
WebAssembly as a Multi-Language Platform

Citation
Wendland, Alexander Rowe. 2020. WebAssembly as a Multi-Language Platform. Bachelor's
thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364765

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364765
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=WebAssembly%20as%20a%20Multi-Language%20Platform&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=d705c164a33af6d0c81b3e22026c2199&departmentComputer%20Science
https://dash.harvard.edu/pages/accessibility

WebAssembly as a
Multi-Language Platform

a thesis presented
by

Alexander R.Wendland
to

The Jovial andWise Readers of
The Department of Computer Science

Harvard University
Cambridge, Massachusetts

May 2020

Thesis advisor: Professor Nada Amin Alexander R. Wendland

WebAssembly as a
Multi-Language Platform

Abstract

Developers choose languages primarily off of the quality of libraries in their ecosys-
tems. However, what if languages and libraries were orthogonal? What if multiple
languages could be seamlessly adopted in a single application, depending on the im-
mediate task at hand? Currently, multi-language interoperability is usually pairwise,
with explicit support provided to call from one specific language to another. When it’s
not, developers usually give up substantial safety guarantees such as type soundness or
memory integrity. Yet with ongoing work in modular secure compilation, it should be
possible to maintain the integrity of each language’s abstractions when interoperating.
What is needed for these techniques to enter common software development practice,
and to evolve research further, is a sufficiently capable intermediate language that can
act as a target for these modular secure compilers.

WebAssembly is a nascent language with wide industry backing and strong secu-
rity fundamentals. It has strong typing of instructions and function calls, and pro-
vides module-based encapsulation of functions and memory—powerful primitives for
maintaining the integrity of source-level abstractions. By extending WebAssembly fur-
ther, through the introduction of a lightweight abstract type system, these abilities are
strengthened even more. This thesis will show practical examples of how this extended
WebAssembly is sufficient to protect additional abstractions, like object method access,
without needing to introduce heavy language features like first-class object support.
This thesis speculates, but does not prove, that with this simple abstract types exten-
sion WebAssembly can function as a performant target language for a modular secure
compiler.

iii

Contents

0 Introduction 1
0.1 Changing Times . 3
0.2 WebAssembly, A New Champion? . 5
0.3 Contributions . 7

1 Historical and RelatedWork 8
1.1 Java Virtual Machine . 9
1.2 Common Language Runtime . 10
1.3 PNaCl . 12
1.4 Asm.js . 13
1.5 Truffle &GraalVM . 13
1.6 Secure Compilation . 14

2 ExtendingWebAssembly with Abstract Types 17
2.1 int32Addresses as Object References . 19
2.2 Abstract Types: Unforgeable References +More 21

3 Maintaining the Integrity of Source-Level Abstractions 27
3.1 Type Safe Function Calls . 28
3.2 (Somewhat) First Class Functions . 29
3.3 Closures . 33
3.4 Object Methods . 33
3.5 Field Access Modifiers . 33
3.6 Representation Invariants . 34

4 Future & OngoingWork 36
4.1 Performance Concerns . 37
4.2 Additional Extensions . 38
4.3 Interplay with Other WebAssembly Proposals 43

5 Conclusion 46

Appendix A Expanded Code Samples 47
A.1 Alternative Abstract Type Syntax . 47
A.2 Array Library . 48

References 56

iv

Acknowledgments

I’d like to extend a deep thank you to the many people that helped me with this
thesis and throughout my Harvard Computer Science career. My thesis advisor, Pro-
fessor Nada Amin, took me on as a last minute thesis project, fed me rosemary french
fries from Clover, and dispensed deep-seated wisdom on a broad range of CS topics.
Yizhou Zhang and Professor Steve Chong took the time to understand my gesticu-
lated rants and provide critical feedback. Before this thesis endeavor, a bevy of intel-
ligent, kind, committed professors helped me work through a world of CS material,
frequently with stand-up comedy level delivery or captivating narratives that you’d ex-
pect out of a TED talk for. Thank you to Professors Margo Seltzer (CS 61), Stuart
Shieber (CS 51), Todd Zickler (my undergraduate advisor), Michael Mitzenmacher (CS
222), James Mickens (CS 263)*, Minlan Yu (CS 245), Eddie Kohler (CS 260R), and
Elena Glassman (CS 279R) for answering countless questions and engaging in many
office hours discussions.

I’d also like to thank an invaluable group outside of Harvard’s faculty. Harvard’s
CS Program Coordinator, Beth Musser, created an undergraduate experience that was
seamless, fun, and stress-free. Two of my undergraduate peers, Theodore Liu and Gar-
rett Tanzer, deciphered and answered non-sensical questions I sent them at all hours
of the night. Luke Wagner from Mozilla was a priceless source of guidance and in-
formation on all-things-WebAssembly, and was one of the most rapid, consistent, and
thoughtful email respondents I’ve had the pleasure of interacting with. Andreas Ross-
berg and Ross Tate wrote extensive WebAssembly proposals and quickly responded to
Github issues that I opened. Andreas Haas provided me with a copy of the LATEXsource
for their PLDI ’17 paper so that I didn’t have to recreate their syntax tables. To every-
one who helped me on this journey, thank you!

*Professor Mickens current webpage bio says “Abstract: In this bleak, relentlessly morbid talk, James
Mickens will describe why making computers secure is an intrinsically impossible task. He will explain why no
programming language makes it easy to write secure code.” (emphasis mine). Oh well, this thesis was fun
to work on anyways.

v

0
Introduction

Multi-language interoperability is a well-trodden path; across the decades

many language execution platforms have approached this problem. Two of the most no-

table, the Java Virtual Machine andMicrosoft’s Common Language Infrastructure, have

found large measures of success. While initially created for the Java language, the JVM

has since been expanded upon and used as a target for many more languages, including

such varied paradigms as JRuby1 and Clojure2. Microsoft’s Common Language Runtime

(CLR) was designed from the start as a multi-language platform3 and is now employed

widely to run C#, C++, and much more. Both have succeeded with massive adoptions

and evolution, growing from their initial designs to introduce new features to ease multi-

language usage (such as invokedynamic on the JVM for languages such as Smalltalk and

1

Ruby4 or the Java Native Interface for unmanaged interactions with language such as C5).

Both the JVM and CLR aspired to several core principles4:

Portability

The JVM had a famous slogan, ”Write Once, Run Anywhere”6 which epitomized its

goals of portability. Instead of compiling programs to system-specific assembly, the JVM

bytecode and Common Intermediate Language of the CLR offered an opportunity to

compile programs once and enable them to execute on any platform. These promises of

portability came with restrictions (and escape hatches) for using platform specific instruc-

tions, but with the standardization of instruction sets and the expanded usage of JIT com-

pilers it permitted program developers to not have to worry about platform specific details.

Security

The JVM and CLR are both stack-based virtual machines which provide protection

from arbitrary memory access and usage of system resources. This virtual machine-based

execution model provided increased security on top of the operating system’s own process

isolation. Furthermore, both platforms performed verification of any bytecode prior to

execution in order to ensure that unsafe operations, such as arbitrary memory accesses, were

not permitted7.

Efficiency

Both platforms aspired to be widely leveraged, with an understanding that with more

users on the platformmore effort would be focused on improving it and therefore more de-

velopers would benefit from any incremental changes. Both the JVM and CLR introduced

Just-In-Time compilation (JIT) techniques, enabling them to perform on-par with native

C programs8,9. Any improvements to this JIT engine by the practitioners of one high-level

2

language would likely benefit the users of other languages on top of the platform.

Interoperability

Potentially the most challenging principle, but also potentially the most useful, was the

aspiration for interoperability of higher-level languages on these platforms. By providing

core mechanisms for object creation, method invocation, access control, garbage collection,

and execution threading, the JVM and CLR anticipated that library reuse would become

possible ontop of their platforms between different higher-level languages10.

0.1 Changing Times

It cannot be overstated how successful these runtimes have been and howmuch the soft-

ware engineering world (and the world at large) has benefited from their creation and de-

velopment. It’s on the shoulders of these giants that any future progress towards achieving

these principles will be built, and it’s also historically been through the obstacle of these

existing languages that any new upstart approach has had to overcome.

Over the past several years an interesting new era has begun to emerge. After a decade of

torrential growth JVM usage has begun to decline andMicrosoft’s centralized development

of the CLR has landed it on the outside of the broader open-source trends.

Most importantly, the manner in which programs are distributed and consumed looks

very different than it did 20-years, or even 10-years, ago. While desktop programs used to

dominate the field of executed code, the Web and its plethora of questionably-provinced

programs are the new normal. This has forced a need to reimagine what the thresholds for

security should be, and how trust (or more importantly, lack of trust) factors into execu-

tion.

3

System architectures have similarly undergone a transition, both narrowing the field of

platforms that programs will execute on, while at the same time expanding them drastically.

With the demise of PowerPC came the birth of ARM and other low-energy architectures.

Meanwhile, new execution models became prevalent with the surgence of the cloud and

hardware sharing. Similarly, edge computing has introduced a more pressing need for small,

quick-starting program execution.

All-in-all, expectations from the past no longer align with the goals of today. Starting in

2015, browser vendors began removing the ability to execute Java applets (i.e. programs

loaded via a website and run on the JVM)11. New principles of security—a distrust-first

approach to execution; an assumption that any feature, especially those that are undocu-

mented, will be used for exploits—became the norm, and the underpinnings of the JVM

and CLR has made their ability to meet these new standards difficult.

Furthermore, with the ongoing march of time, more and more code is getting written

for specific languages, with different languages developing different ecosystems for com-

puting tasks. For example, many machine-learning libraries are written in C++ and Python,

and plans to switch to different languages for performance and ease-of-development have

led to extensive discussion and consternation12. A large survey byMeyerovich and Rabkin

published in 201313 found that,

Intrinsic features have only secondary importance in adoption. Open source

libraries, existing code, and experience strongly influence developers when

selecting a language for a project. Language features such as performance,

reliability, and simple semantics do not.

What could a future era look like where existing code and libraries wasn’t the driving

4

factor of language adoption? Instead, what if languages were selected due to intrinsic traits

and adopted with low switching costs? Interoperability provides one necessary part of this

path by allowing developers to treat libraries and languages orthgonally.

0.2 WebAssembly, A NewChampion?

WebAssembly14 was first announced in 2015 and is described as,

A safe virtual instruction set architecture that can be embedded into a range

of host environments, such as Web browsers, content delivery networks, or

cloud computing platforms. It is represented as a byte code designed to be

just-in-time- compiled to native code on the target platform. Wasm is posi-

tioned to be an efficient compilation target for low-level languages like C++.15

As can be seen, WebAssembly explicitly targets the first three aforementioned principles

of Portability, Security, and Efficiency. It does so through several core design decisions.

Formal Semantics

WebAssembly is based on a normative specification with fully formal semantics. The

authors intended to avoid any undefined behavior and subsequent language extensions are

required to have a “full formal specification before final adoption”15. Mechanized verifica-

tion work is also ongoing with a 2018 paper byWatt demonstrating a verified implementa-

tion of the type checker and interpreter16.

Dynamic Linking

The core encapsulation unit of a WebAssembly progam is amodule. WebAssembly mod-

ules can contain private private memory, global variables, and functions. Each module de-

fines a set of exports (it can export any of the aforementioned elements) and defines a set

5

of imports that the host environment must resolve prior to the module’s execution. Mod-

ules are loaded in three phases: 1.) Validation, during which types are checked, 2.) Instan-

tiation, during which imports are resolved and type checked, and 3.) Invocation, when a

function within the module is executed.

Module linking is left to the host environment. At the language level, the import system

supports two-level namespacing, with the first level referring to a foreign module and the

second level referring to an element to be imported.

Encapsulated Memory

WebAssembly modules can contain private instances of linear memory which is a byte

addressable vector of uninterpreted data. This memory is private unless exported, and

therefore incorruptible by execution outside of the current module.

Strong Typing

Unlike x86 Assembly Language, WebAssembly is strongly typed. Function signatures

are verified before invocation, even when they occur dynamically.

0.2.1 WebAssembly’s Future

Arguably most important of all, WebAssembly has the correct political backing. Both the

JVM and CLR benefited greatly due to the context in which they were created in (mega-

corporations who were defining the software used by millions of other businesses). In ad-

dition to it’s technical merits, WebAssembly will benefit from a similar context: it is being

designed by a working group under the auspice of the W3C with participation from every

major browser vendor and many additional leading technology companies17. Given this

context, it’s less of a question of “Will WebAssembly be widely used?” and more of a ques-

6

tion of “When will WebAssembly be widely used?” and “How canWebAssembly improve

the software ecosystem?”.

0.3 Contributions

Assuming that WebAssembly did manage to succeed at these aims, it would be on track to

compete in the same multi-language field as the JVM and CLR. However, WebAssembly

as defined by its v1.0 specification is missing several core features that would be critical for

ergonomic and secure multi-language interoperation. Most notably, WebAssembly doesn’t

provide a mechanism for unforgeable addresses such as abstract types.

In Chapter 1 I’ll review the successes and difficulties of using existing intermediate lan-

guages for multi-language interoperability as well as the literature on secure compilation to

provide motivation for a new solution. In Chapter 2 I’ll introduce abstract types into the

WebAssembly specification and reference interpreter as a building block for maintaining

source-level abstractions. In Chapter 3 I’ll present tangible demonstrations of the source-

language abstractions that can now be maintained when usingWebAssembly as an interme-

diate language (IL), along with demonstrations of multiple languages interoperating*. In

Chapter 4 I’ll present additional extensions that should be researched, and I’ll discuss how

existing, important WebAssembly proposals interplay with abstract types.

Primarily, this thesis contributes a basic implementation of abstract types inWebAssem-

bly and takes a small step down the path of understanding what those abstract types enable.

I believe that WebAssembly can be the ideal multi-language platform, and I hope that tan-

gible demonstrations like the ones contained here will help achieve that.

*The source code supporting this thesis is located at github.com/awendland/2020-thesis

7

https://github.com/awendland/2020-thesis

I created everyone’s least favorite Java feature: checked

exceptions... but I can live with that.

JimWaldo (during a dinner discussion inWinthrop on

December 3rd, 2019)

1
Historical and RelatedWork

“As wewill see later, the contents of the call stack for execution are

not exposed, and thus cannot be directly accessed by a runningWebAssem-

bly program, even a buggy or malicious one.”. Oh what a wonderful world it

would be if this excerpt fromHaas et al.’s 2017WebAssembly introduction14 was the case

for all programs. Fortunately, for many programs this is the case. Since the introduction of

the Java Virtual Machine in 1995, and the Common Language Runtime in 2002, buffer

overflow vulnerabilities that were prolific in C/C++ and other manual-memory-managed

languages became much less common in user code.

Both the JVM and CLR introduced powerful features that enabled higher-level abstrac-

tions to be maintained, such as object references which were opaque and obviated buggy

8

pointer arithmetic. A large world of programs existed in languages outside of the JVM and

CLR sweet spot though, and over their lifetimes the JVM and CLR acquired a reputation

for security vulnerabilities or proprietaryness18,19,20,21. These reputations are of arguable va-

lidity, but nevertheless the JVM is no longer used as a platform for web applications11 and

the browser-based Silverlight variant of the CLR was deprecated in 201322.

1.1 Java VirtualMachine

The JVM had many compelling safety features. Two in particular are its constraints on

control flow and its support for a form of abstract types. For the former, control flow is

restricted such that goto instructions mandate that “the target address must be that of an

opcode of an instruction within the method that contains this goto instruction”23. For the

latter, privatemodifiers on object fields are enforced at runtime24, so object references can

be used as unforgeable existential types.

Despite these useful constraints, one of the difficulties with the JVM as a universal tar-

get platform is its eminent focus on object-oriented paradigms. Compiling non-garbage

collected languages to run on the JVM is doable (many projects–such as NestedVM25,

LLJVM26, GCC-Bridge27, and others28–have done so), but results in a subpar compila-

tion strategy and performance characteristics (most use a large array object to simulate vir-

tual memory). In the world of garbage collected languages though, the JVM shines, with

prominently maintained implementations of Ruby1, Python29, and Clojure2.

The Java Native Interface5 (JNI) was introduced in 1999 to improve interoperability

with non-garbage collected languages. The JNI provides bidirectional interoperability be-

tween JVM programs and native code through the use of function invocations outside the

9

JVM or external handles into JVM operations.

However, usage of the JNI can introduce many subtle errors into a program. As stated in

the Java SE 7 design documentation30,

The JNI does not check for programming errors such as passing in NULL

pointers or illegal argument types. [...] The programmer must not pass illegal

pointers or arguments of the wrong type to JNI functions. Doing so could

result in arbitrary consequences, including a corrupted system state or VM

crash.

The JNI’s flexibility in these matters makes it difficult to maintain the integrity of source-

level abstractions.

Furthermore, because the native code execution occurs outside the JVM, the JVM can-

not inline function calls between the two. Therefore, “it would be grossly inefficient to

iterate through a Java array and retrieve every element with a function call”30. To address

this, the JNI “has a nation of ‘pinning’ so that the native method can ask the VM to pin

down the contents of an array”, which it then receives a direct pointer to30.

1.2 Common Language Runtime

The CLR follows a similar narrative to the JVM. Like the JVM, the CLR was developed

under the auspice of a single company, Microsoft. However, in 2006 the specifications for

the CLR and related frameworks were submitted to the ECMA and ISO standards bod-

ies, and one main alternative implementation called Mono has arisen from it. Since 2014,

the governance has expanded to include a steering committee with membership outside of

Microsoft31.

10

The CLR experiences many of the same limitations as the JVM as a universal target plat-

form. However, several details differ. In 2005Microsoft introduced C++/CLI which was

an ECMA standardized language presented as a “binding between the Standard C++ pro-

gramming language and the Common Language Infrastructure”32. This was a second at-

tempt after the introduction of Managed Extensions for C++ which had “problems where

it obscured essential differences, and the design for overloaded syntaxes like [pointers] was

both technically unsound and confusing to use”10.

Notably, many efforts existed around the CLR with the direct goal of supporting lan-

guage interoperability. The rationale for C++/CLI10 included the following,

Windows Vista [...] offers over 10,000 CLI classes for everything from web

service programming [...] to the new 3D graphics subsystem [...] and pro-

grammers who want to use those features [can] use one of the 20 or so other

languages that do support CLI development. Languages that support CLI

include COBOL, C#, Eiffel, Java, Mercury, Perl, Python, and others; at least

two of these have standardized language-level bindings.

However, as of 2020, the C++/CLI language is intended only for the Windows plat-

form33. Despite many portions of the CLR being cross-platform (called .NET Core34), the

C++/CLI, and other native language implementations, remain non-portable because only

a portion of them actually runs on the CLR, other portions are still compiled and executed

natively35.

11

1.3 PNaCl

PNaCl, or Portable Native Client, was introduced by Google in 2010 as a way to run un-

trusted native code in a safe, portable manner by compiling source-languages such as C/C++

to LLVM bitcode, which is an architecture independent intermediate language36. This

bitcode is then translated into an architecture dependent executable to be run in sandbox

called NaCl, or Native Client37.

Several constraints exist in the PNaCl model. Firstly, programs must be deployed as stat-

ically linked binaries; they can’t depend upon execution-time resolution of their dependen-

cies. Each NaCl program executes in its own address space and must communicate with

other components via an interprocess communication channel. Secondly, substantial work

was required to make the underlying NaCl sandbox secure, since it is supporting the broad

set of x86 instructions which historically permit intra-opcode jumps, call stack overwriting,

buffer overflows, and various other threat vectors. A static validation phase occurs prior to

execution during which the NaCl binary is disassembled, instructions are checked for safe

usage and bounded memory access, and control flow is analyzed. Furthermore, execution

sandboxing leverages several types of hardware-based memory isolation, such as 80386 seg-

ments on x86, to further enforce memory access constraints. These features are dependent

on hardware support though and therefore unavailable on all platforms.

Despite being an impressive feat of security engineering, PNaCl adoption was low and

only ever implemented in the Google Chrome browser. In 2016 it was publicly revealed

that the PNaCl team had been destaffed at Google38 and most use cases had be deprecated.

12

1.4 Asm.js

In 2012, a Mozilla team introduced a “strict subset of JavaScript that can be used as a low-

level, efficient target language for compilers” called asm.js39. Concurrently, a compiler

called emscripten40 was released as a way to compile LLVM bitcode into asm.js. This JavaScript

subset relied on type coercions in the JavaScript language to annotate values with type in-

formation and to ensure values originating outside of the source language were marshalled

into appropriate types.

asm.jswas highly portable since it was executable anywhere that JavaScript was, and it

was able to achieve performance that was within 2x of native code for single-threaded com-

putational tasks. asm.js targeted a similar use case as PNaCl—performance—and therefore

didn’t introduce additional features like module encapsulation and unforgeable addresses

that would have made it a compelling platform for multi-language interoperation.

1.5 Truffle & GraalVM

Introduced by Oracle in 2012 on top of the GraalVM (a new JVM implementation)41,

Truffle provides a framework for composing multiple languages in a single managed run-

time. Truffle and GraalVMwere created with the explicit goal of “reus[ing] libraries from

Java, R, or Python” (and more) in “polyglot applications with a seamless way to pass val-

ues from one language to another”42. To do so, Truffle translates source languages into an

intermediate representation that is run on top of a shared runtime system43.

To reduce development time for new languages, Truffle provides a language implemen-

tation framework for handling AST construction and interpreting, as well as an object

13

storage model that language implementors can leverage44. Truffle permits safe object field

accesses without marshalling by using a dynamic dispatch model where read and write mes-

sages are sent, verified, and then responded to. The Truffle just-in-time compiler removes

the cost of these foreign object accesses by resolving them at AST compilation time, and

as a just-in-time compiler, Truffle is also able to perform cross-language inlining. Addi-

tionally, message resolution happens upon first usage and is then cached for performant

subsequent access43.

Truffle even supports low-level languages via an implementation of the LLVM bit-

code45. However, as of their latest paper in 2016, standard libraries were compiled fully to

native code, not left as Truffle executed LLVM bitcode intermediaries, due to performance

concerns.

GraalVM’s main drawback is that it is dual-licensed by Oracle as paid software (as of

April 2020, it costs $18 per processor core per month to use the Enterprise Edition46) and

is developed privately by Oracle Research Labs without a public standardization process.

1.6 Secure Compilation

Much academic work has been done on the topic of secure compilation, i.e. the preservation

of source-level abstractions from target-level attacks once programs have been compiled to a

target language*. Notably, most of this prior work has focused on full abstraction, which

is the preservation of these source-level abstractions under the condition that the entire

*The terms ”source-level abstractions” and “target-level attacks” come from Abadi’s 1998 paper47 and
Patrignani et al.’s 2019 paper48. “source-level abstractions” refers to language features such as Java’s private,
protected, public field modifiers “target-level attacks” refers to a threat model where the attacker is only
constrained by the target language’s semantics, not the semantics of the source language.

14

program is compiled at once49,50,51. However, multi-language interoperability is unable

to rely on this precondition, since each language will likely require its own compilation

pipeline. Therefore, an extension of secure compilation calledmodular secure compilation is

the main focus here.

Modular secure compilation provides the foundation for multi-language interoperabil-

ity because it ensures that once a given module is linked to another, the behavior will be

unchanged and the assumptions that the source-language of the module had will still be

maintained52. Though multi-language interoperability can occur without modular secure

compilation guarantees, the chance that subtle, latent bugs will be introduced during in-

teroperation is greatly reduced with a modular secure compiler and therefore developer

experience is substantially better.

In their 2016 paper52, Patrignani et al. review existing secure compilers targeting pro-

tected modular architectures such as those based on memory layout randomization53. They

propose that these secure compilers could be extended to support modular compilation,

but that the target platforms would require support for “state [...] divided over [...] var-

ious protected modules” and “object references [that] can also be shared between some

modules and still be unknown to other ones”. Combined with support for abstract types,

WebAssembly’s modular encapsulation provides a foundation that can address 6 of the 8

threats they discuss: P1. object-id guessing, P2. call stack shortcutting, P3. mis-typed objects

in other modules, P4. existance of objects in other modules, P6. module id at the target level,

and P8. object-id shuffling. The extension of WebAssembly proposed in this thesis would

not be able to address P5. determining arbitrary object type, and further work is needed to

determine if it could performantly address P7. dynamic dispatch.

15

Additional secure compilation work is based on the preservation of types, and there-

fore runs into difficulties when targetting platforms like x86, LLVM, or JavaScript which

lack sufficient type systems. Swamy et al.’s 2014 gradual type-system depends on JS*, a

dependently-typed variant of JavaScript54. Barthe et al. demonstrate secure compilation

with noninterference for a multi-threaded system when targeting a typed assembly lan-

guage55. Baltopoulos et al. showcase a multi-tier web application (with code executing on

the server and client) that maintains security in the face of a malicious client and ensures

full abstraction by targeting F7, anML derivative with refinement types56. Similar to the

theoretical languages used as the underpinnings of these papers, WebAssembly is strongly

typed and abstract types provide the foundation to enforce refinement conditions; there-

fore it could likely serve as a suitable target for these secure compilers.

Furthermore, most approaches to full abstraction have focused on bilateral proofs, from

a source language to a target language. Could a proof exist that traversed through an in-

termediate language first, in order to prove full abstraction between two disparate source

languages? This thesis doesn’t attempt to showcase that proof, but instead will speculate

that if it exists, WebAssembly may make a compelling intermediate language to target in the

resulting compilers.

Given the needs laid out by the literature on secure compilation, WebAssembly could

be well positioned to serve as the target language in many of these systems, bringing the

benefits of currently impractical secure compilers to everyday usage. The next chapters will

extendWebAssembly to help support these ends and will provide practical demonstrations

of how it meets these requirements.

16

WebAssembly is great, I only wish it had abstract types.

Donald Knuth (in a dream I had onMarch 13th, 2020)

2
ExtendingWebAssembly

with Abstract Types

Despite self-identifying as “so far so boring”*, the overview of the formal Web-

Assembly specification presented by Haas et al. in their 2017 paper, “Bringing the Web

up to Speed withWebAssembly” is succinct and informative14. It presents a language for

computations on a stack machine with,

[v]alidation rules ... defined succinctly as a type system. This type system is,

by design, embarrassingly simple. It is designed to be efficiently checkable in a

*You can find this lovely phrase as the hook at the end of Section 2.1 encouraging readers to keep going.

17

single linear pass, interleaved with binary decoding and compilation.

These typed, stack-based operations are augmented via a module system in which func-

tions, globals, memories, and other elements can be defined and exported for consumption

by other modules. Function calls are type checked, even between modules, and call stacks

are hidden. Only structured control flow is supported, so jumps to the middle of instruc-

tions or to privately-scoped functions is not possible.

Already, this provides a nice foundation for maintaining the integrity of source-level ab-

stractions against the threat of target-level attacks. However, though Haas et al. discuss the

goal of interoperability in their 2017 paper, there is a key omission in these initial designs

(emphasis mine):

It is possible to link multiple modules that have been created by different pro-

ducers. However, as a low-level language, WebAssembly does not provide

any built-in object model. It is up to producers to map their data types

to numbers or the memory. This design provides maximum flexibility to

producers, and unlike previous VMs, does not privilege any specific program-

ming or object model while penalizing others. ThoughWebAssembly has a

programming language shape, it is an abstraction over hardware, not over a

programming language.

The principles of this approach align with learnings from the shortcomings of the JVM

and CLR, and will likely enable WebAssembly to be a good platform for any widely used

source language. However, as it currently stands, this decision leaves a gap inWebAssem-

bly’s ability to maintain certain source-level abstractions in a multi-language environment.

18

In particular, referring to objects across language boundaries cannot be done in an unforge-

able manner, and therefore malicious (or poorly configured) modules can corrupt the state

of other modules.

Consider the following library written in (pseudo) C++.

1 /* lib01.cpp */
2 class CandyBag {
3 private: int numCandies = 10;
4 public:
5 takeCandy() {
6 this.numCandies--;
7 }
8 }
9

10 class TrashCan {
11 private: int fillLevel = 0;
12 public:
13 throwItemAway() {
14 this.fillLevel++;
15 }
16 }

This library will be consumed by a different language, and to demonstrate the ability to

violate the library’s source-level abstractions, we’ll consume it directly via WebAssembly.

Under the v1.0 WebAssembly specification, the eminent way to support the source-level

abstraction of object references is by using int32 values as memory addresses.

2.1 int32Addresses as Object References

lib01.cpp could be compiled to the following (detail elided) WebAssembly†.

†WebAssembly, though defined as a binary format, has a canonical textual representation in the form of
S-expressions.

19

1 (module lib01
2 (memory ...)
3 (...alloc + other supporting functions...)
4 ;; CandyBag methods, the first i32 param represents ”this”, the
5 ;; memory address of the instance to operate on
6 (func (export ”CandyBag.new”) ...)
7 (func (export ”CandyBag.destruct”) (param i32) ...)
8 (func (export ”CandyBag.takeCandy”) (param i32) ...)
9 ;; TrashCan methods, with the same ”this” semantics
10 (func (export ”TrashCan.new”) ...)
11 (func (export ”TrashCan.destruct”) (param i32) ...)
12 (func (export ”TrashCan.throwItemAway”) (param i32) ...)
13)

Consider a malicious WebAssembly module E that consumes this library and was aware

of the int32 representation being used to refer to different CandyBag and TrashCan (as op-

posed to a source-level consumer who respects the object reference abstraction). Two pri-

mary integrity violations can arise.

Firstly, module E could abuse the isomorphism of the CandyBag and TrashCan object

references (they are isomorphic because they’re both int32s) to perform unintended op-

erations. Consider a malicious module that holds a reference C from CandyBag.new. Nor-

mally, a CandyBag can only have its amount of candy depleted. However, if memory con-

tents for CandyBag instances are laid out the same as TrashCan instances, then the malicious

module could pass C to TrashCan.throwItemAwaywhich would increment numCandies!

This attack could be mitigated by introducing a header in each object’s memory struc-

ture which identifies the type of the object. Then, a runtime check could occur in each

method to verify if the memory address pointed to the right type. However, this introduces

memory and computation overhead on every operation.

20

Secondly, even if module E had not constructed a CandyBag but had access to lib01’s ex-

ported functions, they could arbitrarily create an int32 value and pass it to the CandyBag.takeCandy

function. This would let module E eat someone else’s candy!

Assuming that the memory being used was notably less than what an int32 could ad-

dress, several of the int32’s bits could be used as a unique tag. This tag could be stored in

each object’s memory structure and compared upon derefencing. This mitigation is prob-

abilistic, so if 6 of the 32 bits were dedicated to the tag then the attacker has a 1 in 26 = 64

chance of getting it right. A variation of this approach is pursued by LLVM via Hardware-

assisted AddressSanitizers57 where they find a 2x slowdown in CPU and 6% overhead in

memory.

These are the same issues that have deeply plagued C/C++ for decadees; the pointers are

forgeable and the mitigations are insufficient or costly.

2.2 Abstract Types: Unforgeable References +More

Creating truly unforgeable references requires additional assistance from the language. One

of the ways to do this through abstract types (also known as existential types or abstract

data types)58. Abstract types are a feature in many languages, from Ada to the ML family,

since they provide a valuable function: they can create nominal constructs around a hidden

underyling type.

21

For example, consider this demo modeled from the OCaml manual:

1 (* lib.ml *)
2 module Date = sig
3 type date (* public, abstract type *)
4 end =
5 struct
6 type date = {day : int; month : int; year : int} (* private, concrete type *)
7 val create : ?days:int -> ?months:int -> ?years:int -> unit -> date
8 val yearsBetween : date -> date -> int
9 val month : date -> int
10 ...
11 end
12

13 (* consumer.ml *)
14 let kjohnson_bday : Date.date = Date.create 8 26 1918 () in
15 let mercury_launch : Date.date = Date.create 2 20 1962 () in
16 let kj_age_at_launch = Date.yearsBetween kjohnson_bday mercury_launch in ...
17 (* kjognson_bday.day <- this access is invalid *)

The author of lib.mlwould be free to change the underlying type of Date.date (such

as using an int to represent milliseconds since the Unix epoch instead of the current record

type) and the author of consumer.mlwould be none-the-wiser. As an abstract type, Date.date’s

actual representation is opaque to any users outside the source module.

2.2.1 Adding Abstract Types toWebAssembly

TheWebAssembly specification comes with a reference interpreter that is closely modeled

off of the operand and value stack-machine described in theWebAssembly specification,

making it a convenient WebAssembly implementation to build upon for language experi-

mentation.

22

(raw value types) t ::= i32 | i64 | f32 | f64
(value types) ta ::= t | abstype_ref inst i
(packed types) tp ::= i8 | i16 | i32
(function types) tf ::= ta∗ → ta∗

(global types) tg ::= mut? ta

unopiN ::= clz | ctz | popcnt
unopfN ::= neg | abs | ceil | floor | trunc | nearest | sqrt
binopiN ::= add | sub | mul | div_sx | rem_sx |

and | or | xor | shl | shr_sx | rotl | rotr
binopfN ::= add | sub | mul | div | min | max | copysign
testopiN ::= eqz

relopiN ::= eq | ne | lt_sx | gt_sx | le_sx | ge_sx
relopfN ::= eq | ne | lt | gt | le | ge
cvtop ::= convert | reinterpret

sx ::= s | u

(instructions) e ::= unreachable | nop | drop | select |
block tf e∗ end | loop tf e∗ end | if tf e∗ else e∗ end |
br i | br_if i | br_table i+ | return | call i | call_indirect tf |
get_local i | set_local i | tee_local i | get_global i |
set_global i | t.load (tp_sx)? a o | t.store tp? a o |
current_memory | grow_memory | t.const c |
t.unopt | t.binopt | t.testopt | t.relopt | t.cvtop t_sx

?

(abstypes) abs ::= ex∗ abstype_new ta | ex∗ abstype_sealed im
(functions) f ::= ex∗ func tf local t∗ e∗ | ex∗ func tf im
(globals) glob ::= ex∗ global tg e∗ | ex∗ global tg im
(tables) tab ::= ex∗ table n i∗ | ex∗ table n im
(memories) mem ::= ex∗ memory n | ex∗ memory n im
(imports) im ::= import “name” “name”
(exports) ex ::= export “name”
(modules) m ::= module abs∗ f∗ glob∗ tab? mem?

Figure 2.1: Changes to the WebAssembly syntax (as defined by Haas et al. 2017) to support abstract types are colored
in red

Figure 2.1 shows the abstract syntax changes that were made to theWebAssembly v1.0

specification in order to support abstract types. The changes are built around a modifica-

tion to the core value type, which was extended to include an abstract type reference. These

abstract type references refer to abstract types constructed by the abstype_new operation.

When used inside its originating module, an abstract type reference is “unwrapped” to

its underlying raw value type. In that manner, new abstract types do not affect local mod-

ule type checking. However, when imported by another module via the abstype_sealed

operation, these abstract type reference are now opaque and act as nominal identifiers struc-

turally composed of a reference to the originating module instance and the abstype_new

operation which created it.

Type checking occurs in three phases in WebAssembly:

23

The first phase, calledValidation‡, operates on amodule definition and ensures that

module fields are well-formed and that instructions consume and create appropriate types

on the stack. By resolving new local abstract type references to their underlying raw value

types, most instructions are unaffected by these language changes. However, in theVali-

dation phase imported abstract type reference created via the abstype_sealed operation

are unable to be fully resolved and are therefore represented an an intermediate local form

that is uniquely identified by the abstype_sealed operation that created it. These are type

checked like any other raw value type and will therefore cause type errors when used with

most instructions.

The second phase, called Instantiation, executes themodule definition to create amodule

instance. During this process, imports are linked and abstract type reference created via the

abstype_sealed operation are fully resolved. In this phase, abstract type reference within

function types and global types are compared betweenmodule instances to ensure that they

represent the same abstract type.

The third phase, called Invocation, executes computation within themodule instances.

Most operations no longer perform type checking during this phase, since all types have al-

ready been validated, however, the call_indirect instruction still needs to perform type

checking due to its dynamic operations. The call_indirect allows callees to invoke func-

tions dynamically registered in a table. The types of these functions can be heterogeneous,

and therefore, to ensure sound function invocations, their types must be checked dynami-

cally at runtime.

As anticipated, no additional type checking phases had to be added in order to support

‡These phases are defined in theWebAssembly v1.0 specification under the ”Semantic Phases” section.

24

abstract types, and the same one-pass linear approach was sufficient to check them. Ap-

proximately 625 lines of source code were changed to support abstract types, with the bulk

of changes required in the parser definition to introduce the abstract type reference wrap-

ping around the raw value types§. Furthermore, besides the call_indirect instruction,

abstract types are a zero-runtime-cost abstraction.

Figure 2.2 showcases what a S-expressionWebAssembly script implementing similar

functionality to the previous OCaml demo would look like with these extensions. An al-

ternative syntax which makes greater use of existing operator names and may be more user

friendly is included in the Appendix in Section A.1.

§These changes can be found at github.com/awendland/webassembly-spec-abstypes. The stated line
counts do not include changes to the binary encoding or decoding procedures, or the JS translations.

25

https://github.com/awendland/webassembly-spec-abstypes

1 (module $lib_date
2 (export ”Date” (abstype_new $Date i32))
3 (func (export ”createDate”)
4 (param $day i32) (param $month i32) (param $year i32)
5 (result (abstype_new_ref $Date))
6 (i32.add ;; Day, Mon, Year -> Unix milliseconds
7 (i32.mul (local.get $day) (i32.const 86400))
8 (i32.add
9 (i32.mul (local.get $month) (i32.const 2592000))
10 (i32.mul (i32.const 31557600)
11 (i32.sub (local.get $year) (i32.const 1970)))))
12)
13 (func (export ”yearsBetweenDates”) (param (abstype_new_ref $Date))
14 (param (abstype_new_ref $Date)) (result i32)
15 (i32.sub (local.get 0) (local.get 1))
16 (i32.div_s (i32.const 31557600))
17)
18)
19 (register ”lib_date” $lib_date)
20

21 (module $main
22 (import ”lib_date” ”Date” (abstype_sealed $Date))
23 (import ”lib_date” ”createDate” (func $createDate
24 (param i32) (param i32) (param i32)
25 (result (abstype_sealed_ref $Date))))
26 (import ”lib_date” ”yearsBetweenDates” (func $yearsBetweenDates
27 (param (abstype_sealed_ref $Date))
28 (param (abstype_sealed_ref $Date)) (result i32)))
29 (func (export ”main”) (result i32)
30 (call $createDate
31 (i32.const 2) (i32.const 20) (i32.const 1962))
32 (call $createDate
33 (i32.const 8) (i32.const 26) (i32.const 1918))
34 (call $yearsBetweenDates)
35)
36)
37 (assert_return (invoke $main ”main”) (i32.const 43))

Figure 2.2: Sample textual WebAssembly in S-expression format with the abstract types extension. This sample is a poor
implementaࢼon for a date library because it incorrectly assumes that 1 year is always 31,557,600,000 milliseconds. Do not
use it.

26

Then they will call on me, but I will not answer; They will

seek me diligently but they will not find me.

Proverbs 1:28 (most likely discussing the benefits of

abstract types)

3
Maintaining the Integrity of

Source-Level Abstractions

“Unfortunately, most target languages cannot preserve the abstrac-

tions of their source-level counterparts”. This observation comes from Patrig-

nani et al. in their 2019 survey of formal approaches to secure compilation48. Fortunately,

the strongly typed underpinnings of WebAssembly and this paper’s proposed abstract type

extension provide a solid foundation for supporting many common source-level abstrac-

tions. What follows is a practical, non-proof based demonstration of maintaining the in-

tegrity of several widespread source-level abstractions.

To begin, we’ll cover some demonstrations of more direct source-level abstractions in

27

order to lay the groundwork for more indirect ones. Notably, many intermediate languages

already fail to maintain the integrity of any of these abstractions. Outside of the first one,

the focus behind these examples is to show use cases that are currently undocumented in

theWebAssembly test suite59 and to highlight the rich capabilities that WebAssembly (with

a few extensions) provides.

3.1 Type Safe Function Calls

Type safe function calls is an abstraction that supports several other important abstractions

identified by Patrignani et al. such as integrity of values and well-bracketed control flow48.

Type safe function calls ensure that functions are invoked with the correct number of ar-

guments and with the correct type of arguments, to avoid issues seen in un/weakly-typed

assemblies (such as x86 or LLVM bitcode) which allow call stack manipulation.

Consider the following C++ and Rust partial programs that a user wants to interoper-

ate:

1 /* demo01_m1.cpp */
2 bool isEven(int a) {
3 return a % 2 == 0;
4 }

1 /* demo01_m2.rs */
2 extern ”WASM” {
3 pub fn isEven(a: i32) -> bool;
4 }
5 pub fn main() -> bool {
6 return isEven(4) == true; // assert
7 }

28

These partial programs would compile to the following (shortened) WebAssembly:

1 (module $demo01_m1
2 (func $isEven (export ”isEven”) (param i32)
3 (result i32) ;; i32 is bool (0=false, 1=true)
4 (i32.rem_u (local.get 0) (i32.const 2))
5 (i32.const 0)
6 (i32.eq))
7)
8 (register ”demo01_m1” $demo01_m1)
9

10 (module $demo01_m2
11 (type (func (param i32) (result i32))) ;; 0
12 (import ”demo01_m1” ”isEven” (func $isEven (type 0)))
13 (func $main (export ”main”) (result i32)
14 (i32.const 4)
15 (call $isEven)
16 (i32.eq (i32.const 1 (;true;))))
17)
18 (register ”demo01_m2” $demo01_m2)
19

20 ;; Test that the linked program works
21 (assert_return (invoke $demo01_m2 ”main”) (i32.const 1 (;true;)))

Had the type definition on line 12 been changed, such as adding an additional (param

i32), the WebAssembly would fail during Instantiation. In addition to type safe function

calls, this demo showcases dynamic linking between modules and the use of foreign func-

tions.

3.2 (Somewhat) First Class Functions

One feature of first class functions abstraction is the ability to pass functions as arguments

to other functions. This enables dynamic program composition. Consider the the follow-

29

ing example where a user wants to interoperate a Rust partial program, a Zig partial pro-

gram, and the same C++ partial program (now called ”$demo02_m1”) from above.

1 /* lib.cpp */
2 bool isEven(int a) {
3 return a % 2 == 0;
4 }

1 /* demo02_m2.zig */
2 const const num: i32 = 53
3 export fn test_num(pred: fn(i32) -> bool) -> bool {
4 return pred(elem);
5 }

1 /* demo02_m3.rs */
2 extern ”WASM” {
3 pub fn test_num(pred: &dyn Fn(i32) -> bool) -> bool;
4 pub fn isEven(a: i32) -> bool;
5 }
6 pub fn main() -> bool {
7 return test_num(isEven);
8 }

This compilation toWebAssembly requires more cooperation than the previous exam-

ple, since all the Rust and Zig compilers need to agree on an interface for passing function

instances around. In the followingWebAssembly, both compilers have chosen to use a het-

erogeneous function table maintained by the module receiving the function. Additionally,

the process for indexing into this table must be standardized by the two modules. Consider

a compiled version of the Rust module first:

30

1 (module $demo02_m3
2 (type (func (param i32) (result i32))) ;; 0
3 ;; standard foreign function imports
4 (import ”demo02_m1” ”isEven” (func $isEven (type 0)))
5 (import ”demo02_m2” ”test_num” (func $test_num (type 0)))
6 ;; first-class function handling
7 (import ”demo02_m2” ”_fns” (table $m2_fns 1 funcref))
8 (import ”demo02_m2” ”_fns_slot” (func $m2_fns_slot (result i32)))
9 (import ”demo02_m2” ”_fns_free” (func $m2_fns_free (param i32)))
10 (elem declare func $isEven $isEven) ;; register the func for dynamic export
11 ;; main
12 (func $main (export ”main”) (result i32) (local i32 i32)
13 (local.set 0 (call $m2_fns_slot)) ;; request a slot to pass the func via
14 (table.set $m2_fns (local.get 0) (ref.func $isEven)) ;; pass the pred func
15 (local.set 1 (call $test_num (local.get 0)) ;; call the primary foreign func
16 (call $m2_fns_free (local.get 0)) ;; cleanup the predicate func
17 (local.get 1)) ;; return the result
18)
19 (register ”demo02_m3” $demo02_m3)
20 (assert_return (invoke $demo02_m3 ”main”) (i32.const 0)) ;; assert -> false

The module is importing and making use of a set of functions for managing $demo02_m2’s

function table. These functions are provided by $demo02_m2 since it owns the table. We can

see these functions in operation in the body of $main. On line 13 the first function is being

used to determine an index that the passed function should be registered in. On line 14 the

function is registered in the table at that index. On line 15 the primary function is called

and the index that the passed function is registered in is provided as an argument, and the

result is stored. On line 16 the table slot used to pass the function is freed. Finally, on line

17 the result is returned.

For this demo, naive implementations of _fns_slot and _fns_free have been provided,

because there is only one function that could be passed (so index 0 is always used). A more

31

complete implementation could use loop and table.get operations to determine the first

available index.

1 (module $demo02_m2
2 (global $num i32 (i32.const 53))
3 (type (;0;) (func (param i32) (result i32)))
4 ;; create a table which the predicate function will be provided through
5 (table $fns (export ”_fns”) 1 funcref)
6 ;; get the index of the slot to register a func in
7 (func (export ”_fns_slot”) (result i32) (i32.const 0))
8 ;; free up the slot
9 (func (export ”_fns_free”) (param $slot i32)
10 (table.set $fns (local.get $slot) (ref.null)))
11 (func $test_num (export ”test_num”) (result i32)
12 (global.get $num)
13 ;; call the predicate fn
14 (call_indirect $fns (type 0) (i32.const 0)))
15)
16 (register ”demo02_m2” $demo02_m2)

This WebAssembly implementation depend on v1.0 features and the reference types60

proposal (which introduces the ability to dynamically set table values at runtime using the

table.set instruction, not just at module instantiation using the elem (table ...) ...)

instruction).*. Importantly, functions can be passed around using only the features of v1.0

WebAssembly and this extension.

However, this operation may become even easier in the future with acceptance of the

function references61 proposal which would make functions fully first class values that can

be passed as arguments directly.

*The reference types proposal is one of the more developedWebAssembly proposals and is treated as a
dependency for several future proposals.

32

3.3 Closures

Using the capabilities of the previous example, it’s possible to construct closures over func-

tions. Currently, each closure would have to be its own module instance, since module

instances provide the only way to retain context when a function is passed to another mod-

ule. An example has been elided for to reduce redundancy.

3.4 ObjectMethods

With the abstract types extension, the integrity of object methods become easy to maintain.

In particular, the self-application invariant discussed by League et al. in their 2003 work

for a type-preserving Java compiler62 is now possible to maintain, as seen in Chapter 2. In

addition, object fieldswould be represented as getter and setter methods (e.g. a year: int

field in the Date object would be retrieved via Date.getYear and set via Date.setYear), the

performance implications of which will be discussed in Chapter 4.

A further example has been elided to reduce redundancy.

3.5 Field AccessModifiers

Building on the representation of object methods, enforcing public and private field mod-

ifiers is straightforward. Methods that are private are not exported from the module, while

methods that are public are exported. An example is elided.

33

3.6 Representation Invariants

Consider a C++ class for rational numbers that has the representation invariant of always

being in the most simplified form.

1 /* demo05_m1.cpp */
2 class RationalNum {
3 private:
4 int _num, _den;
5 public:
6 RationalNum(int num, int den) {
7 int gcd = std::gcd(num, den);
8 _num = num / gcd;
9 _den = den / gcd;
10 }
11 }

Combined withWebAssembly’s memory encapsulation support, abstract types enable

partial programs to maintain these invariants. If the C++ program was compiled to the

followingWebAssembly, there is no way for a target-level attacker to violate the invariant

since they are unable to directly view or manipulate the underlying num or den values, they

are unable to overflow the RationalNum constructor’s call stack to replace the gcd return

value, and they can’t modify the function pointer for the std::gcd function being invoked.

1 (module $demo03_m1
2 (import ”std” ”gcd” (func $_std_gcd (param i32) (param i32) (result i32)))
3 (memory 1)
4 (func $_malloc (param i32) (result i32) ...)
5 (abstype_new $RationalNum i32)
6 ;; RationalNum struct = {int, int} = 4 + 4 = 8 bytes
7 (func (export ”RationalNum.new”) (param $num i32) (param $den i32)
8 (result (abstype_new_ref $RationalNum)) (local $gcd i32) (local $adr i32)

34

9 (local.set $gcd (call $_std_gcd (local.get $num) (local.get $den)))
10 (local.set $adr (call $_malloc (i32.const 8)))
11 (i32.store offset=0 (local.get $adr)
12 (i32.div_s (local.get $num) (local.get $gcd)))
13 (i32.store offset=1 (local.get $adr)
14 (i32.div_s (local.get $num) (local.get $gcd)))
15 (local.get $adr))
16 (func (export ”RationalNum.getNumerator”)
17 (param $this (abstype_new_ref $RationalNum)) (result i32)
18 (i32.load offset=0 (local.get $this)))
19 ...
20)

35

C is quirky, flawed, and an enormous success.

Dennis M. Ritchie

4
Future &OngoingWork

The best practical demonstration to show language and library orthog-

onality would be to arbitrarily pick a library in one language and consume it with a dif-

ferent language. We are not there just yet, but we are getting close. Many languages are

adding support for WebAssembly as a compiler output, though usually these efforts are

focused on single-module designs and do not target multi-module systems. This is already

improving though with projects like Rust’s JavaScript bindings through wasm-bindgen63

and JavaScript bindings in Emscripten (a C/C++ toWebAssembly compiler)64. However,

most of these efforts are primarily focused onWebAssembly-JavaScript interactions, not

arbitrary-language to arbitrary-language interactions.

A core issue with these endeavors is the lack of a good ABI (application binary interface).

36

Currently, the aforementioned approaches either support exposing functions using a direct

translation of the C calling convention, or they create bespoke interfaces for JavaScript to

use. Unfortunately, the C calling convention is too feature light to maintain most source-

level abstractions, and the JavaScript API isn’t generalizable to other languages.

What’s needed is a WebAssembly-native ABI. This WebAssembly ABI will have first

class enforcement for type, mechanisms to refer to opaque values (like this thesis’s abstract

types), and conventions around how to performantly share contiguous chunks of memory.

Notably, this ABI won’t come fromWebAssembly itself, since WebAssembly identifies as

“an abstraction over hardware, not over a programming language”14. Instead, it will be a

convention on top of WebAssembly. Compiler authors will be able to target this ABI from

(most) any language and be able to interoperate with the ecosystem of other languages that

also target the ABI.

However, before an ABI like this can arise, several additional features need to be added to

WebAssembly, in addition to the abstract types extension proposed here. Before discussing

those features though, a quick detour needs to be taken to discuss performance and the

architecture of productionWebAssembly runtimes.

4.1 Performance Concerns

Most WebAssembly runtimes* are based on a just-in-time compilation (JIT) structure

where WebAssembly bytecode is converted directly into native instructions, as opposed

to being interpreted. These JIT-based runtimes also perform additional performance op-

*Some popular WebAssembly runtimes with JIT architectures are Firefox’s Spidermonkey65, Chrome’s
V866, and the Bytecode Alliance’s wasmtime67.

37

timizations in addition to a first-pass translation to native instructions, such as function

inlining68 which replaces a function call site with the full function body.

A major benefit of an abstract types based approach to object references is that once the

function calls to the object’s methods have been type checked during theValidation and

Instantiation phases, no more type checking needs to occur. Furthermore, due to the con-

straints in WebAssembly’s stack machine operations, no more checks need to occur at run-

time to ensure call stacks aren’t corrupted or that source-module invariants are violated.

Therefore, object method calls are likely ripe for getting inlined by JITs, removing much

of the overhead that comes with accessing an object’s fields via function-based getters and

setters. As seen with the Truffle framework, in many cases these operations should be able

to be converted into single-machine-instruction load operations43.

However, things get more complicated if call_indirect instructions are used, since

they functions being called may be dynamically provided and therefore need to be type

checked at runtime before they can be safely invoked. Techniques exist to improve perfor-

mance on these as well though. In particular, JavaScript’s dynamic nature has forced its

runtimes to address this problem for the past decade69.

Furthermore, the work of Li et al.70 with runtime optimizations of dynamically linked

C++modules and Barrett et al.71 with cross-language optimizations between Prolog and

Python has shown that cross-module/language function inlining is viable and effective.

4.2 Additional Extensions

If JIT function inlining operated perfectly for abstract type-based object method calls, it

might be possible to represent contiguous arrays of bytes efficiently usingWebAssembly

38

v1.0 and an abstract type extension. The approach might expose an interface that looks

something like this (see Appendix Section A.2 for a more complete implementation):

1 (module $lib_buffer
2 (abstype_new $Buffer i32) ;; a sequence of bytes
3 (func $Buffer.create (param $size i32) (result (abstype_new_ref $Buffer)))
4 (func $Buffer.size (param $this (abstype_new_ref $Buffer)) (result i32) ...)
5 (func $Buffer.i32_load (param $this (abstype_new_ref $Buffer))
6 (param $idx i32) (result i32) ...)
7 (func $Buffer.i32_load8_u (param $this (abstype_new_ref $Buffer))
8 (param $idx i32) (result i32) ...)
9 (func $Buffer.i32_store (param $this (abstype_new_ref $Buffer))
10 (param $idx i32) (param $data i32) ...)
11 (func $Buffer.i32_store8 (param $this (abstype_new_ref $Buffer))
12 (param $idx i32) (param $data i32) ...)
13 (abstype_new $ReadonlyBuffer (abstype_new_ref $Buffer)) ;; readonly view
14 (func $ReadonlyBuffer.from (param $super (abstype_new_ref $Buffer))
15 (result (abstype_new_ref $ReadonlyBuffer) ...)
16 (func $ReadonlyBuffer.i32_load (param $this (abstype_new_ref $Buffer))
17 (param $idx i32) (result i32) ...)
18 (func $ReadonlyBuffer.i32_load8_u (param $this (abstype_new_ref $Buffer))
19 (param $idx i32) (result i32) ...)
20)

The implementation of $Buffer.i32_loadmight simply be i32.load (i32.add (local.get

$this) (local.get $idx)), the same as any array access compiled from C/C++. With

function inlining, the overhead of wrapping this operation in a function call is removed,

and the executed instructions would be the same as if the array’s memory was local to the

calling module.

However, the non-deterministic nature of the JIT may cause people to avoid adopting

this pattern, since without function inlining there is likely to be notable overhead. Lan-

guage extensions may be necessary to annotate when function inlining must occur, in order

to maintain a more determenistic performance profile.

39

4.2.1 Multi-Memory

There is also a multi-memory proposal72 for WebAssembly that could provide the nec-

essary primitives to improve this situation. With multiple memories a module could still

maintain a private memory area that was uncorruptable by foreign modules. It could then

create public memories were data that was intended for consumption by foreign functions

could be stored.

Yet, even with multiple memories, some complications still remain. Firstly, once a mem-

ory is exported any other module can consume it. The exporting module can’t restrict the

consumer of the memory to only be the foreign function it’s calling. At the moment this

problem is solvable due toWebAssembly’s single threaded nature (after calling the trusted

foreign function the callee module can wipe the memory), but once multi-threading is

added toWebAssembly this problem reemerges.

4.2.2 Strings

Related to the sharing of contiguous arrays, string sharing between modules is also prob-

lematic in v1.0 WebAssembly. Currently, it’s up to each source-language compiler to de-

termine how strings will be represented and encoded. A commonmethod today is to store

them in linear memory in a given encoding (such as UTF-8) and pass around a pair of i32

values representing the memory address and the string’s length.

A similar approach with abstract types or multi-memory could be taken, but encoding

variations still remain. Providing first class support for a standard encoding, such as UTF-

8, would ease multi-language interoperability but would also cause WebAssembly to stray

into defining a language instead of its initial goals of only being a hardware abstraction.

40

4.2.3 Standard Library

If an abstract types based approach was taken to contiguous memory (e.g. the $Buffer

example above), for modules to interop they would all need to use the same $Buffer ab-

stract type. If different modules adopted different abstract types to represent these byte-

sequences they would be incompatible.

Therefore, a standard library would need to be created with a core set of abstract types

that users could consume and which would provide a common abstraction for languages to

interoperate using.

4.2.4 ParameterizedModules

The abstract type system proposed in this thesis doesn’t support generic data structures.

For example, if one library module provided a binary tree abstract type $BinaryTreewith

appropriate methods for adding and retrieving from it, and another module library mod-

ule provided a string abstract type, a third module would be unable to insert strings it had

created into the binary tree. This is because the abstract type system currently defined does

not support dynamic import of abstract types, since import dependencies can only go one

way.

The system could be expanded to support a semantics like OCaml’s functors, which

would allow copies of a given module to be instantiated with different imports provided to

it. Each module instance would then be able to operate on a specific abstract type (e.g. an

instance of the binary tree module that works for strings).

This introduces a new concern though: modules needing the ability to direct the in-

stantiation of other modules. Currently, all module instantiation is directed via the host

41

runtime. Fortunately, this likely wouldn’t increase any existing threat vectors for system

resource depletion (memory size is already controllable by modules today), but it would im-

pact the module instance namespacing system that is currently in use (in v1.0 WebAssem-

bly, module names are the same as module instance names, since only one module instance

can exist per module).

4.2.5 Structural Typing?

Alternatively to the standard library approach proposed above, a structural typing model

could be adopted instead. This would entail more direct support for the object methods

abstraction discussed earlier, with the WebAssembly language needing to be aware of the

functions that were attached to a given abstract type.

With structural typing and an ability to define traits (Rust terminology) or interfaces

(Java/Go terminology), an module could provide a byte-sequence implementation; they

wouldn’t have to all agree with the implementation decisions of the standard library. In-

stead, the universal standard library would encompass a set of traits that standardized a

common interface abstraction for any language that wants to interoperate.

4.2.6 Dynamic Objects

So far, these examples have all focused on objects with stable properties (methods and

fields). However, many languages, such as Python and JavaScript, support objects with

dynamic properties which should be supported in a performant manner. The work be-

hind this thesis has yet to engage with the optimizations required to efficiently handle these

dynamic object accesses, however, the hope is that abstract types provide the means to con-

42

struct a stable, well-formed interface behind which these optimizations could be transpar-

ently implemented.

4.3 Interplay withOtherWebAssembly Proposals

There are three major projects underway in theWebAssembly working group as of April

2020 (in addition to a smattering of orthogonal or smaller updates).

4.3.1 Garbage Collection

Garbage collection73 is a broad proposal that is in heavy flux at the moment as it is bro-

ken up into smaller pieces and alternative paths. For example, the SOIL Initiative has pro-

posed74 an alternative to the original working group’s proposal. The original proposal was

based more around structural typing, while the SOIL proposal is based around nominal

typing. The nominal typing approach is similar in many ways to the abstract types pro-

posed by this thesis.

Considering the garbage collection proposals more broadly, their focus is on “providing

access to industrial-strength GCs”73 which are readily available thanks to the JavaScript

runtimes that most WebAssembly runtimes are embedded within. The goal is for source-

language compilers to not have to worry about implementing their own garbage collector

on top of WebAssembly, and instead to be able to use an existingWebAssembly garbage

collector implementation, thus reducing module size and development time and improving

performance.

Abstract types complement this endeavor nicely. Because abstract type are opaque ref-

erences, consumers don’t need to worry whether the underlying representation is in lin-

43

ear memory or is of a GC object. Module authors can seamlessly switch between memory

models without impacting their downstream consumers.

4.3.2 Interface Types

Interface Types75 is a proposal to introduce higher-level values (like strings, byte-sequences,

and more) into the WebAssembly ecosystem in a standardized way. Notably, the proposed

semantics are not a change to core WebAssembly, instead they are intended to be layered on

top of the existing semantics. Interface types are concerned with many of the same prob-

lems relating to interoperability that this thesis was motivated by, however, they are primar-

ily focused on data representation and the conversion of data when interoperating between

different modules (or a WebAssembly module and a JavaScript host environment, which is

a primary motivating use case for the proposal).

Interface types would benefit from an abstract type primitive in the core WebAssembly

semantics, and the vision this thesis hopes WebAssembly will achieve is served well through

the layered semantics provided by interface types.

4.3.3 WASI

Currently, WebAssembly exists primarily as a computational platform with minimal ac-

cess to the outside world. Today, programs address this restriction through bespoke host

injected functions that provide I/O operations. One of the primary barriers to broader us-

age is a lack of a standardized system call interface for WebAssembly programs to leverage.

WASI (WebAssembly System Interface)76 is a proposal to standardize this interface.

With its concerted focus on principles of least authority and attenuated access controls,

44

the proposal introduces a need for unforgeable data types for uses such as file descriptors

(forgeable data types would allow malicious modules to violate intended security con-

straints). Abstract types provide the necessary foundation to represent these unforgeable

values and maintain capability-based invariants between modules with different levels of

system access.

Since WASI is provided by the host environment, the abstract types that WASI provides

would come from the host environment as well. This would require a small modification

to the abstract type semantics given in Chapter 2, since these abstract types would not be

identified by a module instance, but instead by the host. Since only one host is possible, a

special indicator for a “host instance” could be added to the set of module instance identi-

fiers.

45

5
Conclusion

The future is multi-language, and the work being done today is important for determining

the shape of the platform that will underlie these future programs. With modest exten-

sions, WebAssembly provides a capable foundation for building this platform. Its seman-

tics provide many of the features needed in an intermediate-language for modular secure

compilation, and its runtime architectures provide efficient execution models even in cross-

language operations. WebAssembly has the right political backing and the benefit of two

decades of hindsight about multi-language runtimes; if its designers choose to, it could be

the platform of the multi-language future.

46

A
Expanded Code Samples

A.1 Alternative Abstract Type Syntax

This alternative syntax overloads existing operators (primarily type) in ways that should

be intuitive to users, but reduces explicit clarity on the semantic meaning of each operator.

If abstract types were implemented as presented in this thesis, it’s likely that this style of

syntax would be used instead of the syntax used throughout the rest of this work.

1 (module $lib_date
2 (export ”Date” (newtype $Date i32))
3 (func (export ”createDate”)
4 (param $day i32) (param $month i32) (param $year i32) (result (type $Date))
5 (i32.add
6 (i32.mul (local.get $day) (i32.const 86400))
7 (i32.add
8 (i32.mul (local.get $month) (i32.const 2592000))

47

9 (i32.mul (i32.const 31557600)
10 (i32.sub (local.get $year) (i32.const 1970))
11)))
12)
13 (func (export ”yearsBetweenDates”)
14 (param (type $Date)) (param (type $Date)) (result i32)
15 (i32.sub (local.get 0) (local.get 1))
16 (i32.div_s (i32.const 31557600))
17)
18)
19 (register ”lib_date” $lib_date)
20

21 (module $main
22 (import ”lib_date” ”Date” (type $Date))
23 (import ”lib_date” ”createDate” (func $createDate
24 (param i32) (param i32) (param i32) (result (type $Date))))
25 (import ”lib_date” ”yearsBetweenDates” (func $yearsBetweenDates
26 (param (type $Date)) (param (type $Date)) (result i32)))
27 (func (export ”main”) (result i32)
28 (call $createDate
29 (i32.const 2) (i32.const 20) (i32.const 1962))
30 (call $createDate
31 (i32.const 8) (i32.const 26) (i32.const 1918))
32 (call $yearsBetweenDates)
33)
34)

A.2 Array Library

The name “$Buffer” is adopted from the Node.js nomeclature for byte-sequences. Method

names, such as “$Buffer.i32_load8_u”, are based on the underlying instruction that they

wrap. Further operations to reduce address arithmetic within each method are likely possi-

ble, but have not been explored here.

1 (module $lib_buffer
2 (memory 1)

48

3 (global $nextAddr (mut i32) (i32.const 0))
4 (abstype_new $Buffer i32) ;; a sequence of bytes
5 (func $Buffer.create (param $size i32) (result (abstype_new_ref $Buffer))
6 (local i32)
7 (local.set 1 (global.get $nextAddr))
8 (i32.store (local.get 1) (local.get $size))
9 (global.set $nextAddr
10 (i32.add (local.get 1)
11 (i32.add (local.get $size) (i32.const 4))))
12 (local.get 1))
13 (func $Buffer.size (param $this (abstype_new_ref $Buffer)) (result i32)
14 (i32.load (local.get 0)))
15 (func $Buffer.i32_load (param $this (abstype_new_ref $Buffer))
16 (param $idx i32) (result i32)
17 (i32.add (i32.add (local.get $this) (i32.const 4)) (local.get $idx))
18 (i32.load))
19 (func $Buffer.i32_load8_u (param $this (abstype_new_ref $Buffer))
20 (param $idx i32) (result i32)
21 (i32.add (i32.add (local.get $this) (i32.const 4)) (local.get $idx))
22 (i32.load8_u))
23 (func $Buffer.i32_store (param $this (abstype_new_ref $Buffer))
24 (param $idx i32) (param $data i32)
25 (i32.add (i32.add (local.get $this) (i32.const 4)) (local.get $idx))
26 (local.get $data)
27 (i32.store))
28 (func $Buffer.i32_store8 (param $this (abstype_new_ref $Buffer))
29 (param $idx i32) (param $data i32)
30 (i32.add (i32.add (local.get $this) (i32.const 4)) (local.get $idx))
31 (local.get $data)
32 (i32.store))
33 (abstype_new $ReadonlyBuffer (abstype_new_ref $Buffer))
34 (func $ReadonlyBuffer.fromBuffer (param $super (abstype_new_ref $Buffer))
35 (result (abstype_new_ref $ReadonlyBuffer))
36 (local.get 0))
37 (func $ReadonlyBuffer.i32_load (param $this (abstype_new_ref $Buffer))
38 (param $idx i32) (result i32)
39 (call $Buffer.i32_load (local.get $this) (local.get $idx)))
40 (func $ReadonlyBuffer.i32_load8_u (param $this (abstype_new_ref $Buffer))
41 (param $idx i32) (result i32)
42 (call $Buffer.i32_load8_u (local.get $this) (local.get $idx)))
43)

49

References

[1] Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and Ian Dees. Using
JRuby: Bringing Ruby to Java. Pragmatic Bookshelf, 2011.

[2] Rich Hickey. The clojure programming language. In Proceedings of the 2008 sympo-
sium on Dynamic languages, page 1–1, 2008.

[3] Erik Meijer and John Gough. Technical overview of the common language runtime.
language, 29:7, 2001.

[4] John R. Rose. Bytecodes meet combinators: invokedynamic on the jvm. In
Proceedings of the ThirdWorkshop on VirtualMachines and Intermediate Lan-
guages - VMIL ’09, page 1–11. ACM Press, 2009. ISBN 978-1-60558-874-2. doi:
10.1145/1711506.1711508. URL http://portal.acm.org/citation.cfm?doid=
1711506.1711508.

[5] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley Professional, 1999. ISBN 978-0-201-32577-5.

[6] Write once, run anywhere?, May 2002. URL https://www.computerweekly.com/
feature/Write-once-run-anywhere.

[7] Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like
language, virtual machine, and compiler. ACMTransactions on Programming
Languages and Systems, 28(4):619–695, Jul 2006. ISSN 0164-0925. doi:
10.1145/1146809.1146811.

[8] Peter Sestoft. Numeric performance in c, c# and java. page 14, Feb 2010.

[9] Performance comparison of java/.net runtimes (oct 2004), Nov 2005. URL http:
//www.shudo.net/jit/perf/.

[10] Herb Sutter. A design rationale for c++/cli. gotwa.ca, Feb 2006.

[11] Dalibor Topic. Moving to a plugin-free web, Jan 2016. URL https://blogs.
oracle.com/java-platform-group/moving-to-a-plugin-free-web.

[12] Dan Zheng. tensorflow/swift | whyswiftfortensorflow.md, Apr 2018. URL https:
//github.com/tensorflow/swift.

50

http://portal.acm.org/citation.cfm?doid=1711506.1711508
http://portal.acm.org/citation.cfm?doid=1711506.1711508
https://www.computerweekly.com/feature/Write-once-run-anywhere
https://www.computerweekly.com/feature/Write-once-run-anywhere
http://www.shudo.net/jit/perf/
http://www.shudo.net/jit/perf/
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
https://github.com/tensorflow/swift
https://github.com/tensorflow/swift

[13] Leo A. Meyerovich and Ariel S. Rabkin. Empirical analysis of programming lan-
guage adoption. In Proceedings of the 2013 ACM SIGPLAN international confer-
ence on Object oriented programming systems languages & applications, OOPSLA
’13, page 1–18. Association for ComputingMachinery, Oct 2013. ISBN 978-1-
4503-2374-1. doi: 10.1145/2509136.2509515. URL https://doi.org/10.1145/
2509136.2509515.

[14] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, LukeWagner, Alon Zakai, and JF Bastien. Bringing the web up to
speed with webassembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, page 185–200.
Association for ComputingMachinery, Jun 2017. ISBN 978-1-4503-4988-8. doi:
10.1145/3062341.3062363. URL https://doi.org/10.1145/3062341.3062363.

[15] ConradWatt, Andreas Rossberg, and Jean Pichon-Pharabod. Weakening we-
bassembly. Association for ComputingMachinery, Oct 2019. URL https:
//doi.org/10.1145/3360559.

[16] ConradWatt. Mechanising and verifying the webassembly specification. In
Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, page 53–65. Association for ComputingMa-
chinery, Jan 2018. ISBN 978-1-4503-5586-5. doi: 10.1145/3167082. URL
https://doi.org/10.1145/3167082.

[17] W3c webassembly working group. URL https://www.w3.org/wasm/.

[18] Lowell Heddings. Java is insecure and awful, it’s time to disable it, and
here’s how, Oct 2012. URL https://www.howtogeek.com/122934/
java-is-insecure-and-awful-its-time-to-disable-it-and-heres-how/.

[19] Insecure deserialization, Apr 2019. URL https://hdivsecurity.com/bornsecure/
insecure-deserialization-attack-examples-mitigation/.

[20] Seth Puckett. 5 myths about .net, Nov 2016. URL https://www.excella.com/
insights/5-myths-about-net.

[21] By David Ramel. Microsoft doubles down on open source .net – redmond-
mag.com, Dec 2018. URL https://redmondmag.com/articles/2018/12/04/
microsoft-open-source-net.aspx.

[22] Jonathan Allen. What to use on the microsoft stack, Nov 2013. URL https://www.
infoq.com/articles/Microsoft-Stack-2013/.

51

https://doi.org/10.1145/2509136.2509515
https://doi.org/10.1145/2509136.2509515
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3167082
https://www.w3.org/wasm/
https://www.howtogeek.com/122934/java-is-insecure-and-awful-its-time-to-disable-it-and-heres-how/
https://www.howtogeek.com/122934/java-is-insecure-and-awful-its-time-to-disable-it-and-heres-how/
https://hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/
https://hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/
https://www.excella.com/insights/5-myths-about-net
https://www.excella.com/insights/5-myths-about-net
https://redmondmag.com/articles/2018/12/04/microsoft-open-source-net.aspx
https://redmondmag.com/articles/2018/12/04/microsoft-open-source-net.aspx
https://www.infoq.com/articles/Microsoft-Stack-2013/
https://www.infoq.com/articles/Microsoft-Stack-2013/

[23] Java se 8 - jvm - chapter 6. the java virtual machine instruction set, Mar 2018. URL
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html.

[24] Java se 8 - jvm - chapter 5. loading, linking, and initializing, Mar 2018. URL https:
//docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2.

[25] Nestedvm, Aug 2009. URL http://nestedvm.ibex.org/.

[26] David A. Roberts. davidar/lljvm. Nov 2010. URL https://github.com/davidar/
lljvm.

[27] Alex Bertram. Renjin | introducing gcc-bridge: A c/fortran compiler
targeting the jvm, Jan 2016. URL https://www.renjin.org/blog/
2016-01-31-introducing-gcc-bridge.html.

[28] Other languages for the java vm, Jan 2013. URL https://wiki.c2.com/
?OtherLanguagesForTheJavaVm.

[29] Jython. URL https://www.jython.org/.

[30] Java se 7 - jni design overview, Jul 2011. URL https://docs.oracle.com/javase/
7/docs/technotes/guides/jni/spec/design.html.

[31] Darryl Taft. .net foundation adds new governance model,
projects, Nov 2014. URL https://www.eweek.com/development/
net-foundation-adds-new-governance-model-projects.

[32] Standard ecma-372_2005, Dec 2005. URL https://www.ecma-international.
org/publications/standards/Ecma-372.htm.

[33] Jan Kotas. Will coreclr support c++/cli crossplat? · issue #4116 · dotnet/runtime,
Jan 2020. URL https://github.com/dotnet/runtime/issues/4116#
issuecomment-580865237.

[34] .NET Platform, Apr 2020. URL https://github.com/dotnet/runtime.

[35] Native and .net interoperability, Nov 2016. URL https://docs.microsoft.com/
en-us/cpp/dotnet/native-and-dotnet-interoperability.

[36] Alan Donovan, Robert Muth, Brad Chen, and David Sehr. Pnacl: Portable native
client executables. GoogleWhite Paper, 2010.

52

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2
http://nestedvm.ibex.org/
https://github.com/davidar/lljvm
https://github.com/davidar/lljvm
https://www.renjin.org/blog/2016-01-31-introducing-gcc-bridge.html
https://www.renjin.org/blog/2016-01-31-introducing-gcc-bridge.html
https://wiki.c2.com/?OtherLanguagesForTheJavaVm
https://wiki.c2.com/?OtherLanguagesForTheJavaVm
https://www.jython.org/
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html
https://www.eweek.com/development/net-foundation-adds-new-governance-model-projects
https://www.eweek.com/development/net-foundation-adds-new-governance-model-projects
https://www.ecma-international.org/publications/standards/Ecma-372.htm
https://www.ecma-international.org/publications/standards/Ecma-372.htm
https://github.com/dotnet/runtime/issues/4116#issuecomment-580865237
https://github.com/dotnet/runtime/issues/4116#issuecomment-580865237
https://github.com/dotnet/runtime
https://docs.microsoft.com/en-us/cpp/dotnet/native-and-dotnet-interoperability
https://docs.microsoft.com/en-us/cpp/dotnet/native-and-dotnet-interoperability

[37] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In 2009 30th IEEE Symposium on
Security and Privacy, page 79–93, May 2009. doi: 10.1109/SP.2009.25.

[38] Raymes Khoury. 239656 - refactor nacl integration to eliminate the trusted, in-
process plugin. - chromium, Oct 2016. URL https://bugs.chromium.org/p/
chromium/issues/detail?id=239656#c160.

[39] David Herman, LukeWagner, and Alon Zakai. asm.js, Aug 2014. URL http:
//asmjs.org/spec/latest/.

[40] Alon Zakai. emscripten-core/emscripten. emscripten-core, Nov 2012. URL https:
//github.com/emscripten-core/emscripten.

[41] ChristianWimmer and ThomasWürthinger. Truffle: a self-optimizing run-
time system. In Proceedings of the 3rd annual conference on Systems, program-
ming, and applications: software for humanity, SPLASH ’12, page 13–14. Asso-
ciation for ComputingMachinery, Oct 2012. ISBN 978-1-4503-1563-0. doi:
10.1145/2384716.2384723. URL https://doi.org/10.1145/2384716.2384723.

[42] Graalvm documentation. URL https://www.graalvm.org/docs/
reference-manual/polyglot/.

[43] Matthias Grimmer, Chris Seaton, Roland Schatz, ThomasWürthinger, and
Hanspeter Mössenböck. High-performance cross-language interoperability in a
multi-language runtime. In Proceedings of the 11th Symposium on Dynamic Lan-
guages - DLS 2015, page 78–90. ACM Press, 2015. ISBN 978-1-4503-3690-1.
doi: 10.1145/2816707.2816714. URL http://dl.acm.org/citation.cfm?doid=
2816707.2816714.

[44] Andreas Wöß, ChristianWirth, Daniele Bonetta, Chris Seaton, Christian Humer,
and Hanspeter Mössenböck. An object storage model for the truffle language im-
plementation framework. In Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java platform: Virtual machines,
Languages, and Tools, PPPJ ’14, page 133–144. Association for ComputingMa-
chinery, Sep 2014. ISBN 978-1-4503-2926-2. doi: 10.1145/2647508.2647517.
URL https://doi.org/10.1145/2647508.2647517.

[45] Manuel Rigger, Matthias Grimmer, ChristianWimmer, ThomasWürthinger, and
Hanspeter Mössenböck. Bringing low-level languages to the jvm: efficient exe-
cution of llvm ir on truffle. In Proceedings of the 8th InternationalWorkshop on

53

https://bugs.chromium.org/p/chromium/issues/detail?id=239656#c160
https://bugs.chromium.org/p/chromium/issues/detail?id=239656#c160
http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
https://github.com/emscripten-core/emscripten
https://github.com/emscripten-core/emscripten
https://doi.org/10.1145/2384716.2384723
https://www.graalvm.org/docs/reference-manual/polyglot/
https://www.graalvm.org/docs/reference-manual/polyglot/
http://dl.acm.org/citation.cfm?doid=2816707.2816714
http://dl.acm.org/citation.cfm?doid=2816707.2816714
https://doi.org/10.1145/2647508.2647517

VirtualMachines and Intermediate Languages, VMIL 2016, page 6–15. Asso-
ciation for ComputingMachinery, Oct 2016. ISBN 978-1-4503-4645-0. doi:
10.1145/2998415.2998416. URL https://doi.org/10.1145/2998415.2998416.

[46] Oracle graalvm global price list. Jul 2019. URL https://www.oracle.com/a/ocom/
docs/corporate/pricing/graalvm-price-list.pdf.

[47] Martín Abadi. Protection in programming-language translations. In In Proceedings
of the 25th International Colloquium on Automata, Languages and Programming,
page 868–883. Springer-Verlag, 1998.

[48] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to secure
compilation: A survey of fully abstract compilation and related work. ACM
Computing Surveys, 51(6):125:1–125:36, Feb 2019. ISSN 0360-0300. doi:
10.1145/3280984.

[49] Martín Abadi. Protection in programming-language translations, page 19–34.
Springer-Verlag, Jun 2001. ISBN 978-3-540-66130-6.

[50] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves
Strub, and Benjamin Livshits. Fully abstract compilation to javascript. Jan 2013.
URL https://doi.org/10.1145/2480359.2429114.

[51] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank
Piessens. Secure compilation to protected module architectures. Association for
ComputingMachinery, Apr 2015. URL https://doi.org/10.1145/2699503.

[52] Marco Patrignani, Dominique Devriese, and Frank Piessens. On modular and fully-
abstract compilation. In 2016 IEEE 29th Computer Security Foundations Sympo-
sium (CSF), page 17–30, Jun 2016. doi: 10.1109/CSF.2016.9.

[53] Martín Abadi and Gordon D. Plotkin. On protection by layout randomization. Jul
2012. URL https://doi.org/10.1145/2240276.2240279.

[54] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan
Chen, Pierre-Yves Strub, and Gavin Bierman. Gradual typing embedded se-
curely in javascript. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, page 425–437. As-
sociation for ComputingMachinery, Jan 2014. ISBN 978-1-4503-2544-8. doi:
10.1145/2535838.2535889. URL https://doi.org/10.1145/2535838.2535889.

54

https://doi.org/10.1145/2998415.2998416
https://www.oracle.com/a/ocom/docs/corporate/pricing/graalvm-price-list.pdf
https://www.oracle.com/a/ocom/docs/corporate/pricing/graalvm-price-list.pdf
https://doi.org/10.1145/2480359.2429114
https://doi.org/10.1145/2699503
https://doi.org/10.1145/2240276.2240279
https://doi.org/10.1145/2535838.2535889

[55] Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of
multithreaded programs by compilation. Jul 2010. URL https://doi.org/10.
1145/1805974.1805977.

[56] Ioannis G. Baltopoulos and Andrew D. Gordon. Secure compilation of a multi-tier
web language. In Proceedings of the 4th international workshop on Types in language
design and implementation, TLDI ’09, page 27–38. Association for Computing
Machinery, Jan 2009. ISBN 978-1-60558-420-1. doi: 10.1145/1481861.1481866.
URL https://doi.org/10.1145/1481861.1481866.

[57] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich, and
Dmitry Vyukov. Memory tagging and how it improves c/c++ memory safety. arXiv
preprint arXiv:1802.09517, 2018.

[58] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems (TOPLAS), 10(3):470–502,
Jul 1988. ISSN 0164-0925, 1558-4593. doi: 10.1145/44501.45065.

[59] WebAssembly/spec/test/core. WebAssembly, Apr 2020. URL https://github.com/
WebAssembly/spec.

[60] Webassembly/reference-types, . URL https://github.com/WebAssembly/
reference-types.

[61] Webassembly/function-references, . URL https://github.com/WebAssembly/
function-references.

[62] Christopher League, Zhong Shao, and Valery Trifonov. Precision in practice: A
type-preserving java compiler. In Görel Hedin, editor, Compiler Construction, Lec-
ture Notes in Computer Science, page 106–120. Springer, 2003. ISBN 978-3-540-
36579-2.

[63] rustwasm/wasm-bindgen. Rust andWebAssembly, Apr 2020. URL https://
github.com/rustwasm/wasm-bindgen.

[64] Interacting with code— emscripten 1.39.11 documentation. URL https:
//emscripten.org/docs/porting/connecting_cpp_and_javascript/
Interacting-with-code.html.

[65] mozilla/gecko-dev, . URL https://github.com/mozilla/gecko-dev.

[66] v8/v8, . URL https://github.com/v8/v8.

55

https://doi.org/10.1145/1805974.1805977
https://doi.org/10.1145/1805974.1805977
https://doi.org/10.1145/1481861.1481866
https://github.com/WebAssembly/spec
https://github.com/WebAssembly/spec
https://github.com/WebAssembly/reference-types
https://github.com/WebAssembly/reference-types
https://github.com/WebAssembly/function-references
https://github.com/WebAssembly/function-references
https://github.com/rustwasm/wasm-bindgen
https://github.com/rustwasm/wasm-bindgen
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html
https://github.com/mozilla/gecko-dev
https://github.com/v8/v8

[67] bytecodealliance/wasmtime. Bytecode Alliance, Apr 2020. URL https://github.
com/bytecodealliance/wasmtime.

[68] Ariya Hidayat. Automatic inlining in javascript engines, Apr 2013. URL https:
//ariya.io/2013/04/automatic-inlining-in-javascript-engines.

[69] AndyWingo. v8: a tale of two compilers, Jul 2011. URL http://wingolog.org/
archives/2011/07/05/v8-a-tale-of-two-compilers.

[70] David Xinliang Li, Raksit Ashok, and Robert Hundt. Lightweight feedback-
directed cross-module optimization. CGO ’10, page 53–61. Association for Com-
puting Machinery, Apr 2010. ISBN 978-1-60558-635-9. doi: 10.1145/1772954.
1772964. URL https://doi.org/10.1145/1772954.1772964.

[71] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Unipycation: a case study in
cross-language tracing. In Proceedings of the 7th ACMworkshop on Virtual machines
and intermediate languages, VMIL ’13, page 31–40. Association for Computing
Machinery, Oct 2013. ISBN 978-1-4503-2601-8. doi: 10.1145/2542142.2542146.
URL https://doi.org/10.1145/2542142.2542146.

[72] WebAssembly/multi-memory. WebAssembly, Feb 2020. URL https://github.com/
WebAssembly/multi-memory.

[73] Webassembly/gc, . URL https://github.com/WebAssembly/gc.

[74] soil-initiative/gc. SOIL Initiative, Jan 2020. URL https://github.com/
soil-initiative/gc.

[75] Webassembly/interface-types, . URL https://github.com/WebAssembly/
interface-types.

[76] WebAssembly/WASI. WebAssembly, Apr 2020. URL https://github.com/
WebAssembly/WASI.

56

https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://ariya.io/2013/04/automatic-inlining-in-javascript-engines
https://ariya.io/2013/04/automatic-inlining-in-javascript-engines
http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-compilers
http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-compilers
https://doi.org/10.1145/1772954.1772964
https://doi.org/10.1145/2542142.2542146
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/gc
https://github.com/soil-initiative/gc
https://github.com/soil-initiative/gc
https://github.com/WebAssembly/interface-types
https://github.com/WebAssembly/interface-types
https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI

This thesis was typeset using
LATEX, originally developed by Leslie
Lamport and based on Donald

Knuth’s TEX. The body text is set in 11
point Egenolff-Berner Garamond, a revival
of Claude Garamont’s humanist typeface.
Thank you, Jordan Suchow, for providing
the MIT X11 licensed Dissertate template
that this document was based off of.

57

https://github.com/suchow/Dissertate

	Introduction
	Changing Times
	WebAssembly, A New Champion?
	Contributions

	Historical and Related Work
	Java Virtual Machine
	Common Language Runtime
	PNaCl
	Asm.js
	Truffle & GraalVM
	Secure Compilation

	Extending WebAssembly[1] with Abstract Types
	int32 Addresses as Object References
	Abstract Types: Unforgeable References + More

	Maintaining the Integrity of[1] Source-Level Abstractions
	Type Safe Function Calls
	(Somewhat) First Class Functions
	Closures
	Object Methods
	Field Access Modifiers
	Representation Invariants

	Future & Ongoing Work
	Performance Concerns
	Additional Extensions
	Interplay with Other WebAssembly Proposals

	Conclusion
	Appendix Expanded Code Samples
	Alternative Abstract Type Syntax
	Array Library

	References

