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Play it Safe or Take a Risk? Computational Modeling &

Statistical Inference for the Effect of Emotional Valence

on Risk-Taking

Abstract

Decision making is an important part of life. In the past 50 years, there has
been a steady rise in the number and percentage of decision-making papers
which also investigate the role of emotions. In this thesis, we are interested
in whether the pleasantness of an emotion, or emotional valence, affects risk-
taking decisions. This research is important for two main reasons: to better
understand a component of the psychological phenomenon of decision making
and to inform treatments and interventions for disorders which are symptomatic
of altered emotion and decision making (e.g. depression, gambling addiction).

In the literature review, we present comprehensive scientific frameworks for
explaining risk-taking and emotional valence during a risk-taking task. We
also examine three hypotheses about how emotional valence affects gambling:
the mood-maintenance hypothesis, the affect-infusion model, and the reward
processing hypothesis. We also explore hurdles in incorporating these studies
into mathematical models, which motivate our computational modeling and
statistical analysis.

In our risk-taking task and data chapters, we explain why we chose the set
of participants and the experimental setup, and we carefully profile participant
behavior during the risk-taking task, to incorporate into our behavioral models.

In our theoretical developments and exploratory data analysis, we validate
our data, we select covariates, we construct models of risk-taking which are
scientifically informed and which demonstrate promise to learn three scientific
hypotheses about how emotional valence affects risk-taking (mood-maintenance
hypothesis, affect infusion model, reward processing hypothesis), and we test
the stability of our models across regularization and resampling.

In our hypothesis test chapter, we build a scientifically informed statistical
hypothesis test to begin to answer: does emotional valence affect risk-taking?
This hypothesis test relies on conditional randomizations to generate empirical
null distributions which boosts power relative to using estimated null distribu-
tions. This hypothesis test has advantages of comprehensively accounting for
covariates which might affect risk-taking and integrating scientific hypotheses
(the mood-maintenance hypothesis, the affect-infusion model, and the reward
processing hypothesis) about how emotional valence affects risk-taking. One
disadvantage of our hypothesis test is its large computational cost.

Finally, in our conclusion, we propose future computational, statistical, and
psychological work to answer our research question, with respect to solving
prevailing challenges about computational cost, statistical power, bidirectional
relationships, going beyond psychological tasks and towards real-world utility,
and modeling the effects of additional components of emotion beyond valence.
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Chapter 1

Introduction

Decision making is an important part of life. Some researchers study decision
making by examining gambling, or the process of deciding among choices with
quantifiable rewards that involve risk. Broadly, we can examine whether people
play it safe by choosing an option with minimal risk or if people take a gamble
by choosing an option with higher risk.

In the past 50 years, there has been a steady rise in the number and per-
centage of decision-making papers which also investigate the role of emotions.
Studies have revealed how emotions have surprising and important effects on
decision making [1]. In this paper, we will specifically focus on the valence
component of emotion. Valence is a measurement of the pleasantness of the
subjective feeling state of an emotion. Valence fails to capture the arousal di-
mension of the subjective feeling state of emotions. For example, excited and
calm are two vastly different emotions because excited is a high arousal emotion
and calm is a low arousal emotion; yet, valence classifies them as the same be-
cause both are pleasant. Additionally emotional valence fails to capture other
complexities of emotion such as physiological response, expressions, or cognitive
appraisals. While valence is a crude summary of emotion, it is still popular,
useful, and powerful for investigations of decision making and emotion [1].

In this thesis, we are interested in whether emotional valence affects risk-
taking. Scientific literature has a lot to say about the possible effects of emo-
tional valence on risk-taking. In this literature review and for the rest of this
thesis, we will examine three possible effects of emotional valence on risk-taking.
In the following chapter, we will present a summary of these three possible ef-
fects and propose a multidisciplinary approach to deciding whether emotional
valence affects risk-taking.

We shall start with a comprehensive look at literature about emotional va-
lence and literature about risk-taking, both of which will be crucial for our later
experimental design and data analysis.
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1.1 Scientific Framework for Emotional Valence
Emotional valence is just one small component of emotions. Emotions have been
defined as coordinated responses to eliciting events that manifests on multiple
levels [2] [3], including “affect (subjective experiences of valence and arousal),
physiology (arousal and stress responses via the peripheral nervous system),
expression (facial, verbal, or action tendency), and in appraisals (cognitive eval-
uations of significance to self).” While it is only one component of the broader
set of responses associated with emotion, emotional valence is a crude but pow-
erful estimate of emotions such that most literature about emotions and decision
making have implicitly or explicitly taken a valence-based approach [1]. This
thesis focuses on emotional valence, but in the conclusions, we discuss more
comprehensively measuring emotions.

Before attempting to determine whether emotional valence affects risk-taking,
we should first review what is known about the causes of emotional valence.
Many variables contribute to variation in emotional valence which may also
have indirect effects on risk-taking. Without considering what affects emo-
tional valence, we risk misattributing indirect effects on risk-taking from other
covariates to emotional valence. Instead, by exploring scientific literature for
variables that contribute to variation in emotional valence, we can condition on
these variables to account for their indirect effects on risk-taking and to isolate
the variation in emotional valence that contributes to variation in risk-taking.

Average emotional valence levels can depend on many covariates which our
thesis aims to beging to control for: age [4], gender [5], depression status. More-
over, one core symptom of depression is anhedonia, which is the loss of interest
in pleasurable activities or reduced ability to experience pleasure [6], which in-
cludes a lower average emotional valence for participants with depression. No-
tably, our hope is to understand whether emotional valence affects risk-taking
within a framework that is general enough to include both healthy controls and
patients with depression, so we consider both in this thesis. Considering both
healthy controls and patients with depression is consistent with how there is
very little evidence that depression is a true category. Instead, in this thesis,
we consider depression diagnosis and depression severity as an indication of risk
of symptoms associated with depression instead of a category. In this thesis,
we begin to control for some effects of age, gender, and depression severity on
emotional valence, helping us isolate whether emotional valence itself affects
gambling.

Changes in emotional valence can depend on many things which can con-
found the relationship between emotional valence and risk-taking. In this thesis,
we focus on changes to emotional valence in response to rewards. We first define
some notation. In the midst of a gambling task, if someone decides to gamble at
time t, they have an expectation of what rewards the gamble will return (Et),
then at time t+1, once the reward is given (Rt+1), we can define the prediction
error as

PEt+1 = Rt+1 � Et

2



the difference between an expected and received value. In this way, a larger-
than-expected reward will yield a positive PE, a smaller-than-expected reward
will yield a negative PE, and a fully expected reward will yield a PE = 0.
Prediction error is thought to be biologically meaningful because it has been
shown to be encoded by dopamine neurons in animals [7] [8] and humans [9]. [10]
showed that momentary emotional valence during a rewards task is informed
less so by the task earnings, R and more so by “the cumulative influence of
recent reward expectations E and prediction errors PE resulting from those
expectations.” In this thesis, we will begin to control for the effects on emotional
valence of expected rewards E, actual rewards R, reward prediction error PE,
and baseline emotional valence (the intercept) in an effort to isolate whether
emotional valence affects gambling.

In this thesis, we will integrate this scientific information about emotional
valence into a mathematical model of emotional valence to ultimately try to
uncover whether emotional valence affects risk-taking.

1.2 Scientific Framework for Risk-Taking
Risk-taking is a broad subject and in this thesis we will focus on lab measure-
ments of risk-taking which are not longitudinal and not ambiguous. That is, we
deem studies outside the scope of this literature review if the decisions being
examined are embedded in and related to ongoing activities in the participant’s
life, because in the lab, we are measuring decisions that are not connected to
the participants ongoing activities. Ideally speaking, in the lab, information is
not ambiguous, as possible rewards are explicitly quantified. Preferences are
not ambiguous because they are aligned so that choices that yield more reward
are more preferred. While this is limiting, it is still informative to examine
this subset of risk-taking, and we will discuss broadening our perspective in the
conclusions.

Crucially, the relationship between emotional valence and risk-taking does
not exist in a vacuum, such that altering other confounding variables can dis-
solve, strengthen, or even reverse the relationship. On the other hand, a lack of
consideration of many potential covariates of risk-taking can yield a misrepre-
sentation of an effect.

As a result, we rely on existing scientific literature about risk-taking to
inform us about covariates that contribute to variation in risk-taking. By un-
derstanding how these covariates contribute to variation in risk-taking, we can
control for these effects and better isolate the effect of emotional valence.

Some covariates that alter risk-taking concern the risk-taker’s characteris-
tics. For example, males take more risks than females [11]. Risk-taking has
been shown to decrease with age [12]. Altered risk-taking is a symptom of
many disorders (e.g. alcoholism, drug addiction, depression). In this thesis, we
focus on not only healthy controls but also subjects that have been diagnosed
with depression. While one of the core symptoms of depression is altered emo-
tional valence, another area of concern for patients with depression is altered
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risk-taking behavior. For example, stress can impair dopamine systems, which
in turn might increase probability of developing depression as well as increase
risk-taking behavior as a means to compensate [13]. This is just one example
of how a third variable (stress) can increase both risk-taking behavior and de-
pression risk. Moreover, dopamine depletion, which is a biological marker of
depression, has been shown to significantly decrease risk-taking in a gambling
task [14], indicating that depression can also cause a reduction in risk-taking
behavior. Also, for children of parents who have depression, low risk-taking
during a gambling task was predictive of depressive symptoms [15], indicating
that risk-taking behavior is linked to depression. In this thesis, we will build
frameworks which integrate information about how age, gender, and depres-
sion severity all explain variation in risk-taking, so that our analysis can better
isolate the variation in risk-taking that is explained by emotional valence.

Variables that change throughout a risk-taking task can explain variation in
risk-taking. For example, the size and likelihood of rewards for the choice to
take a risk and for the choice to play it safe will both affect the decision to take
a risk. How much people value incremental extra rewards (marginal utility)
can affect the decision to take a risk [16]. Also, the outcomes of past trials
can affect the decision to take a risk. In an effort to control for confounders
of the relationship between emotional valence and risk-taking, we fold all these
variables that potentially affect risk-taking into our models of risk-taking.

Now that we have examined many of the confounders for whether emotional
valence affects risk-taking, we can focus on emotional valence itself. In order to
begin answering our question on whether emotional valence affects risk-taking,
we need to start investigating possible mechanisms for the effect. We draw from
three hypotheses about how emotional valence affects risk-taking: the mood-
maintenance hypothesis, the affect-infusion model, and the reward processing
hypothesis.

1.2.1 Mood-Maintenance Hypothesis
The mood-maintenance hypothesis begins to explain how positive emotional va-
lence decreases risk-taking. Under the mood-maintenance hypothesis, relative to
people in a neutral affective state, people with more positive emotional valence
are less likely to take risks because they are more motivated to maintain their
feelings [17]. Conversely, according to the affect regulation hypothesis, people
experiencing negative emotional valence are motivated to regulate towards more
positive affect, thus taking risks to try to obtain a positive outcome [17]. The
mood-maintenance hypothesis can explain how more positive emotional valence
decreases risk-taking. In this thesis, we propose a way to test for a version of
this hypothesis.

1.2.2 Affect-Infusion Model
The affect-infusion model posits how positive emotional valence is correlated
with increased risk-taking. [18] suggests that the affect-infusion model can ex-
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plain increased risk-taking. The affect-infusion model generally posits that as
situations become more complicated and unexpected, emotional valence be-
comes more influential in how someone processing information. The affect-
infusion model assumes that while people are making decisions, they have dif-
ferent perceptions of potential outcomes and they use different information-
processing strategies between outcomes. [18] suggests that people experiencing
positive affect (high emotional valence) rely more on positive cues via heuristic
processing and also perceive outcomes of risky options as desirable and thus
make more risky decisions. On the other hand, people experiencing negative
affect (low emotional valence) may have more cautious and systematic ways of
processing information that involves negatively evaluating options and which
yields more conservative decisions. The affect-infusion model can be extended
to explain how positive emotional valence is correlated to increased risk-taking.
In this thesis, we propose a test for a version of this hypothesis.

1.2.3 Reward Processing Hypothesis
The reward processing hypothesis explains how increasing emotional valence is
linked with either less or more risk-taking, depending on what decision also
occurred alongside increasing emotional valence. Reward processing refers to
anticipation and consumption of reward stimuli. From an evolutionary stand-
point, the reward processing system helps humans learn behaviors to maximize
contact with beneficial stimuli and minimize contact with harmful stimuli, in-
creasing the likelihood of survival and reproduction [19]. Changes in emotional
valence are potentially a metric of beneficial or harmful contact. Thus, changes
in emotional valence can moderate the relationship between past choices and
present choices. If a participant notices that the choice to gamble has previously
been accompanied by an increase in emotional valence, the participant’s reward
processing system might activate and assign gambling as a beneficial stimuli.
One behavioral outcome may be that the participant gambles more in the future.
Alternatively, if a participant notices that the choice to gamble is accompanied
by a decrease in emotional valence, the participant’s reward processing system
may work to assign gambling as a harmful stimuli. One behavioral outcome may
be that the participant gambles less in the future. In this thesis, we propose a
test for a version of this hypothesis.

1.2.4 Hurdles in Synthesizing Literature
There are some key limitations that prevent us from drawing unified conclusions
about the relationship between emotional valence and risk-taking from available
literature: 1) models lack task specificity; and 2) mathematical models are too
rigid.

One barrier to synthesizing these scientific hypotheses is how the relationship
found in studies can heavily depend on the specific gambling task. For example,
two papers which make claims about the same relationship can use drastically
different gambling tasks. [18] used a horse betting task that had 2 rounds,
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no feedback about rewards until the end, and explicit ratings of risk, while
[20] used an acey-ducey game with 120 rounds, continual feedback after every
round, and implicit ratings of risk depending on the participant’s own mental
calculations. Understandably, the two papers came to different conclusions.
[18] reported a quadratic relationship between valence and gambling, while [20]
reported a positive relationship between valence and gambling. Concretely, in
this thesis, we can move towards a more consistent understanding on whether
emotional valence affects risk-taking by both examining the relevant details of
the task and abstracting away those details in favor of more general trends. In
this thesis, we carefully examine task dynamics and integrate information into
mathematical models, to begin to control for the effect of task dynamics on the
relationship between emotional valence annd risk-taking.

Also, the lack of consideration of the complexity of a task is another potential
hurdle to synthesizing these hypotheses on emotional valence and risk-taking.
The complexity of the task changes the effect of emotional valence on risk-
taking. Indeed, risk-taking can be interpreted as a competition between affective
processes and deliberate cognitive-control processes [21], so to be comprehensive
scientists, we need to try to control for cognitive processes in our experiments
to be able to make claims about whether emotional valence affects risk-taking.
In this thesis, we focus on a simple task and do not claim any generalizations
at higher levels of task complexity. Future studies should examine tasks with
different levels of complexity.

Also, some studies of these scientific hypotheses assume unidirectional re-
lationships between emotional valence and risk-taking [20] [22] which can be
a source of inconsistency between studies. Under this assumption, the mood-
maintenance hypothesis and affect-infusion model directly contradict one an-
other because the mood-maintenance hypothesis predicts higher emotional va-
lence will cause less risk-taking behavior and the affect-infusion model less risk-
taking.

Alternatively, in this thesis, we allow for more flexible effects. [18] already
started to consider the possibility that the effect may be bidirectional. Par-
ticipants were asked to place two bets, one for each horse race. In each race,
there were 2 low-risk horses, 2 medium-risk horses, and 2 high-risk horses. The
participants get higher payoffs for selecting more risky horses. They observed
that participants with negative affect will take fewer risks, which is consistent
with the affect infusion model. They also observed that participants with posi-
tive affect will take fewer risks, which is consistent with the mood-maintenance
hypothesis. More broadly, [18] provides evidence that this investigation of how
emotional valence influences gambling could benefit from incorporating different
types of effects beyond unidirectional effects. In this thesis, we want to detect
flexible effects which capture all three hypotheses about how emotional valence
affects risk-taking (the mood-maintenance hypothesis, the affect infusion model,
the reward processing hypothesis), so we consider unidirectional, bidirectional,
and moderator effects.
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1.3 Computer Science and Statistics to Synthe-
size Literature

In this thesis, we balance real-world utility with statistical power while analyzing
computational cost.

One method to test whether emotional valence informs risk-taking is to de-
sign a simple, highly-controlled experiment that would give us the most statis-
tical power, but with limited real-world application. We could use data from
an experiment where only emotional valence and risk-taking behavior are al-
lowed to change while all other covariates that inform emotional valence or risk-
taking are held constant. Using a simple experiment would enable us to make
strong claims about whether emotional valence informs risk-taking. However,
this approach is not without limitations. Such an analysis is more vulnerable
to unknown confounders. Moreover, our knowledge of what covariates affect
emotional valence and risk-taking is not without gaps, and, if we miss any con-
founders which contribute to the variation of emotional valence and risk-taking,
then we could misattribute the effect to the relationship between emotional va-
lence and risk-taking. Also, our experiment may not generalize to more real
world situations, where much less is held constant. Another limitation is that
it may not be practically feasible to implement such an experiment.

An alternative method to test whether emotional valence informs risk-taking
involves a first step of using a more complex experiment, supplemented with
computer science and statistics, in order to be able to make strong claims while
considering applicability to the real-world. For the first step, we can use data
from an experiment where many variables are randomized and we rely on ex-
isting scientific literature, computer science, and statistics to help us begin to
control for these variables. By randomizing some variables, we distribute the
effect of some confounders and are less vulnerable to confounders. Additionally,
our experiment is more likely to generalize to real world situations where nu-
merous variables are uncontrolled. Beyond the findings of this first step, we can
attempt to strengthen our conclusions in follow-up experiments.

In this thesis, we take the second approach to balance statistical power with
real-world utility. Specifically, we examine data from an experiment with ran-
domization. We find ways to consider many potential covariates of emotional
valence and risk-taking, we consider flexible effects of covariates, and we take
into account task-specific dynamics - all of which can otherwise be important
barriers to determining whether emotional valence affects risk-taking.

We develop statistical machinery to tackle our research question. That is,
we formalize many scientific ideas about emotional valence and risk-taking via
mathematical models. We set up models for our target variables which are
computationally inexpensive, informed by science, flexible, and have desirable
theoretical properties. We begin to answer our research question with respect
to an inferential framework of a Markov Blanket and conditional randomization
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testing which empowers us to detect many scientifically informed relationships
between emotional valence and risk-taking in a way that is neat, statistically
powerful, and which does not require as many assumptions as in other simi-
lar approaches. By taking a multidisciplinary approach that combines domain
knowledge with computational and statistical tools, we hope in this thesis to cre-
ate a solid scientific foundation for investigating the effect of emotional valence
on risk-taking behavior.
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Chapter 2

Thesis Goal

Our thesis goal is to build a scientifically informed hypothesis test to answer
the question on whether emotional valence informs risk-taking. First, we will
explain why we selected the set of participants and the experimental setup, then
we will carefully examine participants’ behavior during the experiment. Then,
we will validate our data, we will select covariates, we will construct models
of risk-taking which are scientifically informed and which demonstrate promise
to learn three scientific hypotheses about how emotional valence affects risk-
taking (mood-maintenance hypothesis, affect infusion model, reward processing
hypothesis), and we will examine the stability of models. Also, we will rely
on scientific literature and models to build a conditional randomization test
for deciding whether emotional valence affects risk-taking. We will examine
advantages and disadvantages of the conditional randomization test. Finally,
we will present future directions to answer our research question with respect
to computer science, statistics, and psychology.

9



Chapter 3

Risk-Taking Task

With access to some datasets from collaborators at the National Institutes of
Health (NIH), we endeavored to select a dataset in which the experimental
setup and the set of participants would be appropriate for helping us understand
whether emotional-valence affects risk-taking. In this thesis, we rely on a simple
and data rich task performed by a cohort of healthy controls and patients with
depression. In the conclusion, we will examine next steps for going beyond the
experiment chosen for this thesis.

3.1 Source of Data
This thesis is in collaboration with the Mood Brain and Development Unit
and the Machine Learning Team at the National Institute of Mental Health.
Among the many data sources of the two groups, we selected two data sources
for this thesis, one sample of adolescents (age: 13 - 18) and one sample of
college students (age: 19 - 25). All data were from experiments conducted
after approval by the NIH Institutional Review Board. Data was shared while
following HIPAA guidelines.

All subjects performed the same task, except the adolescents completed the
task in an MRI scanner while the college students completed the task while
sitting at a computer. All participants were compensated for their time and
received additional compensation proportional to the number of points they
earned during the gambling task. After this thesis is due, we will conduct the
hypothesis test for whether emotional valence affects risk-taking by using data
from a third set of participants who completed the gambling task on Amazon’s
Mechanical Turk.

3.2 Participants
We had a total of 38 participants across the two data sets, as summarized in
Table 3.1.
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Table 3.1: Participants had the following subject characteristics.

Category Total Train Test
College Student Female Healthy 7 4 3
College Student Female Depressed 2 1 1
College Student Male Healthy 6 3 3
College Student Male Depressed 3 1 2

Adolescent Female Healthy 4 2 2
Adolescent Female Depressed 13 7 6
Adolescent Male Healthy 2 1 1
Adolescent Male Depressed 1 1 0

Totals: 38 20 18

For the adolescents, we had direct access to a depression diagnosis. We
also had access to results from a Snaith-Hamilton pleasure scale modified for
clinician administration (SHAPS-C [23]) test, with a support of 14-56. This
score is a measurement of anhedonia, which is a dampened ability to experience
pleasure. A higher SHAPS-C score corresponds to more severe anhedonia and
less ability to experience pleasure. Anhedonia is a core symptom of depression
and is relevant to emotional valence, or the pleasantness of an emotion. The
SHAPS-C score only captures the anhedonia symptom of depression so it is
not a perfect indicator of depression, such that SHAPS-C score and depression
diagnosis have a correlation of r=0.1991. Despite their small correlation, for
this study, SHAPS-C is still informative and we use the SHAPS-C score as
an approximate measure of depression severity, a covariate we later use for
emotional valence and for risk-taking. We use a threshold at 24 so that any score
at or above the threshold approximately corresponds to a depression diagnosis.

For the college students, we had no access to a depression diagnosis; however,
we did have access to a depression severity score, measured with Beck Depression
Inventory (BDI [24]) with a support of 0-21, with a threshold at 8 so that
any score at or above the threshold approximately qualifies for a depression
diagnosis. We used the depression severity score to impute depression diagnosis.

For both datasets, we normalized depression severity on a scale of 0 to 1, with
the threshold value at 0.5 so that measurement was comparable between groups.
One limitation of this data and this thesis is that we merged two different
psychological test scores into one covariate, which is a useful approximation of
depression severity but certainly can be improved. For example, future studies
can have all participants take the same psychological test.

For the rest of our thesis, we aimed for a 50-50 split of hierarchically sampled
participants (Table 3.1), so that the train set and the test set are similar in the
number of participants who satisfy any combination of (college vs. adolescent)
⇥ (female vs. male) ⇥ (depressed vs. healthy). Then, the training set would be
used for exploratory data analysis and the test set would be used for our even-
tually preregistered analysis. Also, to conduct the hypothesis test for whether
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emotional valence affects risk-taking, the test dataset would be supplemented
by another set of participants, who are crucially not used in the exploratory
data analysis.

3.3 Gambling Task
All the participants performed the same probabilistic reward task (Figure 3.1),
with 90 trials of decision making over the course of approximately 12 minutes. In
each decision, participants can choose to play it safe and win a certain number
of points or to take a risk and earn a reward that is one of two options. If
the participant chose to gamble, the participant was not explicitly told the
probability of earning the higher reward, but the experiment was designed to
grant the higher reward with 50% chance. In this way, the two choices (not-
gamble or gamble) were designed to have similar expected reward. The reward
amounts of each trial were generated independently.

To also measure emotional valence, participants were asked every 2-3 trials
to rate "How happy do you feel right now?" on a sliding scale from "unhappy"
to "happy" (totalling to 37 self-reports throughout 90 trials).

Figure 3.1: The gambling task presents a participant with 90 gambling decisions and 37 asks
of emotional valence, interspersed every 2-3 gambling decisions. For each gambling decision,
the participant is given the choice between receiving a fixed point value (left side) or gambling
and receiving either of two higher and lower values (right side) with an unknown probability
of receiving either reward. The participant is given 3 seconds to make a decision and if the
participant does not decide, the gamble is chosen by default. Then, the participant is shown
the actual reward of the decision, which concludes the gambling trial. To measure emotional
valence, participants were asked to rate "How happy do you feel at this moment?" on a
sliding scale centered in between unhappy and happy. From start to end, the game lasted
approximately 12 minutes.

Characteristics of this gambling task make it well-suited for beginning to
answer our research question with high statistical power. The task is meant
to "elicit rapid changes in affective state [10]" which will be helpful in inducing
variance in emotional valence, which will increase our signal-to-noise ratio in the
emotional valence measurement in our data. Then, with a higher signal-to-noise
ratio, we would have more statistical power to fit accurate predictive models,
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discover true effects, and test statistical hypotheses related to our research ques-
tion.

Unlike other gambling games, where there exist provably superior strategies
that would yield larger rewards on average than random decision-making, in
this task, there are no objectively better or worse strategies because all choices
(gamble or not-gamble) in all trials are equally rewarding on average. Moreover,
on average, the strategy of choosing to gamble every trial yields equal rewards
as the strategy of choosing not-to-gamble every trial, or, indeed, any mixture of
gambling and not gambling.

This is important because in games where there exist objectively better
or worse strategies, the participants’ level of strategic thinking becomes a con-
founding factor to their choice to gamble or not. Moreover, risk-taking literature
suggests that the complexity and cognitive demand of a task affects if and how
emotional valence affects risk-taking [21], so participants who are more or less
adept at playing may have their risk-taking behavior differentially affected by
changes in mood due to the effect of playing skill on cognitive demand and task
complexity.

On the other hand, in our task where success is purely based on luck rather
than skill, we eliminate the effect of skill on risk-taking behavior. Therefore we
avoid the difficulty of modeling this confounder or its downstream effects on the
relationship between emotional valence and risk-taking.

One limitation of this gambling task is the possibility that participants will
demonstrate behavior that doesn’t reflect risk preferences. Participants might
make choices based on preferences unrelated to risk. For example, a participant
might make any choices in an effort to earn compensation while spending as
little effort as possible. One feature of our task that might boost the incentive
to make risk-driven decisions is that we compensate participants for their time
and proportional to how many points a participant earns during the task, so
if a participant cares about larger compensation, then a participant will try to
earn more points and be less likely to make random decisions. This is despite
the fact that there are objectively no such compensation-maximizing strategies–
participants may be unaware of this fact and still attempt to make decisions in
order to maximize reward.

Finally, the simplicity of each trial also means we can ask participants to
repeat many trials without getting fatigued. The additional trials will be helpful
to build statistical models with less uncertainty.
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Chapter 4

Participants’ Behavior During
Gambling Task

We profiled the behavior of participants during the gambling task. The goal of
this chapter is to examine emotional valence, risk-taking, and all our covariates
of interest (all variables summarized in Figure 4.1), to set up the next parts
of this thesis, the exploratory data analysis and the hypothesis test, in which
we construct models to comprehensively connect these variables and begin to
answer our question on whether emotional valence affects risk-taking.

This section is crucial because neglecting the complexity of a task and fail-
ing to integrate task-specific information into modeling can be a barrier for
combining results from prior risk-taking literature. Thus, in this section, we
play close attention to task-specific dynamics such as the different parameters
of every trial, the outcomes of previous trials, the participant’s individual char-
acteristics’ contribution to how the participant plays the task, the changes in
emotional valence throughout the task, and the various memory effects that
could be at play throughout the task. Overall, this attention to task dynam-
ics will be fruitful for creating a model that combines existing literature about
emotional valence and risk-taking.
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Figure 4.1: The full set of variables we considered in this thesis. Blue boxes indicate
explicitly measured variables. Yellow boxed indicate implicit variables that are relevant to
summarizing the task or summarizing the results of past trials, which probably influence the
present trial. Variables with a solid line do not change from trial to trial. Variables with a
dashed line change throughout the task. Our response variable is the choice to gamble or not
(’gambling’). The black lines between variables indicate mathematical relationships between
variables. The numbered mathematical equations are explicitly written on the next page.
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Equations for Variables. E-Valence abbreviates Emotional Valence

1 College =

(
0 if Age < 18

1 if Age � 18

2 Depression Diagnosis =

8
>>><

>>>:

0 if College = 1, Depression Severity < 0.5

if College = 0, Doctor Diagnosed without Depression
1 if College = 1, Depression Severity � 0.5

if College = 0, Doctor Diagnosed with Depression

3 Past Changes in E-Valence (Primacy)t =
Pt�1

i=0 �
iRecent E-ValenceiPt�1

i=0 �
i

, � = 0.5

4 Past Changes in E-Valence (Recency)t =
Pt�1

i=0 �
t�i�1Recent E-ValenceiPt�1

i=0 �
t�i�1

, � = 0.5

5 Past Changes in E-Valence (No Memory Change)t =
Pt�1

i=0 �
t�i�1Recent E-ValenceiPt�1

i=0 �
t�i�1

, � = 1.0

6 Past Reward (Primacy)t =
Pt�1

i=0 �
i RewardiPt�1
i=0 �

i
, � = 0.5

7 Past Reward (Recency)t =
Pt�1

i=0 �
t�i�1RewardiPt�1
i=0 �

t�i�1
, � = 0.5

8 Past Reward (No Memory Change)t =
Pt�1

i=0 �
t�i�1RewardiPt�1
i=0 �

t�i�1
, � = 1.0

9 , 10 , 11 Reward Prediction Errort =

(
Rewardt � Higher Amount

t

+Lower Amount
t

2 if chose to gamble
0 otherwise

9 Past RPE (Primacy)t =
Pt�1

i=0 �
iRPEiPt�1

i=0 �
i

, � = 0.5

10 Past RPE (Recency)t =
Pt�1

i=0 �
t�i�1RPEiPt�1

i=0 �
t�i�1

, � = 0.5

11 Past RPE (No Memory Change)t =
Pt�1

i=0 �
t�i�1RPEiPt�1

i=0 �
t�i�1

, � = 1.0

12 Current Expected Rewardt =
Certain Amountt +Higher Amountt + Lower Amountt

3

13 Gambling Ranget = Higher Amountt � Lower Amountt

14 , 15 , 16 Gamblet =

(
1 if chose to gamble
0 if chose not-to-gamble

14 Past Gamble (Primacy)t =
t�1X

i=0

�iSign(Gamble)i, � = 0.5

15 Past Gamble (Recency)t =
t�1X

i=0

�t�i�1Sign(Gamble)i, � = 0.5

16 Past Gamble (No Memory Change)t =
t�1X

i=0

�t�i�1Sign(Gamble)i, � = 1.0
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4.1 Target Variables
We are interested in whether emotional valence affects risk-taking. For both
variables, we examine how they change within participants (throughout the
task) and between participants. Participants demonstrate high variation in
emotional valence and in risk-taking, which is a promising sign that our data has
a nonzero signal-to-noise ratio and thus that we have nonzero statistical power.
We also plot the two variables against each other to examine the unconditional
relationship.

4.1.1 Emotional Valence
Emotional valence was measured 37 times for each person throughout the 90
trial gambling task, based on self-reports to the question "How happy are you
at this moment" on a sliding scale from "unhappy" to "happy," scaled onto
0 to 1 respectively. To leverage the data throughout the task, we wanted to
impute emotional valence even when it wasn’t explicitly asked for. Since every
participant had a self-report by the 4th trial, we imputed emotional valence
with the most recent self-report then we threw out the first 3 trials for the rest
of our data analysis.

Participants’ large shifts in emotional valence increases the chance that this
experiment has a nonzero signal-to-noise ratio and the gambling task indeed
induced changes in emotional valence. Within each subject, emotional valence
changed dramatically throughout the task (Figure 4.2), so that participants
spanned an average of 34% of the emotional valence scale. Still, one participant
had a steady emotional valence that didn’t span more than 8% of the emotional
valence scale while the largest span was 88% of the emotional valence scale.

Across participants, the average emotional valence was neutral valence, 0.54.
One participant was close to happy on average, with the highest average of 0.89.
Another participant was close to unhappy on average, with the lowest average
of 0.26 (Figure 4.3). The variation is an indication that our task and sample are
valid because in a random sample of healthy and depressed participants playing
a probabilistic game, we would expect some participants to be close to unhappy
on average and some participants to be close to happy on average.

4.1.2 Risk-Taking
Risk-taking was measured 90 times and coded with a 1 to indicate someone took
a risk to gamble and a 0 to indicate someone played it safe and choose not to
gamble. To accommodate imputed emotional valence, we focused on the last 87
trials of the task. Participants’ choice to gamble or not changed often over time
(Figure 4.4).

The global mean of gambling across all 87 trials of all 20 participants in the
training set was 0.55, which indicates that participants gambled slightly more
than not. This could be an artefact of the task automatically choosing to gamble
if the participant does not make a decision within 3 seconds.
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Figure 4.2: For all 20 participants in the train set, the plots show the 87 emotional va-
lence ratings (line plot), and the average emotional valence (horizontal line) throughout the
gambling task. For most subjects, emotional valence had large changes throughout the task.

Figure 4.3: For each subject, we averaged their self-reported and imputed emotional valence
scores across the last 87 trials.

Having a large variation in gambling makes it plausible that our experi-
ment has a large signal-to-noise ratio. There were no subjects who gambled
exclusively, nor were there subjects who never gambled. (Figure 4.5). Across
subjects, the smallest gambling rate was 26% and the highest 70%.

4.1.3 Risk-Taking Based on Emotional Valence
To get an initial picture of the association between risk-taking rate based on self-
reported emotional valence (without controlling for covariates), we examined
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Figure 4.4: People often changed between gambling and not gambling (blue dots). The
average rate of gambling (horizontal line) also varied between participants.

Figure 4.5: Participant’s gambling rate varied from 26 % to 70 %, with an average gambling
rate of 55 %.

small ranges of emotional valence and all the risk-taking decisions made at any
trial by any participant with an emotional valence in that range. We noticed that
for each range, there were roughly as many decisions to gamble as decisions to
not gamble (Figure 4.6). This indicates no obvious trends about the relationship
between emotional valence and risk-taking.

Regardless of the lack of obvious unconditional association between our tar-
get variables, we are still motivated to examine other covariates of risk-taking
which could potentially reveal a conditional relationship between emotional va-
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(a) Histogram (b) Conditional Density Plot

Figure 4.6: Risk-Taking based on self-reported emotional valence for all 87 trials for all
subjects showed no obvious trends.

lence and risk-taking. We divide these covariates into two groups: explicit and
implicit covariates of risk-taking as elucidated by scientific literature. We an-
alyze the dynamics of these two groups of variables separately, and delve into
constructing a bigger picture of connecting the covariates and the target vari-
ables in the exploratory data analysis and the hypothesis test.

4.2 Other Explicit Covariates of Risk-Taking
We know many variables affect risk-taking. In this section, we examine some
of the scientifically relevant covariates that we explicitly measured (shown in
blue in Figure 4.1). Understanding these covariates will be crucial to isolating
variation in risk-taking due to emotional valence instead of any of these other
influential covariates.

Some covariates of risk-taking stayed constant throughout the task (age,
gender, and depression diagnosis, Figure 4.7). Age ranged from 14 to 28 with
an average age of 18.9. Our sample had 7 males and 13 females. Six of the
participants had depression severity � 0.5 which is indicative of depression.
This is a subset of the 10 participants we considered to have depression, that
is 4 participants had depression severity scores below the threshold but were
separately diagnosed with depression.

Other covariates changed throughout the task (trial parameters: the certain
amount R1 for the not-gamble option, higher amount R2 for the gamble option,
and lower amount R3 for the gamble option, Figure 4.8). The rewards for each
trial ranged from �3, 3. Importantly, from the design of the gambling task
and as seen in Figure 4.8, the decision to gamble has approximately the same
expected value as the decision not-to-gamble, helping scientists observe risk-
taking behavior instead of strategic behavior. That is, the trial parameters were
designed according to the following relationship, R1 ' R2+R3

2 . This means that
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Figure 4.7: Some explicitly measured variables stayed constant throughout the task ac-
cording to the following distributions across the n = 20 participants in the training group.
Depression severity has a threshold so severity � 0.5 (blue vertical line) is considered a de-
pression diagnosis.

we can replace our three variables that summarize the trial, the certain amount
R1, higher amount R2, and lower amount R3 with two other implicit variables
the current expected reward X1 and the gambling range X2 which capture the
same information and thus equally inform risk-taking. This partially motivates
our next section, about implicit variables that contribute to risk-taking.

Figure 4.8: Some explicitly measured variables changed throughout the task. The trial
parameters for the 87 trials of all 20 participants are shown. The certain amount corresponds
to the reward for the not-gamble option, higher amount corresponds to the higher reward for
the gamble option, and lower amount corresponds to the lower reward for the gamble option.
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4.3 Other Implied Covariates of Risk-Taking
While our explicitly measured variables offer a start to accounting for variation
in risk-taking, there is still more to examine. In this section, we explore the
dynamics of implicit variables that inform risk-taking. We examine two implicit
task parameters that completely summarize our three explicit task parameters.
We also examine four implicit variables that summarize the past and are derived
from explicit parameters that describe the outcomes of trials. Understanding
the dynamics of these implicit covariates (shown in yellow in Figure 4.1) is
important because these variables will be crucial in isolating the relationship
between emotional valence and risk-taking.

4.3.1 Current Expected Reward, Gambling Range
The explicit task parameters of the current trial, that is the certain amount
R1 for the not-gamble option, higher amount R2 for the gamble option, and
lower amount R3 for the gamble option can be summarized by two implicit
task parameters, the current expected reward X1 and the gambling range X2

(defined below).
The current expected reward X1 is a measure of the baseline approximate

expected reward of the current trial whether the participant chooses to gamble
or notX1 =

R1+R2+R3
3 . The gambling rangeX2 is a measure of the risk involved

in choosing to gamble, with a wider range X2 = R2 �R3 representing a higher
risk of only earning the lower amount R3 instead of the higher amount R1 or
certain amountR2. Overall, then,

R1 ' X1;

R2 ' X1 +
X2

2

;

R3 ' X1 �
X2

2

.

These two features X1, X2 capture the information from the initial features
R1,R2,R3 while reducing the redundancy, and are pairwise independent (by
design), so that instead of using the explicit task parameters R1,R2,R3, we can
use the implicit task parameters X1, X2 as covariates for risk-taking.

4.3.2 Summaries of the Past
We know that participants likely remember outcomes of past trials and use that
information to make a decision in the present trial. For example, the reward
processing hypothesis suggests that participants might pay attention to past
changes in emotional valence and past choices to gamble or not to determine
which choice (to gamble or not) is beneficial or harmful. Additionally, the past
rewards and past reward prediction errors may give some indication of which
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choice to make. It is important for us to consider all four of these variables in
our model for variation in risk-taking.

However, we didn’t explicitly measure these variables, so we need to come
up with some method to mathematically summarize them. We take inspiration
from scientific literature about memory effects and from past literature that has
tried to represent these implicit variables with exponential sums [10].

When people summarize a sequence of events, there are three common pos-
sibilities of serial position effects [25]: primacy, recency, and equal/ none. The
primacy serial position effect explains that people remember the beginning of
a sequence more than the rest. The recency serial position effect explains that
people remember the end of the sequence, the most recently observed more
than the rest. The equal serial position effect explains that people remember
the contents of a sequence equally well, or that the order of the sequence does
not change the probability of remembering. We will consider all of these serial
position effects in this thesis.

We know there are many ways to summarize the past in this gambling task.
As a slight improvement on previous literature, we will rely on exponential
averages instead of exponential sums as used in previous literature that relied
on the same gambling task [10]. We use exponential averages instead of sums
to reduce the variance of these terms which might otherwise compromise its
usefulness as a predictor of risk-taking or emotional valence. The primacy effect
on a variable corresponds to a decaying weight of more recent terms at � = 0.5.
The recency effect on a variable corresponds to an increasing weight of more
recent terms at � = 0.5. The equal effect corresponds to no change in the
weight of terms at � = 1. For example, we can derive three versions of a
summary for past changes in emotional valence, corresponding to the three
scientific representations of memory:

• Primacy Effect:

Past Changes in Emotional Valence (Primacy)t

=

Pt�1
i=0 �

iRecent Emotional ValenceiPt�1
i=0 �

i
, � = 0.5

• Recency Effect:

Past Changes in Emotional Valence (Recency)t

=

Pt�1
i=0 �

t�i�1Recent Emotional ValenceiPt�1
i=0 �

t�i�1
, � = 0.5

• Equal Effect, No Memory Change:

Past Changes in Emotional Valence (No Memory Change)t

=

Pt�1
i=0 �

t�i�1Recent Emotional ValenceiPt�1
i=0 �

t�i�1
, � = 1.0
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We explicitly define all our 4 variables of interest with respect to the 3 serial
position effects in the equations of the Figure 4.1.

In order to test all possible combinations of the serial position effects of
these 4 summaries, it would require us to build 3

4 models. However, to save
computation time while still maintaining comprehensiveness, in the exploratory
data analysis, we narrow down each of the 4 variables into a specific serial
position effect, then we use only this permutation of variables in our hypothesis
test for whether emotional valence affects risk-taking.
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Chapter 5

Theory and Exploratory Data
Analysis

In this chapter, we validate our data, we select covariates, we construct models
of risk-taking which are scientifically informed and which demonstrate promise
to learn three scientific hypotheses about how emotional valence affects risk-
taking (mood-maintenance hypothesis, affect infusion model, reward processing
hypothesis), and we test the stability of our models across regularization and
resampling.

5.1 Is the data invalid?
In this section, we examine two ways our data could be invalid: low signal-to-
noise ratio and inconsistency with scientific literature about emotional valence
and risk-taking. We discover that the signal-to-noise ratio in this data collected
throughout the gambling task is high enough to predict risk-taking better than
by chance and we show that we do not have evidence that our data is inconsistent
with scientifically established null hypotheses about risk-taking and emotional
valence.

First, we want to know if the signal-to-noise ratio is high enough in this
data to predict risk-taking behavior better than chance. If we cannot predict
better than chance, we would not proceed with the analysis and we would look
for a different data set. The baseline model we are trying to beat is the global
mean model which predicts the probability of gambling of every trial of every
participant to be the global mean gambling rate, 0.55. We built 7 increasingly
complex logistic regression models to predict the probability participant i would
gamble at trial t. Models used covariates related to participant characteristics,
the current trial, and the outcomes of past trials (See Appendix B for full
methods).

Five of the models (models 4,5,6,7,8) of risk-taking were more predictive than
chance. Relative to the global mean model, these five models had higher ac-
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curacy, higher AUC, and lower cross-entropy loss in leave-one-subject-out cross
validation (Table 5.1). These models had significantly lower rate of incorrect
classification in leave-one-subject-out cross validation (McNemar Test, p < 0.01,
Table 5.2). These models had significantly higher likelihood of the data (likeli-
hood ratio test, p < 0.01, Table 5.3). Overall, using this data, we can predict
risk-taking better than chance.

Table 5.1: Predictive Modeling Results of Between-Subject Cross-Validation. For
each model, we use leave one out cross validation on n = 20 participants and evaluate pre-
dictions. Better models have higher accuracy, higher area under the receiver operating char-
acteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for
area under receiver operating characteristic curve. Loss indicates cross-entropy loss. Bolds
indicated most desirable value among the models.

Model # Model ACC AUC Loss
1 Global Mean 0.500 0.374 4.0E-04
2 Participant 0.479 0.501 4.0E-04
3 Current Trial 0.668 0.702 3.6E-04
4 Past Trials 0.591 0.622 3.8E-04
5 Current Trial + Past Trials 0.684 0.739 3.4E-04
6 Participant + Current Trial 0.664 0.698 3.6E-04
7 Participant + Past Trials 0.579 0.622 3.8E-04
8 Participant + Current Trial + Past Trials 0.669 0.734 3.5E-04

Table 5.2: McNemar Test To Beat The Baseline. We performed McNemar tests to see
if models significantly out predicted risk-taking relative to the global mean model.

Model Model Name statistic p-value
2 Participant 0.0 1.0
3 Current Trial 267.0 5.8e-15
4 Past Trials 178.0 4.9e-07
5 Current Trial + Past Trials 231.0 2.5e-20
6 Participant + Current Trial 266.0 2.4e-14
7 Participant + Past Trials 192.0 5.9e-05
8 Participant + Current Trial + Past Trials 242.0 1.1e-16

Second, our data did not indicate we should reject scientifically informed
null hypotheses about how participant characteristics inform average emotional
valence (depression) and risk-taking rates (age, gender, depression diagnosis).
Our full methodology is explained in Appendix C.
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Table 5.3: Likelihood Ratio Tests To Beat The Baseline. We performed likelihood
ratio tests for nested models. Model numbers correspond to Table B.2. Dev. stands for
deviance and p stands for p-value.

Model Model Name DF Dev. p
2 Participant 4 1588.5 2.2e-16
3 Current Trial 2 0.624 0.73
4 Past Trials 4 4285.9 2.2e-16
5 Current Trial + Past Trials 6 4288.2 2.2e-16
6 Participant + Current Trial 6 4288.2 2.2e-16
7 Participant + Past Trials 8 4813.8 2.2e-16
8 Participant + Current Trial + Past Trials 10 4816.5 2.2e-16

According to [12], people with depression have lower average emotional va-
lence than healthy controls. Using a t-test in our data set, we successfully fail to
reject this null hypothesis. The null hypothesis is that the difference in average
emotional valence of healthy participants and depressed participants > 0. In our
data, participants with depression were closer to unhappy on average (average
= 0.46; Figure 5.1) than healthy controls (average = 0.63; Figure 5.1) and we
successfully failed to reject the null hypothesis that people with depression have
lower average emotional valence than healthy controls (95% CI of difference
[�1, 0.267], estimated difference = 0.175, t = 3.28, p-value = 0.99).

Figure 5.1: The average emotional valence was centered at 0.54 with range 0.26, 0.89. Par-
ticipants with depression had a lower average emotional valence than healthy participants
(0.46 < 0.63)

According to [12], older people gamble at lower rates. Using a Fisher’s
exact test in our data, we successfully failed to reject this null hypothesis. The
null hypothesis corresponds to the odds ratio of gambling in college students
to gambling in adolescents  1. In our data, older participants gambled less
than younger patients and we successfully failed to reject the null hypothesis
that older participants gambled less than younger participants (college students’
gambling rate = 0.51; adolescents’ gambling rate = 0.59; 95% CI of odds ratio
[0.61, 1], odds ratio estimate = 0.72, p-value =0.9997; Figure 5.2a).
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According to [11], men gamble more than women. Using a Fisher’s exact
test, we successfully failed to reject this null hypothesis. The null hypothesis
corresponded to the odds ratio of gambling in men to gambling in women� 1. In
our data, men gambled at a similar rate as women, and we successfully could not
reject the null hypothesis that men gamble more than women (male gambling
rate = 0.547; female gambling rate = 0.553; 95% CI of odds ratio [0.82, 1],
odds ratio estimate = 0.97, p-value = 0.625; Figure 5.2b).

According to [13] [14] [15], we are unsure of the relationship between depres-
sion and risk-taking. Using a Fisher’s exact test, we successfully fail to reject
this null hypothesis. The null hypothesis corresponds to the odds ratio of gam-
bling in participants with depression to gambling in healthy participants = 1. In
our data, patients with depression gambled at a similar rate as healthy partici-
pants and we successfully could not reject the null hypothesis that participants
with depression and healthy participants gambled at the same rate (depression
gambling rate = 0.552; healthy gambling rate = 0.551; 95% CI of odds ratio
[0.83, 1.22], odds ratio estimate = 1.01, p-value ' 1; Figure 5.2c).

Low signal-to-noise ratio and inconsistency with scientific literature are not
the only ways our data could be invalid. Future studies could examine other
ways our data could be invalid.
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(a) By Age

(b) By Gender (c) By Depression

Figure 5.2: Participant’s gambling rate varied from 26 % to 70 %, with an average gambling
rate of 55 %. Adolescent participants gambled more than college students (college students’
gambling rate = 0.51, adolescents’ gambling rate = 0.59). Females and males gambled at a
similar rate (female gambling rate = 0.547, male gambling rate = 0.553). Participants with
depression and healthy participants gambled at a similar rate (depression gambling rate =
0.552, healthy gambling rate = 0.551).

5.2 What kinds of models should we use to model
risk-taking?

In this section we propose using logistic regression and neural networks to model
risk-taking, to mimic human decision making behavior, to accurately capture
possible scientific relationships, and to perform statistical inference.

Generative models mimic human decision making. Given a choice whether
or not to gamble, one might weigh the advantages and disadvantages of gam-
bling, and if the advantages outweigh the disadvantages, one might proceed to
gamble. Similarly, we can emulate this latent variable of the advantages minus
the disadvantages of gambling as Z, explained by observed covariates ⌘ (e.g. the
participant’s characteristics, the trial parameters, the outcomes of past trials)
and unobserved covariates ✏. Ultimately, we can say if the advantages out weigh
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the disadvantages, i.e. Z > 0, the person decides to gamble Y = 1.
Moreover, we assume that a person i is making a decision Yit at trial t such

that

Yit =

(
1 Zit � 0

0 Zit < 0

and the latent variable Zit is a combination of observed variables ⌘it and unob-
served variables ✏it. We define ⌘it to be the function of observed variables that
affect Zit and ✏it to be a function of unobserved variables that affect Zit so that
Zit = ⌘it + ✏it

We assume the unobserved variables follow a logistic distribution

✏it ⇠ Logistic(µ = 0, s = 1)

E(Zit) = E(⌘it) + E(✏it) = ⌘it

P(Yit = 1) = P(Zit � 0)

= P(⌘it + ✏it � 0)

= P(✏it � �⌘it)

= logit(⌘it)

In this generative scheme, we have created ⌘it as a mirror for the probability
of risk-taking , so that when ⌘it increases, the probability of gambling P(Yit =

1) increases and when ⌘it decreases, the probability of gambling P(Yit = 1)

decreases too. In this way, if we model how the covariates affect ⌘it, we know
the same direction of the relationship is mirrored for how the covariates affect
the probability of gambling P(Yit = 1). For the rest of this thesis, we proceed
to model the log odds of gambling, ⌘it.

For all the generative models, we have two goals,

• To capture accurate relationships: we want to account for all possible
relationships between all covariates X1, ..., Xp and ⌘it

• To perform inference: we want to examine the models for our scientific
hypotheses that mood Xj has a first or second order relationship with ⌘it

We settle on using a logistic regression and a neural network as our models,
both of which have different strengths and weaknesses towards achieving these
two goals.

The first goal is important because we want to isolate the effect of mood
Xj on Yit while controlling for all other covariates X1, ..., Xp. From a scientific
perspective, a lack of control or consideration of other covariates could be an
explanation for the lack of consensus over how emotional valence affects decisions
making Yit. Notably, the neural network is best suited for getting closer to this
goal because the neural network can theoretically learn any relationships among
covariates Xj and ⌘it. The logistic regression is less well-suited for this goal
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because it can only learn linear relationships between X1, ..., Xp and ⌘it. Still,
if we want the logistic regression to learn any nonlinear relationships between
X1, ..., Xp and ⌘it, we can hard-code those nonlinearities and treat them as
additional covariates, so that the logistic regression can also learn nonlinearities.

We also want to perform inference for the second goal, to detect whether
valence Xj affects ⌘it as proposed by three hypotheses (the mood-maintenance
hypothesis, the affect infusion model, the reward processing hypothesis). No-
tably, the logistic regression has an upper hand over the neural network when we
estimate variance of the effects of covariates. That is, we have less uncertainty
with the logistic regression than the neural network. This is for two reasons.
The neural network is sensitive to randomness in the training set, so adding or
dropping a couple points can drastically change the neural network [26] more
than it would change the logistic regression. Also the neural network has an
internal randomness such that the backpropagation solving algorithm critically
depends on the random initialization of starting weights [26]; the logistic regres-
sion has none of this randomness.

We can rely on generative models of risk-taking, specifically logistic regres-
sion models and neural network models. For both these models, we can perform
inference on covariates’ effects on the response and capture flexible and accurate
relationships between the covariate and response. In the next three chapters,
we examine if our models are stable and if our models can learn flexible rela-
tionships.

5.3 Are risk-taking models stable?
We examined if the directions of estimated effects of covariates on risk-taking
stayed the same across regularization levels and across data resamplings. The lo-
gistic regression prediction function demonstrates stability across regularization
levels and some stability across data resamplings. The neural network predic-
tion function was not stable across regularization levels and was stable across
data resamplings at some levels of regularization. This exploratory experiment
(full methods in Appendix D, E) is not statistically rigorous.

5.3.1 Logistic Regression
The logistic regression was stable across regularization levels and had some
stability across data resamplings (for full methods, see Appendix D).

The estimated directions of the effects of covariates on risk-taking are the
same even over a large grid of L1 regularization values. For each covariate,
the estimates of the effect of the covariate on risk-taking ˆ��

j in L1 regularized
logistic regression prediction functions were either all � 0 or all  0 (Figure
5.3). This indicates that our models’ estimated directions of effects were not
sensitive to this range of regularization strengths.
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Figure 5.3: The regularization path of all covariates. The x-axis is a log scale of regularization
strengths, �. The y-axis is the estimated beta weight �̂�

j for each covariate Xj at regularization
strength �. The black line indicates �̂�

j = 0.

For some of the covariates, the estimated direction of the covariate’s effect
on risk-taking stayed the same across 100 resamplings of n

2 = 10 participants.
For each covariate and regularization level, let stability+ be the percentage of
resamplings on which the estimated effect of a covariate on the response was pos-
itive and let stability- be the percentage of resamplings on which the estimated
effect of a covariate on the response was negative. For some of the covariates,
such as expected reward, depression, past gambles, and college, either stability+
or stability- was at 100% until both were at 0% for large enough regularization
� (Figure 5.4), which indicates that for these covariates, the estimated direction
of the effect of the covariates on risk-taking was the same across resamplings of
the data and stayed the same (or the beta weight was estimated to be 0) across
the grid of regularization strengths.

On the other hand, for some covariates, the estimated direction of the covari-
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ate’s effect on risk-taking did change across resamplings. For some covariates,
the stability+ and stability- were lower than 100% and greater than 0% at many
levels of regularization, which indicates that the estimated direction of the effect
of the covariates on risk-taking varied across resamplings of the data (Figure
5.4).

Figure 5.4: The stability+ and stability- path of all covariates. The x-axis is a log scale of
regularization strengths, �. The y-axis is stability+ and stability- for each covariate Xj at
regularization strength �. The black line indicates 50%.

5.3.2 Neural Network
The neural network prediction function was not stable across regularization
levels and was stable across data resamplings at some levels of regularization.
We can examine how the estimated log odds of risk-taking ⌘̂it changes with
respect to each covariate Xj , @⌘̂

it

@X
j

, evaluated at each observation and averaged
(i.e. "the empirical average gradient"), as an estimate of an effect a covariate
on risk-taking (subject to smoothing, see Appendix E for more details).

The neural network prediction function is unstable across regularization lev-
els (for the full explanation of how we fit neural networks, see Appendix E).
Looking across regularization levels �, ✏ corresponding to l1-regularization and
adversarial noise, the sign of the empirical average gradient changes at different
levels of regularization.

The neural network prediction function was stable across data resamplings
at some levels of regularization. At some regularization levels, the sign of the
empirical average gradient remained the same in 4 out of the 5 bootstrap resam-
plings of the n = 20 participants. This is exploratory evidence that the neural
network was stable across data resamplings at some levels of regularization.

Our exploratory data analysis indicate that our logistic regression model is
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sometimes stable and our neural network is unstable. These results suggest we
need to be careful about generalizing our models to other data sets.

5.4 How will models of risk-taking learn scientif-
ically hypothesized relationships?

In our generative models, we can implicitly or explicitly encode unidirectional,
bidirectional, or moderator effects between emotional valence and risk-taking
with Xj , X2

j , Xj ·Xi respectively, which capture the mood-maintenance hypoth-
esis [17], the affect-infusion model [18], and the reward processing hypothesis
[19].

One hurdle in incorporating scientific literature about emotional valence and
risk-taking into a mathematical model is how some studies mathematically test
for only single direction relationships between emotional valence and risk-taking
[20] [22], which can yield contradictions among hypotheses.

Instead, in this thesis, we consider three different scientifically meaningful
mathematical representations of covariates (Xj , X2

j , XjXi) which allow us to
test for these three different hypotheses about the relationship between emo-
tional valence and risk-taking.

5.4.1 Unidirectional Effect Xj

Given our assumptions, a finding that sign(E( @⌘
@X

j

)) = {+,�} for a given co-
variate Xj is evidence in favor of a unidirectional effect between a covariate Xj

and probability risk-taking. Let sign( @⌘
@X

j

) represent how, on average, a change
in the covariate Xj affects the probability of risk-taking P(Yit = 1) = logit(⌘it).
Moreover, if sign(E( @⌘

@X
j

)) is positive, all other covariates held constant, then
a participant or trial with larger covariate Xj has a larger probability of risk-
taking Y . If sign(E( @⌘

@X
j

)) is negative, all other covariates held constant, then
a participant or trial with larger covariate Xj has a smaller probability of risk-
taking Y . Then, a nonzero @⌘

@X
j

indicates a unidirectional effect between the
covariate Xj and log odds of risk-taking P(Yit = 1).

For Xj as the covariate of emotional valence, if our mathematical models
of risk-taking which have nonzero E( @⌘

@X
j

), then our mathematical models have
detected if larger emotional valence either increases risk-taking or decreases
risk-taking . This corresponds to the affect-infusion model [18] or the mood-
maintenance hypothesis [17] respectively.

5.4.2 Bidirectional Effect X2
j

A finding that sign(E( @2⌘
@X2

j

)) = {+,�} for a given covariate Xj is evidence
in favor of a bidirectional effect between a covariate Xj and probability risk-
taking. Let sign(E( @2⌘

@X2
j

)) represent how, on average, a change in the covariate
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Xj affects the relationship between the covariate Xj and the probability of
risk-taking P(Yit = 1) = logit(⌘it). Moreover, if sign(E( @2⌘

@X2
j

)) is positive, all
other covariates held constant, then, if Xj is larger, then the effect of Xj on
the probability of risk-taking P(Yit = 1) = logit(⌘it) is more positive, so while
at smaller Xj , larger Xj will yield a decrease in the probability of risk-taking
P(Yit = 1), one the other hand at a larger Xj , larger Xj will yield a increase
in the probability of risk-taking P(Yit = 1). If sign(E( @2⌘

@X2
j

)) is negative, all
other covariates held constant, then, for larger Xj , then the effect of Xj on
the probability of risk-taking P(Yit = 1) = logit(⌘it) is more more negative, so
while at smaller Xj , an increase in Xj will yield a increase in the probability of
risk-taking P(Yit = 1), one the other hand at a larger Xj , an increase in Xj will
yield a decrease in the probability of risk-taking P(Yit = 1). Thus, a nonzero
@2⌘
@X2

j

indicates a bidirectional effect between the covariate Xj and probability of
risk-taking P(Yit = 1).

For the covariateXj of emotional valence, if our mathematical models of risk-
taking which have nonzero E( @2⌘

@X2
j

), then this is an indication that the relation-
ship between emotional valence and risk-taking has two directions. This corre-
sponds to a synthesis of the affect-infusion model [18] and the mood-maintenance
hypothesis [17], such that higher emotional valence can both increase and de-
crease risk-taking.

5.4.3 Moderator Effect XjXi

A finding that sign(E( @2⌘
@X

j

@X
i

)) = {+,�} for a given covariates Xj , Xi is ev-
idence in favor of a moderator effect between a covariate Xj and probability
risk-taking. Let sign(E( @2⌘

@X
j

@X
i

)) represent how, on average, a change in the
covariate Xj affects the relationship between Xi and the probability of risk-
taking P(Yit = 1) = logit(⌘it). Moreover, if sign(E( @2⌘

@X
j

@X
i

)) is positive, all
other covariates held constant, then for larger Xj , the relationship between
Xi and the probability of risk-taking P(Yit = 1) = logit(⌘it) is more posi-
tive. If sign(E( @2⌘

@X
j

@X
i

)) is negative, all other covariates held constant, then
for larger Xj , the relationship between Xi and the probability of risk-taking
P(Yit = 1) = logit(⌘it) is more negative. Then, a nonzero E( @2⌘

@X
j

@X
i

) indicates
a moderator effect between the covariate Xj and the relationship between the
covariate Xi and probability of risk-taking P(Yit = 1).

For Xj as past changes in emotional valence and Xi as past decisions to
gamble, if sign(E( @2⌘

@X
j

@X
i

)) is positive then our model has detected the reward
processing hypothesis [19]. Moreover,

• Xj > 0, Xi > 0: if past changes in emotional valence Xj is positive
and past decisions to gamble Xi is positive, then this corresponds to the
scenario where the participant has gambled and seen increases in emotional
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valence, so the choice to gamble is a beneficial decision and under the
reward processing hypothesis, the participant’s gambling probability for
the next trial should be higher and indeed our model mirrors that because
Xj · Xi is positive, sign(E( @2⌘

@X
j

@X
i

)) is positive, and this term adds a
positive contribution to the probability of risk-taking Y

• Xj > 0, Xi < 0: if past changes in emotional valence Xj is positive
and past decisions to gamble Xi is negative, then this corresponds to the
scenario where the participant has chosen not-to-gamble and seen increases
in emotional valence, so the choice not-to-gamble is a beneficial decision
and under the reward processing hypothesis, the participant’s gambling
probability for the next trial should be lower and indeed our model mirrors
that because Xj ·Xi is negative, sign(E( @2⌘

@X
j

@X
i

)) is positive, and this term
adds a negative contribution to the probability of risk-taking Y

• Xj < 0, Xi > 0: if past changes in emotional valence Xj is negative and
past decisions to gamble Xi is positive, then this corresponds to the sce-
nario where the participant has gambled and seen decreases in emotional
valence, so the choice to gamble is a harmful decision and under the reward
processing hypothesis, the participant’s gambling probability for the next
trial should be lower and indeed our model mirrors that because Xj ·Xi

is negative, sign(E( @2⌘
@X

j

@X
i

)) is positive, and this term adds a negative
contribution to the probability of risk-taking Y

• Xj < 0, Xi < 0: if past changes in emotional valence Xj is negative
and past decisions to gamble Xi is negative, then this corresponds to
the scenario where the participant has chosen not-to-gamble and seen
decrease in emotional valence, so the choice not-to-gamble is a harmful
decision and under the reward processing hypothesis, the participant’s
gambling probability for the next trial should be higher and indeed our
model mirrors that because Xj ·Xi is positive, sign(E( @2⌘

@X
j

@X
i

)) is positive,
and this term adds a positive contribution to the probability of risk-taking
Y

5.4.4 Explicit and Implicit Effects in Generative Models
The generative models of the logistic regression and neural network have pre-
diction functions that can incorporate all scientifically informed effects. The
logistic regression is less well-suited for this goal because first glance, a pre-
diction function can only contain linear relationships between X1, ..., Xp and
⌘it. Still, if we want the logistic regression prediction function to contain any
nonlinear relationships between X1, ..., Xp and ⌘it, we can hard-code those non-
linearities and treat them as additional covariates, so that the logistic regression
prediction function can also include nonlinearities. That is, we can hard-code
both first order covariates Xj and second order covariates X2

j , Xi ·Xj so that the
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logistic regression prediction function includes the unidirectional effects, bidi-
rectional effects, and moderator effects. Notably, the logistic regression would
assign a single beta weight to Xi ·Xj , and for two continuous covariates, this is
a very rigid construction of a moderator effect. Future studies should examine
less rigid constructions of moderator effects.

An infinitely large neural network can theoretically include any relationship
among covariates and the probability of gambling. Our finite network models
have more limited function space, but can potentially learn the above one direc-
tion, bidirectional, and moderator effects in addition to other less scientifically
interpretable effects.

While in this thesis, we limit ourselves to examining first and second or-
der representations of covariates because they already begin to test for all
three the scientific hypotheses of emotional valence and risk-taking (the mood-
maintenance hypothesis [17], the affect-infusion model [18], and the reward pro-
cessing hypothesis [19]); however, future studies might examine more complex
relationships.

Overall, to capture scientifically informed unidirectional, bidirectional, or
moderator effects between emotional valence and risk-taking, we will use gener-
ative models that implicitly or explicitly find relationships between Xj , X2

j , Xj ·
Xi for all covariates Xj , Xi and risk-taking Y . This will allow us to detect
three hypotheses about how emotional valence affects risk-taking: the mood-
maintenance hypothesis [17], the affect-infusion model [18], and the reward pro-
cessing hypothesis [19].

5.5 Do risk-taking models learn flexible relation-
ships?

We have some exploratory but not statistically rigorous evidence that risk-taking
models learn flexible relationships, and thus can learn relationships aligned with
the mood-maintenance hypothesis [17], the affect-infusion model [18], and the
reward processing hypothesis [19]. Additionally, considering other more flexible
relationships between emotional valence and risk-taking does not compromise
predictive ability (the full methods of these experiments are in Appendix F).

5.5.1 Flexible Logistic Regression
We have some exploratory, not statistically rigorous evidence that the flexible
logistic regression found flexible unidirectional, bidirectional, and moderator
effects of covariates on risk-taking. We chose l1-ratio, ↵ = 0.65, 0.001 which
maximized predictive performance.
Unidirectional Effects Xj

We have exploratory evidence that the flexible logistic regression detected
unidirectional effects of covariates on risk-taking. For a logistic regression model
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of probability of gambling, one indication that a covariate Xj had a unidirec-
tional effect on the probability of risk-taking P(Yit = 1) = logit(⌘it) is if the
gradient entry of Xj : @⌘

@X
j

is nonzero. We can estimate this quantity with the
estimated beta-weight for Xj : ˆ�j . For the flexible logistic regression model,
many values had nonzero ˆ�j with the largest ˆ�j = 1.8 (Figure F.1), indicating
that the flexible logistic regression model might have picked up on unidirectional
effects. This is completely exploratory, because we didn’t set up a hypothesis
test for ˆ�j 6= 0.

Figure 5.5: The estimated gradient of ⌘ with respect to covariates. The numbered covariates
corresponded to 0 = ’college’, 1 = ’gender’, 2 = ’depression’, 3= ’emotional valence’, 4 =
’expected reward’, 5= ’gambling range’, 6= ’past rewards’, 7= ’past reward prediction errors’,
8= ’past gambles’, 9 =’past changes in emotional valence’

Bidirectional Effects X2
j

We have exploratory evidence that the flexible logistic regression detected
bidirectional effects of covariates on risk-taking. One indication that a covariate
Xj had a bidirectional effect on the probability of risk-taking P(Yit = 1) =

logit(⌘it) is if the Hessian matrix diagonal entry of Xj : @2⌘
@X2

j

is nonzero. For
the logistic regression, we can estimate this quantity with the estimated beta-
weight for X2

j : ˆ�jj . For the flexible logistic regression model, many values had
nonzero ˆ�jj with the largest ˆ�jj = 0.40 (Figure F.2), indicating that the flexible
logistic regression model might have picked up on bidirectional effects. This is
completely exploratory, because we didn’t set up a hypothesis test for ˆ�jj 6= 0.
Moderator Effects Xj ·Xi

We have exploratory evidence that the flexible logistic regression detected
moderator effects of covariates on risk-taking. One indication that a covari-
ate Xj had a moderator effect on the probability of risk-taking P(Yit = 1) =

logit(⌘it) is if the Hessian matrix off-diagonal entry of Xji: @2⌘
@X

j

@X
i

is nonzero.
For the logistic regression, we can estimate this quantity with the estimated
beta-weight for Xj · Xi: ˆ�ji. For the flexible logistic regression model, many
values had nonzero ˆ�ji with the largest ˆ�ji = 2.12 (Figure F.2), indicating that
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Figure 5.6: The estimated Hessian matrix of ⌘ with respect to covariates. The numbered
covariates corresponded to 0 = ’college’, 1 = ’gender’, 2 = ’depression’, 3= ’emotional valence’,
4 = ’expected reward’, 5= ’gambling range’, 6= ’past rewards’, 7= ’past reward prediction
errors’, 8= ’past gambles’, 9 =’past changes in emotional valence’

the flexible logistic regression model might have picked up on moderator effects.
This is completely exploratory, because we didn’t set up a hypothesis test for
ˆ�ji 6= 0.

Overall, the estimated gradient vector and estimated Hessian matrix corre-
sponded to estimated weights ˆ� assigned to Xi and X2

i or Xi ·Xj respectively
and since many of the entries of the estimated gradient and estimated Hessian
matrix values were nonzero, we have some evidence that the logistic regression
did learn unidirectional, bidirectional and moderator effects between covariates
and risk-taking.

5.5.2 Neural Network
We settled on the hyperparameters � = 0.01 for l1 regularization and ✏ =

0.0001 for adversarial noise (for full methods on how we fit neural networks
see Appendix E). We have some exploratory evidence that the neural network
detected some nonzero flexible on-direction, bidirectional, and moderator effects.
Unidirectional Effects Xj

We found exploratory evidence that the neural networks detected unidirec-
tional effects. While it is hard to say what it would mean for a neural network
to detect a unidirectional effect, we can examine the expected gradient of ⌘
with respect to a covariate as an indication that the neural network detected a
unidirectional effect on risk-taking. For any covariate, if the empirical average
gradient of ⌘̂ (subject to a smoothing procedure [27]) is large, this is some ex-
ploratory evidence that the neural network has learned a unidirectional effect.
For the neural network model we trained, some average estimated gradients
were nonzero (Figure 5.7a), with the largest average gradient at 1.25 indicating
that our neural network may have learned some unidirectional effects of the
covariates on risk-taking.
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(a) Average Gradient (b) Standard Deviation of Gradient

Figure 5.7: The average and standard deviation of the estimated gradient of ⌘ with respect
to a covariate evaluated at all data points corresponding to all participants and all trials.
The numbered indices correspond to 0 = ’gender’, 1 = ’depression severity’, 2= ’emotional
valence’, 3 = ’expected reward’, 4 = ’gambling range’, 5 = ’age’, 6 =’past rewards’, 7 =’past
reward prediction errors’, 8= ’past gambles’, 9 =’past changes in emotional valence’.

Bidirectional Effects X2
j

We have exploratory evidence that the flexible logistic regression detected
bidirectional effects of covariates on risk-taking.

It is hard to say what a bidirectional effect looks like with respect to the
Hessian matrices for all data points. In theory, each entry of the expected
Hessian matrix, E(

@2⌘
@X2

j

) is an indication for how a function of risk-taking ⌘

changes with respect to one quadratic covariateX2
j . In our data, we can evaluate

a Hessian matrix for each data point, subject to a smoothing procedure [27]. We
posit that if the empirical average of the estimated Hessian matrices evaluated at
all data points is nonzero on diagonal entries, then we have some evidence that
the neural network is learning some bidirectional effects of Xj on Y . Indeed, we
found some nonzero diagonal entries on the averaged Hessian, with magnitude
up to 0.02 (Figure 5.8a). Also, we posit that if the majority of entries are all
positive or all negative, then we have some evidence that the neural network
is learning some bidirectional effects of Xj on Y . To quantify this concept, we
define prevalence of j as the difference in the ratio of jjth estimated Hessian
matrix entries which are positive and the ratio of jjth estimated Hessian matrix
entries which are negative, so that larger magnitude of prevalence indicates that
many of the Hessian matrix entries were of the same sign. In our neural network,
some of the prevalence values of some of the covariates were nonzero (Figure
5.8b), with magnitude up to 0.13 which provides some evidence that the neural
networks are learning bidirectional relationships between the covariates and the
probability of gambling.
Moderator Effects Xj ·Xi

We have exploratory evidence that the flexible logistic regression detected
moderator effects of covariates on risk-taking. It is hard to say what a moderator
effect looks like with respect to the ijth entries of the expected Hessian matrices
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for all data points. In theory, the expected Hessian entries E(

@2⌘
@X

i

@X
j

) are a
proxy for how a function of risk-taking ⌘ changes with respect to two covariates
Xj , Xi. In our data, we can evaluate a Hessian matrix for each data point. We
posit that if the empirical average of estimated the Hessian matrices over all
data points is nonzero on off-diagonal entries, then we have some evidence that
the neural network is learning some moderator effects of Xj on the relationship
between Xi and Y . Indeed, we found some nonzero diagonal entries on the
averaged Hessian, with magnitude up to 0.04 (Figure 5.8a). Also, we posit that
if the majority of entries are all positive or all negative, then this is some evidence
that the neural network is learning some moderator effects of Xj ·Xi on Y . To
quantify this concept, we examine prevalence of ij as the difference in the ratio
of ijth estimated Hessian matrix entries which are positive and the ratio of ijth
estimated Hessian matrix entries which are negative, so that larger magnitude
of prevalence indicates that many of the Hessian matrix entries were of the same
sign. In our neural network, some of the prevalence values were nonzero (Figure
5.8b), with magnitude up to 0.26, which provides some evidence that the neural
networks are learning moderator relationships between the covariates and the
probability of gambling.

5.5.3 Prediction
The models which can learn nonlinearities did no worse at prediction than the
model that cannot (for full methods see Appendix F).

Table 5.4: Predictive Modeling Results of Between-Subject Cross-Validation. For
each model, we use leave one out cross validation on n = 20 participants and evaluate pre-
dictions. Better models have higher accuracy, higher area under the receiver operating char-
acteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for area
under receiver operating characteristic curve. Loss indicates cross-entropy loss. The neural
network was trained with � = 1e� 3, ✏ = 1e� 2

Model # Model ACC AUC Loss
1 Logistic Regression 0.66 0.712 3.57E-04
2 Flexible Logistic Regression (All Effects) 0.670 0.708 3.62E-04
3 Neural Network (All Effects) 0.683 0.683 3.36E-04

It is promising that our generative models which are designed to detect
flexible and scientifically informed relationships might actually detect nonzero
flexible relationships between emotional valence and risk-taking without com-
promising predictive ability.
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(a) Average Hessian

(b) Prevalence

Figure 5.8: The prevalence values, positive ratio, and negative ratio of each entry of the
Hessian matrix of ⌘ with respect to two covariates. The numbered indices correspond to 0
= ’gender’, 1 = ’depression severity’, 2= ’emotional valence’, 3 = ’expected reward’, 4 =
’gambling range’, 5 = ’age’, 6 =’past rewards’, 7 =’past reward prediction errors’, 8= ’past
gambles’, 9 =’past changes in emotional valence’.

5.6 Which Covariates ShouldWe Include In Mod-
els?

In this section, we show how models which rely on combinations of covariates
predict better than smaller models which rely on only subsets. We also reduce
the computational cost of our analysis by choosing functional forms of covariates
related to the past or rewards.

5.6.1 Models with All Covariates
As shown in Appendix B, a logistic regression model of risk-taking using com-
binations of covariates related to the participant, the current trial, and the out-

42



comes of past trials, is significantly more predictive than a trivial model with no
covariates. Additionally, this full model was significantly more predictive (Table
5.5) and significantly more informative (Table 5.6) than smaller models which
only used a subset of the covariates, such as a model trained on only the covari-
ates related to the participant and the current trial. In next chapter, we will
use models of risk-taking which use all the covariates related to the participant,
the current trial, and the outcomes of past trials.

Table 5.5: McNemar Test Against the Full Model. We performed McNemar tests to see
if the full model using covariates from participants, current trial, and past trials significantly
out predicted other models.

Model Model Name statistic p-value
1 Global Mean 242.0 1.1e-16
2 Participant 223.0 9.6e-25
3 Current Trial 134.0 0.76
4 Past Trials 213.0 2.3e-06
5 Current Trial + Past Trials 38.0 0.017
6 Participant + Current Trial 126.0 0.50
7 Participant + Past Trials 200.0 1.4e-08

Table 5.6: Likelihood Ratio Tests Against the Full Model. We performed likelihood
ratio tests for nested models. Model numbers correspond to Table B.2. Dev. stands for
deviance and p stands for p-value.

Model Model Name DF Dev. p
1 Global Mean 10 4816.5 2.2e-16
2 Participant 6 3227.9 2.2e-16
3 Current Trial 8 4815.8 0.73
4 Past Trials 6 530.53 2.2e-16
5 Current Trial + Past Trials 4 528.26 2.2e-16
6 Participant + Current Trial 4 3227.8 2.2e-16
7 Participant + Past Trials 2 2.6 0.26

5.6.2 Reducing Computational Cost By Choosing Covari-
ates Related to Past Trials and Related to Reward

We can reduce the computational complexity of our analysis by choosing a
specific version of covariates related to the past and related to reward. This is
exploratory and not statistically rigorous.
Past Trials
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We have three versions (primacy, recency, no effect/ equal) for each of four
covariates which summarize the past (past changes in emotional valence, past
gambles, past rewards, and past reward prediction errors), which yields 34 = 81

combinations of covariates. Instead of building models for all combinations
of covariates, in this experiment, we build 12 logistic models to pick just one
combination of covariates (for full methods, see Appendix G). An estimate of
predictive ability of a logistic regression model trained on each version of the
covariates is shown in Table 5.7.

Table 5.7: Predictive Modeling Results of Between-Subject Cross-Validation. For
each model, we use leave one out cross validation on n = 20 participants and evaluate pre-
dictions. Better models have higher accuracy, higher area under the receiver operating char-
acteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for area
under receiver operating characteristic curve. Loss indicates cross-entropy loss.

Model # Model ACC AUC Loss
1 Past Changes In Emotional Valence Primacy 0.500 0.391 3.97E-04
2 Past Changes In Emotional Valence Recency 0.500 0.402 3.97E-04
3 Past Changes In Emotional Valence Equal/ No Effect 0.500 0.418 3.97E-04
4 Past Gambles Primacy 0.500 0.391 3.99E-04
5 Past Gambles Recency 0.500 0.476 3.98E-04
6 Past Gambles Equal/ No Effect 0.545 0.567 3.92E-04
7 Past Rewards Primacy 0.518 0.541 3.94E-04
8 Past Rewards Recency 0.493 0.465 3.98E-04
9 Past Rewards Equal/ No Effect 0.501 0.426 3.97E-04
10 Past Reward Prediction Errors Primacy 0.499 0.447 3.97E-04
11 Past Reward Prediction Errors Recency 0.500 0.384 3.98E-04
12 Past Reward Prediction Errors Equal/ No Effect 0.497 0.427 3.97E-04

Based on this exploratory analysis, out of the models trained on different
versions of each covariate, the best estimated predictive ability was for models
trained with:

• Past Changes In Emotional Valence Primacy,

• Past Gambles Equal/ No Effect,

• Past Rewards Primacy,

• Past Reward Prediction Errors Recency.

Then, in our hypothesis test for whether emotional valence affects risk-
taking, we rely on only this combination instead of modeling all 81 possible
combinations. We chose past changes in emotional valence (primacy), past
gambles (equal/ no effect), past rewards (primacy), and past reward prediction
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errors (recency) which yielded the best predictive performance (by virtue of nu-
merical comparison instead of statistical testing). The cost of this reduction in
computational cost is a reduction in statistical power, because our exploratory
data analysis may not have indicated the best functional form of these covari-
ates.
Rewards

We narrow down to using utility-transformed reward covariates after con-
sidering two possible reward covariates: utility function transformed reward
covariates and raw reward covariates. In modern economic theory, people have
utility functions which quantify customers’ preferences over a set of choices [16].
Some utility functions are nonlinear, such that linear increases in rewards do not
yield linear increases in utility, in which case looking at utility is not the same
as looking at raw rewards. In this thesis, in our gambling task, it is possible
people are making decisions based on utility instead of raw rewards. For full
methods, see Appendix H, an estimate of the predictive ability of each version
of the covariates is shown in Table 5.8.

Table 5.8: Predictive Modeling Results of Between-Subject Cross-Validation. For
each model, we use leave one out cross validation on n = 20 participants and evaluate pre-
dictions. Better models have higher accuracy, higher area under the receiver operating char-
acteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for area
under receiver operating characteristic curve. Loss indicates cross-entropy loss.

Model # Model ACC AUC Loss
1 Utility-Transformed Rewards 0.677 0.701 3.59E-04
2 Raw Rewards 0.673 0.705 3.58E-04

Based on this exploratory analysis, the best predictive ability was for the
model which used utility-transformed rewards. Then, in our hypothesis test for
whether emotional valence affects risk-taking, we can cut the number of models
we train in half by using the utility-transformed reward covariates and not the
raw reward covariates. The cost of this reduction in computational cost is a
reduction in statistical power, because our exploratory data analysis may not
have indicated the best functional form of these covariates.

Overall, to reduce computational cost at the expense of some statistical
power in our hypothesis test for whether emotional valence affects risk-taking,
we build models which use utility-transformed reward covariates and use the
following specific versions of covariates which summarize the past: past changes
in emotional valence (primacy), past gambles (equal/ no effect), past rewards
(primacy), and past reward prediction errors (recency).
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Chapter 6

Conditional Randomization
Test

In this chapter, we rely on scientific literature and models informed by the pre-
vious chapter to build a conditional randomization test for deciding whether
emotional valence affects risk-taking. Unlike propensity scores that also use
a conditional distribution to perform inference on the conditional relationship
between the response and a covariate conditional on all other covariates, the
conditional randomization test does not rely on discreteness of covariates or
experimental control of covariates [28], and thus does not have as many as-
sumptions.

6.1 Scientifically Informed Joint and Conditional
Distributions

We rely on scientific literature and our previous chapter to inform our models
of the relationships among covariates of risk-taking, X = X1, ..., Xp and the
conditional distribution of risk-taking given covariates Y |X1, ..., Xp.

For our covariates of risk-taking X1, ..., Xp, we will use all covariates related
to the participant, the current trial, and the outcomes of past trials. Specifi-
cally, we will use utility-transformed reward covariates and we will use a specific
combination of summaries of past trials (as specified in the previous chapter).

We will use neural networks and flexible logistic regressions to model risk-
taking Y from the covariates X1, ..., Xp. As tested in the exploratory data
analysis, generative logistic regression and generative neural network models
are more predictive of risk-taking than chance. As shown in the exploratory
data analysis, we have some exploratory, not statistically rigorous evidence that
both models do pick up on these flexible relationships between emotional va-
lence and risk-taking and thus can detect three hypotheses about how emotional
valence affects risk-taking: the mood-maintenance hypothesis [17], the affect-
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infusion model [18], and the reward processing hypothesis [19] (for the full model
specifications, see Appendix I).

We will model emotional valence Xe and past changes in emotional valence
Xde as linear regressions on all other covariates of risk-taking, X�{e,de}. In
[10], the mean of the conditional distribution of emotional valence was informed
by exponentially weighted summaries of the past reward prediction errors, the
past rewards from not gambling, and the past rewards from gambling, so we
included all these covariates in our model. Specifically, in our models, we will
have a covariate as summary of the past reward prediction errors. We will
also have a covariate that is the combined summary of all past rewards, not
separated into past rewards from gambling or not gambling (for the full model
specifications, see Appendix I).

6.2 Hypotheses
We are interested in whether emotional valence affects risk-taking, which can
be framed by the statistical concept of a Markov blanket. A Markov blanket
of risk-taking, Y given its potential covariates X1, ..., Xp is the smallest set of
covariates S such that if we condition on S, then Y is independent of all other
covariates not in S. That is, for Xi 62 S:

Y ?? Xi|S

Intuitively, a Markov blanket of Y given X1, ..., Xp is the smallest set of
covariates which "fully" explains Y so that as long as we have access to those
covariates, the other covariates are no longer informative and we can’t explain
any additional variation in Y . Of course, there are many unknown covariates
that explain variation in Y , so it is impossible to fully explain Y , but out of a
near comprehensive set of possible covariates, a Markov blanket is as close as
we can get to "fully" explaining Y .

Our null hypothesis is that emotional valence does not affect risk-taking once
we control for other covariates. The statistical claim of the null hypothesis is
that (Xe, Xde) are not part of a Markov blanket of Y with respect to covariates
Xe, Xde, X�{e,de}. Our alternative hypothesis is that emotional valence does
affect risk-taking even after we control for other covariates. The statistical
claim of the alternative hypothesis is that (Xe, Xde) are not part of a Markov
blanket of Y with respect to covariates Xe, Xde, X�{e,de}.

• H0 : Emotional valence does not affect risk-taking

– (Y ?? (Xe, Xde))|X�{e,de}

– (Xe, Xde) is not in a Markov blanket of Y with respect to Xe, Xde, X�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? (Xe, Xde))|X�{e,de}
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– (Xe, Xde) is in a Markov blanket of Y with respect to Xe, Xde, X�{e,de}

This Markov Blanket approach is not only broad enough to allow us to
consider many covariates of risk-taking but also defined in a way that’s narrow
enough to make a claim of whether or not emotional valence affects risk-taking.
A lack of consideration of many possible covariates could be one explanation
for lack of consensus in the scientific literature on whether emotional valence
affects risk-taking.

6.3 Test Statistic
This test statistic, T9 is designed to detect unidirectional or bidirectional ef-
fects between emotional valence and risk-taking, along with moderator effects
of emotional valence on the relationship between past gambles and risk-taking
via the mood-maintenance hypothesis, the affect infusion model, or the reward
processing hypothesis.

This test statistic T9 is a composition of two test statistics: 1) T5 (Appendix
L) which detects for unidirectional or bidirectional effect between emotional va-
lence and risk-taking and can correspond to detecting the mood-maintenance
hypothesis and/ or the affect infusion model and 2) T8 (Appendix M) which de-
tects for moderator effects of emotional valence on the relationship between past
gambles and risk-taking and can correspond to detecting the reward processing
hypothesis:

T9 = t9(D)

= 1�min(p(T5), p(T8))

for p(T5) and p(T8) corresponding to the p-values of the two test statis-
tics (for full details of how we derive these p-values, see Appendix L and M
respectively).

With this definition, we know that if any of T5, T8 are large, then the p-value
of at least one is small and T9 will be large too. Alternatively, if all of T5, T8

are small, then the p-values of both are large and T9 will be small too. So
this test statistic T9 detects for whether emotional valence has a unidirectional
or bidirectional effect on risk-taking or past changes in emotional valence has
a moderator effect on the relationship between past gambles risk-taking under
the stated assumptions about data generating processes.

Both test statistics T5, T8 are compositions of other test statistics which make
all possible assumptions of joint and conditional distributions considered in this
thesis, starting with whether the data generating processes of Y |X1, ..., Xp as
either a neural network or a logistic regression, given that the data generating
process of Xe|X�{e,de} as a linear regression, and the data generating process
of Xde|X�{e,de} as a linear regression.
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For test statistic T9 and all test statistics underlying T9, we listed the scien-
tific hypotheses it detected, the data generating processes it assumed on risk-
taking and emotional valence, the definition of the detector, the parameter of
interest, the type of data randomization (A,B,C,D), and how to calculate the
p-value in Table 6.1.
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6.4 Empirical Null Distribution
Under the null hypothesis (Y ?? {Xe, Xde})|X�{e,de}, we can derive the empir-
ical distribution of T9 by computing our detector value over 100 test statistics
T ⇤
5 , T

⇤
8 , evaluated over randomized data sets with conditional randomizations of

Xe|X�{e,de} and Xde|X�{e,de} (see Appendix L and M for full details). Each
T ⇤
9 will require calculating the p-value of T ⇤

5 , T
⇤
8 . Calculating the p-value of T ⇤

5

will require 10, 100 data sets of type A and 10, 100 data sets of type B while
calculating the p-value of T ⇤

8 will require 10, 100 data sets of type C and 10, 100
data sets of type D (see Appendix J for definitions of randomizations).

The resulting 100 detector values {T9(i)⇤}100i=1 are the empirical distribution
of our original detector value T9 = t9(D).

We rely from the following lemma, with statement and proof reproduced
from Lemma 4.1 [28], to prove conditional distributions for this test statistic
(and all test statistics used to construct this test statistic).

Lemma 1. Let D = (Z1, Z2, Y ) be a triple of random variables and we can
construct another triple that replaces Z1 with a conditional randomization Z⇤

1 :
D⇤

= (Z⇤
1 , Z2, Y ) such that

Z⇤
1 |(Z2, Y )

d
= Z1|Z2

Then if we assume the null hypothesis Y ?? Z1|Z2, then any test statistic
T = t(D) = t(Z1, Z2, Y ) obeys

T |(Z2, Y )

d
= T ⇤|(Z2, Y )

where T ⇤
= t(D⇤

) = t(Z⇤
1 , Z2, Y )

Proof. We show that Z⇤
1 |(Z2, Y ) has the same distribution as Z1|(Z2, Y ) under

the null hypothesis, which enables us to prove that T = t(D) has the same
distribution as T ⇤

= t(D⇤
).

Z⇤
1 |(Z2, Y )

d
= Z1|Z2 by the definition of Z⇤

1

d
= Z1|(Y, Z2) because under the null Z1 ?? Y |Z2

d
= Z1|(Z2, Y )

Z⇤
1 , Z2, Y

d
= Z1, Z2, Y by integrating over Z2, Y

So we have shown that if we assume the null hypothesis Z1 ?? Y |Z2, then

Z⇤
1 , Z2, Y

d
= Z1, Z2, Y

,
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Table 6.1: All the detectors. MMH stands for mood-maintenance hypothesis, AIM stands for
affect infusion model, RPH stands for reward processing hypothesis. The data randomization
type was determined by assumptions about the DGP of emotional valence. DGP stands for
data generating process.
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in which case we can apply the function t to both sides

t(Z⇤
1 , Z2, Y )

d
= t(Z1, Z2, Y )

t(D⇤
)

d
= t(D)

T ⇤
1
d
= T1

so we have shown that under the null, T ⇤ has the same distribution as T
conditional on Z2, Y .

Based on the notation of lemma 1, let Z1 = {Xe, Xde}, Z2 = X�e,de, and
Y = Y . Then, under the null hypothesis Y ?? {Xe, Xde}|X�e,de, by Lemma
1, these 100 detector values {T9(i)⇤}100i=1 are the empirical distribution of our
original detector value evaluated in the original data set T9 = t9(D).

6.5 P-value
Then, a p-value for this detector would be the fraction of {T ⇤

9 (i)}100i=1 which are
greater than or equal to t9(D).

p(T9) =

P100
i=1 I(T ⇤

9 (i) � T9)

100

6.6 Scientific Intepretation of Hypothesis Test
If p(T9) > 0.05, then we do not have enough evidence to reject our null hypoth-
esis that emotional valence does not affect risk-taking. If p(T9)  0.05, then we
do have enough evidence to reject our null hypothesis that emotional valence
does not affect risk-taking, in favor of our alternative hypothesis that emotional
valence does affect risk-taking.

6.7 Computational Cost
Overall, finding the p-value of detector T9 requires a total of 1, 010, 000 data
sets of type A, 1, 010, 000 data sets of type B, 1, 010, 000 data sets of type C,
1, 010, 000 data sets of type D, 2, 040, 200 logistic regressions, 2, 040, 200 neural
networks, and 40, 400 linear regressions. That is, to compute the detector T9,
we would compute the detectors T5, T8. Computing T5 will require 10, 100 data
sets of type A, 10, 100 data sets of type B, 10, 201 logistic regressions, 10, 201
neural networks, and 202 linear regressions. Computing T8 will require 10, 100
data sets of type C, 10, 100 data sets of type D, 10, 201 logistic regressions,
10, 201 neural networks, and 202 linear regressions. Computing both T5, T8 will
require a combined total of 10, 100 data sets of type A, 10, 100 data sets of
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type B, 10, 100 data sets of type C, 10, 100 data sets of type D, 20, 402 logistic
regressions, 20, 402 neural networks, and 404 linear regressions. Then, we would
repeat this 100 times process to compute an empirical null distribution for T9.
See Appendix K for more details on the individual computational costs for
calculating p-values for each test statistic.

6.8 Limitations of Hypothesis Test
As shown in the previous chapter, the neural network model is not stable across
regularization levels and for all generative models, do not seem to generalize
well, indicating that this test may have lower statistical power when applied to
a completely new data set.

Our test statistic only examines a subset of the null hypothesis. While our
hypotheses are about a Markov blanket of Y with respect to Xe, Xde, X�{e,de},
we rely on test statistics for Markov blankets of Y with respect to Xe, X�{e,de}
or with respect to Xde, X�{e,de}.

Stepping back, importantly, we are not necessarily achieving a Markov blan-
ket S, but instead only an approximation. Moreover, we can only learn a re-
stricted set of many mathematical relationships between covariates and risk-
taking in our generative models, while we might miss other crucial mathe-
matical relationships between covariates and risk-taking. As a result, a lack
of mathematical flexibility in our generative models might force us to include
more covariates in our ˆS and thus overestimate the number of variables in
the the Markov blanket. For example, it is possible the Markov blanket is
S = {X1, X2} but our models do not sufficiently learn the entire relationship
among {X1, X2, Y }, so our generative models instead rely on X3 to compensate,
so our ˆS = {X1, X2, X3}.

Our test statistic certainly isn’t looking for any possibly relationship in any
model between emotional valence and risk-taking, instead we are only looking
at 6 relationships rooted in three scientific hypotheses. Despite not being com-
prehensive, our final detector, T9 still is valuable because it is a composition of
smaller detectors that search through many scientifically likely possibilities (first
and second order relationships) in different types of models (logistic regression,
neural network) which are flexible to find many relationships between emotional
valence and risk-taking conditional on their covariates.

While our 9 detectors are a promising start to find a relationship between
emotional valence and risk-taking conditional on their covariates, it is possible
we have a high chance that the null hypothesis is false but we cannot reject the
null hypothesis. Notably, we could improve the Type II error by testing more
possible relationships between emotional valence and risk-taking conditional on
their covariate and more functional forms of emotional valence; however, doing
so would yield an exponential growth in computation time beyond the scope
of this thesis. Additionally, the subset of relationships between the log odds
of gambling and functional forms of emotional valence we did test for were
scientifically informed and probable, so we posit that the subset of models and
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tests used in this study are sufficient for a first pass attempt to answer whether
emotional valence affects risk-taking.
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Chapter 7

Conclusions

Overall, scientific literature has found fascinating explanations for the relation-
ship between emotional valence and gambling. We have already started to
leverage computer science and statistics to incorporate some of existing litera-
ture to inform a test for whether emotional valence does affect risk-taking. In
doing so, this thesis also began to reconcile competing explanations by using
nonlinear modeling and considering dynamics of the task itself.

7.1 Computer Science and Statistics
Future work that builds on the computer science and statistics portion of this
thesis can examine a less rigid, more powerful way of detecting moderator effects
for continuous variables than relying on their interaction.

Future work can develop detectors for the mood-maintenance hypothesis,
affect infusion model, and reward processing hypothesis with respect to random
forest models of risk-taking decisions. For example, to examine whether emo-
tional valence has a unidirectional effect on risk-taking, one could examine how
a split on emotional valence changes the proportion of gambles, which could be
a proxy for how emotional valence can either increase or decrease risk-taking.

Future work can focus on reducing the computational cost of the test for
whether emotional valence affects risk-taking. One potential step is to turn
some components of the hypothesis test into multiple hypothesis tests and rely
on Bonferroni correction, so that even reducing one layer of nested detectors cuts
the computational cost by a factor of 102 at the expense of a more conservative,
less powerful test.

Future work can conduct this hypothesis test in a separate set of participants
who perform the same gambling task. Concretely, we can use the test set of
participants from this thesis, in addition to extra participants who completed
the gambling task on Amazon MechanicalTurk.

Future work can account for how emotional valence and risk-taking dynami-
cally affect each other throughout the task. In this thesis, we assume probability
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of risk-taking is affected by emotional valence and past changes in emotional va-
lence. Additionally, we assume emotional valence is affected by past choices to
gamble, which is influenced by risk-taking. Despite these assumptions, we model
both in separate regressions. Future work can look for a more formal way to
describe the two-way relationship between emotional valence and risk-taking.

Future work can rely on more inferential statistics theory to start exploring
mechanisms for the effect of emotional valence on risk-taking behavior.

7.2 Psychology
Future work that builds on the psychology portion of this thesis can examine
more simple and more complex experiments, can look beyond task dynamics
and towards broader trends with real-world utility, and can tie in broader mea-
surements of affect or even discrete emotions, despite how emotions are difficult
to define and study.

We worked with a risk-taking task in which many variables are changing at
once and still we are controlling for many variables too. Future studies may
examine if trends found in this thesis hold in more simple or more complex
gambling task which control for more and control for less variables respectfully.

Moreover, in this thesis, we closely examined task dynamics, but we still
have to examine for behavior beyond a gambling task. Examining task dynamics
enabled us to synthesize literature by better isolating whether emotional valence
influences risk-taking. Without accounting for task-specific elements, we run the
risk of falsely attributing changes in gambling to affect when it might be the case
that another covariate drives the change. Still, if we as psychologists focus too
exclusively on tasks, we are moving away from real-world utility. Documenting
the dynamics of behavior during a task, then incorporating that knowledge into
a model is the first step to understanding the more universal components of the
relationship between emotional valence and risk-taking.

Future research could benefit from going beyond emotional valence and con-
sidering arousal, cognitive appraisal, and discrete emotions. One limitation of
studying only emotional valence is that two emotions with the same emotional
valence can have opposite effects on decision making behavior. For example,
[22] showed that anger can lead to more risky decisions because people do not
think things through while another emotion with negative affect, sadness, can
lead to risk-avoidant decisions because people start to consider one’s affective
state as information. Alternatively, future research could investigate how other
components of affect (appraisal and intensity). Already, [29] explain that dis-
crete emotional states with similar valence and arousal still have different effects
on risk perception, so we might benefit from going beyond examining only va-
lence and arousal. Also, future research can study how discrete emotional states
affect gambling. One barrier is that emotions are hard to define and study in
the lab, which can hinder progress. B
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Appendix A

Evaluating Predictions

For prediction, in this thesis we report the results of leave-one-out between-
subject cross validation. Between-subject cross-validation allows us to evaluate
whether our models can predict decisions for an unseen subject.

We report three prediction metrics:

• balanced accuracy, which is the average of accuracy rate for predicting
gambles and accuracy rate for predicting not-gambles. We chose balanced
accuracy because we equally value good prediction on choices to gamble
as choices not-to-gamble

• area under the receiver operating characteristic curve (AUC),
which indicates performance across probability thresholds

• average cross entropy loss, which rewards large predicted probabilities
for the correct outcome and small predicted probabilities for the incorrect
outcome.

Loss(ŷ, y) =
(
� log(ŷ) y = 1

� log(1� ŷ) y = 0
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Appendix B

Predicting Gambling Better
Than Chance & With Many
Covariates

Question: For this data set, is the signal-to-noise ratio high enough to predict
gambling better than chance?
Answer: Yes.

• Question: Are participant characteristics predictive and informative of
gambling probability? Answer: They are informative. We could not
reject the null hypothesis that they are not predictive.

• Question: Is considering participant characteristics, trial parameters,
and summaries of the outcomes of past trials predictive and informative
of gambling probability? Answer: Yes.

• Question: Is considering all the covariates (participant characteristics,
trial parameters, and summaries of the outcomes of past trials) predictive
and informative of gambling probability? Answer: Yes.

• Question: Is considering all the covariates (participant characteristics,
trial parameters, and summaries of the outcomes of past trials) more pre-
dictive and informative of gambling probability than using some of the
covariates? Answer: Sometimes it is, other times, we could not reject
the null hypothesis that they were equally predictive and informative.

Implications for Hypothesis Test: This experiment assures us that the
signal-to-noise ratio in this data collected throughout the gambling task is high
enough to predict risk-taking better than by chance. This experiment also shows
that by using combinations of the covariates, we can build models which are sig-
nificantly more predictive than trivial models (with no covariates). Thus, in our
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hypothesis test models, we will use combinations of the covariates to model risk-
taking. Overall, when we perform statistical inference for our research question,
it boosts the relevance of our results that we are working with models that are
more predictive than trivial models (with no covariates).

We want to know if the signal-to-noise ratio is high enough in this data set
to predict risk-taking behavior. In other words, we’d like to know if we can
predict risk-taking in this data set. If we cannot predict better than chance, we
would not proceed with the analysis.

The baseline model we are trying to beat is the global mean model which
predicts the probability of gambling of every trial of every participant to be the
global mean gambling rate, 0.55.

A.2 Methods
We attempt to beat the baseline model with logistic regression models to predict
the probability of gambling for each subject for each trial.
More specifically, for subject i on trial t, probability of gambling, P(y(it) = 1),
is modeled as:

P(y(it) = 1) = logit(⌘(it))

such that ⌘(it) is a linear combination of features. Then, to summarize the
four models:

1. Global Mean Model

⌘(it) =

PN
n=1

PT
t=0 y(nt)

N · T

2. Participant Model

⌘(it) =v0 + v1College(i) + v2Gender(i) + v3Diagnosis(i) + v4Emotional Valence(i)

3. Current Trial Model

⌘(it) =v0 + v1Expected Reward(it) + v2Gamble Outcome Range(it)

4. Past Trials Model
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⌘(it) =v0 + v1Past Rewards (Equal)(it) + v2Past Reward Prediction Errors (Equal)(it)
+ v3Past Gambles (Equal)(it) + v4Past Changes in Emotional Valence (Equal)(it)

5. Current Trial + Past Trials Model

⌘(it) =v0 + v1Expected Reward(it) + v2Gamble Outcome Range(it)
+ v3Past Rewards (Equal)(it) + v4Past Reward Prediction Errors (Equal)(it)
+ v5Past Gambles (Equal)(it) + v6Past Changes in Emotional Valence (Equal)(it)

6. Participant + Current Trial Model

⌘(it) =w0 + w1College(i) + w2Gender(i) + w3Diagnosis(i) + w4Emotional Valence(i)
+ w5Expected Reward(it) + w6Gamble Outcome Range(it)

7. Participant + Past Trials Model

⌘(it) =w0 + w1College(i) + w2Gender(i) + w3Diagnosis(i) + w4Emotional Valence(i)
w5Past Rewards (Equal)(it) + w6Past Reward Prediction Errors (Equal)(it)
+ w7Past Gambles (Equal)(it) + w8Past Changes in Emotional Valence (Equal)(it)

8. Participant + Current Trial + Past Trials Model

⌘(it) =w0 + w1College(i) + w2Gender(i) + w3Diagnosis(i) + w4Emotional Valence(i)
+ w5Expected Reward(it) + w6Gamble Outcome Range(it)
+ w7Past Rewards (Equal)(it) + w8Past Reward Prediction Errors (Equal)(it)
+ w9Past Gambles (Equal)(it) + w10Past Changes in Emotional Valence (Equal)(it)
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To preprocess the covariates, we converted binary features (college, gender,
diagnosis) to 0 or 1, and we scaled all other parameters to have a standard
deviation of 1. To evaluate models we looked towards prediction and inference.
For prediction, in this paper we report the results of leave-one-out between-
subject cross validation (Appendix A) We performed McNemar tests to evaluate
whether one model had a significantly smaller or higher rate of classification than
another model.

For the purpose of inferring the set of useful variables to include in models, we
used likelihood ratio tests to compare nested models. We are interested in which
models generate predictions that yield significantly higher likelihood of the data
than that of the global mean model. We are also interested in determining
whether a combined model of all the covariates generates predictions that yield
a significantly higher likelihood of the data than smaller models that rely on
only a subset of the covariates.

A.2 Results
We found models for this data set that predicted decisions throughout the gam-
bling task better than chance. Relative to the global mean model that uni-
formly predicted a 0.55 chance of risk-taking during the gambling task, we
found promising predictive models (models 4,5,6,7,8, Table B.1) of risk-taking
that satisfied the following properties

• accuracy was higher, AUC was higher, cross-entropy loss was lower in
leave-one-subject-out cross validation

• rate of incorrect classification in leave-one-subject-out cross validation was
significantly lower (McNemar Test, p < 0.01)

• likelihood of the data was significantly higher (likelihood ratio test, p <
0.01)

We can also focus on drawing conclusions about the individual sets of covari-
ates (participant covariates, current trial covariates, and past trial covariates)
and combinations of these sets based on their predictive and inferential perfor-
mance.

We reject the null hypothesis that the participant characteristics are not
predictive of gambling. We accept the alternative hypothesis that participant
characteristics are informative of gambling. In a leave-one-subject-out cross
validation, the participant model did not have higher accuracy than the global
mean model (Table B.2). Relative to the global mean model, the additional
participant specific parameters of college, gender, depression, and emotional
valence significantly improved the likelihood of data (likelihood ratio test p <
0.01, Table B.5).

We accept the alternative hypotheses that considering both current trial
parameters and summaries of past trials is both predictive and informative
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of gambling. In a leave-one-subject-out cross validation, the trial models had
higher accuracy, higher AUC and lower loss than the global mean model (Ta-
ble B.2). The models of past trials had significantly better prediction than the
global mean model (McNemar test p < 0.01, Table B.3). Relative to the global
mean model, adding the covariates corresponding to the current trial (current
expected reward, current gambling range) did not significantly improve the like-
lihood of the data relative to predicted model parameters(likelihood ratio test
p > 0.01, Table B.5); however, adding covariates corresponding to the current
trial (current expected reward, current gambling range) and past trials (past
choices to gamble, past changes in emotional valence, past rewards, past reward
prediction errors) or just the covariates summarizing past trials did significantly
improve the likelihood of the data relative to the predicted model parameters
(likelihood ratio test p < 0.01, Table B.5). This indicates that the set of covari-
ates related to the past trials or the combination of all covariates related to the
current trial or past trials is informative of gambling.

We accept the alternative hypotheses that the set of all covariates is informa-
tive and predictive of gambling relative to having no covariates. We sometimes
accept the alternative hypothesis that the set of all covariates is more infor-
mative and predictive of gambling than using only some of the covariates. In
a leave-one-subject-out cross validation, the full model had higher accuracy,
higher AUC, and lower cross entropy loss than the global mean model and some
of the models that only used some a subset of the covariates (Table B.2). The
full model that included all covariates from the participant, the current trial,
and past trials had significantly better prediction than the global mean model
(McNemar Test p < 0.01, Table B.3) and some of the models that only used
some a subset of the covariates (McNemar Test p < 0.01, Table B.4). The full
model also had significantly higher likelihood than some of the models that used
only subset of the covariates (likelihood ratio test p < 0.01, Table B.6).
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Table B.1: Summary of Models To Beat The Baseline For each model, we evaluated it
is predictive ability during a leave-one-subject-out cross validation using accuracy (ACC), area
under the receiver operating characteristic curve (AUC), and cross entropy loss (Loss). We
compared these performance metrics to those of the global mean model. For each model, we
also conducted a McNemar Test to test if the model misclassified trials significantly less than
the global mean model (p < 0.01). For each model, we also conducted a likelihood ratio test
(LRT) to test if the additional covariates were significantly informative of gambling (p < 0.01).
We labeled the additional covariates as informative if the LRT had a significant p-value. For
model n, we labeled the additional covariates as predictive if relative to the baseline, it had
higher accuracy, higher AUC, lower Loss, and significantly fewer misclassifications (McNemar
p < 0.01). ’Additional Covariates’ columns are relative to the global mean model which had
no covariates.

Model greater
accuracy

greater
AUC

smaller
loss

McNemar
p <0.01

LRT
p <0.01

additional
covariates
informative

additional
covariates
predictive

1 False False False False False False False
2 False True False False True True False
3 True True True True False False True
4 True True True True True True True
5 True True True True True True True
6 True True True True True True True
7 True True True True True True True
8 True True True True True True True

Table B.2: Predictive Modeling Results of Between-Subject Cross-Validation.
For each model, we use leave one out cross validation on n = 20 participants and evaluate
predictions. Better models have higher accuracy, higher area under the receiver operating
characteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for
area under receiver operating characteristic curve. Loss indicates cross-entropy loss. Bolds
indicated most desirable value among the models.

Model # Model ACC AUC Loss
1 Global Mean 0.500 0.374 4.0E-04
2 Participant 0.479 0.501 4.0E-04
3 Current Trial 0.668 0.702 3.6E-04
4 Past Trials 0.591 0.622 3.8E-04
5 Current Trial + Past Trials 0.684 0.739 3.4E-04
6 Participant + Current Trial 0.664 0.698 3.6E-04
7 Participant + Past Trials 0.579 0.622 3.8E-04
8 Participant + Current Trial + Past Trials 0.669 0.734 3.5E-04
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Table B.3: McNemar Test To Beat The Baseline. We performed McNemar tests to
see if models significantly out predicted risk-taking relative to the global mean model.

Model Model Name statistic p-value
2 Participant 0.0 1.0
3 Current Trial 267.0 5.8e-15
4 Past Trials 178.0 4.9e-07
5 Current Trial + Past Trials 231.0 2.5e-20
6 Participant + Current Trial 266.0 2.4e-14
7 Participant + Past Trials 192.0 5.9e-05
8 Participant + Current Trial + Past Trials 242.0 1.1e-16

Table B.4: McNemar Test Against the Full Model. We performed McNemar tests to
see if the full model using covariates from participants, current trial, and past trials signifi-
cantly out predicted other models.

Model Model Name statistic p-value
1 Global Mean 242.0 1.1e-16
2 Participant 223.0 9.6e-25
3 Current Trial 134.0 0.76
4 Past Trials 213.0 2.3e-06
5 Current Trial + Past Trials 38.0 0.017
6 Participant + Current Trial 126.0 0.50
7 Participant + Past Trials 200.0 1.4e-08

Table B.5: Likelihood Ratio Tests To Beat The Baseline. We performed likelihood
ratio tests for nested models. Model numbers correspond to Table B.2. Dev. stands for
deviance and p stands for p-value.

Model Model Name DF Dev. p
2 Participant 4 1588.5 2.2e-16
3 Current Trial 2 0.624 0.73
4 Past Trials 4 4285.9 2.2e-16
5 Current Trial + Past Trials 6 4288.2 2.2e-16
6 Participant + Current Trial 6 4288.2 2.2e-16
7 Participant + Past Trials 8 4813.8 2.2e-16
8 Participant + Current Trial + Past Trials 10 4816.5 2.2e-16
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Table B.6: Likelihood Ratio Tests Against the Full Model. We performed likelihood
ratio tests for nested models. Model numbers correspond to Table B.2. Dev. stands for
deviance and p stands for p-value.

Model Model Name DF Dev. p
1 Global Mean 10 4816.5 2.2e-16
2 Participant 6 3227.9 2.2e-16
3 Current Trial 8 4815.8 0.73
4 Past Trials 6 530.53 2.2e-16
5 Current Trial + Past Trials 4 528.26 2.2e-16
6 Participant + Current Trial 4 3227.8 2.2e-16
7 Participant + Past Trials 2 2.6 0.26

A.2 Discussion
We found models that significantly outperformed guessing by chance. This is
promising to indicate that we can answer our research question with respect to
models that predict better than chance.

Additionally, our models revealed trends similar to scientific literature about
risk-taking. We didn’t draw any conclusions about whether participant charac-
teristics were predictive of gambling, but our data rejected a null hypothesis in
thus supported an alternative hypothesis that participant characteristics were
informative of gambling, which is consistent with literature [12] [11]. We did
find that considering current and past trial parameters was predictive and in-
formative of gambling, which is consistent with some scientific literature about
the task itself affecting risk-taking [18] [17] [10].

We also found evidence that a combination of all the covariates is predic-
tive and informative of gambling relative to no information and is sometimes
predictive and sometimes informative relative to only some covariates. In our
hypothesis test, we will rely on models which use a combination of covariates to
model risk-taking.
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Appendix C

Scientifically Supported
Hypotheses About Directions
of How Covariates Affect
Emotional Valence and
Risk-Taking In Our Data Set

Question: Is the data inconsistent with scientifically established null hypothe-
ses about how covariates affect emotional valence and risk-taking?

Answer: No, we do not have evidence that our data is inconsistent with scien-
tifically established null hypotheses. Moreover, using our data, we successfully
failed to reject the scientifically informed null hypothesis about how covariates
affect emotional valence and risk-taking.

Implications for Hypothesis Test: Based on our testing, we did not find
evidence that our data is inconsistent with the presented scientific hypotheses
about emotional valence and risk-taking.

Scientific literature has already proposed how some covariates affect emo-
tional valence and risk-taking. In this experiment, we were testing

• if a statistical test on our data supported we reject these established null
hypotheses. If so, then we detected significant deviations in our data from
null hypotheses of existing literature, which is an indication that our data
is inconsistent with scientific literature.

• if a statistical test on our our data failed to reject these established null
hypotheses. If so, then we detected not significant deviations in our data
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from null hypotheses of claims in existing literature. From these tests
alone, we wouldn’t have evidence to say our data is inconsistent with
hypotheses in scientific literature.

A.3 Methods
We wanted to test if our data suggested we reject a scientifically established null
hypothesis that people with depression have lower emotional valence than people
without depression. We calculated an estimated difference and a confidence
interval of the difference, then we used a t-test to see if the observed test statistic
suggests we reject the scientifically informed null hypothesis. Using a t-test isn’t
exactly correct because average emotional valence is bounded between [0, 1] and
not normally distributed. Also, average emotional valence is not the same for
all members each group. Still, this test is useful to see if the data indicates we
reject or fail to reject an established, scientifically informed null hypothesis.

We wanted to test if our data suggested we reject scientifically established
null hypothesis about the odds ratio of gambling between two groups with differ-
ent characteristics. We calculated an estimate of the odds ratio and confidence
intervals for the odds ratio, then used a Fisher’s exact test to see if the observed
test statistic suggests we reject the scientifically informed null hypothesis. Using
the Fisher’s exact test is incorrect because many subject characteristics influ-
ence gambling rate so not all participants in the same group have a gambling
rate drawn from the same distribution. Still, this test is useful to see if the data
indicates we reject or fail to reject three established, scientifically informed null
hypotheses.

A.3 Results
Our data did not indicate we should reject scientifically informed null hypotheses
about how participant characteristics inform average emotional valence (depres-
sion) and risk-taking rates (age, gender, depression diagnosis).
Emotional Valence

According to [12], people with depression have lower average emotional va-
lence than healthy controls. Using a t-test in our data set, we successfully fail
to reject this null hypothesis. The null hypothesis was that the difference in
average emotional valence of healthy participants and depressed participants
> 0. In our data, participants with depression were closer to unhappy on aver-
age (average = 0.46; Figure C.1) than healthy controls (average = 0.63; Figure
C.1) and we successfully failed to reject the null hypothesis that people with
depression have lower average emotional valence than healthy controls (95% CI
of difference [�1, 0.267], estimated difference = 0.175, t = 3.28, p-value =
0.99).
Risk-Taking

According to [12], older people gamble at lower rates. Using a Fisher’s
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Figure C.1: The average emotional valence was centered at 0.54 with range 0.26, 0.89.
Participants with depression had a lower average emotional valence than healthy participants
(0.46 < 0.63)

exact test in our data, we successfully failed to reject this null hypothesis. The
null hypothesis corresponds to the odds ratio of gambling in college students
to gambling in adolescents  1. In our data, older participants gambled less
than younger patients and we successfully failed to reject the null hypothesis
that older participants gambled less than younger participants (college students’
gambling rate = 0.51; adolescents’ gambling rate = 0.59; 95% CI of odds ratio
[0.61, 1], odds ratio estimate = 0.72, p-value =0.9997; Figure C.2a).

According to [11], men gamble more than women. Using a Fisher’s exact
test, we successfully failed to reject this null hypothesis. The null hypothesis
corresponded to the odds ratio of gambling in men to gambling in women� 1. In
our data, men gambled at a similar rate as women, and we successfully could not
reject the null hypothesis that men gamble more than women (male gambling
rate = 0.547; female gambling rate = 0.553; 95% CI of odds ratio [0.82, 1],
odds ratio estimate = 0.97, p-value = 0.625; Figure C.2b).

According to [13] [14] [15], we are unsure of the relationship between depres-
sion and risk-taking. Using a Fisher’s exact test, we successfully fail to reject
this null hypothesis. The null hypothesis corresponds to the odds ratio of gam-
bling in participants with depression to gambling in healthy participants = 1. In
our data, patients with depression gambled at a similar rate as healthy partici-
pants and we successfully could not reject the null hypothesis that participants
with depression and healthy participants gambled at the same rate (depression
gambling rate = 0.552; healthy gambling rate = 0.551; 95% CI of odds ratio
[0.83, 1.22], odds ratio estimate = 1.01, p-value ' 1; Figure C.2c).

A.3 Discussion
Overall, our data does not indicate we should reject scientifically validated null
hypotheses of how age [12], gender [11], and depression [13] [14] [15] affect risk-
taking. This is not the only way our data could indicate trends which are
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(a) By Age

(b) By Gender (c) By Depression

Figure C.2: Participant’s gambling rate varied from 26 % to 70 %, with an average gambling
rate of 55 %. Adolescent participants gambled more than college students (college students’
gambling rate = 0.51, adolescents’ gambling rate = 0.59). Females and males gambled at a
similar rate (female gambling rate = 0.547, male gambling rate = 0.553). Participants with
depression and healthy participants gambled at a similar rate (depression gambling rate =
0.552, healthy gambling rate = 0.551).

inconsistent with scientific literature, future studies could examine other ways
our data supports trends inconsistent with scientific literature.
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Appendix D

Model Behavior Across
Regularization and Data
Resamplings

Question: Are the estimated directions of the effects of covariates on risk-taking
unstable across different levels of regularization or across different resamplings
of the subjects?

Answer: No and sometimes. The estimated directions of the effects of co-
variates on risk-taking are the same even over a large grid of L1 regularization
values. For some of the covariates, the estimated direction of the covariate’s
effect on risk-taking stayed the same across resamplings. For other covariates,
the estimated direction of the covariate’s effect on risk-taking did change across
resamplings. Later in this part of the thesis, we will try to use other models
with more flexible effects which are scientifically informed, which might better
capture true effects and better generalize to different data sets. This experiment
is not statistically rigorous but is instead meant to be exploratory.

Implications for Hypothesis Test: Our exploratory data analysis indicate
that in our fitted prediction functions, the estimated directions of effects of
covariates in on the response do not change despite different levels of regular-
ization. The estimated directions of effects of covariates on the response do
change signs when we build prediction functions on different resamplings of the
data. We are not doing inference on the direction of the effect of emotional va-
lence on risk-taking; however, these results suggest we need to be careful about
generalizing models to other data sets.

In this experiment, we wanted to examine if the directions of estimated
effects drastically changed in models built under different levels of regularization
or built based on different resamplings of the subjects. If either were the case,
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we would be cautious to claim these directional effects were generalize to other
data sets. This experiment is not statistically rigorous but is instead meant to
be exploratory.

A.4 Methods
We were interested how the direction of estimated effects in a logistic regression
of the probability of gambling changed depending on our level of L1 regulariza-
tion and depending on the resampling of the dataset we used to fit the prediction
function. We based our methods on a paper about stability selection [30]. We
used the following logistic regression model that included all the covariates re-
lated to the participant, the current trial, and previous trials

for subject i on trial t, we modelled the log-odds of the probability of gam-
bling, ⌘(it) as a linear combination of features:

⌘(it) =w0 + w1College(i) + w2Gender(i) + w3Diagnosis(i) + w4Emotional Valence(i)
+ w5Expected Reward(it) + w6Gamble Outcome Range(it)
+ w7Past Rewards (Equal)(it) + w8Past Reward Prediction Errors (Equal)(it)
+ w9Past Gambles (Equal)(it) + w10Past Changes in Emotional Valence (Equal)(it)

A.4.1 Regularization Path
We were interested in a L1 regularization grid � 2 {e i

2 } for i = �8,�7, ..., 19, 20
which corresponds to approximately � 2 [10

�2, 10�4
]. For each L1 regulariza-

tion level �, we fit a logistic regression prediction function and recorded the
beta weight assigned to each covariate. We plotted all these beta weights for all
these covariates for all � 2 {e i

2 } for i = �8,�7, ..., 19, 20.

A.4.2 Stability Path
We calculated a stability for a covariate Xj in a logistic regression model trained
on all covariates subject to � level L1 regularization. We created many subsam-
pled data sets, by sampling n/2 out of n participants in the train set. There
are n-choose-(n/2) (ie O(n2

)) possible data sets, but we only sampled 100 (ie
O(n)) at random to save computational cost. For each subsampled data set, we
fit a L1-regularized logistic regression at strength �. We chose L1 regularization
because it shrinks coefficients to zero for variables with low predictive value.
For a given covariate Xj , we checked the signs (+1, 0, or -1) of its coefficient
across subsamples to see if the signs were the same across subsamples. We
defined stability+ as the percentage of positive signed beta weights of Xj in
the 100 models fit to the 100 resamplings of data. We defined stability- as the
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percentage of negative signed beta weights of Xj in the 100 models fit to the
100 resamplings of data.

A.4 Results
From our exploratory data analysis, our models’ estimated directions of effects
were not sensitive to this range of regularization strengths. On the other hand,
for only some covariates, the estimated direction of the effect of the covariates
on risk-taking was the same across resamplings of the data and stayed the same
across the grid of regularization strengths.

A.4.1 Regularization Path
For each covariate, the estimates of the effect of the covariate on risk-taking
sign( ˆ��

j ) in L1 regularized logistic regression prediction functions were either all
� 0 or all  0, so they did not change sign throughout the grid of regularization
strengths (Figure D.1). This indicates that our models’ estimated directions of
effects were not sensitive to this range of regularization strengths.

A.4.2 Stability Path
For some of the covariates, such as expected reward, depression, past gambles,
and college, either stability+ or stability- was at 100% until both were at 0%
for large enough regularization � (Figure D.2), which indicates that for these
covariates, the estimated direction of the effect of the covariates on risk-taking
was the same across resamplings of the data and stayed the same (or the beta
weight was estimated to be 0) across the grid of regularization strengths.

On the other hand, for some covariates, the stability+ and stability- were
lower than 100% and greater than 0% at many levels of regularization, which
indicates that the estimated direction of the effect of the covariates on risk-
taking varied across resamplings of the data (Figure D.2).

A.4 Discussion
It is promising that our models estimate the same direction of an effect for
all covariates across a grid of regularization strengths. When we resample our
data, some of the estimated directions of the effect of a covariate on risk-taking
change, which could indicate that something about our models does not gen-
eralize to different resamplings. Scientific literature already suggests that the
same covariate can either increase or decrease risk-taking behavior [18]. We
are motivated to examine more flexible effects (see later experiments) than the
unidirectional effects we tested in this simple logistic regression model.
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Figure D.1: The regularization path of all covariates. The x-axis is a log scale of regular-
ization strengths, �. The y-axis is the estimated beta weight �̂�

j for each covariate Xj at
regularization strength �. The black line indicates �̂�

j = 0.
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Figure D.2: The stability+ and stability- path of all covariates. The x-axis is a log scale
of regularization strengths, �. The y-axis is stability+ and stability- for each covariate Xj at
regularization strength �. The black line indicates 50%.
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Appendix E

Methods for Fitting Neural
Networks

here

A.5.1 Prediction Function
We built the neural networks in Python using the tensorflow package. Let ⌘i
be a 2 layer, 5-node per layer, fully connected neural network. Each layer was
fully connected with a sigmoid activation function. We tuned weights with the
Adams optimizer set at learning rate= 0.001. We used adversarial noise [31] for
✏ 2 [10, 5, 1, 1e�1, 1e�2, 1e�3, 1e�4]. For every data point we would augment
our data set with an adversarial data point which was formed using a small but
worst-case perturbation on the original data point. Specifically, as in previous
literature [31], we created an adversarial example with covariate value uniformly
picked [0, ✏] away from the original data point in the direction of the gradient of
the original data point, with a response value the opposite of the original data
point. We used l1 regularization for � 2 [1e�1, 1e�2, 1e�3, 1e�4]. We selected
hyperparameter pairs (✏,�) by searching the grid of possibilities and picking the
pair which yielded weights that were ’stable’ (defined below) and the highest
leave-one-participant-out cross validated accuracy. We examined the ’stability’
of weights as follows. For each tuple, we drew 4 bootstrap samples from the
original data set, building 5 models (1 for the original data set, 1 for each of 4
bootstrap samples), then we took examined for each covariate Xi, the mean @⌘

i

@X
i

evaluated at each data point. These means indicated the estimated direction of
unidirectional effect the covariate had on risk-taking. We considered the model
’stable’ under (✏,�) if 4 out of the 5 models had the same estimated direction
(i.e. � 4 +’s or � 4 -’s) for all the covariates.
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A.5.2 Smoothing The Gradient Vector and Hessian Ma-
trix

For the neural network, we used the automatic differentiator in the tensorflow
package and evaluated the estimated gradient vector and estimated Hessian ma-
trices of ⌘it with respect to all covariates at each observation of participant i in
trial t for all i, t, then averaged across observations. For the neural network, we
wanted to smooth out gradient estimates and Hessian matrix element estimates
with smooth gradient [27] so our estimates were less sensitive to randomness
in the tuning process. We used smooth gradient at strengths ✏ = 0.2, n = 50.
We also tried ✏ = 1.0, 5.0 but noticed this zeroed our average gradient values.
That is, for each observed data point we directed calculated the gradients and
Hessian matrices at our observed data point and at n points within a ✏�radius
sphere of our observed data point, then averaged the n + 1 values to estimate
the gradient and Hessian at that data point. By choosing ✏ = 0.2 assume that
the ratio of signal to noise is 1: 0.2, which is recommended by the literature
[27]. We also chose to examine 50 additional points which is also recommended
by literature. [27].
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Appendix F

Models with Flexible
Relationships Between
Emotional Valence and
Risk-Taking

Question: Do models learn flexible relationships between emotional valence
and risk-taking?

Answer: We have some evidence that they do. This experiment is exploratory
instead of statistically rigorous.

Question: Does considering other more flexible relationships between emo-
tional valence and risk-taking compromise predictive ability?

Answer: No.

Implications for Hypothesis Test: It is promising that our generative mod-
els which are designed to detect flexible and scientifically informed relationships
might actually detect nonzero flexible relationships between emotional valence
and risk-taking without compromising predictive ability.

We will examine if models which consider unidirectional, bidirectional, and
moderator effects between emotional valence and risk-taking predict risk-taking
any worse than models which only consider unidirectional effects. All the models
used the same structure of generative models that predicted the log odds of
gambling at any trial for any participant as ⌘i. We have nonzero evidence
that models learned some of these effects with no worse prediction than models
which did not consider these effects. This experiment is exploratory instead of

78



statistically rigorous.

A.6 Methods
We build three models, one that does not detect flexible relationships between
emotional valence and risk-taking, and two that do.

• Model 1: Logistic Regression with Explicitly Coded unidirectional Effects.
Set ⌘i as a linear combination of the covariates below:

– college
– gender
– depression
– emotional valence
– expected reward
– gambling range
– past rewards
– past reward prediction errors
– past gambles
– past changes in emotional valence

• Model 2: Flexible Logistic Regression with Explicitly Coded unidirec-
tional, bidirectional, and Moderator Effects. Set ⌘i as a linear combina-
tion of the below covariates Xj and their second order forms XjXi for all
i 6= j and X2

j

– college
– gender
– depression
– emotional valence
– expected reward
– gambling range
– past rewards
– past reward prediction errors
– past gambles
– past changes in emotional valence

• Model 3: Neural Network with Implicitly Coded unidirectional, bidirec-
tional, and Moderator effects. Set ⌘i as a 2 layer, 5-node per layer, fully
connected neural network with the same covariates as model 1 and 2, ex-
cept used the nonbinary form when available (age instead of college and
depression severity instead of depression)
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– age
– gender
– depression severity
– emotional valence
– expected reward
– gambling range
– past rewards
– past reward prediction errors
– past gambles
– past changes in emotional valence

We built the logistic regressions in Python using sklearn. For the flexi-
ble logistic regression, we used elastic net regularization at levels l1-ratio in
[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,

0.8, 0.85, 0.9, 0.95] and ↵ in [1e� 07, 1e� 06, 1e� 05, 0.0001, 0.001, 0.01, 0.03,
0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19]. We decided on a l1-ratio, ↵ pair based
on which achieved the highest balanced accuracy in leave-one-out cross valida-
tion.

We built the neural networks as explained in Appendix E
For predictive performance of each of the models, we report three measures

of success in a leave-one-out between-subject cross-validation (Appendix A).

A.6 Results
We have nonzero evidence that both models picked up on flexible relationships
between emotional valence and risk-taking.

A.6.1 Flexible Logistic Regression
We have some exploratory, not statistically rigorous evidence that the flexible
logistic regression found flexible unidirectional, bidirectional, and moderator
effects of covariates on risk-taking. We chose l1-ratio, ↵ = 0.65, 0.001 which
maximized predictive performance.

Unidirectional Effects Xj

For any logistic regression model of probability of gambling, one indication
that a covariate Xj had a unidirectional effect on the probability of risk-taking
P(Yit = 1) = logit(⌘it) is if the gradient entry of Xj : @⌘

@X
j

is nonzero. We
can estimate this quantity with the estimated beta-weight for Xj : ˆ�j . For the
flexible logistic regression model, many values had nonzero ˆ�j with the largest
ˆ�j = 1.8 (Figure F.1), indicating that the flexible logistic regression model might
have picked up on unidirectional effects. This is completely exploratory, because
we didn’t set up a hypothesis test for ˆ�j 6= 0.
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Figure F.1: The estimated gradient of ⌘ with respect to covariates. The numbered covariates
corresponded to 0 = ’college’, 1 = ’gender’, 2 = ’depression’, 3= ’emotional valence’, 4 =
’expected reward’, 5= ’gambling range’, 6= ’past rewards’, 7= ’past reward prediction errors’,
8= ’past gambles’, 9 =’past changes in emotional valence’

bidirectional Effects X2
j

One indication that a covariate Xj had a bidirectional effect on the probabil-
ity of risk-taking P(Yit = 1) = logit(⌘it) is if the Hessian matrix diagonal entry
of Xj : @2⌘

@X2
j

is nonzero. For the logistic regression, we can estimate this quantity

with the estimated beta-weight for X2
j : ˆ�jj . For the flexible logistic regression

model, many values had nonzero ˆ�jj with the largest ˆ�jj = 0.40 (Figure F.2),
indicating that the flexible logistic regression model might have picked up on
bidirectional effects. This is completely exploratory, because we didn’t set up a
hypothesis test for ˆ�jj 6= 0.

Moderator Effects Xj ·Xi

One indication that a covariate Xj had a moderator effect on the probability
of risk-taking P(Yit = 1) = logit(⌘it) is if the Hessian matrix off-diagonal entry
of Xji: E(

@2⌘
@X

j

@X
i

) is nonzero. For the logistic regression, we can estimate this
quantity with the estimated beta-weight for Xj ·Xi: ˆ�ji. For the flexible logistic
regression model, many values had nonzero ˆ�ji with the largest ˆ�ji = 2.12
(Figure F.2), indicating that the flexible logistic regression model might have
picked up on moderator effects. This is completely exploratory, because we
didn’t set up a hypothesis test for ˆ�ji 6= 0.

Overall, the estimated gradient vector and estimated Hessian matrix cor-
responded to estimated � weights assigned to Xi and Xi ·Xj respectively and
since many of the entries of the estimated gradient and estimated Hessian matrix
values were nonzero. These results are exploratory (not statistically rigorous)
evidence that the logistic regression did learn unidirectional, bidirectional and
moderator effects between covariates and risk-taking.
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Figure F.2: The estimated Hessian matrix of ⌘ with respect to covariates. The numbered
covariates corresponded to 0 = ’college’, 1 = ’gender’, 2 = ’depression’, 3= ’emotional valence’,
4 = ’expected reward’, 5= ’gambling range’, 6= ’past rewards’, 7= ’past reward prediction
errors’, 8= ’past gambles’, 9 =’past changes in emotional valence’

A.6.2 Neural Network
We settled on the hyperparameters � = 0.01 for l1 regularization and ✏ = 0.0001
for adversarial noise. We have some exploratory evidence that the neural net-
work detected some nonzero flexible on-direction, bidirectional, and moderator
effects.

Unidirectional Effects Xj

We can test for unidirectional effects Xj by looking at the average gradi-
ent of ⌘ with respect to each covariate. While it is hard to say what it would
mean for a neural network to detect a unidirectional effect, we can examine the
average gradient of ⌘ (subject to a smoothing procedure [27]) with respect to
a covariate as an indication that the neural network detected a unidirectional
effect on risk-taking. If the average gradient across is large, this is some ex-
ploratory evidence that the neural network has learned a unidirectional effect.
For the neural network model we trained, some average estimated gradients
were nonzero (Figure F.3a), with the largest average gradient at 1.25 indicating
that our neural network may have learned some unidirectional effects of the
covariates on risk-taking.

bidirectional Effects X2
j

We can test for moderator effects X2
j by looking at the values of diagonal

Hessian entries of ⌘ with respect to covariates Xj for all j. This is because each
Hessian matrix entry @2⌘

@X2
j

is an indication for how a function of risk-taking ⌘

changes with respect to one covariate X2
j .

In our data, we can evaluate a Hessian matrix for each data point, subject
to a smoothing procedure [27]. It is hard to say what a bidirectional effect looks
like with respect to the Hessian matrices for all data points. We posit that if
the average of the Hessian matrices over all data points is nonzero on diagonal
entries, then we have some evidence that the neural network is learning some

82



(a) Average Gradient (b) Standard Deviation of Gradient

Figure F.3: The average and standard deviation of the estimated gradient of ⌘ with respect
to a covariate evaluated at all data points corresponding to all participants and all trials.
The numbered indices correspond to 0 = ’gender’, 1 = ’depression severity’, 2= ’emotional
valence’, 3 = ’expected reward’, 4 = ’gambling range’, 5 = ’age’, 6 =’past rewards’, 7 =’past
reward prediction errors’, 8= ’past gambles’, 9 =’past changes in emotional valence’.

bidirectional effects of Xj on Y . Indeed, we found some nonzero diagonal entries
on the averaged Hessian, with magnitude up to 0.02 (Figure F.4a). Also, we
posit that if the majority of entries are all positive or all negative, then we have
some evidence that the neural network is learning some bidirectional effects of
Xj on Y . To quantify this concept, we define prevalence of j as the difference
in the ratio of jjth Hessian matrix entries which are positive and the ratio
of jjth Hessian matrix entries which are negative, so that larger magnitude
of prevalence indicates that many of the Hessian matrix entries were of the
same sign. In our neural network, some of the prevalence values of some of the
covariates were nonzero (Figure F.4b), with magnitude up to 0.13 which provides
some evidence that the neural networks are learning bidirectional relationships
between the covariates and the probability of gambling.

Moderator Effects Xj ·Xi

We can test for moderator effects Xj · Xi by looking at the off-diagonal
Hessian value of ⌘ with respect to covariates Xj , Xi for i 6= j. This is because
the Hessian entries @2⌘

@X
i

@X
j

are a proxy for how a function of risk-taking ⌘

changes with respect to two covariates Xj , Xi.
In our data, we can evaluate a Hessian matrix for each data point. It is hard

to say what a moderator effect looks like with respect to the ijth entries of the
Hessian matrices for all data points. We posit that if the average of the Hessian
matrices over all data points is nonzero on off-diagonal entries, then we have
some evidence that the neural network is learning some moderator effects of Xj

on the relationship between Xi and Y . Indeed, we found some nonzero diagonal
entries on the averaged Hessian, with magnitude up to 0.04 (Figure F.4a). Also,
we posit that if the majority of entries are all positive or all negative, then this
is some evidence that the neural network is learning some moderator effects of
Xj · Xi on Y . To quantify this concept, we examine prevalence of ij as the
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difference in the ratio of ijth Hessian matrix entries which are positive and the
ratio of ijth Hessian matrix entries which are negative, so that larger magnitude
of prevalence indicates that many of the Hessian matrix entries were of the same
sign. In our neural network, some of the prevalence values were nonzero (Figure
F.4b), with magnitude up to 0.26, which provides some evidence that the neural
networks are learning moderator relationships between the covariates and the
probability of gambling.

(a) Average Hessian

(b) Prevalence

Figure F.4: The prevalence values, positive ratio, and negative ratio of each entry of the
Hessian matrix of ⌘ with respect to two covariates. The numbered indices correspond to 0
= ’gender’, 1 = ’depression severity’, 2= ’emotional valence’, 3 = ’expected reward’, 4 =
’gambling range’, 5 = ’age’, 6 =’past rewards’, 7 =’past reward prediction errors’, 8= ’past
gambles’, 9 =’past changes in emotional valence’.

A.6.3 Prediction
The models which can learn nonlinearities did no worse at prediction than the
model that can’t.
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Table F.1: Predictive Modeling Results of Between-Subject Cross-Validation.
For each model, we use leave one out cross validation on n = 20 participants and evaluate
predictions. Better models have higher accuracy, higher area under the receiver operating
characteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands
for area under receiver operating characteristic curve. Loss indicates cross-entropy loss. The
neural network was trained with � = 1e� 3, ✏ = 1e� 2

Model # Model ACC AUC Loss
1 Logistic Regression 0.66 0.712 3.57E-04
2 Flexible Logistic Regression (All Effects) 0.670 0.708 3.62E-04
3 Neural Network (All Effects) 0.683 0.683 3.36E-04
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Appendix G

Types of Serial Position
Effects of Covariates For
Prediction

Question: How do we build models which summarize the past trials?
Answer: We can reduce the computational complexity of our analysis by
choosing a specific version of covariates related to the past. We chose past
changes in emotional valence (primacy), past gambles (equal/ no effect), past
rewards (primacy), and past reward prediction errors (recency) which yielded
the best predictive performance (by virtue of numerical comparison instead of
statistical testing).
Implications for Hypothesis Test : In the hypothesis test, we build models
which use the following specific versions of covariates which summarize the past:
past changes in emotional valence (primacy), past gambles (equal/ no effect),
past rewards (primacy), and past reward prediction errors (recency).

We have three versions (primacy, recency, no effect/ equal) for each of four
covariates which summarize the past (past changes in emotional valence, past
gambles, past rewards, and past reward prediction errors) which yields 34 = 81

combinations of covariates. Instead of building models for all combinations of
covariates, in this experiment, we build 12 models to pick just one combination
of covariates. Then, in our hypothesis test we rely on only this combination
instead of modeling all 81 possible combinations.

A.7 Methods
We relied on 12 logistic regressions models that each predicted the probability
of gambling based on only one covariate. The covariate was one of the three
serial position effects (primacy, recency, no effect/ equal) for each of the four
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covariates which summarize the past (past changes in emotional valence, past
gambles, past rewards, and past reward prediction errors). Moreover, for subject
i on trial t, we modeled the log odds of gambling, ⌘it, as is a linear transformation
of that one covariate.

• Model 1: ⌘(it) = w0+w1Past Changes in Emotional Valence (Primacy)(it)

• Model 2: ⌘(it) = w0+w1Past Changes in Emotional Valence (Recency)(it)

• Model 3: ⌘(it) = w0 + w1Past Changes in Emotional Valence (Equal)(it)

• Model 4: ⌘(it) = w0 + w1Past Gambles (Primacy)(it)

• Model 5: ⌘(it) = w0 + w1Past Gambles (Recency)(it)

• Model 6: ⌘(it) = w0 + w1Past Gambles (Equal)(it)

• Model 7: ⌘(it) = w0 + w1Past Rewards (Primacy)(it)

• Model 8: ⌘(it) = w0 + w1Past Rewards (Recency)(it)

• Model 9: ⌘(it) = w0 + w1Past Rewards (Equal)(it)

• Model 10: ⌘(it) = w0 + w1Past Reward Prediction Errors (Primacy)(it)

• Model 11: ⌘(it) = w0 + w1Past Reward Prediction Errors (Recency)(it)

• Model 12: ⌘(it) = w0 + w1Past Reward Prediction Errors (Equal)(it)

To preprocess the covariates, we converted binary features (college, gender,
diagnosis) to 0 or 1, and we scaled all other parameters to have a standard
deviation of 1.

For prediction, we report three measures of success in a leave-one-out between-
subject cross-validation (Appendix A).

For each of the four covariates (past changes in emotional valence, past gam-
bles, past rewards, and past reward prediction errors), we selected the best rep-
resentation of the covariate for the hypothesis test based on which representation
of the covariates yielded a model with the best predictive ability (numerically,
not with a statistical test).

A.7 Results
An estimate of predictive ability of a model trained on each version of the
covariates is shown in Table H.1.

Out of the models trained on different versions of each covariate, the best
estimated predictive ability was for models trained with:
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Table G.1: Predictive Modeling Results of Between-Subject Cross-Validation.
For each model, we use leave one out cross validation on n = 20 participants and evaluate
predictions. Better models have higher accuracy, higher area under the receiver operating
characteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for
area under receiver operating characteristic curve. Loss indicates cross-entropy loss.

Model # Model ACC AUC Loss
1 Past Changes In Emotional Valence Primacy 0.500 0.391 3.97E-04
2 Past Changes In Emotional Valence Recency 0.500 0.402 3.97E-04
3 Past Changes In Emotional Valence Equal/ No Effect 0.500 0.418 3.97E-04
4 Past Gambles Primacy 0.500 0.391 3.99E-04
5 Past Gambles Recency 0.500 0.476 3.98E-04
6 Past Gambles Equal/ No Effect 0.545 0.567 3.92E-04
7 Past Rewards Primacy 0.518 0.541 3.94E-04
8 Past Rewards Recency 0.493 0.465 3.98E-04
9 Past Rewards Equal/ No Effect 0.501 0.426 3.97E-04
10 Past Reward Prediction Errors Primacy 0.499 0.447 3.97E-04
11 Past Reward Prediction Errors Recency 0.500 0.384 3.98E-04
12 Past Reward Prediction Errors Equal/ No Effect 0.497 0.427 3.97E-04

• Past Changes In Emotional Valence Primacy

• Past Gambles Equal/ No Effect

• Past Rewards Primacy

• Past Reward Prediction Errors Recency

A.7 Discussion
In our hypothesis test, we rely on the chosen combination of features that sum-
marize the past, with the best predictive performance in this experiment. This
experiment is not a statistically rigorous way of choosing the best combination
of covariates, but does significantly reduce our computational complexity from
building models for 81 combinations of covariates to building models for just
one combination of covariates.
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Appendix H

Types of Rewards Covariates
For Prediction

Question: How do we build models which account for rewards?
Answer: We can reduce the computational complexity of our analysis by
choosing a specific version of covariates related to rewards. We chose utility-
transformed reward covariates which yielded the best predictive performance
(by virtue of numerical comparison instead of statistical testing)
Implications for Hypothesis Test: In the hypothesis test, we build models
which use utility-transformed covariates.

In modern economic theory, people have utility functions which quantify
customers’ preferences over a set of choices [16]. Some utility functions are
nonlinear, such that linear increases in rewards do not yield linear increases
in utility, in which case looking at utility is not the same as looking at raw
rewards. In this thesis, in our gambling task, it is possible people are making
decisions based on utility instead of raw rewards, so in this analysis we consider
two possible reward covariates: utility function transformed reward covariates
and raw reward covariates.

Then, for our hypothesis test, we can cut the number of models we train in
half by choosing one set of reward covariates instead of building models for both
utility-transformed and raw reward covariates. We decided which set based on
which set of covariates had the best predictive ability in the following experiment
(only based on numerical estimates instead of rigorous statistics).

A.8 Methods
We built two models which predicted the probability of gambling based on only
covariates related to reward. One model used utility-transformed covariates and
the other used raw covariates. Moreover, for subject i on trial t, we modeled
the log odds of gambling, ⌘(it) as a linear combination of covariates.
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• Model 1: Utility-Transformed Rewards

⌘(it) =w0 + w1Expected Utility-Transformed Reward(it)
+ w2Gamble Outcome Range Utility-Transformed (it)

+ w3Past Utility-Transformed Rewards (Primacy)(it)
+ w4Past Utility-Transformed Reward Prediction Errors (Recency)(it)

• Model 2: Raw Rewards

⌘(it) =w0 + w1Expected Reward(it) + w2Gamble Outcome Range(it)
+ w3Past Rewards (Primacy)(it)
+ w4Past Reward Prediction Errors (Recency)(it)

To preprocess the covariates, we converted binary features (college, gender,
diagnosis) to 0 or 1, and we scaled all other parameters to have a standard
deviation of 1. To utility-transform the rewards, we applied a standard utility
function (f(x) = ex

ex+1 � 0.5) to the raw point values and then proceeded with
the rest of our standard covariate construction (Figure 4.1).

For prediction, we report three measures of success in a leave-one-out between-
subject cross-validation (Appendix A).

We selected the best representation of the reward covariates for the hypoth-
esis test based on which representation of the covariates yielded a model with
the best predictive ability.

A.8 Results
An estimate of the predictive ability of each version of the covariates is shown
in Table H.1.

Table H.1: Predictive Modeling Results of Between-Subject Cross-Validation.
For each model, we use leave one out cross validation on n = 20 participants and evaluate
predictions. Better models have higher accuracy, higher area under the receiver operating
characteristic curve, and lower cross-entropy loss. ACC stands for accuracy. AUC stands for
area under receiver operating characteristic curve. Loss indicates cross-entropy loss.

Model # Model ACC AUC Loss
1 Utility-Transformed Rewards 0.677 0.701 3.59E-04
2 Raw Rewards 0.673 0.705 3.58E-04
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The best predictive ability was for the model which used utility-transformed
rewards.

A.8 Discussion
In our hypothesis test, we rely on the utility-transformed reward covariates. This
experiment is not a statistically rigorous way of choosing the best combination of
covariates, but does reduce our computational complexity from building models
for 2 sets of reward covariates to building models for just one set of rewards
covariates.
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Appendix I

Models of Risk-Taking,
Emotional Valence, & Past
Changes in Emotional Valence

A.9 Models of Risk-Taking
We will use the following covariates for risk-taking according to our theoretical
developments and exploratory data analysis.

• age

• college indicator

• gender

• depression indicator

• depression severity

• emotional valence

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect

• past changes in emotional valence primacy
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To preprocess the data, we will encode all binary covariates as 0’s and 1’s, we
will standardize reward covariates to have standard deviation 1, we will center
and standardize all remaining covariates.

As already tested in the exploratory data analysis, we will build two flex-
ible and interpretable generative models of risk-taking designed to pick up on
scientifically informed relationships between emotional valence and risk-taking.
The generative models will use a latent variable enable an interpretation that
mimics human decision making so that the choice for participant i to gamble or
not at trial t is Yit such that:

Yit =

(
1 Zit � 0

0 Zit < 0

and the latent variable Zit is a combination of observed variables Xj and
unobserved variables ✏it. We define ⌘it to be the function of our known covari-
ates of risk-taking and ✏it to be a function of unobserved variables that affect
Zit so that Zit = ⌘it + ✏it

And if we assume the unobserved variables follow a logistic distribution, then

✏it ⇠ Logistic(µ = 0, s = 1)

E(Zit) = E(⌘it) + E(✏it) = ⌘it

P(Yit = 1) = P(Zit � 0)

= P(⌘it + ✏it � 0)

= P(✏it � �⌘it)

= logit(⌘it)

such that covariates effects on ⌘it mirror their effect on the probability of
risk-taking .

We will pick two generative models, a logistic regression and a neural net-
work. We will train both on specific covariates of risk-taking decided in the ex-
ploratory data analysis. We will explicitly encode the logistic regression model
to learn unidirectional, bidirectional, and moderator effects between the covari-
ates and the response, so that each model can detect three hypotheses about
how emotional valence affects risk-taking: the mood-maintenance hypothesis
[17], the affect-infusion model [18], and the reward processing hypothesis [19].
As shown in the exploratory data analysis, we have some exploratory, not sta-
tistically rigorous evidence that both models do pick up on these flexible rela-
tionships between emotional valence and risk-taking.

We will build logistic regressions in Python using sklearn using elastic-net
regularization using l1-ratio, ↵ = 0.65, 0.001 as tuned in the exploratory data
analysis to maximize predictive performance.

We will build neural networks in Python using the tensorflow package. The
neural networks will be 2 layer, 5-node per layer, and fully connected with
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sigmoid activation functions. We will tune weights with the Adams optimizer
set at learning rate= 0.001. We used adversarial noise [31] for ✏ = 0.0001
and l1 regularization for � = 0.01, as tuned in the exploratory data analysis
to achieve baseline stability of estimated gradient vectors and to achieve the
highest predictive accuracy in leave-one-subject-out cross validation across a
grid of (�, ✏) pairs.

A.9 Models of Emotional Valence
For each of the above models of risk-taking, we will also model the conditional
distribution of emotional valence given the other covariates using a linear re-
gression of the other covariates, while modeling the error term as normally
distributed. In [10], the mean of the conditional distribution of emotional va-
lence was informed by exponentially weighted summaries of the past reward
prediction errors, the past rewards from not gambling, and the past rewards
from gambling, so we included all these covariates in our model. Specifically, in
our model, we will have a covariate as summary of the past reward prediction
errors. We will also have a covariate that is the combined summary of all past
rewards, not separated into past rewards from gambling or not gambling.

When we are examining and controlling for the effect of covariates in the
flexible logistic regression model of risk-taking, we will model emotional valence
to have the above data generating process, XLR

e , using the following covariates
(all covariates which are not derived from emotional valence and not collinear):

• college indicator

• gender

• depression

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect

When we are examining and controlling for the effect of covariates in the
neural network model of risk-taking, we will model emotional valence to have the
above data generating process XNN

e using the following covariates (all covariates
which are not derived from emotional valence and not collinear):

• age

• gender
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• depression severity

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect

We will build these models in Python using sklearn. This is a flawed model
because emotional valence is a measurement in [0, 1] while we are modeling
average emotional valence conditional on the other covariates as normally dis-
tributed. While flawed, this model is still a useful approximation for our statis-
tical tests.

A.9 Models of Past Changes in Emotional Va-
lence

For each of the above models of risk-taking, we will also model the conditional
distribution of past changes in emotional valence Xde given the other covariates
using a linear regression of the other covariates, while modeling the error term
as normally distributed. We rely on the same covariates as in our models of
emotional valence to create models ˆXde

LR
and ˆXde

NN
. While a better approach

to modeling past changes in emotional valence is to modify our covariates and
search through existing literature about changes in emotional valence, this lin-
ear regression model is probably one step in the right direction because the
covariates of our models potentially inform emotional valence and past changes
in emotional valence is a function of emotional valence. We build these models
in Python using sklearn. This is still a flawed model because past changes in
emotional valence is bounded in [0, 1] while we are modeling its average to be
normally distributed which has a support of [�1,1].
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Appendix J

Hypothesis Test: Types of
Data Randomization

The specific types of data randomization correspond to our assumption about
the data generating process of emotional valence:

• Data Randomization Type A: Xe ⇠ N(µ, ✏), µ =

P
i �iXi, for Xi 2

XLR
�{e,de}

• Data Randomization Type B: Xe ⇠ N(µ, ✏), µ =

P
i �iXi, for Xi 2

XNN
�{e,de}

• Data Randomization Type C: Xde ⇠ N(µ, ✏), µ =

P
i �iXi, for Xi 2

XLR
�{e,de}

• Data Randomization Type D: Xde ⇠ N(µ, ✏), µ =

P
i �iXi, for Xi 2

XNN
�{e,de}
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Appendix K

Hypothesis Test:
Computational Costs

The computational cost of finding the p-value for each detector is summarized
below:

• T1: 100 data sets of type A, 101 logistic regressions, and 1 linear regression

• T2: 100 data sets of type B, 101 neural networks, and 1 linear regression

• T3: 100 data sets of type A, 101 logistic regressions, and 1 linear regression

• T4: 100 data sets of type B, 101 neural networks, and 1 linear regression

• T5: 10, 100 data sets of type A, 10, 100 data sets of type B, 10, 201 logistic
regressions, 10, 201 neural networks, and 202 linear regressions

• T6: 100 data sets of type C, 101 logistic regressions, and 1 linear regression

• T7: 100 data sets of type D, 101 neural networks, and 1 linear regression

• T8: 10, 100 data sets of type C, 10, 100 data sets of type D, 10, 201 logistic
regressions, 10, 201 neural networks, and 202 linear regressions

• T9: 1, 010, 000 data sets of type A, 1, 010, 000 data sets of type B, 1, 010, 000
data sets of type C, 1, 010, 000 data sets of type D, 2, 040, 200 logistic re-
gressions, 2, 040, 200 neural networks, and 40, 400 linear regressions
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Appendix L

Hypothesis Test: Detecting
the Mood-Maintenance
Hypothesis and
Affect-Infusion Model

We will design detectors to detect whether emotional valence affects risk-taking
through the mood-maintenance hypothesis or the affect infusion model.

Then, we will design detectors T1, T2, T3, T4 for these two hypotheses under
two different assumptions for the data generating processes of risk-taking and
emotional valence, then summarize these detectors with detector T5. Detector
T5 will be used in a final detector T9 to test for all three scientific hypotheses
about how emotional valence affects risk-taking (the mood-maintenance hypoth-
esis, the affect infusion model, and the reward processing hypothesis).

A.12 Null and Alternative Hypotheses
The mood-maintenance hypothesis and affect infusion model explain how posi-
tive emotional valence decreases and increases risk-taking, respectively. Specif-
ically, if our mathematical models of risk-taking have nonzero @⌘

@X
e

, then larger
emotional valence either increases risk-taking or decreases risk-taking , which
means this model captured to either the affect-infusion model [18] or the mood-
maintenance hypothesis [17] respectively. Also, if our mathematical models of
risk-taking have nonzero ( @2⌘

@X2
e

) then, the relationship between emotional valence
and risk-taking has two directions, which means this model captured a synthesis
of the affect-infusion model [18] or the mood-maintenance hypothesis [17], such
that higher emotional valence can both increase and decrease risk-taking.

Since these hypotheses deal with the variable of emotional valence Xe and
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not the variable of past changes in emotional valence Xde, we will restrict our
detectors to only a subset of the null hypothesis dealing with Xe, or in other
words the markov blanket of Y with respect to Xe|X�{e,de}:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xe)|X�{e,de}

– Xe is not in the Markov blanket of Y with respect to Xe, X�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xe)|X�{e,de}

– Xe is in the Markov blanket of Y with respect to Xe, X�{e,de}

Each detector will make additional assumptions about the data generating
processes for risk-taking and emotional valence, which help us concretely detect
a unidirectional and a bidirectional effect of emotional valence on risk-taking.

A.12 Detector 1: Emotional Valence Has a uni-
directional Effect on Risk-Taking (Logistic
Regression)

This detector is designed to detect a subset of the alternative hypothesis that
emotional valence has a unidirectional effect on risk-taking via the mood-maintenance
hypothesis or the affect-infusion model.

A.12.1 Detector Assumptions/ Optimal Conditions
This detector makes two assumptions about the data generating process of risk-
taking and the data generating process of emotional valence. Let XLR

�{e,de} be a
subset of X�{e,de} such that
Let XLR

�{e,de} :

• college indicator

• gender

• depression

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect
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then, this detector assumes that risk-taking follows a data generating pro-
cess which depends on Xe, XLR

�{e,de} while emotional valence depends on only
XLR

�{e,de}. Specifically, if the data generating process for risk-taking is:

⌘(it) =�0 + �1College(i) + �2Gender(i) + �3Diagnosis(i) + �4Emotional Valence(i)
+ �5Expected Reward Utility-Transformed(it)
+ �6Gamble Outcome Range Utility-Transformed(it)
+ �7Past Rewards Utility-Transformed (Primacy)(it)
+ �8Past Reward Prediction Errors Utility-Transformed (Recency)(it)
+ �9Past Gambles (Equal)(it)+

+ a weighted sum of all second order versions of the covariates:

�jjX
2
j + �jkXj ·Xk for j 6= k and Xk, Xj 2 Xe, X

LR
�e,de

and the data generating process for emotional valence is:

E(XLR
e ) =�0 + �1College(i) + �2Gender(i) + �3Depression(i)

+ �4Expected Reward Utility-Transformed(it)
+ �5Gamble Outcome Range Utility-Transformed(it)
+ �6Past Rewards Utility-Transformed (Primacy)(it)
+ �7Past Reward Prediction Errors Utility-Transformed (Recency)(it)
+ �8Past Gambles (Equal)(it)+

then our detector is more powerful than if the data generating processes were
not as above.

Assuming risk-taking follows the flexible logistic regression model and emo-
tional valence follows the linear regression model as above, then our null and
alternative hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xe)|XLR
�{e,de}

– Xe is not in the Markov blanket of Y with respect to Xe, XLR
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xe)|XLR
�{e,de}

– Xe is in the Markov blanket of Y with respect to Xe, XLR
�{e,de}
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A.12.2 Detector Definition
Under those assumptions about the data generating processes, this detector is
designed to test whether emotional valence has a unidirectional effect on risk-
taking, as consistent with the scientifically informed mood-maintenance hypoth-
esis or affect-infusion model.

We that if know the beta coefficient of emotional valence is nonzero, that is
�e 6= 0, then emotional valence has a unidirectional effect on risk-taking. For
example if �e > 0, all other covariates held constant, then a participant with
larger emotional valence during one of the trials has a larger probability of risk-
taking, consistent with the affect-infusion model. Alternatively, if �e < 0, all
other covariates held constant, then a participant with larger emotional valence
during one of the trials has a smaller probability of risk-taking, consistent with
the mood-maintenance model. Because �e 6= 0 is indicative of a unidirectional
effect of emotional-valence on risk-taking, then we build our detector to be larger
when |�4| is larger.

That is we define detector 1, T1, evaluated on our data set D:

T1 = t1(D)

= |ˆ�e|

for ˆ�e as the estimated beta weight of the emotional valence covariate in an
elastic net regularized logistic regression model ⌘̂it we tuned in our data set.
Importantly, elastic net regularized logistic regression yields beta estimates ˆ� in
⌘̂it which are not always consistent with � in ⌘it [32]. So while our detector is
not necessarily consistent with our parameter of interest �e, we can still say that
in some cases, this detector is large when |�e| is large and thus �e 6= 0 in which
case emotional valence has a unidirectional effect on risk-taking if risk-taking
is generated according to the flexible logistic regression. So this detector T1

detects for whether emotional valence has a unidirectional effect on risk-taking
under the stated assumptions about the data generating process of risk-taking
and emotional valence.

A.12.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xe)|XLR

�{e,de}, we can derive the empirical dis-
tribution of T1 by computing our detector value over 100 additional randomized
data sets.

We will compute the detector value on randomized data sets. First, we can
use our assumed data generating process for emotional valence Xe|XLR

�{e,de} to
generate 100 conditional randomizations of emotional valence X⇤

e . Then, we
can create 100 additional data sets {D⇤

Ai}100i=1 such that each D⇤
Ai is the same as

our original data set D, except Xe is replaced with a conditional randomization
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X⇤
e . Then, we can evaluate our detector function on each of the data sets to

generate 100 detector values {T1(i)⇤}100i=1 = {t1(D⇤
Ai)}100i=1.

The 100 detector values {T1(i)⇤}100i=1 = {t1(D⇤
Ai)}100i=1 are the empirical dis-

tribution of our original detector value T1 = t1(D). Based on the notation of
lemma 1, let Z1 = Xe, Z2 = XLR

�e,de, and Y = Y . Then, under the null hy-
pothesis Y ?? Xe|XLR

�e,de, by Lemma 1, these 100 detector values {T1(i)⇤}100i=1 =

{t1(D⇤
Ai)}100i=1 are the empirical distribution of our original detector value eval-

uated in the original data set T1 = t1(D).

A.12.4 Detector p-value
Then, a p-value for this detector would be the fraction of {t1(D⇤

Ai)}100i=1 which
are greater than or equal to t1(D).

p(T1) =

P100
i=1 I(T ⇤

1 (i) � T1)

100

A.12.5 Computational Cost
Overall, finding the p-value of detector T1 requires 100 additional data sets,
101 logistic regressions, and 1 linear regression. To achieve the detector T1, we
would fit 1 logistic regression on our original data set. To achieve 100 samples of
the empirical null distribution of detector T1, we would need to fit 100 logistic
regressions of risk-taking on 100 additional data sets generated with 1 linear
regression of emotional valence.

Now we have constructed detector for a unidirectional effect of emotional
valence on risk-taking in which risk-taking is generated by a flexible logistic
regression of Xe, XLR

�{e,de} and emotional valence is generated by a linear re-
gression of XLR

�{e,de}. Next, we construct a detector for when the risk-taking
and emotional valence data follows a data generating process aligned with a
specific neural network structure of Xe, XNN

�{e,de} and a specific linear regression
of XNN

�{e,de} respectfully.

A.12 Detector 2: Emotional Valence Has a uni-
directional Effect on Risk-Taking (Neural
Network)

This detector is designed to detect a subset of the alternative hypothesis that
emotional valence has a unidirectional effect on risk-taking via the mood-maintenance
hypothesis or the affect-infusion model.
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A.12.1 Detector Assumptions/ Optimal Conditions
This detector makes two assumptions about the data generating process of risk-
taking and the data generating process of emotional valence. Let XNN

�{e,de} be a
subset of X�{e,de} such that
Let XNN

�{e,de} :

• age

• gender

• depression severity

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect

Note that XNN
�{e,de} is the same as XNN

�{e,de} except the college indicator and
depression indicator are swapped for variables which measure approximately
the same thing except have more variation, age and depression severity. Then,
this detector assumes that risk-taking follows a data generating process which
depends on Xe, XNN

�{e,de} while emotional valence depends on only XNN
�{e,de}.

Specifically, if the data generating process for risk-taking such that the log odds
of gambling is a neural network:

⌘(it) = f(Xe, X
NN
�{e,de})

where f(Xe, XNN
�{e,de}) is a 2 layer, 5-node per layer neural network trained on

the covariates Xe, XNN
�{e,de} and with fully connected layers each with a sigmoid

activation function and the data generating process for emotional valence is such
that:

E(XNN
e ) =�0 + �1Age(i) + �2Gender(i) + �3Depression Severity(i)

+ �4Expected Reward Utility-Transformed(it)
+ �5Gamble Outcome Range Utility-Transformed(it)
+ �6Past Rewards Utility-Transformed (Primacy)(it)
+ �7Past Reward Prediction Errors Utility-Transformed (Recency)(it)
+ �8Past Gambles (Equal)(it)+
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then our detector is more powerful than if the data generating processes were
not as above.

Assuming risk-taking follows the neural network model and emotional va-
lence follows the linear regression model as above, then our null and alternative
hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xe)|XNN
�{e,de}

– Xe is not in the Markov blanket of Y with respect to Xe, XNN
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xe)|XNN
�{e,de}

– Xe is in the Markov blanket of Y with respect to Xe, XNN
�{e,de}

A.12.2 Detector Definition
Under those assumptions about the data generating processes, this detector is
designed to test whether emotional valence has a unidirectional effect on risk-
taking, as consistent with the scientifically informed mood-maintenance hypoth-
esis or affect-infusion model.

We know that if E
⇣

@f
@X

e

⌘
6= 0, then emotional valence has a unidirectional

effect on risk-taking.
For example if E

⇣
@f
@X

e

⌘
> 0, all other covariates held constant, then a par-

ticipant with larger emotional valence during one of the trials has a larger prob-
ability of risk-taking, consistent with the affect-infusion model. Alternatively, if
E
⇣

@f
@X

e

⌘
< 0, all other covariates held constant, then a participant with larger

emotional valence during one of the trials has a smaller probability of risk-
taking, consistent with the mood-maintenance model. Because E

⇣
@f
@X

e

⌘
6= 0 is

indicative of a unidirectional effect of emotional-valence on risk-taking, then we
build our detector to be larger when |E

⇣
@f
@X

e

⌘
| is larger.

That is we define detector 2, T2, evaluated on our data set D:

T2 = t2(D)

=

���
1

|D|
X

it

@ ˆf

@Xe
(Dit)

���

for @f̂
@X

e

(Dit) as the estimated change in the log odds of gambling as emo-
tional valence changes in a fitted l1-regularized neural network model of the log
odds of gambling ˆf which we tuned in our data set.
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Importantly, fitting l1-regularized neural networks of sigmoid activation func-
tions yields beta an estimate of ˆf which are not always consistent with f [32].
So while our detector is not necessarily consistent with our parameter of inter-
est

���E
⇣

@f
@X

e

⌘���, we can still say that in some cases, this detector is large when
���E

⇣
@f̂
@X

e

⌘��� is large and thus E
⇣

@f̂
@X

e

⌘
6= 0 in which case emotional valence has a

unidirectional effect on risk-taking if risk-taking is generated according to the
neural network. So this detector T2 detects for whether emotional valence has
a unidirectional effect on risk-taking under the stated assumptions about the
data generating process of risk-taking and emotional valence.

A.12.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xe)|XNN

�{e,de}, we can derive the empirical dis-
tribution of T2 by computing our detector value over 100 additional randomized
data sets.

We will compute the detector value on randomized data sets. First, we can
use our assumed data generating process for emotional valence Xe|XNN

�{e,de} to
generate 100 conditional randomizations of emotional valence X⇤

e . Then, we
can create 100 additional data sets {D⇤

Bi}100i=1 such that each D⇤
Bi is the same as

our original data set D, except Xe is replaced with a conditional randomization
X⇤

e . Then, we can evaluate our detector function on each of the data sets to
generate 100 detector values {T2(i)⇤}100i=1 = {t2(D⇤

Bi)}100i=1.
The 100 detector values {T2(i)⇤}100i=1 = {t2(D⇤

Bi)}100i=1 are the empirical dis-
tribution of our original detector value T2 = t2(D). Based on the notation of
lemma 1, let Z1 = Xe, Z2 = XNN

�e,de, and Y = Y . Then, under the null hy-
pothesis Y ?? Xe|XNN

�e,de, by Lemma 1, these 100 detector values {T2(i)⇤}100i=1 =

{t2(D⇤
Bi)}100i=1 are the empirical distribution of our original detector value eval-

uated in the original data set T2 = t2(D).

A.12.4 Detector p-value
Then, a p-value for this detector would be the fraction of {t2(D⇤

Bi)}100i=1 which
are greater than or equal to t2(D).

p(T2) =

P100
i=1 I(T ⇤

2 (i) � T2)

100

A.12.5 Computational Cost
Overall, finding the p-value of detector T2 requires 100 additional data sets, 101
neural networks, and 1 linear regression. To achieve the detector T2, we would
fit 1 neural network on our original data set. To achieve 100 samples of the em-
pirical null distribution of detector T2, we would need to fit 100 neural networks
of risk-taking on 100 additional data sets generated with 1 linear regression of
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emotional valence.

Now we have constructed two detectors for a unidirectional effect of emo-
tional valence on risk-taking while assuming the data generating processes for
risk-taking and emotional valence are

• Detector T1: a flexible logistic regression of Xe, XLR
�{e,de} and a linear

regression of XLR
�{e,de}

• Detector T2: a specific neural network structure of Xe, XNN
�{e,de} and a

linear regression of XNN
�{e,de}

Next, we construct two analogous detectors for a bidirectional effect of emo-
tional valence on risk-taking.

A.12 Detector 3: Emotional Valence Has a bidi-
rectional Effect on Risk-Taking (Logistic Re-
gression)

This detector is designed to detect a subset of the alternative hypothesis that
emotional valence has a bidirectional effect on risk-taking via the mood-maintenance
hypothesis or the affect-infusion model, that is that higher emotional valence
can yield both increases and decreases in risk-taking.

A.12.1 Detector Assumptions/ Optimal Conditions
This detector makes two assumptions about the data generating process of risk-
taking and the data generating process of emotional valence, the same assump-
tions as Detector T1. Specifically, this detector has the highest statistical power
when risk-taking follows a data generating process as a logistic regression of first
order and second order versions if the covariates Xe, XLR

�{e,de} while emotional
valence is a linear regression of XLR

�{e,de}.

Assuming risk-taking follows the flexible logistic regression model and emo-
tional valence follows the linear regression model as above, then our null and
alternative hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xe)|XLR
�{e,de}

– Xe is not in the Markov blanket of Y with respect to Xe, XLR
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xe)|XLR
�{e,de}

– Xe is in the Markov blanket of Y with respect to Xe, XLR
�{e,de}
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A.12.2 Detector Definition
Under those assumptions about the data generating processes, this detector
is designed to test whether emotional valence has a bidirectional effect on risk-
taking, as consistent with the scientifically informed mood-maintenance hypoth-
esis or affect-infusion model.

We that if know the beta coefficient of emotional valence raised to the second
power is nonzero, that is �ee 6= 0, then emotional valence has a bidirectional
effect on risk-taking. For example, if �ee > 0, all other covariates held constant,
then, as emotional valence is larger, then the effect of emotional valence on
the probability of risk-taking P(Yit = 1) = logit(⌘it) is more positive, so while
at a smaller smaller, an increase in emotional valence will yield a decrease in
the probability of risk-taking P(Yit = 1) which is consistent with the mood-
maintenance hypothesis, one the other hand at a larger emotional valence, an
increase in Xj will yield a increase in the probability of risk-taking P(Yit = 1)

which is consistent with the affect infusion model. Because �ee 6= 0 captures a
bidirectional effect of emotional valence on risk-taking, we build our detector to
be larger when |�ee| is larger.

That is we define detector 3, T3, evaluated on our data set D:

T3 = t3(D)

= |ˆ�ee|

for ˆ�ee as the estimated beta weight of the emotional valence covariate raised
to the second power in an elastic net regularized logistic regression model ⌘̂it
we tuned in our data set. Importantly, elastic net regularized logistic regression
yields beta estimates ˆ� in ⌘̂it which are not always consistent with � in ⌘it
[32]. So while our detector is not necessarily consistent with our parameter of
interest �ee, we can still say that in some cases, this detector is large when |�ee|
is large and thus �ee 6= 0 in which case emotional valence has a bidirectional
effect on risk-taking if risk-taking is generated according to the flexible logistic
regression. So this detector T3 detects for whether emotional valence has a
bidirectional effect on risk-taking under the stated assumptions about the data
generating process of risk-taking and emotional valence.

A.12.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xe)|XLR

�{e,de}, we can derive the empirical dis-
tribution of T3 by computing our detector value over 100 additional randomized
data sets. We can rely on the same data sets {D⇤

Ai}100i=1 as generated for detec-
tor T1, which made the same assumptions about the data generating process for
emotional valence Xe|XLR

�{e,de}. Then, we can evaluate our detector function on
each of the data sets to generate 100 detector values {T3(i)⇤}100i=1 = {t3(D⇤

Ai)}100i=1.
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The 100 detector values {T3(i)⇤}100i=1 = {t3(D⇤
Ai)}100i=1 are the empirical dis-

tribution of our original detector value T3 = t3(D). Based on the notation of
lemma 1, let Z1 = Xe, Z2 = XLR

�e,de, and Y = Y . Then, under the null hy-
pothesis Y ?? Xe|XLR

�e,de, by Lemma 1, these 100 detector values {T3(i)⇤}100i=1 =

{t3(D⇤
Ai)}100i=1 are the empirical distribution of our original detector value eval-

uated in the original data set T3 = t3(D).

A.12.4 Detector p-value
Then, a p-value for this detector would be the fraction of {t3(D⇤

Ai)}100i=1 which
are greater than or equal to t3(D).

p(T3) =

P100
i=1 I(T ⇤

3 (i) � T3)

100

A.12.5 Computational Cost
Overall, finding the p-value of detector T3 requires 100 additional data sets,
101 logistic regressions, and 1 linear regression. To achieve the detector T3, we
would fit 1 logistic regression on our original data set. To achieve 100 samples of
the empirical null distribution of detector T1, we would need to fit 100 logistic
regressions of risk-taking on 100 additional data sets generated with 1 linear
regression of emotional valence.

Now we have constructed detector for a unidirectional effect of emotional
valence on risk-taking in which risk-taking is generated by a flexible logistic
regression of Xe, XLR

�{e,de} and emotional valence is generated by a linear re-
gression of XLR

�{e,de}. Next, we construct a detector for when the risk-taking
and emotional valence data follows a data generating process aligned with a
specific neural network structure of Xe, XNN

�{e,de} and a specific linear regression
of XNN

�{e,de} respectfully.

A.12 Detector 4: Emotional Valence Has a bidi-
rectional Effect on Risk-Taking (Neural Net-
work)

This detector is designed to detect a subset of the alternative hypothesis that
emotional valence has a bidirectional effect on risk-taking via the mood-maintenance
hypothesis or the affect-infusion model.

A.12.1 Detector Assumptions/ Optimal Conditions
This detector makes two assumptions about the data generating process of risk-
taking and the data generating process of emotional valence, the same assump-
tions as Detector T2. Specifically, this detector has the highest power when
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risk-taking follows a data generating process as a neural network of covariates
Xe, XNN

�{e,de} while emotional valence is a linear regression of XNN
�{e,de}.

Assuming risk-taking follows the neural network model and emotional va-
lence follows the linear regression model as above, then our null and alternative
hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xe)|XNN
�{e,de}

– Xe is not in the Markov blanket of Y with respect to Xe, XNN
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xe)|XNN
�{e,de}

– Xe is in the Markov blanket of Y with respect to Xe, XNN
�{e,de}

A.12.2 Detector Definition
Under those assumptions about the data generating processes, this detector
is designed to test whether emotional valence has a bidirectional effect on risk-
taking, as consistent with the scientifically informed mood-maintenance hypoth-
esis or affect-infusion model.

We know that if E
⇣

@2f
@X2

e

⌘
6= 0, then emotional valence has a bidirectional

effect on risk-taking.
For example, if E

⇣
@2f
@X2

e

⌘
> 0, all other covariates held constant, then, as

emotional valence is larger, then the effect of emotional valence on the probabil-
ity of risk-taking P(Yit = 1) = logit(⌘it) is more positive, so while at a smaller
smaller, an increase in emotional valence will yield a decrease in the probability
of risk-taking P(Yit = 1) which is consistent with the mood-maintenance hy-
pothesis, one the other hand at a larger emotional valence, an increase in Xj will
yield a increase in the probability of risk-taking P(Yit = 1) which is consistent
with the affect infusion model. Because E

⇣
@2f
@X2

e

⌘
6= 0 captures a bidirectional

effect of emotional valence on risk-taking, we build our detector to be larger
when |E

⇣
@2f
@X2

e

⌘
| is larger.

That is we define detector 4, T4, evaluated on our data set D:

T4 = t4(D)

=

���
1

|D|
X

it

@2
ˆf

@X2
e

(Dit)

���

for @2f̂
@X2

e

(Dit) as the estimated change in the log odds of gambling as emo-
tional valence changes in a fitted l1-regularized neural network model of the log
odds of gambling ˆf which we tuned in our data set.
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Because we made reasonable assumptions under which our data is Marko-
vian, by the strong law of large numbers for Markov chains,

lim

|D|!1

���
1

|D|
X

it

@2f

@X2
e

(Dit)

��� !
���E

⇣ @2f

@X2
e

⌘���

Importantly, fitting l1-regularized neural networks of sigmoid activation func-
tions yields beta an estimate of ˆf which are not always consistent with f [32].
So while our detector is not necessarily consistent with our parameter of inter-
est

���E
⇣

@2f
@X2

e

⌘���, we can still say that in some cases, this detector is large when
���E

⇣
@2f
@X2

e

⌘��� is large and thus E
⇣

@2f
@X2

e

⌘
6= 0 in which case emotional valence has

a bidirectional effect on risk-taking if risk-taking is generated according to the
neural network. So this detector T4 detects for whether emotional valence has a
bidirectional effect on risk-taking under the stated assumptions about the data
generating process of risk-taking and emotional valence.

A.12.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xe)|XNN

�{e,de}, we can derive the empirical dis-
tribution of T4 by computing our detector value over 100 additional randomized
data sets. We can rely on the same data sets {D⇤

Bi}100i=1 as generated for detec-
tor T2, which made the same assumptions about the data generating process for
emotional valence Xe|XNN

�{e,de}. Then, we can evaluate our detector function on
each of the data sets to generate 100 detector values {T4(i)⇤}100i=1 = {t3(D⇤

Bi)}100i=1.
The 100 detector values {T4(i)⇤}100i=1 = {t4(D⇤

Bi)}100i=1 are the empirical dis-
tribution of our original detector value T4 = t4(D). Based on the notation of
lemma 1, let Z1 = Xe, Z2 = XNN

�e,de, and Y = Y . Then, under the null hy-
pothesis Y ?? Xe|XNN

�e,de, by Lemma 1, these 100 detector values {T4(i)⇤}100i=1 =

{t4(D⇤
Bi)}100i=1 are the empirical distribution of our original detector value eval-

uated in the original data set T4 = t4(D).

A.12.4 Detector p-value
Then, a p-value for this detector would be the fraction of {t4(D⇤

Bi)}100i=1 which
are greater than or equal to t4(D).

p(T4) =

P100
i=1 I(T ⇤

4 (i) � T4)

100

A.12.5 Computational Cost
Overall, finding the p-value of detector T4 requires 100 additional data sets, 101
neural networks, and 1 linear regression. To achieve the detector T4, we would
fit 1 neural network on our original data set. To achieve 100 samples of the em-
pirical null distribution of detector T4, we would need to fit 100 neural networks
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of risk-taking on 100 additional data sets generated with 1 linear regression of
emotional valence.

Now we have constructed four detectors for a unidirectional effect and bidi-
rectional effect of emotional valence on risk-taking while assuming the data
generating processes for risk-taking and emotional valence are

• Detector T1, T3: a flexible logistic regression of Xe, XLR
�{e,de} and a linear

regression of XLR
�{e,de}

• Detector T2, T4: a specific neural network structure of Xe, XNN
�{e,de} and a

linear regression of XNN
�{e,de}

Next, we construct detector 5 to indicate if any of these hypotheses were
detected.

A.12 Detector 5: Emotional Valence Affects Risk-
Taking via the Mood-Maintenance Hypoth-
esis or the Affect Infusion Model

This detector is designed to detect any unidirectional or bidirectional effect of
emotional valence on risk-taking via the mood-maintenance hypothesis and/or
the affect-infusion model.

A.12.1 Detector Assumptions/ Optimal Conditions
This detector makes two possible assumptions about the data generating process
of risk-taking and emotional valence:

• Detector T1, T3: a flexible logistic regression of Xe, XLR
�{e,de} and a linear

regression of XLR
�{e,de}

• Detector T2, T4: a specific neural network structure of Xe, XNN
�{e,de} and a

linear regression of XNN
�{e,de}

Assuming risk-taking and emotional valence follow the models as above, then
our null and alternative hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xe)|(XLR
�{e,de} [XNN

�{e,de})

– Xe is not in the Markov blanket of Y with respect to
Xe, XLR

�{e,de} [XNN
�{e,de}

• H1 : Emotional valence does affect risk-taking

111



– (Y 6?? Xe)|(XLR
�{e,de} [XNN

�{e,de})

– Xe is in the Markov blanket of Y with respect to
Xe, XLR

�{e,de} [XNN
�{e,de}

A.12.2 Detector Definition
We want to design our summary detector T5 so that if our detector is large,
then we have evidence to reject the null hypothesis and if it is small, then we
have little evidence to reject the null hypothesis.

Specifically, when any of detectors T1, T2, T3, T4 are large, then we have some
evidence to reject the null hypothesis, in which case we want detector T5 to be
large too. Alternatively, when all of the detectors T1, T2, T3, T4 are small, then
we have little evidence to reject the null hypothesis, in which case we want
detector T5 to be small too.

If we define this detector so that,

T5 = t5(D)

= 1�min(p(T1), p(T2), p(T3), p(T4))

then, we know that if any of T1, T2, T3, T4 are large, then the p-value is small
and T5 will be large too. Alternatively, if all of T1, T2, T3, T4 are small, then
the p-values are large and T5 will be small too. So this detector T5 detects
for whether emotional valence has a unidirectional or bidirectional effect on
risk-taking under the stated assumptions about the data generating process of
risk-taking and emotional valence.

A.12.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xe)|XLR

�{e,de}[XNN
�{e,de}, we can derive the em-

pirical distribution of T5 by computing our detector value over 100 randomized
data sets. Each T ⇤

5 will require calculating T ⇤
1 , T

⇤
2 , T

⇤
3 , T

⇤
4 , which will require 100

data sets {D⇤
Ai}100i=1 generated assuming emotional valence is a linear regression

of X�{e,de}LR and 100 data sets {D⇤
Bi}100i=1 generated assuming emotional valence

is a linear regression of X�{e,de}NN .
The 100 detector values {T5(i)⇤}100i=1 are the empirical distribution of our

original detector value T5 = t5(D). Based on the notation of lemma 1, let
Z1 = Xe, Z2 = XLR

�e,de [XNN
�e,de, and Y = Y . Then, under the null hypothesis

Y ?? Xe|(XLR
�e,de [XNN

�e,de), by Lemma 1, these 100 detector values {T5(i)⇤}100i=1

are the empirical distribution of our original detector value evaluated in the
original data set T5 = t5(D).

A.12.4 Detector p-value
Then, a p-value for this detector would be the fraction of {T ⇤

5 (i)}100i=1 which are
greater than or equal to t5(D).
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p(T5) =

P100
i=1 I(T ⇤

5 (i) � T5)

100

A.12.5 Computational Cost
Overall, finding the p-value of detector T5 requires a total of 10, 100 data sets
of type A, 10, 100 data sets of type B, 10, 201 logistic regressions, 10, 201 neural
networks, and 202 linear regressions. That is, to achieve the detector T5, we
would find the p-values of T1, T2, T3, T4 with 10

2 data sets of type A, 102 data sets
of type B, 101 logistic regressions, 101 neural networks, and 2 linear regressions.
Then, to compute the empirical null distribution of detector T5, we would repeat
the process 100 additional times.

Now, we have created a detector T5 such that if T5 is large and has small
p-value, then we have evidence to reject the null hypothesis that emotional
valence does not affect risk-taking. We have created a test that incorporates two
scientific hypotheses about how emotional valence affects risk-taking: the mood-
maintenance hypothesis and the affect infusion model. In our next chapter, we
build two additional detectors T6, T7, summarized in another detector T8, to
also test for a final theory about how emotional valence affects risk-taking: the
reward processing hypothesis. Then, in our next next chapter, we will create a
detector T9 that incorporates all three hypotheses about how emotional valence
affects risk-taking: the mood-maintenance hypothesis, the affect infusion model,
and the reward processing hypothesis.
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Appendix M

Hypothesis Test: Detecting
the Reward Processing
Hypothesis

We will design detectors to detect whether emotional valence affects risk-taking
through the reward processing hypothesis.

Then, we will design detectors T6, T7 for the reward processing hypothesis
under two different assumptions for the data generating processes of risk-taking
and emotional valence, then summarize these detectors with detector T8. Detec-
tor T8 will be used in a final detector T9 to test for all three scientific hypotheses
about how emotional valence affects risk-taking (the mood-maintanence hypoth-
esis, the affect infusion model, and the reward processing hypothesis).

A.13 Null and Alternative Hypotheses
The reward processing hypothesis explains how decreasing emotional valence is
correlated with less risk-taking and increasing emotional valence is correlated
with more risk-taking. Specifically, if we consider Xde as past changes in emo-
tional valence and Xdg as past decisions to gamble and if our mathematical
models of risk-taking have positive @2⌘

@X
de

@X
dg

, then our models have detected
the reward processing hypothesis (see theoretical developments and exploratory
data analysis for casework details).

Since these hypotheses regard the variable of past changes in emotional va-
lence Xde and not the variable of emotional valence Xe, we will restrict our
detectors to only a subset of the null hypothesis dealing with Xde, or in other
words the markov blanket of Y with respect to Xde|X�{e,de}:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xde)|X�{e,de}
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– Xde is not in the Markov blanket of Y with respect to Xde, X�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xde)|X�{e,de}

– Xde is in the Markov blanket of Y with respect to Xde, X�{e,de}

Each detector will make additional assumptions about the data generating
processes for risk-taking and emotional valence, which help us concretely detect
a unidirectional and a bidirectional effect of emotional valence on risk-taking.

A.13 Detector 6: Past Changes in Emotional Va-
lence Has a Moderator Effect on How Changes
in Gambling Decision Affects Risk-Taking
(Logistic Regression)

This detector is designed to detect a subset of the alternative hypothesis that
past changes in emotional valence has a moderator effect the relationship be-
tween past gambles and risk-taking via the reward processing hypothesis.

A.13.1 Detector Assumptions/ Optimal Conditions
This detector makes two assumptions about the data generating process of risk-
taking and the data generating process of past changes in emotional valence.
Let XLR

�{e,de} be a subset of X�{e,de} as defined for detectors T1, T3.
Let XLR

�{e,de} :

• college indicator

• gender

• depression

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect

then, this detector assumes that risk-taking follows a data generating process
which depends onXde, XLR

�{e,de} while past changes in emotional valence depends
on only XLR

�{e,de}. Specifically, if the data generating process for risk-taking is:
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⌘(it) =�0 + �1College(i) + �2Gender(i) + �3Diagnosis(i) + �4Past Changes in Emotional Valence(i)
+ �5Expected Reward Utility-Transformed(it)
+ �6Gamble Outcome Range Utility-Transformed(it)
+ �7Past Rewards Utility-Transformed (Primacy)(it)
+ �8Past Reward Prediction Errors Utility-Transformed (Recency)(it)
+ �9Past Gambles (Equal)(it)+

+ a weighted sum of all second order versions of the covariates:

�jjX
2
j + �jkXj ·Xk for j 6= k and Xk, Xj 2 Xe, X

LR
�e,de

and the data generating process for past changes in emotional valence is:

E(XLR
de ) =�0 + �1College(i) + �2Gender(i) + �3Depression(i)

+ �4Expected Reward Utility-Transformed(it)
+ �5Gamble Outcome Range Utility-Transformed(it)
+ �6Past Rewards Utility-Transformed (Primacy)(it)
+ �7Past Reward Prediction Errors Utility-Transformed (Recency)(it)
+ �8Past Gambles (Equal)(it)+

then our detector is more powerful than if the data generating processes were
not as above.

Assuming risk-taking follows the flexible logistic regression model and past
changes in emotional valence follows the linear regression model as above, then
our null and alternative hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xde)|XLR
�{e,de}

– Xde is not in the Markov blanket of Y with respect to Xde, XLR
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xde)|XLR
�{e,de}

– Xde is in the Markov blanket of Y with respect to Xde, XLR
�{e,de}

A.13.2 Detector Definition
Under those assumptions about the data generating processes, this detector is
designed to test if past changes in emotional valence has a moderator effect on
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the relationship between past gambles and risk-taking, as consistent with the
scientifically informed reward process sing hypothesis.

We that if know the beta coefficient of the interaction between past changes
in emotional valence and past gambles is nonzero, that is �de,dg 6= 0, then past
changes in emotional valence has a moderator effect on the relationship between
past gambles and risk-taking. For example if �de,dg > 0, if past changes in emo-
tional valence Xde is positive and past decisions to gamble Xdg is positive, then
this corresponds to the scenario where the participant has gambled and seen
increases in emotional valence, so the choice to gamble is a beneficial decision
and under the reward processing hypothesis, the participant’s gambling prob-
ability for the next trial should be higher and indeed our model mirrors that
because Xde · Xdg is positive, �de,dg is positive, and this term adds a positive
contribution to the probability of risk-taking Y , which is consistent with the re-
ward processing hypothesis. See the theoretical developments and exploratory
data analysis section for the full casework. Because �de,dg 6= 0 is indicative that
past changes in emotional valence has a moderator effect on the relationship
between past gambles and risk-taking, then we build our detector to be larger
when |�de,dg| is larger.

That is we define detector 6, T6, evaluated on our data set D:

T6 = t6(D)

= |ˆ�de,dg|

for ˆ�de,dg as the estimated beta weight of the emotional valence covariate in
an elastic net regularized logistic regression model ⌘̂it we tuned in our data set.
Importantly, elastic net regularized logistic regression yields beta estimates ˆ� in
⌘̂it which are not always consistent with � in ⌘it [32]. So while our detector is not
necessarily consistent with our parameter of interest �de,dg, we can still say that
in some cases, this detector is large when |�de,dg| is large and thus �de,dg 6= 0

in which case past changes in emotional valence has a moderator effect on the
relationship between past gambles and risk-taking. So this detector T6 detects
for if past changes in emotional valence has a moderator effect on the relationship
between past gambles and risk-taking under the stated assumptions about the
data generating process of risk-taking and emotional valence.

A.13.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xde)|XLR

�{e,de}, we can derive the empirical dis-
tribution of T6 by computing our detector value over 100 additional randomized
data sets.

We will compute the detector value on randomized data sets. First, we can
use our assumed data generating process for past changes in emotional valence
Xde|XLR

�{e,de} to generate 100 conditional randomizations of emotional valence
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X⇤
de. Then, we can create 100 additional data sets {D⇤

Ci}100i=1 such that each D⇤
Ci

is the same as our original data set D, except Xde is replaced with a conditional
randomization X⇤

de. Then, we can evaluate our detector function on each of the
data sets to generate 100 detector values {T6(i)⇤}100i=1 = {t6(D⇤

Ci)}100i=1.
The 100 detector values {T6(i)⇤}100i=1 = {t6(D⇤

Ci)}100i=1 are the empirical dis-
tribution of our original detector value T6 = t6(D). Based on the notation of
lemma 1, let Z1 = Xde, Z2 = XLR

�e,de, and Y = Y . Then, under the null hy-
pothesis Y ?? Xde|XLR

�e,de, by Lemma 1, these 100 detector values {T6(i)⇤}100i=1 =

{t6(D⇤
Ci)}100i=1 are the empirical distribution of our original detector value eval-

uated in the original data set T6 = t6(D).

A.13.4 Detector p-value
Then, a p-value for this detector would be the fraction of {t6(D⇤

Ci)}100i=1 which
are greater than or equal to t6(D).

p(T6) =

P100
i=1 I(T ⇤

6 (i) � T6)

100

A.13.5 Computational Cost
Overall, finding the p-value of detector T6 requires 100 additional data sets,
101 logistic regressions, and 1 linear regression. To achieve the detector T6, we
would fit 1 logistic regression on our original data set. To achieve 100 samples of
the empirical null distribution of detector T6, we would need to fit 100 logistic
regressions of risk-taking on 100 additional data sets generated with 1 linear
regression of past changes in emotional valence.

Now we have constructed detector for a moderator effect of past changes
in emotional valence on the relationship between past gambles and risk-taking
under the assumptions that risk-taking is generated by a flexible logistic re-
gression of Xde, XLR

�{e,de} and past changes in emotional valence is generated
by a linear regression of XLR

�{e,de}. Next, we construct a detector for when the
risk-taking and past changes emotional valence data follows a data generating
process aligned with a specific neural network structure of Xde, XNN

�{e,de} and a
specific linear regression of XNN

�{e,de} respectfully.

A.13 Detector 7: Past Changes in Emotional Va-
lence Has a Moderator Effect on How Changes
in Gambling Decision Affects Risk-Taking
(Neural Network)

This detector is designed to detect a subset of the alternative hypothesis that
past changes in emotional valence has a moderator effect on the relationship
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between past gambles and risk-taking via the reward processing hypothesis.

A.13.1 Detector Assumptions/ Optimal Conditions
This detector makes two assumptions about the data generating process of risk-
taking and the data generating process of past changes in emotional valence.
Like in detectors T2, T4, let XNN

�{e,de} be a subset of X�{e,de} such that
Let XNN

�{e,de} :

• age

• gender

• depression severity

• expected reward utility-transformed

• gambling range utility-transformed

• past rewards utility-transformed primacy

• past reward prediction errors utility-transformed recency

• past gambles equal/ no effect

Then, this detector assumes that risk-taking follows a data generating pro-
cess which depends on Xde, XNN

�{e,de} while past changes in emotional valence
depends on only XNN

�{e,de}. Specifically, if the data generating process for risk-
taking such that the log odds of gambling is a neural network:

⌘(it) = f(Xde, X
NN
�{e,de})

where f(Xde, XNN
�{e,de}) is a 2 layer, 5-node per layer neural network trained

on the covariates Xde, XNN
�{e,de} and with fully connected layers each with a

sigmoid activation function and the data generating process for past changes in
emotional valence is:

E(XNN
de ) =�0 + �1Age(i) + �2Gender(i) + �3Depression Severity(i)

+ �4Expected Reward Utility-Transformed(it)
+ �5Gamble Outcome Range Utility-Transformed(it)
+ �6Past Rewards Utility-Transformed (Primacy)(it)
+ �7Past Reward Prediction Errors Utility-Transformed (Recency)(it)
+ �8Past Gambles (Equal)(it)+
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then our detector is more powerful than if the data generating processes were
not as above.

Assuming risk-taking follows the neural network model and past changes in
emotional valence follows the linear regression model as above, then our null
and alternative hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xde)|XNN
�{e,de}

– Xde is not in the Markov blanket of Y with respect to Xde, XNN
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xde)|XNN
�{e,de}

– Xe is in the Markov blanket of Y with respect to Xde, XNN
�{e,de}

A.13.2 Detector Definition
Under those assumptions about the data generating processes, this detector is
designed to test if past changes in emotional valence has a moderator effect on
the relationship between past gambles and risk-taking, as consistent with the
scientifically informed reward processing hypothesis.

We know that if E
⇣

@2f
@X

de

@X
dg

⌘
6= 0, then emotional valence has a moderator

effect on the relationship between past gambles and risk-taking. For example
if E

⇣
@2f

@X
de

@X
dg

⌘
> 0, past changes in emotional valence Xde is positive, and

past decisions to gamble Xdg is negative, then this corresponds to the scenario
where the participant has chosen not-to-gamble and seen increases in emotional
valence, so the choice not-to-gamble is a beneficial decision and under the reward
processing hypothesis, the participant’s gambling probability for the next trial
should be lower and indeed our model mirrors that because Xde ·Xdg is negative,
sign( @2⌘

@X
de

@X
dg

) is positive, and this term adds a negative contribution to the
probability of risk-taking Y , which captures the reward processing hypothesis.
See the theoretical developments and exploratory data analysis section for the
full casework. Because E

⇣
@2f

@X
de

@X
dg

⌘
6= 0 is indicative of a moderator effect

of past changes in emotional valence on the relationship between past gambles
and risk-taking, then we build our detector to be larger when |E

⇣
@2f

@X
de

@X
dg

⌘
| is

larger.
That is we define detector 7, T7, evaluated on our data set D:

T7 = t7(D)

=

���
1

|D|
X

it

@2
ˆf

@Xde@Xdg
(Dit)

���
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for @2f̂
@X

de

@X
dg

(Dit) as the estimated change in the log odds of gambling as
emotional valence changes in a fitted l1-regularized neural network model of the
log odds of gambling ˆf which we tuned in our data set.

Because we made reasonable assumptions under which our data is Marko-
vian, by the strong law of large numbers for Markov chains,

lim

|D|!1

���
1

|D|
X

it

@2
ˆf

@Xde@Xdg
(Dit)

��� !
���E

⇣ @2
ˆf

@Xde@Xdg

⌘���

Importantly, fitting l1-regularized neural networks of sigmoid activation func-
tions yields beta an estimate of ˆf which are not always consistent with f [32].
So while our detector is not necessarily consistent with our parameter of inter-
est

���E
⇣

@2f
@X

de

@X
dg

⌘���, we can still say that in some cases, this detector is large

when
���E

⇣
@2f

@X
de

@X
dg

⌘��� is large and thus E
⇣

@2f
@X

de

@X
dg

⌘
6= 0 in which case emo-

tional valence has a moderator effect on the relationship between past gambles
and risk-taking. So this detector T7 detects for whether emotional valence has
a moderator effect on the relationship between past gambles and risk-taking
under the stated assumptions about the data generating process of risk-taking
and past changes in emotional valence.

A.13.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xde)|XNN

�{e,de}, we can derive the empirical dis-
tribution of T7 by computing our detector value over 100 additional randomized
data sets.

We will compute the detector value on randomized data sets. First, we can
use our assumed data generating process for past changes in emotional valence
Xde|XNN

�{e,de} to generate 100 conditional randomizations of emotional valence
X⇤

de. Then, we can create 100 additional data sets {D⇤
Di}100i=1 such that each D⇤

Di
is the same as our original data set D, except Xde is replaced with a conditional
randomization X⇤

de. Then, we can evaluate our detector function on each of the
data sets to generate 100 detector values {T7(i)⇤}100i=1 = {t7(D⇤

Di)}100i=1.
The 100 detector values {T7(i)⇤}100i=1 = {t7(D⇤

Di)}100i=1 are the empirical dis-
tribution of our original detector value T7 = t7(D). Based on the notation of
lemma 1, let Z1 = Xde, Z2 = XNN

�e,de, and Y = Y . Then, under the null hy-
pothesis Y ?? Xde|XNN

�e,de, by Lemma 1, these 100 detector values {T7(i)⇤}100i=1 =

{t7(D⇤
Di)}100i=1 are the empirical distribution of our original detector value eval-

uated in the original data set T7 = t7(D).

A.13.4 Detector p-value
Then, a p-value for this detector would be the fraction of {t7(D⇤

Di)}100i=1 which
are greater than or equal to t7(D).
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p(T7) =

P100
i=1 I(T ⇤

7 (i) � T7)

100

A.13.5 Computational Cost
Overall, finding the p-value of detector T7 requires 100 additional data sets, 101
neural networks, and 1 linear regression. To achieve the detector T7, we would
fit 1 neural network on our original data set. To achieve 100 samples of the em-
pirical null distribution of detector T7, we would need to fit 100 neural networks
of risk-taking on 100 additional data sets generated with 1 linear regression of
past changes in emotional valence.

Now we have constructed two detectors for a moderator effect of emotional
valence on the relationship between past gambles and risk-taking while assuming
the data generating processes for risk-taking and past changes in emotional
valence are

• Detector T6: a flexible logistic regression of Xde, XLR
�{e,de} and a linear

regression of XLR
�{e,de}

• Detector T7: a specific neural network structure of Xde, XNN
�{e,de} and a

linear regression of XNN
�{e,de}

Next, we construct detector T8 to indicate if any of these two detectors T6, T7

corresponding to the reward processing hypothesis were detected.

A.13 Detector 8: Emotional Valence Affects Risk-
Taking via the Reward Processing Hypoth-
esis

This detector is designed to detect any moderator of emotional valence on the
relationship between past gambles and risk-taking via the reward processing
hypothesis.

A.13.1 Detector Assumptions/ Optimal Conditions
This detector makes two possible assumptions about the data generating process
of risk-taking and past changes in emotional valence:

• Detector T6: a flexible logistic regression of Xde, XLR
�{e,de} and a linear

regression of XLR
�{e,de}

• Detector T7: a specific neural network structure of Xde, XNN
�{e,de} and a

linear regression of XNN
�{e,de}
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Assuming risk-taking and past changes in emotional valence follow the mod-
els as above, then our null and alternative hypotheses take the following form:

• H0 : Emotional valence does not affect risk-taking

– (Y ?? Xde)|(XLR
�{e,de} [XNN

�{e,de})

– Xde is not in the Markov blanket of Y with respect to
Xde, XLR

�{e,de} [XNN
�{e,de}

• H1 : Emotional valence does affect risk-taking

– (Y 6?? Xde)|(XLR
�{e,de} [XNN

�{e,de})

– Xde is in the Markov blanket of Y with respect to
Xde, XLR

�{e,de} [XNN
�{e,de}

A.13.2 Detector Definition
We want to design our summary detector T8 so that if our detector is large,
then we have evidence to reject the null hypothesis and if it is small, then we
have little evidence to reject the null hypothesis.

Specifically, when any of detectors T6, T7 are large, then we have some ev-
idence to reject the null hypothesis, in which case we want detector T8 to be
large too. Alternatively, when all of the detectors T6, T7 are small, then we have
little evidence to reject the null hypothesis, in which case we want detector T8

to be small too.
If we define this detector so that,

T8 = t8(D)

= 1�min(p(T6), p(T7))

then, we know that if any of T6, T7 are large, then the p-value of at least one
is small and T8 will be large too. Alternatively, if all of T6, T7 are small, then
the p-values are large and T8 will be small too. So this detector T8 detects for
if past changes in emotional valence has a moderator effect on the relationship
between past gambles risk-taking under the stated assumptions about the data
generating process of risk-taking and past changes in emotional valence.

A.13.3 Empirical Null Distribution
Under the null hypothesis (Y ?? Xde)|XLR

�{e,de} and (Y ?? Xde)|XNN
�{e,de}, we can

derive the empirical distribution of T8 by computing our detector value over 100
randomized data sets. Each T ⇤

8 will require calculating T ⇤
6 , T

⇤
7 , which will require

100 data sets {D⇤
Ci}100i=1 generated assuming past changes emotional valence is a

linear regression of X�{e,de}LR and 100 data sets {D⇤
Di}100i=1 generated assuming

past changes in emotional valence is a linear regression of X�{e,de}NN .
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The 100 detector values {T8(i)⇤}100i=1 are the empirical distribution of our
original detector value T8 = t8(D). Based on the notation of lemma 1, let
Z1 = Xde, Z2 = XLR

�e,de [XNN
�e,de, and Y = Y . Then, under the null hypothesis

Y ?? Xde|(XLR
�e,de [XNN

�e,de), by Lemma 1, these 100 detector values {T8(i)⇤}100i=1

are the empirical distribution of our original detector value evaluated in the
original data set T8 = t8(D).

A.13.4 Detector p-value
Then, a p-value for this detector would be the fraction of {T ⇤

8 (i)}100i=1 which are
greater than or equal to t8(D).

p(T8) =

P100
i=1 I(T ⇤

8 (i) � T8)

100

A.13.5 Computational Cost
Overall, finding the p-value of detector T8 requires a total of 10, 100 data sets
of type C, 10, 100 data sets of type D, 10, 201 logistic regressions, 10, 201 neural
networks, and 202 linear regressions. That is, to achieve the detector T8, we
would find the p-values of T6, T7 with 10

2 data sets of type C, 102 data sets of
type D, 101 logistic regressions, 101 neural networks, and 2 linear regressions.
Then, to compute the empirical null distribution of detector T8, we would repeat
the process 100 additional times.

Now, we have created a detector T8 such that if T8 is large and has small
p-value, then we have evidence to reject the null hypothesis that emotional
valence does not affect risk-taking. We have created a test that incorporates
one scientific hypotheses about how emotional valence affects risk-taking: the
reward processing hypothesis.

In the main text, we created a detector T9 that incorporates all three hy-
potheses about how emotional valence affects risk-taking: the mood-maintenance
hypothesis, the affect infusion model, and the reward processing hypothesis.
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