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Abstract

Lattice-based computationalmodels such as the cellular Pottsmodel (CPM)display a versatil-
ity capable of representing systems on both the tissue and cellular level, yet fail to incorporate
mechanical interactions crucial for understanding the mechanisms of cell growth and move-
ment. In contrast, the reference map technique (RMT) based on a fixed regular lattice uses a
special reference map field that tracks deformations andmechanical stresses to simulate solid
mechanics. In this project, I couple the cellular Pottsmodelwith theRMTtounderstand the
mechanical behavior of multicellular entities in a dynamically changing environment. This
hybrid model allows the CPM to take into account the complex mechanics of the deforma-
tion and strain of the material around the cells, while expanding the mechanical model to en-
compass multicellular effects. To do so, I use the Hamiltonian energy function in the CPM
to influence cellular growth and movement. To account for mechanical forces, I model the
system as a global continuum field in which cells placed on top of the material should apply
a force to the underlying material while also being affected by the material. From a computa-
tional perspective, this technique can serve as a generalizable framework for future studies of
mechanical interactions between cells.
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1
Introduction

For years, the growth and development of stem cells, especially in malignant

ways, has been a key focus of research, but in many aspects still remains poorly understood.

Of particular importance has been the methods in which stem cells divide and differentiate,

with a focus on how normal stem cells can transform intomalignant cancers. Various studies
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have attempted to illuminate this process, with a landmark paper in 2000, inwhichHanahan

andWeinberg introduce the Hallmarks of Cancer: six physiological changes, or rules, that al-

low cells and tissues to break through their natural cellular defenses and become malignant

growth8. However, with further progress in cancer and stem cell research, it has become ap-

parent that tumor growth involves much more than the malignant cancer cells themselves—

instead, tumors are complex tissues composed of many different cell types that all interact

with each other. In this depiction, the benign, normal cells outside of the proliferating can-

cer cells are actively involved in tumorigenesis, and contribute to the creation of a “tumor

microenvironment” that can greatly impact tumor development and metastasis7.

Figure 1.1: The updated ten Hallmarks of Cancer 7.
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1.1 Importance ofMicroenvironments

Indeed, the physical effects between cells and the surrounding environment have proven to be

crucial to determining cellular behavior. A key challenge in stem cell research is determining

the direction of differentiation in the cell lineage, and Engler finds that the elasticity of the

extracellularmatrix (ECM)microenvironment can exert very strong influences on this lineage

specification6. Naive mesenchymal stem cells (MSCs) are shown to have extreme sensitivity

to mechanical elasticity, which affects lineage specification and phenotypes. In particular,

soft matrices similar to the brain cause MSCs to differentiate into neurons, stiffer matrices

similar tomuscle cause differentiation intomyoblasts, and rigidmatrices similar tobone cause

differentiation into osteoblasts. While addition of soluble induction factors to influence the

lineage can cause reprogramming initially, over time the cells are shown to commit to the

lineage specified by the level of matrix stiffness.

By influencing stem cell lineage specification, matrix stiffness and microenvironment con-

ditions can also predict the presence of a tumor or the development of a higher risk of malig-

nant transformation. Paszek et al. find that even small increases in matrix rigidity can greatly

influence compatibility with normal tissue morphogenesis and thus contribute to aberrant

tissue growth, destabilizing tissue architecture and pushing mammary acini toward the ma-

lignant phenotype12. But both the immediate microenvironment as well as the extended

microenvironment can play crucial roles in tumor growth and metastasis by impacting cell-

matrix interactions or host tissue structure3. Results have shown that harsher tumor mi-

croenvironments that include hypoxia and matrix heterogeneity influence tumors to only

grow invasively with fingering margins with a few aggressive clones. In contrast, mild mi-
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croenvironment conditions, such as normoxia and matrix homogeneity, would be less selec-

tive, allowing aggressive clones to grow along with less aggressive tumor phenotypes with

smooth and noninvasive margins4. These results suggest that the increased aggressiveness of

various tumors may be a consequence of developing in the context of harsher environments,

illustrating the importance of the ECM on tumor development, and the fact that a variety

of physical and environmental factors can greatly influence the development and behavior of

cells in biological systems.

1.2 Cellular BehaviorModels

To simulate all aspects of cellular behavior, researchers have adopted many different meth-

ods at varying levels of detail. On the cellular level, one study introduces a two-dimensional

model that focuses on a single cell by representing the eukaryotic cell as a deformable body

using elastic springs todefine cell shape as the cell plasmamembrane and a viscous incompress-

ible fluid to define cellmass, with a single point to represent the cell nucleus15. Five phenotyp-

ically different cell populations are incorporated into this model, each undergoing four cellu-

lar processes, including growth, division, apoptosis, and polarization. Cellular homeostasis

is implemented using sources and sinks of fluid on opposites of the cellular membrane, and

the fluid transport is adjusted accordingly to represent cell growth and apoptosis. Of particu-

lar interest is the incorporation of extracellular interactions through cellmembrane receptors,

which allows for cell adhesion and cell proliferation depending on the nearby environment15.

On a different scale, the Proliferation-Invasion-Hypoxia-Necrosis-Angiogenesis (PIHNA)

model involvesmuch larger quantities of cells and tissues, incorporating normoxic glioma tis-

sue, hypoxic glioma tissues, vascular tissue, necrotic cells, as well as angiogenic factors to char-
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acterize glioma through various coupled reaction-diffusion equations9. In this model, many

different cell populations and tissues are all competing for space, each with different pheno-

types and actions. Rather than predicting cellular behaviors as in many other studies, the

PIHNAmodel mainly focuses on quantifying and explaining cell behavior and evolution on

an imaging scale. To do so, since the PIHNAmodel only captures cell tissues and angiogen-

esis, Hawkins-Daarud et al. incorporated edema into the original model, allowing for more

accurate descriptions of many MR imaging cases of glioblastoma in which vasogenic edema

would emerge due to breakdown in the blood-brain barrier9.

Modeling cancer cell invasion commonly incorporates multiple pathways, including the

intracellular pathway, extracellular pathway, as well as interactions connecting the intracel-

lular dynamics with the extracellular stroma14. Thus, different representations can be com-

bined to introduce a hybrid discrete-continuum model. Ramis-Conde et al. introduce one

such model in which the continuum model describes the interaction of chemicals with the

ECM,where cells act as sources and sinks to incorporate the dynamics of the intracellular and

extracellular environments. In turn, the discrete model represents the cells as discrete parti-

cles, which interact with each other and the surrounding environment through a potential

function14. Invasion is triggered by contact between peripheral cancer cells and the ECM,

adjacent stroma configurations can stimulate cells to migrate via chemotactic or haptotactic

gradients, and mitosis results from cells absorbing growth factors in the ECM14.

In contrast, the Subcellular ElementModel can be used both to represent the dynamics of

many three-dimensional deformable cells in multicellular systems or a single cell in more de-

tail. In the first case, themodel serves as an efficient off-latticemodel for simulating thousands

of three-dimensional cells in a complex three-dimensional environment by representing the
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cytoskeleton as a network of dynamically cross-linked filaments. To model a highly detailed

single cell, many subcellular elements form the cell and are systematically placed into ordered

close-packing arrangements that adjust into metastable states of equilibrium, which can be

influenced by environmental fluctuations17.

Each model implements a different way to visualize cellular behavior and represents indi-

vidual cells with different forms, as well as varying levels of detail. With the large variety of

computational methods, different modeling techniques are chosen based on the conditions

of the cells and the environment to be modeled.

1.3 Cellular PottsModel

One widely-used computational model is the cellular Potts model, or the Glazier-Graner-

HogewegModel. The cellular Pottsmodel is a lattice-based computationalmodelingmethod

to describe the behavior of cells and their interactions as a result of the initial conditions and

the evolution of the cellular and extracellular properties over time. A Hamiltonian function

describes the various interactions in the system, such as terms that preserve the cell volumes

and describe the surface energy of their boundaries. A stochastic update procedure is em-

ployed, where random perturbations to the cell shapes are considered, and they are rejected

or accepted depending the change in the value of the Hamiltonian. A wide variety of addi-

tional cellular behaviors can be implemented by incorporating different energy terms into

the overall Hamiltonian energy function.

The versatility of this computational model has led it to be used in a variety of systems,

including angiogenesis13, cell sorting28, and tumor growth2,5. One example of a three di-

mensional simulation of tumor growth modeled using the cellular Potts model can be seen
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Figure 1.2: A three-dimensional simulation of tumor growth and angiogenesis using the cellular Potts model. In the figure,

the green cells are normal tumor cells, the purple cells are active neovascular cells, and the red vessels are the preexisting

vasculature. 20

in Figure 1.2. The cellular Potts model is capable of representing systems on both the tissue

level, as in the studyof its continuum limits1, aswell as at the cellular level, as in themovement

of individual cells18.

The cellular Potts model is an example of an agent-based model. Individual cells are de-

fined by a program that dictates their internal state, their laws of motion, and their interac-

tions with other. Agent-based models are a viable candidate for investigating multicellular

interactions. However, inherent to this model is the assumption that cells were organized in

a densely packed regular structure and that the environment was not being manipulated in

any way other than through the release of variousmorphogens. Thus, while the lattice-based

viewpoint is simple and effective, it is highly idealized and is not well-suited to incorporating

certain physical effects. In particular, it completely neglects the mechanics of how cells pull

and push on each other and their environment, which is known to be of crucial importance
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in many situations.

Various studies have attempted to extend the cellular Pottsmodel to incorporate cell-ECM

interactions. Rubenstein and Kaufman utilize the cellular Potts model to study the complex

interactions between glioma cells and their extracellular matrix, appreciating the ease of use,

transparency, and access to subcellular details offered by the model16. In their model, tumor

cells were introduced to a lattice representing the ECM, which was composed of two com-

ponents, one of which was a fibrous scaffold inhomogeneous on the cellular scale, and the

other which was distributed homogeneously throughout the lattice. This two-component

ECMwas consistent with tissue approximations of fibrous proteins used to study cell migra-

tory behavior, and was similar to the structure of collagen gels used in glioma studies. Here,

each of the glioma cells, as well as the ECM elements, were modeled using the cellular Potts

model, along with rules for mitosis when qualified cells touch at least one collagen or matrix

site16. The two-dimensional model was interpreted as essentially a slice through the centers

of three-dimensional spheroids, to reproduce behaviors associated with spheroids grown in

three-dimensional extracellular matrices. While the model was able to qualitatively repro-

duce spheroid growth and invasion patterns in collagen I matrices, the model had limited

agreement with experimental changes when allowing cells to alter their environment16.

In a different study, Kabla uses the cellular Potts model to explore mechanisms leading to

coordinated cellular motion in a number of biological processes, such as cancer metastasis or

embryo development10. The tissue is represented as a densely packed two-dimensional layer

of epithelial cells on an underlying substrate, where cell-cell cohesion is homogeneous across

the population. Tomodel the interaction between the cell and the mechanical environment,

there is feedback from earlier displacements to the polarization itself, in which when a cell at-
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tempts to move along its direction of polarization, the polarization direction evolves toward

the cell’s net displacement over time10. Motility is created through each cell, which generates

a motile force along its polarization direction. These forces act between the cell and the sub-

strate through an additional cell migration term in the overall Hamiltonian energy in which

the direction of the motile force is determined by feedback from earlier movement, oriented

along themean velocity of the cell. Themodel does reproduce the coordinated cellularmove-

ment associatedwithwound healing, but ultimately incorporates cell movement solely based

on the motile forces produced by individual cells on an unchanging substrate, which can be

complicated by nonlinear changes and cellular interactions from the underlying substrate.

1.4 Objective

Manymodels that do take into account physical effects andmechanics are based on amoving

mesh, which makes these models very difficult to combine with the versatility of the cellular

Potts model, which is based on a lattice. To circumvent these issues, we implement the ref-

erence map technique (RMT)11,25. This recently developed numerical method is based on

a fixed regular lattice and uses a reference map field to track the deformation of the material

and the generatedmechanical stresses. Thus, despite acting upon a lattice grid, themodel still

grants the flexibility to formulate nonlinear dynamics, allowing the model to take into con-

sideration both the changing physical properties of the simulation space due to deformation

while still being able to track individual cells. Themodel has beenused to investigatemechani-

cal interactions between tumor cells mediated through the extracellular environment19. The

method is well-suited to modeling interactions that depend on the nonlinear properties of

biological materials22 that become apparent at large deformations.
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In this paper, we seek to incorporate mechanical effects in the cellular Potts model. Given

its lattice-based foundation, theRMTappears to be the ideal approach to implementing con-

sideration for nonlinear physical effects into the CPM. We believe that this technique has

broad applicability to studymechanical interactions between cells and the influences of such

interactions on cellular behavior and development.
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2
Methods

2.1 The Cellular PottsModel

The cellular Potts model (CPM) serves as a lattice-based computational modelingmethod to

describe the behavior of cells and their interactions as a result of the initial conditions and the

evolution of the cellular and extracellular properties over time.

In the CPM, the simulation involves parameters and properties delineated in table 2.1.
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Table 2.1: List of variable parameters in the cellular Potts model.

Parameter Description
σ(⃗ı) Index of lattice pixel ı⃗

τ (σ(⃗ı)) Cell type of cell with index σ(⃗ı)
Jτ(σ(⃗ı)) Adhesion energy
λV Volume constraint constant
vσ Volume of cell ı⃗
VT Target Volume

Figure 2.1: Schematic of cells in the cellular Potts model and an index copy attempt. Pixel delineated in yellow is the

randomly chosen target pixel, and an arrow is pointing from the randomly chosen neighboring source pixel to the target

pixel. In this case, the index copy attempt succeeds, and the pixel copy is made.

Within a regular lattice, each cell is defined as the collection of lattice pixels with the same

identification index, σ(⃗ı), where ı⃗ is a lattice pixel. Using aMonteCarlo algorithmdependent

on an effective energy, at each step a target pixel ı⃗ is selected randomly, and a source pixel ı⃗′ is

chosen randomly from the cells neighboring the target pixel, as seen in figure 2.1. An attempt

is made to change the index of the target pixel σ(⃗ı) to that of the source pixel σ′ = σ(⃗ı′). If

σ(⃗ı) = σ(⃗ı′), the two pixels are within the same cell and no pixel copy is made. If the pixels

are from different cells, then σ(⃗ı) ̸= σ(ȷ⃗′). The change in the overall effective energy of the

system ΔH is calculated, and the pixel copy is accepted with a probability P(ΔH) given by

12



the Boltzmann acceptance function,

P(ΔH) =


1, ΔH ≤ 0,

e−
ΔH
Tm , ΔH > 0,

where Tm is a parameter representative of the temperature in the system due to its effect of

increasing the rate of successful pixel reassignments23. Thus, this algorithm describes evolu-

tion that tends tominimize the overall effective energy, which is thought to be representative

of actual cell behavior. A Monte Carlo step (MCS) in the simulation consists of one index-

copy attempt for each lattice pixel.

The effective energyH, or Hamiltonian energy, is defined as a sum of energies that incor-

porate different cellular behaviors, including components for adhesion energy and volume

constraints:

HCPM = Hadhesion +Hvolume

The adhesion energy component between the cells is defined as:

Hadhesion =
∑

ȷ⃗,⃗ȷ neighbors

Jτ(σ(⃗ı)),τ(σ(ȷ⃗))
(
1− δσ(⃗ı),σ(ȷ⃗)

)

whereJ is defined as theboundary energybetween twocells σ(⃗ı), σ(ȷ⃗)of cell type τ (σ(⃗ı)) , τ (σ(ȷ⃗))

at the interface between two neighboring pixels26. The adhesion energy sum iterates over all
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neighboring cell pairs ı⃗, ȷ⃗. We haveJτ(σ(⃗ı)),τ(σ(ȷ⃗)) = Jτ(σ(ȷ⃗)),τ(σ(⃗ı)), and δ is defined as

δx,y =


1 x = y

0 x ̸= y

The volume constraint energy component is defined as

Hvolume =
∑
σ

λV(vσ − VT)
2,

where λV represents the stiffness of the cell, vσ indicates the cell volume, andVT indicates the

target volume of the cell. Deviations of the cell volume from the target volume of the cell are

penalized using this energy.

2.1.1 Mitosis

Mitosis is implemented in the cellular Potts model in a relatively simple fashion. The condi-

tions for a cell undergoing mitosis are straightforward: as long as the number of cells present

is lower than the specified cell number cap and the cell volume is larger than the mitotic cell

volume specified, the cell will undergo mitosis.

During mitosis, the cell is divided into two daughter cells of equal volume. To do so, the

center of mass of the cell is calculated as

(ci, cj) =


∑
i∈σ

mi

vσ
,

∑
j∈σ

mj

vσ


where σ is the index of the cell, vσ is the volume of the cell, ci, cj are the x and y coordinates

14



of the cell center of mass, respectively, and mi,mj are the x and y coordinates of the pixels

contained in the cell σ.

Given the center of mass, we divide the cell along an axis of division determined by the

eigenvector of the cell’s covariance matrix corresponding to the largest eigenvalue. We do so

by computing the variance σ(x, x) in the x-direction and the variance σ(y, y) in the y-direction,

as well as the covariance

σ(x, y) = E[(x− E(x))(y− E(y))],

where here E(z) is the z-coordinate of the center of mass of the cell and z is either x or y. We

summarize the variance of the cell in the form of the covariance matrix,

Σ =

σ(x, x) σ(x, y)

σ(y, x) σ(y, y)

 .

Figure 2.2: Schematic of a cell undergoingmitosis in the cellular Potts model. The original cell is divided along the axis

corresponding to the largest variance in the cell, splitting into two daughter cells of approximately equal volume.
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Now, the covariance matrix defines both the spread and the orientation of the cell. We

find the vector that points in the direction of the largest spread of the cell, given by the largest

eigenvector of the covariance matrix, and divide the cell using that axis. Upon computing

the slope of the eigenvector and setting the mitotic axis as the line with that slope passing

through the center of mass of the cell, all points in the cell above the axis are classified in

one new daughter cell and all points in the cell below the axis are classified in another new

daughter cell, as seen in figure 2.2. The volumes and centers of mass of the two daughter cells

are updated accordingly. The new cells continue to grow and divide as long as the conditions

for mitosis are satisfied.

2.2 The ReferenceMap Technique

2.2.1 Finite Strain Theory

Figure 2.3: Basis of finite strain theory. A grid is imposed over the simulation space, and the deformation of a small section

is described by a linear transformation.

Throughmodelling the complex simulation space as a material similar to collagen in order

to take into consideration changing physical properties and mechanics, the reference map

technique uses the mathematical formalism of finite strain theory. Considering deformation

in only two dimensions, the formalism divides a region into a set of small sections. By eval-
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Figure 2.4: The linear transformation, known as the deformation gradient F, can be decomposed into orthogonal rotation

matrixR and a symmetric stretchmatrixV.

uating the Jacobian of the relative positions of the deformed material, the model represents

the transformation of an initial square into a deformed quadrilateral with the deformation

gradient tensor F in the form of a 2× 2 matrix.

The tensor F is then decomposed using the polar decomposition theorem into an orthog-

onal rotation matrixR and a symmetric stretch matrixV:

F = VR.

It follows that the Cauchy Stress is

σ =
1

λ1λ2

(
λ1
∂W
∂λ1

n1 ⊗ n1 + λ2
∂W
∂λ2

n2 ⊗ n2
)
, (2.1)

where λ1, λ2 are defined as the eigenvalues ofV andn1, n2 are defined as the eigenvectors ofV.

W(λ1, λ2) is defined as the strain-energy density function, defines the elastic energy stored in

the material in terms of λ1 and λ2 and will be explained further in section 2.3.327.
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We define a velocity field u(x, t) and a position fieldX(x, t) for the material based on po-

sition x in the deformed configuration. Based on Newton’s second law, the velocity field

satisfies

ρ
du
dt

= −ϕu+∇ · σ (2.2)

where ρ is the density and −ϕu is a global drag of the material on the the underlying sub-

strate. We work in the overdamped limit where the drag is assumed to be much larger than

the acceleration, so that Eq. (2.2) can be simplified to

u = ϕ∇ · σ. (2.3)

The reference map is updated using the transport equation

∂X
∂x

= − (u · ∇)X

where we define d
dt =

∂
∂t + (u · ∇) as the advective derivative.

2.2.2 Numerical Simulation Technique

The reference map technique allows for numerically simulating the evolution of a biological

material on a regular fixed grid with an Eulerian time step, simplifying calculations for each

cell25.

A schematic of the spatial discretization of the reference map technique is shown in figure

2.5. The simulation domain covers the coordinate ranges x ∈ [ax, bx] and y ∈ [ay, by], which
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Figure 2.5: The simulation space is divided into a grid of square cells each of width hx and height hy. At the center of each
cell, the referencemap ξ and the velocity field u is stored, and on the edges, the stress tensor components are stored.

is discretized into anm× n grid of lattice cells. The cells have side lengths spacings

hx =
bx − ax

m
, hy =

by − ay
n

in the horizontal and vertical directions, respectively. For simplicity, we use equal spacings

along the two axes, so each lattice cell has side length h = hx = hy.

We can represent each cell as a square lattice point. We store the velocity field u(x, t) and

the reference map field ξ(x, t) at the center of cell. The reference map ξ serves to track the

deformation of thematerial. On the edges of each cell, we store the stress tensor components,

σ =

σ11 σ12

σ21 σ22


.
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We divide the components of the simulation into different steps labeledA through E.

Step A: Field initialization. We initialize the reference map to the undeformed configu-

ration with

ξ(x, t = 0) = x

and the velocity field u to rest.

Figure 2.6: The stress is computed at the edges of the cell and stored at the black dot and triangle. The stress function for

the cell at i, j depends on the neighbors of the cell.

Step B: Stress computation. We first define the function to compute stress σ. At the

black dot in the figure 2.6, the stress for cell i, j is stored. We have

[
∂ξ
∂x

]
=

ξi+1,j − ξi,j
h

,[
∂ξ
∂y

]
=

ξi+1,j+1 + ξi,j+1 − ξi+1,j−1 − ξi,j−1

4h
,

where ξi,j is the value of the reference map ξ at the cell at i, j and ξ = (ξx, ξy). Now our
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deformation gradient is

F =

∂ξx
∂x

∂ξx
∂y

∂ξy
∂x

∂ξy
∂y


−1

.

From here, the stress can be computed using the constitutive law in Eq. (2.1). Upon calcu-

lating the stress, we only store components σ11 and σ12 at the black dot. We repeat the same

procedure to calculate the stress at the triangle using stencils with x and y transposed, and we

only store components σ21 and σ22 there.

Figure 2.7: The velocity is computed and stored at the center of the cell, based on the stress components stored at the

edges of the cells.

Step C: Velocity computation. The velocity follows Eq. (2.3). Given the previously com-

puted stresses on edges as shown infigure 2.6, the velocity componentsu = (u1, u2) at a point

are given by

(uk)i,j = ϕ
(
(σ1k)a − (σ1k)b

h
+

(σ2k)c − (σ2k)d
h

)
,

where the stresses are arranged as shown in figure 2.7.

Step D: Reference map update. To update the reference map with the given velocity, we
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employ a second-order essentially non-oscillatory (ENO) method21. We have

fk+1
i,j − fki,j
Δt

= −u1
(
∂f
∂x

)
i,j
− u2

(
∂f
∂y

)
i,j

where k is the index of the collagen simulation time step.

When u1 > 0, the ENO derivative in the x direction is computed as

[
∂f
∂x

]
i,j
=

1
2h


3fi,j − 4fi−1,j + fi−2,j if |[fxx]i,j| > |[fxx]i−1,j|,

fi+1,j − fi−1,j otherwise,

where we compute the second derivative fxx using the stencil of

[
∂2f
∂x2

]
i,j
=

fi+1,j − 2fi,j + fi−1,j

h2
.

If the u1 < 0 then the mirror image of the stencil is taken. The ENO derivative in the y

direction is handled similarly27.

Step E: Cell contraction. Now we compute the function to implement contraction, in

which the cell pulls with a radially inwards force on the collagen. This is done quite simply.

For a cell at lattice site i, j, the contraction stress constant cstr is added to the stress components

on all four edges: to σ11 on both sides and σ22 on the top and bottom edges.

With all of these components computed, the simulation follows the following steps:

1. At the start of the simulation, we initialize the simulation with stepA.

2. After initializing the simulation,we set up the stress and velocity fieldswith stepsB and

C. This ensures that the simulation fields are all set up and consistent at time t = 0.
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3. During the course of one collagen simulation time step, we implement contraction

from the cell on the collagen through step E.

4. After adding contraction, we compute the velocity from the updated stress compo-

nents as in stepC.

5. After calculating the velocities, we can move the collagen as in stepC.

6. After moving the collagen, we recalculate the stress tensors based on the updated ref-

erence map as in step B.

7. The steps above are repeated until the end of the simulation.

2.3 Coupling theModels

2.3.1 Reconciling Units

The first step to coupling two different models, the cellular Potts model and the reference

map technique, lay in reconciling two different sets ofmeasurements and units. The collagen

simulation is described using physical units. For the purposes of this study, we work with

simulation units that are non-dimensionalized according to reference a length scale Lref, time

scale Tref, and mass scaleMref. Any quantity in the simulations can be converted back to a

physical quantity by multiplying by the appropriate scales; for example a simulation velocity

can be multiplied to Lref/Tref in order to obtain the corresponding physical value. Since our

purpose in this thesis is to demonstrate the numerical method and the simulation as opposed

to applying it to a specific problem, we do not provide a detailed calibration of the physical

scales.
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In our simulations, the collagen simulation takes place in a domain x ∈ [−3, 3], y ∈

[−3, 3] with a 150 × 150 grid. This exactly aligns with a 150 × 150 grid in the Potts model

that is exactly overlaid.

Connecting the twomodels temporally ismore complex. The referencemap simulation of

the collagenuses a timestepΔt, while the cellular Pottsmodel advances based onMonteCarlo

steps, as detailed in Section 2.1. A single Monte Carlo step in the cellular Potts model only

implements a single index copy attempt, and thus with larger lattice grids, more index copy

attempts and thusmoreMonteCarlo stepswould be needed to enact the same level of change

in a single physical time unit of the reference map technique. Every reference map technique

time step, the collagen simulation is updated and forces are adjusted and implemented. Thus,

the number ofMonteCarlo steps associatedwith each referencemap technique physical time

unit is dependent upon the size of both grids.

Let Δt be a physical time step of the reference map technique, which is adjusted based on

the size of the lattice grid. Then we want to find dMCS, the number of Monte Carlo steps

that is associated with one Δt, and calibrate using dMCS to find the best number of Monte

Carlo steps to implement between stages of adjusting and coupling to the collagen–that is,

howmanyMonte Carlo steps to associate with one Δt collagen time step.

Here, we have τ, the physical time that passes per Monte Carlo step per grid point. τ is

a parameter that could have an actual time scale accorded to it, which would be adjustable

corresponding to the simulation. Since τ is the time perMonte Carlo step for all grid points,

perMonteCarlo step and index copy attempt, wehave a different value τ2, which is τ
mn , where

mn is the total number of grid points in the lattice grid. This gives us the physical time that

passes perMonte Carlo step. Now, Δt is the physical time that passes per collagen simulation

24



time step, which is calculated relative to the overall grid size. This gives us an overall dMCS:

dMCS =
Δt
τ2

,

where dMCS gives the number of Monte Carlo steps associated with one collagen simulation

time step.

Based on the grid and parameters, we have two possible cases for the value of dMCS:

Figure 2.8: Calibration forΔt in the case whendMCS > 1. In this example, we assume the calculatedΔt = 3.8Monte

Carlo steps.

The first case is when dMCS is larger than 1. This is more likely as manyMonte Carlo steps

would be needed in order to iterate over an entire frame, thus leading to more Monte Carlo

steps needed than collagen simulation physical time steps. In this case, multipleMonteCarlo

stepswouldneed tobe implemented for each collagen simulation time step. We then calibrate

our time steps with the following parameters:

parameter variable value
number of physical time steps to take per MCS bcs 1
number of MCS to take before applying collagen fcs ⌊dMCS⌋
length of a physical time step, in physical time units Δtcs Δt · fcs

We take the floor of dMCS to determine the number ofMonte Carlo steps to take per phys-

ical time step Δt of the collagen simulation to avoid increasing Δt, which could break the
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stability of the coupling of our simulations. Reducing the number of MCS per Δt would

lead to increased numbers of steps implemented of the collagen simulation, but will not af-

fect the stability of our model.

Figure 2.9: Calibration forΔt in the case whendMCS < 1. In this example, we assume the calculatedΔt = 0.75Monte

Carlo steps.

The second case is when the dMCS is smaller than 1. In this case, multiple collagen simula-

tion time steps would need to be implemented for eachMonte Carlo step. We then calibrate

our time steps using the following parameters:

parameter variable value
number of physical time steps to take per MCS bcs ⌈ 1

dMCS
⌉

number of MCS to take before applying collagen fcs 1
length of a physical time step, in physical time units Δtcs Δt

bcs

Again, we avoid increasing Δt in calculating the number of physical time steps to take per

MCS. To do so, we essentially round up the number of Δt that would fit in a Monte Carlo

step.

How the parameters in the tables are implemented is as follows. Every fcs Monte Carlo

steps, one physical time step is reached, and the collagen simulation is called and adjusted.

The collagen simulation steps forward bcs steps, each of which is calculated in the collagen

simulation based on Δtcs physical units of time. After these bcs collagen steps are finished, we
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proceed with theMonte Carlo steps in the cellular Potts model, which is calculated with the

updated collagen simulation.

2.3.2 IncorporatingMechanics

After calibrating the time steps of the two models, we seek to implement the mechanics that

serve as the basis of our study. In order to incorporatemechanics into the cellular Pottsmodel,

we visualize the coupling to involve a lattice grid of material interacting with the cells. The

cells would be represented using the cellular Potts model, and the nature of the reference

map technique would allow for representation of mechanics at the lattice points. For the

two models to couple, the material would need to interact with the cells, which would be

from forces exerted from the material on the cells. The basis for the interaction between the

cellular Pottsmodel and the referencemap technique is the velocity field in the referencemap,

which would exert a force on the cells to influence their movement.

We can directly allow the cells to move in response to the underlying velocity field from

the substrate. In this method, we have the underlying velocity field u(x, t) from the collagen

simulation, as mentioned in Section 2.2.1, and the center of mass rσ of the cell σ. The center

of mass of the cell moves according to the underlying velocity:

d
dt
rσ = u(rσ, t)

Now to introduce motility into the model, the overall Hamiltonian energy of the system

becomes

HCPM = Hadhesion +Hvolume +Hvelocity
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where the velocity field constraint energy component is defined as:

Hvelocity =
∑
σ

λ||rσ −mσ||2

wheremσ is the average of the grid positions of cell σ. Thus, byminimizing this Hamiltonian

energy, each cell follows along with the center of mass of the cell, which moves according to

the underlying velocity field of the substrate.

The other method by which the cells interact with the collagen is through contraction

stress, in which the cell pulls on the collagen. This process is discussed in section 2.2.2.

2.3.3 Constitutive Law

With modeling our substrate on collagen, we want to be able to produce complex physical

properties of collagen in our referencemap. Wedo so by implementing a series of constitutive

equations that would explain the properties of collagen, starting by initializing our velocity

and position fields as indicated in section 2.2.1. The stress σ, defined in Eq. (2.1), depends on

W(λ1, λ2), a strain-energy density function.

To derive this relation, we consider the collagen forces in one dimension. The fibers in

collagen cause the force to bemuch stronger in tension than compression, so we can describe

the strain-stress relationship as the function:

f(x) = d(x− 1) +


a(eb(x−1) − 1) if x < c,

rx+ s if x ≥ c.
(2.4)
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Enforcing continuity and differentiability at x = c requires

r = abeb(c−1), s = aeb(c−1)(1− bc)− a. (2.5)

with three free parameters: a, b, and c. a controls the linear force response, b controls the

nonlinear force response, and c controls the extent when the collagen effectively becomes a

linear material27. We define our one-dimensional energy potential as

g(x) =
∫ x

1
f(y)dy (2.6)

and then derive the strain-energy density function in two dimensions as

W(λ1, λ2) = g(λ1 + αλ2 − α) + g(λ2 + αλ1 − α). (2.7)

ThisW function can then be used to calculate the stress for the collagen, as in Eq. (2.1)27.

In our simulation, we define a = 0.03, b = 20, c = 1.3, d = 9 in the equations above.

We define the drag parameter in Eq. (2.3) as ϕ = 0.2.

2.3.4 Velocity Field Coupling

As discussed in the introduction in section 1.3, in one study, Kabla et al. explored incorporat-

ing cellular motion by implementing amotile force on each cell. The force is generated along

the polarization direction nσ, with amplitude μσ. To introduce this motility into the model,
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the overall Hamiltonian energy of the system becomes

HCPM = Hadhesion +Hvolume −Hmotility

where the motility constraint energy component is defined as:

Hmotility =
∑
σ

μσnσ · rσ

where rσ represents the position of the center of mass of cell σ. The polarization direction of

the motile force n is determined by feedback from earlier displacements of the cell σ 10.

While consideringmethods to incorporatemechanics andmovement into the cellularPotts

model, we also considered adding motile forces in the same vein as in Kabla’s paper. How-

ever, upon conducting tests with an array of parameters, the motile force did not seem to be

constructive to our work. In particular, it was unclear what the relationship was between the

parameter μσ and the actual velocity that would result from the cellular Potts model. The

velocity seemed to differ for different parameter values, different grid sizes, as well as differ-

ent polarization directions (velocity directions). Thus, the inconsistency in the force imple-

mentation and the resulting velocities in the model itself led us to decide not to incorporate

independent motile forces and instead focus on coupling the cells with the velocity field of

the underlying collagen.

2.3.5 The Simulation

Upon combining the two separate simulations into onemodel, there are a lot ofmoving parts

associated with the model. Here we present a step-by-step overview of how the simulation
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is set up and runs while incorporating both forms of mechanics and adjustments from both

techniques:

1. Set up the parameters to be used in the simulation. This includes mitosis volume, the

cap on cellular division, target volume of the cells, and temperature, which are all used

in the cellular Pottsmodel. This also includesmultipliers and rates used in the collagen

simulations.

2. Create our simulation with parameters such as the physical grid sizes for the collagen

simulation (in our case,−3 to 3 for both axes) and lattice dimensions for the cellular

Potts model grid (150× 150).

3. Add cells to the cellular Potts model. This could take the form of single cells or cell

clusters of different shapes.

4. Initialize parameters for the various terms involved in the Hamiltonian energy of the

cellular Potts model. This includes adhesion energy magnitudes, volume constraint

terms, and magnitudes for the motility terms.

5. The overall simulation is initialized. This includes calculating all the cell volumes in

themodel and ensuring that the target positions for the cells, which would be used for

the mechanics terms, is set to the center of mass of the cells. The collagen simulation

is also initialized using parameters defined previously, and the parameters needed for

time step calibration between the two simulations are calculated (see Section 2.3.1).

6. If there is no coupling between the collagen simulation and the cellular Potts model–

there is no velocity field term or contraction stress as defined in section 2.3.2–only the
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cellular Potts model is run.

(a) One Monte Carlo step iteration is run. In each iteration,mn individual Monte

Carlo steps are run, where mn is the number of grid points in the lattice grid.

This means thatmn pixel copy attempts are run in this one iteration.

(b) One index copy attempt is implemented. To do so, a grid point within a cell,

called the target pixel, is randomly chosen on the lattice grid.

(c) A neighbor of the selected grid point, called the source pixel, is randomly chosen.

(d) If the source pixel is part of the same cell as the target pixel, nothing happens in

this Monte Carlo step. The simulation moves on to the next Monte Carlo step

and repeats the previous two steps.

(e) If the source pixel is part of a different cell from the target pixel, the change in

Hamiltonian energy is calculated. This includes the adhesion energies and the

volume constraint terms.

(f) The index copy attempt is acceptedbasedon theBoltzmann acceptance function

detailed in Section 2.1. However, before the index copy is implemented, connec-

tivity is checked. If the index copy disconnects the cell of the target pixel, the

index copy attempt is rejected and the simulation moves on to the next Monte

Carlo step.

(g) Upon the acceptance of the index copy attempt, the grid is updated and the vol-

ume and centers of mass of the two changed cells are updated. Mitosis is con-

sidered, and if the number of cells present is lower than the cell cap defined pre-
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viously and the volume of the enlarged cell is larger than the mitotic volume de-

fined previously, the cell undergoes mitosis.

(h) These steps are repeated until the Monte Carlo step iteration is run. Further

Monte Carlo step iterations are run until the end of the simulation based on the

number of iterations defined by the simulation.

7. If there is coupling between the collagen simulation and the cellular Pottsmodel, both

models will be run.

(a) One Monte Carlo step iteration is run in the cellular Potts model as elaborated

in the previous step 6. The difference is that in this case, theHamiltonian energy

calculation in step 6e includes the motility term which draws upon the collagen

simulation.

(b) Individual Monte Carlo steps are run until the number of MCS reaches a mul-

tiple of fcs, as defined in Section 2.3.1. At this point, the collagen simulation is

updated. The target positions of the cells are adjusted based on the velocities

from the collagen simulation and the collagen simulation steps forward by Δtcs.

(c) The previous step is repeated bcs times. With the updated collagen simulation,

Monte Carlo steps continue to be run until another multiple of fcs is reached.

Then the previous step is repeated.

(d) The previous two steps are repeated untilmn individual Monte Carlo steps are

completed and the Monte Carlo step iteration is finished. Then the previous

three steps are repeated and further Monte Carlo step iterations are run until
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the end of the simulation based on the number of iterations defined by the sim-

ulation.
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3
Results

With the complexity of our simulation, tests to ensure that the coupled model is

working are broken up into several parts. In the first part, we will focus on a very basic sim-

ulation that purely demonstrates that mitosis is indeed functional and working in our simu-

lation. In the second part, we will run a simple simulation for an array of different adhesion
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energy parameters to demonstrate how certain characteristics of the cellular Potts model are

affected by different adhesion energy parameters. Further parts will include simulations that

do contain interactions between the cellular Potts model and the reference map technique

to show that the coupling between the cellular Potts model and the collagen simulation is

proceeding as planned.

3.1 Mitosis

Figure 3.1: Simulation of 16 initial cells undergoingmitosis over 25Monte Carlo step iterations. HereMCS/Lmeans

Monte Carlo step per lattice point, which indicates that 25Monte Carlo steps were run for every lattice point in the grid.

We start with a very basic simulation to test for mitosis. We initialize our simulation as a

group of 16 cells in a 4 by 4 square each with a radius of 0.1 physical grid units. The cells are

centered on a lattice grid of size 6 by 6 physical grid units and 150 by 150 lattice points. The

mitosis volume is set to 25 grid points, which is the volume a cell must reach in order to be
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considered for mitosis. The cell division cap is set to 30, thus allowing for 14 mitosis events

from the initial 16 cells. The target volume for each cell is set to 30, indicating that every cell

should be able to reach the mitotic volume. We set the cell-substrate adhesion constant to

5 and the cell-cell adhesion constant to 10, and the volume constraint constant to 15. We

run the simulation to 50Monte Carlo steps per grid point–this means that since oneMonte

Carlo step is one pixel copy attempt, we run one Monte Carlo step over every grid point, 50

times. Six frames from the simulation are shown in Figure 3.1.

From the figure, the 16 cells are initialized at a smaller size, and gradually grow over each

of the Monte Carlo step iterations to the target volume specified of 30. As each cell grows

toward 30, it reaches themitosis volume of 25 grid points, at which point the cells are consid-

ered for mitosis. As the grid points are randomly chosen, the cells are all growing relatively

evenly. Thus, as the cells approach mitotic volume, essentially all 16 of the cells reach the

conditions for mitosis at the same time, thus leading to 14 of the cells dividing and reaching

the cap of 30 cells at around the same time. Thus, we can see at 10 MCS/L that there are

the 16 original cells at a larger volume around mitotic volume, and at 15MCS/L, the cluster

has reached the cap of 30 cells, with 14 new daughter cells frommitosis from the 16 cells. As

expected, after reaching the cap of 30 cells, the cells in the cluster no longer divide, and simply

grow and equilibrate at around the target volume of 30 grid points.

3.2 Adhesion Energy

In these simulations, we start with a similar setup as in the previous section. We initialize

our simulation as a group of 16 cells in a 4 by 4 square each with a radius of 0.1 physical grid

units. The cells are centered on a lattice grid of size 4 by 4 physical grid units and 100 by 100
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Figure 3.2: A simulation of 16 initial cells was run for a set of different cell-substrate adhesion and cell-cell adhesion

constants. Snapshots from the simulations for four different cases are shown to demonstrate the different growth

patterns for different adhesion energy constant combinations. The adhesion energy constant parameter combinations

shown are as follows:

A: cell-substrate 1, cell-cell 1

B: cell-substrate 1, cell-cell 20

C: cell-substrate 5, cell-cell 10

D: cell-substrate 20, cell-cell 20
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lattice points. The mitosis volume is set to 25 grid points, which is the volume a cell must

reach in order to be considered for mitosis, but the cell division cap is set to 0, thus disabling

mitosis. We do so in order to look purely at the interactions between the cells. The target

volume for each cell is set to 30, and the volume constraint constant is set to 15. We iterate

the cell-substrate adhesion constant and the cell-cell adhesion constant for a set of values,

and run each simulation to 200 Monte Carlo step iterations. For all of these simulations,

the motility terms are not included and the collagen simulation is not activated. Thus, we

are purely looking at the cellular Potts model and how different adhesion energy constants

can affect growth of the cell cluster. We can see a few representative time series of the cluster

growth over time in figure 3.2.

We choose to test our simulations for parameters {1, 5, 10, 15, 20} for both the adhesion

constants. The temperature of our simulation is set to 10, which as defined in section 2.1

plays a role in determining the rate of successful index copy attempts through the Boltzmann

acceptance function. Based on our temperature, it would be logical to test constants that are

within the order of magnitude of the temperature, and testing for 1 to 20, which are close to

butmultiples of the temperature, should be able to adequately exhibit the range of behaviors

for different energy combinations.

3.2.1 Cluster Characteristics

For each case, we calculate three different parameters from the resulting cluster at the end of

the 200Monte Carlo step iterations, for which a colormap comparing the parameters for the

different adhesion energy constants are shown in figure 3.3. One of the parameters is the total

edge length, calculated in terms of pixels or grid points from the cellular Potts model. This is
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Figure 3.3: A simulation of 16 initial cells was run for a set of different cell-substrate adhesion and cell-cell adhesion

constants. The radius of the cell cluster, the total edge length of the cell cluster, and the total perimeter of the cell cluster

were calculated for each case.

computed by adding up the perimeters of each cell in the cluster, and provides a comparison

to the overall perimeter of the cluster. The overall perimeter of the cluster is calculated by

computing the edge lengths of cells in the cluster that have contact with the substrate and

not with other cells. With the comparison, larger total edge lengths relative to the cluster

perimeter are representative of cells being more fragmented and spread out in the cluster

rather than remaining together in a cohesive group.

The radius of the cell cluster is calculated as a relative parameter. The center of mass
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cmi, cmj was calculated by summing the coordinates of each pixel in the cluster and divid-

ing by the total volume of the cluster:

(cmi, cmj) =


∑
σ

∑
i∈σ

i∑
σ
vσ

,

∑
σ

∑
j∈σ

j∑
σ
vσ


We then calculate the effective radius by computing the variance σ(x, x) in the x-direction

and the variance σ(y, y) in the y-direction, as well as the covariance:

σ(x, y) =
∑
σ

∑
i,j∈σ

(i− cmi)(j− cmj)

where i, j are the coordinates of each pixel in the cell σ. We summarize the variance of the

cluster in the form of the covariance matrix:

Σ =

σ(x, x) σ(x, y)

σ(y, x) σ(y, y)


Now, the covariance matrix defines both the spread and the orientation of the cell clus-

ter. We then define the effective radius of our cluster as the square root of the trace of the

covariance matrix, which is
√

σ(x, x) + σ(y, y).

From the charts, we can see that there are very evident trends that are consistent over all

three parameters. The cluster radius is significantly larger for lower cell-substrate adhesion

energy constants and higher cell-cell adhesion energy constants. This makes sense, since the

lower cell-substrate adhesion energy constraint encourages the cells to adhere with the sub-

strate more and the higher cell-cell adhesion energy constraint discourages cell-cell adhesion,

thus causing the cells to split apart from each other, thus increasing the effective radius and
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size of the cluster. This also causes the total edge length and the perimeter of the cluster to

becomemore equivalent as the cells spread out and no longer share edges, thus increasing the

perimeter of the cluster.

Otherwise, besides the cases with low cell-substrate adhesion energy constants and high

cell-cell adhesion energy constants, the simulations appear to be quite similar. The radius of

the clusters are all around9, and theperimeter stays approximately constant for all of the cases.

We can see that edge length shows more significant trends in that for higher cell-substrate ad-

hesion constants, lower cell-cell adhesion constants shows higher total edge lengths. This is

due to cells being more “fragmented” with more complex shapes rather than just remaining

as simple square-ish blocks, since the low cell-cell adhesion encouragesmore contact between

cells. Thus, with the more complex shapes of the cells, the perimeter of each cell would in-

crease and thus the total edge lengthwould increase correspondingly, even though the overall

perimeter of the cluster remains consistent.

3.2.2 Radius Considerations

Figure 3.4: The radius of the cell cluster, calculated in two different ways. The first is done by looking separately at the

pixels within the cluster. The second is done by looking at the centers of mass for the cells within the cluster.
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Wecan calculate the effective radius of the cell cluster in twoways. The first is by individual

grid pointwithin the cluster, as delineated in the previous section. The second is by cell rather

than individual grid point. Given the center of mass of the cell cluster calculated as before,

we then calculate the effective radius by computing the variance σ(x, x) in the x-direction and

the variance σ(y, y) in the y-direction, as well as the covariance:

σ(x, y) =
∑
σ

(ci − cmi)(cj − cmj)

where ci, cj are the coordinates of the center of mass of the cell σ as calculated in section 2.1.1.

We create our new covariance matrix:

Σ =

σ(x, x) σ(x, y)

σ(y, x) σ(y, y)


and calculate the new effective radius of our cluster as the square root of the trace of the

covariance matrix, which is
√

σ(x, x) + σ(y, y).

From the charts in figure 3.4, the radius calculations for the twomethods are quite consis-

tent, with the radii from themethodusing individual grid points being slightly larger than the

radii using the center of masses of the cells. This makes sense because the method using cell

centers of mass is essentially finding the radius of the cluster based on the centers of the cells,

which would not include the radii of the cells themselves, while the radii calculated using the

grid points incorporate the entire cluster.

However, in previous iterations of the simulation, the radii calculated by the twomethods

were not as consistent. For a few cases, the radii calculated using cell COMs would be signif-

icantly smaller than the raw radii calculated by grid points, occasionally by a multiple of 2 or
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more. Upon further investigation, this large discrepancywas caused by cell fragmentation, in

which a cell would gradually split into two separate parts that would occasionally separate to

opposite sides of the cluster, which would cause the calculated center ofmass of the cell to be

very close to the center of mass of the overall cluster, thus leading to very small effective clus-

ter radii when looking only at the centers of the cells instead of individual grid points. The

severity of the cell fragmentation problem led us to considermethods in order to prevent this,

as in real life cells splitting up without undergoing mitosis would be discouraged.

Wepenalize cell fragmentation effectively in the formof aHamiltonian termHconnect. Dur-

ing each index copy attempt, we have the target pixel i⃗ that wants to be changed, and the

source pixel i⃗′ that would be copied to the target pixel. We check the neighbors of the target

pixel i⃗ to see if changing the cell at i⃗ would cause the original cell that i⃗ was in to fragment

into two separate parts. Upon checking for connectivity of the original i⃗ cell, if the index copy

attempt would cause the cell to split, the connectivity Hamiltonian termHconnect would es-

sentially be∞, and if the index copy attempt does not cause a split in the cell, the termHconnect

would be 0. Thus, if there is a split, the index copy attempt would not succeed, and if there

is no split, the index copy would proceed given all other conditions are met.

This addition to the index copy procedure has been very effective in removing unintended

cell fragmentation from the simulations. In turn, the radii calculated from the cell clusters

using both methods have remained very consistent.

3.3 CouplingwithOne Cluster

In these simulations, we start with a similar setup as in the previous section. We initialize our

simulation as a group of 16 cells in a 4 by 4 square eachwith a radius of 0.1 physical grid units.
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Figure 3.5: A simulation of 16 initial cells was run for a set of different motility term constants: the λ velocity field

constant and the cstr contraction stress constant. The final simulation state for each of the different parameter cases is

shown, including both the cells and the underlying collagen field, colored according to the colormap.
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The cells are centered on a lattice grid of size 6 by 6 physical grid units and 150 by 150 lattice

points. The mitosis volume is set to 25 grid points, which is the volume a cell must reach in

order to be considered for mitosis, but the cell division cap is set to 0, thus disabling mitosis.

The target volume for each cell is set to 30, and the volume constraint constant is set to 15.

All of these parameters are the same as in the simulations run in section 3.2.

We set the cell-substrate adhesion constant to 5 and the cell-cell adhesion constant to 10

to keep the adhesion energies consistent between the simulations in this set. We iterate the λ

and cstr constants–for the velocity field and contraction stress, respectively–over a set of values

and run each simulation to 200 Monte Carlo step iterations, but with each iteration taking

5 Monte Carlo steps per grid point, thus equivalently doing 5mn · 200 individual Monte

Carlo steps. We can see the final state of each of the simulations after 200 Monte Carlo step

iterations in figure 3.5. The lattice grid and number of effective iterations has been increased.

In previous tests, we found that the coupling required more individual Monte Carlo steps

in order to surface significantly, so increasing the size of the lattice grid and the number of

Monte Carlo steps to run per iteration would allow the mechanics effects to exhibit.

We choose to test our simulations for the λ velocity field constant over {0, 5, 10, 20} and

the cstr cell contraction stress constant over {0, 5, 10, 15, 20}. Again, the temperature of our

simulation is set to 10, and we test constants that are within the order of magnitude of the

temperature.

For each case, we calculate the same three different parameters from the resulting cluster at

the end of the 200Monte Carlo step iterations: radius, perimeter, and total edge length. The

results are shown in figure 3.6. We also show a series of representative snapshots from one

simulation for velocity field constant λ = 10 and cell contraction stress constant cstr = 15 in
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Figure 3.6: A simulation of 16 initial cells was run for a set of different with different coupling velocity field and

contraction stress parameters. The radius of the cell cluster, the total edge length of the cell cluster, and the total

perimeter of the cell cluster were calculated for each case.

figure 3.7.

Fromfigure 3.5 and the calculations in the charts in figure 3.6, we note that the cell clusters

appear to be relatively similar in size across the array of parameters. They also seem to remain

mainly cohesive and close together, not showing significant signs of movement until higher

values of cstr. Despite this, we cannote that anymovementwe see seems to follow the gradients

shown in the underlying collagen, suggesting that the cells are interacting with the substrate

and that the substrate is influencing the motion of the cells. The effect is particularly evident

for high values of cstr, especially for cstr = 20, wherewe can see that the shape of the cell cluster
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Figure 3.7: A simulation of 16 initial cells was runwith velocity field constant λ = 10 and cell contraction stress constant

cstr = 15. The simulation states for six different time points in the simulation are shown, including both the cells and the

underlying collagen field as well as the target point for each of the cells as a cross.

is essentially molded along the stretches of the collagen. Of particular note is the simulation

with λ = 20 and cstr = 20, which has a very diffuse cell cluster structure but all of the cells are

adhering to the fluctuations of the collagen underneath. This demonstrates that the coupling

between the cells and the underlying substrate is working well.

3.4 Interactions between TwoClusters

In these simulations, we check to see how two separate cell clusterswould interact, influenced

by the underlying substrate. We initialize our simulation as two separate clusters of 16 cells,

each in a 4 by 4 square with a cell radius of 0.1 physical grid units. As before, the clusters are

located on a lattice grid of size 6 by 6 physical grid units and 150 by 150 lattice points. The

target volume for each cell is set to 30, and the volume constraint constant is set to 15.

48



Figure 3.8: A simulation of 2 initial cell clusters eachwith 16 cells was run for a set of differentmotility term constants: the

λ velocity field constant and the cstr contraction stress constant. The final simulation state for each of the different

parameter cases is shown, including both the cells and the underlying collagen field, colored according to the colormap.
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Just as in section 3.3, we set the cell-substrate adhesion constant to 5 and the cell-cell ad-

hesion constant to 10 to keep the adhesion energies consistent between the simulations in

this set. We again iterate over the λ and cstr constants and run each simulation to 200Monte

Carlo step iterations, but with each iteration taking 5 Monte Carlo steps per grid point. We

choose to test our simulations for the λ velocity field constant over {0, 5, 10, 20} and the cstr

cell contraction stress constant over {0, 5, 10, 15, 20}. These values are all the same as in the

previous simulationwith one cell cluster. We can see the final state of each of the simulations

after 200Monte Carlo step iterations in figure 3.8.

Figure 3.9: A simulation of 2 initial cell clusters each with 16 cells was runwith velocity field constant λ = 10 and cell

contraction stress constant cstr = 15. The simulation states for six different time points in the simulation are shown,

including both the cells and the underlying collagen field as well as the target point for each of the cells as a cross.

From figure 3.8, we can see much greater variation in cell movement for the different sets

of parameters. As expected, when there is low cell contraction stress for feedback from the

cells upon the collagen, the cells remain relatively motionless based on the adhesion energies
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provided. The same is true for low velocity field constants, which decreases the influence of

the collagenonmoving the cells. Wenote thatwith high cell contraction stress but no velocity

field constant, the cells all finalize in the same configuration despite very different underlying

collagen stress values, as seen in the colored background.

When both λ and cstr are large enough, we are able to see interesting interactions between

the cell clusters. Bands form between the cell clusters, and with enough force, the cells in the

two clusters move along the bands and interact with the other cluster. The effect is particu-

larly strong when cstr = 20, with the two clusters essentially merging into one continuous

cluster along the collagen band that forms.

Six snapshots from a simulation with velocity field constant λ = 10 and cell contraction

stress constant cstr = 15 are shown in figure 3.9. Compared to the snapshots in figure 3.7,

which was run for the same parameters, we can see that there is much more movement.

3.4.1 Effect of Adhesion Energy on Coupling

While both the velocity field constant and the cell contraction stress constant are vital to de-

termining the cell interactions with the substrate, adhesion energy logically should also play

a role in cell movement. In these simulations, we check to see how two separate cell clusters

would interact based on different cell-substrate adhesion energy constants. As in the previ-

ous simulation, we initialize our simulation as two separate clusters of 16 cells, each in a 4 by

4 square with a cell radius of 0.1 physical grid units. As before, the clusters are located on a

lattice grid of size 6 by 6 physical grid units and 150 by 150 lattice points. The target volume

for each cell is set to 30, and the volume constraint constant is set to 15.

We set the cell-cell adhesion energy constant to 10 and the contraction stress constant cstr
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Figure 3.10: A simulation of 2 initial cell clusters each with 16 cells was run for a set of different motility term constants:

the λ velocity field constant and theJsub cell-substrate adhesion energy constant. The final simulation state for each of

the different parameter cases is shown, including both the cells and the underlying collagen field, colored according to the

colormap.
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to 15. We then iterate over the velocity field constant λ and cell-substrate adhesion energy

constant Jsub and again run each simulation to 200 Monte Carlo step iterations, but with

each iteration taking 5 Monte Carlo steps per grid point. We choose to test our simulations

for λ over {0, 5, 10, 20} andJsub over {1, 5, 10, 15, 20}. We can see the final state of each of

the simulations after 200 Monte Carlo step iterations in figure 3.10, and six snapshots from

a simulation with velocity field constant λ = 10 and cell-substrate adhesion energy constant

Jsub = 5 are shown in figure 3.11.

Figure 3.11: A simulation of 2 initial cell clusters each with 16 cells was runwith velocity field constant λ = 10 and

cell-substrate adhesion energyJsub = 5. The simulation states for six different time points in the simulation are shown,

including both the cells and the underlying collagen field as well as the target point for each of the cells as a cross.

From figure 3.10, we can see that as expected, adhesion energy, particularly cell-substrate

adhesion energy, plays a significant role in determining the extent of cellularmovement. High

cell-substrate adhesion energy discourages cells from separating and interacting more closely

with the substrate, thus discouraging cell disorganization that would have been caused by the
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velocity field and collagen. This remains true regardless of the strength of the influence of the

velocity field on the cells: as we can see, as λ increases from 0 to 20, for high values of Jsub,

the clusters still remain very cohesive and largely motionless.

The opposite extreme is true when the cell-substrate adhesion energy is low. At almost

no adhesion energy, all of the cells are very dispersed and the cells mold almost exactly to

the underlying collagen. Overall, mechanics seems to be best represented by a cell-substrate

adhesion energy of 5, which allows for clusters that remain mostly together while also fol-

lowing the underlying collagen closely. In this case, we can notice that the extent of cellular

disorganization increases with higher values of λ, which is what we would expect.

54



4
Conclusions

Inthis thesis, we seek to develop amethod tomodel cells while incorporating complexme-

chanics in a manner that does not require excessive amounts of resources and that remains

versatile for many different applications. We do so by coupling the cellular Potts model with

the reference map technique, allowing the collagen from the reference map technique to in-
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teract with the cells in the cellular Potts model to implement physical mechanics. With our

model, we are able to replicate representative simulations of cells growing on a complex col-

lagen material and have successfully demonstrated how to couple mechanics to the cellular

Potts model.

4.1 Potential for FlexibleModeling ofMechanics

The computational significance of this work lies in the original use of a simple lattice-based

agent-based model in combination with a nonlinear continuum modeling technique. Vari-

ous studies have investigatedmethods to model nonlinear materials like in the reference map

technique, or to use agent-basedmethods to study various intercellular phenomena, whether

with the cellular Potts model or otherwise. However, the methods that are able to model the

complexmechanics of nonlinear biomaterials typically donot scalewell for larger systems and

larger numbers of cells, and those that are able to approximate nonlinear mechanics through

simpler methods, such as looking at entire clusters as whole, are typically unable to capture

complexities of individual cells24.

On the other end, intercellular phenomena have been studied extensively using variations

of agent-basedmodeling. Even just looking at the cellular Potts model specifically, the model

has proved to be extremely versatile in modeling various biological phenomena and systems,

on both the cellular and the tissue level. The versatility of this model did not preclude the

model from the innate limitations of a purely lattice-based model. The limitations of a rigid

and simple framework are especially apparent in attempts to characterize interactions with

a complex and dynamic environment. Various studies have attempted to extend the cellu-

lar Potts model to incorporate cellular interactions with a complex substrate, often through
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chemical signalling or external forces, but while the results often do exhibit some character-

istics of cellular interactions in complex environments, the similarities are complicated by

nonlinear changes and more intensive interactions between the cells and the substrate.

In this thesis, we develop a generalizable framework for coupling complex physical me-

chanics with multicellular simulations by utilizing the reference map technique in conjunc-

tion with a multicellular simulation in the form of the cellular Potts model. We show that

the coupling of the two models allows the cells to act upon the underlying gel and for the

gel to influence the cells’ movement. The fact that both models are based on a regular grid

structure maintains the versatility of the cellular Potts model, allowing it to be used tomodel

other equations and functionality, such as chemical signalling or diffusion simultaneously

with the complex mechanics from the underlying substrate.

Of particular note is that a previous study sought tomodel mechanical interactions specif-

ically between cancerous mammary acini and utilized the reference map technique to suc-

cessfully demonstrate the complexity of geometries and configurations in the collagen gel.

However, despite the successful replications of experimental data, the model suffered from

crystallization issues where cell clusters (mammary acini in this case) would form clear hexag-

onal structures between adjacent cells, which were unrealistic and also heavily affected the

model27. Our model coupling the cellular Potts model with the reference map technique

was able to completely eliminate all of these packing effects, thus avoiding unintended spon-

taneous structure formation that could affect the interactions between the cells or between

the cells and the substrate.
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4.2 Insights on Factors that Influence Cellular Interactions

The versatility of the model, especially due to being based upon the cellular Potts model,

allows us to study how the movement of the cells change depending on a combination of

different factors.

Crucially, we find that when comparing the simulations with only one cell cluster with

those with two cell clusters, the cells in the two cluster systems go through more destabiliza-

tion and disorganization. As we can see from figure 3.8, in the simulations with two clusters,

the cells would move between clusters and generally be more likely to separate from their

original cluster. This is representative of what occurs biologically. Shi et. al experimentally

showed that when two or more contractile acini are sufficiently close together, they can in-

teract via collagen bands that form between them, and disorganization of interacting acini is

more extensive than that of noninteracting acini19. Just as we can see in figure 3.9, the two

cell clusters are sufficiently close together to see a collagen band forming in the underlying

substrate, and the substrate induces movement in the cells to interact between the clusters.

In comparison, in figure 3.7, only one cell cluster is implemented in the simulation, and thus

while it does seem to move slightly according to the collagen, no large bands are formed and

thus cell disorganization is much smaller. Thus, we are able to replicate the significant dif-

ferences in cell movement and disorganization that are caused by increasing number of cell

clusters and distance between them.

Several parameters tested inour simulations included the velocityfield constant, the strength

of the cell contraction stress, as well as the adhesion energy constants. We found all three fac-

tors to have significant influences on the movement of the cells. When the velocity field con-
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stant λ is zero, the cells will not move according to the underlying collagen, regardless of the

strength of the cell contraction. When the cell contraction is low, the cells do not pull upon

the collagen and there is little movement. When cell-substrate adhesion energy is high and

cells are penalized for interacting closely with the substrate, regardless of the strength of the

velocity field constant or the cell contraction, the clusters will stay very cohesive and essen-

tially motionless. However, with appropriate parameters, the simulation exhibits behavior

representative of what we would expect, as well as from experimental data19.

4.3 Future Directions

Our model has allowed us to understand how changing various parameters and characteris-

tics of the simulation or how cells are connected with each other influences how the simula-

tion destabilizes. Different features of cell clusters can greatly influence the further develop-

ment of the simulation.

In our study, we did not implement precise parameter matching, instead working toward

a proof of principle that this framework can successfully implement our desired type ofmod-

eling. We make use of non-dimensionalized quantities for the parameters and results we are

presenting. However, we do have access to rheometer data on collagen gel mechanics and

how the strain and stress fields of the collagen gel evolves over time. This quantitative data

on the underlying collagen substrate would allow us to precisely calibrate thematerial param-

eters and assign specific units and numbers to the physical units of the collagen simulation,

which would then translate to the cellular Potts model. Our framework can be applied to a

variety of systems through the use of appropriate length, time, and mass scales.

We consider the problem in this thesis only in two dimensions, while many experimental
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models such as the study by Shi et al. involve somewhat three-dimensional cells19. The cellu-

lar Pottsmodel is commonly used tomodel three-dimensional systems and thus canbe readily

extended to a 3D cell culture, and the general framework for combining with the reference

map technique remains the same in principle in 3D. Further studies could involve how 3D

cells would behave with cell interactions from three dimensions, and further consideration

would need to be taken as to how to implement collagen forces in the form of sinks in 3D.

Finally, one of the greatest benefits of the cellular Potts model is the ease with which it

can be implemented and used to model a variety of different systems. Of note is the use

of CompuCell3D, a three-dimensional software problem solving environment that is con-

ducive for experimentation and testing of biological models using the cellular Potts model.

In the preliminary stages of this study, we attempted to implement mechanics through the

CompuCell3D framework, but the software proved too limited for the extensive coupling

that we needed to produce. Now that we have demonstrated the feasibility of adding phys-

ical mechanics through coupling the cellular Potts model and the reference map technique,

these basic principles can be incorporated into any cellular Potts model framework, such as

CompuCell3D. Doing so would allow for better access and usage of this framework in fur-

ther simulations that could involve more realistic mechanics. We hope that our proposed

framework and model is a useful tool in understanding and modeling mechanical interac-

tions that occur between cells and complex underlying substrates, a concept that is crucial in

many biological systems.
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