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Chapter 1 

Introduction 

Urban America is infamous for its broader lack of public transit connectivity. [1] Millions 

of Americans are termed as “transit-dependent”, which means they do not have immediate access 

to a vehicle or otherwise cannot drive and must use an alternative means of transportation. [2] 

About 11% of Americans commute with public transit every day [3] and in general 10-12% of 

Americans do not have access to a car, rendering them transit-dependent. These Americans are 

likely barred from vital services and getting to work. [4] Unfortunately, even getting to public 

transit options can be a struggle for many urban residents as “first/last mile connectivity”, 

defined by the physical distance from the trip origin to the public transit station, can be poor in 

many urban environments. [5] Too many Americans live in so-called “transit deserts”, areas 

where transportation demand significantly exceeds supply even in dense environments. [6] As 

urban populations grow, the importance of sustainable, accessible urban transportation options 

grows, and bike-sharing systems provide an effective solution to both, offering an 

environmentally friendly, healthy, and congestion-limiting option for commuters. 

Bike-sharing systems are a subset of “micro-mobility” more broadly where some set of 

light-weight personal vehicles are distributed around a region as a form of mobility. Micro-

mobility vehicles include bicycle, electronically assisted bicycles (e-bikes), scooters, and 

mopeds. Such systems are often designed to complement or even replace existing transit 

solutions like buses and metro-rail, and they could help transit deserts bloom. However, bike-

sharing is still a relatively young concept with limited established planning tools. Planners can be 

unsure as to how to effectively design and plan these systems. [7] Bike-sharing systems as a 

result are decried as unreliable, inaccessible by low-income communities, and cost-ineffective. 
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Thus, an innovative way to plan and model bike-sharing systems could yield useful results, 

improving unit economics and shaping national municipal policies. 

This thesis identifies inequities in the way transit is currently planned and how those 

approaches have negatively impacted bike-sharing planning. Through interviews and modeling, 

this thesis shows that bike-sharing should be treated as a form of public transit and will offer 

tools to help plan and understand how bike-sharing systems can complement existing public 

transit networks. In order to do so, this paper uses the City of Boston as a case study and, in 

particular, evaluates the Boston Bluebikes system using Boston Public Schools (BPS) teachers as 

a proxy for potential commuters to non-traditional destinations that may not be serviced by 

public transit. Public transportation networks are traditionally planned as hub-spoke networks, 

assuming that commutes will begin from suburbs in the periphery and end in urban Central 

Business Districts (CBDs). Schools, however, are geographically distributed around residential 

neighborhoods, which means that BPS teacher commutes would not be between suburbs and 

CBDs but rather would be between residential neighborhoods, rendering them as non-traditional 

commutes. [8] 

As the City of Cambridge offers free Bluebikes subscriptions to city employees, 

including public school teachers, so the City of Boston could implement such a policy to 

incentivize bike-sharing. [9] Further, since schools, particularly in Boston, are located in non-

traditional locations and are driven by communities, such commutes would be non-traditional 

commutes. However, there until now existed no method to clearly evaluate the efficacy of such a 

policy. 

This thesis also presents BikePath, a simulation model that effectively visualizes, tracks, 

and follows the routes that teachers would potentially use, as well as model van-based 
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redistribution for bikes around the city. This thesis shows that the Bluebikes network will likely 

be able to provide enough bikes in the right places for Boston Public School teachers with an 

initial distribution of bikes if the network were balanced efficiently throughout the day. 

This thesis further uses cell-phone GPS tracking data to identify locations with 

heightened demand for transportation by presenting a method to identify trips. In doing so, this 

thesis presents a method for identifying a more effective distribution of bike-sharing stations 

based on the density of identified trips and expands this to evaluate the efficacy of bike-sharing 

stations placed at specific locations, in this case Boston Public Schools. 

Informed by literature and interviews with bike-sharing operators, this chapter beings by 

exploring the importance of equitable transit planning and the role that interest groups play. 

Then, it dives into the values and pitfalls of bike-sharing programs. Finally, it concludes by 

claiming that bike-sharing must be treated as a form of public transit. 

Necessity of Equitable Transit Planning 

Value of Equitable Transit Accessibility 

 Defining access to transit is a contentious topic with several useful key metrics. Several 

factors influence this including proximity to transit, quality of walking and biking connections, 

parking, and the type and amount of transit offered at a given point. [10] Most existing aggregate 

metrics try to take into account the spatial and temporal availability of transit, basing access on 

the proximity of stations to origins and destinations, the frequency of service, and the service 

hours. [11] Some also account for the presence of pedestrian access and wait times. [12] The 

Local Index of Transit Availability score measures transit access through route coverage, 

frequency, and vehicle capacity. [13] Notably, none of these metrics include equity or transit 



5 

 

dependence, although some cities have begun optimizing routes to take into account the potential 

cost of ridership.1 

Nevertheless, cities with effective and equitable public transit systems, namely buses and 

rail, have been shown to be more diverse in terms of income and race. [14] In many cases where 

transit is not sufficiently distributed around a city, however, this diversity is replaced with 

displacement and gentrification in transit rich neighborhoods. Proximity to transit is one of the 

main causes of increasing property values. Wealthier tenants move into transit rich 

neighborhoods, bringing with them increasing car ownership, and, as a result, potential transit 

riders are crowded out by car owners. At the end of the day, transit stations do not reach their full 

potential. Pollack et al. describe this as a cycle of unintended consequences. [15] As incomes and 

ages increase, the probability of using automobiles rises in conjunction, while living in denser 

areas has a negative effect on income and positive effect on automobile usage. [16]  

 The lack of effective public transportation is a major factor in the lack of upward 

mobility. Chetty et al. show that upward mobility is inversely correlated with commute times and 

urban sprawl, [17] while Levitas et al. show that the lack of mobility creates barriers for lower 

income groups as they are unable to access resources and participate in community activities. 

[18] The lack of transit planning for such communities aggravates latent issues. Lower income 

and transit dependent communities rely on public transportation disproportionally and have 

lower vehicle ownership rates. Lacking alternative means of transportation limits accessible job 

opportunities, propagating the feedback loop. [19] In fact, the typical job is only accessible by 

transit to only 27% of the workforce within 90 minutes, and accessibility is worse in suburbs 

 
1 Interview with Laurel Paget-Seekins - MBTA 
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where transit coverage is poorer. [20] As sprawl rises, and the poor as displaced to lower-density 

neighborhoods, disadvantaged groups face further spatial barriers in accessing job centers. For 

city residents, access to transportation is shown to have a stronger influence on job access than 

actual spatial proximity to those jobs. [21] Improving access to transportation has been shown to 

alleviate the spatial distribution of poverty and create more equitable neighborhoods. [22] 

Further, access to subsidized transit has experimentally facilitated job search opportunities and 

intensity, showing that the lack of transit depresses job opportunity. [23] 

Concerns with Bicycle Infrastructure 

 It is not clear whether cycling could be an alternative equitable transportation mode. 

Bicycle infrastructure can systematically lead to gentrification and displacement for non-white 

races, as it is primarily used by wealthy white males. [24] In fact, in cities like San Francisco, 

young tech professionals (like the author of this thesis) seek certain lifestyles and expect specific 

requirements to be met, which includes safe bicycle infrastructure, often crowding out 

infrastructure development for lower income groups. That is, investment in bicycle infrastructure 

disproportionately benefits the wealthy, reducing available funding for other forms of transit. 

[25] When bicycle infrastructure does exist in lower income communities, it is used. However, it 

is unclear whether bicycle infrastructure is used equally amongst various demographics. In 

Brooklyn, NY, riders on bicycle infrastructure in the area were 54% non-white and 80% male, 

with bicycle riders even finding better health outcomes. Although diverse, these proportions are 

not representative of the demographics of Brooklyn. [26] Further, cultural and physical 

constraints mean that women and inexperienced riders, often from lower income backgrounds, 

find infrastructure to be unsafe or uninviting. Wheeler et al. find that such cyclists require longer 

times to cross intersections at traffic lights, even with bicycle infrastructure. [27] 
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Unfortunately, analyses of docked bike-sharing networks show that the networks are also 

primarily used by white, upper-class residents. Individuals of color are highly unlikely to use 

bike-sharing networks, even when controlling for income. In Washington, DC, only 18% of 

high-income people of color have ridden bike-sharing systems, while 29% of high-income white 

residents have. [28] In New York, Babagoli et al. showed that Citi Bike stations were primarily 

located in low-poverty census tracts, even throughout expansion periods in the mid 2010s. While 

cycling rates have increased across racial and ethnic groups, income segregation disallows 

potential riders from having access to the network. Further, when controlling for spatial equity, 

factors such as cost, required credit or debit cards, and lack of familiarity reduce bike-sharing 

accessibility to lower income communities. [29]  

As Harvard professor Anne Lusk states, even though most cyclists under the income 

range of $50,000 are non-white, infrastructure is not designed for those neighborhoods, often 

cutting corners and costs. Lower-income residents are more likely to get tickets for unlawful 

riding and are more likely to be targeted for bike-related crimes. Cities could work to build 

sufficient, safe bike networks for these neighborhoods. [30] Often riders have financial barriers, 

are afraid to ride, or simply do not know how to ride bikes. Offering cash payment systems and 

education programs that teach residents how to use bike-sharing programs could help incentivize 

ridership. [31] 

Political Stakeholders in Transit Planning 

As with any policy, there are several stakeholders that play important roles in local 

transportation planning. In the seminal work Who Governs?, Robert Dahl argues that the power 

dynamics in local governmental policy processes are such that power is dispersed amongst active 

groups who are willing to assert their views. While the most citizens are relatively apathetic, 
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some interest groups emerge who actively will push for certain policies that are particularly 

important to them. As Dahl writes, “the political stratum is easily penetrated by anyone whose 

interests and concerns attract him to the distinctive political culture of the stratum.” (92) 

Particularly at the local level, interest groups can have significant impacts on policy. [32] 

In studying the importance of interest groups on local policy, Cooper et al. find that 

business associations and neighborhood associations have some of the largest levels of influence 

on local policy, along with cultural organizations and unions. [33] As a result, historically, policy 

decisions have been driven by business groups and homeowners. With a history of institutional 

racism, these interest groups have helped push transportation policy and urban planning towards 

a low-density, land-oriented planning approach that reduced the likelihood non-white Americans 

could move in and also increased property tax collection. Instead of expanding their dense cores 

after World War II, American cities de-densified, with broad populations out in the suburbs. 

These populations then continued to exert pressure on planning authorities. [34] Transportation 

projects that cities take on will primarily be focused on building ways for suburbanites to 

commute to the city rather than intra-city transit projects as building highways and commuter rail 

is often just easier. [35] However, as a result of these policies, even though low-income residents 

would benefit more from public transit subsidies, Iseki and Taylor find that transit “the benefits 

of subsidies disproportionately accrue to those least in need of public assistance”. [36] 

As localities grow more organized and educated on an infrastructure project, they are 

more and more likely to oppose them. Groups known as NIMBYs (Not In My Backyard) are 

more likely to form, reducing investment in transportation in general. [37] NIMBYs are primarily 

concerned about threats from “undesirables”, given the “othering” of transit. NIMBYs cite 

potential increases in crime and decreases in the quality of life and, as a result, lower property 
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values. Opposition increases when citizens feel as though they are not involved in the planning 

process. Such frustrations, as Dear writes, makes it impossible for cities to construct vital 

facilities. [38] Opponents of transit often paint transit users and transit dependent communities as 

communities that are “very different from them in status, ethnicity, and even morality”. This 

otherization, along with a general sense of anti-urbanism, begets a strong negative sentiment 

around development in general, slowing transit development and construction. [39] Much of this 

anti-urban sentiment may stem from racial prejudices and, in particular, an ideal of separating 

oneself from the “others” around one in what has been termed spatial “secession”. [40] 

Further, in transportation planning, equity is often relegated to one criterion in a slew of 

criteria, which ends up being insufficient. [41] Such decisions are colored by local community 

engagement, but this can be infeasible or unrepresentative of the realities of larger populations. 

In particular, people of color and lower income communities are disproportionally left out of 

public involvement engagements. [42] And, access has been notably decreasing in some 

communities, such as in Portland, OR, where residential patterns are rooted in discriminatory 

real estate practices historically, which have persisted till now. [21] Luna writes that these 

tensions are exacerbated by the lack of representation, with white, suburban districts being 

overrepresented in Metropolitan Planning Organizations (MPOs), like the Metropolitan Area 

Planning Council, where the transit authority disproportionately represents white resident. Given 

its one government, one vote system, white suburbs are over-represented. There are inherent 

tensions in transportation interests between the urban core and suburban communities, as some 

are automobile-dependent, while others are transit-dependent. Racial segregation and geographic 

divide exacerbate these issues, particularly as transit agencies face declining revenues, escalating 

costs, and mounting debt. [43] Often decisions are made in political environments in order to 
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maximize profits for developers or other capital interest groups, which further removes the local 

community from the requirements. [44] Matricardi points to grassroots efforts from transit 

dependent and local communities in New York and Atlanta as examples of communities rallying 

and still failing to advocate effectively for themselves. [45] Certain communities lack the voice 

and tools to advocate for improved transportation options. 

 
Figure 1. The MBTA public transportation network 

For these reasons, public transit routes are generally planned around the hub-and-spoke 

model. These are designed to get commuters from the suburbs into downtown for work. Figure 1 

depicts the Boston MBTA public transportation network, clearly showing how commuter rail 

and rapid transit feed into three main hubs in downtown Boston: North Station, South Station, 

and Downtown Crossing. The intermediate routes are connected to each other via buses with a 

clear one-seat policy, which means that no transfers are required to get from popular origins to 
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popular destinations. [46] However, MBTA bus service is notably infrequent and, worse, 

unreliable. [47] While its reliability has since risen 10% from a low 65% in 2017, there remains a 

space for consistent, granular transit routes. The MBTA’s own reanalysis of its Bus routes noted 

that access to public transit has been poor in the lower-income Boston neighborhoods of 

Roxbury, Dorchester, and Mattapan, including limited access to/from high-demand areas like 

Kendall Square and the Seaport District. [46] 

Transportation planning is affected significantly by the Spatial Mismatch Hypothesis, 

that racial segregation has pushed job centers out from the city into the suburbs. [48] Sprawl has 

been shown to reduce upward mobility from a direct effect on job accessibility, significantly 

mediated by income segregation. [49] Even as dense, urban neighborhoods are renewed and 

residents return to cities, this gentrification and “revitalization” has attracted high-income 

households to previously low-income neighborhoods, changing the dwellings and changes in 

lifestyles. This has led to negative externalities of traffic congestion, increased commute times, 

and displacement. [16] 

Proximity to public transportation can be vital to social mobility, and thus, the 

importance of transportation equity cannot be overstated offering equal opportunity to 

particularly transit-dependent communities. Fan et al. note that proximity to light rail and bus 

stations is associated with significant increases in accessibility to low-wage jobs. [50] Further, 

Ruiz et al. find that simply increasing the frequency of buses can have significant impacts on 

social equity, without significant cost increases. [51] 

Worse still, Linovski et al. find that in Canadian cities, equity is rarely taken into account 

when planning networks as the definition of transportation equity can be unclear. Rather than 

focusing on transit-dependent commuters, cities focus on distributing transit equally around the 
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city, which may not benefit transit-dependent communities as much as may be required. Transit 

is viewed as a tool to revitalize neighborhoods and increase development, rather than simply a 

form of transportation, which misaligns the incentives amongst political stakeholders. 

Politicians, private developers, and planners alike often hope to build up the city. [52] Thus, 

there remains a tension amongst politicians, planners, developers and grassroots communities. 

Interviews with Operators 

In order to understand the current state of bike-sharing in North America, over the past 

few months, I have conducted over twenty interviews with bike-sharing officials at innovative 

micro-mobility providers and municipal governments from around the country including: 

Cambridge, Boston, Central Florida, Las Vegas, Portland, San Francisco, Detroit, Salem, 

Minneapolis, Pittsburgh, Omaha, Austin, Washington, DC, and Boise. These municipalities were 

chosen for myriad reasons. San Francisco, Washington, DC, and Portland were targeted as they 

are all in part operated by Lyft, which also operates Boston Bluebikes. Las Vegas, Omaha, 

Boise, and Salem were chosen as they have smaller networks in areas with few alternative transit 

options. Finally, Pittsburgh, Austin, and Minneapolis were chosen as they also have relatively 

robust transit networks, and also have competing micro-mobility providers. In all of these 

interviews, themes of unsurety, misaligned incentives, and concerns about “communities of 

concern” emerged. Simultaneously, the officials celebrated how effective current planning 

strategies have been, even if many of them are bespoke solutions, difficult to generalize out of 

specific neighborhood contexts.  
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Figure 2. Operators and Cities Interviewed 

Comment Cities 
ADA Issues with Dockless Boston, New York City, Washington, DC 
App Opens for Conversion 
Operations 

Boston, New York City, Washington, DC 

Bike Lanes Planning Boston, New York City, Washington, DC, Minneapolis, New Haven, 
Hoboken, West Palm Beach, New Rochelle 

City Does Planning Tampa, Orlando, St. Petersburg, Vancouver 
Clustered Start-Stops for 
Planning 

Tampa, Orlando, St. Petersburg, Vancouver, Las Vegas, Los Angeles, 
Philadelphia 

Community Education 
Required 

Las Vegas, Los Angeles, Philadelphia, Portland, Pittsburgh 

Crime Problem Tampa, Orlando, St. Petersburg, Vancouver 
Demand Heatmap/Hot-Spot 
Planning 

Las Vegas, Los Angeles, Philadelphia, Portland, Washington, DC 

Divide into Grid Planning Boston, New York City, Washington, DC, Boston 
Dockless Requires Regulation Salem 
E-Bikes Necessary Boston, New York City, Washington, DC, Minneapolis 
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Equity 
Analysis/Demographics 
Planning 

Boston, New York City, Washington, DC 

GIS Modeling Planning New Haven, Hoboken, West Palm Beach, New Rochelle 
Government Regulation 
Unnecessary 

Washington, DC 

Heat/Sweating/Weather Issues Tampa, Orlando, St. Petersburg, Vancouver, Las Vegas, Los Angeles, 
Philadelphia, Austin 

Heavy Bikes Tampa, Orlando, St. Petersburg, Vancouver 
Helps Transit Deserts New Haven, Hoboken, West Palm Beach, New Rochelle 
Hybrid Bike-Sharing Tampa, Orlando, St. Petersburg, Vancouver, Portland, Boise, New 

Haven, Hoboken, West Palm Beach, New Rochelle 
In-House Rebalancing 
Software 

Salem, Boston, New York City, Washington, DC, Pittsburgh 

Job Density Planning Boston, New York City, Washington, DC, Boston, Salem, Detroit, 
Boise, New Haven, Hoboken, West Palm Beach, New Rochelle 

Lack of Actual Data New Haven, Hoboken, West Palm Beach, New Rochelle 
Need Dense Coverage of 
Network 

Washington, DC, New Haven, Hoboken, West Palm Beach, New 
Rochelle 

Not Enough Data Issue Portland 
Not enough bikes Tampa, Orlando, St. Petersburg, Vancouver 
Not enough trips per bike Portland 
Parking Access an Issue Boston, New York City, Washington, DC 
Physical 
Observation/Experience 
Planning 

Las Vegas, Los Angeles, Philadelphia, Salem, Lincoln, New Haven, 
Hoboken, West Palm Beach, New Rochelle, Austin 

Poor Government Relationship Portland, Salem, Pittsburgh, Boise, Washington, DC 
Poor Maintenance Issues Boise 
Population Density Planning Las Vegas, Los Angeles, Philadelphia, Boston, New York City, 

Washington, DC, Salem, Detroit, Boise, New Haven, Hoboken, West 
Palm Beach, New Rochelle 

Public/Community Outreach 
Planning 

Tampa, Orlando, St. Petersburg, Vancouver, Boston, New York City, 
Washington, DC, Portland, Pittsburgh, Lincoln, Detroit, New Haven, 
Hoboken, West Palm Beach, New Rochelle 

Redistribution Ratio 
Operations 

Tampa, Orlando, St. Petersburg, Vancouver, Las Vegas, Los Angeles, 
Philadelphia, Austin, Portland, Tampa 

Replace Bus Trips New Haven, Hoboken, West Palm Beach, New Rochelle 
Right of Way Planning Detroit 
Safety Issue Salem 
Scooters Cannibalized Trips Boise, Austin 
Self-Redistribution Works Washington, DC 
Station Density (300-500m) 
Planning 

Boston, New York City, Washington, DC, Portland, Tampa, Orlando, 
St. Petersburg, Vancouver 
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Station Downtime/Outage for 
Reliability 

Las Vegas, Los Angeles, Philadelphia, Pittsburgh, Lincoln 

Stations/Docks Necessary Minneapolis 
Topography Planning Boston, New York City, Washington, DC 
Traffic Congestion Reduction Boston, New York City, Washington, DC, Boston 
Transit Proximity Planning Boston, New York City, Washington, DC, New Haven, Hoboken, 

West Palm Beach, New Rochelle 
Transportainment Tampa, Orlando, St. Petersburg, Vancouver, Las Vegas, Los Angeles, 

Philadelphia, Salem, Boise 
Unpredictable Redistribution Tampa, Orlando, St. Petersburg, Vancouver 
Use Qucit Tampa, Orlando, St. Petersburg, Vancouver 
Van Access for Stations 
Necessary 

Boston, New York City, Washington, DC 

Wealthy, Young, White 
Ridership 

Las Vegas, Los Angeles, Philadelphia, Boise 

Figure 3. Overview of Comments from Interviews 

Benefits of Bike-Sharing 

 Micro-mobility offers an incredible opportunity for cities to avail health, environmental, 

and economic benefits while increasing public transportation options for commuters. Almost 500 

cities have already built up such systems, since the first modern network, Velib, in Paris, after 

the storied 1965 creation of the Amsterdam Witte Fiesten bike-sharing system. [53] Figure 4. 

Shows the proliferation of bike-sharing in the United States.  

 

Figure 4. A NACTO map of bike and scooter sharing systems in the US as of 12/31/2018 [54] 
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There are two main types of bike-sharing: “docked” and “dockless”. Docked bike-sharing 

is station-based, which means that bikes are docked at stations in clusters of 5-20 bikes per 

station around a city. Bikes must be picked up and dropped off at stations. Dockless bike-sharing 

systems, on the other hand, do not have stations. Bikes can be picked up and dropped off 

anywhere within a pre-specified region as bikes are GPS-tracked. Limited fixed physical 

infrastructure is required for dockless bike-sharing. [55] For the purposes of this analysis, the 

focus will primarily be on docked systems as the Bluebikes bike-sharing network in the City of 

Boston is a docked network. 

As a form of “Active Transportation”, defined as any mode of transportation that is self-

propelled and human-powered, bike-sharing offers significant health benefits. [56] An analysis of 

Barclays London Cycle Hire found a significant reduction in transportation related injuries 

throughout the city, although most cycling trips replaced walking or transit. [57] A larger study 

of twelve European cities found a direct relationship between saving lives and bike-sharing due 

to the reduction in car-based trips, which helped increase bicycle safety, reduce pollution, and 

generally increase rider health. [58] However, health benefits may be overstated for women as 

women are more at risk for injury in cycling accidents. [59] 

Further, by reducing trips taken in private vehicles, bike-sharing can offer significant 

environmental benefits. In DC, such networks resulted in an upwards of 4% reduction in traffic 

congestion in neighborhoods near the Capital Bikeshare stations. [60] In Barcelona, significant 

reductions in pollution and increases in road safety were noted. [61] In Shanghai and Denver, 

significant reductions in CO2 emissions were noted, with Denver shedding over a million tons of 
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CO2 emissions due to its B-Cycle network.2 [62] That said, the effect on the environment could 

be overstated. In Vancouver, for example, reductions in CO2 emissions were so minute, that the 

city will no longer tout that as a benefit. [63] Further, it is unclear whether the benefits of active 

biking can simply be ascribed to bike-sharing itself or broader trends influencing an increase in 

bicycling as a whole, including improved bicycling infrastructure like bike lanes. [64] 

Bike-sharing even offers economic benefits both to local businesses and individuals. In 

Dublin, bike-sharing reduced the density of economic activity, yielding an increase in economic 

activity throughout the city. [65] In Washington, DC, a survey of riders found that 20% of local 

businesses reported increased income due to the introduction of the Capital Bikeshare program 

and 61% reported an improvement in their local neighborhood with only 1% and 2% of 

businesses reporting negative effects, respectively. The same study found that 25% of riders 

primarily used the bike-sharing network as it was cheaper than their regular commute and 73% 

reported that it was faster than their regular commute. [66] Sobolevsky et al. broke down the 

costs and benefits for the CitiBike network in New York City, noting that the main benefits came 

from reduced emissions from saved gas, increases in economic activities, and health benefits 

from increased activity. They found a benefit-cost ratio between 3 and 8, depending on the 

subscription fee, coupled with a 700-ton reduction in CO2 emissions. [67] 

Broadly, bike-sharing trips in Boston complement walking, generally serving different 

purposes as bike-sharing trips are generally much longer. Most walking trips are short and within 

neighborhoods, while most bike-sharing trips are either commuting from residential areas to 

commercial areas or are connected to major transit hubs. [68] This lines up with previous studies 

 
2 Incidentally, the B-Cycle system has recently been shut down and is slated to be replaced with another provider: 
https://www.thedenverchannel.com/news/local-news/b-cycle-ends-operations-in-denver-as-city-looks-for-
replacement 
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that find that bike-sharing often works in tandem with, or in lieu of, existing transit options. 

Martin and Shaheen find in Washington, DC and Minneapolis that bike-sharing enables 

increased access to transit for those living in less dense areas but replaces bus trips for those 

living in denser urban cores. [69] With a longitudinal study of 22 American metro areas, 

Graehler et al. show an increase in both heavy and light rail, but a 1.8% decrease in bus 

ridership. [70] This implies that bike-sharing can be leveraged to replace bus routes as a last-mile 

connectivity option, particularly to/from rail stations. Interviewing an official in Hoboken 

revealed that bike-sharing can help alleviate transit deserts, offering more options to commuters 

and expanding the reach of existing transit options, like New Jersey Transit, going so far as 

noting that such trips would often replace bus trips.3 With significant health, environmental, and 

economic, bike-sharing can act as an effective form of transit somewhere in between walking 

and buses, ultimately supplementing existing transit networks. 

Struggles with Bike-Sharing 

 Navigating and managing a bike-sharing network is, of course, not without its 

difficulties. Docked bike-sharing systems, in particular, suffer from hardware limitations that can 

complicate access to bike-sharing networks broadly. In particular, there are two main issues that 

a bike-sharing rider will inevitably face. Either the station that the rider hopes to pick up a bike 

from will be completely empty, forcing the rider to find another station to pick up a bike from or 

to drop the trip altogether, or the rider will find that the station that is nearest to their ultimate 

destination is full, pushing the rider to find another nearby station to dock the bike at. Mitigating 

these possibilities, collectively referred to as “outages”, is the main responsibility of any bike-

 
3 Interview with planner in Hoboken 
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sharing operations team outside of vehicle and station maintenance. Bike-sharing operators work 

to balance their networks throughout the day with a process known as “rebalancing”. Operators 

will use vans or trailers to move up to 30 bikes around their city to balance based on demand. 

[71] This can be an expensive, labor-intensive task that cuts into the potential profitability of 

these networks. 

 

Figure 5. The Boston Bluebikes System [72] 

Infrastructure Bottlenecks 

Interviews with officials from around the nation indicate that the unit economics of bike-

sharing need to be improved to increase its feasibility, with many decrying that the system is 

imbalanced and unsupported by current infrastructure bottlenecks, particularly as infrastructure 

is controlled by city limitations. Networks seem as though they are both oversubscribed and 

undersubscribed simultaneously. At peak hours, in the Boston Bluebikes system, around 30% of 

potential riders are either not able to pick up bikes or are not able to drop their bikes where they 

would like. Goh and Yan measured this effect by creating rider agents that pick up a bike from a 

dock using a ranking-based choice model based on ridership data and rider-expressed rankings of 

stations based on proximity, access to destination, and other exogenous factors like weather. This 

analysis further shows how network effects absorb supply shocks to the system, particularly as 
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stations proximate to each other (such as South Station or Kendall Square) can handle increases 

in demand from stations that are stocked out outside of the system. [73] Some parts of the 

networks are heavily utilized, while others are rarely utilized at all. In this imbalance, cities often 

find metrics difficult to measure and quantify and often rely on individuals’ “feels” on city 

networks. In Las Vegas, for example, 48% of the bike stations that had been constructed had to 

be relocated in order to induce increased ridership at those stations. Moving these stations by just 

a block increased both ridership and revenue. However, these stations were moved primarily by 

the way of “gut feelings” as opposed to a data-driven approach. While the relocation was clearly 

successful, measuring, quantifying, and generalizing such strategies can prove to be difficult.4 

Ridership is not always low, but still emerges as a primary concern for micro-mobility operators. 

One potential solution would be to infuse more bikes into the system to ensure network 

availability. There are about 3,300 bikes in the Boston Bluebikes system, however, shockingly, 

at any given time, at maximum, around 300 are ever being ridden. This means that fewer than 

10% of the bikes are ridden at any given time, even in peak ridership areas. [74] In Portland, this 

number may rise to around 40%, or about 6 trips per bike per day, on days of special events and 

particularly nice weather. However, such days are exceptions, with most days maintaining an 

average usage of around 10%, or 1 trip per bike per day. Such a low utilization rate particularly 

pushes the idea that there may be a sufficient number of bikes in the system, particularly as 

Portland estimates that their system cannot be profitable until usage is consistently 4-5 trips per 

bike per day.5 Bikes generally idle all day. 

 
4 Interview with operator in Las Vegas 
5 Interview with operator from Portland 
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This research lends credence to the idea that maximizing individual bike usage may be more 

effective in terms of cost-maximization for cities themselves. Further, it may seem that 

purchasing more cycles is the answer, but each bicycle can cost $1,200 each and adding docks 

can cost $50,000 each, which means that costs can escalate greatly to increase capacity. [75]  

Interviews reveal that often cities own their entire systems, limiting the expenditure and 

subsidies available for investing in the system as the funds must come from miscellaneous transit 

outlays rather than dedicated road infrastructure budgets or large-scale venture capital funds.  

This is particularly salient in smaller networks in smaller cities. In Boise, for example, 

operators referred to the network as the “red-headed step-child of the Valley Regional Transit 

Authority”, concerned about how few resources are devoted to the network, bottlenecking the 

growth of the system. Boise’s network primarily relies on government funding, often 

supplemented by federal and state funding, which is generally provisioned as grants. In order to 

combat resource shortages, cities will come up with cost-effective workarounds, such as Boise 

creating stations out of pre-existing bike racks by simply geo-tagging them and labelling them on 

the map, such that riders can dock bicycles there without being charged a fee for not docking at 

an official station.6  

Operations 

In Boston and San Francisco, rebalancing is driven by “rideability”, which is the number 

of available bikes to available docks at a bike station. The value is calculated for every bike 

station in the system, and target values are set for each individual station depending on demand. 

Bikes are rebalanced around the network using vans that are able to carry around thirty bikes. 

 
6 Interview with an official in Boise 
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These vans are routed around the city primarily focused on taking bikes away from full stations 

(stations that no longer have any open docks; stations where the rideability score is too high) to 

stations where there are not enough bikes (stations with too many open docks; stations where the 

rideability score is too low). Boston and San Francisco generally target a rideability score of 0.6, 

which means a little less than half of their docks are empty.7 In such cities, of course, there are 

stations that will inevitably “self-rebalance”, which highlights the importance of understanding 

the network effects of how bikes are distributed across them. Bikes in high-demand areas will 

sometimes return to those areas throughout the day, particularly in mixed-use areas surrounded 

by residential and commercial areas alike.8 

Medium tier networks, such as those in Austin, Hoboken, and Los Angeles, are able to 

use their experience and visual data analytics to rebalance their networks. Operators will pore 

over ridership in previous months and years to estimate how many bikes may be useful at 

stations throughout the city. They will also calculate rebalancing ratios similar to those in larger 

cities, generally looking to have about half of their docks free. That said, operators in the field 

may make gut-feel decisions to override those targets based on their intuitions.9 In Pittsburgh, the 

operator described rebalancing as a balance between data-driven predictions and their own 

knowledge of how the city operates. Of course, this knowledge varies amongst their team, so 

often inconsistencies may occur in bicycle placement.10 

Networks in smaller cities are craftier and nimbler. In Las Vegas, given that there are 

only 21 stations, limited by their Regional Transportation Commission, maintenance and 

 
7 Interviews with operators in Boston and San Francisco 
8 Interview with planner in San Francisco 
9 Interviews with operators in Austin, Hoboken, and Los Angeles 
10 Interview with operator in Pittsburgh 
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rebalancing can be done on an ad hoc basis. The network does not have to be managed by a team 

of rebalancers and mechanics, but rather is managed by a single person who hops in his van 

when bikes need to be collected or moved around. The flip side is that ridership is likely 

hampered by a lack of supply.11 The operator of the small operations in Tampa, Orlando, and St. 

Petersburg said that ridership was artificially held back by the lack of capital to expand their 

networks. The local transportation authorities were not willing to invest in the development of 

bike-sharing networks or other cycling infrastructure.12 

Insufficient Planning Methods 

Current planning methods, such as those recommended by the Institute for Transportation 

and Development Policy, are broad and based primarily on population density. Interviews with 

officials around the country support this thought approach, with many identifying that their 

planning processes focus on mapping population centers and job centers on top of current transit 

networks, bike infrastructure, and transportation patterns. These areas are often job-centers, 

commercial business districts, and tourist attractions or other points of interest like schools and 

large businesses. 13 In the smaller cities of Tampa, St Petersburg, Las Vegas, and Orlando, along 

these lines, it is clear that most rides originate from a locus of 10% of stations, often clustered in 

the same area. In larger cities, like Washington, DC and Boston, there are generally multiple 

ridership generating centers, reflecting multiple residential, leisure, and commercial centers.14 

Generally, bike-sharing systems are planned simply by identifying locales with sufficient 

density. Demand models are generated by estimating factors such as the Price-Elasticity of 

 
11 Interview with operator in Las Vegas 
12 Interview with operator in Tampa, Orlando, and St. Petersburg 
13 Interviews with operators in Portland, Boston, and Las Vegas 
14 Interviews with planners and operators in Washington, DC and Boston 
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Demand, for which uptake rate is often a proxy. In general, the Institute for Transportation 

Development Policy recommends about 10-30 bikes per 1000 people, and 2-2.5 docks per bike. 

These somewhat arbitrary metrics are based on the idea that bike-sharing docks should generally 

be half full such that riders are always able to dock or park their bike comfortably. [76] 

In many cases, planners break down cities into “wards” that each must be provided a 

station. The logic here is that every ward must have a station in it to ensure a dense network 

where potential riders do not have to travel too far to be able to access a station. This set up 

varies in every city. New York City was broken up into 200-meter grid sections where docks 

were required to be placed in each section; San Francisco was broken up into 1000-feet grid 

sections where a bike must be available within walking distance (about a quarter mile) of any 

position in the city. In Portland, the city was broken up into about 100 wards and each ward had 

three sites identified as potential locations for bike stations. Each of those three potential station 

locations was then vetted based on several criteria, primarily along the lines of the number of 

houses nearby, the quality of the local bike-infrastructure, distance from transit lines, and curb 

use.15 Stations are also vetted for access for rebalancing vans, to ensure that vans have a nearby 

location where they can park and load/unload bikes to the stations.16  

Planning Around Trip Generators 

 Many systems are also designed around the express purpose of “transportainment”. As a 

planner from Tampa, St Petersburg, and Orlando explained, a significant proportion of riders will 

use the network not as a transit tool, but as an entertaining form of transportation to get around 

the cities. For this reason, many smaller networks in particular, such as Boise, Las Vegas, and 

 
15 Interview with operator in Portland 
16 Interview with operators in Paris and Tampa 
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the Floridian networks, will plan networks to optimize for points of interest, tourism, and 

entertainment with stops at dedicated hotspots like restaurants, along park routes, and large 

parking lots.17 In Boise, overall ridership is primarily clustered around the Boise River 

Greenbelt, a 25-mile bike path around the Boise River, and thus much of the network is planned 

around the Greenbelt.18 Similar observations were made in the larger city of Portland where 

planners note that such rides often will start and end at the same station, making it difficult to 

track exactly where the riders went exactly. However, since the rides start and end at the same 

station, the rides are most likely for leisure. Weather ends up being a major factor for these 

systems, in particular with concerns about sweat dissuading riders from commuting in the 

mornings. The cooler evenings often have higher ridership in such networks.19  

 While many initially assumed that bike-sharing networks will primarily supplement 

traditional transit systems, such as buses and metro-rail, smaller networks in cities without strong 

rail transit networks find that ridership  is primarily centered around point-to-point transit 

systems. In other words, bike-sharing is not a last-mile connectivity solution in cities without rail 

networks. In Las Vegas, since taking the bus seems to have a stigma, users rarely use the 

infrastructure specifically constructed for bus transfers at transit centers; most rides do not start 

or end at transit stations.20 Similarly, in Boise, while ridership is high at stations near transit 

centers, this is primarily because those transit centers are in dense neighborhoods with several 

ride-generators. In fact, the bike station nearest to the transit center, is not as frequented as others 

in that area.21 Even though Hoboken has a relatively small bike-sharing network, its most 

 
17 Interview with operator in Tampa, St. Petersburg, and Orlando 
18 Interview with operator in Boise 
19 Interview with operator in Portland 
20 Interview with operator in Detroit 
21 Interview with operator in Boise 
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frequently used stations are near the New Jersey Transit rail stop. This indicates that the size of 

the network is not the predictor, but rather bike-sharing supplants the smaller trips that people 

would have otherwise made on buses and supplements trips that people will continue on rail.22 

In larger cities like Boston, however, planners have found transfers to the transit network 

to be quite frequent, often as a primary use case of the Bluebikes bike-sharing network. Even in 

this case, the bikes are replacing bus trips that could have acted as feeders to the T metro-rail 

network in the city.23 Other large cities like Washington, DC and New York City report similar 

observations.24 While nearness to other transit hubs is used as a primary metric for planning 

bike-sharing stations, they will likely only be trip-generators if they are rail stations. 

Local Community Involvement 

Cities will further then incorporate different forms of community-driven information such 

as having conversations with locals on where exactly they would like to go and why they would 

like to go there. To that end, conversations will involve understanding the needs that current 

transportation methods fulfill and do not currently fulfill, which requires both accepting the 

wants of current residences as well as inferring where commuters and travelers may actually 

want to travel. Community residents often ask for specific alterations such as specific numbers of 

bikes or station locations. They may also demand bike infrastructure such as bike lanes and bike 

paths as a prerequisite.25 

Feasibility studies from Wilmington, DE and Asheville, NC show similar approaches as 

well, but extend them to include community involvement. Wilmington used Facebook likes to 

 
22 Interview with operator in Hoboken 
23 Interviews with planners and operators in Boston 
24 Interviews with operators in Washington, DC and New York City 
25 Interview with operator in Boston 
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help rank which stations they should prioritize and used data on employment and population 

density, public attractions, transit, and minority population distributions to calculate a “suitability 

score” for stations to maximize equity and access. [77] Asheville similarly set out to balance 

maximizing ridership and coverage and created demand models based on proximity to 

population, employment, education, leisure, and commuting centers. [78] 

The primary concerns of residents often come down to on-street parking in big and small 

cities. As planners from Lyft discussed, on-street parking is a free and unlimited, fully subsidized 

amenity for Boston residents, while Boston Bluebikes, although owned by the Cities of Boston, 

Somerville, Cambridge, and Brookline, is operated by Lyft and charges a fee. So, when bike 

infrastructure gets in the way of street parking, residents will, to say the least, complain.26 When 

expanding the Boston Bluebikes system in 2019, the Boston Transportation Department held 42 

public meetings in order to hear from various neighborhoods. [79] At the end of the day, as 

Laurent Mercat, Founder of French micro-mobility company Smoove, outlined, planning stations 

is more of a political decision than a planning decision, in particular when businesses get 

involved.27  

Businesses often undervalue the economic value that bikes may provide. While research 

shows that replacing parking with bicycle infrastructure almost always increases consumer 

spending and traffic, [80] businesses generally chafe at the idea of supplanting parking spaces 

with bike infrastructure like bike lanes, bike parking spaces, and, in particular, docked bike-

sharing stations. Businesses will complain that the stations block access to commuters, bring 

unwanted attention, or limit delivery options to the business. Such concerns need to be mitigated 

 
26 Interview with planners in Boston 
27 Interview with Laurent Mercat, founder of Smoove 
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and confronted by planners very directly in order to facilitate both community involvement with 

and usage of the bike-sharing systems. 

Advocacy groups and public meeting attendees, however, can often misrepresent the 

demographics of a neighborhood. Einstein et al. find that attendees to such events are generally 

older, male, longtime residents. [81] In a subsequent study, they found that attendees are also 

predominantly white. In fact, in Boston, 95% of attendees were white. Attendees also tend to be 

NIMBYs, fierce advocates against any sort of development. [82] This could misrepresent the 

needs of a community, particularly in larger cities. 

External Stakeholders 

Along with local concerns, planners must take into account external stakeholders. The 

Bluebikes system itself is owned by a collaboration of the cities of Boston, Brookline, 

Cambridge, Everett, and Somerville. Thus, the infrastructure is municipally owned. However, 

the operations are outsourced to a private organization, Lyft, which owns and operates the app, 

rebalancing, and maintenance. Curiously, Lyft’s ride-sharing operations may directly compete 

with its micro-mobility ambitions. While the actual contract is not in the public domain, a 

revenue share is discussed in the Request for Proposal that the City of Boston put out while 

implementing the initial bike-sharing system. The system’s Title Sponsorship is health insurance 

provider BlueCross BlueShield, which led to the rebranding of the original moniker of Hubway 

to Bluebikes. Sponsors often expect certain numbers of bikes at stations near their locations 

which may imbalance bike-sharing networks.28 Such a convoluted web is repeated throughout 

the country with municipal stakeholders.  

 
28 Interview with planner in Boise 



29 

 

A significant portion of micro-mobility systems are also funded by venture capitalists 

(VCs) expecting a return on investment. Billions of dollars have flooded the micro-mobility 

space. Micro-mobility provider, Lime, has raised around $765 million for its scooter-sharing 

business, and it is but one of at least a dozen different domestic operators. [83] Lyft entered the 

bike-sharing space by purchasing Motivate for around $250 million. [84] Uber purchased bike-

sharing company JUMP for $200 million. [85] Investors expect the movement of young 

professionals to cities to drive the growth in bike and scooter sharing and anticipate that upward 

price adjustments and system optimizations could yield significant profits. [86] This throws 

another wrench in the works: these companies need to make a profit. There is a tug-of-war 

amongst municipalities, communities, and private operators as operators strive for profits, 

municipalities hope for system-wide reliability, and communities focus on their own needs. 

Bike-sharing is Not Profitable 

Unfortunately, bike-sharing operations have not been raking in the fortunes that venture 

capitalists have expected so far. As Small writes, “even with a maximal level of ridership, cities 

typically need to find some way to subsidize a bike share system through corporate sponsorship, 

federal dollars, or both.” The Pronto bike-share network in Seattle shut down in 2015 as 

ridership numbers were so low that even corporate sponsorships could not keep it afloat and the 

federal TIGER grant that the Seattle Department of Transportation had requested did not come 

through. [87] A similar story almost played out in Boise where over the course of these past few 

months, the Boise Greenbike network lost one of its main corporate sponsors and the Valley 

Regional Transit Authority had to bail out the network to help keep it afloat.29 In recent months, 
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micro-mobility companies Lime, Zagster, and Bird have seen a string of layoffs and valuation 

cuts. [88] [89] Even in China, where cycling is a cultural staple and bike-sharing companies 

raised billions of yuan, almost every bike-sharing firm went bankrupt over the last four years. 

[90] As Shaheen et al. found, in a survey of all North American bike-sharing operators willing to 

offer data, only two reported making a profit (although most did not report operating costs). [91]  

Without the revenue to be self-sustaining, bike-sharing networks cannot cover costs and thus 

require subsidies. 

Working with Communities of Concern 

 In the Boston Bluebikes network, the stations in the majority non-white Bowdoin have 

about a tenth of the trips of the majority white Oak Square neighborhood. [92] As of 2016, only 

7.1% of African-Americans had access to bike-sharing in Boston, where as 42% of white 

Americans did. Only 14% of lower-income residents had access, while 18.6% of high-income 

residents had access. Boston showed a statistically significant disparity for race and income. This 

is paralleled across several cities in the US, except Washington, DC which has much more strict 

policy regulations for balancing bike-sharing placement. [93] 

The City of Boston has a slew of data reporting mechanisms that keep track of system 

metrics such as ridership and reliability. [94] [95] Some governments, to maintain certain service 

levels throughout the city, mandate data reporting standards, fleet size minimums and 

maximums, and vehicle deployment numbers in certain neighborhoods. For example, in 

Washington, DC, underserved neighborhoods must always have pre-specified numbers of bikes 

available to ride. Cities also mandate reliability and maintenance standards for those 

neighborhoods. [96] 
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Additionally, Detroit, Portland, and Las Vegas have found success in bringing lower 

income residents onto their network through community outreach programs. The biggest issue 

that lower income communities face is the literal lack of access to stations as bike-sharing 

stations are often not located near enough to lower income communities. However, even when 

stations and bikes were available, three main issues emerged as barriers for access for lower 

income residents: 1) Inability to pay with bank cards; 2) Limited understanding of the way bike-

sharing systems work; 3) Lack of safety throughout the local network. In order to combat these 

issues, Detroit, Portland and Las Vegas each have instituted unique strategies. In Detroit, 

representatives from the Detroit MoGo bike-sharing system partnered with local community 

leaders to help educate riders and offer heavily discounted passes to lower income riders with 

cash payment options. This has been shown to significantly increase ridership in Detroit, 

ensuring that educational programs and community-driven initiatives have helped funnel new 

users into the system, improving their physical, urban, and social mobility.30 Similarly, in 

Portland, lower income residents actually see significantly higher trip rates than other members 

as many have grown to depend on the network. Biketown4All (Portland’s discounted ridership 

pass for eligible riders) pass users generally ride up to five times a day as compared with the 

regular members’ one ride a day. Planners ascribe this discrepancy to bike-sharing’s utility 

across the city, with other options like ride-sharing available to upper income users.31 In Las 

Vegas, certain lower income housing complexes are near some of the most popular stations in 

the entire network. Initially some of these stops were under-utilized, but Las Vegas set up 

multiple events where riders were offered free rides and were taught exactly how to use the 

 
30 Interview with operator in Detroit 
31 Interview with operator in Portland 
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system by members of their communities. Initial interest converted to actual memberships and 

ridership then grew organically through word-of-mouth for local riders.32 

Unfortunately, some systems often are too small or resource-strapped to effectively 

pursue social-equity focused initiatives, even if they want to. Most smaller networks, particularly 

those that lack the backing of larger operating organizations, have poor data and metrics for 

measuring how many members of “communities of concern” their networks reach. While many 

deliberately quantify and track their efficacy in these fields, most are only able to count how 

many users of their discounted/free bike passes there are. Some are even unable to bring 

underrepresented riders onto their networks due to the lack of infrastructure and other resources. 

Even after Philadelphia’s campaign to improve access by allowing cash payments and significant 

membership discounts, Caspi and Noland find, while controlling for factors such as transit access 

and bicycle lane access, that lower income neighborhoods still have not produced more trips. 

[97] 

In order to get around the inability to bring users onto their normal bike-sharing network, 

operators in Boise are implementing novel, unique approaches. With retired bicycles acquired 

from Boise’s sister bike-sharing network in Topeka, operators are setting up a bike-sharing 

“library” for Boise’s homeless, so that they are able to travel and reach job opportunities with 

alternative mobility options.33 While bike-sharing networks may not equitably reach all in cities, 

most municipalities are particularly concerned about ensuring equitable transportation access 

throughout their networks as a priority. Boston also has a history of working with communities, 

in organizing events centered around education, maintenance, and group rides. These, however, 

 
32 Interview with operator in Las Vegas 
33 Interview with operators in Boise 
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are often centered around current subscribers and frequent riders, rather than necessarily 

reaching communities of concern. Generally, this is left to the municipalities themselves to 

organize, rather than the Bluebikes network itself. [98] 

Treating bike-sharing as another public transportation option, integrating it as an active 

and accessible solution could expand social mobility and transit options for communities of 

concern around myriad urban environments. Thus, effective planning mechanisms and tools are 

required in order to do so efficiently and equitably. 

Policy Diffusion in Bike-Sharing 

 No one city is tackling bike-sharing on its own. Local governments around the nation and 

around the world are all working to bring mobility into the 21st century, to tackle social equity 

concerns, and to leverage new technology-enabled mobility options. Thus, local governments 

will look to each other and learn from each other, diffusing insights and learnings around the 

world. Gilardi et al. define “policy diffusion” as “the process by which policymaking in one 

government affects policymaking in other governments”. They write that as policies are adopted 

in some cities, they are perused and explored in other cities, often with different “policy frames”. 

Policy frames are defined as “the presentation or discussion of an issue from a particular view- 

point to the exclusion of alternate viewpoints”. [99] The way a policy is framed can affect how it 

is understood and adopted at the local level through the downstream stages. Local governments 

learn from previous policy frames and the implications of those frames and right size them for 

their own municipal goals. Thus, Gilardi et al. conclude that policy frames significantly impact 

the way policies are adopted and implemented in cities, finding that understanding the 

implications of a policy help highlight which concerns are more important and which are not. In 

this way, as policies diffuse, their policy frames grow more complex but also better defined. 
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[100] An incredible benefit of this model is that localities are less likely to succumb to one-size-

fits-all policies. Local governments are more likely to pull policy ideas from cities that share 

similar characteristics and leverage local interest groups and stakeholders to shape the policy 

frame with which policies should be formed. [101] 

 When different policy frames are taken into account, explored policies change. These 

policy frames are influenced not only by internal factors, but also by external factors. As Johnson 

and White found in Kansas City, while transportation planners focus on automobile planning, 

when presented with the trade-offs of water quality and public health, their interest in sustainable 

transportation options increases. Peer cities and regional organizations are able to have 

significant impacts on policy decisions and priorities. [102] As a policy diffuses, it begins 

affecting conversations well before policies are even actively considered, shaping policy frames 

as well. [103] In this way, the outlooks that policy makers have on prioritizing and evaluating 

policies are shaped by the ramifications of those policies around the nation. 

 As Midlarsky noted, much of policy diffusion is centered around smaller cities copying 

larger cities. [104] Shipan and Volden find that, as a result, local governments for smaller cities 

have a significant disadvantage. While larger cities can experiment and deliberately enact 

policies, smaller cities are more likely to simply copy policies from larger cities and are less 

capable of learning from the policy choices and implications of larger cities. [105] Smaller cities 

may have fewer full time staff to explore alternative legislative options, or simply cannot afford 

to invest in exploring options; copying is easier and cheaper. [106] As Einstein et al. note, while 

cities will surely look to similar cities for policy inspiration, they will look to larger cities as 

“highly respected” sources of inspiration. [107] Thus, it seems that policy diffuses primarily from 

the top down. 
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 Regional and national interest groups often facilitate the diffusion of ideas by pre-

creating policy frames with which local governments can evaluate and enact policies. As 

Boushey writes, “The spread of policy innovation is often driven by the dedicated work of policy 

entrepreneurs and interest-group activists who appeal to local, state, and national governments to 

secure legislative change.” Boushey continues that interest groups do not acquiesce to 

incremental policy frames that could spread through diffusion, but rather actively advocate for 

specific policy frames that fit their own objectives. Such groups will try to form policy frames 

that draw on a sliding scale ranging from national themes to local trends depending on what 

topics would draw grassroots support. [108] Interest groups will not only form the policy frames, 

but also the legislation itself. Such groups will literally write the bill for legislators and such 

specific language would then diffuse around the nation. [109] Interest groups and the policy 

entrepreneurs that interest groups influence can thus become policy drivers and expedite 

diffusion. 

 The story of bike-sharing follows a very similar route. Parkes et al. track the early story 

of policy diffusion in bike-sharing. They outline how bike-sharing first took shape in Europe and 

slowly began to spread as other cities looked to pioneers like Amsterdam, Paris, and Lyon. After 

a few years, bike-sharing crept into the United States, with the first major success being Capital 

Bikeshare in Washington, DC. As the network in Washington grew in size and ridership, local 

governments and planners noticed and sought to bring such networks to their own cities. Private 

operators that were running networks in other cities helped shape this growth as large and small 

cities alike took the opportunity to create new transportation options. [110] External bike-sharing 

associations then formed including the North American Bike Share Association (NABSA). Bill 

Dossett, a founding member and former President of NABSA, cited that while the initial 
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concerns with bike-sharing were centered around rider safety, vandalism, and capital 

expenditure, the main question in legislators’ minds was: will people ride it? Of course, people 

did. Cities have still been loath to integrate planning these networks in their own transit 

networks, letting individual operators plan the networks themselves. 

 As a result, planning such networks in myriad and variegated cities then became a 

challenge. Particularly initially, planners had to find ways to adapt planning methods used in 

Washington, DC and New York City to Minneapolis and Tulsa. Where Washington and New 

York are dense cities where stations every 1000 feet are warranted, Minneapolis and Tulsa have 

small urban cores surrounded by single-family homes that do not require as many stations to 

accommodate demand.34 Further, capital expenditure concerns emerged. As an operator in 

Pittsburgh noted, Lexington, KY cannot plan the same way New York City can because 

Lexington cannot afford that many stations. And yet, cities try to employ the same planning 

processes.35  

Organizations like NABSA, ITDP, and Transportation for America (T4A) try to prescribe 

bike-sharing business plans and planning guides as national interest groups pushing bike-sharing 

norms and standards. Distinctions between public bike-sharing providers and private, dockless 

bike-sharing providers means that bike-sharing networks have disparate incentives. Further, 

network design is influenced by myriad factors including weather and geography that such 

national organizations ignore by offering middle-of-the-road advice. While these are frequently 

beneficial, and sometimes offer conditional recommendations, the one-size-fits-all approach may 

not be an optimal planning standard for bike-sharing networks. [111] [76] [112] Networks end up 

 
34 Interview with Bill Dossett from Minneapolis 
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unoptimized and imbalanced by going simply off of these recommendations. Overall, 

nevertheless, bike-sharing has grown around America primarily as a function of policy diffusion, 

with private operators and national organizations helping spread infrastructure and planning 

techniques.  

Bike-sharing as Transit 

Bike-sharing grew as an experimental transportation system that has not been effectively 

integrated into local transit planning. This leads to an unclear understanding of its goals and 

outcomes. While some stakeholders hope for increased public access, others hope for profit-

maximization. That said, given the required public subsidies and its importance as a public good, 

bike-sharing should be treated as a form of public transit, used primarily to alleviate transit 

deserts and improve access to active transportation.  

The goal of bike-sharing then grows clearer: increase access to riders on routes that are 

currently not well-served and increase ridership around the city. This starts at the planning level. 

New, innovative planning mechanisms will be required to identify methods to maximize 

ridership and minimize required infrastructure in custom ways for individual bike-sharing 

networks. A method that can analyze, predict, and quantify the impacts of adding demand and 

changing capacity to a system could reform how micro-mobility is managed in the US. Such a 

method will be presented in the following chapter.  
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Chapter 2 

Introduction 

 If bike-sharing is to be viewed as a public good, cost-efficient methods are required to 

gauge its efficacy. As discussed in the previous chapter, bike-sharing operators in particular lack 

methods to effectively utilize the data they gather. A framework for both translating data into 

useful insights as well as a system to preview and understand changes to the network could prove 

to be significantly useful for bike-sharing operators as they could preview both changes in supply 

and demand without deploying extra infrastructure, saving on time and expense. 

 Bike-sharing operators have expressed qualms with being able to grapple with 

contextualizing and accounting for future demand, particularly from large demand shocks, such 

as a greater cohort of members joining all at once. Further, the potential efficacy of bike-sharing 

on non-traditional transit routes, such as those between residential neighborhoods, has not been 

studied or quantified. Finally, given the racial and income demographic breakdowns of most 

bike-sharing riders, a window into the potential usability of the network by middle income users 

could prove insightful. 

 Thus, this chapter presents a potentially generalizable method for translating bike-sharing 

data to predict ridership based on exogenous information for a given day, as well as simulating 

the impacts of changing network parameters. Finally, this chapter presents a method for 

predicting the impacts of adding additional ridership from particular neighborhoods and 

evaluating its impacts. As a case study, this chapter explores analyzing the effects of offering the 

option to all Boston Public School teachers who are on the Bluebikes network the opportunity to 

commute to work via the Boston Bluebikes network, which would thus explore how such a 

model may work with non-traditional transit routes. 
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Literature Review 

Previous research in simulating bike-sharing models has generally focused on 

rebalancing networks. Chemla et al. showed that measuring rider access, wait times, and vehicle 

utilization requires modelling riders, stations, and bikes. By modelling the City of Paris as a 

network of nodes using OADLIBSim, the authors were able to design a short time-frame 

algorithm for rebalancing bicycles. This redistribution model can serve effectively as an outline 

for how the bike-sharing network must be reasonably modeled in order to simulate the 

environment. [113] Statistical modeling has found that increasing bike-sharing capacity will 

decrease congestion. Saltzman and Bradford modeled the bike-sharing program in San Francisco 

as a Poisson process using the mean of the ridership data with riders willing to wait no more than 

two minutes. Again, the authors modeled the riders, stations, and bikes as agents that can be 

simulated, with the particular insight that riders will be willing to wait no more than two minutes. 

They concluded that increasing the number of bikes and docks at certain stations by about 4% 

will reduce congestion by 30%, where congestion was measured by the number of riders still 

waiting at the station. However, the authors did not look at the impacts of decreasing capacity. 

[114]   

Freund et al. outline some of the primary metrics that Lyft systems currently use for bike-

sharing rebalancing and dock allocation, calculating how many docks should be allocated for 

each station around a municipality. Using data from New York City in particular, the authors 

first develop a non-linear integer program that iteratively optimizes the network based on a 

defined objective (or evaluation) function. This objective function was defined as the number of 

station outages, which is when the station is out of bikes to pick up. Interestingly, this algorithm 

is used by Lyft throughout the nation to plan dock allocation but does not take into account 
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outages for when the stations are full, as in bikes can no longer be parked. Using the concept of 

gradient descent, at each iteration, the algorithm can find a slightly better solution by altering one 

variable, leading to the evaluation function. If the current solution was not as good as the 

previous one, the algorithm will change another variable and continue the loop. If the current 

solution evaluated better than the previous solution, then the algorithm will maintain its course. 

Local optima are further proven as global optima. The second finding is an analysis of the rider-

led rebalancing program, Bike Angels, which rewards individuals for moving bikes from stations 

with too many to stations with too few. This finding shows that the system in fact can be 

rebalanced by such individuals at a much cheaper rate than van rebalancing system, but at a 

fraction of the cost. [115] 

 Pan et al. applied a similar approach to dockless bike-sharing systems, treating the 

network as a Markov Decision Process built with spatial and temporal features. The researchers 

model their reward function as number of successful rides and optimize the network with a novel 

deep reinforcement learning algorithm, which iteratively updates based on an adversarial actor-

critic approach. Using data from the Chinese Mobike, the authors are able to show that their 

Hierarchical Reinforcement Pricing model outperforms current rebalancing modeling algorithms, 

optimizing the network across the entire Chinese market while maintaining budget constraints. 

[116] Li et al. use another deep reinforcement learning approach in order to rebalance micro-

mobility systems, creating clusters with inner-balancing, simulating internal rebalancing with 

reinforcement learning to limit customer loss, and then simulating cross-cluster rebalancing to 

train a deep neural network. With real world Citi Bike data, the authors then confirm that their 

algorithm results in an optimal solution. [117] Lozano et al. compare several machine learning 

approaches to land on a Random Forest Regression approach given a balance between 



41 

 

performance and speed, building out a web application that allows users to input data, visualize 

their bicycle networks, and then predict demand. [118]  

Teacher Trip Determination 

In order to evaluate the efficacy of offering Boston Public Schools teachers free or 

subsidized ridership on the Boston Bluebikes network, data must be gathered and translated into 

artificial trip data that can be implemented into the simulation analysis. 

Gathering Teacher Data 

The City of Boston publishes data for all of its city employees, including their first name, 

last name, home zip code, income, and workplace in their annual Employee Earnings Report.36 

Of course, the privacy of such datasets is quite suspect. As Sweeney showed, with only 

someone’s gender, date of birth, zip code, their full name and address can be found. [119] Armed 

with all of this information as well as the teachers’ full names, I was able to gather teachers’ 

home addresses. 

In order to do this, a data aggregator called TruePeopleSearch was scraped.37 As the 

name implies, TruePeopleSearch allows users to input an individual’s full name and zip code and 

yield information about them, including, but not limited to, their home address, relatives, and 

phone number. For the purposes of this paper, only their home address was required. Given this, 

a web scraper with the Selenium Python package38 that pulled up the TruePeopleSearch result for 

each of the 5,542 individual teachers and thus was able to gather their home addresses. Around 

2,000 teachers were not found in the database. Thus, their information was discarded, and those 

teachers were removed from the dataset.  

 
36 https://data.boston.gov/dataset/employee-earnings-report 
37 https://truepeoplesearch.com/ 
38 https://selenium-python.readthedocs.io 
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Figure 1. The TruePeopleSearch result for the author 

In order to avoid this exact use case, where the privacy of an entire dataset of individuals 

is violated, and likely to force users to pay for its premium service, TruePeopleSearch limits the 

number of requests that can be made from a single IP address. Thus, a workaround was created 

that used the ProxyMesh tool to alter the IP address that ProxyMesh received. Since 

TruePeopleSearch only accepts American IP addresses, IP address pools from California and 

Washington were used and cycled through, randomly switching to another pool every time 

TruePeopleSearch would throw an error. This was an inherently time-consuming process, that 

was only somewhat sped up by multi-threading the system since the proxies used by the pools 

would rotate at staggered rates throughout the day.39 

 
39 https://www.proxymesh.com/faq/ 
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Geographic Distribution of Teachers 

 Figure 2 depicts a choropleth map outlining the distribution of the homes of Boston 

Public Schools teachers in the United States. While employees in the City of Boston are 

generally required to live within the City, the Boston Teachers Union has been granted an 

exception to the rule. [120] Nevertheless, a significant portion of (1041 of the 5542) teachers 

were identified as living within 500 meters of stations in the Bluebikes network, as depicted in 

Figure 3. This number may be higher, however, data for a significant number of teachers was not 

found. Finally, Figure 4 depicts the locations of Boston Public Schools. Boston Public Schools 

teachers were chosen as a case study as the data was readily available and because the trip 

origins and destinations could be easily determined; teachers will commute to school in the 

mornings and return home in the evenings. Further, their trips will likely not follow traditional 

transit routes as schools are located in neighborhoods rather than central business districts. As 

can be visually noted here, the locations of teachers and schools are in primarily residential areas 

and are dispersed around city in local neighborhoods. 
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Figure 2. Locations of All BPS Teachers in Boston Metropolitan Area 

 

Figure 3. Locations of BPS Teachers within 500m of Bluebikes Stations 
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Figure 4. Locations of Boston Public Schools 

Artificially Creating Trips 

Once the teacher addresses were collected, the addresses were then associated with their 

latitude and longitude using the Geocodio service.40 Then, the Google Maps API41 was used to 

route the teachers to their schools via the Bluebikes network. As it turns out, all schools but one 

had Bluebikes stations within 500 meters of them, so the teachers were always routed within a 5-

minute walk of the school. These trips were randomly set to start in between 6 AM and 8 AM in 

the morning and between 2 PM and 4 PM in the afternoon as schools in the Boston area start and 

end around those times.42 In order to do so, first the teachers’ home addresses were geocoded as 

their geo-coordinate pairs, and then were associated with their nearest bike-sharing station in the 

 
40 https://www.geocod.io 
41 https://developers.google.com/maps/documentation 
42 https://www.bostonpublicschools.org/Page/7017 
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Bluebikes network using the SciPy Python package43. The same was done for all of the schools 

in the Boston Public Schools system. Then, using the Google Maps API again, the length of a 

bike trip between the two stations both with respect to time and distance was calculated. A pair 

of trips was generated for each teacher. The first was from the home to the school, associated 

with starting at a random time between 6am and 8am, and the second was from the school 

returning home, associated with starting at a random time between 2pm and 4pm. In this way, 

trips were created for all of the teachers such that they could simply be inputted into the 

simulation model as artificial but pre-defined “riders”.  

Ridership Demand Prediction 

The goal of this model is to evaluate the effectiveness of a bike-sharing system given 

varied parameters. This approach accomplishes this goal by allowing for modeling a “simulated” 

day based on given exogenous parameters about some arbitrary or potential day of ridership. In 

order to effectively model a simulated day, all trips with similar exogenous parameters were 

clustered together and then a certain number of trips was sampled, weighted by distance of the 

specified set of parameters from the clusters. This number was calculated by a regression which 

predicts the total ridership demand for a day given its exogenous parameters. These exogenous 

parameters include weather (temperature, pressure, wind speed, precipitation), whether the day is 

a holiday or not, and whether the day is over the weekend or not. With this approach, a set of 

artificial trip data based on real trips and exogenous parameters can be simulated. 

Clustering Trips by Parameters 

 
43 https://docs.scipy.org/doc/scipy/reference/spatial.distance.html 
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The Boston Bluebikes network offers a dataset of trip-level data which offers a set of 

attributes, including the starting station and time, ending station and time, and duration of trip. 

Weather data were collected from the National Oceanic and Atmospheric Administration’s 

climate.gov datasets.44 These data were then associated with the Pandas Python package45 at an 

hourly granularity with the all of the trip data from 2019, which Bluebikes makes publicly 

available.46 Using the Holidays Python package47 and the datetime Python module48, all trips 

were also associated with Booleans that indicate whether they are holidays or weekends. 

All of these data were then fed into a K-means Nearest Neighbor clustering algorithm 

with six clusters via the Scikit-Learn Python package.49  The determination to use only six 

clusters was made with the ELBO method, noting a significant change in the sum of squared 

distances at six clusters. Thus, as a result, all of the trip data were sorted into six clusters. 

 
Figure 5. Elbow Method for Optimal Number of Clusters 

Predicting Total Trip Demand 

 
44 https://www.climate.gov/maps-data/dataset/past-weather-zip-code-data-table 
45 http://pandas.pydata.org/ 
46 https://www.bluebikes.com/system-data 
47 https://pypi.org/project/holidays/ 
48 https://docs.python.org/3.7/library/datetime.html 
49 https://scikit-learn.org/stable/ 
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In order to construct a simulated day, particularly with sampled trips, a prediction of how 

many trips there should be is required. Thus, inspired by Lozano et al. [118], a regression was 

designed that takes in the aforementioned exogenous parameters for a hypothetical day, and 

outputs a predicted number of trips. The following equation was fit: 

𝑦	 = 	𝐰 ⋅ 𝐱𝑻 + 𝛼 + 𝜖	 

where x is the vector of exogenous variables which are temperature, air pressure, wind speed, 

precipitation, and Booleans for whether the day is a weekend or a holiday; w is a vector of the 

assigned weights; a is a constant; and, ⲉ is an error term. The output of the regression is the 

number of trips for that given day. The trip data were aggregated and grouped by day based on 

the start date, and the total number of trips for each day was calculated as training data. 

 Three different regression approaches were used an compared against each other: simple 

Linear Regression, Random Forest, and Gradient Boosted Regression. These approaches were 

trained with a 70% of the data as a training set and the rest of the dataset as a validation set. Of 

these, the Random Forest approach consistently outperformed the others, and thus was chosen 

for the model. Note that the error for calculating Mean Squared Error reported in Figure 6 is 

determined by the difference in the actual number of trips on a validated day from the predicted 

number of trips. Interestingly, as Figure 7 shows, temperature was determined to be the greatest 

predictor of the number of rides per day by far, distantly followed by precipitation, air pressure, 

wind speed, and whether the day was a weekend or not. 

 Mean Squared Error 
Random Forest 7484414.90 
Linear 7672583.65 
Gradient Boosted 7709645.45 
Figure 6. Comparison of Regression Approaches 
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 Weekend Holiday Temperature Precipitation Pressure Wind 
Speed 

Weight 0.044 0.003 0.775 0.076 0.056 0.046 
Figure 7. Weights of Parameters for Number of Trips Prediction 

Sampling Trips 

Armed with a set of clustered trips and a model for predicting the number of trips per 

day, a weighted sampling method was created that takes in the exogenous parameters of a day 

and outputs a day’s worth of trip data. Given a set of exogenous parameters, the number of trips 

for that day was predicted. Then, those exogenous parameters were fit in the clusters calculated 

with the K-Means model. The distances of these parameters were calculated from each of the 

clusters in the model, and those distances were associated with each of the trips in the clusters in 

the trip data set. This way, each trip was associated with a weight that indicated how relevant the 

trip was to the hypothetical exogenous parameter set. These weights were then normalized and 

used as parameters in a simple weighted sample, where the weights were the probabilities of 

being selected. In order to ensure that trips that were associated with exogenous parameters that 

were quite different from the hypothetical exogenous parameters had lower chances of being 

selected, the reciprocals of the weights were used before normalizing them. A limitation of this 

approach is that it inserts an element of randomness. Each run of the simulation could yield fairly 

different results. In future studies, this could be mitigated by taking an aggregate over multiple 

simulations of the same parameters. 

Simulation 

Overview of Architecture 

 This thesis has chosen to use a dynamic, simulation-based approach as such an approach 

is better suited for bike-sharing than static modeling where only statistical methods are used. 
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Boyles et al. found that static modeling has a tendency to significantly underestimate network 

congestion and demand levels. [121] On the other hand, Kryvobokov et al. noted that static and 

dynamic urban modeling frameworks may still generate similar empirical results. [122] Since the 

focus of this paper is on network congestion and the network effects of adding different sets of 

ridership to the network. A simulation approach allows for modeling the impacts increased 

ridership at individual stations on each other as agents move amongst those stations, affecting 

usage throughout the network. Modeling individual bikes, rather than predicting their locations, 

allows for viewing a clear, rather than an aggregate, picture of network movement. 

The BikePath platform is built on the Mesa Python package50 and uses agent-based 

stations, bicycles, and riders. And geospatial data for the City of Boston is modeled via 

OpenStreetMap, using the OSMNX and NetworkX Python packages51. Stations are placed on the 

map and keep track of their bicycle capacities and the number of bicycles currently there. 

Bicycles are generated at the stations and maintain information on their destination, speed, rider, 

and path. Finally, riders keep track of whether they’re at a station or on a bicycle, where they 

started, and what their destination is. 

Station Bike 
Capacity 

Current 
Number of 
Bikes 

Location 
Node 

Connected 
Streets 

Station ID 

Bike Destination Speed Current 
Rider 

Path Direction Current 
Station 

Rider Current 
Station 

Current Bike Start 
Station 

Destination 
Station 

Start 
Time 

End Time 

Figure 8. Agents and their associated attributes in the BikePath model 

 
50 https://mesa.readthedocs.io/ 
51 http://osmnx.readthedocs.io/ 
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Bicycles are generated at stations and, if there is a rider at the station, are randomly assigned to a 

rider. Riders are preprogrammed with starting points and destinations based on the sampled trip-

level data. Should a bicycle be available to a rider, the rider’s destination is then given to the 

bicycle, which uses the built-in path-finding algorithm based on Dijkstra’s algorithm to calculate 

the shortest path to the next station. Once the rider checks out a bicycle from the station, they 

both follow the pre-specified path until they reach the destination station. The rider then 

disappears. If a station’s capacity is full when the bicycle reaches the station, the bicycle will 

remain there until the station opens up. Since rider data is determined from real trip-level data, 

the rider does not become available until it is time for their ride. Riders remain available at the 

station until they are picked up by a bicycle.  
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Figure 9. Bike and rider journey algorithm 

Step-1: Bicycles and Stations generated 

Step-2: All Riders generated based on trip data 

Step-3: As time increments, every rider not already on a trip checks if it is time for the ride to 

start and if a bike is available 

{ if (cur_time <= rider.start_time && rider.cur_station.has_bike() == True) 
 bike ¬ rider.cur_station.choose_bike() 
 rider.cur_bike ¬ bike 
 bike.cur_rider ¬ rider  
 bike.path ¬ calculate_path_to_destination(bike) 
} 

Step-4: At every time increment, rider-bike pairs move towards their destination with a speed 

based on the total duration of the trip and travel distance. 

Step-5: When a rider-bike pair approach the destination station, if the station capacity is full, 

the rider-bike pair idles for fifteen minutes. If the station is still not full, the ride is counted as 

a missed ride and the bike is reallocated to the nearest station. When a dock opens, the rider is 

destroyed and the bike docks at the station ready for a new rider. 
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Figure 10. Decision process of bike agent 

 The broader workflow is as follows. The exogenous daily parameters are inputted, and 

the sampled data is outputted using the KNN-Random Forest model described above. Then, a 

randomized subset of teachers is added to the sampled data in order to form a combined set of 

trip data for the sampling method. Then, this trip dataset is converted into BikePath rider objects, 

which are then run through the network over a period of a day. The outputted data is pre-

calculated and visualized via a web application. 
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Initial Placement of Bikes 

 The initial placement of the bicycles was determined through a prediction and 

optimization algorithm developed in conjunction with another student, Soumil Singh, and 

inspired by Liu et al. The 30 most similar days from trip data from 2019 are found based on the 

inputted weather parameters and ridership for each station is averaged across those days. For 

each station, the hourly net flow is calculated, which comes from the number of bicycles drop-

offs at that station subtracted by the number of bicycle pickups. From there, for each possible 

number of bikes at each station, the potential missed rides are calculated based on these net 

flows. [123] In essence, this calculation determines how many bikes would be necessary at each 

station to minimize the number of missed rides. Finally, an integer program, constrained by the 

capacities of the stations and the total number of bikes in the system, calculates an optimal 

placement of bikes around the network minimizing the overall number of missed rides for each 

station. In this way, the initial placement of bikes around the network is not random, but rather 

based on a prediction model. 

Web Application 

The Django backend (PathFinder), React frontend (Pioneer) web application allows users 

to easily simulate, visualize, and analyze the model. The Django backend houses the BikePath 

simulation model and stores this data in a Postgres database on Amazon RDS. The React front-

end, run off of Amazon S3, allows users to visualize the network as time progresses via the 

Leaflet Javascript module, lets users input and start new simulations via API calls to the Django 

backend, and view data metrics about the simulation. 
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Figure 11. Screenshot of BikePath web application 

Tracked Metrics 

 The simulation model keeps track of a heatmap of routes used by ridership throughout the 

day. Secondly, the simulation model keeps track of missed rides, which measures the number of 

predicted trips that were unable to be completed as a rider was unable to get on a bike at a 

station. This is incremented when a rider that is attempting to leave a station at its start time must 

wait more than 15 minutes. That ride is then terminated and the missed ride counter rises. The 

number of intended rides, rides that were predicted to occur, was calculated over time and 

mapped against the number of actually completed rides. The difference between these two 

metrics is the number of missed rides. Finally, the number of active rides was noted over the 

period of the simulation. 
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Simulation Results 

 The simulations were broken down into two different categories such that varying 

parameters were tested both with and without the addition of teachers into the Boston network. 

As a result, 32 different scenarios were tested with varying degrees of temperatures and bike 

capacities, as well as 8 scenarios with precipitation. As other parameters were shown to have 

little effect on ridership, they were not simulated. This is a limitation of this study as those 

parameters could affect the types of rides (i.e. the distribution of origins and destinations) that 

are taken on different days such as weekends. Future studies should also compare such scenarios. 

The temperatures 30°, 50°, and 70° were chosen as they roughly correspond to the average 

temperatures in Boston in the Winter, Spring/Fall, and Summer. Half an inch of precipitation 

was chosen as it is roughly the average daily precipitation in the Spring and Fall in Boston.52 

With Teachers 

 3000 bikes 2000 bikes 1000 bikes 500 bikes 
Intended Completed Missed Intended Completed Missed Intended Completed Missed Intended Completed Missed 

30° 2616 972 1644 2635 833 1802 2616 546 2070 2618 332 2286 
50° 4255 1298 2957 4193 994 3199 4260 701 3559 4249 322 3927 
50°, 
0.5” 
rain 

3046 1037 2009 2991 879 2112 2956 613 2343 3055 334 2721 

70° 5874 1404 4470 5765 1038 4727 5841 732 5109 5793 351 5442 

Figure 12a. Ridership from Simulations with BPS Teachers 

Without Teachers 

 3000 bikes 2000 bikes 1000 bikes 500 bikes 
Intended Completed Missed Intended Completed Missed Intended Completed Missed Intended Completed Missed 

30° 1047 496 551 1032 420 612 1037 347 690 1009 209 800 
50° 2643 862 1781 2702 726 1976 2639 465 2174 2659 259 2400 
50° 
and 
0.5” 
rain 

1487 549 938 1419 517 902 1440 375 1065 1395 234 1161 

70° 4214 1002 3212 4252 771 3481 4254 543 3711 4257 273 3984 

Figure 12b. Ridership from Simulations without BPS Teachers 

 
52 https://www.usclimatedata.com/climate/boston/massachusetts/united-states/usma0046 
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Figure 13a. Missed Rides by Scenario with Teachers 

 
Figure 13a. Missed Rides by Scenario without Teachers 
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Figure 14a. Missed Rides as a Fraction of Intended Rides by Number of Bikes with Teachers 

 
Figure 14b. Missed Rides as a Fraction of Intended Rides by Number of Bikes without Teachers 
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Figure 15. Heatmaps of the 50° Scenario with 3000 bikes with Teachers (left) and without 

Teachers (right) 
 

Discussion 

 The results show a few key points, some of which offer validity to the model, while 

others offer new insights, albeit tempered by a major limitation. Amongst the four different 

weather-based scenarios, we note that the ridership is inversely proportional to the temperature 

and drops when there is precipitation. Further, we see a significant increase in ridership and a 

resulting increase in missed rides, both in absolute and relative terms, when teachers are added to 

the network, which of course makes sense as 1000 trips were artificially inserted into the system 

with the assumption that all teachers that could use the Bluebikes network to commute to school 

would do so. 

 We also note an increased number of missed rides as the number of bikes falls in the 

network. This also makes intuitive sense; if riders cannot get on bikes, they cannot complete 

rides. However, the proportion of missed rides from all rides does not rise significantly between 

corresponding scenarios if the number of bikes is slashed in the network, dropping from 0.628 to 

0.68, for example, in the 30° scenario with teachers as the number of bikes goes from 3000 to 

2000. This could be because too many bikes in the network would lead to missed rides when the 
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rider attempts to dock the bike at a station and the station is already full. A future analysis of 

individual station capacities and outages could be useful in this case.  

Nevertheless, this brings up two key limitations in this study. An assumption of static 

rebalancing was made in this simulation, which is when the network is only rebalanced once at 

the beginning of the day. This apportionment was informed by ridership data from 2019 that 

could not account for the increase in demand from teachers. The increased demand and also 

unpreparedness of the network could account for the increased missed rides rates for teachers.  

Further, modeling a dynamic rebalancing system, where the network is rebalanced multiple 

times throughout the day, could make a significant impact in showing whether reduced numbers 

of bikes could account for ridership throughout the day. [124] This is likely why the number of 

missed rides is so high for the scenario without teachers as well. Those rides could have been 

completed given a dynamic rebalancing system. Future studies should explore and simulate such 

a system. 

The heatmaps in Figure 15 tell a striking story. Ridership when teachers were added in 

corridors around Brookline, Jamaica Plain, and Dorchester skyrocketed. A significant plurality of 

teachers lives in these neighborhoods (Figure 3) and would commute to the schools in those 

neighborhoods (Figure 4). These are residential neighborhood to residential neighborhood routes. 

Such a route would require taking three different buses even though the distance is only about 

three miles, whereas bike-sharing is able to enable this route.53 Interestingly, demand, and even 

for bike-sharing in general, was limited in these neighborhoods without the insertion of the 

teachers. Given the lower density and lack of cycling infrastructure, these routes may not be 

 
53 https://www.mbta.com/trip-planner 
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amenable to cycling at the moment. However, this simulation shows that there is in fact latent 

demand and significant potential ridership for routes between these residential neighborhoods 

that is satisfied currently likely through cars. 

This simulation model shows how resilient the Bluebikes network could be to an increase in 

demand on routes. It also shows that there could be significant ridership on certain routes that do 

not currently have the requisite infrastructure for bike-sharing. That said, the simulation model 

also leaves some open questions as it does not model dynamic rebalancing throughout the day. 

Further, without a station-level analysis of whether stations are full or empty, it is unclear where 

the missed rides are coming from. Nevertheless, modeling bike-sharing as a transit network to 

enable ridership around the city through simulation is a generalizable solution that could help 

offer planners new tools and methods to understand the true potential of their network. 
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Chapter 3 

Introduction 

 The previous chapter explored how the current bike-sharing network would be affected 

should more Boston Public Schools teachers commute to work with the Bluebikes system in 

Boston, in service of showing that non-traditional transit routes could be supplemented with 

micro-mobility offerings. However, current planning methods, as discussed in previous chapters, 

are insufficient for planning around such routes. Planning methods prioritize those who are vocal 

in community meetings and can unfortunately leave segments of demand out as they may simply 

not capture them  

 The goal of this chapter, as a result, is to identify how bike-sharing systems would have 

to change in order to accommodate this potential latent demand. The main motivating tenet here 

is to build bike-sharing such that it meets people where they are by using available GPS data in 

order to so. Thus, this chapter breaks down into two different sub-goals. 

 The first sub-goal of this chapter is to identify the scope of demand at a given bike-

sharing station. In other words, if there were a bike-sharing station at a certain location, how 

many people would use it? To accomplish this goal, an algorithm has been developed that uses 

GPS logging data from cellphone usage in order to identify how many trips there may be within 

a walking distance (500m) of a bike-sharing station. In this way, the efficacy and size of a bike-

sharing station can be gauged. 

 The second sub-goal tries to answer the opposite side of this problem: where should the 

stations go in the first place? While in the previous two sub-goals, the station location was given, 

in this sub-goal, the actual locations of the stations are identified automatically by noting clusters 

of stations. Locations with sufficient clusters of trip origins and destinations would likely be 
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strong contenders for bike-sharing station locations. Such locations can be identified through the 

cellphone GPS location data, as these data can be segmented, as in the previous step, to show 

origins and destinations of trips, which then allow locations to be determined.  

Literature Review 

Traditional Planning Methods 

As discussed in Chapter 1, the primary way that bike-sharing stations are planned is through 

community conversations, population density analytics, and trip-generation calculations. Given 

the focus on trip-generation in this chapter, this literature review will focus on trip-generation. 

The Institute of Transportation Engineers is the primary source of trip data analytics in the 

United Stations. American urban planners will take a look at the buildings and points of interest 

in regions that they are planning for, look up those locations in the ITE Trip Generation Manual 

handbook, and literally add up the number of trips. This manual tells users how many trips there 

will be and what each transportation mode will be for different times of day. As Figure 1 shows, 

a neighborhood of Single-Family Homes with 235 houses would generate 2234 total trips a day, 

for example. Urban planners and researchers will literally go outside and count the number of 

vehicles they see moving around at various intersections. These data are then aggregated and 

averaged into the reports that the ITE Manual publishes. [125] 

 
 

Figure 1. An example of the information the ITE Trip Generation Manual offers 
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These ITE Schools in particular have been shown to generate varying levels of trips, 

however, that can be different from the ITE in a way that may significantly misrepresent trips. 

For example, Slipp and Hummer find that trip generation for high schools may actually be 

significantly higher in some regions, particularly urban countries of North Carolina, given 

unclear and different socioeconomic parameters of the ITE data. [126] Criticism of the usage of 

this data as a catch-all that is broadly applied to all trip-generators has led to several 

municipalities and transportation authorities collecting their own data to use as more closely 

accurate sources of information. [127] The prevailing issue with the ITE data is that it seems to 

ignore temporal, special, and social contexts by generally offering a suburban view leading to an 

overestimation of automobile trips. [128] 

Cellphone Trip Data Usage 

 New technologies have promised to disrupt this planning process, particularly GPS 

location tracking of cellphones, which has offered a prime honeypot of data that could reveal the 

true movement of people around a region. This data is collected by apps on mobile cellphones 

and is sold to data aggregators who then parse this data and sell it for analytics. Several 

companies in this space, like Foursquare, IBM, and Safegraph (which provided data for this 

paper) aggregate this data, have taken criticism for potentially violating the privacy of 

individuals. While this information is not released with individual names or phone numbers, 

unique IDs are still associated with each location endpoint, which can be de-anonymized in order 

to identify the exact movements of individuals. [129] 

 That said, identifying the exact movements of individuals is an incredibly valuable asset 

in understanding where people are going and where transportation options are insufficient. Los 

Angeles has been redesigning its entire transit network based on these data by mapping the data 
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over time and noting spikes in travel. The analysts noted the obvious bi-modal distribution of 

trips, with spikes in the morning and evening rush hour periods, but there was also a third peak in 

the off-peak hours where individuals may be running errands. Researchers were also able to 

upturn the traditional planning method of planning for commuting, rather finding that trips were 

primarily short hops within smaller neighborhoods instead of long commuting routes. [130] 

 The researchers in this study showed that grid-based clustering algorithms and point-

based clustering algorithms can thus help identify where individual trips actually originate and 

terminate. A grid-based clustering algorithm involves dividing a region into 100m long cells and 

then clumping all the local location captures of an individual user together over a short period of 

time. A point-based algorithm, on the other hand, clusters individuals by clustering individual 

points based on their maximum distance from each other on a time horizon of ten minutes. In 

both methods, an understanding of where a user has stopped traveling can be calculated, which 

the identifies the beginning or end of a trip. Given this information, travel demand can thus be 

calculated for origins and destinations. [131] 

 Calculating and analyzing transportation mode can be a difficult challenge in that it can 

often be unclear whether the data are Single-Mode Trajectories or Mixed-Mode Trajectories. 

That is to say, as Yang et al. point out, there is a significant difference in trying to understand 

whether individuals are walking somewhere for the entire length of the collected location data or 

if they switch transportation modes from, for example, walking to biking back to walking. The 

previous paragraph discussed how an MMT dataset may break up data into segments by 

clustering movements, which then turns the MMT data into SMT segment data. Thus, given then 

SMT segments, research has shown that Support Vector Machine algorithms can be sufficient for 
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predicting mode-share, as well as various forms of decision trees, ensemble methods, and neural 

network models. Generally, the parameters used are speed, bearing, time, and distance. [132] 

 Jiang et al. were further able to build a model with an Recurrent Neural Network that 

achieved a 98% classification accuracy focusing only on the individual speed per point and 

average speed per segment. [133] Graells-Garrido et al. were able to infer the beginning of trips 

by thresholding against the change in trajectory for an individual person, and thus, given the 

segments, used the point speed to calculate mode share. [134] 

Trip Segmentation 

Cellphone GPS data from November 16, 2016 provided by Safegraph was used to predict 

where trips originated and terminated. This GPS data captured the latitude, longitude, accuracy, 

timestamp, and user ID for each GPS ping. This allowed for uniquely tagging individuals and 

their travel patterns as their GPS points could be tracked throughout the day. Given that this data 

is over three years old, its applicability may be limited. Although smart phone ownership varies 

by income, Wesolowski et al. find that this does not significantly skew broader estimates of 

mobility. [135] 

Trip segments were created for each user by taking individual GPS points and noting if 

the change in speed was less than one meter per second, if there were a time difference between 

trips of 3 minutes, or if the distance between points was less than 10 meters. The speed of the trip 

was calculated by dividing the distance between each GPS datapoint and its predecessor from the 

same user by the corresponding time. All determined trips with only one datapoint were 

discarded as they would not capture movement. This method was adapted from Zhou et al. [136] 

About 1.5 million trips were identified in the Safegraph GPS data for November 16, 2016 

through this process. 
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Virtual Station Method 

Methodology 

 

Figure 2. Trip Starts (Green) and Ends (Red) Around the Murphy Skating Rink Bluebikes 
Station (Orange) 

 In November of 2016, there were 167 Bluebikes stations, while there are 330 stations in 

March of 2020. With the trip segmentation, 1,503,429 trips were identified for November 16, 

2016. On that same day, there were 4,404 Bluebikes trips. This method will use GPS data and 

ridership data at the stations in 2016 to extrapolate what ridership would have been for the 

stations that have been added since. This generalizable method would be able to thus extrapolate 

what ridership may look like around any point where a bike-sharing station may be added. 
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 As Figure 2 shows, a radius of 500 meters was created around each station and the 

number of trip segments originating and terminating within that radius was determined. Then, 

the numbers of historical trip origins and destinations were determined for each station. Finally, 

the ratios of the historical trip origins and destinations to GPS data trip origins and destinations 

were calculated. Given these ratios, the projected ridership at the new stations could be 

calculated. 

Results 

Ratio for actual starts to cell phone starts –  

Metric Ratio 
Mean         0.042577 
Standard Deviation 0.044989 
Minimum 0.001414 
25% Percentile 0.015867 
50% Percentile 0.028935 
75% Percentile 0.052517 
Maximum 0.309735 
Median 0.028935 

Figure 3a. Ratio of Historical Ridership to Cellphone Trip Origins 

Metric Ratio 
Mean         0.041162 
Standard Deviation 0.042908 
Minimum 0.001504 
25% Percentile 0.016733 
50% Percentile 0.030568 
75% Percentile 0.046195 
Maximum 0.313364 
Median 0.030568 

Figure 3b. Ratio of Historical Ridership to Cellphone Trip Origins 

In both cases, the median is around 0.03 so the cellphone trip origins and destinations 

were scaled by 0.03 to estimate predicted ridership. Incidentally, 0.03 is near the actual 2016 
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cycling mode share in Boston of 2.4%. [137] A subset of the predictions for stations is replicated 

here while the full table of predicted trips is in the Appendix. 

Station Starts Ends 
St Mary's 22.17 22.26 
Broadway at Central St 7.92 7.89 
East Somerville Library (Broadway and Illinois) 11.91 12.12 
Assembly Square T 7.65 7.92 
Community Path at Cedar Street 4.02 4.23 
Park St at Norwell St 6.72 6.60 
Gallivan Blvd at Adams St 4.44 4.53 
Washington St at Bradlee St 8.55 8.49 
Fields Corner T Stop 15.27 14.55 
Ashmont T Stop 9.30 9.33 
Shawmut T Stop 7.41 7.47 
Forest Hills 15.51 15.36 
Williams St at Washington St 9.75 9.45 
Main St at Baldwin St 8.67 8.55 
Stony Brook T Stop 6.87 7.02 
Farragut Rd at E. 6th St 1.20 1.35 
Ames St at Broadway 22.56 22.71 
84 Cambridgepark Dr 12.39 12.66 
Main St at Thompson Sq 17.88 18.42 

Figure 4. Subset of New Stations with Trip Predictions 

Station Identification 

Methodology 

 In order to identify where demand for bike-sharing is throughout the city, all trip origins 

and destinations were visualized around the city using the Uber H3 visualization package. This 

bucketing mechanism creates a hierarchical indexing system with various distance resolutions. 

The system creates a global hexagonal grid that gauges the demand within each hexagon.54 

 In this case, all the Safegraph GPS trip origins and destinations from November 16, 2016 

were visualized with the H3 package. Several cluster resolutions were visualized in order to 

 
54 https://eng.uber.com/h3/ 
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visualize overall demand, as Figure 5 shows, to highlight where bike-sharing stations could be 

useful. In future studies, further constraint optimizations could be used in order to mandate 

station capacities and station densities throughout the network, to ensure a dense enough network 

for bike-sharing access. Also, the newly identified stations could be inputted back into the 

simulation model from the previous chapter in order to identify how the new stations could 

handle bike-sharing demand. Station capacities for the simulation model could be determined by 

modeling the number of trips that are predicted to start and end at that station.  

Results  
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Figure 5. Cellphone GPS Trip Origins and Destinations at Resolutions of 3.23km (Top-Left), 

1.22km (Top-Right), and 0.46km (Bottom) 

 Figure 5 shows the GPS trip origins and destinations identified from the Safegraph GPS 

data at various resolutions. At the most granular resolution, it grows clearer that while, of course, 

much of the demand is centered around the central business districts, there are also some 

hotspots in Cambridge, Everett, Brookline, and Dorchester, among others. 

 
Figure 6a. The 300 Densest Areas at a Resolution of 0.46km  
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Figure 6b. The Existing Bluebikes Station Network 

Figure 6a shows the densest areas identified at a resolution of 0.46km, which is about how long a 

pedestrian would walk to get to a bike-sharing station. When juxtaposed against the existing 

Bluebikes network, the importance of avoiding station clustering can be noted. Networks are 

often planned to with certain regional station densities in mind. Without spreading the stations 

out, going exclusively off of ridership, stations would be clustered in busy parts of the city 

without creating a comprehensive and accessible transit network. 

Using cellphone GPS data to identify the potential ridership at stations and potential station 

locations is novel when applied to bike-sharing. This useful and generalizable tool, utilizing a 

new type of dataset, highlights the importance and value of effective demand prediction. 

Simultaneously, these visualizations tell a cautionary tale of basing station locations exclusively 

on projected ridership as stations could then grow clustered exclusively in high demand areas, 
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barring stations from spreading out around a city in order to facilitate ridership across the city 

rather than in dense neighborhoods. 

Conclusion 

 As established through this thesis, bike-sharing has the opportunity and the prerogative to 

be thought of as a form of public transportation that facilitates equitable mobility throughout a 

city. In order to develop such a network, new modeling and planning methods are required. This 

thesis presents two such models: a simulation model that allows for planners to understand the 

impacts of weather and variations in demand; and a GPS enabled, data-driven approach to 

identifying station usage. While both models are limited, they take steps towards establishing a 

new automated, data-driven paradigm in bike-sharing planning.  

 Through the simulation model, this thesis shows that, using the Boston Bluebikes 

network, ridership along non-traditional, residential-residential routes can be modeled. It further 

shows that adding teachers to the network does not significantly impact the proportion of missed 

rides, highlighting the flexibility of the Bluebikes network. Finally, the BikePath simulation 

model itself is a multi-agent, impact focused approach to modeling different weather scenarios, 

levels of demand, and static rebalancing. 

 Secondly, through the explorations of virtual stations and station identification, this thesis 

presents a novel technique for demand discovery using GPS movement data. This thesis shows 

how historical data can be leveraged to project the ridership at brand new stations and gauge the 

efficacy of new expansions to bike-sharing networks. Further, it presents a method to identify the 

potential locations of new stations through effective data visualization and modeling. 

With data-driven, automated processes, bike-sharing can be made more cost-effective and 

accessible. Given these novel tools, bike-sharing and bike-sharing implementation can be 
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revitalized as a form of equitable urban mobility, offering new ways to make bike-sharing safe 

and effective, and justifying its role as a form of transit on its own right. 
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Appendix 

 

Figure A.1. 500 bikes, 30°, without teachers 
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Figure A.2. 500 bikes, 30°, without teachers data 
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Figure A.3. 500 bikes, 30°, with teachers 



96 

 

 

Figure A.4. 500 bikes, 30°, with teachers data 
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Figure A.5. 500 bikes, 50°, without teachers 
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Figure A.6. 500 bikes, 50°, without teachers data 
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Figure A.7. 500 bikes, 50° and 0.5” precipitation, without teachers 
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Figure A.8. 500 bikes, 50° and 0.5” precipitation, without teachers data 



101 

 

 

Figure A.9. 500 bikes, 50° and 0.5” precipitation, with teachers 
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Figure A.10. 500 bikes, 50° and 0.5” precipitation, with teachers data 
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Figure A.11. 500 bikes, 50°, with teachers 
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Figure A.12. 500 bikes, 50°, with teachers data 

 

Figure A.13. 500 bikes, 70°, without teachers 
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Figure A.14. 500 bikes, 70°, without teachers data 
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Figure A.15. 500 bikes, 70°, with teachers 
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Figure A.16. 500 bikes, 70°, with teachers data 
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Figure A.17. 1000 bikes, 30°, without teachers 
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Figure A.18. 1000 bikes, 30°, without teachers data 
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Figure A.19. 1000 bikes, 30°, with teachers 
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Figure A.20. 1000 bikes, 30°, with teachers data 
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Figure A.21. 1000 bikes, 50°, without teachers 
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Figure A.22. 1000 bikes, 50°, without teachers data 
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Figure A.23. 1000 bikes, 50° and 0.5” precipitation, without teachers 
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Figure A.24. 1000 bikes, 50° and 0.5” precipitation, without teachers data 
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Figure A.25. 1000 bikes, 50° and 0.5” precipitation, with teachers 
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Figure A.26. 1000 bikes, 50° and 0.5” precipitation, with teachers data 
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Figure A.27. 1000 bikes, 50°, with teachers 
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Figure A.28. 1000 bikes, 50°, with teachers data 
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Figure A.29. 1000 bikes, 70°, without teachers 
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Figure A.30. 1000 bikes, 70°, without teachers data 



122 

 

 

Figure A.31. 1000 bikes, 70°, with teachers data 
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Figure A.32. 1000 bikes, 70°, with teachers data 
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Figure A.33. 2000 bikes, 30°, without teachers 
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Figure A.34. 2000 bikes, 30°, without teachers data 
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Figure A.35. 2000 bikes, 30°, with teachers 
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Figure A.36. 2000 bikes, 30°, with teachers data 
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Figure A.37. 2000 bikes, 50°, with teachers 
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Figure A.38. 2000 bikes, 50°, with teachers data 
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Figure A.39. 2000 bikes, 50° and 0.5” precipitation, without teachers 
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Figure A.40. 2000 bikes, 50° and 0.5” precipitation, without teachers data 
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Figure A.41. 2000 bikes, 50° and 0.5” precipitation, with teachers 
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Figure A.42. 2000 bikes, 50° and 0.5” precipitation, with teachers data 
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Figure A.43. 2000 bikes, 50°, with teachers 
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Figure A.44. 2000 bikes, 50°, with teachers data 
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Figure A.45. 2000 bikes, 70°, without teachers  
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Figure A.46. 2000 bikes, 70°, without teachers data 
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Figure A.47. 2000 bikes, 70°, with teachers  
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Figure A.48. 2000 bikes, 70°, with teachers data 
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Figure A.49. 3000 bikes, 30°, without teachers  
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Figure A.50. 3000 bikes, 30°, without teachers data 
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Figure A.51. 3000 bikes, 30°, with teachers  
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Figure A.52. 3000 bikes, 30°, with teachers data 
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Figure A.53. 3000 bikes, 50°, without teachers  
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Figure A.54. 3000 bikes, 50°, without teachers data 
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Figure A.55. 3000 bikes, 50° and 0.5” precipitation, without teachers  
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Figure A.56. 3000 bikes, 50° and 0.5” precipitation, without teachers data 
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Figure A.57. 3000 bikes, 50° and 0.5” precipitation, with teachers  
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Figure A.58. 3000 bikes, 50° and 0.5” precipitation, with teachers data 
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Figure A.59. 3000 bikes, 50°, with teachers  
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Figure A.60. 3000 bikes, 50°, with teachers data 
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Figure A.61. 3000 bikes, 70°, without teachers  
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Figure A.62. 3000 bikes, 70°, without teachers data 
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Figure A.63. 3000 bikes, 70°, with teachers  
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Figure A.64. 3000 bikes, 70°, with teachers data 

Station Predicted 
Starts 

Predicted 
Ends 

New Balance - 20 Guest St 9.12 9.27 
Brookline Village - Station Street at MBTA 16.41 16.14 
Ball Sq 4.68 4.5 
Upham's Corner 14.25 14.28 
Newmarket Square T Stop - Massachusetts Ave at... 10.77 11.25 
Rogers St & Land Blvd 17.1 17.25 
Murphy Skating Rink - 1880 Day Blvd 1.83 1.95 
Somerville Hospital 5.49 5.64 
Seaport Blvd at Sleeper St 37.65 37.44 
Franklin Park - Seaver St at Humbolt Ave 5.13 5.37 
Ryan Playground - Dorchester Ave at Harbor Vie... 15.81 15.96 
Franklin Park Zoo - Franklin Park Rd at Blue H... 14.79 14.1 
Huron Ave At Vassal Lane 2.55 2.55 
Museum of Science 28.35 28.68 
Alewife MBTA at Steel Place 10.83 10.98 
Cypress St at Clark Playground 5.58 5.49 
Foss Park 13.41 13.8 
Tappan St at Brookline Hills MBTA 6.09 6.45 
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Columbia Rd at Ceylon St 8.52 8.85 
Walnut Ave at Warren St 8.04 7.68 
Bowdoin St at Quincy St 11.13 11.34 
Government Center - Cambridge St at Court St 87.72 88.47 
Chelsea St at Saratoga St 15.78 15.39 
Piers Park 5.31 5.46 
The Eddy - New St at Sumner St 8.37 8.97 
Orient Heights T Stop - Bennington St at Sarat... 8.22 8.01 
Verizon Innovation Hub 10 Ware Street 16.47 16.35 
Troy Boston 30.27 29.79 
Fresh Pond Reservation 2.1 2.28 
Cambridge Dept. of Public Works -147 Hampshire... 16.32 16.05 
Commonwealth Ave At Babcock St 18.9 18.6 
Silber Way 24.33 24.48 
One Memorial Drive 14.82 15.15 
Four Corners - 157 Washington St 16.65 16.68 
St Mary's 22.17 22.26 
Broadway at Central St 7.92 7.89 
East Somerville Library (Broadway and Illinois) 11.91 12.12 
Assembly Square T 7.65 7.92 
Community Path at Cedar Street 4.02 4.23 
Park St at Norwell St 6.72 6.6 
Gallivan Blvd at Adams St 4.44 4.53 
Washington St at Bradlee St 8.55 8.49 
Fields Corner T Stop 15.27 14.55 
Ashmont T Stop 9.3 9.33 
Shawmut T Stop 7.41 7.47 
Forest Hills 15.51 15.36 
Williams St at Washington St 9.75 9.45 
Main St at Baldwin St 8.67 8.55 
Stony Brook T Stop 6.87 7.02 
Farragut Rd at E. 6th St 1.2 1.35 
Ames St at Broadway 22.56 22.71 
84 Cambridgepark Dr 12.39 12.66 
Main St at Thompson Sq 17.88 18.42 
Grove St at Community Path 6.42 6.57 
Washington St at Myrtle St 4.83 4.56 
30 Dane St 11.61 11.61 
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Huntington Ave at Mass Art 28.89 29.52 
Harvard Ave at Brainerd Rd 18.96 18.66 
699 Mt Auburn St 3.3 3.39 
Mass Ave at Hadley/Walden 12.39 12.15 
Harvard St at Greene-Rose Heritage Park 16.71 16.8 
Mattapan T Stop 0 0 
Roslindale Village - South St 4.23 4.23 
Commonwealth Ave at Kelton St 12.66 12.51 
Archdale Rd at Washington St 4.8 4.83 
Blue Hill Ave at Almont St 5.82 6.15 
Roslindale Village - Washington St 4.02 3.99 
Boylston St at Jersey St 33 33.12 
Morton St T 12.72 12.3 
Commonwealth Ave at Chiswick Rd 10.62 10.62 
Park Plaza at Charles St S. 58.17 58.47 
Cleveland Circle 8.58 8.46 
Thetford Ave at Norfolk St 6 6 
Talbot Ave At Blue Hill Ave 9.9 9.84 
Washington St at Talbot Ave 8.31 8.64 
Codman Square Library 7.23 7.11 
Faneuil St at Arlington St 5.16 4.92 
Ring Rd 57.3 58.14 
Mattapan Library 6.81 7.05 
Washington St at Egremont Rd 8.64 9 
Bennington St at Constitution Beach 7.71 7.5 
Charlestown Navy Yard 5.76 5.67 
Centre St at Seaverns Ave 8.07 8.34 
Medford St at Charlestown BCYF 4.32 4.26 
One Brigham Circle 34.41 35.28 
Bartlett St at John Elliot Sq 14.94 14.76 
Deerfield St at Commonwealth Ave 30.9 30.99 
Columbia Rd at Tierney Community Center 11.01 11.22 
Harrison Ave at Mullins Way 32.25 32.13 
Tremont St at Northampton St 23.49 23.85 
Harrison Ave at Bennet St 56.55 56.97 
Broadway T Stop 23.67 22.68 
Vassal Lane at Tobin/VLUS 3.33 3.36 
Blue Hill Ave at Southwood St 14.94 14.67 
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Boston Public Market 83.58 83.64 
Dartmouth St at Newbury St 63.21 64.38 
700 Huron Ave 1.59 1.59 
Boylston St at Exeter St 56.28 57.15 
Belgrade Ave at Walworth St 0.42 0.27 
Tremont St at Hamilton Pl 63.51 63.96 
Honan Library 11.1 10.5 
Perry Park 12.12 11.91 
191 Beacon St 8.94 8.61 
Tremont St at W. Dedham St 21.66 22.23 
Mass Ave at Albany St 20.34 20.7 
Inman Square at Springfield St. 13.32 13.47 
Clarendon St at Newbury St 72.63 73.05 
Albany St at E. Brookline St 24.63 25.68 
Sennott Park Broadway at Norfolk Street 15.99 15.99 
Norman St at Kelvin St 6.03 5.94 
Main Street at Carter Street 9.27 8.79 
Everett Square (Broadway at Chelsea St) 11.76 11.1 
Broadway at Lynde St 8.37 8.49 
Encore 2.94 2.97 
Glendale Square (Ferry St at Broadway) 10.41 10.17 
Ferry St at Pleasantview Ave 7.83 8.1 
Broadway at Maple St 10.98 10.74 
Chelsea St at Vine St 12.06 11.94 
Main St at Beacon St 5.01 5.25 
Broadway at Beacham St 9.09 8.88 
75 Binney St 19.14 19.5 
Shawmut Ave at Oak St W 50.73 51.3 
Big Papi Station 38.19 38.07 
High St at Cypress St 3.03 2.79 
Washington St at Griggs Rd 8.58 8.73 
Marion St at Harvard St 18.21 18.06 
Mass Ave T Station 31.17 31.68 
Sydney St at Carson St 21.06 20.82 
Somerville City Hall Annex 8.82 8.79 
Craigie at Summer St 7.29 7.74 
Edgerly Education Center 9.9 9.75 
Elm St at White St 12.9 12.81 
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Adams St at Lonsdale St 5.64 5.58 
Dorchester Ave at King St 7.32 7.44 
Washington St at Peters Park 28.05 27.81 
Kennedy-Longfellow School 158 Spring St 8.1 8.22 
Discovery Park - 30 Acorn Park Drive 3.39 3.39 
Stuart St at Berkeley St 69.72 71.31 
Blossom St at Charles St 47.73 48.75 
Columbus Ave at W. Canton St 40.14 40.44 
Central Square East Boston 23.97 24.57 
Charles St at Pinckney St 33.84 34.59 
Northbourne Rd at Hyde Park Ave 6.06 6 
Cummins at American Legion 0.9 0.93 
Mt. Hope St at Hyde Park Ave 6.27 6.39 
Jamaica St at South St 10.23 10.71 
The Dimock Center 16.95 16.38 
Surface Rd at Summer St 77.91 77.85 
Washington St at Denton Terr 0 0 
Western Ave at Richardson St 6.57 6.75 
Washington St at Walsh Playground 7.02 7.17 
Washington St at Fuller St 5.7 5.79 
Centre St at W. Roxbury Post Office 0 0 
Centre St at Parkway YMCA 0 0 
Spring St at Powell St 0 0 
Central Ave at River St 6.6 6.21 
Maverick St at Massport Path 17.7 17.94 
Berkshire Street at Cambridge Street 7.2 7.23 
Boston Landing 8.67 8.88 
Sullivan Square 19.23 19.02 
Hyde Park Ave at Walk Hill St 5.88 5.46 
Whittier St Health Center 18.93 19.08 
Geiger Gibson Community Health Center 4.92 4.98 
700 Commonwealth Ave. 22.89 22.53 

Figure A.65 Complete List of New Stations with Trip Predictions 


