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Abstract 

Title: Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After 
Surgery for Spinal Metastasis 

Purpose: Preoperative prognostication of short-term postoperative mortality in patients with 
spinal metastatic disease can improve shared decision making around end- of-life care. The 

objective of this study was to (1) develop machine learning algorithms for prediction of short-

term mortality and (2) deploy these models in an open access web application.  

Methods: The American College of Surgeons, National Surgical Quality Improvement Program 
was used to identify patients that underwent operative intervention for metastatic disease. Four 

machine learning algorithms were developed, and the algorithm with the best performance across 

discrimination, calibration, and overall performance was integrated into an open access web 

application.  

Results: The 30-d mortality for the 1790 patients undergoing surgery for spinal metastatic 
disease was 8.49%. Preoperative factors used for prognostication were albumin, functional 

status, white blood cell count, hematocrit, alkaline phosphatase, spinal location (cervical, 

thoracic, lumbosacral), and severity of comorbid systemic disease (American Society of 

Anesthesiologist Class). In this population, machine learning algorithms developed to predict 30-

d mortality performed well on discrimination (c-statistic), calibration (assessed by calibration 

slope and intercept), Brier score, and decision analysis. An open access web application was 

developed for the best performing model and this web application can be found here: 

https://sorg-apps.shinyapps.io/spinemets/.  

Conclusion: Machine learning algorithms are promising for prediction of postoperative 
outcomes in spinal oncology and these algorithms can be integrated into clinically useful 

decision tools. As the volume of data in oncology continues to grow, creation of learning 

systems and deployment of these systems as accessible tools may significantly enhance 

prognostication and management.  
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BACKGROUND: Preoperative prognostication of short-term postoperative mortality in
patients with spinal metastatic disease can improve shared decision making around end-
of-life care.
OBJECTIVE: To (1) develop machine learning algorithms for prediction of short-term
mortality and (2) deploy these models in an open access web application.
METHODS: The American College of Surgeons, National Surgical Quality Improvement
Program was used to identify patients that underwent operative intervention for
metastatic disease. Four machine learning algorithms were developed, and the algorithm
with the best performance across discrimination, calibration, and overall performancewas
integrated into an open access web application.
RESULTS: The 30-dmortality for the 1790patients undergoing surgery for spinalmetastatic
diseasewas 8.49%. Preoperative factors used for prognosticationwere albumin, functional
status, white blood cell count, hematocrit, alkaline phosphatase, spinal location (cervical,
thoracic, lumbosacral), and severity of comorbid systemic disease (American Society of
Anesthesiologist Class). In this population, machine learning algorithms developed to
predict 30-d mortality performed well on discrimination (c-statistic), calibration (assessed
by calibration slope and intercept), Brier score, and decision analysis. An open access web
applicationwas developed for the best performingmodel and this web application can be
found here: https://sorg-apps.shinyapps.io/spinemets/.
CONCLUSION:Machine learning algorithms are promising for prediction of postoperative
outcomes in spinal oncology and these algorithms can be integrated into clinically useful
decision tools. As the volume of data in oncology continues to grow, creation of learning
systems and deployment of these systems as accessible tools may significantly enhance
prognostication and management.

KEYWORDS: Artificial intelligence, Machine learning, Oncology, Prediction, Spinal metastases, Spine surgery
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S pinal metastatic disease develops in more
than 40% of oncology patients and
progresses to spinal cord compression

in 20% of these cases.1 The rate of surgical
intervention for spinal metastatic disease has
increased2,3 since the randomized controlled
trial by Patchell et al4 demonstrating benefit
of decompressive surgery and radiotherapy
versus radiotherapy alone. However, short-term

ABBREVIATIONS: ACS, American College of
Surgeons; NSQIP, National Surgical Quality
Improvement Program

mortality after surgery for spinal metastatic
disease is a marker for patients who did not
benefit from this significant intervention
for a primarily palliative result; preoperative
prognostication of this adverse outcome can
improve end-of-life care for these patients.
In response to this need, numerous studies
have created risk scores and nomograms for
predicting outcomes in this population.5-24
Nonetheless, relatively few studies have sought
to apply machine learning algorithms to predict
survival in spinal metastatic disease.8,25 In
addition, there are no studies focusing on opera-
tively managed spinal metastatic disease and
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incorporating disease specific factors into open access decision
tools for healthcare professionals.
Machine learning is an intersection of computer science and

statistics used in oncology for pharmacogenomics, image classi-
fication, and decision support systems, among other areas.26-28
Notably, the field has advanced to the extent that in 2017, Esteva
et al29 developed machine learning algorithms that rivaled 20
board-certified dermatologists in correctly identifying skin cancer
from images alone.
The purpose of this study was (1) to explore the utility of

machine learning algorithms for predicting short-term survival
and (2) to develop accessible interfaces for healthcare professionals
to use machine learning for prognosticating 30-d mortality in
patients with spinal metastatic disease.

METHODS

Guidelines
Transparent Reporting of multivariable Prediction Models for

Individual Prognosis or Diagnosis (TRIPOD) and JMIR Guidelines
for Developing and Reporting Machine Learning Predictive Models
in Biomedical Research were followed.30,31 This was a retrospective
machine learning classification study (outcome was binary categorical)
for prognostication in spinal metastatic disease.

Data Source
The American College of Surgeons (ACS) National Surgical Quality

Improvement Program (NSQIP) is a large, multi-institutional clinical
registry of 30-d postoperative outcomes at US surgical centers and has
been extensively used for outcomes research in spine surgery.32 Institu-
tional review board approval for this study was not sought as the de-
identified NSQIP data have been previously exempt from individual
review by our institutional review board.

Patient Selection
Patients were only included in the study if all of the following

criteria were met (1) primary Current Procedural Terminology code
for excision, osteotomy, decompression, fusion, or fixation (2) at the
cervical, thoracic, or lumbosacral levels, (3) International Classifi-
cation of Diseases diagnosis of secondary malignant neoplasm of bone,
meninges, or spinal cord or diagnosis of pathological fracture, (4)
confirmed comorbidity of disseminated cancer, (5) surgical subspe-
cialty neurosurgery or orthopedics, (6) general anesthesia, (7) inpatient
operation, and (8) year of operation between 2009 and 2016 (9)
American Society of Anesthesiologist Classification indicating systemic
disease (II-V).

Candidate Features
The following variables were extracted for each eligible patient based

on prior work: (1) sex [male, female],33 (2) age [continuous],34 (3)
body mass index [continuous], (4) functional status [independent,
dependent],7,8,15,34,35 (5) severity of comorbid systemic disease as
assessed by the American Society of Anesthesiologists Classification [II,
III, IV-V],34 (6) spinal tumor location [cervical, thoracic, lumbosacral],36
(7) corpectomy [yes, no], (8) laminectomy [yes, no], (9) fusion [yes, no],
(10) instrumentation [yes, no], (11) number of levels, (12) preoperative

albumin [continuous],23,35 (13) preoperative serum alkaline phosphatase
[continuous],37-39 (14) preoperative hematocrit [continuous],8 (15)
preoperative white blood cell count [continuous],8,40 (16) preoper-
ative platelet count [continuous].41,42 Multiple imputation with chained
equations was used to impute missing preoperative laboratory charac-
teristics with less than 25% missing data. Thirty-day mortality, as
documented in NSQIP, was used as the dependent variable in this inves-
tigation.

Data Analysis
A stratified 80:20 split of the available data was carried out. The

training set was used for algorithm training and assessment of perfor-
mance by 10-fold cross validation. All study variables were entered into
Random Forest algorithms, and recursive feature selection was used to
identify the subset of features employed in final modeling.43 Neural
Network, Support Vector Machine, Bayes Point Machine, and Decision
Tree models were subsequently trained to predict 30-d mortality.43-46
The best performing model was used to predict 30-d mortality in the
testing set.

Discrimination was assessed graphically with the receiver operating
curve and numerically with c-statistic, also known as the area under
the receiver operating curve for binary classification. Discrimination is
the model’s ability to distinguish patients who survived from those who
died.47-50 Models with perfect discrimination have c-statistic = 1, while
models with performance no better than chance have c-statistic = 0.5.

Calibration was assessed graphically with calibration plots and numer-
ically with calibration slope and calibration intercept.49,50 Calibration
measures how well the model’s predicted probabilities concur with the
observed probabilities in the study population. Calibration intercept
measures whether on average the model tends to overestimate or underes-
timate the probability of the outcome; perfect models have a value of 0 for
a calibration intercept. Calibration slope measures the difference between
predictor effects for each model in the training and testing datasets.
When predictor effects for the model are equivalent in the training and
testing sets, the calibration slope is 1.

Overall model performance was assessed with the Brier score, the
mean squared error between the observed values and the predicted
probabilities.50,51 The Brier score is a composite of discrimination and
calibration that can also be used to benchmark model performance.50
The Brier score for the null model, assigning a predicted probability
for all patients equivalent to the prevalence of 30-d mortality in the
population, was calculated and used to compare the Brier values attained
by the machine learning algorithms. Brier scores closer to zero indicate
better models (lower error between predictions and observed values).

Decision curve analysis was undertaken to determine the utility of
the best model for clinical management.52,53 Decision curve analysis
allows for the assessment of net benefit over a range of probability
thresholds. Net benefit is a function of true positives, false positives,
and the relative weight assigned to false positives versus true positives
based on the probability threshold. A single probability is used to
identify both the threshold and the relative weight of true positives and
false positives. Since probability thresholds may vary, decision curves
are useful for examining the utility of prediction models over a range
of probability thresholds in order to compare net benefit of changing
management for no patients, changing management for all patients,
changing management for patients based on an individual predictor, and
for changing management based on the overall prediction model.
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MACHINE LEARNING ANDMORTALITY IN SPINAL METASTASIS

Application Development
The best algorithm across the model performance metrics for

predicting 30-d mortality was incorporated into an interactive interface.
The clinical decision tool was designed to collect the values entered by
a healthcare professional, feed the values to the pre-trained algorithm,
retrieve the result, and finally to output the result to the healthcare
professional in real time. The clinical decision tool was deployed as
an open-access web-based application and programmed to be acces-
sible and adaptable for use on desktops, tablets, and smartphones. The
Anaconda Distribution (Anaconda Inc, Austin, Texas), Microsoft Azure
(Microsoft Corporation, Redmond, Washington), R version 3.4.3 (The
R Foundation, Vienna, Austria), RStudio version 1.0.153 (RStudio,
Boston, Massachusetts), and Python version 3.6 (Python Software
Foundation, Wilmington, Delaware) were used for data analysis, model
creation, and web application development.

RESULTS

The 30-d mortality for the 1790 patients undergoing operative
intervention for spinal metastatic disease was 8.49%. Patients who
suffered 30-d mortality had lower albumin, higher white blood
cell count, lower hematocrit, and higher alkaline phosphatase.
Other baseline characteristics of the study population are
displayed in Table 1 (continuous variables categorized for ease
of interpretation and assessment of baseline data completeness).
Random Forest algorithms identified albumin, functional status,
white blood cell count, hematocrit, alkaline phosphatase,
spinal location (cervical, thoracic, lumbosacral), and severity of
comorbid systemic disease (American Society of Anesthesiologist
class) as predictive factors for 30-d mortality. C-statistics of all
models were similar in the training set, n = 1432, and ranged
from 0.760 for the Support Vector Machine to 0.769 for the
Neural Network (Table 2). The best model for predicting 30-
d mortality as assessed by discrimination alone was the Neural
Network with c-statistic 0.769. The calibration slope ranged from
0.728 for the Decision Tree to 1.013 for the Bayes Point Machine
and the calibration intercept ranged from –0.009 for the Bayes
Point Machine to 0.004 for the Decision Tree. Assessed graphi-
cally and numerically, the Bayes PointMachine was best calibrated
over the full range of predicted probabilities.
Assessed by overall model performance, the Brier score ranged

from 0.0701 for the Bayes Point Machine to 0.0711 for the
Decision Tree. In comparison, the null Brier model performance
(assigning a predicted probability to each patient equal to the
prevalence of 30-d mortality in the population) was 0.079. Bayes
PointMachine was chosen as the final model with superior perfor-
mance on calibration and overall assessment. On evaluation in the
testing set, n = 358, the model had c-statistic 0.782 (Figure 1),
calibration slope 1.07, calibration intercept –0.062 (Figure 2),
and Brier score 0.068 (null Brier score in the testing set= 0.078).
Decision curve analysis for the Bayes Point Machine model

showed that changing management based on the Bayes Point
Machine model would result in greater net benefit than changing
management for no patients or for all patients undergoing
operative intervention for spinal metastasis over all thresholds

(Figure 3). In addition, the net benefit of changing management
on the basis of the Bayes Point Machine model was greater than
by changing management on the basis of ASA class alone.
The Bayes Point Machine was incorporated into a web appli-

cation with a user interface and deployed as an open access tool
for healthcare professionals (Figure 4). The web application can
be accessed here: https://sorg-apps.shinyapps.io/spinemets/.

DISCUSSION

Preoperative evaluation of patients with spinal metastatic
disease is imperative to minimize the risks of surgery (postoper-
ative complications, decreased quality of life, shortened survival)
for the subset of patients who are unlikely to attain the health
benefits (longer survival, improved quality of life) for which
spinal surgery in this population is intended.8,13,34 In particular,
prognosticating short-term mortality after surgery remains one
of the most important benchmarks for patient counseling
and shared decision making in the consideration of treatment
pathways: surgery, radiotherapy, chemotherapy/immunotherapy,
and palliative care.54 This study evaluated the utility of multiple
machine learning models for predicting 30-d mortality after
surgical intervention for spinal metastatic disease and demon-
strated the high performance of these models across discrimi-
nation, calibration, and decision analysis.
The ultimate intent of this effort was to develop a clinically

useful predictive model for short-term mortality after operative
intervention for spinal metastatic disease. The preoperative
factors selected by Random Forest algorithms (and subsequently
used for final modeling) reassuringly concurred with previous
studies that have demonstrated that lower preoperative albumin,
higher white blood cell count, and dependent functional status
are important predictors for near-term mortality after inter-
vention for spinal metastatic disease. For example, Schoenfeld
et al35 previously demonstrated that preoperative nutritional
status is significantly associated with 30-d mortality.23 In
addition, Paulino Pereira et al8 demonstrated that a higher
preoperative white blood cell count and lower hemoglobin were
associated with increased hazard of mortality.8 Multiple studies
have demonstrated that preoperative poor functional status is
associated with worse outcomes following treatment for spinal
metastatic disease.5-8,23,35,40
Paulino Pereiera et al8 previously developed a boosting

algorithm for predicting survival in patients with spinal metastatic
disease treated at 2 tertiary care academic medical centers but
did not deploy the boosting algorithm as an application for
healthcare professionals. The multicenter origin of the data used
in this analysis, as well as the size of our sample, advantages the
results of this effort. Forsberg et al25 also created a Bayesian Belief
Network for predicting survival in patients with axial and appen-
dicular skeletal metastasis using a single institutional registry.55
However, the dataset used to create the algorithm had a majority
of appendicular skeletal metastases patients and included only

NEUROSURGERY VOLUME 0 | NUMBER 0 | 2018 | 3

D
o
w
n
lo
a
d
e
d
 fro
m
 h
ttp
s
://a
c
a
d
e
m
ic
.o
u
p
.c
o
m
/n
e
u
ro
s
u
rg
e
ry
/a
d
v
a
n
c
e
-a
rtic
le
-a
b
s
tra
c
t/d
o
i/1
0
.1
0
9
3
/n
e
u
ro
s
/n
y
y
4
6
9
/5
2
0
0
9
0
9
 b
y
 H
a
rv
a
rd
 U
n
iv
e
rs
ity
 u
s
e
r o
n
 1
3
 D
e
c
e
m
b
e
r 2
0
1
8

https://sorg-apps.shinyapps.io/spinemets/


KARHADE ET AL

TABLE 1. Baseline Characteristics of Patients Undergoing Operative Intervention for Spinal Metastatic Disease, n= 1790

Thirty-daymortality
Variable Definition Total, n= 1790 No, n= 1638 Yes, n= 152

Sex Female 695 (38.9) 651 (39.8) 44 (29.1)
Male 1093 (61.1) 986 (60.2) 107 (70.9)

Age (years) <65 1017 (56.8) 935 (57.1) 82 (53.9)
65-79 682 (38.1) 622 (38.0) 60 (39.5)
>80 91 (5.1) 81 (4.9) 10 (6.6)

Body mass index (kg/m2) <18.5 143 (8.0) 126 (7.7) 17 (11.2)
≥40 60 (3.4) 55 (3.4) 5 (3.3)
18.5-29 1173 (65.5) 1070 (65.3) 103 (67.8)
30-39 414 (23.1) 387 (23.6) 27 (17.8)

Functional status Independent 1560 (87.2) 1448 (88.4) 112 (73.7)
Dependent 230 (12.8) 190 (11.6) 40 (26.3)

American Society of Anesthesiologist Class II 213 (11.9) 206 (12.6) 7 (4.6)
III 1158 (64.7) 1077 (65.8) 81 (53.3)
IV-V 419 (23.4) 355 (21.7) 64 (42.1)

Spine location Cervical 327 (18.3) 286 (17.5) 41 (27.0)
Lumbosacral 420 (23.5) 395 (24.1) 25 (16.4)
Thoracic 1043 (58.3) 957 (58.4) 86 (56.6)

Corpectomy 416 (23.2) 379 (23.1) 37 (24.3)
Laminectomy 902 (50.4) 819 (50.0) 83 (54.6)
Fusion 1190 (66.5) 1097 (67.0) 93 (61.2)
Instrumentation 1107 (61.8) 1024 (62.5) 83 (54.6)
Number of levels One or two 651 (36.4) 590 (36.0) 61 (40.1)

Three or more 1139 (63.6) 1048 (64.0) 91 (59.9)
Albumin (g/dL) <3.5 553 (30.9) 465 (28.4) 88 (57.9)

≥3.5 834 (46.6) 796 (48.6) 38 (25.0)
Not measured 403 (22.5) 377 (23.0) 26 (17.1)

Alkaline phosphatase (IU/L) >115 528 (29.5) 467 (28.5) 61 (40.1)
0-44 24 (1.3) 23 (1.4) 1 (0.7)
45-115 832 (46.5) 769 (46.9) 63 (41.4)
Not measured 406 (22.7) 379 (23.1) 27 (17.8)

Hematocrit (%) <30 525 (29.3) 453 (27.7) 72 (47.4)
≥30 1256 (70.2) 1176 (71.8) 80 (52.6)
Not measured 9 (0.5) 9 (0.5) 0 (0.0)

White blood cell (103/µL) <4 97 (5.4) 88 (5.4) 9 (5.9)
≥11 509 (28.4) 441 (26.9) 68 (44.7)
4-11 1173 (65.5) 1099 (67.1) 74 (48.7)
Not measured 11 (0.6) 10 (0.6) 1 (0.7)

Platelets (103/µL) <150 219 (12.2) 187 (11.4) 32 (21.1)
>150 1563 (87.3) 1443 (88.1) 120 (78.9)
Not measured 8 (0.4) 8 (0.5) 0 (0.0)

TABLE 2. Machine LearningModel Performance for 30-d Survival Prediction inPatientsUndergoingOperative Intervention for SpinalMetastatic
Disease, Training Set, n= 1432

Machine learning algorithm
Method Metric Neural network Support vector machine Bayes point machine Decision tree

Discrimination C-statistic 0.769 0.758 0.768 0.760
Calibration Calibration slope 0.941 0.938 1.013 0.728

Calibration intercept 0.000 −0.002 −0.009 0.004
Overall Brier score 0.0706 0.0709 0.0701 0.0711

Null model Brier score 0.079

4 | VOLUME 0 | NUMBER 0 | 2018 www.neurosurgery-online.com

D
o
w
n
lo
a
d
e
d
 fro
m
 h
ttp
s
://a
c
a
d
e
m
ic
.o
u
p
.c
o
m
/n
e
u
ro
s
u
rg
e
ry
/a
d
v
a
n
c
e
-a
rtic
le
-a
b
s
tra
c
t/d
o
i/1
0
.1
0
9
3
/n
e
u
ro
s
/n
y
y
4
6
9
/5
2
0
0
9
0
9
 b
y
 H
a
rv
a
rd
 U
n
iv
e
rs
ity
 u
s
e
r o
n
 1
3
 D
e
c
e
m
b
e
r 2
0
1
8



MACHINE LEARNING ANDMORTALITY IN SPINAL METASTASIS

FIGURE 1. Receiver operating curve by model for prediction of 30-d mortality; testing set, n = 358. AUC = area under the curve.

33 (18%) spine patients.55 Our study is the first algorithm
for mortality specific to patients with spinal metastatic disease
that relied on machine learning algorithms incorporating spine-
specific variables derived from a large, multi-institutional dataset.
This may enhance the generalizability of the algorithm presented
here.
The discrimination of the predictive algorithms developed in

this study approximated that of previous models proposed for
predicting outcomes after operative intervention for spinal metas-
tases.7,8,23,25 However, as the purpose of this study was to create
a clinically useful decision tool, model calibration was central
to evaluating model performance in this study, numerically and
graphically.47 In comparison to previous studies, our study was
one of the few that assessed model calibration with calibration
plots and the only study that assessed calibration slope and

intercept. Assessing model calibration graphically was crucial in
that the model with the best discrimination, the Neural Network,
was demonstrated to be inferior to the second best performing
model, Bayes Point Machine, over the full range of predicted
30-d mortality. Future studies seeking to build predictive models
should incorporate graphical and numerical assessment of model
calibration as a key component of model performance.

Limitations
There are several limitations to the work presented in this

study. Although ACS-NSQIP has been widely employed in a
number of contexts, the data veracity and data completeness
are variable and may not be as stringent as data prospectively
collected for a specific research protocol. This study was a retro-
spective analysis of the NSQIP database and the limitations of
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FIGURE 2. Calibration curve by model for prediction of 30-d mortality in the testing set, n = 358.

retrospective research must be considered when interpreting the
findings presented here. In addition, predictors that may be
pertinent to short-term survival prediction in this population,
such as primary tumor histology and metastatic tumor burden
(bone, lung, liver, brain), cannot reliably be extracted from ACS-
NSQIP. Verlaan et al34 studied 1266 patients in a prospective,
longitudinal study at 23 international spine centers from 2001 to
2014 and did not find primary tumor histology or the presence
of brain metastases significantly associated with survival less than
3 mo on multivariable analysis. Similarly, Schoenfeld et al35 only
found nutritional status and ambulatory status to be significantly
associated with 30-d mortality. NSQIP also does not record the
overall trajectory of metastatic disease prior to operative inter-
vention; for example, history of local radiation, history of systemic
therapy, and recurrence of tumor are not captured in the NSQIP
database. These are significant factors in decision making and
should be evaluated by future prospective studies. Although the

ACS-NSQIP collects data from a variety of centers, with the
2016 data drawing from 600+ hospitals, the patients included
in the ACS-NSQIP database may not reflect the demographic
and clinical characteristics of patients for which these models are
ultimately used; healthcare professionals should be aware of these
differences while seeking to interpret the probabilities developed
from this analysis.
Furthermore, the machine learning models built in this study

are optimized for highly accurate prediction but not for expla-
nation. Unlike logistic regression, the model parameters of the
machine learning algorithms created in this study cannot be
simply deployed for explanatory purposes of the independent
effect of individual risk factors on 30-d mortality. In addition,
this study did not examine multivariate logistic regression
or proportional hazards models. There is a need for future
studies to examine the predictive performance of these methods
relative to the algorithms presented here. Logistic regression
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FIGURE 3. Decision analysis curve for (1) changing management for all patients with spinal metastatic disease undergoing spine surgery, (2) no patients, and (3)
based on American Society of Anesthesiologist (ASA) class alone, or (4) based on the Bayes model.

and proportional hazards models have significant strengths in
explanation and prediction, and future comparative studies can
provide further recommendations on appropriateness of model
selection in spinal oncology. Lastly, it should be acknowledged
that there are other outcomes beyond short-term mortality
that contribute to decision making for spine surgery including
complication profile, postoperative functional status, and neuro-
logical function. The ability of the machine learning algorithms
developed here to predict the impact of surgical intervention on
these outcomes remains to be determined.
Nonetheless, this study fulfilled its primary objective of

creating a discriminative and well-calibrated model for prediction
of short-term mortality after surgery for spinal metastatic disease.
This study achieved another milestone by creating an open access

web application for healthcare professionals to access and use
these computational models directly. For now, this web-based
application exists as a separate tool similar to existing cardiovas-
cular risk calculators and other surgical risk calculators based on
regression analysis and nomograms.56,57 However, one accom-
plishment of this study has been to preserve the complexity of
the computational model while allowing the model to be accessed
from a simple interface. Programming of computational inter-
faces in this manner may serve as a template for integration into
modern electronic health systems and for this capability to be part
and parcel of computationally and digitally enabled medicine.
The creation of learning healthcare systems has been previously
proposed, and this method of predictive algorithm creation and
deployment can be one step in progress toward that goal.58,59
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FIGURE 4. Open access web application: https://sorg-apps.shinyapps.io/spinemets/.

CONCLUSION

Machine learning algorithms are promising for prediction of
postoperative outcomes in spinal oncology and these algorithms
can be integrated into clinically useful decision tools. As the
volume of data in oncology continues to grow, creation of learning
systems and deployment of these systems as accessible tools may
significantly enhance prognostication and management.

Disclosure
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