
An Outlier in Zipf’s World? A Case Study of China’s 
City Size and Urban Growth

Citation
Yin, Cathy. 2020. An Outlier in Zipf’s World? A Case Study of China’s City Size and Urban Growth. 
Bachelor's thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364744

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364744
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Outlier%20in%20Zipf%E2%80%99s%20World?%20A%20Case%20Study%20of%20China%E2%80%99s%20City%20Size%20and%20Urban%20Growth&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=fab8f4c3dfb1c145aa89143464b1eebe&departmentApplied%20Mathematics
https://dash.harvard.edu/pages/accessibility


 

 

An Outlier in Zipf’s World?  

A Case Study of China’s City Size and Urban Growth 

 

 

Lei (Cathy) Yin 
 

 

 

 

 

 

 

 

 

Presented to the Department of Applied Mathematics 

in partial fulfillment of the requirements 

for a Bachelor of Arts degree with Honors 

 

 

 

Harvard College 

Cambridge, Massachusetts 

April 3, 2020  



 i 

Abstract 

 

This paper examines the population distribution and urban growth patterns of Chinese cities, 

motivated by two stylized facts – Zipf’s law and Gibrat’s law for cities. Our findings suggest that 

China deviates from both laws from 1991 to 2017. In particular, its population is distributed more 

equally than Zipf’s law would otherwise predict, and Chinese cities have experienced a significant 

mean reversion, rather than a homogenous growth path. 

 

We develop three hypotheses for explaining why large cities experience slower urban growth in 

China, namely, economic productivity slowdown, amenity deterioration, and direct government 

interventions. Our results indicate that in China, productivity and amenities promote population 

growth, and large cities enjoy higher productivity and better amenities. On the other hand, China’s 

population control policies, the one-child policy and the household registration (hukou) system, 

are more strictly enforced in large cities than in small and medium-size cities. Therefore, large 

cities grow slower due to direct government interventions, despite their higher productivity and 

better amenities.   
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Executive Summary 

 

Zipf’s law is a well-known empirical rule which fits the city size distribution for countries across 

the world well generally, but we find that China seems to deviate substantially from it in the past 

three decades. In particular, the population is distributed more equally in China than Zipf’s law 

would otherwise predict, and there are far fewer megacities despite its huge population. To explain 

this departure from the norm, we examine whether Gibrat’s law, the underlying assumption of 

Gabaix’s (1999) Zipf’s law model, holds in China. Instead of the homogenous growth path 

suggested by Gibrat’s law, we observe a significant mean reversion of city sizes from 1991 to 2017. 

This pattern of mean reversion grows weaker over time. Our paper then develops three main 

hypotheses for explaining why large cities experience slower urban growth in China, namely, 

economic productivity slowdown, amenity deterioration, and direct government interventions. We 

exploit city-level urban characteristics data and conduct analyses to test these three hypotheses. 

We use a linear regression model for studying how economic productivity and urban amenities 

connect to urban growth and population size. We find that although these two factors indeed 

promote population growth as suggested by spatial equilibrium models, large cities in China enjoy 

both higher productivity and better amenities. Thus, the two urban growth determinants that apply 

to most countries cannot explain China’s growth convergence. As for our third hypothesis, we 

investigate whether the city-level enforcement intensity of China’s two main population control 

policies, the one-child policy and the household registration (hukou) system, increases in 

population size. We implement a differences-in-differences approach to quantify the effects of the 

nationwide relaxation of the universal one-child policy in 2011 on the rate of natural increase (RNI) 

for cities. Empirical evidence shows that relative to small cities, large cities suffered from lower 

RNI under the universal one-child policy and experienced a rise in RNI after the policy relaxation. 

We run a simple linear regression using the ratio of unofficial migrants to hukou population as a 

proxy for the strictness of the hukou system and find that such ratio decreases in population size. 

Our results indicate that China’s population control policies are more constraining for large cities 

than for small and medium-size cities. Therefore, even though large cities are more appealing in 

terms of higher productivity and better amenities, populations grow slower because the 

government wants so. One implication for Zipf’s law is that as China continues to loosen its birth 

planning and migration control in the 2010s, future convergence to Zipf’s law may be plausible.  
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1  Introduction 

Zipf’s law strikes urban economists with its simplicity and empirical validity in capturing 

the distribution of city sizes. Most countries are believed to obey Zipf’s law quite well, but the 

majority of studies on China suggest a deviation from it (Song and Zhang, 2002; Anderson and 

Ge, 2005; Luckstead and Devados, 2014). Some argue this exception is attributable to a violation 

of the homogenous growth process, or Gibrat’s law, by Chinese cities (Chauvin et al., 2017). 

Others believe China’s unique urbanization and public policies may explain its departure from 

Zipf’s law, albeit with little empirical evidence (Song and Zhang, 2002). Our paper contributes to 

the debate by examining economic and policy factors that may cast light on why China’s city size 

distribution deviates from Zipf’s law, and in particular, why the large cities do not grow as large 

as Zipf’s law predicts. We ultimately find that the stricter enforcement of government’s population 

control policies in large cities, rather than the productivity slowdown or rising urban issues, is 

responsible for the slower population growth of large cities in China.  

Zipf’s law says that graphing the logarithm of city ranks in terms of population size against 

the logarithm of city populations, we obtain a straight line with -1 as the slope coefficient. Figure 

1 below presents a visualization of Zipf’s law taken from Arshad et al. (2018) using data of the 

largest 135 U.S. metropolitan areas in the census year 2010. The slope of the fitted line is −1.019. 

In terms of distribution, Zipf’s law states that the probability of a city size being greater than some 

threshold S is proportional to 1/S. This is a special case of the well-known Pareto distribution 

Prob(size > S) = aS−ζ, with the Pareto coefficient equal to one (ζ = 1). 
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Figure 1. Log Size versus Log Rank of the Largest 135 U. S. Metropolitan Areas in 2010. 

 
Source: Statistical Abstract of the United States (2010). 

 

Empirical testing of Zipf’s law has been conducted for different countries over different 

periods and suggests that China may be an exception to Zipf’s law. The majority of studies on the 

United States agree that the upper tail of city size distribution conforms to Zipf’s law (Krugman, 

1996; Ioannides and Overman, 2003; Levy, 2009; Ioannides and Skouras, 2013). Other Western 

matured economies, like Germany (Giesen and Südekum, 2011) and Russia (Rastvortseva and 

Manaeva, 2019), have been shown to obey Zipf’s law quite well. Some developing countries, like 

India (Luckstead and Devados, 2014) and Brazil (Moura and Ribeiro, 2013; Matlaba et al., 2013), 

also converge to Zipf’s law after significant urbanization in recent decades. In contrast, findings 

on China’s adherence have been mixed at best, and most studies suggest a rejection of Zipf’s law 

(for example, Song and Zhang, 2002; Anderson and Ge, 2005; Luckstead and Devados, 2014).1 

 
1 See Section 2.1 for a detailed summary of previous studies on China. 
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Currently the most populous country in the world, China has long been treating the 

population and its distribution as a crucial “issue” to be dealt with. Various policies, including the 

family planning program and the household registration system, have been enforced by the central 

government since the founding of the People’s Republic of China (PRC) in 1949. Over the past 

four decades, China has undergone rapid urbanization, but its city size distribution has yet to 

conform to Zipf’s law. Compared with other well-studied countries that adhere to Zipf’s law, 

China is unique for the central planning component in its economic and administrative policies.  

To obtain a deeper understanding of how China’s policies may affect urban growth and 

population distribution, we apply some well-established urban economics models to investigate 

China’s case. Gabaix (1999) provides a baseline model for explaining why cities follow Zipf’s law 

using a random walk with a lower barrier. One important assumption of his model is the 

homogeneity of growth processes, or Gibrat’s law. That is, city growths have the same mean and 

the same variance, independent of their initial sizes. Gabaix argues that deviations from Zipf’s law 

can be explained by deviations from Gibrat’s law. Given China’s well-recognized deviation from 

Zipf’s law, we examine whether a deviation from Gibrat’s law can also be observed and if so, what 

economic or policy factors may have facilitated or hindered the convergence of city growth. To 

propose potential economic factors, we consult Glaeser and Gottlieb’s (2009) generalized Rosen-

Roback spatial equilibrium framework, which shows that high productivity and high amenities are 

the two underlying factors of urban population growth. As for policy factors, we focus on China’s 

unique population control policies, the one-child policy and the hukou system. We then design 

strategies to test whether these three hypotheses – namely, economic productivity, amenities, and 

government’s population control policies - can explain China’s urban growth patterns.   
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Our results suggest that China deviates from Zipf’s law and Gibrat’s law from 1991 to 

2017. In particular, large cities in China have smaller population sizes than what Zipf’s law would 

grant and grow slower than small and medium-size cities. Among the three hypotheses we propose, 

differences in economic productivity and amenities fail to justify why large cities have experienced 

slower growth. Instead, we find that the government’s direct interventions through two population 

control policies have been effective in constraining population expansion in large cities, which 

explains why they grow slower and are not as large as Zipf’s law prediction. In addition, our result 

(from incorporating new population data) shows that deviations from Zipf’s law and Gibrat’s law 

become weaker in 2011-2017 than previous decades and is in line with China’s recent relaxation 

of its population control policies. 

The rest of the paper is structured as follows: Section 2 summarizes previous empirical 

studies on China and reviews China’s urbanization. Section 3 presents theoretical frameworks for 

Zipf’s law, Gibrat’s law, and urban growth. Sections 4 and 5 provide some background on the data 

and methodology utilized in this paper to test Zipf’s law and Gibrat’s law and to explain the 

population growth of Chinese cities. Empirical results are presented in Section 6. Section 7 

discusses the findings in light of China’s economic and administrative policies.  
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2 Background 

2.1 Relevant Literature 

Previous empirical studies on whether Chinese cities obey Zipf’s law produce mixed 

results using population data prior to 2010. Some show evidence of Chinese city sizes converging 

to Pareto’s distribution and Zipf’s law, whereas others disagree. For example, Gangopadhyay and 

Basu (2009) find that the largest Chinese cities follow a Pareto distribution with coefficient one 

using data from 1990 and 2000. In contrast, Song and Zhang (2002) use city-level data from 1991 

and 1998 and argue that although a Pareto distribution fits Chinese cities well, Zipf’s law is 

rejected with the Pareto coefficient being statistically greater than one; Luckstead and Devadoss 

(2014) obtain similar results using data from 2010. These disagreements might be attributable to 

the fact that the Pareto coefficient is highly sensitive to the choice of sample size. In particular, 

Peng (2010) observes that China’s Pareto coefficient is monotonically decreasing when lower 

truncating points are chosen. In addition, Zipf’s law results seem to depend on the choice of city 

definition. While most studies of China use the administrative definition, which corresponds to the 

official reporting units, Dingel et al. (2019) argue that the night-lights-based metropolitan areas 

they construct conform well to Zipf’s law using census data from 2000 and 2010. Anderson and 

Ge (2005) and Li et al. (2016), on the other hand, favored a lognormal distribution over the Pareto 

distribution for Chinese cities. All relevant studies on Chinese city size distribution use data prior 

to 2010 for testing Zipf’s law and Pareto distribution, and our paper extends the time period of 

study with new data from 2011 to 2017.  

A few studies examine the underlying assumption of Zipf’s law - whether Chinese city 

growth is size-independent (Gibrat’s law) - in an attempt to explain China’s deviation from Zipf’s 

law; however, they do not provide insights on what factors may have caused Chinese city growth 
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to be size-dependent. Gabaix (1999) identifies the homogeneity of city growths as an important 

assumption for explaining why Zipf’s law holds and recognizes that any violation of it may lead 

to deviations from Zipf’s law. Evidence is again mixed for whether China’s city growth follows 

Gibrat’s law. Cen (2015) and Li et al. (2016) find that Gibrat’s law approximately holds for all 

Chinese cities from the 1980s to 2000s. On the contrary, Fang et al. (2017) and Chauvin et al. 

(2017) observe that Chinese city growth is size-convergent before 2000 and size-independent after 

2000. Gangopadhyay and Basu (2012) argue that Chinese cities experience parallel growth where 

small and medium-size cities have grown faster than large cities. Likewise, cities with similar 

policy regimes and natural resource endowments grow parallel in the long run (Chen et al., 2013; 

Wu and He, 2017).  

To explain China’s deviation from Zipf’s law and Gibrat’s law, the existing literature 

identifies the role of China’s unique administrative and economic policies, but rarely supports 

these hypotheses with empirical evidence. Song and Zhang (2002) and Xu and Zhu (2009) propose 

several economic and institutional factors of the Chinese urban system, including rural-urban 

migration restrictions imposed by the household registration system (“hukou”), China’s open-door 

policy and its subsequent boosts in foreign direct investments (FDI), and government’s 

development strategies that favor small and medium-size cities. In addition to the hukou system 

and the economic reforms, some scholars emphasize China’s family planning program, based on 

the one-child policy, in explaining China’s deviation from Zipf’s law (Anderson and Ge, 2005; 

Luckstead and Devadoss, 2014). Yet, past literature discusses these policy factors qualitatively 

without empirical evidence, and our paper fills this gap by collecting urban characteristics data at 

the city level and designing research strategies to test the effect of each factor.  
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2.2 Overview of China’s Urban Development and Policies 

As a socialist economy, the People’s Republic of China has a complex urban system and a 

unique path of development since its founding in 1949. China experienced rapid population growth 

from 1949 to 1958, during which the average growth rate of the non-agriculture population was 

over 10 percent, with the majority of growth happened in large cities (NSB, 2000). The number of 

cities also doubled within nine years. Following the initial growth was a period of stagnation from 

1958 to 1978 due to the Great Leap Forward and the Cultural Revolution. During these two 

decades of political turmoil, the rural population was forced to stay in their birthplace under the 

collectivization of agriculture. Urban expansion thus slowed down with little growth in urban 

population size and the number of cities. The year 1978 marked a turning point of urban 

development when the central government introduced a series of economic reforms that attempted 

to liberalize the economy. Policies involved the de-collectivization of agriculture, the opening up 

to foreign investments, and the permission for entrepreneurship. As a result, China experienced 

rapid urban growth in the past four decades following 1978. The non-agricultural population in 

urban areas increased 126 percent from 172 million in 1978 to 389 million in 1999; the number of 

officially designated cities increased from 191 to 667, and the urban share of total population 

increased from 18 to 31 percent (NSB, 2000). In the last two decades, China continued its 

economic reforms albeit with slower urban population growth. Large-scale privatization of 

previously state-owned enterprises occurred in the late 1990s and early 2000s, leading to an 

increase in total factor productivity and gross regional output levels. Meanwhile, the Chinese 

government further brought down trade barriers and reduced tariffs. Such efforts peaked as China 

joined the World Trade Organization (WTO) in 2001. As a result, China enjoyed a significant 

increase in foreign direct investment inflows, especially to large cities, in the following years. 
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Despite the economic growth that took place in the cities, population growth dropped with the 

emergence of many urban issues including crowding, congestion, pollution, and crime. 

The most distinct feature of China’s urban development is its direct government 

interventions. Chinese governments, from central to local levels, are far more active in planning 

and containing city populations than any other country in the world. The two main policy tools 

they have been using are the household registration (or “hukou”) system and the one-child policy. 

In 1951, the Ministry of Public Security issued the first regulation regarding migration and 

formally initiated the household registration system. By 1958, all rural and urban citizens had been 

registered with the state, and rigorous control over any transfer of the hukou status had been put 

into place. Since the reform and opening up in 1978, the state has loosened its restrictions on 

migration from rural areas to small cities but imposed greater limits on migration into big cities 

like Beijing and Shanghai. The hukou status specifies the location of residence and is, essentially, 

an official permit that allows a person to stay in the designated location. Hukou also divides people 

into agricultural and non-agricultural categories, where a non-agriculture hukou status grants 

superior welfare benefits. In addition to issuing permits, the government implements 

complementary policies that discriminate against unofficial migrants (those without permits) in 

areas of job allocation, housing, education, healthcare, and social security in the city (Song, 2014). 

Thus, although unofficial migrants can physically stay in the city, it is much harder for them to 

live their own lives. 

The one-child policy is a birth planning program of one child per family, first introduced 

in 1982, to control the rapid growth of the Chinese population. Intended to be applied universally, 

the one-child policy was, however, not uniformly followed across the country. It is commonly 

believed that urban cities oversaw stricter enforcement with penalties on families with 
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“unauthorized” children, whereas rural families managed to find loopholes and conceive a second 

child if their first one was a girl. In urban cities, 91 percent of the mothers had only one child; in 

sharp contrast, only 59 percent of rural mothers followed the one-child policy (Li, 1995). Starting 

from 2011, the one-child policy was somewhat relaxed across the country as China issued a new 

law allowing parents who are both the only child to have a second child; it was formally replaced 

by the current universal two-child policy in 2016. However, birth rates in urban areas did not 

rebound significantly due to the long-lasting impact the one-child policy had created, including 

the imbalanced sex-ratio and the low fertility rate.  
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3 Conceptual Framework 

3.1 Zipf’s Law Model 

The history of Zipf’s law dates back to Auerbach (1913) and Singer (1936), who first apply 

the Pareto law to city size distribution. A mathematical statement of the Pareto law for city size 

distribution is as follows  

𝑟𝑖 = 𝐴 ⋅ 𝑆𝑖
−𝛼      (1) 

where 𝑟𝑖 is the number of cities with population 𝑆𝑖 or more, or equivalently, the rank of city i when 

cities are ranked from 1 to n by their population size in descending order; 𝑆𝑖 is the population of 

the city i, 𝛼 is the Pareto coefficient, and A is a constant. Equation 1 implies a linear relationship 

between the logarithm of city rank and the logarithm of city size 

𝑙𝑜𝑔(𝑟𝑖) = 𝑙𝑜𝑔(𝐴) − 𝛼 ⋅ 𝑙𝑜𝑔(𝑆𝑖)     (2) 

Zipf’s law for cities (also referred to as “the rank-size rule”) is a special case of the Pareto 

law with the Pareto coefficient 𝛼 = 1 (Zipf, 1949). It states that the rank of a city is inversely 

proportional to its size. 

𝑟𝑖 =
𝐴

𝑆𝑖
          (3) 

This implies that within a geographical region of cities, the largest city is about twice the size of 

the second-largest city, about three times the size of the third-largest city, and so on. The Zipf-

form of Equation 1 is as follows 

𝑆(𝑘) = 𝑆(1) ⋅ 𝑘−𝑞      (4) 
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where 𝑞 is equal to 1 under the special case, and 𝑆(𝑘) is the size of the kth largest city. A simple 

mathematical derivation can show that 𝑞 =
1

𝛼
  and 𝑆(1) = 𝐴

1

𝛼. Zipf’s law holds when 𝛼 = 1 and  

𝑞 = 1. If 𝛼 → ∞,  then 𝑞 → 0, and 𝑆(𝑘) = 𝑆(1),  ∀𝑘, suggesting a perfectly even distribution of 

population as all cities have the same size.  

Gabaix (1999) provides a theoretical framework for studying why some countries converge 

to Zipf’s law whereas others fail to. He shows that if different cities in a region have homogenous 

random growth processes, then their limit distribution will converge to Zipf’s law. Let 𝑆𝑖,𝑡 denote 

the size of city i normalized by the total urban population at time t. City size follows Zipf’s law if 

the upper tail distribution of city sizes at time t, 𝐺𝑡(𝑆) ≔ 𝑃(𝑆𝑡 > 𝑆), converges to some steady-

state distribution function 𝐺(𝑆) = 𝑎 ⋅ 𝑆−𝜁, where a is a constant and ζ = 1. Gabaix proves that this 

statement is true if we assume all cities grow randomly with the same expected growth rate and 

the same variance (Gibrat’s law). In other words, city growth rates are identically distributed and 

independent of city sizes.  

Gabaix further examines the case where cities grow randomly with expected growth rates 

and variances dependent upon city sizes. The size of city i at time t follows the process (according 

to Equation 11 ibid., p. 756) 

𝑑𝑆𝑡

𝑆𝑡
= 𝜇(𝑆)𝑑𝑡 + 𝜎(𝑆)𝑑𝐵𝑡     (5) 

where 𝜇(𝑆) is the expected growth rate of the normalized city size 𝑆, 𝜎(𝑆) is its standard deviation, 

and 𝐵𝑡 is a reflected geometric Brownian motion. It follows that the limit distribution of city sizes 

will converge to Pareto’s law with the following local Zipf coefficient (also, Pareto coefficient) 

𝜁(𝑆) = −
𝑆

𝑝(𝑆)
⋅

𝑑𝑝(𝑆)

𝑑𝑆
           (6) 
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where 𝑝(𝑆) is the probability distribution of S. Then integrating the forward Kolmogorov equation 

(Equation 12 ibid., p. 757) into Equation 6, Gabaix derives the general form of Zipf coefficient, 

ζ(S), as a function of the mean and variance of city growth rates (according to Equation 13 ibid., 

p. 757) 

𝜁(𝑆) = 1 − 2 ⋅
𝜇(𝑆)

𝜎2(𝑆)
+

𝑆

𝜎2(𝑆)
⋅

𝜕𝜎2(𝑆)

𝜕𝑆
    (7) 

This general expression for the Zipf coefficient lays the foundations of our empirical approach to 

explain China’s deviation from Zipf’s law. As derived in Equation 7, deviations from Zipf’s law 

(ζ(S) ≠ 1) can be explained either by deviations of the expected growth rates for a range of cities 

from the overall mean for all city sizes (μ(S) = γ(𝑆) − γ̅ ≠ 0) or by the dependency of the 

variance of growth rates on city sizes (
∂σ2(S)

∂S
≠ 0). When large cities exhibit lower growth rates 

(𝛾(𝑆) − �̅� < 0), their size distribution will decay faster than Zipf’s law would predict and their 

local Zipf coefficient will be greater than one (ζ(S) > 1). If Gibrat’s law holds precisely, then the 

second and the third term in Equation 7 equal to zero, and the Zipf coefficient ζ(S) = 1 regardless 

of city size S. 
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3.2 Gibrat’s Law Model 

Gibrat’s law, also known as the law of proportional growth, is first proposed by Gibrat 

(1931) as an empirical regularity governing the dynamics of firm sizes and later applied to the field 

of urban economics to capture city growth processes and explain the resulting population 

distribution. Proportional growth states that the expected increment to a city’s size in each period 

is proportional to its initial size. Let S𝑖,𝑡  be the population size of city i at time t and δt be the 

proportional growth rate between period 𝑡 − 1 and 𝑡. The mathematical expression of proportional 

growth is S𝑖,𝑡 − S𝑖,𝑡−1 = 𝛿𝑡 ⋅ S𝑖,𝑡−1, or 

𝑆𝑖,𝑡 = 𝑆𝑖,𝑡−1 ⋅ (1 + 𝛿𝑡)        (8) 

𝑤ℎ𝑒𝑟𝑒 𝛿𝑡 is an i.i.d. random variable with mean 𝑔 and variance 𝜎2. Taking the logarithm of both 

sides in Equation 8 and moving terms around, we can obtain an equivalent formulation of Gibrat’s 

law 

𝑙𝑜𝑔(𝑆𝑖,𝑡) − 𝑙𝑜𝑔(𝑆𝑖,𝑡−1) = 𝑙𝑜𝑔(1 + 𝑔) + 𝑢𝑖,𝑡           (9) 

where 𝑢𝑖,t represents the random shocks that the growth rate may suffer. Note that 𝐸(𝑢𝑖,t) = 0 and 

𝑉𝑎𝑟(𝑢𝑖,t) = 𝜎2, ∀𝑖, 𝑡.  

To capture deviations from Gibrat’s law, we add the term 𝛽 ⋅ 𝑙𝑜𝑔(𝑆𝑖,𝑡−1) to model the 

possibility of population growth rate as a function of initial city size. Thus, the general expression 

of the growth equation is as follows 

𝑙𝑜𝑔(𝑆𝑖,𝑡) − 𝑙𝑜𝑔(𝑆𝑖,𝑡−1) = 𝑙𝑜𝑔(1 + 𝑔) + 𝛽 ⋅ 𝑙𝑜𝑔(𝑆𝑖,𝑡−1) + 𝑢𝑖,𝑡        (10) 

In the case of a size-dependent growth path, β will be nontrivial.    
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3.3 Spatial Equilibrium Model 

An abundance of static models attempts to characterize the spatial equilibrium across cities.  

Among them, Rosen (1979) and Roback (1982) provide a baseline for urban growth analysis. 

Based on the Rosen-Roback framework, Glaeser and Gottlieb (2009) construct a detailed three-

sector general equilibrium model that is widely adopted for studying determinants of wages, 

housing prices, and population density. We follow their model to solve the three distinct 

equilibrium conditions for consumers, producers, and constructors and derive how productivity 

and amenities can lead to a larger population size.  

We start with the representative consumer’s problem. Consumers receive utility from three 

main parts: consumption of traded goods, denoted C, consumption of non-traded housing, denoted 

𝐻, and location-specific amenities, denoted 𝜃. Consumers supply one unit of labor inelastically, 

receive wage 𝑤, and spend all of their income on either consumer goods or housing. Let 𝑝𝐻 be the 

per-unit cost of housing and the price of consumer goods be normalized to 1. It follows that 

consumers’ budget constraint is C + 𝑝𝐻 ⋅ 𝐻 = w. Further, assume consumers have Cobb-Douglas 

utility functions U(C, H) = θ ⋅ 𝐶1−α ⋅ 𝐻α, where 𝛼 represents the share of labor income workers 

spend on housing. Thus, consumers’ utility maximization problem is as follows 

𝑀𝑎𝑥𝐶,𝐻  𝑈(𝐶, 𝐻) = 𝑀𝑎𝑥𝐶,𝐻   𝜃 ⋅ 𝐶1−𝛼 ⋅ 𝐻𝛼 = 𝑀𝑎𝑥𝐻   𝜃 ⋅ (𝑤 − 𝑝𝐻 ⋅ 𝐻)1−𝛼 ⋅ 𝐻𝛼 (11) 

The first order condition (FOC) with respect to 𝐻 gives: 

𝜕𝑈

𝜕𝐻
:   −𝑝𝐻 ⋅ (1 − 𝛼) ⋅ 𝐻 + 𝛼 ⋅ (𝑤 − 𝑝𝐻 ⋅ 𝐻) = 0             (12) 

Intuitively, Equation 12 shows that the marginal utility from consumer goods must equal to the 

marginal utility from housing under optimized consumption behaviors. Plugging Equation 12 back 

into Equation 11 to get rid of 𝐻 yields the indirect utility function 𝑉, as presented in Equation 13.  
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𝑉 = 𝛼𝛼 ⋅ (1 − 𝛼)(1−𝛼) ⋅ 𝜃 ⋅ 𝑤 ⋅ 𝑝𝐻
−𝛼      (13) 

In the cross-city context, the standard assumption of free migration creates a spatial equilibrium 

where consumers’ utility levels are equalized across all cities. Otherwise, if consumers are not 

indifferent between living in one city and living elsewhere, they would simply move to the location 

that provides greater utility. Thus, we require the indirect utility in Equation 13 equal to a 

reservation utility, denoted �̅�.  

As for the production sector, firms take capital and labor as inputs and produce tradable 

goods. In the style of Mills (1967), there are two types of capital involved in production: tradable 

capital, denoted K , and non-tradable capital, denoted 𝑍 . Tradable capital can be purchased 

anywhere at a normalized price of 1, whereas the non-tradable capital comes from a fixed supply 

�̅� based on location. The cost of per unit labor is wage w, and let 𝑁 denote the total number of 

workers. Firms operate under a city-level Cobb-Douglas production function F(N, K, Z̅) = A ⋅ Nβ ⋅

Kγ ⋅ Z̅1−β−γ, where 𝐴 is the city-specific total-factor productivity. In equilibrium, firms choose 

tradable capital K and labor 𝑁 to maximize their total profits Π. 

𝑀𝑎𝑥𝑁,𝐾 𝐹(𝑁, 𝐾, �̅�) − 𝑤 ⋅ 𝑁 − 𝐾 = 𝑀𝑎𝑥𝑁,𝐾  𝐴 ⋅ 𝑁𝛽 ⋅ 𝐾𝛾 ⋅ �̅�1−𝛽−𝛾 − 𝑤 ⋅ 𝑁 − 𝐾 (14) 

The two FOCs are as follows 

𝜕𝛱

𝜕𝑁
= 𝛽 ⋅ 𝐴 ⋅ 𝑁𝛽−1 ⋅ 𝐾𝛾 ⋅ �̅�1−𝛽−𝛾 − 𝑤 = 0       (15) 

𝜕𝛱

𝜕𝐾
= 𝛾 ⋅ 𝐴 ⋅ 𝑁𝛽 ⋅ 𝐾𝛾−1 ⋅ �̅�1−𝛽−𝛾 − 1 = 0       (16) 

Equations 15 and 16 give the standard conditions that the marginal productivity of labor or capital 

is equal to their marginal cost. We derive the inverse labor demand curve by substituting Equation 

16 into Equation 15 to get rid of K. 
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𝑤 = 𝛽 ⋅ 𝐴
1

1−𝛾 ⋅ 𝛾
𝛾

1−𝛾 ⋅ 𝑁
𝛽+𝛾−1

1−𝛾 ⋅ �̅�
1−𝛽−𝛾

1−𝛾     (17) 

Finally, for the construction sector, firms choose height, denoted ℎ, and land, denoted 𝐿, 

which supply a total housing of 𝐻 = ℎ ⋅ 𝐿, to maximize profits. Let 𝑝𝐻 be the price for housing 

and 𝑝𝐿 be the cost of land. The cost of producing ℎ ⋅ 𝐿 units of housing on top of 𝐿 units of land is 

assumed to be c0 ⋅ ℎ𝛿 ⋅ 𝐿 for some 𝛿 > 1. Thus, the profit maximization problem of constructing 

firms is summarized in Equation 18. 

𝑀𝑎𝑥ℎ,𝐿   𝑝𝐻 ⋅ ℎ ⋅ 𝐿 − 𝑐0 ⋅ ℎ𝛿 ⋅ 𝐿 − 𝑝𝐿 ⋅ 𝐿   (18) 

The two FOCs are as follows 

𝜕𝛱

𝜕ℎ
= 𝑝𝐻 ⋅ 𝐿 − 𝛿 ⋅ 𝑐0 ⋅ ℎ𝛿−1 ⋅ 𝐿 = 0            (19) 

𝜕𝛱

𝜕𝐿
=  𝑝𝐻 ⋅ ℎ − 𝑐0 ⋅ ℎ𝛿 − 𝑝𝐿 = 0            (20) 

Assume there is a fixed quantity of land, denoted �̅�, available at each location. Since the housing 

market must clear in equilibrium, then the total supply equals total demand h ⋅ �̅� =
α⋅N⋅𝑤

𝑝𝐻
 . (We can 

show from Equation 12 the units of housing demanded by each consumer is 
𝛼⋅𝑤

𝑝𝐻
, and there are 𝑁 

consumers in total.) Thus, substituting h =
α⋅N⋅𝑤

𝑝𝐻⋅�̅�
 into Equation 19, we obtain the housing price 

equation as a function of population 𝑁 and income 𝑤.  

 𝑝𝐻 = 𝛿
1

𝛿 ⋅ 𝑐0

1

𝛿 ⋅ (
𝛼⋅𝑁⋅𝑤

�̅�
)

𝛿−1

𝛿
     (21) 

Together, expressions of the indirect utility (Equation 13), the inverse labor demand (Equation 17), 

and the housing price (Equation 21) characterize the spatial equilibrium. The three endogenous 

variables are population 𝑁, wage 𝑤, and housing price pH. Thus, we solve the system of equations 

and obtain the following expression for population size 
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𝑙𝑜𝑔(𝑁) = 𝐾𝑁 +
(𝛿+𝛼−𝛼𝛿)𝑙𝑜𝑔(𝐴)+(1−𝛾)𝛿𝑙𝑜𝑔(𝜃)

𝛿(1−𝛽−𝛾)+𝛼𝛽(𝛿−1)
         (22) 

where KN  is a constant term that includes parameters other than 𝐴  and θ . We can then take 

comparative statics of Equation 22 with respect to the logarithm of productivity 𝐴 and amenities 

θ. 

𝜕𝑙𝑜𝑔(𝑁)

𝜕𝑙𝑜𝑔(𝐴)
=

(1−𝛼)𝛿+𝛼

𝛿(1−𝛽−𝛾)+𝛼𝛽(𝛿−1)
> 0           (23) 

𝜕𝑙𝑜𝑔(𝑁)

𝜕𝑙𝑜𝑔(𝜃)
=

(1−𝛾)𝛿

𝛿(1−𝛽−𝛾)+𝛼𝛽(𝛿−1)
> 0           (24) 

As we can see, population size rises in productivity and amenities. Therefore, the spatial 

equilibrium framework provides us with two hypotheses - the economic productivity and the urban 

amenities - in explaining population growth.  

  



 

 

18 

4 Data 

4.1 Urban Population Data 

Urban studies require at a minimum an appropriate definition of “city” and a consistent 

measure of the urban population, both of which are somewhat elusive in China’s case. In China, 

“cities” are urban areas defined according to administrative divisions. There are three different 

administrative levels of cities in the Chinese urban system: province-level cities (or municipalities), 

prefecture-level cities, and county-level cities. As of January 2019, there are 4 province-level cities, 

namely Beijing, Chongqing, Shanghai, Tianjin, 293 prefecture-level cities, including Chengdu, 

Guangzhou, Baoding, Wuhan, and 375 county-level cities. We recognize this administrative 

definition of cities does not exactly correspond to the popular commuting-based definition, the 

Metropolitan Statistical Areas (MSAs), which merges administratively defined entities based on 

their social and economic ties. Yet, the ideal economic units for urban studies are still widely 

debated. Holmes and Lee (2010) point out that Zipf’s law results and other empirical studies in 

urban economics are sensitive to the definition of city boundaries. They find that while the MSAs 

in the U.S. follow Zipf’s law quite well, the six-by-six-mile squares they propose do not. Another 

alternative is the lights-based city definition. Dingel et al. (2019) construct night-lights-based 

metropolitan areas for China and India and find that they conform well to Zipf’s law despite the 

deviation of administrative cities. Unfortunately, commuting data or night lights data are not 

readily available to us, so we stick with the administrative units, which are also widely adopted in 

urban studies of China, for example, Anderson and Ge (2005) and Chauvin et al. (2017). We realize 

the potential limitation of our study caused by our choice of city boundary definition. Nevertheless, 

a study using the administrative units has its advantaging in examining how government 
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regulations may have affected urban growth and city size distribution, given many population 

control policies are implemented based on administrative units. 

To examine China’s city size distribution, we collect population data from the National 

Bureau of Statistics (NSB).  Information on city populations from 1949 to 1999 is reported in Fifty 

Years of Urban Development (NSB, 2000). We use this source for population data from 1949 to 

1978. Information on city populations from 1984 to 2017 is compiled from Chinese Urban 

Statistical Yearbooks (NSB, 1984-2017). In both sources, cities at all administrative levels are 

reported. For cities at prefecture level and above, populations of both urban areas (“Shiqu”) and 

urban areas plus rural counties (“Diqu”) are reported, where rural counties refer to the suburban 

and rural areas surrounding the urban areas. County-level cities and rural counties are very small 

in size and relatively underdeveloped, and their definitions vary from province to province. As 

such, we disregard these counties and focus on cities at prefecture level and above. Moreover, two 

main statistics are published officially as measures of the urban population in each city: the total 

city and town population and the non-agricultural population. Neither accurately reflect the actual 

urban population based on the residence principle according to international practice. Total city 

and town population counts all people within the administrative region of a city according to the 

household registration system; the non-agricultural population is a subset of the total city and town 

population consisting of those with non-agricultural hukou status. As discussed in Section 2.2, 

hukou is a part of Chinese government’s planned economic system; it does not include migrant 

workers who do not have an official permit to stay in the city. Since our study mainly focuses on 

cities at prefecture level and above, where most agricultural population live in urban and 

surrounding suburban areas rather than actual rural areas, we choose the total city and town 
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population as an estimate of the actual urban population. Yet, this measure may still underestimate 

city population due to unofficial migrations.   

We choose 1949, the founding year of the People’s Republic of China, as a natural starting 

point of our Zipf’s law analysis. Yet, China did not systematically collect and report its urban 

population data until the economic reforms and the rapid urbanization that began in the early 1980s. 

In the three decades before 1984, China reported its urban population data in only four years, 

namely, 1949, 1957, 1965, and 1978; the number of cities designated and reported is also much 

lower compared to the post-reform period. As a result, our time series analysis of city growth and 

size distribution for the pre-reform period may be incomprehensive and biased due to these 

constraints. In addition, the administrative boundary of cities changes over time due to central and 

local governments’ strategic planning, causing some populations to jump discontinuously from 

one year to another. Table 1 presents the summary statistics of city population data. Table 2 

summarizes the average annual growth rates of city populations from 1991 to 2017 by rank groups. 

We calculate the average annual growth rate by taking the geometric mean of annual population 

growth rates and group cities based on their ranks in the initial year 1991. Finally, we graph the 

total population of all cities at prefecture level and above in Figure 2 to visualize China’s overall 

urban growth. 
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Table 1. Summary Statistics for Provincial and Prefecture City Population, 1949-2017. 

Year Num. Obs. Avg. Size 

(10,000s) 

Std. Dev. 

(10,000s) 

Min. Size 

(10,000s) 

Max. Size 

(10,000s) 

 1949 51 49.056 69.558 5.46 418.94 

 1957 55 80.375 100.427 8.94 609.83 

 1965 58 102.168 121.335 10.07 643.07 

 1978 87 99.115 102.233 6.81 557.38 

 1984 147 91.417 99.279 8.76 688.13 

 1985 165 90.688 96.024 10.21 698.3 

 1986 169 90.212 97.425 10.27 710.16 

 1987 173 91.37 101.378 9.8 721.77 

 1988 184 91.692 100.154 9.86 732.65 

 1989 187 93.693 102.043 9.98 777.79 

 1990 188 95.42 102.841 10.19 783.48 

 1991 189 96.616 103.325 10.53 786.18 

 1992 193 98.031 103.019 10.93 792.75 

 1993 198 99.736 109.354 11.4 948.01 

 1994 207 102.21 108.339 11.97 953.04 

 1995 212 104.725 112.62 12.44 956.66 

 1996 221 104.289 112.139 12.91 961.02 

 1997 223 107.197 119.694 13.09 1018.59 

 1998 229 108.99 128.122 14.29 1070.62 

 1999 236 110.248 134.486 14.55 1127.22 

 2000 262 109.096 131.542 15.96 1136.82 

 2001 266 114.289 138.797 16.1 1262.41 

 2002 278 118.431 144.655 14.29 1270.22 

 2003 284 120.412 146.669 14.08 1278.23 

 2004 286 122.657 148.202 14.35 1289.13 

 2005 286 126.871 153.576 14.62 1290.14 

 2006 286 128.157 161.072 14.93 1510.99 

 2007 286 129.915 162.96 15.3 1526.02 

 2008 287 131.078 164.219 15.33 1534.5 

 2009 287 132.924 165.841 15.33 1542.77 

 2010 286 135.895 168.558 15.23 1542.77 

 2011 287 138.732 176.871 15.3 1770.6 

 2012 287 140.488 179.124 15.1 1779.1 

 2013 289 143.343 180.155 15.2 1787 

 2014 289 148.631 187.576 15.3 1943.9 

 2015 289 154.459 201.712 15.36 2129.09 

 2016 295 159.685 216.628 4 2449 

 2017 292 163.856 223.197 5 2451 
Source: NSB (2000, 1984-2017). 
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Figure 2. Growth in Total Urban Population of Prefecture-Level Cities or Above, 1949-2017. 

 
Source: Author’s calculation using population data from NSB (2000, 1984-2017). 

 

Table 2. Summary Statistics for Average Annual Population Growth Rates, 1991–2017. 

Rank  Avg. (%) Std. Dev. (%) Min. (%) Max. (%) 

1-50 1.607 2.573 -7.497 8.4 

51-100 1.667 1.845 -2.193 7.394 

101-150 2.106 2.044 -2.541 6.815 

151-200 3.093 2.258 .258 9.725 

201-250 4.505 2.665 .627 9.788 
Note: Average annual population growth rate is the geometric mean of annual growth rates, calculated using 

population data from NSB (1991-2017). Groups are based on ranks of city sizes in the initial year 1991.  

 

Census data provides a better measure of the residence-based population but is only 

available in the census years 2000 and 2010. As highlighted before, annual population data are 

compiled from the household registration system and neglect the unofficial migrants who also live 
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in the city. This problem can be solved if we use the census data from the household survey, which 

is conducted every ten years since 2000. So far, we only have two years of census data, which limit 

the scope of our study, but still provide us a more accurate measure of city size. Furthermore, by 

examining the numerical difference between the census data and the hukou data, we can obtain a 

measure of the enforcement level of the hukou system across different cities, which enables us to 

study the effect of administrative control on city growth. Table 3 below presents the summary 

statistics of the census population data. To get a better sense of Chinese cities and their sizes, we 

summarize the largest 10 cities along with their population according to the 2000 and 2010 census 

in Table 4. 

 

Table 3. Summary Statistics for Census Population Data, 2000 & 2010. 

Census Year Num. Obs. Avg. size 

(10,000s) 

Std. Dev. 

(10,000s) 

Min. Size 

(10,000s) 

Max. Size 

(10,000s) 

2000 337 135.051 153.154 1.287 1448.992 

2010 337 197.392 224.358 2.191 2055.51 
Source: Tabulation on the Population Census of China (NSB, 2000 & 2010). 

 

 

 

Table 4.  Population of the Largest Ten Cities, 2000 & 2010. 

Rank City Name Population Size  Rank City Name Population Size 

1 Shanghai 14,489,919  1 Shanghai 20,555,098 

2 Beijing 10,522,464  2 Beijing 16,858,692 

3 Chongqing 10,095,512  3 Chongqing 15,295,803 

4 Guangzhou 8,090,976  4 Guangzhou 10,641,408 

5 Tianjin 7,089,812  5 Shenzhen 10,358,381 

6 Wuhan 6,787,482  6 Tianjin 10,277,893 

7 Shenzhen 6,480,340  7 Chengdu 9,237,015 

8 Chengdu 5,967,819  8 Wuhan 7,541,527 

9 Harbin 5,370,174  9 Suzhou 7,329,514 

10 Shenyang 5,066,072  10 Dongguan 7,271,322 
Note: Residence-based urban population is reported in absolute values (2000 on the left, 2010 on the right). 

Source: Tabulation on the Population Census of China (NSB, 2000 & 2010). 
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4.2 Urban Characteristics Data 

To study the underlying factors for China’s urban growth, we compile the following 

variables at the city level, as shown in Table 5, Table 6, and Table 7, from Chinese Urban 

Statistical Yearbooks (NSB, 1991-2017), Tabulation on the Population Census of China (NSB, 

2000 & 2010), and China Housing Price Data (CREA, 2017). 

 

 

Table 5. Summary Statistics for Urban Characteristics Data in 1991. 

Variable Unit Obs Mean Std.Dev. Min Max 

Population density Per square km 252 1162.345 1185.1 3 10482 

Employment rate Percent 250 57.289 9.939 31.603 157.163 

Gross regional product CNY per capita 249 3486.955 2964.228 810.661 31358.48 

Gross industrial output value CNY per capita 250 6323.5 5649.1 414.671 54930.39 

Amount of foreign capital 

utilized 

USD per capita 184 36.555 113.799 .042 1186.114 

Local government budget 

expenditure 

CNY per capita 249 466.921 528.47 26.978 5914.534 

Residential savings per capita CNY per capita 250 1816.29 1340.648 152.333 14782.74 

Average wage CNY 250 2377.17 498.404 1416.2 5199.7 

Number of hospital beds  Per 10,000 persons 250 52.979 22.442 6.306 113.766 

Area of paved roads Square m per capita 250 3.061 2.171 .1 14.7 

Rate of natural increase Percent 250 .8 .351 -.007 2.063 

Wastewater 1,000 tons per 

square m 

247 10.61 18.652 .018 176.909 

Waste gas 1,000,000 mark per 

square m 

245 .404 .697 .001 6.164 

Dust Tons per square m 241 21.463 91.376 .004 1322.711 

Solid waste 1,000 tons per 

square m 

245 .191 .385 0 3.237 

Note: We calculate the employment rate by dividing total person employed by total population and record in 

percentage terms. All data are compiled from Chinese Urban Statistical Yearbooks (NSB, 1991). 
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Table 6. Summary Statistics for Urban Characteristics Data in 2017. 

Variable Unit Obs Mean Std.Dev. Min Max 

Population density Per square km 253 846.687 721.513 5.024 5654.008 

Employment rate Percent 249 40.646 27.052 3.508 216.355 

Gross regional product CNY per capita 252 84086.03 56894.96 7998.31 517000 

Gross industrial output value CNY per capita 250 119000 103000 855.167 709000 

Amount of foreign capital 

utilized 

USD per capita 209 297.089 406.262 .107 2952.647 

Local government budget 

expenditure 

CNY per capita 253 13401.82 9119.554 925.278 106000 

Residential savings per capita CNY per capita 247 66493.96 34782.64 17197.1 249000 

Average wage CNY 245 67343.7 12702.69 40180 135000 

Number of hospital beds  Per 10,000 persons 247 76.685 29.376 7.393 192.328 

Area of paved roads Square m per capita 234 14.174 7.002 2.354 51.454 

Rate of natural increase Percent 253 .264 .69 -1.677 2.933 

Wastewater 1,000 tons per 

square m 

214 11.985 27.881 .002 248.046 

Waste gas Tons per square m 216 36.641 59.065 .041 474.108 

Dust Tons per square m 215 36.098 57.115 .091 378.438 

Public green space Square m per capita 250 14.073 4.365 2.45 51.66 

Average house price CNY per square m 253 8148.032 7455.582 2214 62252 

Note: We calculate the employment rate by dividing total person employed by total population and record in 

percentage terms. House price data are from CREA (2017) and the rest from Chinese Urban Statistical Yearbooks 

(NSB, 2017). 

 

 

Table 7. Summary Statistics for Urban Characteristics Data in 2000 and 2010. 

Note: We calculate the number unofficial migrants by subtracting the hukou population reported in Chinese Urban 

Statistical Yearbooks from the residence-based population reported in Tabulation on the Population Census of China 

(NSB, 2000 & 2010). 

 

We group these variables into three categories, namely, economic variables, measures of amenities 

and disamenities, and proxies for policy effects.  

Similar to Glaeser et al. (1995), we look at urban characteristics such as the employment 

rate, gross regional product, amount of foreign capital utilized, residential savings, and average 

wage for measures of a city’s overall economic performance. It is worth noting that the amount of 

Census 

Year 

Variable Num. 

Obs. 

Avg. size  

(10,000s) 

Std. Dev. 

(10,000s) 

Min. Size 

(10,000s) 

Max. Size 

(10,000s) 

2000 Unofficial migrant 

population 

238 51.993 84.212 -489.852 523.114 

 Population with BA 

degrees or higher 

333 0.449 1.06 0.003 12.549 

2010 Unofficial migrant 

population 

245 92.353 111.873 -147.775 775.968 

 Population with BA 

degrees or higher 

334 1.451 3.198 0.031 37.998 
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foreign capital utilized is a plausible measure of the extent to which a city has “opened up” after 

the economic reforms. In addition, we use the share of population with a Bachelor of Arts (BA) 

degree or higher from the census data as a measure of labor skills and human capital within the 

city.  

As for amenities, we consider the number of hospital beds as a measure of healthcare 

quality, the area of paved roads as a measure of infrastructure quality, and the area of public green 

space as a measure of leisure facilities. We use all variables in per capita terms, as opposed to in 

total terms, to better capture the individual utility gain from these urban amenities. Respecting 

disamenities, we collect data on the total amount of wastewater, waste gas, dust, and solid waste 

emitted per year and divide them by the total urban area to approximate the level of pollution 

within each city in per square meter terms. Ideally, we would want more data on air pollution and 

traffic congestion for estimating how close a city is to its carrying capacity, but such data are only 

available for the 30 provincial capitals starting in the year 2006. Population density can potentially 

be considered as a measure of how saturated a city is since crowding entails higher risks of 

epidemic, violence, crime, and psychological distress.  

Lastly, we have the rate of natural increase and the unofficial migrant population as policy-

pertaining variables. We use the rate of natural increase as a proxy for the effectiveness of the one-

child policy. As for the migration control policy, we calculate the number unofficial migrants by 

subtracting the hukou population reported in Chinese Urban Statistical Yearbooks (NSB, 2000 & 

2010) from the residence-based population reported in Tabulation on the Population Census of 

China (NSB, 2000 & 2010). Preferably, we would also want the quotas of new hukou status (or 

permits to live in a city) that local governments issue per year as a supplementary measure of how 

restraining the hukou system is; unfortunately, such information is not publicly available.   
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5 Methodology 

We first conduct repeated cross-sectional ordinary least squares (OLS) regression for 

testing whether China’s city size distribution obeys Zipf’s law. As discussed in Section 3.1, the 

relationship between the logarithm of city rank and the logarithm of city size is linear as shown in 

Equation 2, where α is the Zipf (or Pareto) coefficient. We could thus run the following OLS 

regression and obtain a consistent estimate of the Zipf coefficient at time t, β1,�̂�. 

𝑙𝑜𝑔(𝑟𝑎𝑛𝑘𝑖,𝑡) = 𝛽0,𝑡 + 𝛽1,𝑡 ⋅  𝑙𝑜𝑔(𝑠𝑖𝑧𝑒𝑖,𝑡) + 𝑢𝑖,𝑡   (25) 

However, Gabaix and Ibragimov (2011) argue that this procedure specified above is strongly 

biased in small samples. Alternatively, they propose a modified approach by subtracting 1/2 from 

the rank, as presented in Equation 26 below.  

 𝑙𝑜𝑔 (𝑟𝑎𝑛𝑘𝑖,𝑡 −
1

2
) = 𝛽0,𝑡 + 𝛽1,𝑡 ⋅  𝑙𝑜𝑔(𝑠𝑖𝑧𝑒𝑖,𝑡) + 𝑢𝑖,𝑡  (26) 

Gabaix and Ibragimov (2011) prove the shift of  1/2 is optimal for bias reduction and further show 

that the standard error on the Zipf coefficient α in this modified OLS regression is asymptotically 

(
2

𝑛
)

1

2
⋅  α. 

We implement the regression in Equation 26 with two different sample sizes to test the 

robustness of our results, since previous literature suggests that truncating points may affect the 

value of the Zipf coefficient (Eeckhout, 2004; Peng, 2010). We first include all cities (with 

observations) at prefecture level and above in the regression and then truncate the sample to the 

largest 100 cites. By looking at the largest 100 cities, we obtain a local linear relationship between 

the logarithm of city rank and the logarithm of city size and a local Zipf coefficient for large cities. 

Large cities are of particular interest to us because they are not as large as what Zipf’s law predicts 
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(as shown in Table 4 or Figure 3), and we want to find out what keeps them from growing large 

enough to grant convergence to Zipf’s law.  

In addition, we test Zipf’s law (Equation 26) within each of the four economic regions of 

China to check for the robustness of our findings. Theoretically, as long as the basic assumptions 

of Gabaix (1999) are valid, Zipf’s law will hold not only at national levels but also at regional 

levels or at the world level (Pasciuti, 2014). A regional study is important because if the overall 

pattern of city size distribution is salient even at regional levels, we can attribute China’s deviation 

from Zipf’s law to factors that are size-dependent instead of regional imbalances. We choose the 

four economic regions over other divisions, like the seven geographical regions or the 

administrative provinces, such that each region has a sufficient number of cities for possible 

statistical significance. Also, this choice is prudent because many urban development policies 

made by the central government target at a particular economic region as a whole, and we expect 

migrations across economic regions to be relatively low such that the population distribution 

within each region can be approximated using Gabaix’s model.  

As shown in Figure 4 (and Figure a. 3), China deviates from Zipf’s law with a coefficient 

significantly greater than one since 1980, regardless of the sample size we choose; we then intend 

to understand if this result derives from China violating the homogenous growth assumption of 

Zipf’s law. We first test whether the initial city sizes are correlated with cities’ subsequent growth 

based on the general growth equation specified in Equation 10. We run the following OLS 

regression 

𝑙𝑜𝑔(𝑆𝑖,2017) − 𝑙𝑜𝑔(𝑆𝑖,1991) = 𝛾0 + 𝛾1 ⋅ 𝑙𝑜𝑔(𝑆𝑖,1991) + 𝑢𝑖   (27) 
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where 𝑙𝑜𝑔(𝑆𝑖,2017) − 𝑙𝑜𝑔(𝑆𝑖,1991) = 𝑙𝑜𝑔(𝑆𝑖,2017/𝑆𝑖,1991) = 𝑙𝑜𝑔(1 + 𝑔) is the logarithm of gross 

population growth rate of city i from 1991 to 2017 and 𝑆𝑖,1991 is the initial population size in 1991.2 

Coefficient 𝛾1 is the predicted effect of initial size on subsequent growth. Gibrat’s law implies that 

this coefficient should be indistinguishable from zero. If China does not obey Gibrat’s law, we 

would expect 𝛾1 to be significantly different from zero. In particular, 𝛾1 > 0 implies divergent 

growth as city growth depends positively on initial size, whereas 𝛾1 < 0 implies convergent 

growth. Secondly, we test whether the variance of growth rates is independent of the initial size. 

As suggested by Gabaix in his Footnote 10 (1999, p. 742), we divide cities into groups based on 

their ranks in the initial year to calculate a variance of growth rates for each group. For the optimal 

balance between the number of cities within each group and the number of groups, we use decile 

ranks to split up cities, and each group has about 25 observations. We then implement the following 

OLS regression to test for any difference in variances of growth rates across decile groups. 

𝑉𝑎𝑟(𝑔𝑖) = 𝛾0 + 𝛾1 ⋅ 𝐷𝑒𝑐𝑖𝑙𝑒(𝑆𝑖,1991) + 𝑢𝑖     (28) 

Note that the choice of 1991 as the starting point of our analysis is largely due to limitations 

in data availability, as most Chinese cities started collecting urban characteristics data since that 

year. Yet, we believe this choice also has its advantage despite a limited scope of study: China has 

enjoyed relatively stable economic growths and carried out consistent policies since 1991; our Zipf 

coefficient plots (Figure 4) also show that China has consistently experienced a more even city 

size distribution than Zipf’s law prediction. Thus, a study of China’s urban growth from 1991 

onwards excludes the political turmoil in the 60s and 70s and the radical economic reforms in the 

80s and focuses instead on steady growth.  

 
2 We also run the population growth and initial size regression specified in Equation 27 using census data, where 2000 

is the starting year and 2010 the end year, and obtain similar mean reversion results. 
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After observing significant mean reversion for Chinese cities (Figure 6 and Table 8), we 

analyze the potential reasons as to why large cities have experienced slower population growth. 

There are three main hypotheses: productivity slowdown, rising disamenities, and government’s 

direct population control policies. We start our analysis by testing the two hypotheses that are 

universal to urban studies of any country, as derived in Equations 23 and 24. To explain the size-

dependent growth process, we first examine how the growth experiences of Chinese cities relate 

to initial urban measures of economic productivity and local amenities. We then identify whether 

these initial urban characteristics are correlated with the initial city size.  

To understand how economic productivity and amenities affect urban growth in China, we 

conduct OLS regressions of city growth on initial growth conditions in the manner of Glaeser et 

al. (1995). Our dependent variable is the logarithm of population growth from 1991 to 2017, and 

explanatory variables are initial population and urban characteristics that capture the degree of 

economic productivity, amenities, and disamenities at the city level. We use average wage and per 

capita gross regional product as measures of productivity. As shown in Equation 15, average wage 

indicates the marginal productivity of labor; the per capita gross regional product, on the other 

hand, measures the average labor productivity if we assume labor is a constant share of the total 

urban population. Note that this assumption may be weakened if the labor force participation rate 

and age structure differ notably across cities. We propose per capita local government budget 

expenditure as a proxy for the overall level of urban amenities. Since a significant portion of city-

level government spending goes to infrastructure maintenance, public healthcare and education 

subsidy, and the provision of public open space, all of which are important aspects of urban 

amenities, we expect cities with more government spending to provide better amenities. For an 
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empirical justification, we run the following OLS regression to examine the connection between 

government spending and specific measures of urban amenities 

𝑙𝑜𝑔(𝑌𝑖,𝑡) = 𝜗𝑡 + ∑ 𝜃𝑗,𝑡𝑗 ⋅ 𝑙𝑜𝑔(𝑍𝑖,𝑡
𝑗

) + 𝑢𝑖,𝑡    (29) 

where our dependent variable 𝑌𝑖,𝑡 is the per capita local government budget expenditure and our 

explanatory variables 𝑍𝑖,𝑡
𝑗

 include the number of hospital beds, paved road area, and public green 

space area (all in per capita terms). We can further add geographical dummies (one for each 

economic region) to control for regional differences in government spending. For a persuasive 

argument of using government spending as a proxy for amenities, we would want 𝜃𝑗,𝑡  to be 

significantly positive for all variable 𝑍𝑗  consistently over time 𝑡. We first implement the regression 

for the initial year 𝑡 = 1991 and then check for the robustness of our results using data from 2005, 

which is roughly the midpoint of the period from 1991 to 2017. We recognize that using 

government spending as a proxy for urban amenities has a significant drawback as it fails to 

indicate any natural amenities, such as temperature and humidity. Yet, we believe that the majority 

of migrations in China are not driven by the attraction of natural resources, so we do not 

incorporate data on landscape or climate in our analysis. Nevertheless, a more comprehensive 

amenity index is desirable to account for a wide range of variables discussed by Roback (1982), 

Gyourko and Tracy (1991), and Glaeser et al. (2001). Similarly, we propose population density as 

a proxy for the disamenities or urban issues, such as overcrowding, pollution, traffic, and crime. 

We test the validity of this proxy using the same Equation 29 specified before. Our dependent 

variable 𝑌𝑖,𝑡  is the population density and our explanatory variables 𝑍𝑖,𝑡
𝑗

 include the amount of 

wastewater, waste gas, dust, and solid waste emitted per square meter. Once again, despite being 

highly correlated, population density is limited in reflecting the exact severity of urban issues, but 
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it is the second best we can obtain due to a lack of data on many disamenities measures at the city 

level, such as traffic and crime. All in all, the city growth regression model is set up as follows: 

𝑙𝑜𝑔(𝑆𝑖,2017) − 𝑙𝑜𝑔(𝑆𝑖,1991) = 𝛾0 + 𝛾1 ⋅ 𝑙𝑜𝑔(𝑆𝑖,1991) + ∑ 𝛽𝑗𝑗 ⋅ 𝑙𝑜𝑔(𝑋𝑖,1991
𝑗 ) + ∑ 𝜙𝑟𝑟 ⋅ 1{𝑖 ∈ 𝑟} + 𝑢𝑖      (30) 

where explanatory variables 𝑋𝑖,1991
𝑗

 include measures of economic productivity (average wage or 

per capita GRP), amenities (per capita local government budget expenditure), and disamenities 

(population density) and indicator variables 1{𝑖 ∈ 𝑟} are geographical dummies to control for 

region-specific effects. The coefficients of interest in this long regression are the 𝛽𝑗’s that represent 

the partial effect of each explanatory variable on urban growth.  

Next, we test what urban characteristics 𝑍𝑖,𝑡 correlate with initial population size 𝑆𝑖,𝑡 using 

the following simple linear regression model. 

𝑍𝑖,𝑡 = 𝛽0,𝑡 + 𝛽1,𝑡 ⋅ 𝑙𝑜𝑔(𝑆𝑖,𝑡) + 𝑢𝑖,𝑡    (31) 

The coefficient of interest 𝛽1,𝑡 has the form of the covariance of the log of initial size and the initial 

urban condition divided by the variance of the log of initial size. If 𝛽1 is indistinguishable from 

zero, then the corresponding urban condition 𝑍  is independent of the urban population size. 

Otherwise, a significantly positive 𝛽1 suggests that 𝑍 increases in population size, and vice versa. 

Apart from the explanatory variables in Equation 30 and measures of urban amenities and 

disamenities already discussed, we also test the relationship between urban size and other relevant 

urban characteristics that capture the economic well-being of cities, such as employment rate, 

industrial output, residential savings, and foreign direct investment. Additionally, since plenty of 

studies (Moretti, 2003; Bacolod et al., 2009) emphasize the close connection between human 

capital, total factor productivity, and urban success, we look at the relationship between urban size 

and the share of population with a Bachelor of Arts (BA) degree or higher, which we regard as an 
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indicator of labor skills. We repeatedly implement these regressions as specified in Equation 31 

using data from different years to check for the robustness of these correlations.  

One additional exercise on the amenity and urban size connection is to use house prices to 

form an “amenity index,” as proposed by Glaeser et al. (2001, p. 36). House price can be seen as 

a rough measure of the present value of the rental cost of housing. For each city, we regress the 

logarithm of average house price on the logarithm of average wage, as specified in Equation 32 

below, and regard the residuals of this simple linear regression ui as reflecting the demand for 

local amenities. A larger residual suggests that there is a higher level of amenities in the city to 

compensate for the greater cost of living relative to income under the spatial equilibrium. We then 

regress the house price residual on the logarithm of city size using Equation 33 (in the same vein 

as Equation 31). If the coefficient 𝜌1 is significantly positive, then amenities rise in city size.   

𝑙𝑜𝑔(𝑃𝑖,𝑡) = 𝜑 + 𝛼 ⋅ 𝑙𝑜𝑔(𝑊𝑖,𝑡) + 𝑢𝑖,𝑡     (32) 

𝑢𝑖,𝑡 = 𝜌0,𝑡 + 𝜌1,𝑡 ⋅ 𝑙𝑜𝑔(𝑆𝑖,𝑡) + 𝜀𝑖,𝑡    (33) 

The advantage of this alternative approach over our previous proposal of using the per capita local 

government budget expenditure lies in the fact that the house price residual is a more 

comprehensive measure that reflects both social and natural amenities. Unfortunately, our urban 

growth analysis using this house price residual is restricted due to a lack of Chinese housing data 

at the city level prior to 2005. Since we do not have data on housing prices for the initial year 1991, 

we test the relationship between house price residual and city size in 2017.  

If the two main hypotheses that the productivity slowdown and urban disamenities account 

for large cities’ lower population growth hold, we would expect the following empirical results: 

The coefficient 𝛽𝑗  in Equation 30 would be significantly positive for measures of economic 

productivity (average wage or per capita GRP) and amenities (per capita local government budget 
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expenditure) and significantly negative for disamenities (population density), in order to support 

the popular view that higher productivity and better amenities promote urban growth. Moreover, 

the coefficient 𝛽1,𝑡  in equation 31 and 𝜌1,t  in Equation 33 would be significantly negative for 

measures of economic well-being and amenities and positive for disamenities. We could then 

conclude that as cities become larger, productivity slows down, amenities are diluted, and urban 

issues pile up such that population growth is deterred, and therefore our hypotheses on productivity 

and amenities may help explain the mean reversion of Chinese cities.  

Now that we have tested the first two hypotheses, we turn to the third hypothesis that 

China’s unique population control policies, mainly the one-child policy and the hukou system, are 

responsible for the slower growth of large cities. These intervention strategies target containing 

the population size, so the degree of enforcement directly reflects their effects on urban growth. In 

particular, the one-child policy aims at reducing the birth rate, or the rate of natural increase, and 

the hukou system intends to lower the net migration rate, where the sum of these two rates equals 

the total population growth rate. In order for the hypothesis to hold, we need to prove that these 

two population control policies are not uniformly enforced across the country, and in particular, 

the intensity of enforcement increase in population size. If that is the case, we could argue that 

Chinese government’s direct population control constrains the growth of large cities much more 

than that of small and medium-size cities.  

To study the enforcement difference of the one-child policy on cities of different sizes, we 

adopt a differences-in-differences (DID) estimation approach. We consider the birth rate as a proxy 

of how strict the one-child policy is enforced. Unfortunately, China does not consistently provide 

such data at the city level, so instead, we use the rate of natural increase (RNI), which equals birth 

rate minus death rate. If we believe death rates are relatively constant either across time or among 
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cities, which is a plausible assumption, then RNI can substitute for birth rate in our DID analysis. 

One might also argue that people’s fertility decisions depend on many factors other than the policy, 

like parents’ education backgrounds, so birth rate does not exclusively reflect the enforcement of 

the one-child policy. Yet, we believe most of those potential factors are city fixed effects that 

remain relatively stable through time, so they will not pose a major threat to our identification 

strategy. As discussed in Section 2.2, the one-child policy was officially introduced in 1982 and 

relaxed in 2011 to allow parents who are both the only child in their families to have two children. 

Unfortunately, we do not have city-level RNI data prior to 1991, so we cannot study the effect of 

introducing the one-child policy on impact; instead, we focus on the effect of relaxing the universal 

one-child policy in 2011 by comparing the differences in RNI between large cities and small cities 

before 2011 to after 2011. If the RNI was lower for large cities prior to 2011 and the relaxation of 

one-child policy indeed raised the RNI for large cities relative to small cities afterward, then we 

may infer that large cities experienced stricter enforcement of the universal one-child policy from 

1991 to 2011.  

To test whether such conjecture is the case, we implement the following DID regressions 

𝑅𝑁𝐼𝑖,𝑡 = 𝛽0  + 𝛽1 ⋅ 𝑃𝑜𝑠𝑡2011 + 𝛽2 ⋅ 𝐿𝑎𝑟𝑔𝑒 + 𝛽3 ⋅ (𝑃𝑜𝑠𝑡2011 ⋅ 𝐿𝑎𝑟𝑔𝑒) + 𝛾𝑖 + 𝜓𝑡 + 𝑢𝑖,𝑡       (34) 

𝑅𝑁𝐼𝑖,𝑡 = 𝛽0+ 𝛽1 ⋅ 𝑃𝑜𝑠𝑡2011 + 𝛽2 ⋅ 𝐿𝑎𝑟𝑔𝑒 + 𝛽3 ⋅ (𝑃𝑜𝑠𝑡2011 ⋅ 𝐿𝑎𝑟𝑔𝑒) + 𝛽4 ⋅  𝑋𝑖,𝑡 + 𝛾𝑖 + 𝜓𝑡 + 𝑢𝑖,𝑡  (35) 

where 𝑅𝑁𝐼𝑖,𝑡  is the annual rate of natural increase (in percentage points) for city i in year t, 

𝑃𝑜𝑠𝑡2011  is a dummy variable indicating whether year t is before or after the nationwide 

relaxation of the one-child policy in 2011, 𝐿𝑎𝑟𝑔𝑒 is a dummy variable that takes on value one if 

the city ranked from 1 to 50 and zero if ranked from 151 to 200 by population size in the year 1991, 

𝑋𝑖,𝑡 is a continuous variable measuring the quality of healthcare, 𝛾𝑖  is the city fixed effect, and 𝜓𝑡 

is the time fixed effect. We add the number of hospital beds per person as a control variable for 
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healthcare quality to check for the robustness of our results. We generally expect cities with better 

healthcare to experience higher natural population growth. The city fixed effect controls for bias 

that may arise from city-specific characteristics that do not vary across time, such as family values 

and parents’ education levels; time fixed effect controls for bias that vary from year to year, such 

as nationwide economic shocks that may affect RNI uniformly across all cities. Because 

observations may be more highly correlated within each city than across cities, we cluster standard 

errors by city. Our control group is a group of small cities and treatment group the large cities; 3 

our treatment is the policy relaxation that happened in 2011. This method assumes homogeneous 

policy effects among large cities and among small cities, which may not be the case if we believe 

the policy effect to be a continuous function of initial city size. Also, it requires a parallel trend 

assumption in the absence of treatment. We test that the pre-trends are indeed parallel, as shown 

in Figure 11.4 Also, given that there are no other birth planning policies or natural disaster shocks 

that would directly affect RNI asymmetrically, and our treatment (large cities) and control (small 

cities) groups have similar geographical distributions, we argue the parallel trends should apply. 

𝛽3 in Equations 34-35 is the coefficient of interest that estimates the difference of policy relaxation 

effects on the rates of natural increase for large cities versus small cities. 𝛽1, on the other hand, 

estimates the difference of RNI between large cities and small cities under the universal one-child 

policy. A significantly positive 𝛽3 and negative 𝛽1 would support our hypothesis that large cities 

grew slower because they were more constrained by the one-child policy during 1991-2011.  

 
3 Note that our selection of the two groups, large cities as those ranked from 1 to 50 and small cities as those ranked 

from 151 to 200, takes into account the need for the two groups to be relatively distinct in city sizes and to have enough 

observations at the same time. We check the robustness of our results using other grouping choices and obtain similar 

findings. 

4  We run the following OLS regression: RNIi,t = β0 ⋅ 𝐿arge + ∑ β1,t
2010
t=1991 ⋅ 1{year = t} + ∑ 𝛽2,𝑡

2010
𝑡=1991 ⋅ 𝐿arge ⋅

1{year = t} + 𝛾𝑖 + ui,t, where 1{year = t} is a dummy variable for each year before the policy relaxation in 2011 

and 𝛾𝑖 is the city fixed effect. We observe that the coefficient β2,𝑡 is indistinguishable from zero for all years 1991-

2010.  
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Finally, to examine the enforcement difference of the hukou system across cities, we use 

the ratio of unofficial migrants to the hukou population as a proxy of the degree to which the hukou 

system is imposed and affects migration. Recall from Section 2.2 that the hukou system is an 

umbrella term referring to not only the permits government issues to register the official residential 

status but also the supportive policies that discriminate against the unofficial migrants in cities. As 

such, we expect that the stricter enforcement of the hukou system, the fewer unofficial migrants a 

city has relative to its total population. We calculate the number unofficial migrants by subtracting 

the hukou population reported in Chinese Urban Statistical Yearbooks (NSB, 2000 & 2010) from 

the residence-based population reported in Tabulation on the Population Census of China (NSB, 

2000 & 2010). To see whether the population share of unofficial migrants correlates with city size, 

we run a similar OLS regression as specified in Equation 31: 

𝑅𝑖,𝑡 = 𝛽0,𝑡 + 𝛽1,𝑡 ⋅ 𝑙𝑜𝑔(𝑆𝑖,𝑡) + 𝑢𝑖,𝑡     (36) 

where our dependent variable Ri,t is the ratio of unofficial migrants to the hukou population and 

our independent variable is the logarithm of the hukou population. If 𝛽1,𝑡 is significantly negative, 

we may conclude that the hukou system contributes to the mean reversion of city sizes. Since 

China only reports the residence-based population in census years 2000 and 2010, we repeat this 

regression with data from these two years to check for the robustness of our results.   



 

 

38 

6 Results 

6.1 Repeated Cross-Sectional OLS Regression for Zipf Coefficients 

Figure 3 below shows the results of Zipf’s law regression specified in Equation 26 for all 

cities at prefecture level and above in the year 1949, 1991, 2005, and 2017. We choose these four 

years to provide a visualization of the relationship between the log of population size and the log 

of population rank throughout our period of analysis. The rank-size scatter plots exhibit some 

concavity, which suggests that the regression function may be better approximated using quadratic 

terms of the log size to capture the non-linear relationship. This pattern becomes more obvious 

over time, with the 2017 plot demonstrating the most concavity and the lowest R-squared for the 

best linear fit line. Thus, a Pareto distribution may not describe the upper-tail distribution of city 

sizes very well for the entire sample of prefecture cities and above, in contrast to the United States, 

for example. The fact that the log of the population rank is concave down in the log of population 

size suggests large cities are smaller in size than what a Pareto distribution would predict.  

Figure a. 2 in the Appendix truncates the city sample to the largest 100 cities ranked by 

population size in each year. As we reduce our sample size, we observe that a straight line becomes 

a better linear fit for the scatter plot of log size versus log rank, and the R-squared rises 

substantially (for instance, from 0.85 to 0.99 in 2017).  
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Figure 3. Zipf’s Law: Urban Population and Urban Population Ranks, 1949, 1991, 2005 & 2017. 

 

 
 

 
Note: Regression specifications and standard errors are based on Gabaix and Ibragimov (2011). Samples restrict to 

cities at prefecture level and above. Population data are from NSB (various years) measured in 10,000s.   

1949 1991 
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Figure 4 displays the value of the Zipf coefficient in each year, which we obtain by taking 

the absolute value of the coefficient 𝛽1,𝑡 in the repeated OLS regression specified in Equation 26. 

(Note that it is also the absolute value of the slope of the best linear fit line in the rank-size plot, 

as shown in Figure 3). A detailed report of the numerical values of Zipf coefficient, along with the 

standard error and R-squared can be found in Table a. 1 in the Appendix. The Zipf coefficient is 

consistently greater than 1 with statistical significance from 1984 to 2015. Thus, even during years 

when convergence to Pareto’s law is plausible (for example, around 2005), the logarithm of 

population rank and the logarithm of population size do not demonstrate a perfect Zipf’s law 

relationship. 

Overall, we conclude that China has deviated from Zipf’s law in the past three decades. In 

particular, China’s Zipf coefficient has been consistently higher than one, which indicates a more 

equal distribution of city size than Zipf’s law would grant. This agrees with the intuition we obtain 

from the summary statistics for the largest ten cities (Table 4). For instance, in the census year 

2010, the largest city in China, Shanghai, has approximately 1.2 times the size of the second-

largest city, Beijing, which is much lower than the scale factor of two predicted by Zipf’s law. 

Likewise, we observe that the fourth-, fifth-, and sixth-largest cities have roughly the same size of 

ten million people, suggesting that the population is distributed fairly evenly across the top large 

cities in China. Simply put, large cities are not “sufficiently large” for Zipf’s law to hold. This 

result accords with Chauvin et al.’s (2017) finding that China has far fewer ultra-large cities than 

Zipf’s law would suggest.  

Such departure from Zipf’s law is robust even at a regional level. If we restrict the sample 

to cities within each of the four economic regions, the Zipf coefficient for each region has also 

been consistently greater than 1 with the mere exception of the Western economic zone (See Figure 
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a. 3 in Appendix). One possible reason for the Western economic zone being an outlier is its lack 

of population data, which gives rise to huge standard errors and wide confidence intervals. As for 

the rest of the three regions, the Central, Northeastern, and Eastern economic zones have 

demonstrated significant deviations from Zipf’s law at local levels since 1980. Therefore, cities 

are more evenly distributed across the country regardless of their geographical locations.   

There are several other patterns we can draw from the graphs. In the 1950s and 1960s, the 

Zipf coefficient for all cities at prefecture level or above has been slightly lower than one; yet, 

because of the large standard errors, there is not sufficient evidence to conclude convergence to 

Zipf’s law prior to 1984. Instead, one might propose a Pareto distribution that is less even than the 

special case with Zipf’s law. The big difference in Zipf coefficients before and after 1980 might 

be attributable to the rapid urbanization that occurred with the economic reforms starting in the 

1980s, or simply to the lack of urban population data from 1949 to 1984. Unfortunately, we do not 

have sufficient data to conclude on the cause of the “big jump” of the Zipf coefficient around 1980. 

Another observation in the time trend of the Zipf coefficient is the turning point that occurred in 

2001 in Figure 4. Zipf coefficient increases consistently over time until 2000 but reverses its course 

in 2001, implying that the distribution of prefectures has been gradually converging to Zipf’s law 

since then. The intriguing question of whether the coefficient will continue to converge to one 

remains uncertain, but our Gibrat’s law results and one-child policy discussion in the following 

subsections attempt to shed light on this matter. Finally, if we compare the Zipf coefficients across 

different sample sizes, we obtain larger Zipf coefficients for higher truncate points. This 

observation accords with previous literature (Peng, 2010). 

Figure 5 below shows the results from the Zipf’s law regression specified in Equation 26 

using residence-based population data from the census in 2000 and 2010. Similar to before, the 
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upper-tail distribution of city size fails to converge to both Pareto’s law and Zipf’s law since we 

observe suspect linear fits with the absolute values of the slopes greater than one (1.10 for 2000 

and 1.02 for 2010). Moreover, the value of Zipf coefficient drops over time from 2000 to 2010, 

mirroring the pattern of the hukou-based Zipf coefficient. Nevertheless, the census Zipf 

coefficients are lower in both years than the ones calculated using hukou data, as shown in Table 

a. 1 (1.358 for 2000 and 1.259 for 2010). Therefore, our previous findings on China’s deviation 

from Zipf’s law hold regardless of the population measure we choose, even though the residence-

based population distributes less equally than the hukou-based population.  
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Figure 4. Zipf Coefficients for All Cities at Prefecture Level and Above, 1949-2017. 

 
Note: Regression specifications and standard errors are based on Gabaix and Ibragimov (2011). Samples restrict to 

cities at prefecture level and above in each year. Population data are from NSB (various years) measured in 10,000s. 

The horizontal line at 1 indicates convergence to Zipf’s law. 

 

 

Figure 5. Zipf’s Law: Urban Population and Urban Population Ranks, 2000 & 2010. 

 
Note: Regression specifications and standard errors are based on Gabaix and Ibragimov (2011). Samples restrict to 

cities at prefecture level and above. Population data are from NSB (2000 & 2010) measured in 10,000s.  

2000 2010 
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6.2 Correlation between Urban Population Growth and Initial Urban Size 

The main results of testing homogeneous growth paths (or Gibrat’s law) are presented in 

Figure 6 and Figure 7. Figure 6 shows the OLS regression of the logarithm of gross growth rates 

on the logarithm of initial population size, as specified in Equation 27, over the entire period from 

1991 to 2017. The scatter plot and the negative slope of the regression line suggest a strong mean 

reversion of city populations in the past three decades. On average, large cities grow slower than 

small and medium-size cities. From the estimated value of the coefficient β1 , a one percent 

increase in initial city size in 1991 predicts a 0.3 percent decrease subsequent population growth 

over the subsequent 26 years, which is a relatively substantial drop in the context of urban growth. 

This result implies that urban growth is negatively correlated with initial city size. In the context 

of Equation 7 in the Zipf’s law model, mean growth rate μ(S) decreases in city size S, which leads, 

ceteris paribus, the absolute value of the local Zipf coefficient, ζ(S) , to increase in S. This 

implication of mean reversion coincides with the concave shape of the rank-size scatter plot. As 

shown in Figure 3, the first derivative at data points closer to the vertical axis (which represent 

smaller cities) is lesser in magnitude compared to that at data points closer to the horizontal axis 

(which represent larger cities). Therefore, China’s mean reversion over the past three decades may 

well account for its deviation from Zipf’s law. 
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Figure 6. Gibrat’s law: Urban Population Growth and Initial Urban Population, 1991-2017. 

 
Note: Sample restricts to cities at prefecture level and above. Robust standard errors are in parentheses. Log of 

subsequent growth rate is calculated by subtracting the logarithm of population size in 1991 from the logarithm of 

population size in 2017. Population data are from NSB (2017) measured in 10,000s.  

 

 

 

Table 8. Gibrat’s law: Urban Population Growth and Initial Urban Population. 

 (1) 

1991-2017 

(2) 

1991-2000 

(3) 

2001-2010 

(4) 

2011-2017 

Coef. -0.3009 -0.2071 -0.0963 -0.0669 

Std. Error (0.0673)*** (0.0456)*** (0.0385)* (0.0287)* 

Adj. R-squared 0.1254 0.1166 0.0411 0.0203 

N 252 240 242 246 

* p<0.05; ** p<0.01; *** p<0.001 

Note: All figures reported correspond to city-level regressions of the logarithm change in urban population on the 

logarithm of initial urban population in the specified periods. Samples restrict to cities at prefecture level and above. 

Robust standard errors are in parentheses. Population data are from NSB (1991-2017). 
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Further, we break down the growth over the entire time period into the three individual 

decades and summarize the estimated values of the coefficient of interest, β1, in Table 8 Columns 

2-4. The strong mean reversion in the 1990s accounts for the majority of mean reversion over the 

entire period, with the estimated coefficient equal to -0.2071 and R-squared around 0.12. However, 

this pattern of mean reversion wears off over the past two decades. In the 2000s and the 2010s, the 

magnitude of coefficients drops to below 0.1 with both 99 percent confidence intervals containing 

zero. R-squared also decreases over time from 0.12 to 0.02, reinforcing that mean reversion 

becomes less obvious over time. We thus reject Gibrat’s law for Chinese cities in the 1990s; yet, 

we cannot reject the hypothesis that Gibrat’s law hold in the 2000s and the 2010s. Such departure 

from Gibrat’s law in the 1990s may explain the simultaneous deviation from Zipf’s law and the 

rising Zipf coefficient during that period. Moreover, in the most recent two decades, the failure to 

reject Gibrat’s law may help explain the slow conversion of Zipf coefficient to 1 as shown in 

Figure 4. If Chinese cities continue to shift from mean reversion to an independent growth path, 

we may expect China to conform to Zipf’s law in the future.  

In addition to the average growth over the past three decades, results regarding the second 

aspect of Gibrat’s law - whether the variance of growth is size-independent – are shown in Figure 

7. Overall, the larger half of all provincial and prefecture cities experience greater variances of 

urban growth than the smaller half. However, variation in growth rates does not exhibit a linear 

association with the initial population size. Cities in the third and fourth decile groups, which 

correspond to the medium-large cities, have the highest variances of growth rates, whereas cities 

in the sixth, seventh, and eighth decile groups, which correspond to the small-medium cities, have 

lower variances than those in the ninth decile group. Among the largest 100 cities, the larger the 

initial population size, the lesser the variance of growth rates. This result is robust even if we divide 
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cities into rank groups using other quantiles, like ventiles. We present the results from decile ranks 

such that each group has a sufficient number of observations to calculate a sensible variance. 

Though we may not conclude on a straightforward linear relation, we may still reject the hypothesis 

that the variance of growth rates is independent of the initial population size, given that the larger 

half of all prefecture cities have significantly higher variances than the smaller half. Thus, now 

that we have shown that overall  
∂σ2(S)

∂S
> 0, the third term in Equation 7, +

S

σ2(S)
⋅

∂σ2(S)

∂S
, is 

nontrivial and contributes positively to a higher local Zipf coefficient in absolute value, which 

accords with the more evenly distributed city sizes. Yet, the result of variance test in China 

disagrees with the common observation that variance of growth rates depends negatively on city 

size using U.S. data (González-Val, 2010; González-Val et al., 2014). One possible explanation to 

reconcile the difference is that the small cities in China are underdeveloped and thus medium-size 

cities in China behave more like the small cities in the United States with significantly larger 

variances of growth. 
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Figure 7. Gibrat’s Law: Variance of Urban Population Growth and Initial Population Size, 1991-

2017. 

 
Note: Sample restricts to cities at prefecture level and above. Robust standard errors are in parentheses. Cities are 

divided into ten decile groups based on their size ranks in 1991 in descending order. Variance within each decile group 

is calculated using annualized rates of population growth from 1991 to 2017. Population data are from NSB (1991-

2017).   
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6.3 City Growth Regressions 

Our main results on urban population growth and initial urban conditions are shown in 

Table 9 below. Columns 1-3 test the framework as laid out in Equation 30 using average wage as 

a measure of city-level economic productivity, whereas Columns 4-6 replace average wage with 

per capita gross regional product for an alternative measure of the economic well-being and labor 

productivity of cities. Columns 1 and 4 show the positive partial effect of economic productivity 

on subsequent urban growth holding geographical location and initial population fixed; Columns 

2 and 5 add local government budget expenditure as a proxy for urban amenity provisions and 

show that better amenity provisions contribute to future urban growth; Columns 3 and 6 further 

include initial population density as a proxy for disamenities and show that higher disamenity 

levels do not appear to be negatively associated with population growth. In addition, the coefficient 

of the initial population size in 1991 is significantly negative in all six columns even after we 

control for omitted variables, which checks the robustness of the previous mean reversion results 

(Table 8). Finally, the coefficients of geographical dummies reveal that (the omitted) Eastern cities 

grow the fastest, followed by Western and Central cities, and Northeastern cities grow the slowest 

during the sample period. 

Results of whether economic productivity promote population growth are mixed. In 

Columns 1-3, the coefficient of average wage turns from positive to negative after we add 

government budget expenditure and population density as explanatory variables, though lacking 

statistical significance. At first glance, these coefficients appear to suggest that higher productivity 

discourages subsequent urban growth if we consider average wage a measure of economic 

productivity. However, this interpretation contradicts the positive coefficients in front of per capita 

gross regional product in Columns 4-6. In particular, a ten percent increase in per capita gross 
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regional product predicts a 1.5 percent rise in subsequent population growth, holding initial 

population size, population density, local government budget expenditure, and geographical 

regions constant. If we interpret per capita gross regional product as the average productivity of 

labor, then higher productivity seems to promote future urban growth moderately. One possible 

explanation to reconcile these two contradicting results is that China’s average wage in 1991 does 

not reflect the marginal productivity as derived in the basic spatial equilibrium model. Although 

the central economic planning waned in the 1980s, the dual-track pricing system still affected a 

large portion of wages, especially those paid by the state-owned enterprises, and employees enjoy 

a significant amount of social transfers, including subsidized public housing, in lieu of wage 

income as employee benefits (Gu, 2002). Thus, per capita gross regional product may serve as a 

better measure of economic productivity. In general, we expect higher productivity to be positively 

associated with urban growth, as supported by the regression results of per capita gross regional 

product. By all means, there may be omitted variables in the long regression that preclude us from 

a conclusion on whether higher economic productivity causes greater population growth.  
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As for urban amenities and disamenities, both contribute positively to urban growth. Table 

10 and Table 11 below test the validity of using local government budget expenditure and 

population density as proxies for urban amenities and disamenities, respectively. Table 10 

examines the relationship between local government budget expenditure and some urban amenity 

measures. Columns 1 and 2 present the regression results using urban data in 1991, and Columns 

3 and 4 use data in 2005. We observe strong positive correlations between government budget 

expenditure and the three amenity measures, number of hospital beds, area of paved road, and area 

of public green space. In particular, a one percent increase in the total number of hospital beds is 

associated with a nearly one percent increase in the total government expenditure; a one percent 

increase in the area of paved road is associated with a 0.06-0.09% increase in the total government 

expenditure; a one percent increase in the area of public green space is associated with a 0.03% 

increase in the total government expenditure. This result holds across different periods. Variations 

in the three urban amenity provisions account for a moderately large degree of variations in local 

government expenditure, as justified by values of R-squared above 0.5. There are no striking 

results on the relationship between urban amenity provisions and local government budget 

expenditure as we expect a large portion of government spending is devoted to maintaining the 

current level of amenity provisions. These results suggest that the proposal of using government 

budget expenditure as a proxy for the level of urban amenity provisions is quite plausible. In 

addition, it is noteworthy that local government expenditure exhibits significant geographical 

differences. From the coefficients of the geographical controls, we observe that cities in the Central 

economic region and the Western economic region consistently enjoy a lesser amount of 
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government spending than the Eastern economic region, which implies lower levels of urban 

amenities.  

Similarly, Table 11 examines the relationship between population density and some urban 

disamenity measures. We observe positive partial correlations between the population density and 

the majority of pollution measures, such as the amount of wastewater, waste gas, and dust emitted 

per square meter. Among them, the emissions of wastewater are significantly correlated with the 

population density, where a one percent increase in the total amount emitted is associated with a 

0.2–0.4% increase in population size, holding all else equal.5 However, the amount of solid waste 

emitted in 1991 is an exception that is negatively correlated with population density. One possible 

excuse may be that different waste emissions are highly correlated among themselves. Variations 

in the pollution measures explain a decent amount of variations in population density, as justified 

by values of R-squared around 0.4–0.6. Overall, the positive partial correlations between urban 

pollution and population density are intuitive as we expect the heavily populated cities to discharge 

more domestic and industrial waste due to higher production and consumption levels. Thus, our 

findings suggest that the proposal of using population density as a proxy for the severity of urban 

problems may be sensible.  

Back to the long regressions in Table 9, the coefficients in front of the per capita 

government budget expenditure and the population density are positive and statistically significant. 

In particular, from Column 6, a ten percent increase in initial per capita government budget 

expenditure has a partial effect of a 1.3 percent increase in subsequent urban population growth, 

and a ten percent increase in initial population density predicts a 2.3 percent increase in urban 

 
5 Note that since the dependent and explanatory variables are both in logarithm of variable and in per square meter 

terms, the coefficients shown in Table 11 are equal to the coefficients representing partial correlations between the 

corresponding variables in total terms.  
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growth. In the case of government expenditure, it seems likely to interpret the positive coefficient 

as a positive effect of urban amenities on population growth. Cities starting with higher levels of 

amenities enjoy greater population growth in the following years since they attract more migrants 

as well as newborns. However, it is counterintuitive that disamenities and urban issues also 

promote urban growth. There are several possible explanations due to using a proxy for the elusive 

concept of disamenities. To name but a few, greater emissions and pollution may as well indicate 

the vibrancy of urban life and urban economy in addition to reflecting the disamenity levels in the 

city, so cities with higher population density and greater pollution may grow faster if the benefits 

of these waste-producing economic activities outweigh the costs of pollution. Alternatively, one 

could argue that population density itself embodies the agglomeration effect, where urban 

agglomerations give rise to clusters of businesses, accumulation of knowledge and innovations, 

which, in turn, facilitate urban growth. Thus, it remains unclear whether urban disamenities 

discourage future population growth. Nevertheless, the results for local government budget 

expenditure in Table 9 together with Table 10 suggest that a higher level of amenities is positively 

associated with urban population growth, which accords with comparable studies on the U.S. cities 

(Glaeser et al., 2001; Glaeser and Gottlieb, 2006). 
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Our next main findings on urban characteristics and population sizes are presented in Table 

12 and Table 13 below, which show the results of single variable regressions as specified in 

Equation 31 for 1991 and 2017, respectively. Large cities have better economic performances, as 

evaluated by per capita gross regional product, per capita industrial output value, and employment 

rate; on the other hand, large cities suffer more from urban issues like overcrowding, as captured 

by population density, and pollution, as measured by wastewater, waste gas, dust, and solid waste 

in per square meter terms. As for amenities, although per capita local government expenditure and 

public green space increase in population size, per capita number of hospital beds and paved road 

areas decrease as city size increases. It seems striking that large cities have more spending on 

infrastructure, healthcare, and education, but the outcome of these amenity provisions is worse 

compared to smaller cities. However, this may be the case if we believe amenity provisions have 

decreasing returns to scale: Even though a large city has fewer hospital beds and paved roads per 

person, its huge population indicates that the total amount is much higher than that of small and 

medium-size cities, so more investment is needed to maintain the current level of public services 

and facilities. Another notable finding is that the amount of foreign capital utilized increases in 

city size, and such relationship grows stronger over time as illustrated by a higher coefficient and 

a lower p-value in 2017. This result implies that large cities are more affected by the open-door 

policies, which benefit their economic well-being. Comparing the two tables for 1991 and 2017, 

we observe that the signs of the coefficients are consistent (except for residential savings), and 

thus these correlations are robust throughout the time frame. It is noteworthy that the probability 

values for all but hospital beds and paved roads decrease from 1991 to 2017 whereas the magnitude 
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of coefficients increases, suggesting a greater statistical and economic significance of the 

correlations between urban characteristics and population sizes over time.   
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Table 12. Urban Characteristics and Population Size, 1991. 

Dependent Var  Coef Stderr  Pval  N 

Population density     0.357     0.115     0.002 252 

Employment rate     0.242     0.692     0.727 250 

Gross regional product      0.022     0.053     0.680 249 

Gross industrial output value     0.042     0.067     0.534 250 

Foreign capital utilized     0.126     0.195     0.521 184 

Local government budget expenditure     0.053     0.074     0.476 249 

Residential savings    -0.048     0.058     0.410 250 

Average wage     0.034     0.017     0.049 249 

Hospital beds     -0.094     0.041     0.024 250 

Paved roads    -0.395     0.169     0.020 250 

Wastewater     0.254     0.151     0.094 246 

Waste gas     0.435     0.144     0.003 244 

Dust     0.546     0.159     0.001 241 

Solid waste     0.397     0.140     0.005 244 
Note: All figures reported correspond to city-level single variable regressions of the specified dependent variables on 

a constant and the logarithm of urban population size in 1991. Samples restrict to cities at prefecture level or above. 

Robust standard errors are recorded. All explanatory variables except employment rate are in logarithm form. Gross 

regional product, gross industrial output value, foreign capital utilized, local government budget expenditure, 

residential savings, hospital beds, and paved roads are in per capita terms; wastewater, waste gas, dust, and solid waste 

are in per square meter terms. Units are as presented in Table 5. Data are from NSB (1991). 

 

Table 13. Urban characteristics and Population Size, 2017. 

Dependent Var Coef Stderr Pval  N 

Population density     0.556     0.087     0.000 253 

Employment rate     6.669     2.848     0.020 249 

Gross regional product      0.244     0.049     0.000 252 

Gross industrial output value     0.304     0.089     0.001 251 

Foreign capital utilized     0.681     0.139     0.000 217 

Local government budget expenditure     0.053     0.053     0.315 253 

Residential savings     0.144     0.044     0.001 247 

Average wage     0.102     0.017     0.000 245 

Hospital beds     -0.016     0.044     0.717 247 

Paved roads    -0.494     0.571     0.388 237 

Wastewater     1.048     0.166     0.000 214 

Waste gas     0.546     0.163     0.001 216 

Dust     0.509     0.144     0.000 215 

Public green space     0.032     0.402     0.937 250 

Average house price     0.419     0.046     0.000 253 
Note: All figures reported correspond to city-level single variable regressions of the specified dependent variables on 

a constant and the logarithm of urban population size in 2017. Samples restrict to cities at prefecture level or above. 

Robust standard errors are recorded. All explanatory variables except employment rate are in logarithm form. Gross 

regional product, gross industrial output value, foreign capital utilized, local government budget expenditure, 

residential savings, hospital beds, paved roads, and public green space are in per capita terms; wastewater, waste gas, 

dust, and house price are in per square meter terms. Units are as presented in Table 6. Data are from NSB (2017) and 

CREA (2017).  
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In addition to the correlations presented above, Figure 8 visualizes the connection between 

house price residuals, a potential “amenity index,” and city sizes. Results of the house price wage 

regression specified in Equation 32 are shown in Figure a. 6 in the Appendix. We observe a 

positive correlation between house prices and wages in 2017. On average, a one percent increase 

in wages is associated with a 2% increase in house prices. In line with the spatial equilibrium 

model prediction, higher nominal income is offset by higher housing costs. On a side note, we 

observe that large cities tend to have both higher wages and higher house prices, as supported by 

results in Figure a. 4 and Figure a. 5 in the Appendix. We then estimate amenities using the 

residuals from regressing average house prices on average wages. Figure 8 shows that the 

estimated amenities are positively associated with urban population size in 2017. This result agrees 

with the relationship between amenities and urban population size that we obtain while using local 

government budget expenditure as a proxy for amenities (see the positive coefficient of regressing 

government budget expenditure on population size in Table 13). Thus, we conclude that amenities 

are higher in large cities than in small cities in 2017.  

Figure 9 visualizes the coefficients of labor productivity recorded in Table 12 and Table 

13. In particular, there does not seem to be an obvious linear relationship between per capita gross 

regional product and urban population size in 1991 but exists a significantly positive correlation 

in 2017. Nonetheless, it seems rather suspect that labor productivity declines in population size. 

Further evidence on labor skills and urban population size is shown in Figure 10, which supports 

the common view that large cities enjoy higher productivity as they attract more skilled and 

productive workers. As we can see from the scatter plot and the best linear fit line, labor skills, 

proxied by the share of university graduates in urban population, increase in population size. 

Although the relationship may not be perfectly linear, it is clear that more large cities enjoy an 
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abundance of skilled labor than small cities given the shape of the scatter plots. This result is robust 

over time as we obtain similar trends in both census years 2000 and 2010.  

Overall, empirical evidence suggests that large cities experience consistently higher 

economic productivity (Figure 9 and Figure 10) and higher amenities at least in 2017 (Table 13 

and Figure 8). Contrary to the predictions of the spatial equilibrium model where the high 

productivity of large cities must be offset by worse amenities, residents of large cities in China 

seem to reap both benefits. This striking result suggests that spatial equilibrium may be violated.  

In a nutshell, results from city growth regressions do not explain why Chinese urban 

population growth experiences significant mean reversion. Although large cities have greater 

disamenities like pollution, they do not appear to have hindered further population growth. 

Moreover, while higher amenities help promote urban population growth, large cities enjoy higher 

levels of amenities proxied by either government spending or house price residuals. As for 

economic productivity, large cities exhibit significantly better economic performance in 2017, and 

higher productivity appears to have a slightly positive effect on population growth. Based on these 

observations, we would expect large cities to grow at least as fast as, if not faster than, small and 

medium-size cities, which contradicts the mean reversion results in Section 6.2. This leads us to 

our third hypothesis that the population growth of large cities is bindingly constrained by the public 

policy rule, such as the hukou system and the one-child policy.  
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Figure 8. House Price Residual and Urban Population Size, 2017. 

Note: Sample restricts to cities at prefecture level and above. Robust standard errors are in parentheses. Population 

data are from NSB (2017) measured in 10,000s. House price residuals are estimated from a city-level regression, in 

which the logarithm of average house price is regressed on the logarithm of average wage. Data on average house 

prices and wages are from NSB (2017).  
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6.4 Public Sector Rule Regressions 

Figure 11 and Table 14 focus on the effects of the one-child policy relaxation on urban 

population growth. Figure 11 below shows that changes in annual rates of natural increase are 

quite different between large cities (ranked 1 through 50 in 1991) and small cities (ranked 201- 

250 in 1991). Before 2011, we observe plausible parallel pre-trends of RNI for large cities and 

small cities (see also Footnote 4), albeit with slight convergence. Small cities experience 

significantly higher rates of natural increase. One exception is the year 1998, which, we suspect, 

is caused by issues in data and does not reject the parallel trend assumption or invalidate the 

specification of our differences-in-differences estimation. After China relaxed the universal one-

child policy by allowing a second child for parents who are both the only child of their families, 

the average RNI for large cities rebounds in 2011 and becomes higher than that of small cities, 

whereas small cities undergo a drop in RNI for two consecutive years. Post impact, the two trend 

lines return to being somewhat parallel after 2014.  

Table 14 presents the results of the differences-in-differences estimation as specified in 

Equations 34-35. Both Columns include city fixed effects and year fixed effects; Column 2 adds 

the number of hospital beds per person as a healthcare control to obtain a more accurate point 

estimate and check the robustness of the results. In accordance with the time trends shown in 

Figure 11, large cities experience lower rates of natural increase due to the strict enforcement of 

the one-child policy before 2011, and the universal relaxation of the policy significantly raises the 

rates of natural increase for large cities relative to small cities. In particular, the rates of natural 

increase of large cities, on average, are -0.5 percentage points lower than those of small cities 

before 2011. The point estimate of the differences-in-differences is that relaxing the one-child 
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policy raises the rate of natural increase by 0.4 percentage points for large cities relative to small 

cities, which is a considerable effect given that the average annual rate of natural increase for large 

cities is only about 0.5 percent. It is also worth noting that the coefficient before the healthcare 

control in Column 2 is positive with 99 percent statistical significance, suggesting that better 

healthcare facilities have a positive partial effect on the rate of natural increase. 

These results imply that the one-child policy was not uniformly enforced and, accordingly, 

relaxed across China. It was more strictly enforced in cities with larger populations before 2011, 

as they experienced lower rates of natural increase and thus lower birth rates if we assume death 

rates to be relatively constant. It follows that, unsurprisingly, the relaxation of the one-child policy 

affected large cities more positively than small cities in 2011 as the rates of natural increase for 

large cities significantly increased relative to small cities. Since urban population growth consists 

of natural increase and migration, we can infer that the enforcement of the one-child policy during 

the 1990s and the 2000s restricted population expansion and resulted in somewhat slower urban 

growth for large cities. Therefore, the different degrees to which the one-child policy was enforced 

among cities provide one possible explanation for the mean reversion of city size obtained in 

Section 6.2. As China gradually rescinds its one-child policy in the 2010s, we observe weaker 

mean reversion than the previous two decades, as shown in Table 8 Column 4. Taking a step further, 

it seems possible for large cities to catch up with small and medium-size cities on the population 

growth rates in the future, which may be favorable for potential convergence to Zipf’s law.  
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Figure 11. Impact of the One-Child Policy Relaxation on Annual Rate of Natural Increase. 

 
Note: Large cities refer to cities ranked from 1 to 50 and small cities refer to cities ranked from 151 to 200 by 

population size in the year 1991. Annual Rate of Natural Increase (RNI) for each city are from NSB (1991-2017). We 

take the simple average of annual RNI over all cites in the group (large or small) in any given year. 2010 represents 

the last year during which China maintained the universal one-child policy before introducing a nationwide relaxation 

in 2011.  

  



 

 

68 

Table 14. Impact of the One-Child Policy Relaxation on Annual Rate of Natural Increase. 

 (1) 

Rate of natural increase 

(2) 

Rate of natural increase 

Post2011 -0.5826 -0.6619 

 (0.0767)*** (0.0790)*** 

Large -0.4990 -0.4888 

 (0.0205)*** (0.0212)*** 

Post2011#Large 0.3811 0.3993 

 (0.0661)*** (0.0651)*** 

Healthcare control  0.1486 

  (0.0488)** 

Constant 0.8412 0.2219 

 (0.0210)*** (0.1990) 

Adjusted R-squared  0.4939 0.4974 

N            2,573             2,457 

* p<0.05; ** p<0.01; *** p<0.001 

Note: Area-level regressions include city dummies and year dummies to control for city fixed effects and year fixed 

effects. Standard errors, clustered by cities, are in parentheses. Large is a dummy variable that takes on value one if 

the city ranked from 1 to 50 and zero if ranked from 151 to 200 by population size in the year 1991. We exclude cities 

that do not fall into either category in the regressions. Post2011 is a dummy variable that takes value one for years 

from 2011 to 2017 and zero for years from 1991 to 2010. Post2011#Large is the interaction term whose coefficient 

estimates the differences-in-differences. Annual rate of natural increase (RNI) for each city is measured in percentage 

points. Healthcare control is a proxy for healthcare provision in each city and is measured in the number of hospital 

beds per 10,000 persons. All data are compiled from NSB (1991-2017).  
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The main results on the enforcement of the hukou system are presented in Figure 12. The 

scatter plots and the best linear fit lines suggest an inverse relationship between urban population 

size and the unofficial migration share of the urban population. In particular, a ten percent increase 

in the hukou population is associated with a 0.06 unit increase in the ratio of unofficial migrants 

to hukou population. Although the magnitude of the coefficients is not as major, the negative 

correlation is statistically significant, and the high values of R-squared suggest a linear relationship 

is plausible. From the scatter plots, we can see that the top large cities have roughly the same 

limited degrees of migration shares; small and medium-size cities, in contrast, differ greatly among 

themselves, and unofficial migrants even constitute the majority of residential population in many 

cities (as the ratio of unofficial migrants to hukou population is greater than one). Note that data 

points with negative ratios represent a net outflow of migrants, which is the case for a handful of 

medium-size cities. These observations are consistent in both census years, 2000 and 2010. Thus, 

these results suggest that large cities experience greater control over unofficial migrations. As 

discussed in Section 2.2, measures to achieve such stricter enforcement include limiting unofficial 

migrants’ access to healthcare and education resources, housing supplies, and the local job market, 

thus making it rather hard for those without hukou status to stay in the city. In addition to 

minimizing unofficial migration, it is likely that large cities also issue fewer new permits each year 

compared to small and medium-size cities to contain the hukou population (Zhang and Tao, 2012). 

Consequently, stricter hukou control in large cities hinders urban growth both in terms of 

residence-based population and in terms of hukou population, which gives us another important 

policy factor that sheds light on the mean reversion of Chinese city sizes.  
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7 Discussion 

The goal of this paper is to analyze why China’s city size distribution deviates from Zipf’s 

law, and in particular, why the large cities do not grow as large as Zipf’s law predicts. First, we 

find that China’s city size distribution deviates consistently from Zipf’s law over the past three 

decades. In particular, the Zipf coefficient has been significantly larger than one, suggesting a more 

even distribution of the population. There is some evidence suggesting potential convergence to 

Zipf’s law in the most recent years from the time series plot, though this observation is sensitive 

to the truncating point of our sample. Moreover, we find that the city size distribution based on 

residence, which includes unofficial migrants, does not provide significantly different results from 

the distribution based on hukou status in terms of the Zipf coefficient.  

To explain such deviation from Zipf’s law, we find that the assumption of a homogeneous 

growth process fails in Chinese cities. Instead, the urban growth rate decreases in the initial 

population size whereas the variance of growth rates increases in size. These observations can 

explain why the local Zipf coefficient for large cities are greater than one using Gabaix’s (1999) 

general expression (Equation 7). Intuitively, the top large cities grow slower, allowing other small 

or medium-size cities with higher growth rates to catch up, leading to a more even city size 

distribution. This pattern of growth fits well with Chinese government’s overall urban 

development strategy, which focuses on promoting growth for small and medium-size cities and 

containing any further expansion of metropolitan cities. In comparison with other countries, 

China’s mean reversion of city sizes appears to be much stronger, especially in the 1990s. 

Concurrently, Gibrat’s law has been shown to hold in most countries, such as the United States 
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(Eeckhout, 2004; Chauvin et al., 2017), France (Eaton and Eckstein, 1997), Japan (Eaton and 

Eckstein, 1997), and Brazil (Resende, 2004). Even though India also exhibits mean reversion from 

1980 to 2010, the degree is much smaller with a corresponding coefficient of -0.05 (Chauvin et al., 

2017) compared to the -0.30 for China (Figure 6). Such comparison helps explain why China may 

be an outlier to Zipf’s law. Another interesting finding is that China’s mean reversion becomes 

weaker over time, as the regression coefficient drops to -0.07 in the 2010s and loses statistical 

significance (Table 8). We may expect this trend of diminishing mean reversion to continue and 

eventually support convergence to Zipf’s law.   

Among our three main hypotheses for explaining why large cities experience slower urban 

growth in China, namely, economic productivity slowdown, amenity deterioration, and direct 

government interventions, we find that large cities are more appealing in terms of higher 

productivity and better amenities, but populations grow slower due to stricter enforcement of the 

one-child policy and the hukou system. Productivity and amenities are universal to other countries 

in explaining urban growth patterns (Glaeser et al., 2001; Glaeser and Gottlieb, 2006). We study 

how economic productivity and urban amenities connect to urban growth and population size in 

China using a linear regression model and find that these two urban characteristics indeed promote 

urban growth as observed in other countries, and large cities in China enjoy both higher 

productivity and better amenities. The better economic performance of large cities implies that 

many of the economic reforms happened during 1991-2017 benefit the large cities more than small 

and medium-size cities. For instance, China’s accession to the WTO brings in more foreign capital 

for large cities (see the significantly positive coefficient of 0.68 in Table 13) and opens up more 

opportunities to foreign trade for large companies that mostly reside in the highly populated areas. 

In addition, large cities see greater government expenditure and house price residuals, which are 
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indicators of urban amenities. As for urban issues, while large cities experience more pollution, 

such disamenities are byproducts that have been overshadowed by the benefits of economic 

prosperity. Thus, we do not observe any deterrence of population growth caused by crowding in 

large cities. Also, China has been making special efforts to ensure better air and water quality by 

moving heavy industries out of large cities like Beijing and Shanghai. Overall, it is plausible that 

large cities are not yet close to their carrying capacities and still have the potential to grow further 

larger given their economic well-being and social amenities. Such potential could lead to 

convergence to Zipf’s law should there be free labor mobility across cities. 

Finally, we justify the mean reversion of Chinese cities with government’s direct 

interventions in population growth, a unique factor in China’s case. From our differences-in-

differences analysis for the one-child policy, we find that compared to small cities, large cities 

suffered from lower natural increase under the universal one-child policy from 1991 to 2011 and 

experienced a significant relative rise in the rate of natural increase after China’s first nationwide 

relaxation of the policy in 2011, which allow parents who are both the only child to have a second 

child. Likewise, our regression result of the hukou system shows that the ratio of unofficial 

migrants to hukou population decreases in population size. Both results indicate that in the past, 

China’s population regulations were more constraining for large cities than for small and medium-

size cities. Yet, in the most recent decade, China continues to loosen its birth planning program by 

replacing the one-child policy with a universal two-child policy in 2016, whose impact may further 

reduce the disadvantages in natural increase for large cities; meanwhile, China published new 

regulations regarding its migration restrictions in 2014, which abolish the official distinction 

between agriculture and non-agricultural hukou and extend more social welfare to unofficial 
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migrants living in the cities. As China reduces the intensity of its direct population control through 

these reforms, future convergence of city sizes to Zipf’s law may be expected. 

One avenue for further research on China’s population policies and city sizes is an 

exploration into the effect of China’s migration control on the economic units of cities. Since 

China’s heavy population regulations are imposed within the administrative boundary of each city, 

many satellite towns emerge around large cities in recent years, and new migrants move to these 

border towns to take advantage of the positive spillover effects of the neighboring city and 

circumvent issues with official permits. This new phenomenon leads to the question of how 

effective migration control really is. One may construct metropolitan areas for China using 

commuting data or night lights data and examine whether the size dependency of the enforcement 

intensity of the hukou system that we observe using administrative units is salient in metropolitan 

areas as well. If that is the case, then China’s migration control has a far-reaching effect on 

migration behaviors and population distribution beyond administrative purposes. Yet, given that 

China’s lights-based metropolitan areas obey Zipf’s law (Dingel et al., 2019), we might suspect 

that the hukou system is effective only in constraining population growth within administrative 

boundaries but fails to impede the formation of ultra-large urban agglomerations.   
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8 Appendix  

Table a. 1. Values of Zipf Coefficients, 1949-2017. 

Year Zipf Coefficient Standard Error                            R-Squared 

2017     1.061     0.068     0.846 

2016     1.075     0.069     0.847 

2015     1.179     0.051     0.896 

2014     1.211     0.050     0.905 

2013     1.232     0.049     0.914 

2012     1.236     0.049     0.918 

2011     1.242     0.049     0.916 

2010     1.259     0.049     0.919 

2009     1.248     0.050     0.912 

2008     1.246     0.051     0.910 

2007     1.259     0.050     0.915 

2006     1.256     0.050     0.914 

2005     1.244     0.050     0.915 

2004     1.259     0.051     0.913 

2003     1.258     0.050     0.914 

2002     1.282     0.051     0.918 

2001     1.321     0.051     0.921 

2000     1.358     0.051     0.925 

1999     1.322     0.054     0.920 

1998     1.309     0.057     0.913 

1997     1.295     0.061     0.903 

1996     1.274     0.064     0.894 

1995     1.286     0.068     0.893 

1994     1.275     0.070     0.884 

1993     1.274     0.067     0.898 

1992     1.284     0.069     0.898 

1991     1.249     0.070     0.892 

1990     1.243     0.070     0.892 

1989     1.231     0.069     0.892 

1988     1.214     0.068     0.891 

1987     1.180     0.069     0.887 

1986     1.198     0.072     0.883 

1985     1.228     0.077     0.882 

1984     1.194     0.078     0.888 

1978     1.066     0.103     0.845 

1865     0.959     0.089     0.881 

1957     0.977     0.089     0.891 

1949     0.944     0.076     0.916 

Note: Regression specifications and standard errors are based on Gabaix and Ibragimov (2011). Samples restrict to 

cities at prefecture level and above in each year.  

Source: Author’s calculation using population data from NSB (2000, 1984-2017). 

  



 

 

76 

Figure a. 1. Illustration of the Four Economic Regions of China. 

Source: Author’s compilation.   
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Figure a. 2. Zipf’s Law: Urban Population and Urban Population Ranks (Largest 100 Cities). 

 
 

 
Note: Regression specifications and standard errors are based on Gabaix and Ibragimov (2011). Samples restrict to 

cities at prefecture level and above. Population data are from NSB (various years) measured in 10,000s.  
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Figure a. 3. Zipf Coefficients for the Four Economic Regions, 1949-2017. 

 
 

 
Note: Regression specifications and standard errors are based on Gabaix and Ibragimov (2011). Samples restrict to 

cities at prefecture level and above in each year. Population data are from NSB (various years) measured in 10,000s. 

The horizontal line at 1 indicates convergence to Zipf’s law.
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Figure a. 6. House Price and Wage, 2017. 

 

Note: Sample restricts to cities at prefecture level and above. Robust standard errors are in parentheses. Data on 

average wages are from NSB (2017) and measured in Chinese Yuan. House prices are from CREA (2017) and 

measured in Chinese Yuan per square meter. 
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