results, and more. Further data pro-

cessing can be done to construct datasets for specific machine learning tasks.
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filtered unfiltered
BNN OC-BNN BNN OC-BNN

Tr
ai
n Accuracy 0.745 0.741 0.881 0.878

F1 Score 0.805 0.801 0.882 0.880
Violation Fraction 0.151 0.149 N/A N/A

Te
st

Accuracy 0.660 0.665 0.647 0.649
F1 Score 0.746 0.748 0.725 0.736
Violation Fraction 0.132 0.126 0.117 0.039

Table 2.6.1: Experimental results with and without filtering out points in Dtr incompatible
with C. In all cases, accuracy and F1 score remain unchanged when using OC-BNNs. For the
experiment with filtration, the violation fraction decreases by a factor of 3 when using OC-
BNNs instead of the naive BNN.

PROBLEM FORMULATION We consider a binary classification task of whether clinical

interventions for hypotension management — namely, vasopressors or IV fluids —

should be taken for an ICU patient. From the MIMIC-III database, we construct a

time-independent dataset with 298K points and 9 physiological features (consisting

of measured vital signs and laboratory results). 10% of the dataset is held out as

the test set.

We specify the physiologically feasible, positive (deterministic) constraint as fol-

lows: if the mean arterial pressure is less than 65 units (Cx = {x |xmap ≤ 65}), then
some hypotension intervention should be taken (Cy = {1}). Refer to Appendix E for

details on data processing steps, dataset features as well as experimental setup.

METHODOLOGY We conduct posterior inference using both the baseline BNN (us-

ing the naive Gaussian prior) as well as OC-BNNs. The positive Dirichlet COCP is

used. In Dtr, some data points are inconsistent with the specified constraint. We

train our model both with and without filtering out these incompatible points.

EVALUATION As Q = 9 is large, the posterior predictive distribution cannot be

directly visualized. Instead, we use the standard metrics of accuracy and F1 score

on Dte to evaluate predictive accuracy. We also measure violation fraction 14,

which is the fraction of predictions on Dte that do not satisfy C, to evaluate how

well the BNN posterior obeys the constraint.
14For binary classification, measuring the violation fraction is more useful than measuring ϵ-

satisfaction over Cx since it is the actual output labels and not the posterior predictive mass on each
class that we care about.
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RESULTS Table 2.6.1 summarizes the experimental results. The main takeaway is

that OC-BNNs maintain classification accuracy while reducing physiologically

infeasible constraint violations. The results show that OC-BNNs match standard

BNNs on all predictive accuracy metrics, while satisfying the constraint to a far

greater extent. The caveat is that the improvement in constraint satisfaction is

significant only for the case where points originally in the constrained region are

filtered out. However, we note that the OC-BNN performance is still significant be-

cause quite a significant portion of Dtr is incompatible with the specified constraint.

This experiment affirms the low-dimensional simulations that we carried out in

the previous section, which shows that OC-BNNs are able to learn constraints well

without sacrificing predictive power. As we chose a constraint that is physiologi-

cally feasible and consistent with the decision that a human expert (clinician) will

make, the results also demonstrate how OC-BNNs can be used to enforce real-world

constraints efficiently in the Bayesian setting.

2.7 APPLICATION 2: RECIDIVISM PREDICTION

In this section, we consider the prediction of recidivism risk of criminal defendants,

imposing a fairness constraint similar to the example in Figure 2.5.4 that prevents

the exploitation of protected traits (in our case, race) by a biased or unfair dataset.

Recidivism prediction, and more broadly, machine learning for criminal justice, are

applications of growing interest to ML researchers (particularly the fairness and

interpretable ML communities), because of the high stakes involved and because

such models are increasingly deployed in real life [1, 43, 44, 67].

BACKGROUND COMPAS (Correctional Offender Management Profiling for Alterna-

tive Sanctions) is a proprietary model developed by Equivant 15 and used widely

by the United States criminal justice system to aid with parole and bail decisions.

Amongst other goals, COMPAS scores criminal defendants on their risk of recidi-

vism, which they define as any “finger-printable arrest involving a charge and a

filing for any uniform crime reporting (UCR) code.” A study by ProPublica in 2016

created a linear explanation model for COMPAS and found the original model to be

racially biased towards African American defendants [1, 44].
15Originally known as Northpointe.
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DATA SOURCE The team behind the 2016 ProPublica study created a dataset con-

taining information about 6172 defendants from Broward Couty, Florida. Along

with the COMPAS scores for these defendants, the dataset contains features related

to their criminal history and their demographic attributes. Note that the defendant’s

race and actual recidivism history (whether they recidivated within two years) are

both explicit features of the dataset. We will use the ProPublica dataset and follow

identical data processing steps as the original team. Our final dataset Dtr contains

6172 data points with 9 features.

PROBLEM FORMULATION We consider the same binary classification task in Slack

et al. [67] (a later work that also uses the ProPublica dataset), which is predicting

if a defendant is profiled by COMPAS as having a high risk of recidivism.

We specify the fairness constraint that the probability of predicting high-risk re-

cidivism should not depend on the defendant’s race. Formally, we have a probabilis-

tic, global output constraint as follows: for all data points (Cx = R9), the probability

of high-risk should be identical to the defendant’s actual recidivism history (Dy is

such that p(y = 1) = two_year_recid). Refer to Appendix E for details on data

processing steps, dataset features as well as experimental setup.

METHODOLOGY We conduct posterior inference using both the baseline BNN (us-

ing the naive Gaussian prior) as well as OC-BNNs using a VOCP. We train on two

versions of Dtr — with and without the inclusion of race as an explicit feature.

Like the example in Figure 2.5.4 and the MIMIC-III application, Dtr is incompatible

with this constraint (since the COMPAS scores themselves demonstrate racial bias).

However, it is not possible to remove inconsistent data points since we are speci-

fying a probabilistic constraint. Furthermore, like in Figure 2.5.4, our goal here is

to enforce the fairness constraint despite an inconsistent dataset, in simulating the

real-life scenario that unfair or biased datasets are used for training. As the dataset

is small and imbalanced, we do not create a test set. Evaluation is performed solely

on the training dataset.

EVALUATION We will use accuracy and the F1 score as metrics for predictive ac-

curacy. To measure constraint satisfaction, we report the fraction of the sensitive

group (African American defendants vs. non-African American defendants) pre-

dicted as high-risk recidivists.
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with race feature without race feature
BNN OC-BNN BNN OC-BNN

Tr
ai
n

Accuracy 0.818 0.568 0.806 0.525
F1 Score 0.556 0.239 0.557 0.320
African American High-Risk Fraction 0.365 0.395 0.350 0.544
Non-African American High-Risk Fraction 0.077 0.400 0.148 0.480

Table 2.7.1: Experimental results with and without training with race as an explicit dataset
feature. Using OC-BNNs leads to the two sensitive groups having almost equal rates of high-
risk recidivism prediction, compared to standard BNNs where is a 5-factor difference. Accuracy
and F1 score decrease when using OC-BNNs instead of BNNs, which is expected since the
dataset itself is incompatible with the specified constraint.

RESULTS Table 2.7.1 summarizes the experimental results. We see that by con-

straining the recidivism prediction to the defendant’s actual criminal history, OC-

BNNs strictly enforce a fairness constraint. For both the scenarios where race

is/is not used as an explicit feature, the fraction of African Americans and non-

African Americans being predicted as high-risk recidivists equalized after imposing

the constraint. (For the naive BNN results, the difference in fraction between these

two groups is more stark when race is used as an explicit feature, likely because the

model learns the positive correlation between race and the output label in Dtr.)

Unlike the previous clinical action application, OC-BNNs have lower predictive

accuracy on Dtr than standard BNNs. This is to be expected since the training

dataset is biased, and therefore enforcing racial fairness comes at the expense of

correctly predicting biased labels. In general, the two high-dimensional applica-

tions represent two possible objectives for learning constraints with OC-BNNs.

The MIMIC-III experiment simulates the case where C and Dtr are complementary

sources of ground-truth knowledge, whereas the COMPAS experiment simulates the

case where we wish to strictly enforce C regardless of (or despite) the training data

Dtr we observe. Our results show that applying the correct OCP can allow us to

achieve either objective.
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3
VI Predictive Error Bound for BNNs

MCMC methods have long been the tool of choice for approximate Bayesian infer-

ence, and they carry theoretical convergence guarantees along with well-understood

diagnostic metrics [10]. However, the domains that deep learning is applied to of-

ten come with high-dimensional and massive datasets. As MCMC techniques do not

scale well to data quantity or dimensionality, they are unsuitable for BNN posterior

inference in most applications of practical interest.

In recent years, VI has emerged as a widely-used, scalable alternative. This is due

to the development of “black box” VI algorithms that can be easily applied to a wide

range of models without requiring model-specific derivations of the variational up-

dates [5, 60], as well as massive speedups in computational packages for automatic

differentiation and optimization [59]. While VI methods like BBB are practically

efficient, the quality of approximation is empirically poorer than MCMC sampling.

VI approximations are restricted not only by (i) the choice of variational family,

which is often far simpler than the true BNN posterior, but also (ii) the limitations

of optimization techniques like SGD, such as the sensitivity to initial parameters.

In settings where BNNs are deployed, particularly high-stakes applications, it is

crucial that we have accuracy guarantees for the posterior approximation or its point

estimates. This necessity is heightened by the poor quality of VI approximations,

particularly in regions of X sparsely represented by training data, which can result

in significant error in the posterior predictive distribution [77].
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There are two general approaches that we can follow to obtain such guarantees.

The first is to produce provable error bounds on statistics of interest 1. However,

producing tight error bounds of this nature is difficult, due to the complexity of ΦW

as well as the resulting multimodal posterior over the high-dimensional space W.

The second, related approach is to design diagnostics (which may or may not be

empirical) that can distinguish more accurate VI approximations from poorer ones.

Unfortunately, benchmark diagnostics across the BNN research community do not

exist either. This stems not only from similar difficulties of evaluating complex BNN

posteriors, but also as it is not entirely clear what the correct desiderata are when

comparing two probability distributions. 2

As a result, in most BNN research literature, we resort to low-dimensional sim-

ulations for evaluation, where direct visualization of the posterior predictive distri-

bution is possible. HMC is typically used as the proxy for the true BNN posterior

for comparison [78]. Figure 3.0.1 shows a typical visualization of the problems

emblematic of VI approximations. For real-world, high-dimensional applications,

visualization is neither possible nor desirable.

In this chapter, we follow the first approach and develop an error bound on VI

approximations. In doing so, we have two specific motivations. First, our quantity

of interest is the posterior predictive mean E[Y |X, Dtr]. As W is largely an unin-

terpretable space, bounds on posterior statistics (over W |Dtr) are not meaningful.

Instead, it is the predictive setting Y |X, Dtr that is of ultimate interest and impact

to end users. Second, we desire these error bounds to be computed cheaply and

efficiently, so that they can easily be applied to high-dimensional VI runs in practice.

To this end, we introduce the Kernelized Bound on Variational Predictive Mean

Error (KEBO-VPME), an efficiently estimable value based on a RKHS approxima-

tion to a maximum mean discrepancy bound on E[Y |X, Dtr]. We will first discuss

related work in Section 3.1, and introduce the core theory behind KEBO-VPME in

Section 3.2. Sections 3.3 evaluates the efficacy of KEBO-VPME on low-dimensional

simulations.
1By error, we mean the difference of some variable of interest when computed under the true

posterior versus the variational approximation.
2For example, simply comparing the numerical value of the ELBO is insufficient. Not only does

it lies on an uninterpretable scale, it ignores the normalizing constant (1.10) that changes with
reparametrization of W (e.g. as used in the reparametrization trick), making comparisons between
approximations meaningless [78].
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(a) HMC posterior predictive plot. (b) BBB posterior predictive plot.

Figure 3.0.1: We simulate the same 1D regression toy example as in Section 5.3 of [32], a
commonly used example in BNN literature. The ground-truth function (green) is y∗ = x3, and
we uniformly sample 20 inputs x ∈ [−4, 4] for Dtr, each independently perturbed by Gaussian
noise N (0, 32). See Appendix F for further details. The posterior predictive distribution plot
is shaded at the credible interval σ = 3. We conduct inference with HMC and BBB. HMC
shows wider predictive variances than BBB, especially at regions of X further away from Dtr.
Further away from Dtr, the predictive mean for BBB also becomes a poorer fit to data.

NOTATION Everywhere in this chapter, where appropriate, we will use p and qθ to

denote the posterior p(w|Dtr) and variational approximation qθ(w) respectively. We

will also use p̄ to denote the unnormalized posterior, p(w, Dtr), where the distinction

is necessary.

3.1 RELATED WORK

PSIS AND VSBC Yao et al. [78] introduces two diagnostics for VI evaluation.

The first is Pareto smoothed importance sampling (PSIS). The importance-sampled

Monte Carlo estimate of EW∼qθ [h(W)] for some function h is:

EW∼qθ [h(W)] ≈
∑S

i=1 γi · h(w(i))∑S
i=1 γi

where γi =
p̄

qθ
for w(i) (3.1)

The {γi}Si=1 are known as importance ratios. PSIS fits a Pareto distribution to the

largest m importance ratios of S samples drawn from qθ, where m < S. As it turns

out, the fitted shape parameter k̂ of this Pareto distribution can be related to the
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Rényi (or α) divergence between p and qθ:

k̂ ≈ inf
{
k′ > 0 : D1/k′

(
p(·) || qθ(·)

)
<∞

}
(3.2)

By sampling from qθ and computing (3.2), the value of k̂ can be used as an empirical

guide for whether the VI approximation is reliable.

The second diagnostic is the variational simulation-based calibration (VSBC).

While PSIS evaluates the accuracy of the full VI posterior, VSBC assesses the av-

erage performance of point estimates from the posterior. It relies on the result in

statistical validation from [9] that if w(0) ∼ p(W) and Dtr ∼ p(Dtr|w(0)), then

pw(0),Dtr

(
p(W < w(0)|Dtr) ≤ ·

)
= p(U ≤ ·) where U ∼ Unif(0, 1) (3.3)

Based on (3.3), Yao et al. [78] designs a procedure where S parameters {w(i)}Si=1

are sampled from the prior and S corresponding datasets {D(i)
tr }Si=1 sampled from

the likelihood distribution of each parameter. Variational approximations {q(i)θ }
S
i=1

are constructed for each dataset and the marginal calibration probabilities pij =

p(w
(i)
j < wj |w ∼ q

(i)
θ ) are computed. Asymmetry of {pij}Si=1 implies bias of the

corresponding VI approximation in the corresponding dimension of W.

VALIDATING VI USING POSTERIOR ERROR BOUNDS Huggins et al. [36] introduces

efficiently-computable theoretical bounds on variational posterior mean and vari-

ance errors. These theoretical bounds are obtained via three sequential bounds: (i)

by bounding posterior mean and variance errors via Wasserstein distance between

p and qθ, (ii) by bounding Wasserstein distance via Rényi divergences between p

and qθ using moment conditions on qθ, and finally (iii) by bounding Rényi diver-

gences using ELBO and the χ upper bound (CUBO). As ELBO and CUBO are easily

computable objectives already used in the VI process, the overall bounds can be

cheaply evaluated. To this end, Huggins et al. [36] also designs a practical work-

flow for evaluating the quality of VI approximation by computing and analyzing

these bounds.

The work in this thesis is closer to [36] than [78], as we construct easily com-

putable, theoretical error bounds rather than empirical diagnostics. However, unlike

[36], our focus is specifically the posterior predictive mean error 3. We also make

use of a different metric (maximum mean discrepancy) to construct the bound.
3Though, we note that Proposition 3.6 in [36] also extends their bounds to the predictive setting.
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3.2 KERNELIZED BOUND ON VARIATIONAL PREDICTIVE MEAN ERROR

Let us denote Q = {qθ |θ ∈ Θ} as the variational family, and assume that Y = R
(the regression setting) 4. Let Ep[Φ] and Eqθ [Φ] denote, respectively, the (true)

posterior predictive mean and variational predictive mean. To be clear, Ep[Φ] =

EW∼p[ΦW(·)] : X → Y, where the expectation is taken w.r.t. W, is a function from

input space to output space (the same applies for qθ).

Let V ⊆ X be a set of points of interest in the input space. We can define the

maximum error of the variational predictive mean in V:

Definition 3.2.1. The variational predictive mean error (VPME) of the approxima-
tion qθ is:

VPME(p, qθ) =
(
Ep[Φ]− Eqθ [Φ]

)2
(3.4)

Then VPME is upper-bounded in V ⊆ X by the supremum of its image in V:

sup
V

VPME(p, qθ) = sup
x∈V

(
Ep[Φ(x)]− Eqθ [Φ(x)]

)2
(3.5)

Since the posterior predictive mean is a point estimate often used for actual pre-

diction, bounding supV VPME(p, qθ) over some well-chosen V of interest (e.g. the

convex hull of Dtr) gives us a reliable estimate of the worst-case performance of the

variational approximation.

3.2.1 MAXIMUM MEAN DISCREPANCY

(3.5) is, in fact, related to a class of statistics known as the maximum mean discrep-
ancy (MMD), first introduced in [26] and based off earlier ideas in [16]:

MMD(p, q,F) = sup
f∈F

(
Ep[f ]− Eq[f ]

)
(3.6)

where F is a set of functions f : W → R. With the right choice of F , MMD

can be used to quantify the distance between two arbitrary distributions p and

q. For example, Lemma 1 in [26] states that MMD(p, q, Cb(W)), where Cb(W) is

the space of continuous bounded functions over W, is 0 iff p = q. It follows that
4The results in this section can be extended to the classification setting.
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MMD2(p, q, Cb(W)) is a proper metric 5 between probability distributions, where:

MMD2(p, q,F) = sup
f∈F

(
Ep[f ]− Eq[f ]

)2
(3.7)

By viewingΦw(x) as a function overW instead ofX , it is clear that supV VPME(p, qθ) =

MMD2(p, qθ,VF ) where VF = {Φ(x) |x ∈ V}.

Note that it is no longer important that MMD2(p, qθ,VF ) is a proper (statistical)

metric or divergence, since our goal is merely to evaluate it for a given choice of VF .
Unfortunately, it is not clear that for any arbitrary NN architecture Φ or choice of V,
the resulting MMD can be practically evaluated or approximated. Instead, following

[26], we will choose to approximate VF with a reproducing kernel Hilbert space

(RKHS) instead.

3.2.2 KERNELIZED MMD BOUND FOR VPME

Let H be a RKHS of functions f :W → R with the reproducing kernel k :W×W →
R. Let ||·|| and ⟨·, ·⟩ denote the corresponding norm and inner product ofH 6. LetHr

denote the r-ball of H, i.e. Hr = {f : f ∈ H, ||f || ≤ r} where r > 0. Readers may

refer to Appendix C for a general introduction to RKHS as well as specific results

used for the proofs of this section.

If VF ⊂ Hr (for some choice of r to be determined), then MMD2(p, qθ,Hr) is an

upper bound for MMD2(p, qθ,VF ) and consequently an upper bound for VPME(p, qθ)

over V. While this is not generally true for arbitrary VF or H, we can prove the

weaker condition that Φ(x) ∈ VF is close to some f ∈ Hr, in the sense that the

difference of their expectations over p or θ is bounded. We will choose H to be the

RKHS with the Gaussian kernel (C.5).

Theorem 3.2.2. Fix any x ∈ X . Let Φ(x) : W → R represent the MLP with H ≥ 1

hidden layers of arbitrary depth and Gaussian RBF activations. Let H be a RKHS of
functions f : W → R with the Gaussian kernel k(w,w′) = exp

{
− ||w−w′||22

2σ2
k

}
with

characteristic length σk. Then for any measure p over W, there exists some f̄ ∈ Hr

such that ∣∣∣Ep[f̄ ]− Ep[Φ(x)]
∣∣∣ ≤ Ep

[∑
l

∣∣Wl

∣∣] (3.8)

5A statistical distance d is a metric if: (i) d(p, q) = d(q, p), (ii) d(p, q) = 0 iff p = q, (iii) d(p, q) ≥ 0
and (iv) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). A divergence need not satisfy (iii) or (iv).

6We will explicitly use subscripts to denote other norms or inner products, e.g. || · ||2 for the
Euclidean norm.
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where Wl are the parameters from the last hidden layer LH to the output node,

r =

√
|LH |

2B
1+M/2
k

(3.9)

and Bk is a function over σk, defined below in (3.14).

Theorem 3.2.2 implies that MMD2(p, qθ,VF ) is bounded by MMD2(p, qθ,Hr) plus

factors of Ep

[∑
l

∣∣Wl

∣∣] and Eqθ

[∑
l

∣∣Wl

∣∣], which will not be too vast if the last

layer is not too wide. Note that Theorem 3.2.2 holds true for all x ∈ X , and so the

choice of r is independent of VF . We will prove Theorem 3.2.2 using the spectral

representation of H. To do so, let us first introduce the following lemma.

Lemma 3.2.3. Let µ be the standard isotropic Gaussian measure N (0, I) overW. The
Gaussian kernel k(w,w′) = exp

{
− ||w−w′||22

2σ2
k

}
has the eigenexpansion:

k(w,w′) =
∑

j1∈N,...,jM∈N
λ(j1,...,jM )e(j1,...,jM )(w)e(j1,...,jM )(w

′) (3.10)

where
λ(j1,...,jM ) = B

M/2
k (2Bk)

j1+···+jM (3.11)

e(j1,...,jM )(w) = exp{−Ck||w||22}
M∏

m=1

Hjm

(√
2Ck +

1

2
wm

)
(3.12)

is an orthonormal basis of L2(W, µ), and

Hj(w) = (−1)j exp{w2} dj

dwj
exp{−w2} (3.13)

are the Hermite polynomials 7 of order j, and

Bk =
2σ2

k

σ2
k + 2 + σk

√
4 + σ2

k

(3.14)

Ck =

√
4 + σ2

k − σk

4σk
(3.15)

are functions of σk. We define N = {0, 1, . . . } to start at 0.

7Note that the Hermite polynomials have one-dimensional inputs.
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Proof. See Appendix G.

Proof of Theorem 3.2.2. From Theorem C.0.8, the spectral representation of H is

H =

{
f =

∑
j1∈N,...,jM∈N

a(j1,...,jM )e(j1,...,jM )(w) :
{ a(j1,...,jM )√

λ(j1,...,jM )

}
∈ ℓ2

}
(3.16)

with the eigenbasis as given by Lemma 3.2.3.

Fix any x ∈ X . (Note that any Φ below is implicitly a function of x too.) Let l

index all the nodes in the last hidden layer of BNN. Denote ul ∈ LH and wl to be

the hidden-to-output parameter corresponding to each ul. Then:

Φ(w) =
∑
l

wl · exp{−ul(w,x)2} (3.17)

where we write ul as a function of w and x to make it clear that the value of these

nodes depend on the input and the parameters of the previous layers. Now, consider

the eigenfunction where jl = 1 and jm = 0 for all m ̸= l. Then:

el(w) = wl · exp{−Ck||w||22} (3.18)

where we abuse notation and use l to denote the M -tuple where ji = δil (the

Kronecker delta) 8. Consider the function f̄(w) =
∑

l el(w), i.e. the coefficients a

for all other eigenfunctions not of the form (3.18) are set to 0. f̄ ∈ H since there are

only |LH | coefficients al = 1 and so the convergence condition in (3.16) is satisfied.

Let p be an arbitrary distribution overW. We have:∣∣∣Ep[f̄ ]− Ep[Φ]
∣∣∣ = ∣∣∣Ep[f̄ − Φ]

∣∣∣
≤ Ep

[
|f̄ − Φ|

]
=

∫
W

∣∣∣∑
l

wl

(
exp{−Ck||w||22} − exp{−ul(w,x)2}

)∣∣∣ p(w)dw

≤
∫
W

∑
l

∣∣∣wl

(
exp{−Ck||w||22} − exp{−ul(w,x)2}

)∣∣∣ p(w)dw

≤
∫
W

∑
l

∣∣wl

∣∣ p(w)dw

= Ep

[∑
l

∣∣Wl

∣∣]
8(3.18) follows as H0(w) = 1 and H1(w) = w.58



The norm of f̄ gives us the choice of r:

r = ||f̄ || =
√〈∑

l

el,
∑
l

el
〉

=

√∑
l

1

λl

=

√∑
l

1

2B
1+M/2
k

=

√
|LH |

2B
1+M/2
k

Corollary 3.2.4. Theorem 3.2.2 can be applied to a BNN with any non-linear activa-
tion bounded in [0, 1].

Proof. We can modify the derivation of
∣∣∣Ep[f̄ ] − Ep[Φ(x)]

∣∣∣ above, except replacing
exp{−ul(w,x)2} with σ{ul(w,x)} for some bounded activation σ. (It is straightfor-

ward to extend this by a multiplicative factor to activations bounded in [a, b]).

Using Theorem 3.2.2, we can bound MMD2(p, qθ,VF ) as:

MMD2(p, qθ,VF )

= sup
x∈V

(
Ep[Φ(x)]− Eqθ [Φ(x)]

)2
≤

(∣∣∣Ep[f̄ ]− Eqθ [f̄ ]
∣∣∣+ Ep

[∑
l

∣∣Wl

∣∣]+ Eqθ

[∑
l

∣∣Wl

∣∣])2

=
(
Ep[f̄ ]− Eqθ [f̄ ]

)2
+ 3max

((
Ep[f̄ ]− Eqθ [f̄ ]

)2
,
(
Ep

[∑
l

∣∣Wl

∣∣]+ Eqθ

[∑
l

∣∣Wl

∣∣])2, 1)

≤ MMD2(p, qθ,Hr) + 3max

(
MMD2(p, qθ,Hr),

(
Ep

[∑
l

∣∣Wl

∣∣]+ Eqθ

[∑
l

∣∣Wl

∣∣])2, 1)
(3.19)

Unfortunately, the exact difference between MMD2(p, qθ,VF ) and MMD2(p, qθ,Hr)

is not fully computable since Ep

[∑
l

∣∣Wl

∣∣] is unknown. However, it may be that

MMD2(p, qθ,Hr) >>
(
Ep[f̄ ] − Eqθ [f̄ ]

)2
and so is ultimately still a far larger term

than the difference.
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It remains to find a way to compute MMD2(p, qθ,Hr) itself. Assuming the mild

condition that the kernel has finite expectation (which is true for the Gaussian ker-

nel), we can derive a closed-form expression for MMD2(p, qθ,Hr). Indeed, the ex-

istence of an analytical solution to the MMD is precisely the motivation for using

RKHS as our choice of F .

Proposition 3.2.5. If EW∼p[k(W,W)] <∞ and EW∼qθ [k(W,W)] <∞, then

MMD2(p, qθ,Hr) = r2
(
Ep,p[k(·, ··)]− 2 · Ep,q[k(·, ··)] + Eq,q[k(·, ··)]

)
(3.20)

where Ep,p[k(·, ··)] = EW∼p,W′∼p[k(W,W′)] and the expectation is taken w.r.t. the
product distribution of independent copies of p. The same applies for the other two
expectation terms above.

Proposition 3.2.5 is a straightforward adaptation of Lemmas 4 and 6 found in

[27] 9 for variable RKHS radius r. In order to generalize the results in [27] to

variable r, we will first require the following lemmas:

Lemma 3.2.6 (Lemma 3 of [27], adapted). If EW∼p[k(W,W)] <∞, then ∃µp ∈ H
such that Ep[f ] = ⟨f, µp⟩, ∀ f ∈ H. Furthermore,

µp(·) = EW∼p[k(W, ·)] (3.21)

Proof. See Appendix G.

Lemma 3.2.7. Fix an arbitrary g ∈ H. Then:

sup
f∈Hr

⟨f, g⟩2 = r2||g||2 (3.22)

Proof. See Appendix G.
9[27] contains detailed proofs of the ideas proposed in [26].
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Proof of Proposition 3.2.5. We have that:

MMD2(p, qθ,Hr) = sup
f∈Hr

(
Ep[f ]− Eqθ [f ]

)2
= sup

f∈Hr

(
⟨f, µp⟩ − ⟨f, µq⟩

)2
(Lemma 3.2.6)

= sup
f∈Hr

⟨f, µp − µq⟩2

= r2||µp − µq||2 (Lemma 3.2.7)

= r2 ·
(
⟨µp, µp⟩ − 2⟨µp, µq⟩+ ⟨µq, µq⟩

)
= r2 ·

(〈
EW∼p[k(W, ·)],EW∼p[k(W, ·)]

〉
− 2
〈
EW∼p[k(W, ·)],EW∼qθ [k(W, ·)]

〉
+
〈
EW∼qθ [k(W, ·)],EW∼qθ [k(W, ·)]

〉)
= r2 ·

(
EW∼p,W′∼p[

〈
k(W, ·), k(W′, ·)

〉
]− 2EW∼p,W′∼qθ [

〈
k(W, ·), k(W′, ·)

〉
]

+ EW∼qθ ,W′∼qθ [
〈
k(W, ·), k(W′, ·)

〉
]
)

= r2 ·
(
Ep,p[k(·, ··)]− 2Ep,q[k(·, ··)] + Eq,q[k(·, ··)]

)
Note that one function that achieves the supremum above is f∗ = r(µp − µq).

Remark. The condition in Proposition 3.2.5 applies to the Gaussian kernel:

EW∼p

[
exp

{
− ||W −W||22

2σ2
k

}]
= 1 (3.23)

for any distribution p overW. In fact, it holds for any stationary kernel, i.e. k(w,w′)

is a function of w −w′.

3.2.3 COMPUTING THE KERNELIZED MMD

We need to be able to evaluate (3.20) in practice. As an analytical solution is in-

tractable, and as we cannot sample from p, we will use the importance-sampled

Monte Carlo estimator with samples from qθ:

M̂MD
2
(p, qθ,Hr)

= r2 ·
∑
i,j

γiγjk(w
(i),w(j))(∑

i γi

)(∑
j γj

) − γik(w
(i),w(j′))∑
i γi

− γjk(w
(i′),w(j))∑
j γj

+ k(w(i′),w(j′))

(3.24)
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where {w(i)}Si=1 and {w(i′)}Si=1 are two independent sets of S samples from qθ

(hence we draw 2S samples independently) 10. {γi}Si=1 are the importance ratios as

defined in (3.1), applicable to the first set of samples {w(i)}Si=1 only. In general, any

unbiased variance reduction technique can be applied in lieu of (3.24).

We will refer to our general approach, where H is constructed from the Gaussian

kernel, as the Kernelized Bound on Variational Predictive Mean Error (KEBO-

VPME). We denote (3.19) as the strict upper bound and (3.24) (or any other viable

estimator) as the KEBO-VPME estimator.

There are a number of ways that KEBO-VPME can be deployed practically. For

example, we can compute (3.24) at the end of each run and choose θ corresponding

to the VI run with the smallest KEBO-VPME. If the user possesses domain knowledge

about the maximum tolerable predictive mean error, they can reject any VI run for

which KEBO-VPME exceeds this value.

3.3 LOW-DIMENSIONAL SIMULATIONS

We evaluate KEBO-VPME on a simple low-dimensional example to empirically ex-

plore various aspects of its performance.

GENERAL EXPERIMENTAL SETUP Throughout this section, we will consider the same

1D (X = R) regression dataset in Figure 2.5.1. We use the naive Gaussian prior

(1.14) throughout. We use BBB with a Gaussian variational approximation as the

VI method. The empirical predictive distribution is computed according to (1.17).

Refer to Appendix F for hyperparameters and setup details.

We will evaluate KEBO-VPME by using the HMC posterior as a proxy for the

ground-truth posterior. We will compare both the KEBO-VPME estimator (3.24) as

well as the strict upper bound (3.19) to the true maximum predictive mean error

in R (3.5). To compute (3.19), we will use the samples from HMC and BBB to

estimate Ep

[∑
l

∣∣Wl

∣∣] and Eqθ

[∑
l

∣∣Wl

∣∣] respectively. Note also that we do not

need to carry out importance sampling in (3.24) since we are substituting the first

set of {w(i)}Si=1 with actual HMC samples, i.e. we set all γi = 1. Finally, while

the definitions (3.5), (3.19) and (3.24) use the squared error of expectation, in this
10The first set of S samples is meant to simulate samples from p, whereas the second set represents

samples from qθ itself.
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Metric Value
supX VPME(p, qθ) 2.292

KEBO-VPME Est. (3.24) 3.270
Strict Bound (3.19) 77.213

Figure 3.3.1 & Table 3.3.1: (a) The posterior predictive plot for HMC (gray) and BBB
(blue), showing the posterior predictive mean (thick line) and shaded at the credible interval
σ = 3. The VI predictive mean function deviates from the HMC function at several points in
X . Note that the presence of a nonlinear activation squashing extreme values of x means that
the predictive error will not diverge beyond what this graph shows. (b) From top to bottom,
values for (i) the true VPME, i.e. maximum deviation of the predictive mean functions, (ii)
the KEBO-VPME estimator (3.24) and (iii) the strict upper bound (3.19).

section (and the next) we apply the square root to all 3 values, so that they can be

compared on the actual scale of Y.

With access to the true posterior simulated, (3.19) indeed bounds the maxi-

mum predictive mean error. Table 3.3.1 shows that the strict upper bound, which

we have proved is a true bound, is a highly conservative bound, being an order of

magnitude higher than the true maximum predictive mean error. In this case, the

KEBO-VPME estimator is also slightly higher than the true maximum error, even

though it may not necessarily have been so. This is because (3.24) is not a strict

bound for VPME (only (3.19) is) and there are no guarantees when comparing

(3.24) and VPME(p, qθ,R) directly.

An appropriate large choice of σk (the characteristic length of the Gaussian ker-

nel) is sufficient for convergence of the KEBO-VPME estimator. Figure 3.3.2a and

3.3.2b shows the plot of the KEBO-VPME estimator and the strict bound computed

at varying choices of σk. Both quantities rapidly converge as σk increases. This is

in line with what we might expect theoretically. Recall that σk factors into KEBO-

VPME by determining r as well as the expectation terms over k(·, ·). As σk → ∞,
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(a) Plot of (3.19) against σk. (b) Plot of (3.24) against σk.

(c) Plot of (3.19) against S. (d) Plot of (3.24) against S.

Figure 3.3.2: (a) and (b), computed at fixed S = 1000, show that both (3.19) and (3.24)
converge as σk increases. (c) and (d), computed at fixed σk = 5, show that (3.19) and (3.24)
converge as S increases.

both terms converge: r →
√

|LH |
2Bk

and Ep[k(·, ·)] → 1. This also affirms that the

values in Table 3.3.1, which were computed at σk = 5, are reliable.

KEBO-VPME is sample-efficient. Figure 3.3.2c and 3.3.2d shows the plot of the

KEBO-VPME estimator and the strict bound computed at varying sample size S (as

defined in (3.24)). Like the plots for σk, both quantities converge as S increases.

KEBO-VPME is therefore computationally cheap and can be easily added the VI

workflow.

KEBO-VPME is not able to distinguish between VI runs well. Unfortunately,

while KEBO-VPME serves as a theoretical bound for the predictive mean error, it

is not tight enough to distinguish between VI approximations when the differences

are small, nor does it serve as a good diagnostic for the progress of the variational

optimization across epochs. Figure 3.3.3 shows 3 separate VI runs, where the initial

parameter θ is intentionally chosen to result in different local VI modes obtained.

While the strict bound still accurately bounds the maximum predictive mean error,

the plot does not serve to inform us which run is better. The KEBO-VPME estimator

is also poor at distinguishing between VI runs.
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(a) Plot of (3.19) per epoch. (b) Plot of (3.24) per epoch.

(c) Plot of maximum VPME per epoch.

Figure 3.3.3: In each of the plots, the 3 lines (red, blue, black) denote 3 separate VI runs
with different initial θ. The strict bound plot seems to partially mirror the true maximum
VPME for two of the runs, but does not reflect the change in maximum error for the VI run
in red. In constrast, the KEBO-VPME estimator has no distinguishing power, and in fact does
not bound the true error for the VI runs in black and blue.
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4
Conclusion

BNNs are obtained by performing Bayesian inference over deep NNs, a class of

models representing a rich hypothesis space. BNNs combine powerful function ap-

proximation with the ability to reason systematically about parameter and predic-

tive uncertainty. This makes them ideal models to deploy in high-stakes applica-

tions, where we desire to learn accurate predictions from high-dimensional, large

datasets, but without the cost-prohibitive errors that classical NNs tend to make on

out-of-distribution data.

The ability to learn entire distributions over NNs does not come without tradeoffs,

namely, model interpretability as well as inference accuracy. In this thesis, we pre-

sented two approaches that respectively mitigate each of these problems. OC-BNNs,

in Chapter 2, allow the user to express output constraints via two novel prior for-

mulations, both of which are amenable to black-box BNN inference methods. They

form a bridge between interpretable domain knowledge that end users can easily

specify and the powerful but opaque BNN inference process. Output constraints can

be used to enforce a wide range of desiderata of practical concerns, such as safety

and fairness. We applied OC-BNNs to two high-stakes domains: (1) for healthcare,

we imposed physiologically-feasible constraints (that a doctor might specify) on a

clinical action prediction task, and (2) for criminal justice, we imposed racial fair-

ness constraints on a recidivism prediction task. For the latter, the constraint was

enforced despite a biased and unfair dataset.
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For BNNs to be truly useful for high-stakes applications, it is crucial that we can

evaluate and therefore trust the approximate posterior. In Chapter 3, we addressed

the issue of verifying the predictive accuracy of VI approximations by introducing

KEBO-VPME, a bound for the posterior predictive mean error using the kernelized

maximummean discrepancy. While KEBO-VPME is largely useful for as a theoretical

guarantee, we note that it is efficiently estimable and opens the door to exploiting

RKHS for future BNN diagnostics.

4.1 FUTURE DIRECTIONS

There is much work to be done in making BNNs expressive and trustworthy mod-

els for widespread, practical use. Below, we outline some promising directions of

research, either immediate extensions of our work or more general approaches:

Better sampling techniques can be leveraged to improve the sample effi-

ciency of OC-BNNs. OC-BNNs are less effective as the constrained input region Cx
grows, due to the difficulty of obtaining representative samples from Cx. By making

use of advanced sampling or variance reduction techniques, e.g. antithetic sam-

pling [22], the variance of pC(w) can be managed, which is especially crucial for

high-dimensional X as representative sampling becomes exponentially more diffi-

cult as dimensionality Q increases. We note that work done in Chapter 2 has shown

promising directions. For example, we have observed empirically that at higher di-

mensions, sampling at the boundary of Cx closest to Dtr is sometimes sufficient to

learn the constraint well. This is likely due to the fact that non-Lipschitz continu-

ous functions, i.e. those that satisfy points at boundary of Cx but not the rest of

Cx (assuming small, compact Cy), are penalized heavily by the prior term. As such,

we hypothesize that by controlling the continuity of ΦW learnt (e.g. by varying the

standard deviation hyperparameter σω in (1.14)), sampling from the boundary may

be sufficient to learn the whole C.

Priors should be able to express more complicated functional beliefs. In gen-

eral, the ability to translate between NN parameter space and function space is a

fundamental challenge for BNNs. While a panacea is not immediately apparent, it

is possible to chip away at this problem depending on the domain of interest. For ex-

ample, while this work considers knowledge in the form of output constraints, there

are desirable properties such as monotonicity that cannot be easily represented as

such. Exploiting the structure ΦW can allow us to construct tentative relationships

betweenW and function spaces of interest.
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OC-BNNs can be used with human-in-the-loop processes to actively incor-

porate human expert knowledge in the BNN training process. Since OC-BNNs

allow for human input in the form of output constraints, it is possible to envision a

human-in-the-loop machine learning system where a human expert is tasked with

specifying constraints for regions or points in X that will result in the most informa-

tive BNN posterior (e.g. w.r.t. a fixed Dtr). This is a direction that we are actively

working on exploring. Preliminary results show that querying for output constraints

at strategic points in X can lead to better posteriors, i.e. posteriors with (correctly)

reduced variance even at regions not represented in Dtr.

Kernelized bounds can be extended to predictive variance error. Since VI

approximations are known to underestimate the true predictive variance, bounding

the variance error will be a helpful diagnostic. We might seek an equivalent of

KEBO-VPME for the variance, i.e. approximating supf

(
V arp[f ] − V arqθ [f ]

)2
with

an RKHS. Evaluating such a quantity will be more difficult due to the nonlinearity

of V ar(·). However, by expressing V arp[f ] = Ep[f
2] − Ep[f ]

2 and making certain

assumptions on f2 or Ep[f ], it might be possible to derive a bound. For example,

we can prove that Φ2
W can be represented in some RKHS, or we can consider the

special case where Ep[Φ] = 0. In general, it is worth asking if the moment errors are

interesting.

Empirical diagnostics can be constructed for VI approximations. In general,

tight theoretical bounds for variational predictive errors can be difficult to achieve,

due to both the complexity of ΦW and the resulting complicated, multimodal pos-

terior. It is worth exploring if there are empirical diagnostics that can be practically

useful for gauging certain aspects of VI quality, especially in high dimensions. For

example, as we expect variance to increase in regions of X further away from Dtr,

we want to observe whether predictive variance changes appropriately across X .

F • f

For machine learning systems to be useful, they must be faithful to the needs of

the human user. We desire our models to be expressive enough to support a wide

range of complicated human beliefs or desiderata and trustworthy enough such that

using them will do no harm. It is my hope that the work presented in this thesis

contributes towards these goals.
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A
Derivation of ELBO

Beginning with (1.19), we have:

θ∗ = argmin
θ∈Θ

DKL

(
p(·|Dtr) || qθ(·)

)
= argmin

θ∈Θ
EW∼qθ

[
log

qθ(W)

p(W|Dtr)

]
= argmin

θ∈Θ
EW∼qθ

[
log qθ(W)− log p(W|Dtr)

]
= argmin

θ∈Θ
EW∼qθ

[
log qθ(W)− log p(W)− log p(Dtr|W) + log p(Dtr)

]
= argmin

θ∈Θ
EW∼qθ

[
log qθ(W)− log p(W)− log p(Dtr|W)

]
(since p(Dtr) is a constant independent of θ)

= argmax
θ∈Θ

EW∼qθ

[
− log qθ(W) + log p(W) + log p(Dtr|W)

]
= argmax

θ∈Θ
EW∼qθ

[
log p(Dtr|W)

]
+ EW∼qθ

[
log p(W)− log qθ(W)

]
= argmax

θ∈Θ
EW∼qθ

[
log p(Dtr|W)

]
+DKL

(
p(·) || qθ(·)

)
An alternative derivation using Jensen’s inequality is also possible, beginning with

(1.10):
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log p(Dtr) = log

∫
W

p(w)p(Dtr|w)dw

= log

∫
W

qθ(w) · p(w)p(Dtr|w)

qθ(w)
dw

= logEW∼qθ

[p(W)p(Dtr|W)

qθ(W)

]
≥ EW∼qθ

[
log

p(W)p(Dtr|W)

qθ(W)

]
(Jensen’s inequality)

= EW∼qθ

[
log p(Dtr|W)

]
+DKL

(
p(·) || qθ(·)

)
Since p(Dtr) is constant, optimizing for θ is equivalent to maximizing ELBO.
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B
Inference Algorithms for BNNs

B.1 HAMILTONIAN MONTE CARLO

We assume familiarity with the Metropolis-Hastings algorithm [29], a basic MCMC
method. HMC, first introduced in [13], is an MCMC variant that augments the
Metropolis-Hastings framework by using Hamiltonian dynamics for Markov chain
transition proposals, which cover more of the parameter space RM than naive Gaus-
sian proposals. This is important for sample-efficient BNN inference since M is
large. The treatment below is a concise summary from [57], which is a theoretical
and practical review of HMC for BNN inference. Readers are referred to [57] for a
more substantial discussion.

HAMILTONIAN DYNAMICS

MCMC algorithms iteratively collect samples of W ∈ W = RM . We can interpret
this as a physical system describing W as a particle in motion, whereby q := W is
the position vector onW and each iteration of MCMC updates q. Then Hamiltonian
dynamics describes how the position q and the momentum p of the particle changes
over time, under the constraint of:

dqj

dt
= (M−1p)j (B.1)

dpj

dt
= − ∂U

∂qj
(B.2)

where t represents time and j ∈ {0, 1, . . . ,M − 1} indexes q and p. U(q) is the
potential energy of the system, which we define as the negative log-posterior prob-
ability:

U(q) = −
(
log p(q) + log p(Dtr|q)

)
(B.3)
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M represents any symmetric, positive-definite matrix corresponding to particle mass.
We will choose a diagonal M with entries m0, . . . ,mM−1. The kinetic energy of the
system is

K(p) =
1

2
p⊤M−1p =

M∑
d=j

p2
j

2mi
(B.4)

The Hamiltonian is defined as

H(q,p) = U(q) +K(p) (B.5)

and can be interpreted as the total energy of the system. The goal is therefore to
solve (B.1) and (B.2) to obtain some operator Tδ that maps the physical state at
time t, (q,p)t, to the physical state at time t + δ, (q,p)t+δ. Note that the auxiliary
momentum vector p ∈ RM is introduced artificially and so Tδ operates on RM+M .

The Hamiltonian is related to the posterior, our distribution of interest, by means
of the potential energy U(q) 1. In statistical mechanics, the energy function (B.5)
results in a canonical distribution over (q,p):

p(q,p) ∝ exp
{
− U(q)

T

}
exp

{
− K(p)

T

}
(B.6)

where T is the temperature of the system (which we typically set to 1). q and p are
independent, and therefore the canonical distribution for q, our desired variable,
is precisely the posterior. Note that our choice of K above implies an isotropic
Gaussian distribution for the momentum p where mj are the variances of each
component of p.

Hamiltonian dynamics is attractive for constructing MCMC updates for a number
of reasons: (i) As Tδ is invertible, Hamiltonian dynamics are reversible and there-
fore the Markov chain transitions that arise from using Hamiltonian dynamics for
proposals is also reversible, leaving the stationary distribution invariant. (ii) The
Hamiltonian H(q,p) is conserved, and so the acceptance probability of the transi-
tion is 1 2. (iii)Tδ is a volume-preserving operator (c.f. Liouville’s theorem), which
simplifies the computation of the acceptance probability of the transition since any
change in volume must be accounted for 3.

1Note that technically, the potential energy is proportional to the log-posterior since we cannot
compute p(Dtr). This is not an issue since p(Dtr) is a constant.

2Since we are finding an approximate solution, this will not be true. However, as we will see, an
acceptance probability that leaves the stationary distribution invariant can still be derived.

3In fact, Hamiltonian dynamics is symplectic, a stronger statement which implies volume conser-
vation.
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DISCRETE-TIME APPROXIMATION

We require a solution Tδ to (B.1) and (B.2), which must be discrete-time in order
to be computable. [57] proposes a discrete approximation known as the leapfrog
method:

(pj)t+ϵ/2 = (pj)t −
ϵ

2
· ∂U
∂qj

∣∣∣
qt

(B.7)

(qj)t+ϵ = (qj)t + ϵ ·
(pj)t+ϵ/2

mj
(B.8)

(pj)t+ϵ = (pj)t+ϵ/2 −
ϵ

2
· ∂U
∂qj

∣∣∣
qt+ϵ

(B.9)

where ϵ, 2ϵ, . . . indexes the time steps (i.e. discretized δ). It should be noted that
even though (B.7) to (B.9) are approximate solutions, they still follow the invari-
ances outlined above.

CONSTRUCTING THE HMC ALGORITHM

From (B.7) to (B.9), an MCMC algorithm can be constructed as follows: every it-
eration t, we sample pt from its Gaussian distribution (independent of the current
value of q). Beginning with pt and qt (the most recent sample of q), we then sim-
ulate Hamiltonian dynamics by performing L steps of the leapfrog update (B.7) to
(B.9) with stepsize ϵ. The Metropolis proposal is then qt+Lϵ . We then accept this
proposal with probability

p(accept) = min
(
1, exp{−U(qt+Lϵ) + U(qt)−K(pt+Lϵ) +K(pt)}

)
(B.10)

As per the usual Metropolis-Hastings framework, if we accept qt+Lϵ then it becomes
the next state, otherwise, qt remains as the next state. It can be shown that the
Metropolis update with the acceptance probability above is reversible and therefore
leaves the canonical distribution of q invariant. We can discard pt and pt+Lϵ after
computing the acceptance probability. At the end of the algorithm, we will have a
set of particles {W1, . . . ,WS} drawn from the posterior.

PRACTICAL DETAILS Both ϵ and L are hyperparameters to be tuned. For the BNNs
used in this thesis, we set all mj = 1. In practice, it is typical to (i) discard some
initial samples of q (this is known as “burn-in”), and after the burn-in period, to
(ii) only collect samples every few iterations (instead of every iteration). Hence the
number of burn-in iterations and the frequency of collection are both hyperparame-
ters. [57] explains how to tune these values, and in general, how to diagnose HMC.
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The full algorithm, taken from [57], is shown in Algorithm 2.

Algorithm 2: Hamiltonian Monte Carlo
Input: p(·|Dtr), L, ϵ, Nburnin, Nactual, ω (sampling frequency)
U(q) := p(q|Dtr);

K(p) :=
∑M

d=j

p2
j

2 ;
S← [];
q0 ← random sample (e.g. from prior distribution);
push q0 into S;
for t← 0 to Nburnin − 1 do

qold ← S[−1];
pold ← random sample from N (0, I);
for l← 0 to L− 1 do

qnew,pnew ← (B.7) to (B.9);
end
a← random sample from Unif(0, 1);
if a < (B.10) then

push qnew into S;
else

push qold into S;
end

end
S← [S[-1]];
for t← 0 to Nactual − 1 do

qold ← S[−1];
pold ← random sample from N (0, I);
for l← 0 to L− 1 do

qnew,pnew ← (B.7) to (B.9);
end
a← random sample from Unif(0, 1);
if a < (B.10) then

push qnew into S;
else

push qold into S;
end

end
return S[:: ω](every ωth sample in S) ;
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B.2 BAYES BY BACKPROP

This section is a condensed treatment of BBB, introduced in [5], and readers are re-
ferred to the original text for proofs and detailed analysis. Suppose that we use a di-
agonal (multivariate) Gaussian variational family, where the variational parameter
θ = (µ,σ) is the means and standard deviations for each (independent) parameter:

qθ(w) = (2π)−
M
2 (σ1 . . . σM )−1 exp{−1

2
(w − µ)⊤Σ−1(w − µ)} (B.11)

where Σ is the diagonal matrix with entries σ2
1, . . . , σ

2
M . Hence θ is a vector of size

2M .

Recall that our goal is to minimize the ELBO (c.f. (1.20)). However, it cannot
be evaluated analytically due to the presence of an expectation over W ∼ qθ (an
integral). Instead, BBB optimizes a Monte Carlo estimator of (1.20). However, in
order to make this estimator differentiable, BBB relies on a technique known in
variational literature as the reparametrization trick.

REPARAMETRIZATION TRICK

It can be shown that given certain mild conditions, we can swap the expectation
and differential operator:

Proposition B.2.1. Let ϵ be a random variable with PDF q(ϵ) and let w = t(θ, ϵ) be
a deterministic transformation t of (θ, ϵ). Suppose also that the marginal PDF of w,
q(w|θ), is such that q(ϵ)dϵ = q(w|θ)dw. Then for a function f with derivatives in w:

∂

∂θ
Ew∼q(w|θ)

[
f(w,θ)

]
= Eϵ∼q(ϵ)

[∂f(w,θ)

∂w
· ∂w
∂θ

+
∂f(w,θ)

∂θ

]
(B.12)

If we refer to (1.20), we can see that by choosing f(w,θ) = log p(Dtr|w) +
log p(w) − log qθ(w), the L.H.S. of Proposition B.2.1) is precisely the derivative of
the ELBO, our optimization objective. The use of Proposition B.2.1 is crucial here
because taking the differential of log p(Dtr|w) requires backpropagation through
the NN, which cannot be done if w is random. As such, only the R.H.S. can be
evaluated. Proposition B.2.1 is therefore useful because it allows us to differentiate
by reparametrizing the source of randomness from w to ϵ.

CONSTRUCTING THE BBB ALGORITHM

The reparametrization trick can be easily applied to the Gaussian variational family
by means of the deterministic transformation:

w = t(θ, ϵ) = µ+ σ ◦ ϵ (B.13)
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where ◦ is the component-wise multiplication operator and ϵ is a M -sized random
vector with the unit Gaussian N (0, I) distribution. Since σ must be non-negative,
which can be tricky for practical optimization algorithms, we choose instead a dif-
ferent parametrization θ = (µ,ρ) where σ = log(1 + eρ) element-wise. Then our
transformation becomes:

w = t(θ, ϵ) = µ+ log(1 + eρ) ◦ ϵ (B.14)

and now both µ and ρ have support in RM . With the reparametrization trick, the
Monte Carlo estimator of the R.H.S. of (B.12) is precisely the gradient that we take
a step in each iteration of gradient descent, which is computable using automatic
differentiation. Typically, only 1 sample of ϵ is enough to compute the estimator.
The full algorithm, taken from [5], is shown in Algorithm 3.

Algorithm 3: Bayes by Backprop
Input: p(Dtr|w), p(w), qθ(w), Niter, α (learning rate)
θ = (µ,ρ)← random initialization from any reasonable distribution;
for n← 0 to Niter − 1 do

ϵ← random sample from N (0, I);
w← (B.14);
f(w,θ)← log p(Dtr|w) + log p(w)− log qθ(w);

∇µ ← ∂f(w,θ)
∂w + ∂f(w,θ)

∂µ ;

∇ρ ← ∂f(w,θ)
∂w · ϵ

1+e−ρ + ∂f(w,θ)
∂ρ ;

µ← µ+ α · ∇µ;
ρ← ρ+ α · ∇ρ;

end
return θ;
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B.3 STEIN VARIATIONAL GRADIENT DESCENT

We present a concise summary of SVGD, introduced in [47]. Readers are referred to
the original paper for more details. Like BBB, SVGD is a VI approach and learns an
approximation of the true posterior. However, instead of optimizing the parameters
of a fixed variational family, SVGD iteratively applies smooth transforms to an initial,
tractable distribution in a way that minimizes the KL divergence of the resulting
distribution. These transforms are determined via a form of functional gradient
descent that relies on a general result in probability theory known as Stein’s Method.

VI VIA SMOOTH TRANSFORMS

Let p denote the BNN posterior and p̄ the unnormalized posterior (i.e. without
the denominator term p(Dtr)). Let q0 be any initial, tractable distribution over
W = RM , e.g. a Gaussian distribution. Q = {q[T]} is the set of distributions of all
w′ = T(w) where w is distributed according to q0 and T : X → X is any smooth
bijective transform. For any such T, we have the resulting PDF:

q[T](w
′) = q0

(
T−1(w)

)
·
∣∣∣ det (∇wT

−1(w)
)∣∣∣ (B.15)

where ∇wT
−1 is the Jacobian matrix of T−1. While Q is a powerful variational

family (in the sense that some measurable T always exists between any two diffuse
densities p and q), specifying a set of transforms T that will make the resulting
VI objective (KL divergence minimization or ELBO maximization) tractable is non-
trivial. Liu and Wang [47] uses Stein’s method to define iterative transforms that
effectively perform gradient descent on DKL

(
q[T] || p

)
.

STEIN’S METHOD

If p is a smooth PDF and ϕ :W →W is a smooth vector-valued function (with some
mild zero boundary and regularity conditions), then Stein’s identity states that

Ep[Apϕ(w)] = 0 where Apϕ(w) = ϕ(w)∇w log p(w)⊤ +∇wϕ(w) (B.16)

Ap is known as the Stein operator (under p) and ϕ is in the Stein class of p.
Supposing the expectation in (B.16) was taken under a different distribution q,
then the resulting value Eq[Apϕ(w)] ̸= 0. This fact allows us to characterize a
discrepancy measure between two distributions, known as Stein discrepancy:

S(q, p) = max
ϕ∈F

{
Eq

[
trace

(
Apϕ(w)

)]2} (B.17)

where F is some set of functions over W. The discriminative power and computa-
tional tractability of S(q, p) greatly depends on the choice of F .
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One choice of F makes use of a reproducing kernel Hilbert space (RKHS). For
readers unfamiliar with RKHS, see Appendix C for an brief introduction. Let H be
the RKHS with the kernel k(w,w′) : W ×W → R, and denote by HM the space of
vector-valued functions f = [f1, . . . , fM ] where each fm ∈ H. Assuming that k is in
the Stein class of p, then the kernelized Stein discrepancy is:

S(q, p) = max
ϕ∈HM

{
Eq

[
trace

(
Apϕ(w)

)]2 where ||ϕ||HM ≤ 1
}

(B.18)

where || · ||HM is the norm of the RKHS. As it turns out, we can derive a closed-form
optimal solution to (B.18). Let

ϕ∗
q,p(·) = Eq[Apk(w, ·)] = Eq[k(w, ·)∇w log p(w) +∇wk(w, ·)] (B.19)

Then the optimal solution to (B.18) is ϕ∗
q,p(·)/||ϕ∗

q,p(·)||HM and S(q.p) = ||ϕ∗
q,p||2HM .

The kernelized Stein discrepancy is a proper divergence in the sense that S(q, p) = 0
iff p = q and k is strictly positive definite (which is the case for many common
kernels). Also note that (B.19) can be computed using the unnormalized p̄ (instead
of p) since log p(w)⊤ = log p̄(w)⊤.

STEIN OPERATORS FOR VI

Returning to the VI setting, let us consider transforms of the type T(w) = w + ϵ ·
ϕ(w), i.e. small perturbations of the identity mapping. Note that sufficiently small
|ϵ| (a scalar) guarantees that T is bijective by the inverse function theorem. As
it turns out, there is an important connection between these transforms and Stein
operators:

∇ϵDKL

(
q[T] || p

)∣∣∣
ϵ=0

= −Eq

[
trace

(
Apϕ(w)

)]
(B.20)

This implies that ϕ∗
q,p is the perturbation that results in the steepest descent on the

KL divergence in the unit ball of HM , and for T∗(w) = w + ϵϕ∗
q,p(w), we have

∇ϵDKL

(
q[T∗] || p

)∣∣∣
ϵ=0

= −S(q, p).

We can therefore consider an iterative process as follows: Starting with the initial
distribution q0, we apply the transform T∗

0(w) = w + ϵ0 · ϕ∗
q0,p(w). The resulting

distribution q1 over T∗
0(w) has KL divergence (against p) smaller than q0 by the

value ϵ0 · S(q0, p). We can then apply T∗
1(w) = w+ ϵ1 ·ϕ∗

q1,p(w), so on and so forth,
until the final distribution qT is sufficiently close to p.

In order to carry the above process tractably, we must sample a finite number of
particles {w(i)}Si=1 from q0 to apply the iterative transforms to. We can also estimate
the expectation in (B.19) using the same set of particles. Since we do not need
a closed-form expression for q0, we can in fact initialize these particles using any
arbitrary method. The complete SVGD procedure is presented in Algorithm 4.
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Algorithm 4: Stein Variational Gradient Descent
Input: p̄, q0, k, ϵ, Niter

{w(i)}Si=1 ← sampled from q0;
for n← 0 to Niter − 1 do

ϕ̂∗(w)← 1
S

∑S
i=1

[
k(w(i),w)∇w(i) log p̄(w(i)) +∇w(i)k(w(i),w)

]
;

for i← 1 to S do
w(i) ← w(i) + ϵ · ϕ̂∗(w(i));

end
end
return {w(i)}Si=1;

For all the experiments in this thesis, we will use the RBF kernel:

k(w,w′) = exp
{
− 1

h
||w −w′||22

}
where h =

med2

logS
(B.21)

and med is the median pairwise distance between any two particle in {w(i)}Si=1. This
is the same kernel used in Liu and Wang [47]. Notice that the two terms of (B.19)
can be interpreted as serving different purposes: the first term drives the particles
to have high probability w.r.t. p(w), whereas the second term drives the particle to
be far from each other (in W space), thus preventing them fro collapsing into the
same local mode(s) of p. As the bandwidth h → 0, the second term vanishes and
SVGD reduces to the MAP estimate. Choosing S = 1 also implies the same.

SVGD returns a finite set of particles instead of an analytical solution of the
approximate posterior 4. SVGD is an efficient algorithm and scales to high in-
put dimensions and large datasets. The efficiency bottleneck is the computation
of ∇w log p̄(w); however, like BBB, the likelihood term in p̄ can be batched for com-
putational speedups.

4In this respect, it is similar to MCMC approaches like HMC.
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C
Reproducing Kernel Hilbert Spaces

This section provides a brief background into reproducing kernel Hilbert space
(RKHS) theory. Readers should refer to [2], [64] or [65] for more details.

HILBERT SPACES AND LINEAR FUNCTIONALS

Let H be a real or complex vector space over the field F . H is known as an inner
product space if it is endowed with an inner product, which is a mapping:

⟨·, ·⟩ : H×H → F (C.1)

that is positive-definite, linear and (conjugate) symmetrical. For any element f ∈ H,
we can define the norm of f as ||f || =

√
⟨f, f⟩. If we define the distance between

any f, g ∈ H to be d(f, g) = ||f − g||, then d is a proper metric and so H is a
metric space. If H is also a complete metric space, i.e. every Cauchy sequence in H
converges in H, then H is known as a Hilbert space.

We define a linear functional L as a mapping:

L : H → F (C.2)

For any L, the following three conditions are equivalent: (i) L is continuous on H,
(ii) L is continuous at 0 on H, and (iii) L is bounded, i.e. ∃M > 0 s.t. |Lf | ≤M ||f ||
for every f ∈ H. The space of continuous linear functionals on H, which we denote
by H′, is known as the topological dual space of H. If H is a Hilbert space, so is H′.
For any fixed g ∈ H, the mapping f → ⟨f, g⟩ is a continuous linear functional on H.
The reverse is also true:

Theorem C.0.1 (Riesz representation theorem (Thm 4.12, Rudin [63])). For any
continuous linear functional L on H, there is a unique g ∈ H such that Lf = ⟨f, g⟩ for
all f ∈ H.
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REPRODUCING KERNELS AND RKHS

Suppose that H is a Hilbert space of functions f : X → R. Define Ex : H → R to
be the evaluation functional on H, where Exf = f(x) for all x ∈ X . In fact, this is
sufficient to define an RKHS:

Definition C.0.2. Let H be a Hilbert space of functions f : X → R. If X is a non-
empty set and Ex is continuous on H for all x ∈ X , then H is a reproducing kernel
Hilbert space.

A direct implication of continuousEx is that functions onH that converge in norm
also converge at every point, i.e. limn→∞ ||fn − f || = 0⇒ limn→∞ fn(x) = f(x) for
all x ∈ X .

Definition C.0.2 does not cover the eponymous property of an RKHS, which is
the reproducing kernel. We will now define this term and show how it connects to
Definition C.0.2.

Definition C.0.3. Let H be a Hilbert space of functions f : X → R. A reproducing
kernel of H is a function k : X × X → R such that:

1. ∀x ∈ X , k(·, x) ∈ H,
2. ∀x ∈ X , ∀f ∈ H, ⟨f, k(·, x)⟩ = f(x).

The second property is the so-called reproducing property of the kernel.

As it turns out, H is an RKHS if and only if it has a reproducing kernel k. This
is a consequence of the Riesz representation theorem (that allows Ex itself to be
represented as an inner product), and thus we refer to k(·, x) as the representer of
evaluation at x ∈ X . Furthermore, such a k is also (i) unique for any given H, and
(ii) positive-definite.

CONSTRUCTING RKHS FROM KERNELS

We have seen that every RKHS has a unique reproducing kernel. The converse is
also true: for every positive-definite function k, there is a corresponding unique
RKHS H (for which k is the reproducing kernel). Constructing such a H is a two-
fold process. First, we construct (from k) an initial space H0 known as a pre-RKHS.
Any valid pre-RKHS needs to satisfy two properties:

1. Ex is continuous on H0 for all x ∈ X .
2. Any Cauchy sequence in H0 which converges pointwise to 0 also converges in

norm (of H0) to 0.

We then define H to be the set of all functions f : X → R such that there exists a
H0-Cauchy sequence of functions converging pointwise to f . It can be proven that
such a H is a valid RKHS. The Moore-Aronszajn theorem shows us how to build H0:
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Theorem C.0.4 (Moore-Aronszajn). Let k : X×X → R be positive-definite. There is a
unique RKHS H with k as the reproducing kernel. The space H0 = span

[
{k(·, x)}x∈X

]
endowed with the inner product

⟨f, g⟩H0 =
n∑

i=1

m∑
j=1

αiβjk(xi, yj) (C.3)

where f =
∑n

i=1 αik(·, xi) and g =
∑m

j=1 βjk(·, yi) is a valid pre-RKHS.

Since every reproducing kernel is positive-definite and every positive-definite
function is a reproducing kernel for a unique H, these two concepts are equiva-
lent. Here, we can also introduce the notion of a kernel (without the reproducing
qualification):

Definition C.0.5. A kernel is a function k : X × X → R such that there exists a real
Hilbert space H and a mapping ϕ : X → H and

k(x, y) = ⟨ϕ(x), ϕ(y)⟩H (C.4)

for all x, y ∈ X . ϕ is known as a feature map andH the corresponding feature space.
(Note that ϕ may not be unique).

In fact, reproducing kernels are positive-definite by virtue of the fact that they are
kernels. Hence reproducing kernels, kernels and positive-definite functions are all
equivalent concepts and we can establish a bijection between the set of all positive-
definite functions (which we denote as RX×X ) and the set of all RKHS (which we
denote as Hilb(RX )).

Kernel functions are well-studied in machine learning, and (C.4) is the basis for
the so-called “kernel trick”, which allows us to operate in the feature spaceH instead
of the original input space X . A widely-studied kernel is the Gaussian kernel:

k(x, y) = exp
{
− ||x− y||22

2σ2
k

}
(C.5)

SPECTRAL REPRESENTATION OF RKHS

Given additional structure on X and k, it is possible to derive a spectral representa-
tion of the resulting RKHS. From here on, let (X , dX ) be a compact metric space and
µ be a (positive) Borel measure on X . Let k be a continuous kernel. The associated
Hilbert-Schmidt integral operator 1 is K : L2(X ;µ)→ L2(X ;µ) where

(Kf)(·) =
∫

k(·, y)f(y)dµ(y) ∀f ∈ L2(X ;µ) (C.6)

1Technically, L2(X ) is the space of equivalence classes of functions that are identical almost every-
where. We abuse notation here and treat f ∈ L2(X ;µ) as a function in the equivalence class.
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Symmetry of k implies that K is self-adjoint, i.e. ⟨f,Kg⟩ = ⟨Kf, g⟩ for all f, g ∈
L2(X , µ). By the Arzela-Ascoli theorem (Thm 11.28, Rudin [63]), continuity of k
implies K is also a compact operator. We can then invoke the spectral theorem.

Theorem C.0.6 (Spectral). Let H be a Hilbert space and T : H → H be a self-adjoint,
compact operator. Then there is an at most countable orthonormal set {ej}j∈J of H
and {λj}j∈J with |λ1| ≥ |λ2| ≥ · · · > 0 converging to zero, such that

(Tf)(·) =
∑
j∈J

λj⟨f, ej⟩ej(·) ∀f ∈ H (C.7)

Applying the spectral theorem to K gives us Mercer’s theorem:

Theorem C.0.7 (Mercer’s). Let X and k possess the additional structures as defined
above. Then

k(x, y) =
∑
j∈J

λjej(x)ej(y) ∀x, y ∈ X (C.8)

where the eigenbasis is w.r.t. L2(X ;µ) and the sum converges uniformly on X ×X and
absolutely for all x, y ∈ X .

Mercer’s theorem provides a feature map ϕ : X → ℓ2(J) for k where ϕ(x) ={√
λjej(x)

}
j∈J . More importantly, Mercer’s theorem also provides an alternative

representation of the RKHS of k (denoted as Hk) via the eigenfunctions of K.

Theorem C.0.8. Let X and k possess the additional structures as defined above. Define
the space

H =

{
f =

∑
j∈J

ajej :
{ aj√

λj

}
∈ ℓ2(J)

}
(C.9)

with the inner product 〈∑
j∈J

ajej ,
∑
j∈J

bjej

〉
H
=
∑
j∈J

ajbj
λj

(C.10)

Then H = Hk, i.e. they have the same space and same inner product.

Note that the condition
{

aj√
λj

}
∈ ℓ2(J) guarantees that

∑
j∈J ajej converges and

so is well-defined. This convergence is connected to regularity properties of f . Even
though H is defined by the eigenfunctions ej of K, which itself is defined w.r.t. a
measure µ, the uniqueness of RKHS implies that H is independent of µ.

Given further assumptions that k(x, ·) ∈ L2(X , µ) for all x ∈ X and K is a pos-
itive, bounded operator with at most countably many positive eigenvalues, then
Mercer’s theorem can be extended to non-compact (X , dX ). In particular, the Gaus-
sian kernel on RM is Mercer [69].
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D
Approximations for BNN Prior Predictive

We succinctly present the derivation of (2.17) and (2.21), taken from Chapter 5.7
of Bishop [3]. Readers are referred to the main text for a detailed exposition.

D.1 BNN PRIOR PREDICTIVE FOR REGRESSION

In the regression setting, the likelihood (1.12) is Gaussian. Our variational prior
qλ(w) is also chosen to be Gaussian. Substituting these two distributions into the
prior predictive (2.1), we can write p(Y |x) as the convolution of two Gaussian dis-
tributions:

p(Y = y|x) =
∫
W
N (y′; Φw(x), σ

2
ϵ ) · N (w;µ,σ2I) dw (D.1)

where λ = (µ,σ). Despite the Gaussian terms, (D.1) is still intractable due to the
non-linearity of Φw(x). In order to find a linear approximation of Φw(x), we will
assume that the qλ(w) has a small spread around its mode wMAP = µ 1 relative to
the characteristic length-scale of w over which Φw(x) is varying. This gives us the
first-order Taylor approximation of Φw(x) as:

Φ̂w(x) = ΦwMAP(x) + g⊤(w −wMAP) (D.2)

where
g =

[
∇wΦw(x)

∣∣∣
w=wMAP

]
(D.3)

is the first-order derivative at wMAP. Note that w is a variable above while wMAP is
fixed.

At this point, we will introduce (without proof) a well-established identity:
1Recall that the MAP estimator is the mode of the distribution.
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Lemma D.1.1. If
w ∼ N (µ,Λ−1)

y|w ∼ N (Aw + b,L−1)

then the marginal distribution is

y ∼ N (Aµ+ b,L−1 +AΛ−1A⊤)

Substituting Φ̂w(x) for Φw(x) into (D.1) and using the lemma above gives us the
final approximation of p(Y = y|x) as:

Ŷ |x ∼ N (ΦwMAP(x), σ
2
ϵ + g⊤(σ2 · g)) (D.4)

In other words, the prior predictive approximation is centered at the BNN function
Φ(x) computed at the MAP estimate. The variance is an additive contribution of
both the modeled noise σϵ, as well as the prior (variational) variance of W scaled
by our uncertainty (w.r.t. W) of Φ(x) near the MAP estimate µ.

D.2 BNN PRIOR PREDICTIVE FOR BINARY CLASSIFICATION

As mentioned in Section 2.3, we use a slightly modified BNN setup for binary classi-
fication, where there is only a single output node and the logistic sigmoid function
is applied to the node’s value to yield the final output Φw(x) ∈ [0, 1]. In this case,
the likelihood is simply:

p(Y = y|w) = y · Φw(x) + (1− y) · (1− Φw(x)) (D.5)

noting that y ∈ {0, 1}. The resulting prior predictive with the variational prior is
then:

p(Y = y|x) =
∫
W

(
y · Φw(x) + (1− y) · (1− Φw(x))

)
· N (w;µ,σ2I) dw (D.6)

where λ = (µ,σ) again. Just like the regression setting, we will need to find
an approximation for Φw(x) in order to approximate (D.6). However, unlike the
regression setting, a linear approximation of Φw(x) directly is not appropriate due
to the non-linearity of the logistic sigmoid function applied to the BNN’s output.
Instead, we will first construct a linear approximation on ϕw(x); recall that this
denotes the output node’s value before applying the sigmoid function. Similar to
regression, we can use the first-order Taylor approximation:

ϕ̂w(x) = ϕwMAP(x) + g⊤(w −wMAP) (D.7)

where g is, once again, first-order derivative at wMAP (applied to ϕ instead of Φ).
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The “prior predictive” over the output node function ϕ is then:

p(ϕ(x) = a|x) =
∫
W

δ[a = ϕ̂w(x)] · N (w;µ,σ2I) dw (D.8)

where δ(·) is the Dirac delta function. In fact, (D.8) is simply a Gaussian distribution:

ϕ(x)|x ∼ N (ϕwMAP(x),g
⊤(σ2 · g)) (D.9)

Finally, we need to transform our approximation of ϕ(x) to Φ(x), the predicted
output label. Since we have already integrated over W in the approximation above,
we can rewrite (D.6) in terms of an integral over ϕ instead:

p(Ŷ = 1|x) =
∫
R
σL(a)p(ϕ(x) = a|x)da

=

∫
R
σL(a) · N (a;ϕwMAP(x),g

⊤(σ2 · g))da (D.10)

Note that p(Ŷ = 0|x) = 1 − p(Ŷ = 1|x). Lastly, as the convolution of a Gaussian
with a logistic sigmoid is intractable, we need to apply one final approximation:

p(Ŷ = 1|x) = σL

((
1 +

π(g⊤(σ2 · g))
8

)−1/2
g⊤wMAP

)
(D.11)
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E
OC-BNN: Experimental Details

E.1 LOW-DIMENSIONAL SIMULATIONS

The model for all experiments is a BNN with a single 10-node RBF hidden layer
(H = 1, |L1| = 10). For the naive Gaussian prior (1.14), we set σω = 1. The output
noise in (1.12) for regression experiments is modeled as σϵ = 0.1.

Where HMC is used for inference, we discard 10000 samples as burn-in, before
collecting 1000 samples at intervals of 10 (hence a total of 20000 Metropolis-
Hastings iterations are carried out). L = 50 and ϵ is variably adjusted such that
the overall acceptance rate is approximately 0.9. Where SVGD is used for inference,
we use 50 particles and run 1000 update iterations. We use the AdaGrad optimizer
[14] with an initial learning rate of 0.75.

In Figure 2.5.1, the hyperparameters for the negative exponential COCP are: γ =
10000, τ0 = 15 and τ1 = 2. In Figure 2.5.2, the hyperparameters for the positive
Dirichlet COCP are: αi = 0.85 if i ∈ Cy(x), and 0 otherwise. In both Figure 2.5.3a
and Figure 2.5.4, we run 125 epochs of VOCP optimization. λ = (µ,σ) is initialized
to 0 for all means and 1 for all variances. The AdaGrad optimizer with an initial
learning rate of 0.1 is used for optimization. In Figure 2.5.3b, the hyperparameters
for the negative exponential COCP are: γ = 10000, τ0 = 15 and τ1 = 2.

In Figure 2.5.5b, 10000 epochs of BBB is run. θ = (µ,σ) is initialized to 0 for all
means and 1 for all variances. The AdaGrad optimizer with an initial learning rate
of 0.1 is used. Each epoch, we draw 5 samples of ϵ (instead of 1, as presented in
Algorithm 3) and take the average of the 5 resulting gradients. 1000 samples are
drawn for prediction. In Figure 2.5.6a, we run 50 epochs of VOCP optimization.
λ = (µ,σ) is initialized to 1 for all means and 1 for all variances. The AdaGrad
optimizer with an initial learning rate of 0.1 is used. In Figure 2.5.6b, the positive
Gaussian COCP is used for all 3 constraints with σC = 1.25. The training data is
perturbed with Gaussian noise with mean 0 and standard deviation 1.
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E.2 HIGH-DIMENSIONAL APPLICATIONS

CLINICAL ACTION PREDICTION From the original MIMIC-III dataset, data cleaning
and feature selection were performed. The final dataset contains 9 features and a
binary target, listed below. The features correspond to measured vital signs and
various laboratory results. Each data point represents an hourly timestamp, how-
ever, as this is treated as a time-independent prediction problem, the timestamps
themselves were not used as features. All continuous features were standardized.

• map: Continuous. Mean arterial pressure.

• urine: Continuous. Urine output.

• weight: Continuous. Weight of patient.

• creatinine: Continuous. Level of creatinine in the blood.

• fio2: Continuous. Fraction of inspired oxygen the patient is breathing in.
0.21 if the patient is on room air, but can be higher if artificial ventilation is
given.

• hr: Continuous. Heart rate.

• lactate: Continuous. Level of lactate in the blood.

• fio2_ind: Binary. 1 if fio2 was directly measured at that timestamp. 0 if the
population median was used, or if it was imputed using the most recent value.

• lactate_ind: Binary. 1 if lactate was directly measured at that timestamp.
0 if the population median was used, or if it was imputed using the most recent
value.

• action (target): Binary. 1 if the amount of either vasopressor or IV fluid given
to the patient (at that particular time step) is more than 0, and 0 otherwise.

The model for all experiments is a BNN with two 200-node RBF hidden layers
(H = 2, |L1| = |L2| = 200). SVGD is used for inference with 50 particles, 1500
iterations and the AdaGrad optimizer with an initial learning rate of 0.75. The
dataset is also batched during inference for efficiency. The size of the full dataset is
298666; this reduces to 124706 when points incompatible with C are filtered out.
The train test split is 9:1. The positive Dirichlet COCP is used with α0 = 0.01 and
α1 = 10.
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RECIDIVISM PREDICTION We followed the same data processing steps as [44]. The
only additional step taken was standardization of all continuous features. The final
dataset contains 6172 data points, each corresponding to a defendant. There are 9
features and a binary target:

• age: Continuous. Age of defendant.

• two_year_recid: Binary. 1 if the defendant recidivated within two years of
the current charge.

• priors_count: Continuous. Number of prior charges the defendant had.

• length_of_stay: Continuous. The number of days the defendant stayed in
jail for the current charge.

• c_charge_degree_F: Binary. 1 if the current charge is a felony.

• c_charge_degree_M: Binary. 1 if the current charge is a misdemeanor.

• sex_Female: Binary. 1 if the defendant is female.

• sex_Male: Binary. 1 if the defendant is male.

• race: Binary. 1 if the defendant is African American.

• compas_high_risk (target): Binary. 1 if COMPAS predicted the defendant as
having a high risk of recidivism.

The model for all experiments is a BNN with two 100-node RBF hidden layers
(H = 2, |L1| = |L2| = 100). SVGD is used for inference with 50 particles, 1000
iterations and the AdaGrad optimizer (with variable initial learning rates for the dif-
ferent experiments). The dataset is also batched during inference for efficiency. The
VOCP is used with λ = (µ,σ) initialized to 0 for all means and 1 for all variances.
50 epochs of VOCP optimization are performed using the AdaGrad optimizer at an
initial learning rate of 0.1. We draw 30 samples from the convex hull of Dtr each
iteration to compute the approximation for (2.24).
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F
KEBO-VPME: Experimental Details

F.1 TOY SIMULATION IN FIGURE 3.0.1

The model used is a BNN with a single 100-node RBF hidden layer (H = 1, |L1| =
100). The prior used is isotropic Gaussian (1.14) where σω = 4. The output noise in
(1.12) is modeled as σϵ = 3 (same as the true random perturbation of Dtr).

In Figure 3.0.1a, for HMC, we discard 10000 samples as burn-in, before collect-
ing 1000 samples at intervals of 10 (hence a total of 20000 Metropolis-Hastings
iterations are carried out). We set L = 100 and ϵ = 0.03.

In Figure 3.0.1b, for BBB, we perform 10000 epochs of updates. θ = (µ,σ) is
initialized to 2 for all means and e for all variances. The AdaGrad optimizer with
an initial learning rate of 0.1 is used. Each epoch, we draw 5 samples of ϵ (instead
of 1, as presented in Algorithm 3) and take the average of the 5 resulting gradients.
1000 samples are drawn for prediction.

F.2 LOW-DIMENSIONAL SIMULATIONS

The model for all experiments is a BNN with a single 10-node RBF hidden layer
(H = 1, |L1| = 10). For the naive Gaussian prior (1.14), we set σω = 1. The output
noise in (1.12) for regression experiments is modeled as σϵ = 0.1.

Where HMC is used, we discard 10000 samples as burn-in, before collecting 1000
samples at intervals of 10 (hence a total of 20000 Metropolis-Hastings iterations are
carried out). We set L = 50 and ϵ = 0.03. Where BBB is used, we run 10000 epochs
of optimization, using the AdaGrad optimizer with an initial learning rate of 0.1.
Each epoch, we draw 5 samples of ϵ (instead of 1, as presented in Algorithm 3) and
take the average of the 5 resulting gradients.

In Figure 3.3.1, we initialize θ = (µ,σ) to 0 for all means and 1 for all variances.
For computing the KEBO-VPME estimator and the strict bound, we set σk = 5 and
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use S = 1000 samples of both HMC and VI.

In Figure 3.3.2, we use the same optimized θ∗ as in Figure 3.3.1, except compute
the KEBO-VPME estimator and the strict bound and different σk and S. When S is
varied, σk is set to 5. When σk is varied, S is set to 1000.

In Figure 3.3.3, for the 3 different VI runs, we initialize:

• Red run: θ = (µ,σ) to 0 for all means and 1 for all variances.

• Blue run: θ = (µ,σ) to -5 for all means and 1 for all variances.

• Black run: θ = (µ,σ) to 5 for all means and 1 for all variances.

For computing the KEBO-VPME estimator and the strict bound, we set σk = 5 and
use S = 1000 samples of both HMC and VI.
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G
KEBO-VPME: Additional Proofs

G.1 PROOF OF LEMMA 3.2.3

Proof. The Gaussian kernel over W = RM is Mercer [69] and so the eigenexpan-
sion (3.10) exists. To derive (3.11) and (3.12), we will generalize from the one-
dimensional case.

Section 4.3 of [61] gives us the eigenexpansion for k(w,w′) =
{
− (w−w′)2

2σ2
k

}
with

the Gaussian measure N (0, 1) 1 as:

λj =
√
Bk(2Bk)

j (G.1)

ej(w) = exp{−Ckw
2}Hj

(√
2Ck +

1

2
w
)

(G.2)

where j ∈ N.

Since the Gaussian kernel is of product form, extending (G.1) and (G.2) to the
M -dimensional case is straightforward:

k(w,w′) = exp
{
− ||w −w′||22

2σ2
k

}
=

M∏
m=1

exp
{
− (wm −w′

m)2

2σ2
k

}
=

M∏
m=1

∞∑
j=1

λjej(wm)ej(w
′
m) by (C.8)

=
∞∑

j1=1

· · ·
∞∑

jM=1

((
λj1 . . . λjM

)(
ej1(w1) . . . ejM (wM )

)(
ej1(w

′
1) . . . ejM (w′

M )
))

1This result was first introduced in [79]. 92



We want to factor the summations above in the form of (C.8), where we let
λ(j1,...,jM ) = λj1 . . . λjM and e(j1,...,jM )(w) = ej1(w1) . . . ejM (wM ). Let us verify that
the resulting eigenbasis, (3.11) and (3.12), is valid.

Since the Cartesian product of countable sets is countable, the eigenbasis for H
can indeed be indexed by the M -tuple (j1, . . . , jM ). Since λ0 ≥ λ1 ≥ · · · > 0
converges to 0, there is a valid ordering of

{
λ(j1,...,jM )

}
j1∈N,...,jM∈N such that the se-

quence is positive and converges to 0. Finally, let us verify that
{
e(j1,...,jM )

}
j1∈N,...,jM∈N

is an orthonormal set. We have:

⟨e(j1,...,jM ), e(j′1,...,j′M )⟩L2(W;µ)

=

∫
W

e(j1,...,jM )(w)e(j′1,...,j′M )(w)dµ

=

∫
W

e(j1,...,jM )(w)e(j′1,...,j′M )(w)(2π)−M/2e−
1
2
w⊤w dw

=

∫
R
· · ·
∫
R

(
e(j1,...,jM )(w)e(j′1,...,j′M )(w)(2π)−M/2e−

1
2
w⊤w

)
dw1 . . .dwM

=

∫
R
. . .
(∫

R
ej1(w1)ej′1(w1)(2π)

−1/2e−
1
2
w2

1dw1

)
. . .dwM

=

∫
R
. . .
(〈

ej1 , ej′1

〉
L2(R,N (0,1))

)
. . .dwM

Since each inner product is 1 iff jm = j′m (and 0 otherwise), the set of nested
integrals is 1 iff (j1, . . . , jM ) = (j′1, . . . , j

′
M ) (and 0 otherwise).
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G.2 PROOF OF LEMMA 3.2.6

This proof is taken from Lemma 3 in [27], except with the modification of the con-
dition on the kernel to be EW∼p[k(W,W)] <∞ instead of EW∼p[

√
k(W,W)] <∞

(and similarly for the expectation over qθ).

Proof. By the Riesz representation theorem (Theorem C.0.1), to show the existence
of µp, it suffices to show that Ep is a bounded linear functional over H. It is clear
that Ep is linear. To show boundedness, it suffices to show that ∃M > 0 s.t. |Ep[f ]| ≤
M ||f || for every f ∈ H. Fix an arbitrary f ∈ H. We have that:

|Ep[f ]| =
∣∣∣ ∫

W
p(w)f(w)dw

∣∣∣
≤
∫
W

p(w)|f(w)|dw

=

∫
W

p(w)|⟨k(w, ·), f⟩|dw

≤
∫
W

p(w) · ||f || · ||k(w, ·)||dw (Cauchy-Schwarz Inequality)

= ||f || ·
∫
W

p(w) ·
√
k(w,w)dw (since ⟨k(·,w), k(·,w′)⟩ = k(w,w′))

= ||f || · EW∼p[
√

k(W,W)]

≤ ||f || ·
√

EW∼p[k(W,W)] (Jensen’s Inequality)

which is sufficient since EW∼p[k(W,W)] is finite. Furthermore, if µp exist, then:

µp(w) = ⟨µp, k(·,w)⟩ = EW∼p[k(w,W)] ∀w ∈ W (G.3)

by the reproducing property of k.
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G.3 PROOF OF LEMMA 3.2.7

Proof. It suffices to show that:

1. supf∈Hr
⟨f, g⟩ = r||g||

2. inff∈Hr⟨f, g⟩ = −r||g||

We will prove it for the supremum, the proof for the infimum is analogous.

(≥)

|⟨f, g⟩| ≤ ||f || · ||g|| ∀f ∈ Hr (Cauchy-Schwarz Inequality)

≤ r||g|| ∀f ∈ Hr

⟨f, g⟩ ≤ r||g|| ∀f ∈ Hr

sup
f∈Hr

⟨f, g⟩ ≤ r||g||

(≤)

r||g||2 = r⟨g, g⟩

= ||g||
〈
g, r

g

||g||

〉
≤ ||g|| · sup

f∈Hr

⟨f, g⟩(
since

∣∣∣∣∣∣r g

||g||

∣∣∣∣∣∣ = r ⇒ r
g

||g||
∈ Hr

)
r||g|| ≤ sup

f∈Hr

⟨f, g⟩
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