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Neuron Identity Problem: From Genes to Function 
 
 

Abstract 
 
 

Cellular specialization is one of the key features of the vertebrate nervous 

system, which is composed of thousands to billions of neurons that that have distinct 

molecular, morphological, electrophysiological and connectivity properties. 

Deconstructing the nervous system into its constituent parts is one of the fundamental 

steps to understanding how it generates behavior and how its dysfunction might lead to 

neuropsychiatric disorders. To tackle this problem, we generated comprehensive cell 

type profiles of two regions of the zebrafish brain: 1) the habenula and 2) the 

telencephalon and sought to connect these molecular profiles to functional properties of 

said brain regions.  

 

To generate comprehensive cell type maps of these regions, we produced and 

analyzed single-cell RNAseq data from the habenula and telencephalon. Using a two-

time point single cell analysis of each region combined with machine learning 

approaches, we investigated questions on the maintenance and divergence of cell type 

identities between a developing animal and a mature adult. We found that the habenular 

cell types were largely maintained between larva and adult. On the other hand, cell 

types in the telencephalon displayed significant divergences between developing larva 

and mature adult.  



 IV 

 

To interrogate the functional roles of cell types, we combined molecular profiling 

approaches with in situ hybridization and computational image morphing to generate 

detailed spatial atlases for both regions of the brain. Using the spatial atlas of the 

habenula, we identified a population in the ventrolateral habenula that is activated by 

inescapable aversive environmental stimuli.  

 

To further understand the functional role of the cell types and marker genes, we 

generated mutants of cell type specific marker genes and assayed them for brain 

activity and behavior. We discovered that all the habenular mutants displayed aberrant 

locomotor activity and one displayed a reduction in arousal threshold, establishing the 

habenula as an important regulator of activity and perhaps even sleep.  

 

Finally, we utilized the cell type landscape of the forebrain to understand the 

molecular basis of a brain activity and behavioral phenotype in animals with loss of a 

schizophrenia associated gene znf536. Together, these observations demonstrate how 

the deconstruction of the brain into its constituent cell types can spur further discoveries 

of the role of cell types in generating animal behavior in health and disease.  
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Chapter 1: Introduction 

 

1.1  Classification of Neuronal Cell Types  

 

Cell types are fundamental units of biological systems. In fact, the major driver for the 

evolution of multicellular life is thought to be the advantage that is conferred by 

specializing cell types to execute specific tasks (Arendt, 2008). Such a division of labor 

is a particularly prominent feature of the nervous system which has long been 

appreciated for the immense diversity of its cell types (Bota and Swanson, 2007; Luo et 

al., 2008). Neuroscientists have long been fascinated by this diversity of cell types in the 

brain. The concept that specific cell types with unique characteristics form building 

blocks of the nervous system dates back to the time of Santiago Ramon y Cajal and his 

contemporaries during the late 1800s (Ramon y Cajal, 1899). Using Camillo Golgi’s 

‘black reaction’ to stain sparse cell populations in histological sections, Cajal and his 

contemporaries identified a diversity of cell types based on anatomical features. In 

addition, they described the variation in these cell types across different brain regions 

and the conservation of said types across species.  

 

Since then, other modalities have been added to the repertoire of cellular descriptors 

such as gene expression, projection patterns and functional/electrophysiological 

properties. However, until recently, these descriptors were still explored using low-

throughput histological methods (Bota and Swanson, 2007; Masland, 2004) and 

remained severely underpowered. These approaches are not scalable to systematically 
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and reproducibly classify majority of the cell types in the brain. The cellular complexity 

of the nervous system relative to these traditional techniques has impeded the 

development of a cell inventory of the brain for a long time.   

 

High-throughput methods such as single cell RNA-seq have provided avenues to collect 

comprehensive information about individual cells in the brain to stratify neurons into cell 

types based on a large number of features or genes. In contrast to imaging approaches, 

this approach allows the profiling of the complete gene expression state of a particular 

neuron, which in theory should encode morphological, connectivity and functional 

features of the cell given this profiling is done in a dynamic manner so as to capture the 

development history of a particular neuron.  

 

While these approaches improve the scalability of the age-old problem of cell type 

classification in the brain, the question of what constitutes a cell type is still not without 

contention. In this thesis, I explore some of the various points surrounding the problem 

of cell type classification in the brain. In this thesis, a cell type is defined as a shared, 

stable molecular ‘ground state’ that broadly dictates the functional capacities of a 

particular neuron (Fishell and Heintz, 2013). While individual members of a cell type 

may differ in the exact profile of genes that they express depending on context and 

activity, all cells belonging to that type should express a stable common suite of genes. 

In the sections below, I will describe the various facets of this problem in greater detail 

and the features that should be considered when tackling the problem of defining cell 

type identities in the brain.  
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1.2 The Multi-layered Problem of Defining Cell Types in the Brain  

 

While single-cell RNAseq provides a unique framework for successful classification of 

cells into cell types, the problem of classification in the brain is more complex than 

partitioning cells into clusters based on the proximity of their gene expression 

signatures. The vertebrate nervous system is a uniquely intricate biological network 

coordinating and controlling all aspects of our behavior. Hence, the neurons that get 

partitioned into cell types don’t exist in isolation. Instead, each neuron in the brain might 

be connected to as many as hundreds or thousands of other neurons forming neural 

circuits. Arguably, it is these circuits that act as the fundamental functional units of the 

brain that generate animal behavior (Figure 1.1). Furthermore, neuronal types and gene 

expression states in the brain might also be more dynamic in nature. For instance, 

acquisition of new behaviors or behavioral states might lead to changes in cell type 

specific gene expression patterns and/or circuit architecture.  

 

Figure 1.1. The Multiple Scales of the Neuron Identity Problem. 

 

In general, the number of cell types present within a sub-region of the brain might reflect 

the computational complexity of its functions. In sensory and peripheral nervous system, 
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the characterization of specific cell types as well as their contribution to different 

behaviors has been studied in great detail (Arber, 2012) . In most of these cases, the 

reasons for specialization of cell types are also quite apparent. Classic examples 

include specific motor neurons with distinct molecular, anatomical and 

electrophysiological properties that make up motor circuits that generate fixed action 

patterns (Schiff N., 1999). While this principle might also apply to complex circuits of the 

brain, the number of identifiable cell types present in these circuits might be quite large. 

For instance, it is believed that there exists 100-150 cell types in the mammalian retina 

(Zeng and Sanes, 2017). While the function of each of these cell types have not been 

fully elucidated, there are also tantalizing examples of genetically distinct cell types 

performing distinct functional roles. For instance, the studies of the JamB retinal 

ganglion cells illustrate how the anatomy, physiology, molecular properties, spatial 

localization and receptive fields of these cells are all tailored to their ability to perceive 

upward motion (Kim et al., 2008).  

While the idea that there exists a correspondence between functional properties of 

circuits and the molecular properties of its constituent cell types is appealing, different 

functional elements of a circuit may also be distributed across multiple cell types. This is 

particularly true as we move from peripheral and sensory circuits to central nervous 

system circuits. In such contexts, it might not be apparent how these circuits might 

utilize different cell types to mediate different aspects of behavior. For instance, the 

cerebellar cortex can execute complex motor learning tasks with a handful of 

molecularly distinct cell types- a classic example of the circuit is greater than the sum of 

its parts (Llinas and Welsh, 1993).  
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Therefore, the differing complexities of the brain in different regions necessitates a cell 

type discovery pipeline that has the ability to parse out fine molecular domains and 

discover rare molecular states from a large group of neurons. In addition, 

methodologies are needed to connect these cell types to specific functional roles within 

their native circuits.  

 

1.3 Maintenance of Cell Type Identity  

 

While neurons might attain their identity after passing through final stages of 

differentiation, they must remain dynamically responsive to growth factors or neuronal 

activity while still maintaining their molecular ground state. For instance, a set of activity 

regulated gene expression programs are known to be initiated in response to changes 

in intracellular calcium responses (Cohen and Greenberg, 2008). These programs may 

ultimately alter synaptic and dendritic properties of neurons (West and Greenberg, 

2011). While these programs are important for shaping the circuit properties including 

synaptic strengths during development, they are also important as the animal continues 

to learn during its adult life. From a behavioral standpoint, the acquisition of new 

behaviors may also be accompanied by such changes in molecular properties of 

neurons. For instance, in zebrafish a number of behaviors including shoaling, operant 

and classical conditioning emerge later in life. What are the changes in cell type or 

circuit architecture that may lead to these behavioral changes? It is important to 

consider these dynamic features of neurons in the context of defining cell types in the 
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brain. In other words, we need a contextual classification scheme that recognizes the 

dynamic and interconnected nature of these specific cell types.  

 

1.4 Cell Type Maps for Investigation into Circuit Function and Disorders of the 

Brain 

 

An important goal of classifying neurons into specific subtypes is to enable genetic 

access to specific cell types. This genetic access can allow us to mark and manipulate 

specific subtypes within a circuit so as to understand how different components of a 

circuit might contribute to normal animal behavior (Huang and Zeng, 2013; Luo et al., 

2018). The discovery of cell type specific genes can serve as fundamental entry points 

to how the brain generates behaviors in various contexts.  

 

Similarly, cell type mapping efforts are fundamental to understanding brain disorders. 

The massive diversity of cell types in the mammalian brain has also presented unique 

challenges for the understanding of dysfunction associated with neuropsychiatric 

disorders. Because cell atlases provide detailed maps of cells and their roles in tissues, 

they will also enable us to understand the mechanisms underlying neuropsychiatric 

disorders at both cell and cellular-ecosystem level. For example, how does a specific 

neuropathology in the brain arise from mutations in genes that are broadly expressed? 

Why does there exist an extreme genetic complexity/variability in disorders such as 

schizophrenia or autism spectrum disorder? An atlas of the brain will help map the cell 

type of action for genes associated with neurological disorders such as autism, 
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schizophrenia and depression. Ultimately, this will help us understand the unique 

vulnerabilities conferred to specific cell types as a result of their specific biochemistries. 

In addition, the detailed molecular profiling of the affected cell types during the 

development and progression of disease is an important step in understanding the 

phenotypic consequences of genetic mutations on specific cell types in the brain. 

Together, these types of knowledge can guide disease modification by selecting for 

specific gene signatures to pursue in drug screens to fix the desired cellular 

phenotypes.  

 

1.5 Criteria for defining cell types 

 

There is considerable debate among neuroscientists in the field over the strict definition 

of a cell type. In principle, it seems obvious that individual neurons should be viewed as 

belonging to the same type if they serve the same function that differs from functions of 

other types of neurons. However, defining the function of a neuron at the level of a 

single cell is a difficult endeavor. The same neuron may perform different functions 

under different contexts or the function of a neuron may only emerge at the circuit level. 

Therefore, neuroscientists have relied on other properties to define cell types given that 

said properties are homogeneous within the population and differ from neurons of other 

types. The next question that arises then is the following: what are the properties of 

neurons that should be considered in defining cell types? There are three main 

categories of properties that are widely used to define cell types (Bota and Swanson, 

2007; Fishell and Heintz, 2013; Petilla Interneuron Nomenclature et al., 2008): 1] 
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morphological (Ramón y Cajal, 1899), 2] electrophysiological (Markram et al., 2004) and 

3] molecular properties (Cauli et al., 1997) (Figure 1.2). Morphological features may 

include such properties as dendritic and axonal shapes, branching patterns, soma size 

and shape. Electrophysiological features may include resting potential, biophysical 

properties and firing rate. Molecular features may include mRNA or protein composition 

assayed by in situ hybridization or RNAseq and immunohistochemistry respectively. 

Two additional category of features 1) connectivity (Shepherd et al., 2019) and 2) 

developmental or epigenetic states (Kepecs and Fishell, 2014; Yuste, 2005) are equally 

important (Figure 1.2) but are  less frequently incorporated into current studies due to 

technological challenges. Ideally, a unifying definition of cell types should involve all of 

these properties. Although such a satisfying correspondence of various features has 

been observed in some regions of the brain like the retina (Kim et al., 2008; Shekhar et 

al., 2016; Tsukamoto and Omi, 2017), it is unclear if this is true in many other parts of 

the brain. There is also the additional need to identify homologous cell types across 

different species (Arendt et al., 2016).  

 

 

Figure 1.2. Criteria for Cell Type Definition. 
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Figure 2.1 (Continued). (A) Morphological classification of neurons by Ramón y Cajal (Ramon y Cajal, 
1899). The main cell types of the cerebral cortex i.e. small and large pyramidal neurons (A, B, C, D, E) 
and interneurons (F, K) cells are labeled in the diagram.  
(B) Classification of GABAergic neurons based combinatorial marker gene expression from Kawaguchi 
and Kubota (Kawaguchi, 1997).  
(C) Classification of cortical neurons based on intrinsic firing properties from the Petilla Convention 
(Petilla Interneuron Nomenclature et al., 2008).  
 

A classification scheme based on transcriptomics is advantageous for many reasons. 

First, high throughput transcriptomics can allow large scale, systematic, quantitative and 

comprehensive analysis of large regions of the brain. Second, measuring molecular 

properties over the developmental trajectory of each neuron may offer predictive power 

to encode other cellular phenotypes such as morphology. Third, molecular definition of 

cell types enables the identification of cell type markers that can be used to create 

genetic tools that allow targeting, labeling and manipulation of said types to understand 

their function (Gerfen et al., 2013; He et al., 2016). Fourth, the nature of transcriptomic 

data may also allow alignment of cell types across different species using various 

machine learning techniques (Peng et al., 2019). Last, transcriptomic data can also 

provide information on potential links between disease associated genes and the 

cellular locus of action.  

 

1.6 Integrative Neurobiology with Zebrafish 

 

As discussed above, the problem of cell type classification in the brain needs to span 

multiple scales from measuring gene expression in individual cells to system-level 

behavioral characterization that seeks to connect molecular features to behavioral 

outputs. Several features make zebrafish an ideal model organism for tackling this 

problem.  
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1) The size of the larval brain is 100,000 neurons, making comprehensive profiling 

of brain regions and discovery of rare cell types more feasible compared to the 

mammalian brain.  

2) The larval zebrafish brain is transparent, making it possible to interface cell type 

maps with brain-wide activity maps obtained from calcium imaging.  

3) Larval zebrafish also display a range of simple to complex behaviors which can 

be measured in high-throughput fashion, allowing the behavior profiling of 

mutants of disease associated genes.  

 

In this thesis, I will mainly focus on a region of the fish brain called the habenula, where 

I employed high-throughput approaches such as single-cell RNAseq to delineate cell 

types (Chapter 2). I will present results that follow up on behavioral and brain activity 

studies of mutant genes to understand the role of cell-type specific genes in various 

behaviors (Chapter 3). Later, I will also present a vignette on the dissection of cell type 

specific effects of loss of function mutations of schizophrenia associated genes in 

zebrafish (Chapter 4). In the following sections, I will introduce the habenula and the 

variety of functional roles that it plays in generating behavior in both healthy and 

diseased contexts. 

 

 

 

 



11 
 

1.7 Introduction to the Habenula  

 

The habenula is a conserved brain structure that is present in all vertebrate brains. First 

identified by Serres in 1824 and later described in more anatomical detail by Ramon y 

Cajal, the habenula is a pair of small nuclei located the epithalamus, dorsal to the 

thalamus (Antolin-Fontes et al., 2015). It serves as a neuroanatomical hub that 

connects the limbic forebrain to midbrain monoaminergic centers. As such a hub, the 

habenula plays fundamental roles in vertebrate neurophysiology and behavior (Bianco 

and Wilson, 2009). It influences a wide range of behaviors, including sleep, pain 

processing, reward learning, stress and fear (Bianco and Wilson, 2009; Hikosaka, 2010; 

Namboodiri et al., 2016). Its pathophysiology has also been implicated in neurological 

disorders such as depression, schizophrenia and addiction (Proulx et al., 2014).  

 

1.7.1 Neural Network of the Habenular Nuclei 

 

As outlined in Figure 1.3, the habenula serves as a neuroanatomical hub between 

forebrain regions (prefrontal cortex, ventral subpallium, preoptic area, basal ganglia and 

hypothalamus) and midbrain regions (interpeduncular nucleus, dopaminergic and 

serotonergic centers). There is also a remarkable conservation of the afferent and 

efferent connections of the habenula between fish and mammals. With regards to 

projection patterns, the dorsal habenula in fish were found to be homologous to the 

medial habenula of mammals, while the ventral habenula in fish displayed homology to 

the mammalian lateral habenula.  
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Figure 1.3. Neural Network of the A) Zebrafish and B) Mammalian Habenula. 
Abbreviations: 5-HT: serotonin; d-IPN: dorsal Interpeduncular Nucleus; v-IPN: ventral Interpeduncular 
Nucleus; DRN: Dorsal Raphe Nucleus; SNc: Substantia Nigra; VTA: Ventral Tegmental Area; RMTg: 
Rostromedial Tegmental Nucleus. 
 
 
The output projections of the habenula are called the fasciculous retroflexus (fr) in both 

mammals and fish and are described to go to only to these specific circuits suggesting 

that they are part of dedicated circuit functions. An important distinction between fish 

and mammals lie in the L-R asymmetric inputs that go into the dorsal habenula of fish. 

These represent the input from the parapineal that is known to carry visual information 

into the left dorsal habenula and input from the olfactory bulb that carries olfactory 

information specifically to the right habenula.  
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1.7.2 Varied Functional Roles of the Habenula  

 

A.  The Role of Habenula in promoting sleep 

Several lines of evidence have directly or indirectly suggested the role of habenula in 

the regulation of sleep. First, in rats, lesioning the fasciculus retroflexus, the primary 

output of the habenula leads to reduction of atonia during Rapid Eye Movement (REM) 

and the amount of time spent in REM sleep (Haun et al., 1992). These aberrant REM 

sleep phenotypes can be restored by transplanting habenular tissue back into rats.  

Second, both in slice preparations and in vivo, habenular neurons show circadian 

rhythmicity (Guilding and Piggins, 2007). Third, medial habenular neurons produce the 

cytokine interleukin (IL)-18 which is known to promote sleep when injected 

intracerebroventricularly (Kubota et al., 2001). Fourth, the neural activity of both lateral 

and medial habenula has been observed to increase significantly during general 

anesthesia (Abulafia et al., 2009; Herkenham, 1981). These lines of evidence suggest 

that the habenula plays an important regulatory role in sleep. This regulatory role is 

particularly interesting when put in context of the co-evolution of the habenula and 

pineal gland. The pineal gland is well known to regulate circadian rhythm by releasing 

melatonin and has connections with the habenula (Brainard et al., 2001; Semm et al., 

1981). In fish, in particular, photosensitive cells in the parapineal gland relay photic 

information into the left habenula (Dreosti et al., 2014). Similarly, in mammals, 

melanopsin-expressing retinal ganglion cells send input to the lateral habenula in 

addition to the suprachiasmatic nucleus (Hattar et al., 2006). It is therefore not unlikely 
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that the habenula may use this photic information to regulate sleep.  However, till date, 

there has been no exploration of the role of habenula in regulating sleep in zebrafish.  

 

B. The Role of Lateral Habenula (LHb) in Reward-based decision-making and 

Avoidance of Punishment 

 

As outlined in the neural network above (Figure 1.3), the LHb projects directly and 

indirectly to monoaminergic centers in the brain. One of the major targets of the LHb is 

the midbrain dopaminergic neurons which are known to be key regulators of action 

selection with the goal of maximizing rewards and minimizing punishment.  

 

During action selection to a sensory cue, dopamine neurons are well known to compute 

the discrepancy between the received and predicted outcome, a variable known as 

reward prediction error. Typically, dopamine neurons are excited by larger-than-

expected rewards and inhibited by smaller-than-expected rewards. It is changes in 

these dopamine neuron dynamics over time that drive reinforcement learning. Recent 

studies have revealed that dopamine neurons receive these reward related signals from 

the LHb that is situated upstream in this neural network. In vivo electrophysiological 

studies have demonstrated that the LHb neurons are excited by smaller-than-expected 

rewards whereas they are inhibited by larger-than-expected rewards, a firing pattern 

that is in direct contrast with the downstream dopamine neurons. Therefore, lateral 

habenular neurons contribute to reward-based reinforcement learning through inhibitory 

action on the midbrain dopamine neurons.  
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Similarly, several lines of evidence suggest that the habenula may have important roles 

in generating behavioral responses to aversive stimuli, including pain. For instance, in a 

pavlovian task conducted in monkeys, lateral habenular neurons are strongly activated 

by those conditioned stimuli that indicated lack of reward or aversive stimuli. Similarly, 

rats with habenular lesions display impairments in avoidance learning. These results 

indicate that the LHb, which is often also termed the anti-reward center of the brain, 

responds strongly to negative value of a stimulus and selects for actions that either lead 

to reward or avoidance of punishment. Similar studies have been performed in fish 

which demonstrate the role of the homologous ventral habenula in encoding aversive 

expectation value and mediating avoidance of danger (Amo et al., 2014).  

 

C. Habenula in Behavioral Responses to Stress  

 

Stimuli that induce stress such as repetition of aversive stimuli, physical constraint, 

open field exposure and social defeat all lead to activation of the LHb in mammals 

(Shumake and Gonzalez-Lima, 2003). One of the typical behavioral responses to stress 

is a suppression of motor activity (Seligman, 1972). This suppression of motor activity is 

thought to be mediated via an increase in activity in the lateral habenular neurons which 

in turn strongly inhibit dopaminergic neurons in the substantia nigra or ventral tegmental 

area (Matsumoto and Hikosaka, 2009). Interestingly, the habenula also seems to 

integrate the levels of stress received over a long period of time. For instance, in 

monkeys that have been stressed repeatedly and for a long period of time, the baseline 
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neuronal activity level in the LHb is continuously elevated, leading to a substantial 

reduction in baseline activity of dopamine neurons (Matsumoto and Hikosaka, 2009). 

Similarly, congenitally stress-vulnerable rats that are exposed to repeated aversive 

stimuli display helpless behavior that is accompanied by a higher metabolic activity in 

the LHb  and lower activity in the dopaminergic neurons in the VTA (Shumake et al., 

2003).  It is therefore thought that the stress induced activation of LHb leads to strong 

inhibition of dopamine neurons which subsequently leads to suppression of motor 

activity.  

 

Figure 1.4. Role of Ventral Habenula in Mediating a Behavioral Switch from Active to 
Passive Coping during inescapable stressors. [Adapted from: (Rodriguez-Sosa et al., 2019)] 

 
 
 

A recent study in fish also indicated that the habenula has an important role in 

generating behavioral strategies to strong inescapable stressors and specifically in 
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mediating a behavioral switch from active to passive coping (Figure 1.4) (Andalman et 

al., 2019). 

 

D. Habenula in Fear and Anxiety 

 

The medial habenula regulates the expression of fear in zebrafish. Following silencing 

with tetanus toxin or lesioning with nitroreductase (Agetsuma et al., 2010; Lee et al., 

2010), enhanced freezing was seen in aversive conditioning paradigms in fish. The 

freezing response in habenula-lesioned fish was experience-dependent. On the other 

hand, the left medial habenula in fish has been found to attenuate fear responses in 

larval zebrafish. In similar studies in mice, the septum-medial habenula pathway was 

also found to regulate anxiety and fear (Yamaguchi et al., 2013), suggesting that this 

conserved circuit has dedicated functional roles in fear in many vertebrate animals.  

 

E. Habenular Dysfunction in Psychiatric Disorders  

 

An increasing number of studies have implicated the habenula in psychiatric disorders 

associated with dysregulated reward circuitry function, most notably mood disorders 

such as depression, anxiety and others such as schizophrenia and addiction (Li et al., 

2019; Schafer et al., 2018; Shumake and Gonzalez-Lima, 2003; Velasquez et al., 2014; 

Yang et al., 2018b).  
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Prolonged exposure to pain and stress in humans has been directly associated with the 

development of major depression (Seligman, 1972). Several studies have directly 

demonstrated that hyperactivation of lateral habenula is associated with depressive 

phenotypes (Cui et al., 2018). For instance, in rat models of depression, neural activity 

in the lateral habenula is markedly increased. Similarly, local infusion of ketamine, 

NMDAR antagonist in the lateral habenula rapidly alleviated depression like symptoms 

in rats (Yang et al., 2018a). This effect on depression could be mediated by the removal 

of the inhibitory effect of LHb on dopamine neurons. Similarly, a major theory of 

depression also implicates altered serotonin levels in the pathophysiology of the 

depression. This theory is supported by the action of serotonin reuptake inhibitors on 

the successful treatment of depression (Middlemiss et al., 2002). It is also possible that 

the upstream modulation of serotonin in the brain may be a result of increased or 

decreased inhibitory signal from the LHb neurons. In lines with these direct and indirect 

evidence for the association of habenula and depression, successful treatment of 

depression patients using deep brain stimulation of the habenula have been reported 

(Sartorius and Henn, 2007).  

 

Following from its major role in reward processing, habenular circuitry is also important 

in the development of addiction (Velasquez et al., 2014). Neurons in the lateral 

habenula are strongly implicated in alcohol and cocaine abuse. During cocaine 

withdrawal, activity in the lateral habenula is elevated due to a reduction in release of 

GABA from the upstream entopeduncular nucleus leading to a general increase in 

glutamatergic drive (Meye et al., 2016). Furthermore, activating the lateral habenula 
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reduces voluntary ethanol consumption in rats (Li et al., 2016). Similarly, although 

nicotinic acetylcholine receptors are expressed in many regions of the brain, the 

neuronal groups that mediate nicotine withdrawal responses are concentrated in the 

medial habenula (Salas et al., 2009). Genome wide association studies of tobacco 

addiction have produced highly consistent results showing the role of variants in the 

alpha3, alpha5 and beta4 nAChR gene clusters in tobacco use and addiction (Saccone 

et al., 2010). Brain expression of all of these receptors is particularly high in the medial 

(dorsal) habenula. In fact, the medial habenula is the only region that co-expresses the 

mRNA of all of these subunits at very high and moderate levels (Baldwin et al., 2011).  

  

A rich molecular profile of neurons within the habenula will ultimately also help us 

understand the molecular determinants of selective vulnerability of the habenula to 

these neurological disorders.  

 

1.7.3 Molecular Anatomical and Functional Asymmetry in the Teleostan Habenula  

 

A striking feature of the teleostan habenula is that it displays a remarkable left-right 

asymmetry in molecular, anatomical and functional properties. By larval stages, several 

molecular and neuroanatomical asymmetries distinguish the left and right sides of the 

habenula. First, the parapineal which is a light sensitive organ present in many teleosts 

is located on the left side of the habenula and innervates only the left habenula. This 

asymmetric migration of the parapineal is the first sign of asymmetry within the 

habenula and is known to be mediated by left-sided nodal signaling leading to 
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asymmetric neurogenesis across the two sides of the habenula (Figure 1.5) (Concha et 

al., 2000; Roussigne et al., 2009). This leads to differences in the proportion of neuronal 

subtypes with distinct gene expression between the left and right habenula. A large 

proportion of the neurons in the left habenula adopt a dorso-lateral identity and are 

defined by the expression of nptx2a. However, a large proportion of neurons in the right 

habenula adopt a dorso-medial identity and are defined by the expression of gpr151. 

This is also followed by the asymmetric expression of Neuropilin1a (nrp1a), a receptor 

for class III Semphorins (Sema3D) in the left habenula. Together, Sema3D and nrp1a 

act in concert to guide neurons on the left habenula to innervate downstream targets 

differently than those on the right side (Kuan et al., 2007) (Figure 1.5). 

 

 

Figure 1.5. Generation of Asymmetry in the Dorsal Habenula via asymmetric Nodal 
Signaling. 
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This leads to asymmetry in the out-projections from the two lobes of the habenula 

(Figure 1.6). A large portion of the left habenula projects to the dorsal Interpeduncular 

Nucleus (dIPN) whereas the right habenula projects to the ventral IPN (vIPN). These 

circuitries go to different targets downstream of the IPN. The dIPN neurons pass 

through the dorsal raphe to reach the dorsal tegmental area (DTA), a putative region 

corresponding to the mammalian periaqueductral grey (PAG) which regulates fight, 

flight and freezing behaviors (George et al., 2019). The vIPN neurons on the other hand 

project to the median raphe (MR). These distinct pathways therefore have been shown 

to mediate distinct behaviors. For instance, in social conflict resolution, the dHbL-dIPN-

DTA circuit promotes winning behaviors whereas the dHbM-vIPN-MR circuit promotes 

losing behaviors (Chou et al., 2016).   

 

 

Figure 1.6. Input and Output Projections Patterns of the Zebrafish Habenula. 
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Similar to the output projections, there also exist distinct asymmetries in the input 

projections of the left and right dorsal habenula (Figure 1.5). The left dorsal habenula 

receives input from the light sensitive parapineal whereas the right dorsal habenula 

receives input from the olfactory bulb. Therefore, sensory responses to light and odor 

are lateralized in the dorsal habenula (Dreosti et al., 2014). These light and odor 

responsive neurons have important roles in mediating light preference (Zhang et al., 

2017) and attraction to specific concentrations of different odor cues (Krishnan et al., 

2014) (Figure 1.7).  

 

 

Figure 1.7. Functional Asymmetry in the Zebrafish Habenula. 

 

In addition to the described asymmetry in functional properties and connectivity, a 

number of L-R asymmetric genes such as adcyap1a, nptx2a, tac1, hacta have been 

described in the habenula by RNA-FISH (deCarvalho et al., 2014). However, it is 

unclear if these domains with distinct gene expression patterns represent multiple 

neuronal subtypes. Furthermore, the genes (nptx2a, gpr151 and aoc1) that are typically 
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used to distinguish the three subnuclei of the zebrafish habenula: dorso-lateral, dorso-

medial and ventral subnuclei are broadly expressed. For this reason, these sub-region-

specific genes are often used as genetic handles in functional studies (Agetsuma et al., 

2010; Amo et al., 2014; Chou et al., 2016). However, it is unclear if these broader sub-

regions may harbor multiple neuronal types.  

 

1.8 Aims and Approaches  

 

In 2014, at the beginning of my graduate work in the Schier lab, low throughput single-

cell RNAseq techniques such as Smart-seq2 were being actively used to delineate cell 

types in various systems (Ramskold et al., 2012; Shalek et al., 2013) including 

blastomeres in early zebrafish development (Satija et al., 2015). These technologies 

were being actively translated to various regions of the mammalian brain. I began my 

graduate work extending scRNA-seq to the zebrafish brain, which presented a host of 

technical challenges due to the small size of the neurons. I optimized and generated a 

robust workflow for dissection, dissociation and generation of single cell libraries from 

the zebrafish brain using both fluorescence activated cell sorting and unbiased 

dissociation. We used these approaches and multiple scRNA-seq modalities to 

generate a comprehensive molecular atlas of the zebrafish habenula (Chapter 2).  

 

Various features made the zebrafish habenula an ideal system to interrogate the 

problem of neuron identity in a comprehensive manner, most notably the following:  
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1) The zebrafish habenula consists of ~1000 neurons in larva stages allowing a 

complete profiling of all cells.  

2) Its projection patterns and functional repertoire is also well described.  

3) There are distinct functional and molecular left-right asymmetry built into the 

structure making it an ideal candidate region for interfacing molecular and 

functional maps (see Section on Functional Asymmetry in the Zebrafish 

Habenula).  

 

Next, we utilized the single cell atlas of the habenula to overlay functional information 

onto the cell types generated by single cell RNAseq using two approaches (Chapter 3):  

1) Spatial mapping of cfos responses onto an in situ atlas generated by utilizing 

markers from the single-cell RNAseq study.  

2) Generation of CRISPR knockouts of restricted marker genes and subsequent 

characterization of brain activity and behaviors in these mutant animals. 

 

Last, we utilized single-cell RNAseq to understand the molecular underpinnings of 

behavioral and brain activity phenotypes in the forebrain using mutants of schizophrenia 

associated genes (Chapter 4), generating testable hypothesis for the function of these 

genes. We identified cell type specific vulnerabilities to the loss of these genes. 

Together, these studies provide a scaffold for the unbiased discovery of cell types from 

various brain regions as well as the discovery of cell types underlying specific functional 

phenotypes in the brain.  
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Chapter 2: Comprehensive Identification and Spatial Mapping of 
Habenular Neuronal Types Using Single-Cell RNASeq 

 

2.1 PREFACE 

 

A version of this chapter was published in Current Biology on April 2, 2018 (Pandey et 

al., 2018). Alexander F. Schier and I conceived the study. I designed the study with 

input from Alexander F. Schier. I optimized the protocol for generating single cell 

libraries from the zebrafish brain, collected all experimental data. Karthik Shekhar 

helped with analysis and interpretation of results. Alexander F. Schier and Aviv Regev 

supported this project.  

 

2.2 ABSTRACT 

 

The identification of cell types and marker genes is critical for dissecting neural 

development and function, but the size and complexity of the brain has hindered the 

comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) 

with anatomical brain registration to create a comprehensive map of the zebrafish 

habenula, a conserved forebrain hub involved in pain processing and learning. Single-

cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 

neuronal types and dozens of marker genes. Registration of marker genes onto a 

reference atlas created a resource for anatomical and functional studies. Strikingly, 

despite brain growth and functional maturation, cell types were retained between the 

larval and adult habenula. This study provides a gene expression atlas to dissect 
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habenular development and function and offers a general framework for 

the comprehensive characterization of other brain regions. 

 

2.3 INTRODUCTION 

 

2.3.1 Comprehensive classification of cell types  

The study of formation and function of neural circuits relies on the ability to identify 

specific cell types that are defined by location, morphology, connectivity and molecular 

composition. Classical histological and gene expression analyses have recently been 

extended to single-cell technologies that enable de novo identification of cell types 

based on their transcriptomes (Chen et al., 2017; Pollen et al., 2015; Pollen et al., 2014; 

Poulin et al., 2016; Tasic et al., 2016; Zeisel et al., 2015; Zeng and Sanes, 2017). Such 

studies have provided valuable resources for cataloguing cell types but are limited in 

their comprehensive classification by the large number and diversity of neurons in 

vertebrate brains. This complexity results in low sampling of rare cell types even with 

recent technologies that allow profiling of thousands of individual neurons in a single 

experiment (Klein et al., 2015; Macosko et al., 2015). With the possible exception of a 

single class of interneurons in the mouse retina, we lack comprehensive catalogues of 

cell types in any region of the vertebrate brain (Shekhar et al., 2016). One scenario in 

which sampling limits can be overcome is in the case of specific and conserved brain 

regions in animals with compact size. To test this approach, we analyzed the zebrafish 

habenula, a small forebrain region that is composed of approximately ~1,500 neurons at 

the larval stage.  



 35 

Current anatomical and molecular analysis partitions the zebrafish habenula into three 

major sub-regions: the nptx2a expressing dorso-lateral domain, the gpr151/pou4f1 

expressing dorso-medial domain, and the aoc1 expressing ventral domain. Neurons in 

these domains project to distinct downstream regions in the interpedunculur nucleus 

(IPN) and raphe nucleus, thus mediating distinct behavioral outputs (Beretta et al., 

2012; Bianco and Wilson, 2009). These domains are also homologous to distinct 

domains in the mouse habenula(Okamoto and Aizawa, 2013). For instance, the ventral 

habenula of zebrafish shares gene expression and projection patterns with the 

mammalian lateral habenula (Amo et al., 2010). Furthermore, domain-specific genes 

are often used as genetic handles in functional studies (Agetsuma et al., 2010; Amo et 

al., 2014; Chou et al., 2016).  

 

It has been unclear, however, whether individual neurons in these sub-nuclei represent 

a single neuronal type or a mixture of multiple types. In addition, the zebrafish habenula 

displays a remarkable left-right (L-R) asymmetry in gene expression and functionality 

(Okamoto, 2014). A number of genes such as adcyap1a, nrp1a, tac1, tac3a, slc5a7a 

are left-right asymmetric in the dorsal habenula (Amo et al., 2010; Biran et al., 2012; 

deCarvalho et al., 2014; Hong et al., 2013; Kuan et al., 2007). Recent studies have also 

shown left-right asymmetry in functional responses to light and odor in the left and right 

habenula, respectively (Dreosti et al., 2014; Jetti et al., 2014; Kishimoto et al., 2013). It 

is also unclear if these neuronal ensembles represent transcriptionally distinct neuronal 

types. A comprehensive definition of habenular neuronal types is therefore needed to 
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study its development and anatomy, and relate molecularly defined neuronal types to 

functional roles.  

 

To address this challenge, we combined scRNA-seq with anatomical brain registration 

and created a gene expression atlas composed of more than a dozen distinct neuronal 

types. We find that neuronal types are anatomically organized into spatially segregated 

sub-regions and are stable between larval and adult stages. We show that the reference 

atlas enables comparison of molecularly defined neuronal types with those defined by 

neural activity. Our approach constitutes a general framework for future studies aiming 

to comprehensively characterize other brain regions.   

 

2.4 RESULTS 

 

2.4.1 Isolation and Transcriptional Profiling of Single Larval Zebrafish Neurons  

Since scRNA-seq had not been previously applied to zebrafish neurons, we devised 

and optimized a robust protocol for dissociation and capture of single neurons from the 

zebrafish brain. We found that successful experiments required gentle trituration, 

reduced processing time post dissociation (<30 minutes) and minimal sort pressure 

during fluorescence activated cell sorting (FACS) (Methods). We sorted habenular cells 

using the gng8-GFP transgenic line (Hong et al., 2013), which selectively labels most 

neurons in the habenula, except for a small ventral subpopulation (deCarvalho et al., 

2014). Heterogeneity in this subpopulation was captured using adult animals as 

described later.  



 37 

 

Figure 2.1. Unbiased Clustering of scRNA-seq Data Identifies 15 Molecular Distinct 
Neuronal Clusters in the Larval Habenula. 
(A) Schematic of the zebrafish habenula showing the anatomical subdivisions corresponding to the dorso-
medial (orange), dorso-lateral (red) and ventral (blue) regions. These subdivisions are known to have 
distinct gene expression patterns and functionality.  

(B) Overview of the experimental strategy. Transgenic heads with gng8-GFP positive cells were 
dissected, pooled and dissociated, followed by enrichment of GFP+ habenular cells using fluorescent 
activated cell sorting (FACS). Single cell libraries were prepared using droplet-based droplet and plate- 
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Figure 2.1 (Continued). based Smart-seq2. Raw reads were processed to obtain a gene expression 
matrix (genes x cells). PCA and graph clustering was used to divide cells into clusters and identify cluster 
specific markers. Validation and spatial localization was performed using fluorescent RNA in situ 
hybridization (FISH) of statistically significant cluster-specific markers (see STAR Methods).  

(C) 2D visualization of single cell clusters using t-distributed Stochastic Neighbor Embedding (tSNE). 
Individual points correspond to single cells and are color-coded according to their cluster membership 
determined by graph-based clustering. The tSNE mapping was only used for post hoc visualization of the 
clustering but not to define the clusters themselves.  

(D) Gene Expression profiles (columns) of select cluster-specific markers identified through differential 
expression analysis (DEA) of previously known (labeled with an asterisk (*)) and new habenular types 
(rows). Bar on the right displays the percent of total dataset represented in every cluster, showing the 
abundance of each cell type found by clustering analysis.  

(E) A dendrogram representing global inter-cluster transcriptional relationships. The dendrogram was built 
by performing hierarchical clustering (correlation distance, average linkage) on the average gene-
expression profiles for each cluster restricting to the highly variable genes in the dataset.  

 

We used two complementary scRNA-seq platforms (Figure 2.1B, Methods): (1) 

Massively-parallel droplet based, 3’ end scRNA-Seq (commercial 10X Chromium 

platform) (Zheng et al., 2017). (2) Lower-throughput, plate-based, full-length scRNA-

Seq (SMART-Seq2) (Picelli et al., 2013). We obtained data from 4,365 larval cells using 

droplet-based scRNA-seq (henceforth droplet dataset) sequenced at a median depth of 

66,263 reads per cell, and 1,152 larval cells using SMART-seq2 (henceforth SS2 

dataset), sequenced at a median depth of 1 million reads per cell. Despite the low levels 

of RNA in zebrafish neurons (~ 6 times less than mouse dendritic cells which are of 

comparable size; Figures A.1 A and A.1B), we detected on average 1,350 (droplets) 

and 3,850 (SS2) genes/cell (Figures A.1C, A.4A). Thus, multiple scRNA-seq platforms 

can be effectively applied to neurons in the zebrafish brain. 

 

2.4.1 Graph Clustering Identifies 15 Transcriptionally Distinct Clusters in the 
Larval Habenula 
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To identify neuronal types, we used the droplet dataset, because cell type identification 

was more robust with more cells sequenced at a shallow depth than few cells 

sequenced deeply (detailed analysis in Figure 2.5) (Shekhar et al., 2016). We used 

standard computational pipelines to align the raw sequencing data to the zebrafish 

transcriptome and derive a gene expression matrix of 13,160 genes across 4,233 

filtered cells (Methods). To select highly variable genes, we used two approaches: (1) A 

variable gene selection method implemented in Seurat (Satija et al., 2015), and (2) an 

alternative approach that ranks genes based on deviation from a null statistical model 

built on the relationship between variation in transcript counts and mean expression per 

cell (Methods).  

 

We used principal component analysis (PCA) on a gene expression matrix across 1,436 

variable genes and identified 36 statistically significant principal components PCs (n=36, 

p < 0.05). These PCs were used to build a k-nearest neighbor graph of the cells, which 

was then partitioned into 14 transcriptionally distinct clusters using smart local moving 

community detection algorithm (Waltman and Eck, 2013) as implemented in the Seurat 

R package (Satija et al., 2015). Two of these clusters held additional heterogeneity and 

were further partitioned using iterative clustering (Figure A.1 G). The resulting 16 

clusters were visualized in two dimensions using t-distributed stochastic neighborhood 

embedding (t-SNE) (Figure 2.1 C), and evaluated for differential gene expression to 

identify cluster-specific markers (Figure 2.1 D) (McDavid et al., 2013; Shekhar et al., 

2016; Waltman and Eck, 2013). 
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Of the 16 clusters identified in our analysis, 15 were habenular neuronal types (Hb01-

Hb15) as they robustly expressed gng8 and other habenular genes (Figure A.2A). We 

also identified a small sub-group of olfactory placode cells (Olf) that are labeled by the 

gng8-GFP line, based on their expression of epcam, calb2a and v2rl1 (Figure 2.1E) 

(Bayramli et al., 2017). This provides an internal control and demonstrates the strength 

of scRNA-seq to identify contaminant types and remove them from further analysis.  

 

To determine whether clusters corresponded to new or previously described neuronal 

types, we identified a host of markers for each cluster (Table A1, Figure A.1L). The 

majority of clusters were defined by newly identified markers (Figure 2.1D). We also 

determined the relationship between these putative neuronal types using a dendrogram 

constructed on the variable genes across the dataset (Figure 2.1E). Some clusters 

recovered in our data comprise <1% of the dataset (Figure 2.1D, side bar), 

underscoring the advantages of oversampling cells in resolving rare types. Indeed, 

downsampling analysis on the droplet data suggests that we have reached saturation, 

but that reducing the number of cells by 20% would lead to recovery of fewer clusters 

(Figures A.1H-A.1K). These results demonstrate that the small number of neurons in 

larval habenula can be partitioned into 15 distinct clusters when the cells are sampled at 

a high frequency.  

 

2.4.2 Most Previously Described Region-specific Genes are Expressed Broadly 

Across Multiple Neuronal Clusters 
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To understand how our cluster-specific markers relate to previously described 

habenular genes, we examined the expression patterns of these spatially localized 

genes among our clusters (Figures 2.2 and A.2A). We found three major patterns.  

 

Figure 2.2. Validation and Spatial Distribution of Previously Described Neuronal Types 
along with Identified Novel Markers. 
A) Expression profiles of known and novel habenular marker genes that are specific or enriched in the 
five clusters displaying previously described gene expression signatures. Green bar on top represents 
new markers and orange bar represents known markers.  
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Figure 2.2 (Continued). (B-G) In vivo expression patterns of known and novel marker genes that are 
enriched in clusters harboring previously characterized habenular genes (Hb01, Hb02, Hb06, Hb09, and 
Hb15). Each type was characterized by both previously described markers, and new markers found from 
single cell analysis. RNA-FISH (green) was performed with a total-Erk (pale gray) co-stain for registration. 
In some cases, a non-linear filter (gamma = 0.3) was applied to the total-Erk (gray) channel to aid 
visualization of the in situ signal (green). B-D) FISH labeling of B) Previously known marker (tac3a) and 
new markers for C) Hb01 (murcb, tacr3l) and D) Hb02 (adrb2a) found by single cell analysis. Insets show 
regionalized expression of the gene without total-Erk. murcb/tacr3l+(Hb01) and adrb2a+(Hb02) domains 
form subdivisions within the tac3a+ domains. E) FISH labeling of new markers pou3f1 and pnoca enriched 
in the lrrtm1+ and foxa1+ cluster Hb06. F) FISH labeling of new marker igf2a enriched in adcyap1a+ left-
only cluster Hb09. G) FISH labeling of new marker wnt11r specific to the aoc1+ ventral habenular cluster 
Hb15. Scale bars indicate 50 µm. 

 

First, some known genes show a near perfect overlap with single clusters and were also 

independently identified as cluster specific markers by our analysis. For example, 

adcyap1a, a known ‘left-only’ marker (Agetsuma et al., 2010) is specific to cluster Hb09. 

Similarly, known ventral genes such as aoc1 (Agetsuma et al., 2010; Amo et al., 2010; 

Hong et al., 2013) and kiss1 (Kitahashi et al., 2009) are specific to cluster Hb15 (Figure 

2.2A). For such neuronal types, we nominated a host of additional markers (e.g., Hb06 

(pnoca, pou3f1), Hb09 (igf2a, adra1d, tacr2), Hb15 (csrp2, crip1, cabp7, cdh13, 

wnt11r)) and confirmed their spatially restricted expression patterns (Figures 2.2E-G).  

 

Second, some genes that were known to mark subdomains within the dorsal habenula 

spanned a few clusters. For instance, tac3a, a previously described marker (Biran et al., 

2012), is expressed in multiple clusters but at much higher levels in Hb01 and Hb02 

(Figure 2.2A). Cluster specific markers for Hb01 (murcb) and Hb02 (adrb2a) seemed to 

subdivide the high tac3a expressing neurons in the habenula (Figures 2.2A-D). 
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Third, most genes previously reported to have regional expression patterns within the 

habenula were expressed across multiple clusters (Amo et al., 2010; Biran et al., 2012; 

deCarvalho et al., 2014; Kitahashi et al., 2009; Kuan et al., 2007) (Figure A.2A). For 

example, gpr151/pou4f1, which together form classic dorso-medial markers (Broms et 

al., 2015; Chou et al., 2016) and nptx2a, a dorso-lateral marker (Agetsuma et al., 2010), 

were expressed in majority of clusters, albeit at different levels (Figure A.2A). We 

detected higher expression of nptx2a in the left habenular clusters (Figure A.2A), 

confirming the previously observed over-representation of lateral identity in the left 

habenula (Kuan et al., 2007). We validated the overlap of these classic markers with 

multiple clusters by RNA-FISH (Figure A.2B), demonstrating that individual genes 

reported to be spatially restricted could span multiple neuronal subtypes.  

 

Among our newly identified markers, we found: 1) markers that are expressed 

exclusively in the cluster of interest (‘digital’), 2) markers that display 2-3 fold enrichment 

in the cluster of interest (‘analog’). To compare the specificity of marker genes, we 

computed their area under the precision recall curve (AUCPR) as a quantitative 

measure of “cluster-specificity” (See Methods). Digital markers such as aoc1 displayed 

AUCPR values greater than 0.8 (Figure A.2C) whereas analog markers such as tubb5 

exhibited lower AUCPR values (0.55 – 0.7). We found that considering pairs of analog 

markers affords higher specificity in defining a cluster. For instance, pou3f1 and pnoca 

together localize Hb06 better than each does individually (Figure 2.2E). Therefore, we 

only used single markers with AUCPR > 0.7 to spatially localize clusters of interest.   
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Taken together, these results provide novel analog and digital markers for the five 

clusters that were readily defined by expression of known genes and describe their in 

vivo spatial localization. Strikingly, the majority of previously described habenular genes 

are broadly expressed over multiple clusters, limiting their utility as markers for 

transcriptionally distinct neuronal types.  

 

2.4.3 Analysis and Validation of Previously Uncharacterized Habenular Neuronal 

Types 

The remaining 10 of 15 clusters expressed marker genes that to our knowledge have 

not been previously described in the zebrafish habenula. We hypothesized that these 

clusters corresponded to potentially novel neuronal subtypes and performed RNA-FISH 

with cluster-specific markers to validate them and determine their spatial localization 

(Figure 2.3). We also utilized the gene expression dendrogram (Figure 2.1E) to relate 

them to ‘known’ neuronal types described earlier. Based on spatial localization, we 

found three major categories of neuronal subtypes.  
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Figure 2.3. Validation and Spatial Distribution of 10 Novel Habenular Neuronal Types.  
RNA-FISH (green) was performed for specific markers for novel clusters A) Left-enriched clusters: Hb07 
(pcdh7b), Hb08 (wnt7aa), Hb10 (ppp1r1c); B) Posterior habenular clusters: Hb04 (cbln2b), Hb11 
(cpne4a), Hb12/11 (pyya), C) Non-regionalized or rare neuronal types: Hb03 (spx), Hb05 (c1ql4b), Hb14 
(slc32a1) each overlaid with a total-Erk co-stain (pale gray) for registration. In each case, representative 
habenular slices with expression are shown.  

 

First, we identified three new ‘left-enriched’ clusters of neurons – Hb07(pcdh7b+) and 

Hb08(wnt7aa+), Hb10(ppp1r1c+) – all of which were closely related to one another and 

to ‘left-only’ neuronal type Hb09 (adcyap1a+) (Figure 2.1E). All of these clusters also 

expressed another known ‘left-only’ marker, nrp1a (Figure A.2A) (Kuan et al., 2007). 

Hb08 (wnt7aa+) and Hb10 (ppp1r1c+) neurons were localized more dorsally in the left 

habenula than Hb07 (pcdh7b+) (Figure 2.3A).  
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Second, we identified three posterior L-R symmetric habenular neuronal types (Figure 

2.3B). Dorsally located Hb04 was characterized by the expression of cbln2b, a less 

studied member of the cerebellin genes, some of which are important for synaptic 

plasticity (Hirai et al., 2005). Ventrally located pyya+ neurons were subdivided into Hb11 

(cpne4a+) and Hb12 (htr1aa+). Corresponding to their low proportion by scRNA-seq, 

RNA-FISH showed that Hb11 and Hb12 are both rare, composed of 4-6 neurons in vivo.  

 

Third, we found four rare neuronal types, each comprising less than 5% of the cells in 

our dataset. Hb03(spx+) and Hb05(c1ql4b+) form rare populations that seem to be 

distributed in a non-regionalized manner (Figures 2.3C). Hb13 is a cluster of immature 

neurons in the medial ventral habenula and lining the ventricular zone, characterized by 

the expression of tubb5 and a host of ribosomal proteins (Figure 2.3C) (Ngo et al., 

2014). Rarest among these four types were GABAergic neurons in the dorsal habenula 

(Figures 2.2D and 2.3C) characterized by the expression of gad1b, gad2 and the GABA 

transporter slc32a1 and corresponding to 2-3 neurons in vivo.  

 

Together, these results provide validation and spatial localization for the 10 novel 

neuronal types identified by our single-cell analysis and demonstrate a general trend for 

regionalization of neuronal types within the habenula. Moreover, transcriptional 

proximity was reflected by spatial proximity in vivo, suggesting that developmental 

patterning of molecularly related neuronal types occurs in a spatially restricted manner.  
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2.4.6 Neuronal Types in the Larval Habenula and Their Molecular Signatures are 

Robustly Reproduced in Full-Length, Deeply Sequenced Libraries 

 

Because zebrafish neurons contain less RNA than other cell types – including of 

comparable size – analyzed using scRNA-seq (Figures A.1A and A.1B) (Shalek et al., 

2013; Shekhar et al., 2016), we asked if we could derive a better classification by 

sequencing these neurons at a greater depth. To explore this possibility, we prepared 

1,152 SMART-seq2 (SS2) libraries using cells sorted from the gng8-GFP transgenic line 

(Picelli et al., 2013), and sequenced them at a median depth of 1 million reads per cell 

(~25 fold deeper than the droplet data; Figure A.4A and A.4B), resulting in 3,850 

genes/cell, (~3 fold more than the droplet data). An independent clustering of 1,040 

quality-filtered SS2 cells revealed only 10 clusters (Figure 2.4A), fewer than the droplet 

data. 
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Figure 2.4. Correspondence of Larval Habenular Neuronal Types and their Molecular 
Identities Between the Droplet and SMART-seq2 Datasets. 
(A) t-SNE visualization of single cell clusters obtained by clustering of the SMART-seq2 (SS2) data. ( 

B) Dot plot (confusion matrix) showing the proportion of cells in each SS2 cluster (rows) that were 
classified to droplet clusters (columns) using a multiclass random forest classifier (RF). A cell was 
assigned to a droplet cluster label if > 15 % of the decision trees in the RF classifier contributed to the 
majority vote (given that there are 16 classes, 6.25% vote would constitute a majority). * represents SS2 
clusters in which greater than 70% of the cells of the cluster maps to single droplet clusters.  

(C) Same as A, but where each cell is annotated according to its RF assigned droplet cluster label. 
Rough demarcations of the SS2 clusters as in A are sketched.  

(D) Top 10 differentially expressed genes in each habenular type computed using a post hoc test on the 
SS2 data based on the RF-assigned cluster label as in C. Highlighted on the right are anecdotal 
examples of genes that were not detected among the top 15 differentially expressed genes in the 
corresponding droplet clusters.  
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We hypothesized that the lower number of cells in SS2 dataset led to merging of closely 

related clusters. To evaluate the correspondence between droplet and SS2 clusters, we 

trained a multiclass random forest classifier (RF) on the cluster labels of the droplet 

dataset (Figure A.4I) and used it to map all the SS2 cells onto droplet-based labels 

(Breiman, 2001; Shekhar et al., 2016). We observed that 5 out of 10 SS2 clusters 

mapped 1:1 with single droplet clusters (Figure 2.4B). Each of the four remaining SS2 

clusters mapped to multiple (typically 2-3) droplet clusters (Figure 2.4B). By labeling 

each cell on the tSNE plot with RF assigned cluster labels, we observed additional sub-

structure in the merged SS2 clusters that was masked in unsupervised clustering 

(Figure 2.4C). This co-clustering occurs in cases where clusters are closely related 

(Figure 2.1E) but not highly represented in the dataset (eg: Hb05-Hb03, Hb02-Hb01-

Hb04, Hb07-Hb08). These results are also consistent with the recovery of fewer and 

less pure clusters in the downsampled droplet dataset (Figure A.1H -A.1K). 

 

Next, we asked if the higher number of genes/cell identified in SS2 data enabled the 

identification of novel cluster-specific markers. To this end, we examined genes that 

were robustly detected in the SS2 data but not in droplet data (Figures A.4J- A.4K and 

Figure A.4L, red), but found that they were expressed across multiple clusters and were 

uninformative for cell type classification (Figure A.4M, Methods). Using differential gene 

expression analysis on the RF-assigned cell labels, we identified a small number of 

novel cluster-specific markers that were not identified in droplet dataset (Figure 2.4D, 

highlighted along heatmap).  
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Taken together, these results demonstrate a remarkable consistency of types and 

markers discovered by two different scRNA-seq platforms. Also, consistent with earlier 

work (Shekhar et al., 2016), these results show that cell type identification is best 

served by distributing a given number of reads over a large number of cells.  

 

Neurons in the Adult Habenula Retain the Molecular Identity of Larval Types 

 

The habenula undergoes significant growth, morphogenesis and functional maturation 

from developing larvae to mature adults (Figure A.5I, left). For example, several 

behaviors mediated by habenular neuronal subpopulations such as aggression are only 

displayed by adult fish, and the number of neurons increases dramatically between 

larva and adult (Agetsuma et al., 2010; Chou et al., 2016). Furthermore, the larval 

dataset was generated with a transgenic line with FACS and may have missed rare 

populations not labeled by the gng8-GFP. To assess the conservation and retention of 

neuronal types from larva to adult fish (1-year old) and to capture cells that were not 

labeled by the transgenic line, we dissected whole adult habenulae and performed 

droplet scRNA-seq (STAR Methods). Post quality filtering, we obtained 7,782 single cell 

profiles at a median depth of ~96,000 reads and 709 genes per cell (Figure A.5A, A.5B). 

Using the same clustering approach, we detected 17 clusters and enriched markers 

(Figures 2.5A and 2.5B) and labeled them post-hoc by comparison to the larval clusters 

(below).  
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Figure 2.5. Comparative Analysis of Habenular Neuronal Types between Larval and Adult 
Stages.  
(A) t-SNE visualization of adult single cell clusters obtained by clustering of the adult dataset. Clusters 
have been labeled post hoc after comparison to the larval dataset (See Figures 5C and 5D).  
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Figure 2.5 (Continued). (B) Gene Expression profiles (columns) of select cluster-specific markers 
identified through differential expression analysis (DEA) across all adult clusters. Bar on the right displays 
percent of total dataset represented in every adult cluster, showing the abundance of each cell type found 
by clustering analysis.  

(C) Dot plot (confusion matrix) showing the proportion of gng8+ cells in the adult dataset (rows) that were 
classified to larval cluster labels (columns). Each adult habenular type was assigned to a larval cluster 
label if >15% of the trees in the RF model contributed to the majority vote. Proportion of cells in each row 
should add to a 100%. 

(D) Dot plot (confusion matrix) showing the proportion of larval cells (rows) that were classified to cluster 
labels of the gng8+ cells in the adult dataset (columns). Each adult habenular type was assigned to a 
larval cluster label if >15% of the trees in the RF model contributed to the majority vote. Proportion of cells 
in each column should add to a 100%. This training on the adult dataset was performed to validate the 
robustness of the RF analysis.  

(E) FISH validation and localization of select dorsal habenular cluster markers.  

(F) FISH validation of the genes that are expressed in all ventral clusters (aoc1) and across three other 
ventral sub-clusters (cd82a, mprip and zgc:173443). 

 

To systematically compare the clusters between larva and adult, we used a random 

forest model trained on either dataset to map gene expression signatures between the 

two datasets (Figure 2.5C (trained on larva) and Figure 2.5D (trained on adult)). Since 

the larval dataset was generated by cellular sorting based on the gng8-GFP line, we 

restricted our analysis to the high gng8+ cells in the adult dataset. Using the RF model, 

we then classified each high gng8+ adult cell (Figure A.4I) into one of the larval cluster 

labels (Figure 2.5C). Surprisingly, we found that 9 out of the 16 adult habenular clusters 

mapped 1:1 to single larval habenular clusters (Figure 2.5C). The left-right spatial 

organization of some clusters was also roughly preserved (Figure 2.5E).  

 

We also found that some larval clusters map to multiple adult clusters. For instance, 

La_Hb02 (La = Larval) split into Ad_Hb02A and Ad_Hb02B (Ad = Adult). Upon 

interrogating the differences between Ad_Hb02A and Ad_Hb02B further, we found that 
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certain genes such as nebl are selectively expressed in Ad_Hb02B (Figure A.5G) 

whereas others such as rac2 are in Ad_Hb02A. Furthermore, larval ventral cluster, 

La_Hb15 mapped to multiple adult types, all of which are ventral (Ad_VHb01-04) as 

found by RNA-FISH for differentially expressed markers cntnap2a, mprip, cd82a, and 

zgc:173443 (Figure 2.5F). The spatial localization of these ventral clusters was found to 

be consistent with previously described (Amo et al., 2010) morphogenetic changes that 

occur in the habenula between larval and adult stages (Figure A.5I). 

 

This multi-mapping among ventral clusters was likely caused by incomplete labeling of 

ventral habenula by the gng8-GFP line, which was used to capture cells in larval 

dataset. In particular, in situ hybridization revealed that two of the adult ventral type 

markers were expressed in a spatially restricted pattern in the larval ventral habenula 

(Figure A.5D). We also found a small population of neuronal progenitors (her4+, 

fabp7a+, mdka+) in the medial ventral habenula (Figures 2.5B and A.5E), in a similar 

location as the immature tubb5+ neurons in the adult dataset.  

 

Taken together, these results demonstrate that despite significant growth and functional 

maturation between larvae and adults, a substantial proportion of neuronal types in the 

habenula remain largely constant.  
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2.4.7 Neuropeptidergic Signaling, Neurotransmission and Neuroexcitability 

Among Habenular Neuronal Types is Highly Diverse 

Previous studies have used ISH or immunostaining to assess the expression of various 

neuropeptidergic and neurotransmitter genes in the habenula (deCarvalho et al., 2014; 

Hong et al., 2013) but a comprehensive expression profile of these genes is not 

available. Using the scRNA-seq dataset, we assessed the expression profiles of these 

genes among the different neuronal types in the larval (Figure 2.6) and adult (Figure 

2.7) habenula. 

 

We found that a large number of neuropeptides are specific to a small number of 

neuronal types (Figures 2.6A and 2.7A). For example, spx, trh, adcyap1a, tac1, agrp, 

kiss1, npy, galn, penka were all expressed in only one habenular type each, whereas 

pyya, pyyb, pdyn, pnoca, sst1.1, tac3a, cckb were enriched in 2-4 neuronal types. In 

addition, co-expression of multiple neuropeptides was a common feature among 

habenular neuronal types. For instance, spx, which acts as a satiety factor and pyyb, 

which has been implicated to be an anorexigenic factor, were co-expressed in the 

homologous clusters in both larvae and adults respectively (Wong et al., 2013). 

Conversely, we examined the expression profile of all detectable neuropeptide 

receptors. In some cases, the same neuronal type produces a neuropeptidergic signal 

and expresses its cognate receptor, suggesting autocrine signaling. For instance, kiss1 

and its receptors kiss1rb and kiss1ra are co-expressed in ventral habenular clusters 

(Figures 2.6A and 2.7A). 
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Figure 2.6: Divergent Expression Patterns of Functionally Relevant Genes among the 
Larval Habenular Neuronal Types. 
(A-F) Gene expression profiles of select functionally relevant genes among larval habenular types 
visualized in the form of a dot plot. Representation as in Figure 1D. A) Neuropeptides and Neuropeptide 
Receptors B) Transporters C) Neurotransmitter Receptors D) Calcium Channels E) Potassium Channels. 
Only genes expressed in >20% of cells in at least each habenular type are shown.  
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Figure 2.7. Divergent Expression Patterns of Functionally Relevant Genes among the 
Adult Habenular Neuronal Types. 
(A-F) Gene expression profiles of select functionally relevant genes among adult habenular types 
visualized in the form of a dot plot. Representation as in Figure 2.6. A) Neuropeptides and Neuropeptide 
Receptors B) Neurotransmitter Receptors C) Transporters D) Calcium and Potassium Channels.  
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Next, we analyzed the expression of genes essential to signal transduction in neurons. 

As previously observed (Appelbaum et al., 2009), a large proportion of habenular 

neurons are glutamatergic, as reflected in the broad expression of glutamate 

transporters slc17a6a and slc17a6b (Figure 2.6B). However, the habenula also contains 

a small population of GABAergic neurons (Figure 2.6B). Hb01 through Hb05 are also 

cholinergic and express the choline transporter slc5a7a (Figure 2.6B). Cholinergic 

transmission was largely absent in left-enriched neuronal types consistent with previous 

studies (Hong et al., 2013). Similarly, some neurotransmitter receptor subunits such as 

grm8b, grm2, gria2b are enriched in one or a few clusters (Figure 2.6C). Calcium 

channels such as cacng2a, cacna1g, cacna1ba are also expressed in a type specific 

manner, as are potassium channel subunits such as kcnab1b, kcnf1b, kcnh6a, kcnd3 

(Figure 2.6D and E). We found a similar distribution of these functionally relevant genes 

in the adult habenula (Figure 2.7A-F). Collectively, our data shows that despite being a 

small region, the habenula shows a remarkable diversity in expression of genes that 

directly influence the functional and electrophysiological properties of individual 

neurons.  

 

2.5 DISCUSSION 

We used two scRNA-seq platforms, integrative computational analysis, and brain 

registration to build and validate a comprehensive atlas of neuronal types in the larval 

and adult zebrafish habenula. Our study provides six main advances. First, we devised 

a robust protocol for the dissociation and capture of single neurons from the zebrafish 

brain. Second, we found that comprehensive identification of neuronal types by scRNA-
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seq can be achieved by high cell-sampling coverage of a small brain region. Third, we 

discovered thirteen new neuronal types and identified fine-grained spatial subdivisions 

in the habenula. Fourth, we discovered dozens of new marker genes that define 

habenular neuronal types. Fifth, we found that diverse neuronal types are largely 

retained from larva to adult. Sixth, we showed that the reference atlas enables 

comparison of molecularly defined neuronal types with those defined by neural 

activity. Taken together, our study creates a resource for future studies on habenular 

development and function and provides a technological framework for the 

characterization of other brain regions.  

 

Single-Cell Analysis of the Zebrafish Brain 

Although scRNA-seq is now well-established, applying it to zebrafish neurons presents 

certain technical challenges. Our work establishes critical conditions for future scRNA-

seq in the zebrafish brain. We provide a robust dissociation and sorting based cell 

capture protocol for zebrafish neurons (Methods), which were found to have 

comparatively less RNA than other cell types. Consistent with previous studies, we also 

found that transcriptional signatures required to classify cell types can be identified by 

low coverage RNA-seq (Shekhar et al., 2016). Therefore, most of the additional genes 

detected in the deeper SMART-seq2 dataset were uninformative for cell type 

classification (Figure A.4M).  
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Comprehensive Cell Type Identification and Spatial Mapping in the Habenula 

Facilitates Functional Studies  

Based on scRNA-seq on larva and adults, we found that the habenula is composed of 

at least 18 distinct neuronal subsets. While larval ventral heterogeneity needs to be 

explored genome wide using RNA-seq approaches, our two-time point scRNA-seq and 

in situ analysis has allowed us to describe the majority of the neuronal types in the 

habenula. For each of these neuronal types, we found dozens of novel molecular 

markers. Whole brain in situ hybridization showed that some of these markers are 

exclusively expressed within habenular neuronal subsets, making them good 

candidates for generating reporter lines (Figure A.3C).  

 

We also used RNA-FISH and image registration to spatially localize neuronal types, a 

key step in linking molecular profiles to physiological and behavioral features. We found 

that 15 neuronal subsets are highly regionalized to habenular sub-regions (Figures 

2.3L, 2.5F). This arrangement is similar to regionalization observed in the hippocampus 

(Habib et al., 2016) but in contrast to the organization in the retina where different cell 

types are intermixed within the same spatial location (Masland, 2001) .  

 

Furthermore, we found that previously demarcated anatomical sub-regions, dHbM 

(pou4f1+, gpr151+), dHbL (nptx2a+) and vHb (aoc1+) harbor multiple transcriptionally 

distinct neuronal subsets. Previous studies have shown that these distinct sub-regions 

send efferent projections to distinct anatomically separated sub-regions of the 
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downstream interpeduncular nucleus (IPN) and raphe nucleus (Beretta et al., 2012). 

Our study raises the possibility of a finer topography of efferent projections of 

transcriptionally distinct neuronal subsets into finer sub-regions of downstream targets.  

 

We also found a large diversity of neuropeptidergic genes in the habenula, which may 

shed light into its unexplored functional roles. For instance, a number of peptides that 

are involved in food intake regulation such as cckb, pyya, pyyb, and spx are shown to 

be robustly expressed in certain sub-clusters of habenular cells, indicating that the 

corresponding neuronal types may be important for regulating food intake. Furthermore, 

a subset of the pyya neurons are positive for htr1aa, a serotonin receptor whose 

expression is known to be affected by anorexigenic drugs (Shimada et al., 2012).  

 

Therefore, our comprehensive list of neuronal types along with dozens of marker genes 

and their spatial map will be a valuable resource for the study of habenular development 

and function in normal and pathophysiological conditions. 

 

Neurons in the Adult Habenula Retain the Molecular Identity of Larval Types 

Cell type identification should distinguish between stable cell types and transient cell 

states as transcriptional cascades in individual neurons may change in response to a 

variety of different stimuli such as neural activity, neuropeptides, hormones or 

developmental signals. Our two time-point study design enabled us to observe the 
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remarkable congruence of habenular subtypes between the developing 10-day old 

larval and the adult brain, suggesting that these signatures represent stable molecular 

identities. We also found that the localization of neuronal types in the adult habenula is 

consistent with the complex morphogenetic changes in the habenula between larva and 

adult wherein the ventral cells migrate inward from lateral to medial positions (Figure 

A.5H, A.5I) (Amo et al., 2010). 

 

A number of habenula-dependent behaviors such as fear responses and aggression 

arise later in development in juvenile or adult zebrafish (Agetsuma et al., 2010; Chou et 

al., 2016; Dreosti et al., 2015). In the absence of major changes in molecular cell type 

diversity, what circuit mechanisms account for alterations in behavioral capacities during 

development? An attractive hypothesis is that habenular input-output relationships 

change between the two time-points. For example, habenular outputs may diverge into 

more downstream regions to mediate a diverse set of behaviors in adults. A detailed 

investigation of the development of habenular inputs and outputs will be required to 

address this question.  

 

Pipeline for Comprehensive Identification of Cell Types in Other Brain Regions 

The comprehensive classification of neural types is limited by the large number and 

diversity of cells in vertebrate brains. For example, previous scRNA-seq studies have 

sampled a small percent of cells to infer heterogeneity in large regions (Campbell et al., 

2017; Chen et al., 2017; Gokce et al., 2016; Zeisel et al., 2015). Our study shows that 
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such limitations can be overcome by scRNA-seq from predefined small sub-regions at 

high cellular coverage. The larval zebrafish brain contains fewer than 200,000 neurons, 

putting its comprehensive molecular classification within reach of current technologies 

and creating a blueprint for cell type diversity in the vertebrate brain.  

 

2.6 MATERIALS AND METHODS 

Experimental Model and Subject Details 

Larvae and adult fish were maintained on 14 hours: 10 hours light: dark cycle at 28ºC. 

All protocols and procedures involving zebrafish were approved by the Harvard 

University/Faculty of Arts & Sciences Standing Committee on the Use of Animals in 

Research and Teaching (IACUC; Protocol #25-08). Wildtype zebrafish from the TLAB 

strain were used. 10 days post fertilization (dpf) larval and ~1-year old adult male and 

female zebrafish were used across different experiments. Animals were anesthetized in 

0.2% tricaine and rapidly euthanized by immersion in ice water for 5 minutes before 

dissection. RNA-seq experiments were performed with the transgenic lines: 

Tg(gng8:nfsB-CAAX-GFP) and Tg(gng8: GAL4 X UAS: mCherry) in larval and adult 

stages. 
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Cell Isolation and RNA-Seq 

Isolation of cells for SMART-seq2 

10 dpf larval heads were dissected in Neurobasal (ThermoFisher Scientific 21103049) 

supplemented with 1x B-27 (ThermoFisher Scientific 17504044), and promptly 

dissociated using the Papain Dissociation Kit (LK003150) with following modifications. 

Larval heads were incubated in 20 units/mL papain for 25 minutes at 37ºC. The cells 

were dissociated by gentle trituration 20 times and spun at 300xg for 5 minutes. The 

cells were resuspended in 1.1 mg/mL papain inhibitor in Earle’s Balanced Salt Solution 

(EBSS). The resulting cell suspension was passed through 20 µm cell strainer and 

placed on ice. Two viability indicators (calcein blue, a live stain (ThermoFisher Scientific 

C1429) and ethidium homodimer, a dead cell stain (ThermoFisher Scientific E1169)) 

were added at a concentration of 0.01mg/mL. If the viability of cells was greater than 

85% as measured by calcein blue staining, the cells were immediately sorted directly 

into a 96-well plate with 5µL of lysis buffer comprised of Buffer TCL (QIAGEN 1031576) 

plus 1% 2-mercaptoethanol (Sigma 63689). All samples were immediately frozen in dry 

ice and stored at -80ºC until further processing. 

 

SMART-seq2 library preparation 

For preparation of SMART-seq2 libraries, the plates containing single-cell lysates were 

thawed on ice and purified with 2.2X RNAClean SPRI beads (Beckman Coulter 

Genomics) without elution. The beads were then air-dried and processed promptly for 

cDNA synthesis. SMART-seq2 was performed using the published protocol (Picelli et 
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al., 2013) with minor modifications (Shekhar et al., 2016). We performed 22 cycles of 

PCR for cDNA amplification. The resulting cDNA was eluted in 10µL of TE buffer. We 

used 1.25 ng of cDNA from each cell and one fourth of the standard Illumina Nextera 

XT reaction volume in tagmentation, and final PCR amplification steps. We pooled 384 

single-cell libraries from gng8-GFP line in each batch and sequenced 50x25 paired end 

reads using a single kit on the Illumina NextSeq500 instrument.  

 

Cell isolation and library preparation for Droplet scRNA-seq 

10dpf larval heads from 25 gng8-GFP fish were dissected, and cells were dissociated 

as described previously. After reconstitution of cells with papain inhibitor, the cells were 

spun again at 300xg for 5 minutes and washed with 1X Phosphate Buffered Saline 

(PBS). Viability indicators were added and roughly 6000-8000 cells were immediately 

sorted into 20µL of PBS to a final concentration of cells 300 cells/µL. The sorting was 

performed with a MoFlo Astrios (Beckman Coulter) with highly reduced sort pressure at 

20psi. This was found to be a critical step as higher sorting pressure led to high cell 

death post sorting. The resulting single cell suspension was promptly loaded on the 10X 

Chromium system (Zheng et al., 2016). The sorted cells were not kept on ice for longer 

than 10 minutes because the viability post cell sorting, as measured by trypan blue 

staining, was found to drop over time.  

 

For experiments with adult animals, six adult habenulae were directly dissected out of 

the brain based on the expression of gng8-GFP marker. The resulting tissue was then 
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dissociated in 1mL of 20 units/mL papain for 15 minutes at 37ºC. The habenular cells 

were dissociated by trituration, spun at 300xg for 5 minutes and resuspended in 1mL 

1.1mg/mL papain inhibitor solution. The resulting cells were then washed in 1x PBS + 

200mg/mL Bovine Serum Albumin (BSA) (NEB, B9000S) once and filtered through a 20 

µm cell strainer. The cells were then resuspended in 50µL PBS + 200µg/mL BSA and 

counted on a hemocytometer. Viability was assessed by using a trypan blue staining 

and cells were loaded onto the 10X Chromium system at a concentration of ~300 

cells/µL after ensuring that the cell viability in the suspension was greater than 80%. 

10X libraries were prepared as per the manufacturer’s instructions (Zheng et al., 2016). 

 

Imaging Methods  

Probe synthesis for RNA in situ hybridization 

Fragments of the following genes were amplified using Phusion Hi-Fidelity polymerase 

(New England Biolabs, M0530L) with the primers listed in Table A.3. The Polymerase 

Chain Reaction (PCR)-amplified fragments were then cloned into pSC-A plasmid using 

Strataclone PCR Cloning Kit (Agilent, 240205), and used to transform the Strataclone 

competent cells. The transformed cells were plated overnight on Luria-Bertani (LB) agar 

plates. Colonies were selected by colony-PCR, cultured, mini-prepped and sent for 

sequencing. The resulting plasmids were then restricted with the appropriate restriction 

enzyme (Table A.3), and purified using PCR-clean up kit (Omega Cycle Pure Kit). The 

linearized vector was then used as a template to synthesize digoxigenin- or fluorescein-

labeled RNA probes using the RNA labeling kit (Roche). The transcription reactions were 
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purified using Total RNA clean up kit (Omega, R6834), and the resulting RNA was 

quantified using Nanodrop and assessed on an agarose gel. The final product was then 

normalized to a concentration 50ng/µL in HM+ buffer (50% formamide, 5X Saline Sodium 

Citrate (SSC) buffer, 5 mgmL−1 torula RNA, 50 μgmL−1 heparin, 0.1% Tween 20) and 

stored at -20ºC until further use. 

 

Fluorescent in situ hybridization  

Fluorescent RNA in situ hybridizations were performed as previously described 

(Ronneberger et al., 2012). Zebrafish larvae were grown until 10dpf and were fixed in 

4% formaldehyde (Sigma-Aldrich) in PBS at 4ºC overnight. Post fixation, the larvae 

were rinsed three times in PBST (PBS with 0.1% Tween 20), and subsequently 

dehydrated in increasing concentrations of methanol (10 minutes each 25% methanol: 

75%PBST, 50% methanol: 50% PBST, 75% methanol: 25% PBST and two times 100% 

methanol). Dehydrated larvae were then stored at -20ºC at least overnight. Larvae were 

rehydrated with decreasing concentrations of methanol (10 minutes each, 75% 

methanol: 25% PBST, 50% methanol: 50% PBST, 25% methanol: 75% PBST, four 

times for 10 minutes PBST). They were digested in Proteinase K (10 µg/mL) for 1 hour 

and immediately fixed in 4% formaldehyde to stop digestion (20 minutes). Larvae were 

then pre-hybridized in Hybridization Mix (HM)+ buffer (50% formamide, 5× SSC buffer, 

5 mg/mL torula RNA, 50 μg/mL heparin, 0.1% Tween 20) at 65ºC for 2 hours. 

Hybridization reactions with the RNA probes were carried out in HM+ (with digoxigenin-

labeled antisense probes for single in situ hybridizations and digoxigenin- or fluorescein-
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labeled antisense probes for double in situ hybridizations) overnight at 65ºC. Probes 

were normalized to a concentration of 3.33ng/µL and denatured at 70ºC for 10 minutes 

before hybridization. Sense probe controls were performed alongside the antisense 

probes.  

 

The next day, larvae were washed several times at 65ºC (20 minutes in hybridization 

mix, 20 minutes in 75% formamide: 25% 2xSSCT (2XSSC with 0.1% Tween20), 20 

minutes in 50% formamide: 50% SSCT, 20 minutes in 25% formamide: 75% SSCT, 

twice for 20 minutes in 2x SSCT, thrice for 30 min in 0.2x SSCT. The larvae were then 

washed twice in TNT (100mM Tris-HCl, pH 7.5, 150mM NaCl, 0.5% Tween 20) at room 

temperature. The larvae were subsequently blocked in 1% Blocking Reagent in TNT 

(TNTB) for at least 1 hour and incubated with a peroxidase-conjugated anti-digoxigenin-

POD antibody (1:400 dilution in TNTB) at 4°C overnight with gentle agitation (Anti-

Digoxigenin-POD Fab Fragments, Roche 11 207 733 910).  

 

The following morning, the antibody was removed and larvae washed in TNT (8 times 

for 15 minutes each). After the washes, the larvae were stained per the TSA kit 

instructions for 1 hour in darkness without agitation (Perkin Elmer TSA Plus Cyanine 3 

System, NEL744001KT). The larvae were then washed in TNT three times, 5 minutes 

each. For single in situs, a subsequent immunostaining for anti-total-Erk (Cell Signaling, 

9102) was performed to use as an anatomical reference and signal for brain registration 

across multiple fish.  
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For double in situs, after the first staining reaction, the first antibody was removed by 

treating the larvae in 1% hydrogen peroxide for 20 minutes without agitation. The larvae 

were then incubated overnight with anti-fluorescein-HRP antibody (Anti-Fluorescein- 

POD Fab Fragments, Roche 11 426 356 910), diluted in 1:400 in blocking buffer at 4C 

with gentle agitation.  

 

The following morning, the antiserum was removed and discarded, and excess antibody 

was removed by rinsing the embryos 8x15 minutes in TNT buffer. They were then 

subsequently stained by incubating in 100µL of Cy3 tyramide reagent diluted in 1:25 in 

amplification diluent (Perkin Elmer TSA PLUS Cyanine 3 System, NEL744991KT) for an 

hour without agitation. The embryos were then washed in 8X15 minutes in PBST and 

subsequently stained with anti-total-erk antibody for anatomical reference.   

 

Fluorescent RNA in situ hybridization in adult zebrafish 

Adult fish brains were dissected in ice-cold PBS and fixed overnight in 4% 

paraformaldehyde (PFA). Fluorescent RNA in situ hybridization in adult dissected brains 

was performed with the same protocol as outlined above with the following changes. 

Brains were digested in Proteinase K (20ug/mL) for 35 minutes.  Following probe 

hybridization, antibody incubation and tyramide signal amplification, the brains were 

mounted in 3% low-melt (LM) agarose and sliced into 50 micron sections using the 

vibratome. The resulting slices were stained with TOPRO3 (1:5000) or Sytox green 
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(1:30,000) for nuclear staining and imaged using a Zeiss inverted Confocal microscope 

with a 20X air objective and a 63X oil dipping objective.  

 

Imaging and Image Registration  

The larvae were washed three in PBST, mounted in 2% LM agarose and imaged with 

an upright Confocal Zeiss LSM 880 with a water dipping 20x objective.  

 

Whole Habenula Registration 

Image registration across multiple habenulae was performed with CMTK 

(http://www.nitrc.org/projects/cmtk/) with command string (-T 32 -awr 010203 -X 52 -G 

80 -R 3 -A '--accuracy 0.8' -W '--accuracy 1.6'). Template habenula was a 10dpf nacre 

(mitfaa -/-) larvae that underwent RNA-FISH and immunostaining with anti-total-erk. All 

RNA-FISH images were subsequently registered to the same reference using cmtk 

(Jefferis et al., 2007; Randlett et al., 2015; Rohlfing and Maurer, 2003). All registered 

images were compared to the original in situ images to screen out unnatural morphing 

artifacts. The best registered images were chosen manually and used for generating 

reference habenula (Movie S1) 

 

Whole Brain Registrations 

Whole brain registrations were performed in a similar manner by choosing a reference 

whole brain image from a larva that underwent RNA-FISH and immunostaining with 
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anti-total-erk. However, subsequent registrations were performed using Advanced 

Normalization Tools  

 ANTs (Marquart et al., 2016) with the following parameters: 

 

antsRegistration -d 3 --float 1 -o [fish1_,fish1_Warped.nii.gz] --interpolation 

WelchWindowedSinc --use-histogram-matching 0 -r [Ref1.nii,fish1- 01.nii.gz,1] -t 

rigid[0.1] -m MI[Ref1.nii,fish1-01.nii.gz,1,32,Regular,0.25] -c [200x200x200x0,1e-8,10] --

shrink-factors 12x8x4x2 --smoothing-sigmas 4x3x2x1vox -t Affine[0.1] -m MI[ref/terk-

ref.nii,fish1-01.nii.gz,1,32,Regular,0.25] -c [200x200x200x0,1e-8,10] --shrink-factors 

12x8x4x2 --smoothingsigmas 4x3x2x1vox -t SyN[0.1,6,0] -m CC[ref/terk-ref.nii,fish1-

01.nii.gz,1,2] -c [200x200x200x200x10,1e-7,10] --shrink-factors 12x8x4x2x1 --

smoothingsigmas 4x3x2x1x0vox 

 

Due to the high computation time required for these analyses, registrations were 

parallelized using Slurm-based bash scripts.  

 

Image visualization 

A non-linear gamma filter (ImageJ (Math; Gamma = 0.3)) was applied to the total-Erk 

channel in some images presented in the main text to aid visualization of the FISH 

signal.  
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Computational Methods for Data Analysis 

Alignment and quantification 

For the 10X droplet data, raw sequencing data was converted to matrices of expression 

counts using the cellranger software provided by 10X genomics1. Briefly raw BCL files 

from the Illumina NextSeq or HiSeq were demultiplexed into paired-end, gzip-

compressed FASTQ files for each channel using “cellranger mkfastq”. Both pairs of 

FASTQ files were then provided as input to “cellranger count” which partitioned the 

reads into their cell of origin based on the 16bp cell barcode on the left read. Reads 

were aligned to a zebrafish reference transcriptome (ENSEMBL Zv10, release 82 

reference transcriptome), and transcript counts quantified for each annotated gene 

within every cell. Here, the 10-base pair unique molecular identifier (UMI) on the left 

read was used to collapse PCR duplicates, and accurately quantify the number of 

transcript molecules captured for each gene in every cell. Both cellranger mkfastq and 

cellranger count were run with default command line options. This resulted in an 

expression matrix (genes x cells) of UMI counts for each sample.  

 

For SS2 data, raw reads were mapped to a zebrafish transcriptome index (Zv10 

Ensembl build) using Bowtie 2 (Langmead and Salzberg, 2012), and expression levels 

of each gene was quantified using RSEM (Li and Dewey, 2011). We also mapped the 

reads to the Zv10 genome using Tophat2. We only used libraries with genome 

 
1 https://support.10xgenomics.com/single-cell-gene-expression/software/ pipelines/latest /what-
is-cell-ranger   
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alignment rate > 90% and transcriptome alignment rate (exonic) > 30%. RSEM yielded 

an expression matrix (genes x samples) of inferred gene counts, which was converted 

to TPX (transcripts per 104) values and then log-transformed after the addition of 1, 

consistent with the normalization of the droplet data. 

 

Filtering expression matrix and correcting for batch effects 

Cells were first filtered to remove those that contain less than 500 genes detected and 

those in which >6% of the transcript counts were derived from mitochondrial-encoded 

genes (a sign of cellular stress and apoptosis). Genes that were detected in less than 

30 cells were also removed. Among the remaining cells, the median number of UMIs 

per cell was 2,279 and the median number of genes was 1,319 for larval data. The 

same for adult data was 1,614 UMI/cell and 709 genes/ cell, respectively (Figure A.1C, 

A.1D, A.5A and A.5B).  

 

We used a linear regression model to correct for batch effects in the gene expression 

matrix using the RegressOut function in the Seurat R package, and used the residual 

expression values for further analysis. The residual matrix was then scaled, centered 

and used for the selection of variable genes, PCA and clustering.  

 

Finding variable genes 
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To select highly variable genes in the data, we use two methods. For UMI-based droplet 

data, we derived a null mathematical model based on physical principles to model the 

relationship between average counts and the coefficient of variation (CV) across all the 

genes based on a negative binomial distribution (see below). This null model accurately 

estimated the minimum CV as a function of the mean counts across the full range, such 

that the actual CV for every gene was larger than the value predicted by our model. We 

used this model to rank genes based on the “excess CV” (difference between observed 

and predicted) and identified 706 highly variable genes (Figure A.1F). This model fit 

droplet data very well (Figure A.1E and A.1F).  

 

However, this model greatly underestimated the CV as a function of mean counts in 

SMART-seq2 data (Figure A.4D and A.4E), which was better captured by a similar, but 

more flexible mean-variance model developed earlier for SMART-Seq scRNA-seq data 

(Brennecke et al., 2013). We speculate that this additional overdispersion in SMART-

Seq data is due to amplification biases in the read counts in SMART-seq like protocols, 

which are not attenuated without UMIs.  A similar analysis of droplet data with the raw 

read counts instead of UMIs supports the hypothesis that amplification biases are 

responsible for the overdispersion (Figure A.4F). (see details in Section “Mean-CV 

model for transcript counts in UMI based data” below). 

 

We also used Seurat’s data driven variable gene selection (FindVarGenes) method to 

identify highly variable genes in the SMART-seq2 data (Satija et al., 2015). Briefly, the 
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mean expression and dispersion (variance/mean) for each gene is computed across all 

single cells. The genes were then placed in 20 bins based on their mean expression. 

Within each bin, the dispersion of all genes was z-normalized to identify the genes that 

were highly variable within a similar average expression value. We identified 1,258 

genes by this method. For our final analysis of the droplet dataset, we used a union of 

the variable genes selected with the two methods, which resulted in a total of 1436 

variable genes. However, for SMART-seq2 data, which was generated without UMIs, 

we only used Seurat’s dispersion method for variable gene selection.  

 

Mean-CV model for transcript counts in UMI based data 

The coefficient of variation (CV), defined as the ratio between the standard deviation (σ) 

of a variable and its mean (μ), is a natural measure of a gene’s extent of variation. 

However, ranking genes based on decreasing expression CV leads to selection of 

genes with low mean expression, particularly in count-based data. Hence, we sought to 

perform variable gene selection in droplet dataset using mean-CV relationship. The 

simplest null model is that the transcript counts follows the Poisson distribution,  

 

𝑋#	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇#)  (1) 

 

where 𝑋#	is the UMI counts for gene g in a cell, and 𝜇# is the sampling rate equal to the 

average count of gene g across all the cells. Since the variance of the Poisson 
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distribution is equal to mean, this predicts a relationship: 𝐶𝑉# = 	1 2𝜇#⁄ 	(red dashed line, 

Figure A.1F). The Poisson model, which is parameter-free, provides a tight lower bound 

of the CV for lowly expressed genes – i.e. the actual CV values for lowly expressed 

genes are equal to or higher than the Poisson CV. However, at high expression values 

we observed that the model significantly underestimates the minimum CV in the data. 

More specifically, the CV of genes in the data appears to plateau at high mean 

expression, whereas the Poisson model predicts a square root decrease.  

 

What accounts for the over-dispersion in the data at high mean expression values 

compared to the Poisson model? According to the Poisson model, which treats genes 

independent of each other, the total number of transcript counts per cell (𝑁565) is a sum 

of independent Poisson random variables, and therefore is a Poisson random variable 

itself. However, this is not supported by our data as the variance of 𝑁565 is 

approximately 389 times its mean in the larval droplet data. This over-dispersion of total 

number of transcripts per cell for highly expressed genes could be caused by many 

factors. Some may be biological like cell size and cell state.  However, many others may 

be technical factors such as variations in lysis and RT efficiency, number of captured 

oligonucleotides or extent of RNA degradation between droplets.  

 

Based on this hypothesis, we made a simple modification to the Poisson model by 

positing that the sampling rate of a gene in a given cell depends on its relative library 

size η. We hypothesized that, 
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𝜂 = 89:9,<
𝔼89:9,<

  (2) 

 

where 𝑁565,> is the total number of molecules in cell i and 𝔼𝑁565,> is its expectation across 

all cells. We note that 𝔼𝜂 = 1. We found that a Gamma distribution with mean fixed at 1 

provided an excellent fit for the empirical distribution of 𝜂 in all of our droplet datasets 

(e.g. Figure A.1E). Given the empirical distribution of 𝜂, we used the R package MASS 

to estimate the scale factor α for the Gamma distribution. This leads to a model where 

every gene is sampled from a Poisson distribution with its rate being a random variable 

following a Gamma distribution (our parameterization of η makes this a single 

parameter model). 

 

Fortunately, this Gamma-Poisson results in a closed form solution, wherein every gene 

follows a negative binomial distribution, 𝑋#~	𝑁𝐵(𝑟, 𝑝#). Here, r and p represent the 

canonical parameters of the negative binomial distribution, the number of failures(r) and 

the success probability(p), which follow the relations, 

 

𝑟 = 	𝛼, 𝑝 = 	 DE
FG	DE

  (3) 

 

Using standard properties of the negative binomial distribution, we compute the CV-

mean relationship as, 
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𝐶𝑉H# = 	
I
DE
+ I

F	
   (4) 

 

Figure A.1F graphs this relationship (solid magenta line). As shown, for lowly expressed 

genes, we expect I
DE
≫ I

F
,  and the curve reduces to the Poisson regime. This suggests 

that for lowly expressed genes, the variation is dominated by the Poisson fluctuations. 

However, for highly expressed genes 𝜇# ≫ 𝛼, the model reduces to 𝐶𝑉# = 	1 √𝛼,⁄  

explaining the saturation observed in the data. This suggests that for highly expressed 

genes the variation is dominated by various technical factors (contributing to library size 

differences) that result in more over-dispersion than predicted by the Poisson model. 

Importantly, through this simple modification, we were able to provide excellent 

estimates for the lower bound in CV across the full range of expression values. We 

ranked the genes based on their distance from this null curve in log-space, i.e. 

log	(PQ:RSTUVTW
PQXY

). We used the shape of the distribution of this quantity to estimate a cutoff 

value (0.3), above which genes were considered highly variable.  

 

We note here that while equation (4) models the baseline CV-mean relationships in 

transcript counts for UMI based data as a tight lower bound (Figure A.1F), it significantly 

underestimates the CV-mean relationship observed in SMART-seq2 data (Figure A.4D 

and A.4E). Here, a related but more flexible model appears to perform better at 

capturing the mean-CV behavior (Brennecke et al., 2013), 

𝐶𝑉H# = 	
𝛼I
𝜇#
+
1
𝛼H
																	(5) 
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This model (Brennecke et al.) (Figure A.4E, yellow line l 𝛼I = 205, 𝛼H = 2.9) better 

approximates the CV-mean relationship observed in SMART-seq2 data. This behavior 

is not peculiar to the SMART-Seq2 data presented in the paper. We reran the Poisson 

Gamma and the Brennecke et al. model on the read counts data from Tasic, Menon et 

al. and found that our model underestimates CV-mean relationship (Figure A.4G). This 

overdispersion likely results from bias in the non-UMI Smart-Seq2 data, because the 

Poisson Model accurately predicts mean-CV baseline in Drop-seq data of retinal bipolar 

neurons, produced by an alternative UMI-based protocol (Shekhar et al., 2016) (Figure 

A.4H). We also verified this by analyzing read count data of larval droplet dataset prior 

to UMI collapse, which should “retain” amplification biases and found that the model 

performs worse with non-UMI based droplet dataset (Figure 4F).  

 

Dimensionality reduction using PCA and Graph Clustering  

Dimensionality reduction was performed using principal component analysis (PCA), and 

statistically significant PCs were identified using the Jackstraw function in Seurat 

(Chung and Storey, 2015). 36 significant PCs were identified for larval and 30 significant 

PCs for identified for adult data. The scores of cells along these significant PCs were 

used to build a k-nearest neighbor graph, and partition the cells into transcriptionally 

distinct clusters using the smart local moving community detection algorithm (Waltman 

and Eck, 2013) as implemented in the FindClusters function in Seurat. Subsequently, t-

distributed stochastic neighbor embedding (tSNE) (Hinton and Maaten, 2008) was used 



 79 

to embed the cells based on statistically significant PCs, to visualize the graph 

clustering output on a 2D map. We note that the tSNE coordinates were computed 

independently of the cluster labels. All initial clusters were subjected to additional 

iterative clustering to discover additional heterogeneity within the initial clusters (Figure 

A.1G). We found two additional droplet clusters (Hb05 and Hb12) and 1 additional 

SMART-Seq2 cluster by iterative clustering. We also verified that cells did not segregate 

based on their experimental batch id (Figure A.4C and Figure A.5C) by observing the 

contribution of each experimental batch to every cluster in both adult and larval 

datasets. Downsampling experiments and assessment of cluster purity and entropy of 

the downsampled clusters were performed as described previously (Shekhar et al., 

2016). Adjusted Rand Index (ARI) for cluster consistency was calculated as described 

previously (Cooper, 2010).  

 

Marker genes discovery and quantification of their specificity and precision 

Markers were nominated by performing a differential expression analysis between the 

cells in the cluster of interest and the rest of the cells in the dataset (Figure A.1L). 

Markers’ specificity and precision were quantified using a statistical test based on the 

area under the precision-recall curve (AUCPR). AUCPR is a quantitative measure of the 

balance between recall (the sensitivity of marker gene detection within the cluster of 

interest) and precision (accuracy of the quantitative levels of gene as a predictor of the 

correct cell type). Markers found by our analysis were either “digital” (expressed only in 

the marked cluster) with AUCPR values> 0.8, or analog (expressed at a higher level in 

the marked cluster, but also detectable in other clusters) with AUCPR values between 
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0.6-0.8. We compared the AUCPR values of marker and non-marker genes at a range 

of expression values and show that the marker genes have significantly higher AUCPR 

values compared to non-marker genes (Figure A.2C). Markers with low AUCPR values 

belong to smaller clusters in which a small number of false positives in other clusters 

can significantly reduce the AUCPR value (Figure A.2C, right panel).  

 

Comparison of cluster signatures between droplet and SS2 datasets 

Independent analysis of SMART-seq2 data revealed 10 clusters (Figure 1.4A), fewer 

than in the droplet data (Figure 1.1C). We hypothesized that the lower sample size 

might have masked subtle transcriptional differences between closely related sub-types, 

causing the corresponding clusters to merge. We reasoned that a supervised classifier 

trained on the signatures of the droplet dataset might be able to resolve these merged 

clusters in the SS2 dataset. Therefore, to evaluate the correspondence between the 

droplet and SS2 clusters rigorously, we trained a multi-class random forest classifier on 

the droplet dataset. A random forest is an ensemble learning method that consists of 

multiple decision trees, each of which are trained on a randomly defined set of features 

(genes) (Breiman, 2001).  

We composed a training set for the classifier by taking a sampling of cells from the 16 

clusters from the droplet dataset. The number of training cells (Nk) from each cluster k 

was chosen such that Nk = min (500, |cellsk|*0.7), leading to the use of a maximum of 

70% of the cells in each cluster for training. The remaining 30% of the cells in every 

cluster were used to test the classifier. In addition, the classifier was built on the most 
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variable genes across both droplet and SS2 datasets. We trained the random forest 

using 1,000 trees on the training set with the R package randomForest. This trained 

classifier was then used to assign a cluster label for the remaining 30% of the data. We 

assigned a class label to each cell, but only if a minimum of 15% of trees in the forest 

converged onto a decision (given that there are 16 classes, 6.25% vote would constitute 

a majority). Otherwise, the cells were labeled unassigned. Cells in the test set were 

accurately mapped to their correct classes by the trained classifier at a median rate of 

95% for every cluster as reflected by the diagonal structure of the confusion matrix 

(Figure A.4I).  

 

This classifier was then used to predict the cluster labels of the cells in the SS2 dataset. 

It is important to note that the assignment is completely agnostic to the SS2 cluster 

label. After classifying each SS2 cell independently, we asked whether there was any 

correspondence between the SS2 clusters and the RF assignments to the droplet 

clusters. If greater than 70% of the cells of a single SS2 cluster mapped to single 

droplet clusters, that mapping was considered to be a 1:1 mapping. The Adjusted Rand 

Index (ARI, a measure of clustering consistency) between the RF assigned cluster 

labels and the SS2 labels was 0.45, significantly higher compared to the ARI between 

randomly permuted cluster labels and SS2 labels, which produced a maximum ARI 

value of 0.02 (p < 0.001). 

 

Taken together, these results show that neuronal type-specific gene expression 

signatures that are important for cell type classification are robustly captured by 
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sampling larger number of cells (with droplet) than a larger number of genes (with plate-

based SS2).   

 

Computation of entropy of cluster specific and extra SS2 genes 

Compared to the droplet dataset, a host of extra genes in the SS2 dataset were 

expressed in a high proportion of cells but at lower expression level (Figures A.4E, 

A.4F). To understand the contribution of these “extra” genes in SS2, we identified all the 

genes that are expressed in moderate to high proportion of cells in the SS2 dataset but 

in a low proportion or not expressed in the droplet dataset (Figure A.4L, red). We then 

tested if these genes could serve as good cluster-specific markers or enabled better cell 

type classification.  

To assess the ‘cluster-specificity’ of these genes, we computed their Shannon entropy, 

Hg: 

 

Hg = ∑ 𝑝(𝑥) ln 𝑝(𝑥)a
I  

Where p(x) is the probability of the finding gene g in cluster x. For a single gene g, Hg 

equals 0 if the gene is expressed in a single cluster, but increases in value if the gene is 

expressed across multiple clusters.  

 

We compared the distribution of the Shannon entropy (low Hg, measure of cluster-

specificity) for these “extra” SS2 genes to its distribution among marker genes, which as 
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expected exhibited low values of Hg. A large majority of the “extra” genes detected in 

SS2 dataset had higher entropy values, suggesting that they are uninformative for cell 

type classification (Figure A.4M).  

 

Comparison of cluster signatures between larval and adult dataset 

To systematically compare the larval and adult clusters, we used the expression of gng8 

to partition the adult clusters into “high” (average log (TPM + 1) > 2) and “low” (average 

log (TPM +1) < 2) gng8+ cells. We used the “high” gng8+ cells for further analysis 

(Figure A.5F) as the gng8-GFP transgenic line was used to capture cells in the larval 

dataset (Figure 2.1B). We trained a multi-class random forest classifier on our larval 

gng8-GFP droplet dataset as described above. We then used the RF model trained on 

the cluster signatures of the larval dataset to classify each adult cell into one of the 

larval habenular cluster labels, independent of the cell’s adult cluster label. After 

classifying each adult cell independently, we asked whether there was any 

correspondence between the original clusters of the adult dataset and the RF-assigned 

clusters. This result was represented in the form of a confusion matrix as described in 

the SS2 cluster comparison section (Figure 2.5C). If greater than 70% of the cells of a 

single adult cluster mapped to a single larval cluster, that mapping was considered to be 

a 1:1 mapping. We verified that none of the adult cells mapped to larval cluster Hb16, 

which comprises olfactory placode cells that are labeled by the gng8-GFP transgenic 

line. These cells were not captured in the adult dataset as the adult dataset was 

generated by clean dissection of the habenula.  
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Functional experiments 

Stimulation with electric shocks 

For shock delivery, fish were placed in 85mm petri dishes over which a 10 milli-second 

7-V shock was delivered every 30 seconds for 30 minutes. Current was delivered using 

alligator clips as in a previously described apparatus (Valente et al., 2012). Controls 

were placed beside the shocked fish and were also affixed with alligator clips but did not 

receive any shocks. Fish were then promptly fixed in 4% paraformaldehyde and 

subsequent RNA-FISH was performed for cfos expression.  

These experiments were performed similarly in adults, except fish were kept in breeding 

cages during stimulation. After treatment with aversive stimuli, adult fish were rapidly 

killed by immersing in ice-cold water and their brains dissected immediately. 

Subsequent RNA-FISH was performed as described above to check for cfos expression 

in sub-populations within the habenula.   

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

For experiments with larval habenula, cells were collected in three batches of SMART-

seq2 data and one batch of 10X droplet data. For 10X experiment, 20 animals were 

pooled together in a single experiment. For SMART-seq2 experiments, batch 1 and 

batch 3 were composed of single animals whereas batch 2 was composed of 20 larval 

animals pooled together. For experiments with the adult habenula, cells were collected 
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from age matched fish in two different experimental batches. Each batch was composed 

of 6 habenulae pooled together.  For experiments involving RNA-FISH, each 

experiment was performed in batches of 20 fish. Approximately, 1000 larvae were 

imaged in total. For functional experiments in both larval and adult fish, experiments 

were performed in three independent batches. Within each batch, there were 20 

treatment and 20 control animals for larva and 3 treatment and 3 control for adults.  

All analysis related to RNA-seq was performed in R. Statistical methodologies and 

software used for performing various analysis in the paper are cited in appropriate 

STAR methods section. Differential expression of genes across clusters in the 10X and 

SMART-Seq2 experiments was evaluated using bimodal and binomial test as described 

before(Shekhar et al., 2016). Image registration analysis was performed in MATLAB 

and were parallelized using Slurm-based bash scripts. 
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CHAPTER 3: Functional Investigation of Ventral Habenular 
Cell Types and Cluster-specific Marker Genes 

 

3.1 PREFACE 

 

I designed, performed, analyzed and interpreted the experiments with input from 

Alexander F. Schier. William Joo built the behavior rigs used for performing behavioral 

screening with the mutants. Summer Thyme generated the pipeline for extraction of 

behavioral features from behavior videos. Kristian Herrera helped with the calcium 

imaging experiments. Alexander F. Schier supported the project. Identification of ventral 

cell population responsive noxious electric shocks was published in Current Biology.   

 

 

3.2 ABSTRACT 

 

Brain function depends on the complex network of specialized neuronal types that give 

rise to system-level behavioral characteristics of animals. Single cell technologies allow 

comprehensive mapping of the repertoire of cell types in the brain in unprecedented 

detail. However, a key next step in understanding the role of the cell types as well as 

the cell type specific marker genes in generating brain function is to map an additional 

layer of functional properties onto the molecular descriptors from single-cell RNAseq. In 

this chapter, I present two distinct ways in which I map functionality onto molecular 

descriptors of the habenula. In the first, approach I leverage the spatial map of the 
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habenula and immediate early genes to localize cell populations responsible for 

generating responses to inescapable aversive environmental stimuli.  Using cfos as a 

neural activity indicator, I discovered a population in the ventrolateral habenula that 

robustly responds to noxious electric shocks. In the second part, I employ CRISPR-

Cas9 to generate knockouts of genes that are specific to sub-clusters within the ventral 

habenula. All of the four mutants generated in our study had various locomotor defects 

along with changes in baseline brain activity. Particularly, notable among these genes is 

aoc1, a histamine inactivating enzyme that is specific to the sub-clusters of the ventral 

habenula and may have an important role in regulating sleep. A detailed analysis of 

brain activity and behavioral patterns of mutant animals suggests that all the genes 

expressed within the ventral habenula may have important roles in regulating 

locomotion.  

 

3.3 INTRODUCTION 

 

Single cell RNA-seq deconvolutes the quagmire of neurons in the brain into specific cell 

types by proximity of their molecular signatures. These molecular signatures form the 

core molecular identity of said neurons. However, a mechanistic understanding of the 

brain at a functional level requires that these cell types and marker genes be associated 

with specific functional roles with respect to generating animal behaviors in both normal 

and diseased states. In short, the single cell RNAseq analysis of the brain can be a 

genetic scaffold onto which other cellular phenotypes can be overlaid.  
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To extend our single cell analysis of the habenula into functional regimes, I took two 

different approaches. In the first approach, I used spatial localization of cell types to link 

molecularly described cell types to their anatomical positions and assign them to 

specific functional roles using the expression of immediate early gene cfos. This 

approach was similar to the multiplexed in situ hybridization approaches that were used 

by recent studies to characterize different parts of the mammalian brain (Moffitt et al., 

2018; Shah et al., 2016) but limited by the fact that the multiplexing was performed 

computationally.  

 

In the second approach, I investigated the role of specific marker genes expressed in 

ventral habenular clusters. The ventral habenula, the homolog of the mammalian lateral 

habenula, plays important roles in sleep, reward learning and coping with aversive 

environmental states (Aizawa et al., 2013a; Andalman et al., 2019; Wang et al., 2017). 

While the role of the general ventral habenular region has been explored extensively in 

these contexts, it is unclear whether the ventral habenular cell type specific markers 

play important roles in mediating any of these behaviors. Therefore, this region of the 

habenula represented a perfect opportunity to connect gene signatures specific to 

habenular cell types to behavioral functions mediated by those types. In this chapter, I 

will discuss efforts to overlay functional properties into ventral habenular clusters using 

these two complementary approaches.  
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3.4 RESULTS 

 

3.4.1 Computational Image Registration Generates a Spatial Map of Neuronal 

Types in the Habenula 

 

The study of brain function ultimately requires linking molecularly distinct cell types to 

measures of function. Therefore, it is critical to place cell types identified by analysis of 

global gene expression data obtained using scRNA-seq to its native spatial context by 

using top cluster-specific markers. To explore the localization of neuronal types within 

the habenula, I created a consolidated spatial map of neuronal type specific markers in 

the habenula (Figure 3.1). I used computational image registration to morph RNA-FISH 

signals of many cluster-specific marker genes across multiple zebrafish larvae onto a 

single reference based on the total ERK (tERK) antibody stain (Jefferis et al., 2007; 

Randlett et al., 2015; Rohlfing and Maurer, 2003) (Figure A.3) resulting in a reference 

spatial map of the habenula.  

 

My map demonstrates that a majority of habenular types were regionalized either along 

the dorso-ventral, medio-lateral or left-right axis, suggesting that habenular types can be 

defined not only by their transcriptomes but also by distinct spatial positions (Figure 

3.1B). Eleven types were located more dorsally in the habenula; 8 of them seem to be 

regionalized: Hb01/Hb02 were right enriched or exclusive, Hb07/Hb08/Hb09/Hb10 were 

left-enriched or exclusive, Hb04 and Hb06 was L-R symmetric in the dorsal habenula. 

Four types were located more ventrally, of which Hb11 and Hb12 were posterior ventral 
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populations, Hb15 occupied a large portion of the ventral habenula and Hb13 formed a 

germinal zone along the medial region of the ventral habenula. In summary, the 

fluorescent in situ atlas provides the first spatial map of the 15 known and novel 

neuronal types in the zebrafish habenula. 

 

 

Figure 3.1. Spatial Atlas of the Zebrafish Habenula 

(A) Slices through the registered reference habenula simultaneously showing six marker genes that are 
expressed in a regionalized pattern: wnt7aa (La_Hb08), adcyap1a (La_Hb07), cbln2b (La_Hb04), murcb 
(La_Hb01), lrrtm1 (La_Hb06), gpr139 (La_Hb15).  
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Figure 3.1 (Continued). (B) Schematic of representative transverse slices through the habenula 
displaying rough spatial co-ordinates of previously described as well as new neuronal types found by 
single-cell analysis. Cells are color-coded based on their identity in the t-SNE plot (see Figure1C). Depth 
is indicated by the z slice in microns. The sectioning extends from z = 0µm (Dorsal) and z = 75µm 
(Ventral). Only regionalized markers are represented. Schematic is a simplified representation of an 
accompanying stack of registered habenular markers overlaid onto one another [see Movie S1]. Scale 
bars indicate 50 µm. 
 

3.4.2 Functional Assignment onto Molecularly Defined Neuronal Types  

 

Next, I leveraged the spatial atlas generated by registration of in situ data to assign 

functional properties to molecular subtypes. I began by exploring if and how functional 

responses of the habenula were distributed among the transcriptionally distinct neuronal 

types. To this end, I performed a proof-of-principle experiment to determine if we could 

use neuronal type specific markers and the reference habenular atlas (Figure 3.1A) to 

map responses to specific stimuli among the molecularly defined neuronal types. One of 

the key roles of the zebrafish habenula is to generate behavioral responses to 

inescapable aversive environmental stimuli. However, it is unclear which neuronal 

subtype within the habenula mediates this behavior. I exposed fish to noxious 

inescapable electric shocks and assessed upregulation of the immediate early marker 

gene cfos in specific neuronal types. I observed localized upregulation of cfos 

expression in specific sub-regions within the habenula in shocked animals (Figure 

3.2A). I registered the cfos RNA-FISH signals onto our reference habenular map(Figure 

3.3A), and detected overlap within the domains of expression of left habenular Hb09 

(adcyap1a+), posterior habenular Hb04 (cbln2b+) and largely within the ventrolateral 

population (mprip+) (Figure 3.2). Double in situ hybridization for mprip and cfos showed 

a regional overlap between the mprip+ and cfos+ cells in both larva (Figure 3.3C) and 
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adult (Figure 3.3D). Together, these results show that neuronal ensembles in the 

ventrolateral habenula comprise a large proportion of cells responsive to aversive 

electric shocks and demonstrate the utility of the habenular atlas to link functional 

responses to molecularly defined neuronal types.  

 

 

Figure 3.2: Mapping of cfos Responses onto Neuronal Types Found by scRNA-seq 
Registration of cfos expression in response to aversive electric shocks onto molecular atlas generated by 
habenula registration shows major co-regionalization with markers for three clusters found by single cell 
dataset: Hb09 (adcyap1a), Hb04 (cbln2b) and ventrolateral cluster (mprip). 
 
 

These results suggest that the cell type along ventro-lateral habenula defined by the 

expression of mprip is important for responses to aversive environmental stimuli.  
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Figure 3.3. Noxious Electric Shocks Activate a Sub-Population of Neurons in the Ventro-
lateral Habenula Labeled by mprip. 
(A) ISH analysis of cfos expression in the habenula 30 minutes after exposure to electric shocks.  

(B) Registration of cfos signals to habenular molecular atlas reveals co-regionalization with the mprip+ 
ventrolateral population [Scale bars represent 50 µm]. 

(C) Double in situ hybridization for c-fos and mprip, (marker for ventrolateral neuronal type) showing a co-
localization of cfos+ and mprip+ domains in the larval habenula in response to electric shocks [Scale bars 
represent 10 µm]. 

(D) Double in situ hybridization of cfos and mprip showing the conservation of electric shocks-induced 
cfos responses in mprip+ ventro-lateral neuronal type in the adult habenula. Nuclei borders are 
demarcated in the zoomed in panels on the right using dotted circles [Scale Bar represents 10µm unless 
otherwise stated].  
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3.4.3 Generation of CRISPR knockouts for specific marker genes of ventral 

habenular clusters.  

 

In a concurrent and complementary approach to understand the functional relevance of 

habenular cell types, I also interrogated the role of cell type specific marker genes in 

generating habenular function. To this end, I generated CRISPR knockouts (see 

Appendix for details on DNA lesions) for marker genes of the ventral habenular clusters.  

I chose four genes based on their restricted expression pattern among the ventral 

habenular clusters and large exclusion throughout the rest of the brain (Figure 3.4).  

More specifically, aoc1 and gpr139 were limited in their expression to Hb15 whereas nts 

and ntsr1 are limited in their expression to Hb11/Hb15 and Hb11 respectively (Figure 

3.4A).  

 

To identify the neurobiological roles of these marker genes, I performed a phenotypic 

analysis of brain activity, morphology and baseline behavior. I assessed baseline 

motion over multiple day-night cycles and responses to sensory stimulation such as 

taps and dark flashes (Burgess and Granato, 2007; Kokel et al., 2010; Rihel et al., 

2010). All phenotypic assays compared homozygous mutants to heterozygous and wild 

type siblings coming from the same clutch. In the following section, I describe the brain 

activity and behavioral phenotypes of the animals harboring mutations for these marker 

genes.    
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Figure 3.4. Expression Patterns of the Genes Knocked out from Ventral Habenular 
Clusters. 
(A) Feature Plots showing the expression patterns of selected ventral habenula-specific genes that were 
used to interrogate the role of cell type specific genes in generating habenular function.  

(B) In situ hybridization showing expression of aoc1 and gpr139 within the habenula (middle panel) and 
across the entire brain (left and right panels) 

 

3.4.3.1 Gpr139, an orphan G-protein coupled receptor  

 

Gpr139 is an orphan Gq-coupled receptor that is activated by essential amino acids 

such as L-tryptophan and L-phenylalanine (Liu et al., 2015). Recently, gpr139 was also 
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shown to be activated by endogenous peptides such as adrenocorticotrophic hormone 

(ACTH), melanocyte stimulating hormone (MSH) (Nohr et al., 2017). While the 

physiological function of gpr139 remains elusive, it is highly associated with 

neuropsychiatric diseases such as depression (Dunn et al., 2016). The domain of 

expression of gpr139 in larval zebrafish is limited to the ventral habenula (Figure 3.4A 

and B) and is excluded from the rest of the brain. This specificity in expression and its 

involvement in such neuropsychiatric disorders makes it a good candidate gene for 

exploring the functional relevance of habenular cell type specific genes. Given this 

expression pattern, it might have important roles in a number of habenula mediated 

behavioral states such as sleep, stress, anxiety and addiction. Concurrent to this, a 

recent study has reported that an intra-habenular activation of gpr139 leads to decrease 

in alcohol dependence in rats (Kononoff et al., 2018). Therefore, we created a loss of 

function mutation of gpr139 to investigate its role in generating ventral habenular 

function. 

 

Using baseline brain activity measurement, we observed specific increases in brain 

activity in the gpr139-/- zebrafish larvae (Figure 3.5B). Activity differences were limited 

to the right ventral habenula and to the medial pallium. Furthermore, zebrafish larvae 

with mutations in gpr139 displayed a slight increase in locomotor activity during the day, 

accompanied by an increase in the number of bouts (Figure 3.5C and D) and average 

bout speed (Figure 3.5L) during the day. When exposed to varying tap and strengths 

during the day and night to measure their arousal threshold, gpr139-/- larvae displayed 

no difference in the response probability at a range of tap strengths. On the other hand, 
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when exposed to varying levels of dark flashes, gpr139-/- larvae showed a reduced 

response probability to dark flashes of lower intensity (Figure 3.5H).  

 

 

Figure 3.5. Loss of gpr139 decreases locomotor activity during the day. 
(A) Sequences of wild type and mutant zebrafish gpr139 proteins.  
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Figure 3.5 (Continued). (B) Brain activity phenotypes representing baseline differences in brain activity 
between mutant and wild type fish.  

(C-E) Gpr139-/- and gpr139+/- animals were slightly more active during the day and displayed increased 
number of bouts during the day but had the same average bout speed.  

(F-G) Gpr139-/- animals displayed no difference in response probability to taps and dark flashes both 
during the day and night.  

(I-J) Gpr139-/- animals displayed no significant change in activity during the day and night.  

(K-L) Gpr139-/- animals displayed a significant decrease in the average bout speed compared to wild 
type siblings both during the day and at night.  

 

 

 3.4.3.2 Diamine oxidase (aoc1/dao), an enzyme that deaminates histamine.  

 

Amine oxidase copper containing 1 or diamine oxidase (aoc1/dao) is a gene that 

encodes a metal binding secreted glycoprotein that oxidatively deaminates histamine, 

putrescine and other related compounds. Diamine oxidase is thought to be absent in the 

mammalian brain but present in the brain of lower vertebrates (Almeida and Beaven, 

1981). In the zebrafish brain, the expression of aoc1 is limited to the ventral habenular 

nucleus (Figure 3.4).  

 

Pharmacological studies in both mammals and zebrafish have suggested that histamine 

plays an important role in promoting arousal (Thakkar, 2011). Studies in zebrafish have 

concluded that animals containing predicted null mutations in histamine receptors lack 

robust sleep/wake phenotypes (Chen et al., 2017). Similarly, zebrafish exhibit a dose-

dependent decrease in locomotor activity when treated with histamine receptor 

antagonists (Sundvik et al., 2011). Histamine is synthesized by histidine decarboxylase 

(Hdc) which is expressed in the tuberomammillary nucleus (TMN) of the hypothalamus 

in mammals and in the ventrocaudal hypothalamus in the zebrafish brain (Sundvik and 
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Panula, 2012), Histamine can be inactivated in two distinct ways: 1) oxidative 

deamination by diamine oxidase (dao) which is thought to remove extracellular 

histamine (Schwelberger, 2004b). 2) methylation of the imidazole ring, catalyzed by 

histamine N-methyltransferase (HMT) which is thought to remove cellular histamine 

(Schwelberger, 2004a). 

 

It has long been suspected that the habenula plays an important role in the regulation of 

sleep. Till date, this habenular regulation of sleep has been shown to occur via its 

regulation of downstream serotonin and dopaminergic targets (Aizawa et al., 2013b). 

However, the role of habenula in regulating sleep via effects exerted on the 

histaminergic center of the brain has been largely ignored. The selective expression of 

aoc1 in the cell types in the ventral habenular nucleus might represent a parallel 

pathway via which habenula might exert its effects on sleep. Indeed, direct habenular 

projections to histaminergic systems have been found in lampreys in addition to the 

projections to the dopamine and serotonin centers (Stephenson-Jones et al., 2012).  
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Figure 3.6. Loss of aoc1 increases locomotor activity. 

(A) Sequences of wild type and mutant zebrafish gpr139 proteins.  
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Figure 3.6 (Continued). (B) Brain activity phenotypes representing baseline differences in brain activity 
between aoc1-/- and aoc+/+ fish. 

(C) Brain activity phenotypes representing baseline differences in brain activity between aoc1-/- and 
aoc+/- fish. 

(D-F) aoc1-/- animals were more active during the day and displayed more number of bouts and higher 
average bout speed during the day.   

(G-I) aoc1-/- animals displayed slightly increased response probability to taps and dark flashes both 
during the day and night.  

(J-K) aoc1-/- animals are more active during the day and night compared to wild type siblings.  

(L-M) aoc1-/- animals displayed an increase in average bout speed during the night but not during the 
day.  

 

 

Zebrafish larvae harboring mutations for aoc1 also displayed specific increases in the 

brain activity in the pallium region of the forebrain and in the ventral habenula (Figure 

3.6B and C). This change in brain activity was accompanied by an increase in 

locomotor activity during the day. The increase in daytime activity was caused by 

increase in the number of bouts. The mutants also displayed a significant increase in 

average bout speed during the night (Figure 3.6F, L, M).  Interestingly, when exposed to 

varying tap and strengths during the day and night to measure their arousal threshold, 

aoc1-/- larvae displayed a small but significant decrease in the response probability at 

higher ranges of tap strengths suggesting that they may have an increased arousal 

threshold. However, there appeared to be no change in the response probability to dark 

flashes at all intensities (Figure 3.5H). 

 

3.4.3.3 Neurotensin and Neurotensin receptor  

 

Neurotensin (nts) is a neuromodulator of dopamine transmission and of anterior pituitary 

hormone secretion and is known to exert potent hypothermic and analgesic effects in 
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the brain. In the zebrafish habenula, both neurotensin and its receptor were expressed 

in a small group of neurons in a cluster belonging to the ventral habenula (Figure 3.4A). 

However, their expression, unlike aoc1 and gpr139, is not limited to the ventral 

habenula but is also seen in the hypothalamus and some parts of the forebrain (data not 

shown).  
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Figure 3.7. Loss of nts decreases daytime locomotor activity. 

(A) Alignment of zebrafish nts sequences with mouse and human nts protein sequence.  

(B-C) Brain activity phenotypes representing baseline differences in brain activity between nts-/- and nts 
+/+ fish.  

(C-F) nts-/- displayed decreases in daytime activity (C) with corresponding increases in number of bouts 
(D) but no change in average bout speed or interbout interval (F).  

(G-H) nts-/- animals are less active during the day and night.  
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Nts-/- zebrafish larvae displayed significant decreases in the brain activity in both the 

pallium and subpallium region of the forebrain (Figure 3.7B). In addition to that, they 

also displayed a strong decrease in activity in the ventral habenula and various parts of 

the rostral and caudal hypothalamus. This change in brain activity was accompanied by 

a decrease in locomotor activity during the day (Figure 3.7C and D). However, no 

changes were observed in the average bout speed or interbout interval (Figure 3.7E 

and F). Ntsr1-/- larvae in the other hand, displayed only mild increases in brain activity 

in the various regions of the hindbrain (Figure 3.8B and C).  Contrary to nts-/- 

phenotypes, ntsr1 mutants displayed no significant changes in locomotor activity during 

the day but displayed reduced locomotor activity at night (Figure 3.8H). They also 

displayed a significant increase in the average bout speed (Figure 3.8D and F).  
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Figure 3.8: Loss of ntsr1 increases daytime locomotor activity. 
(A) Alignment of zebrafish ntsr1 sequences with mouse and human ntsr1 protein sequence.  

(B-C) Brain activity phenotypes representing baseline differences in brain activity between ntsr1-/- and 
ntsr1+/+ fish(B) and ntsr1-/- and ntsr1+/+ fish(C) 

(D-F) ntsr1-/- displayed no change in daytime activity (D, I) with corresponding increases in bout speed 
(F) and interbout interval during the day(G). ntsr1-/- animals displayed no change in bout duration. 

(H-I) ntsr1-/- animals were less active during the night but not during the day. 
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3.5 DISCUSSION 

 

A number of studies have demonstrated that defining cell types in their natural habitat is 

an important next step for generating functionally relevant brain atlases (Moffitt et al., 

2018; Shah et al., 2016). In this chapter, I presented how we utilized computational 

morphing techniques to generate a spatial atlas of the zebrafish habenula using 

markers obtained from single cell analysis. These analysis help add an additional layer 

of spatial information onto these molecular identities. Neuronal types were distinguished 

not just by their molecular profiles but by their regional expression patterns within the 

habenular tissue. We then used this atlas to identify a cell type in the ventral habenula 

that is important for responses to inescapable aversive stimuli. Since then, a number of 

studies have corroborated these findings to show that the ventrolateral cell type in the 

habenula is important for the responses to aversive environmental stimuli and that 

dynamics within these cell type domains are important for mediating a behavioral switch 

from active coping to passive coping strategies (Andalman et al., 2019). In future, it will 

be interesting to use these comprehensive and extensive single cell atlases with 

multiplexed in situ hybridization approaches such as MERFISH or seq-FISH to obtain a 

single cell resolution map of various fish brains (See Appendix Figure A.6 for 

preliminary data). In an approach similar to above, these in situ atlases could be 

interfaced with immediate early genes such as cfos, egr1, npas4 in a high throughput 

manner for unbiased identification of cell types involved in a number of different 

behaviors. These approaches can provide a framework for mechanistic investigation of 

circuits that are involved in various behavioral paradigms.  
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Our work on the characterization of marker genes using knockouts represents a parallel 

approach to overlaying functional information onto single cell clusters. We chose four 

genes that are specifically expressed in clusters in the ventral habenula and to a large 

part were excluded from the rest of the brain and assayed both brain activity and 

behavioral phenotypes. Strikingly, all four mutants displayed a change in daytime 

locomotor activity suggesting that the ventral habenula may have an important role in 

modulating baseline activity. This is consistent with the role of ventral habenula in 

modulating levels of serotonin (Gabriel et al., 2009). All of these mutants, with the 

exception of ntsr1, also displayed reduction or increase in baseline neuronal activity 

within the habenula, within the ventral-most region of the structure. 

 

The increase in arousal threshold in aoc1 mutants together with the increase in 

locomotor activity was particularly intriguing in that it may represent a unique way in 

which habenula might exert its control on sleep. Aoc1 encodes an enzyme that 

deaminates histamine and might be involved in the regulation of histamine levels which 

is a known to promote wakefulness (Thakkar, 2011). In the absence of the enzyme that 

degrades extracellular histamine, the phenotypic effects observed in the aoc1-/- animals 

may be the result of an accumulation of extracellular histamine in the brain. These 

effects may be local within the neural circuitries of the habenula or global throughout the 

brain via the cerebrospinal fluid. Previous studies have observed reciprocal connections 

from the histaminergic centers of the fish brain to the habenula and vice versa (Kaslin 

and Panula, 2001; Stephenson-Jones et al., 2012). Further experiments investigating 
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the global and local relative levels of histamine in mutants and wild type are required to 

address this hypothesis. Experimentations characterizing the detailed projections 

patterns of these aoc1 positive neurons may reveal whether these neurons send or 

receive projections to and from histaminergic centers of the fish brain. It is also 

interesting to note that the selective expression of aoc1 in the ventral habenula is a 

feature unique to non-mammalian brains (Amo et al., 2010). Aoc1 is not expressed in 

the mammalian brain and consequently, the inactivating mechanism for histamine is 

dependent entirely on methylation through histamine N-methyltransferase.  

 

In addition to baseline locomotor activity, further experimentation needs be performed to 

test the behavioral strategies of mutants when confronted with aversive environmental 

stimuli in the form of electric shocks, noxious heat or high salt conditions. Given the role 

of the ventral habenular cell types in behavioral responses to aversive environmental 

conditions (Andalman et al., 2019), it is particularly interesting to investigate these 

behaviors in the mutants of these marker genes. This represents an excellent 

opportunity to ask whether there is harmony between markers found by single cell 

analysis and the functional properties of that cell type within a circuit in the central 

nervous system. Furthermore, one of these genes gpr139 has also been implicated in 

depression. If these mutants do have different coping strategies for aversive 

environmental conditions, the modulation of the gpr139 receptor may represent an 

opportunity for the treatment of disorders such as depression. An extensive 

characterization of both behavior and brain activity through other behavioral 
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phenotyping and calcium imaging (see Appendix Figure A.10) will be required to 

address these lines of inquiry. 

 

3.6 MATERIALS AND METHODS  

 

Zebrafish husbandry  

Zebrafish larvae were maintained on 14hr:10hr light:dark cycle at 28°C. All protocols 

and procedures involving zebrafish were approved by the Harvard University/Faculty of 

Arts and Sciences Standing Committee on the Use of Animals in Research and Training 

(IACUC; Protocol #25-08). Larvae used for behavioral and brain activity screening were 

grown in 150mm Petri dishes in fish water containing methylene blue, at a density of 

less than 160 larvae per dish and debri was removed prior to 4dpf.  

 

CRISPR-Cas9-mediated mutagenesis of nts, ntsr1, aoc1 and gpr139 

 

Mutants were generated by simultaneous microinjection of one to four guide 

RNAs(gRNAs), and approximately 0.5nL of 50µM Cas9 Protein into either EK/nacre 

(mitfa-/-) or gCaMP6s-/- embryos. Sequences of gRNAs used for each gene are listed 

in Table A.4. The resulting mosaic adults with germline mutations were then outcrossed 

to either EK or nacre wild type fish. The resulting offsprings (F1) were then 

subsequently mated to each other to generate homozygous mutants. All larvae were 

genotyped to generate stable lines for growing heterozygous and homozygous adults as 
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well as for phenotypic characterizations. The primers used for genotyping are listed in 

Table A.4.  

 

Generation of ISH probes  

 

Flourescent RNA in situ hybridization was performed as described previously (Pandey 

et al., 2018) using 8dpf mitfa-/- larvae. To generate probes, gene fragments were 

amplified with Phusion polymerase (New England Biolabs, M0530L) using the primers 

listed in Table A.3. The Polymerase Chain Reaction (PCR)-amplified fragments were 

then cloned into pSC-A plasmid using Strataclone PCR Cloning Kit (Agilent, 240205), 

and used to transform the Strataclone competent cells. The transformed cells were 

plated overnight on Luria-Bertani (LB) agar plates. Colonies were selected by colony-

PCR, cultured, mini-prepped and sent for sequencing. The resulting plasmids were then 

restricted with the appropriate restriction enzyme (Table S3), and purified using 

PCRclean up kit (Omega Cycle Pure Kit). The linearized vector was then used as a 

template to synthesize digoxigenin- or fluorescein labeled RNA probes using the RNA 

labeling kit (Roche). The transcription reactions were purified using Total RNA clean up 

kit (Omega, R6834), and the resulting RNA was quantified using Nanodrop and 

assessed on an agarose gel. The final product was then normalized to a concentration 

50ng/mL in HM+ buffer (50% formamide, 5X Saline Sodium Citrate (SSC) buffer, 5 

mgmL-1 torula RNA, 50 mgmL-1 heparin, 0.1% Tween 20) and stored at -20C until 

further use. 
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Behavioral Analysis  

 

All assays were conducted with 48 to 96 larvae in a multi-well plate. Fish were 

transferred to 96 well 0.7ml plates (E&K Scientific) on the afternoon of 4dpf. Plates were 

filled with fish water containing methylene blue and transferred to ice until locomotion 

ceased. The plates were then gently sealed with optical adhesive films (Thermo Fisher 

Scientific) without the introducing any bubbles in wells. All experiments were conducted 

at 28°C unless otherwise noted. Locations of larvae were monitored with 1088x 660-

pixed resolution using a Grasshopper3 camera (FLIR). Baseline locomotor activity were 

measured at 30 frames per second(fps) and stimulus responses were measured using 

one second long movies at 285 fps. Tap stimuli were delivered by computer-controlled 

increases in voltages to a solenoid attached to the apparatus. A series of tap strengths 

were used for each experiment. Each behavioral measurement were measured at least 

three times with three separate clutches of fish. Baseline locomotion measurements 

were performed separately from the experiments in which tap or dark flash stimuli were 

presented. Downstream behavioral analysis were performed as described before 

(Thyme et al., 2019). 

 

Calcium imaging in the habenula (See Appendix Figure A.10) 

 

Two-photon imaging of 6-7 dpf larvae was performed using a custom-built microscope 

in the Engert laboratory. Larvae were crossed, screened and selected for expression of 

GCaMP in the brain, and then embedded in 1.8% agarose. Under the microscope, fish 
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were in complete darkness but were stimulated with electric shocks at 3V/cm at 

randomized time intervals. Calcium dynamics were measured across 8 slices separated 

by 7 microns to span across the dorso-ventral axis of the habenula. 500 frames were 

collected per slice at the speed of 1.4 seconds per frame. Each fish was imaged for a 

total of 3 hours.  

 

In order to segment the imaging data into units that approximate cells, or coherent 

neuropil signals, we performed correlation-based segmentation as described previously 

(Portugues et al. 2014). For every unit that was generated, we calculated a metric to 

approximate its spontaneous activity. We defined this metric as the percentage of time 

that unit’s calcium signal (defined as ∆F/F) spent above a threshold value (Figure A, B). 

This threshold was uniquely calculated for each unit and defined as being three times 

the standard deviation of the absolute change in ∆F/F from one frame to the next above 

the mean absolute change in ∆F/F from one frame to the next. 

 

After determining the activity of each detected region of interest from each fish, we 

sought to generate maps that represented the average activity across all fish from both 

of the two groups. To this end, we performed non-affine registration of stacks of 

average intensity over time from each fish onto the Z-Brain using the Computational 

Morphometry Toolkit (CMTK) software, similar to the registration done to generate the 

pERK maps. The transformation matrices generated by this registration were then used 

to map the above calculated spontaneous activity metrics onto their corresponding 
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location of the Z-Brain. With all fish mapped to the same reference frame, we were then 

able to average the activity across fish.  

 

Brain activity analysis  

Images were registered to a standard zebrafish brain using CMTK. All phosphorylated-

ERK images were normalized with a total- ERK stain. For each voxel, the Mann-

Whitney U statistic Z score was calculated, comparing the mutant and control groups 

using MapMAPPING (Randlett et al., 2015). The significance threshold was set based 

on a false discovery rate where 0.05% of control pixels was called to be significant. 

Each experiment contained at least 20 mutant fish and 20 wild type fish. Any clutch 

smaller than 60 fish were discarded. All image processing analysis were parallelized in 

the Harvard Odyssey Cluster.  
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Chapter 4: Cell Type Landscape of the Forebrain and Cell 
Type-specific Dissection of Forebrain Mutants 

 
 
 
4.1 PREFACE 
 
 
A part of the chapter on the znf536 -/- fish was published in Cell on April 4, 2019.  The 

rest of the chapter is being prepared for publication. I designed, performed and 

interpreted the experiments with input from Alexander F. Schier. Summer Thyme 

generated the CRISPR mutants. Alexander F. Schier supported the project.  

 
 
4.2 ABSTRACT  
 
 
 
The zebrafish telencephalon is composed of a set of highly specialized subregions that 

are known to regulate learning, memory, social behavior and emotion. However, its cell 

types remain poorly described. We used single cell RNAseq and in situ hybridization to 

describe a comprehensive repertoire of cell types in the zebrafish telencephalon. Single 

cell transcriptomes of ~35,000 cells from larval and adult telencephalon were used to 

delineate 15 neuronal types in the larval telencephalon and 18 neuronal types in the 

adult telencephalon. Some larval neuronal types were not present in the adult 

telencephalon, some others were largely similar to their adult counterparts and yet 

others diverge into multiple types in the adult telencephalon. Lastly, single cell analysis 

of znf536-/- telencephalons revealed a loss of a specific cell group of uts1 neurons in 

the subpallium. Our work provides a comprehensive transcriptional analysis of the cell 
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types in the larval and adult telencephalon and forms a resource for dissecting the 

development and function of the zebrafish telencephalon.  

 
4.3 RESULTS  
 
 
Graph Clustering Identifies Cell Types in the Larval Zebrafish Telencephalon 
 
 
The telencephalon encompasses the frontal lobe of the zebrafish brain and has 

important functions in learning, memory, social behavior, and decision-making (Aoki et 

al., 2013; Cheng et al., 2014; Lal et al., 2018; Stednitz et al., 2018). To analyze the 

molecular features of the cells from the zebrafish forebrain, we obtained 12, 485 single 

cells from larval telencephalon using 10X. Standard computational pipelines, quality and 

tissue filtering were then used to align the raw sequencing data to the zebrafish 

transcriptome and derive a gene expression matrix of 19,469 genes across 11,855 

cells. For the larval telencephalon, 2000 highly variable genes across the datasets were 

selected using a UMI based approach that ranks genes based on a deviation from a null 

statistical model that described the technical variation in each gene given its expression 

level (Pandey et al., 2018). These genes were then used to identify 50 significant 

principal components PCs that were used to partition the cells into 27 transcriptionally 

distinct clusters using smart local moving community detection algorithm (Waltman, 

2013) using Seurat R package (Satija et al., 2015). Each cluster was then subjected to 

iterative clustering to assess additional heterogeneity, which was visualized in two 

dimensions using t-distributed stochastic neighborhood embedding(t-SNE) (Figure 

4.1A). Each of these clusters were then evaluated for differential gene expression 
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analysis to identify cluster-specific markers for the two main parts of the telencephalon, 

pallium and subpallium respectively (Figure 4.1C-D).  

 

 
 
Figure 4.1. Unbiased Clustering of Telencephalic Neurons Identifies 6 Pallium and 8 
Subpallium Neuronal Types.  
 
(A) 2D visualization of single cell clusters in the larval telencephalon. Cluster Labels are as follows: P01, 
P02, etc: Pallium; SP01, SP02, etc: Subpallium; PoA: Preoptic Area; OB: Olfactory Bulb; Pr: Progenitors; 
IN: Immature Neurons. Top left: Schematic of the zebrafish forebrain showing the anatomical subdivisions 
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Figure 4.1 (Continued). corresponding to the pallium and subpallium. Top and side panels: Expression 
patterns of neuronal and non-neuronal genes among the telencephalic clusters. A’: Bar chart displaying 
the percentage of total dataset represented in every cluster, showing the abundance of each cell type 
found by clustering analysis. 

(B) Gene expression profiles of select cluster-specific markers for progenitors and immature neurons 
identified through the differential gene expression analysis.  

(C) Gene expression profiles of select cluster-specific markers for pallium neurons identified through the 
differential gene expression analysis.  

(D) Gene expression profiles of select cluster-specific markers for subpallium neurons identified through 
the differential gene expression analysis. 

 

Of the 27 clusters we identified in our analysis of larval forebrain, 18 clusters were 

neuronal and 9 clusters were non-neuronal (Figure 4.1). Among the non-neuronal cells, 

we found clusters expressing prototypical markers for microglial cells, oligodendrocytes 

and ependymal cells (Figure 4.1A, top and side panels). We also found progenitors, 

including radial glial cells that express markers such as fabp7a, gfap and proneural 

progenitors that express markers such as neurog1 (Figure 4.1B). Among the clusters 

we label as radial glial cells, a single cluster also expresses canonical astrocyte markers 

such as slc1a3b and slc1a2b. In addition, they also express mfge8a, a marker recently 

reported to be specific for telencephalic astrocytes (Zeisel et al., 2018) 

 

Among the tubb5+ immature neurons, we found two distinct types in the larval 

telencephalon: one expressing broad transcriptions factors essential for pallial 

development such as bhlhe22 and eomesa and another expressing broad sub-pallial 

transcription factors such as dlx2a and dlx5a (Figure A.8). To assign rough regional 

identity to the mature neuronal clusters, we identified a host of markers for each cluster. 

A large majority of clusters were defined by single genes. We assigned clusters as 

belonging to pallium and subpallium based on the expression patterns of these gene 

markers as defined by in situ hybridization and the expression of known pallium and 
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sub-pallium markers among our clusters (Figure 4.2, Figure A.8). Among the neuronal 

clusters we also found one cluster of neurons belonging to the olfactory bulb and one 

belonging to the preoptic area, which will be removed from further discussion.  

 

We found 7 clusters belonging to the pallium, the dorsal region of the telencephalon that 

is thought to contain structures homologous to the mammalian cortex, hippocampus 

and some sections of the amygdala (Ganz et al., 2014). In correspondence with this, we 

found genes enriched in the cortex and hippocampus such as bcl11ba, zbtb18, fezf1 to 

be enriched in different clusters belonging to the pallium (Figure A.8A). Some other 

classical cortical markers such as satb2 were absent in the zebrafish telencephalon. 

Consistent with this and in contrast to human studies, our others’ previous work shows 

that satb2-/- zebrafish have no behavioral phenotypes (Thyme et al., 2019; Zarate and 

Fish, 2017).  
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Figure 4.2. Spatial Distribution of the Pallium and Subpallium Neuronal Types in the 
Larval Telencephalon. 
(A) In vivo expression patterns of cluster-specific marker genes for selected sub-clusters in the pallium. 
RNA-FISH (green) was performed with a total-Erk (pale gray) co-stain for anatomy. 

(B) In vivo expression patterns of cluster specific marker genes for selected clusters belonging to the 
subpallium. RNA-FISH (green) was performed with a total-Erk (pale gray) co-stain for anatomy. 
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Figure 4.2 (Continued). (C) In vivo expression patterns of cluster specific marker genes for the cluster 
belonging to the olfactory bulb. RNA-FISH (green) was performed with a total-Erk (pale gray) co-stain for 
anatomy. 

(D) In vivo expression patterns of cluster specific marker genes for two progenitor clusters. RNA-FISH 
(green) was performed with a total-Erk (pale gray) co-stain for anatomy. 

 

We identified 8 clusters belonging to the sub-pallium, the ventral region of the 

telencephalon which is thought to contain structures homologous to the mammalian 

striatum and basal ganglia. In alignment with this, we found a number of striatum 

marker genes such as isl1b, drd2b, penkb, synpr expressed specifically within selected 

clusters within the subpallium (Figure A.8B). Also notable among the sub-pallium 

clusters were otpa+ SP03 that is located in the dorsal-most and posterior region of the 

sub-pallium and is thought to be a region homologous to the medial amygdala (Biechl et 

al., 2017). We also captured functionally distinct classes of neurons among our single 

cell clusters. For instance, SP06 neurons positive for lhx8a+ were recently found to be 

required for the control of behaviorally-driven social orienting in zebrafish (Figure 4.1D) 

(Stednitz et al., 2018). Taken together, these results provide a catalog of markers for 

neuronal types belonging to the pallium and sub-pallium. 

 
Spatial localization and validation of neuronal types in the zebrafish 
telencephalon 
 
 
To localize the single cell clusters obtained from the larval forebrain, we examined the 

expression patterns of the assigned marker genes using in situ hybridization (Figure 

4.2). Similar to previously published work (Pandey et al., 2018), we also found that the 

neuronal types in the pallium and sub-pallium were largely regionalized. In 

correspondence with the cluster abundances in the single cell data, Pa04 occupied the 
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largest expression domains within the pallium towards the anterior half of the dorsal 

telencephalon (Figure 4.2A, bottom panel). On the other hand, Pa03 characterized by 

the expression of pdyn and rprml were localized to the posterior half of the dorsal 

telencephalon (Figure 4.2A, middle panel). Two of the smaller clusters within the pallium 

Pa01 and Pa02 were localized more laterally, spread along the dorsoventral axis 

(Figure 4.2A, top panel).  

 

Subpallium neuronal types were also regionalized along the anterior-posterior and 

dorso-ventral axis in the ventral part of the telencephalon. Neuronal clusters expressing 

striatum like markers such as SP05 (penkb+), SP02(synpr+) were located in the anterior 

half of the subpallium along the dorso-ventral axis (Figure 4.2B). SP04, SP06 and SP07 

are located in the medial part along the anterior posterior axis along different levels of 

the dorso-ventral axis. Lastly otpa+ SP03 was located in the posterior half of the 

subpallium along the dorsal most part of the subpallium.  

 

Together, these results provide validation and spatial localization for the majority of 

neuronal clusters found in the telencephalon through our single cell analysis.   

 

Comparison of Larval Telencephalon to Adult Telencephalon 

 

The telencephalon undergoes a massive growth, neurogenesis and functional 

maturation from developing larvae to mature adults. Indeed, several behaviors mediated 

by neuronal ensembles in the telencephalon develop later in development including 
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social behaviors and fear learning (Dreosti et al., 2015; Lal et al., 2018). To assess the 

conservation and retention of neuronal types between the larvae and adult 

telencephalon, we also captured and sequenced cells from the adult telencephalon in 

two batches of single cell experiments (Figure A.9B). Post quality filtering and batch 

correction, we obtained 27,125 single-cell profiles at a median depth of 2488 UMI and 

1070 genes per cell (Figure A.9A). Using the same clustering technique as before, we 

recovered 32 clusters and enriched cluster-specific markers (Figure 4.3A). Out of the 32 

clusters, 2 were obtained from a single experimental batch and belonged to the 

habenula. These were removed from further analysis.  

 

Among the rest of the cells in the dataset, we found both neuronal and non-neuronal 

cells. (Figure 4.3A, side and top panels). The neuronal clusters were labeled post-hoc 

after comparison to the larval clusters (see below). In addition to assigning specific 

markers to adult clusters, we also divided the neuronal cells in the adult data into 

excitatory and inhibitory cells by sub-setting cells that are high in gad2 and vglut2 

respectively and clustering them into distinct types. Among the inhibitory neurons, we 

found 5 distinct groups expressing penkb, pyya, lhx8a, adcyap1b, sst1.1 and galn 

respectively. A smaller proportion of cells expressed slc17a6a and slc17a6b at a high 

level. Hence, we only recovered 3 sub-clusters among the slc17a6a/slc17a6b+ 

excitatory neurons although there are probably more in vivo (Figure 4.3C).  

Interestingly, one of the excitatory neuron clusters was pvalb7+, which are typically 

thought to be GABAergic neurons.  
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Figure 4.3. Comparison of Larval Cell Types with Adult Cell Types.  
(A) 2D visualization of the single cell clusters in the adult forebrain. Top and side panels: Expression 
patterns of neuronal and non-neuronal genes among the telencephalic clusters. Bar chart displays the 
percentage of total dataset represented in every cluster, showing the abundance of each cell type found 
by clustering analysis. 
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Figure 4.3 (Continued). (B) Gene expression profiles for clusters of inhibitory neurons in the 
telencephalon 

(C) Gene expression profiles for clusters of excitatory neurons in the telencephalon. 

(D) Heatmap showing the proportion of adult cells that were classified to larval cluster labels.  

(E) Gene expression profiles of new and old marker genes for adult clusters that map to multiple neuronal 
types in the larval telencephalon.  

 

To systematically compare the neuronal clusters between the larva and adult 

telencephalon, we trained a gradient boosted tree-based model to map gene expression 

signatures between two datasets (Figure A.9C). In contrast to our previous study, we 

observed less correspondence between larval and adult clusters (Pandey et al., 2018). 

We observed that 8 out of 20 neuronal clusters in the larval telencephalon mapped 1:1 

between larva and adult (Figure 4.3D). Most of these clusters were in the subpallium 

region of the telencephalon, suggesting that the subpallium generates distinct neuronal 

types with stable identities earlier in development than the pallium. Penkb+ SP05 

diverges into two adult types that are both positive for penkb and six3a but are 

differentiated by the expression of nrgnb and pyya respectively. SP02 (synpr+) and 

SP07 (dbx1a+) are lost in the adult telencephalon.  

 

Among the larval pallium neuronal types, only rprml+ P03 mapped 1:1 to a single adult 

cluster. Prkcda+ P02 diverged into two clusters that were distinguished by the 

expression of nfia and cbln2b (Figure 4.3E). The other larval clusters from the pallium 

were largely absent in the adult pallium. All of the rest of the adult pallium neuronal 

types mapped to a single larval cluster P04. All of these clusters express the canonical 

markers for larval P04 including nrgna, gem and bhlhe22 but are distinguished by a 

combinatorial expression patterns of a number of genes (Figure 4.3E). Our results 
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demonstrate that the telencephalon, particularly the pallium, grows not just in size 

during development but also establishes new cell type domains from larva to adult.  Of 

the new domains specific to the adult telencephalon, we validated the specific 

expression of parvalbumin positive cluster of neurons that was shown to be important 

for the retrieval of an aversive reinforcement learning behavior (Figure 4.4A) 

 
Figure 4.4: Expression Pattern of Parvalbumin in the Adult Telencephalon. 
(A) In situ hybridization for pvalb7 in the adult telencephalon. Left and right insets are zoomed in regions 
from the left and right half of the telencephalon. Pvalb7 expression not detected in the larval 
telencephalon (data not shown). 

 

 

 



 135 

Comparison of cell type landscape of wild type and znf536-/- fish 

 

The transcription factor znf536 is expressed in the forebrain but is largely 

uncharacterized functionally. It is also associated with multiple neuropsychiatric 

disorders (Schizophrenia Working Group of the Psychiatric Genomics, 2014; Winham et 

al., 2014). Zebrafish mutants for this gene exhibited volume loss and activity differences 

in the pallium region of the forebrain (Figure 4.5A). To uncover what neuron types may 

be missing in forebrain, we profiled the single cell transcriptomes of dissected mutant 

and wild-type sibling forebrains (Figure 4.5). Using a random forest analysis, we 

compared the gene expression signatures and cluster compositions between from wild 

type and znf536-/- animals (Figure 4.5C). This comparison revealed a loss (uts1+ 

subpallium cluster and penkb+ subpallium cluster) and reduction of (tac3b+ pallium 

cluster) cell types (Figure 4.5B, Figure 4.5C). All of markers of these clusters are 

neuropeptides involved in stress and social behaviors (Neufeld-Cohen et al., 2010) 

Corresponding with the loss of the uts1 population is an increase in a pool of immature 

neurons (tubb5+), suggesting a potential developmental mechanism for the phenotype 

(Figure 4.5C). The tac3b population is additionally marked by grm2a (Figure S6), which 

is a potential schizophrenia therapeutic target (Griebel et al., 2016; Li et al., 2015; 

Mossner et al., 2008). The identification of these specifically affected types of neurons 

illustrates that single-cell RNA sequencing allows the dissection of the biological 

processes regulated by schizophrenia-associated genes. 
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Figure 4.5. Cell type specific phenotypic dissection of znf536. 
(A) Brain activity and structural differences in the znf536-/- forebrains. 

(B) t-distributed Stochastic Neighbor Embedding (t-SNE) visualization of wild-type single-cell clusters 
obtained by clustering of 6-dpf forebrain cells. Clusters with substantial differences in znf536 mutants are 
highlighted in orange, purple, and blue. Cluster counts in mutant and wild type are expressed as percent 
of the total cell number for each sample. 

(C) Dotplot (confusion matrix) showing the proportion of cells in the znf536 mutant forebrain that were 
classified to wild-type cluster labels. Each mutant forebrain type was assigned to a wild-type cluster label 
if > 13% of the trees in the Random Forest (RF) model contributed to majority vote. 
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4.4 DISCUSSION 

 

Using a comprehensive single cell analysis in both larva and adult, we found 18 

neuronal types in larva and 20 neuronal types in the adult telencephalon. For each of 

these neuronal types, we found dozens of novel molecular markers. We also used 

RNA-FISH and image registration to spatially localize neuronal types, a key step in 

linking molecular profiles to physiological and behavioral features. Next, we found 

remarkable divergence between the cell types in larval and adult telencephalon.  Our 

results demonstrated that while there is a conservation of neuronal types between the 

larval and adult subpallium, a large portion of the pallium establishes new cell type 

domains going from larval to adult animals. Of the new domains specific to the adult 

telencephalon, an important one is a parvalbumin positive cluster of neurons that was 

previously known to be important for the retrieval of an aversive reinforcement learning 

behavior (Figure 4.3E, Figure 4.4A). Other adult-specific domains may also have 

important implications for the emergence of social behaviors and learning later in 

development. 

  

Next, we analyzed the telencephalons of znf536-/- animals in which we found large loss 

of structure in the telencephalon. Using a comparative analysis of cell types between 

the wild type and mutant telencephalon, we discovered a loss of specific population of 

peptidergic neurons, including tac3b, penkb and uts1. This was accompanied by an 

increase in the number of immature neurons in the znf536-/- telencephalons, suggesting 

that znf536 might be a transcription factor important for the maturation of the immature 
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neurons into these peptidergic subtypes. A careful time course RNA-seq analysis 

building with developmental trajectories might help address this hypothesis.  

 

Overall, this chapter provides a comprehensive survey of cell types in the zebrafish 

telencephalon and provides a blueprint for the dissection of cell type specific molecular 

underpinnings of brain activity and behavioral phenotypes in mutant animals.  

 

4.5 MATERIALS AND METHODS 

 

Experimental Model and Subject Details.  

 

Larvae and adult fish were maintained on 14 hours: 10 hours light: dark cycle at 28ºC. 

All protocols and procedures involving zebrafish were approved by the Harvard 

University/Faculty of Arts & Sciences Standing Committee on the Use of Animals in 

Research and Teaching (IACUC; Protocol #25-08). 6 days post fertilization (dpf) larval 

and ~1-year old adult zebrafish were used. Animals were anesthetized in 0.2% tricaine 

and rapidly euthanized by immersion in ice water for 5 minutes before dissection. 

 
 
METHOD DETAILS 
 
 
Cell Isolation and Single cell RNA-seq 
 
 
6 dpf larval forebrains were dissected from six wild type fish in Neurobasal (Thermo 

Fisher Scientific 21103049) supplemented with 1X B27 (ThermoFisher Scientific 
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17504044) and promptly dissociated with the Papain Dissociation Kit (Worthington 

Biochemical Corporation LK003150) with the following modifications. Larval forebrains 

were incubated in 20 units/mL papain for 12 minutes at 37ºC. The cells were 

dissociated by gentle trituration 20 times and spun at 300xg for 5 minutes. The cells 

were resuspended in 1.1 mg/mL papain inhibitor in Earle’s Balanced Salt Solution 

(EBSS), spun and 300xg for 5 minutes. The resulting pellet was then washed in 

Neurobasal supplemented with B27 before final resuspension in 50 µL PBS + 200 

µg/mL BSA. To avoid loss of cells during each wash, the supernatant was saved and 

spun a second time to recover the remaining cells. The cells were then mixed with the 

final suspension to increase cell count. Viability and cell number was assessed by 

trypan blue staining on 10ul of the sample. If viability was greater than 80%, the cells 

were loaded on the 10X Chromium system at a concentration of approximately 150 

cells/ µL. Libraries were prepared according the manufacturer’s instructions. Single cell 

suspensions from adult forebrains were generated with the same protocol. However, 

only 1 forebrain was used per sample and was incubated in 20 units/m papain for 30 

minutes at 37ºC.  

 
Flourescent RNA In situ hybridization 
 
 
Florescent RNA in situ hybridizations were performed exactly as previously described 

(Pandey et al., 2018; 15 Ronneberger et al., 2012) using 10 dpf mitfa-/- larvae. To 

generate probes, gene fragments were amplified from with Phusion polymerase (New 

England Biolabs, 18 M0530L) using the primers that are listed in Suppplemental Table 3. 

The Polymerase Chain Reaction (PCR)-amplified fragments were then cloned into pSC-
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A plasmid using Strataclone PCR Cloning Kit (Agilent, 240205), and used to transform 

the Strataclone competent cells. The transformed cells were plated overnight on Luria-

Bertani (LB) agar plates. Colonies were selected by colony-PCR, cultured, mini-prepped 

and sent for sequencing. The resulting plasmids were then restricted with the appropriate 

restriction enzyme (Supplementary Table 3), and purified using PCR-clean up kit (Omega 

Cycle Pure Kit). The linearized vector was then used as a template to synthesize 

digoxigenin- or fluorescein-labeled RNA probes using the RNA labeling kit (Roche). The 

transcription reactions were purified using Total RNA clean up kit (Omega, R6834), and 

the resulting RNA was quantified using Nanodrop and assessed on an agarose gel. The 

final product was then normalized to a concentration 50ng/µL in HM+ buffer (50% 

formamide, 5X Saline Sodium Citrate (SSC) buffer, 5 mgmL−1 torula RNA, 50 

μgmL−1 heparin, 0.1% Tween 20) and stored at -20ºC until further use. 

 
 
Computational Methods for Data Analysis  
 
 
Alignment, quantification, filtering and clustering analysis for single cell datasets 
 
 
Raw sequencing data was converted to matrices of expression counts using the 

cellranger software provided by 10X genomics1. Briefly raw BCL files from the Illumina 

NextSeq or HiSeq were demultiplexed into paired-end, gzip-compressed FASTQ files 

for each channel using “cellranger mkfastq”. Both pairs of FASTQ files were then 

provided as input to “cellranger count” which partitioned the reads into their cell of origin 

 
1 https://support.10xgenomics.com/single-cell-gene-expression/software/ pipelines/latest /what-
is-cell-ranger   
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based on the 14 base-pair (bp) cell barcode on the left read. Reads were aligned to a 

zebrafish reference transcriptome (ENSEMBL Zv10, release 82 reference 

transcriptome), and transcript counts quantified for each annotated gene within every 

cell. Here, the 10 base-pair unique molecular identifier (UMI) on the left read was used 

to collapse PCR duplicates, and accurately quantify the number of transcript molecules 

captured for each gene in every cell. Both cellranger mkfastq and cellranger count were 

run with default command line options. This resulted in an expression matrix (genes x 

cells) of UMI counts for each sample. Using the expression matrix, cells were filtered to 

remove those that contained less than 200 genes and those in which > 6% of transcript 

counts were derived mitochondrial-encoded genes. Similarly, genes detected in less 

than 5 cells were removed. Among the remaining cells, the median number of UMIs per 

cell was 2,279 and the median number of genes was 1,319 for larval data. The same for 

adult data was 1,614 UMI/cell and 709 genes/ cell, respectively (Figure A.7A, A.7B, 

A.9A and A.9B).  

 

We used a linear regression model to correct for batch effects in the gene expression 

matrix using the RegressOut function in the Seurat R package, and used the residual 

expression values for further analysis. The residual matrix was then scaled, centered 

and used for the selection of variable genes, PCA and clustering.  

 

All cells derived from regions other than the forebrain, such as habenula and olfactory 

bulb, were removed from further analysis. The residual matrix was then scaled, 

centered and used for further analysis. To select highly variable genes, we used a 
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combination of a UMI based method described recently (Pandey et al., 2018) and 

Seurat’s (Satija et al., 2015) variable gene selection approach. The resulting expression 

matrix across the highly variable genes was then used to perform dimensionality 

reduction and clustering using Seurat.  

 

Comparison of cluster specific signatures between larval and adult dataset using 

gradient boosted trees 

 

To evaluate the correspondence between clusters found in the larval telencephalon and 

adult telencephalon, we trained a multi-class classifier using the gradient boosted trees 

(GBT) on the larval dataset. Gradient boosted trees is an additive and stagewise tree-

based machine learning algorithm that improves an ensemble of weak learners in a 

sequential manner to increase predictive power (J. Friedman, 2001).  

 

We composed a training set for the classifier by taking a stratified sampling of cells from 

the 19 neuronal clusters from the larval dataset.  90% of the cells was used for training 

and 10% were used for testing the classifier. The classifier was built on the most 

variable genes across both the larval and adult dataset using the package sklearn in 

Python. Hyperparameters for the model were selected using grid search with 5-fold 

cross validation. The trained classifier was then used to assign a cluster label for 

remaining 10% of the data (Figure 4.1C). Cells in the test set were accurately mapped 

to their correct classes by the trained classifier at an average accuracy 93% and 
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precision of 92.5%. Precision-recall curves were drawn separately for each class to 

evaluate the precision of the model across all larval labels (Figure 4.1D).  

 

This classifier was then used to predict larval labels for adult clusters. Only neuronal 

clusters from the adult dataset were used for prediction. Importantly, the assignment of 

adult cells to larval clusters was agnostic to the adult cluster labels. After classifying 

each adult cell independently, we asked whether there was any correspondence 

between the original clusters of the adult dataset and those assigned by the GBT 

model. This result was presented in the form similar to a confusion matrix. We also 

verified that none of the cells mapped to the larval OB cluster because this region was 

actively dissected out in the single cell experiments performed with the adult 

telencephalon. 
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Chapter 5: Conclusions and prospects 

 

Through my graduate work, we have uncovered a comprehensive cell type landscape of 

two regions of the zebrafish brain: habenula and telencephalon. The cell type landscape 

of the habenula presented a blueprint for comprehensive discovery of rare neuronal 

types and integrative analysis of molecular, spatial and functional properties (Chapter 2 

and 3). In generating the cell type atlas of the habenula, we presented the following 

advances. First, we devised a robust protocol for the dissociation and capture of single 

neurons from the zebrafish brain. Second, we found that comprehensive identification of 

neuronal types by scRNA-seq can be achieved by high cell-sampling coverage of a 

small brain region. Third, we discovered thirteen new neuronal types, identified fine-

grained spatial subdivisions in the habenula and defined dozens of new marker genes 

for novel habenular subtypes. Surprising, we found that diverse neuronal types are 

largely retained from larva to adult (Chapter 2). Fourth, we generated a spatial in situ 

atlas of the habenula using computational image registration. Using this atlas and 

immediate early gene cfos, I also identified a cellular population in the ventro-lateral 

habenula that mediates behavioral responses to inescapable aversive environmental 

stimuli (Chapter 3). Through this work, I also created a resource for future studies on 

habenular development and function and provided a technological framework for the 

characterization of other brain regions.  
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I hope our work on the habenular neuronal types will spur future studies on the role of 

these cell types and marker genes in generating habenular behaviors. Our work of 

mapping neuronal activity onto single-cell RNAseq clusters using the in situ atlas 

established the ventrolateral habenular cell type as an important node for mediating 

behavioral responses to inescapable aversive stimuli. Since then, additional studies 

based on calcium imaging have demonstrated the dynamic role that this ventro-lateral 

cell type may play in mediating behavioral responses to inescapable aversive stimuli 

(Andalman et al., 2019; Rodriguez-Sosa et al., 2019).  

 

Furthermore, using an oversampling approach with scRNAseq, we identified rare 

neuronal populations that were represented by less than 20 neurons in vivo.  Marker 

genes for these neuronal populations can now be used to interrogate the function of 

these small cell groups that had so far evaded functional studies due to a lack of 

specific genes that distinguish these cell populations from others. Indeed, recent studies 

have found that Hb03, one of the smaller clusters in our data marked by spx is involved 

in the regulation of anxiety and that specific over-expression of the marker gene spx 

within the habenula reduces anxiety in zebrafish (Jeong et al., 2019).   

 

5.1 The Role of Ventral Habenular Cell Type-specific Genes in Regulating 

Locomotor Activity 
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I followed up on the habenular atlas by interrogating the role of cell type specific marker 

genes in generating habenular function (Chapter 3). After generating CRISPR mutants 

of genes specific to the ventral habenular clusters, I measured the baseline brain 

activity and behavioral phenotypes of these mutants. Strikingly, all the genes mutated 

from ventral habenular clusters had mild to strong phenotypes associated with changes 

in locomotor activity during the day.  This raises interesting questions that I hope will be 

explored in the future.  

 

Among the four genes, aoc1 which encodes for a histamine deaminase when knocked 

out in zebrafish results in both a reduction in arousal threshold and an increase in 

locomotor activity (Figure 3.6). While the increase in locomotor activity occurred only 

during the day, the reduction in arousal threshold was observed both during day and 

night. It has long been known that habenula exerts a regulatory role on sleep and that 

hyperactivity within the lateral habenula may be the link between depression and sleep 

disturbance (Aizawa et al., 2013). It is thought that this regulation occurs through the 

habenular modulation of the serotonergic system. Our results indicate that there might 

be additional modes by which the habenula might regulate sleep. For instance, aoc1 

mutants display increased brain activity in the ventral habenula, the homolog of 

mammalian lateral habenula. Since histamine release promotes wakefulness, it is not 

unlikely that the specific expression of aoc1 in the ventral habenula might be one of the 

other ways in which habenula may regulate sleep i.e. through the regulation of 

histamine. Further experimentation will be required to interrogate if the mutants have 

altered histamine levels.  
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Another interesting line of inquiry would be to test the behavioral strategies of these 

ventral habenular mutants when confronted with aversive environmental stimuli. While 

our studies with cfos and others with calcium imaging have established the ventral 

habenula as an important node for generating behavioral responses to aversive 

environmental conditions, it is unclear if the top marker genes of ventral habenular types 

are also important for these behavioral responses. This represents an excellent 

opportunity to ask whether there is harmony between markers found by single cell 

analysis and the functional properties of a particular cell type within a circuit that 

modulates certain behaviors. There are a number of inescapable aversive stimuli that 

could be presented to mutant and wild type larvae in a high throughput manner, 

including heat and high salt conditions. Of the four genes, it would be particularly 

interesting if gpr139 mutants display different coping strategies to these aversive 

conditions. Consistent with the hyperactivation of lateral habenula in the 

pathophysiology of depression, gpr139-/- animals display change in brain activity 

phenotype in the ventral habenula. Furthermore, gpr139 has been implicated in 

depression by GWAS (Dunn et al., 2016). Therefore, the modulation of receptor activity 

of gpr139 may represent an exciting opportunity for the treatment of disorders such as 

depression.  

 

5.2 Conservation of Habenular Cell types Across Different Species  

It will also be interesting to follow up the study of the habenula in fish with transcriptional 

profiling of habenula in other species. An important debate in the cell type classification 

field has been whether or not to harmonize cell type definitions across multiple species. 
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Habenula is one of the most conserved brain regions that is present within all vertebrate 

species (Hikosaka, 2010). Previous studies suggest that homologous anatomical and 

molecular features in the habenula exist between mice and fish (Amo et al., 2010; 

Bianco and Wilson, 2009; Gamse et al., 2005; Stephenson-Jones et al., 2012). The 

shared features in cytoarchitecture, projection patterns and functions between habenula 

of different species has been extensively studied. The comprehensive profiling of cell 

types within the zebrafish habenula allows us to ask questions about the conservation 

of these cell types and molecular profiles within the mammalian habenula. Indeed, a 

version of this analysis was performed recently by a study that explored the homology 

of transcriptional profiles within the mouse habenula to those found by our study in the 

fish habenula (Yoshiko Hashikawa1, 2019).  

 

5.3 Matching Molecular Properties with Neuronal Dynamics and Connectivity 

Another interesting line of study would be to match the molecular profiles of habenular 

neurons found by single cell RNAseq to physiological/firing properties of neurons found 

by calcium imaging or electrophysiological measurements. Do transcriptionally distinct 

habenular neurons also have different neuronal firing dynamics? We attempted to follow 

this line of inquiry by performing calcium imaging in the habenula in response to 

aversive stimulus and generating a map of the neuronal dynamics with the goal of 

interfacing it with molecular atlas (Figure A.9). We found a diversity of different neuronal 

types within the habenula spread along the dorso-ventral axis. However, it was difficult 

interface the maps obtained by calcium imaging to those obtained via in situ 

hybridization of single genes. In future, this question can be systematically probed by 
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other approaches. Techniques such as Patch-seq allow simultaneous measurement of 

electrophysiological and molecular properties of single neurons (van den Hurk et al., 

2018). Similarly, multiplexed in situ approaches such as MERFISH or seq-FISH in which 

many genes can be probed at the same time can be used to interface calcium imaging 

maps with in situ approaches. Our study also raises the possibility of a finer topography 

of efferent projections of transcriptionally distinct neuronal subsets into finer sub-regions 

of downstream targets. Another potential future study might be to generate transgenic 

reporter lines for the marker genes found by single cell analysis to ask if the distinct 

subsets might innervate distinct sub-regions of downstream IPN or Raphe nucleus. 

Indeed, a single cell study in the mouse habenula has since then shown that the distinct 

neuronal subtypes within the lateral habenula innervate distinct regions of the ventral 

tegmental area (Wallace, 2019).   

 

5.4 Cell Type Dissection of Behavior and Brain Activity Phenotypes using 

scRNAseq 

Our work on the telencephalon represents a way in which brain activity and behavioral 

phenotypes can be dissected at a molecular level in a cell type specific manner using 

scRNAseq. We first generated a comprehensive survey of cell types in the 

telencephalon in both larvae and adult. In contrast to the habenula, we found that the 

telencephalon established new cell type domains going from a larva to an adult. We 

then surveyed the telencephalic cell types of a znf536 mutant to discovery loss of 

specific neuropeptidergic cell types within the pallium as well as the subpallium. This 

result raises interesting questions that can be answered in the future. First, znf536 is 
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widely expressed in the forebrain across many cell types. Why does the loss of such a 

broadly expressed transcription factor lead to effects on small subpopulations of 

peptidergic neurons? Future studies might find binding sites for znf536 as well as 

combine cell type profiling with single cell ATAC-seq to define regions of open 

chromatin in affected and non-affected cell types.  This might help us understand the 

specific vulnerabilities of certain cell types to the loss of znf536. Second, the loss of 

these neurons was accompanied by an increase in the number of immature neurons in 

znf536 mutants, suggesting that the phenotype may be a result of a maturation defect. 

In this case, it will be interesting to compare pseudolineage trees of mutant animals with 

wild type animals to uncover how the gene expression cascades might differ in mutant 

and wildtype animals along different stages of maturation. Our studies provide the 

framework for answering these questions in the future.  
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Appendix 1: Supplementary Figures for Chapter 2 
 

 
Figure A.1. Quality Control of Larval Droplet Data. 
(A) Amount of RNA extracted (in ng) from variable numbers of FAC-sorted mouse dendritic cells of the 
immune system and larval zebrafish neurons.  

(B) Estimated average RNA amount per cell (in pg) in zebrafish neurons and mouse dendritic cells. 

(C) Distribution of genes detected across the filtered droplet larval dataset.  

(D) Distribution of UMIs detected across the filtered droplet larval dataset.  

(E) The distribution of the relative library sizes 𝜂 of cells in droplet data modeled as a Gamma distribution 
(red curve). Note that our particular parameterization of 𝜂, ensures that the Gamma distribution has mean 
of 1, making it a single parameter fit.  

(F) Plot of CV (coefficient of variation, i.e. ratio of the standard deviation and the mean) of UMI counts 
across cells versus mean UMI counts. Each black dot corresponds to a single gene; Red dotted line is the 
empirical mean-CV relation predicted by the Poisson model; the magenta curve represents our modified 
Gamma-Poisson (or Negative Binomial) model of the expected null CV as a function of mean counts.  

(G) tSNE visualization of the clusters obtained from the larval droplet dataset with unbiased clustering 
(left). All clusters were subjected to iterative sub-clustering. Iterative Sub-clustering of Cluster 4 and 
Cluster 11 separate them into smaller sub-clusters (right) each distinguished by the expression of a 
unique set of genes shown in panels in the right.  

(H-I) Downsampling experiments to evaluate robustness of the droplet larval clustering. The automated 
clustering pipeline used in these experiments is the same as was used for the full dataset. For 
consistency, cluster pairs 4 and 5, and 11 and 12 in the full dataset are “merged” in these comparisons, 
since these were originally split through post hoc analyses. Results represent ten independent trials 
conducted at each level of downsampling (10% - 90% of the full dataset). H) Number of clusters at 
different levels of downsampling. I) Adjusted rand index (ARI) comparing the consistency with the original 
clustering. Trials with > 50% of the dataset produce high values of ARI > 0.85. J) The normalized 
Shannon entropy (H) of each original cluster in the downsampled dataset. H(cluster) is a measure of the 
tightness with which members of an original cluster are grouped together in the downsampled data, with 0 
indicating perfect clustering. As expected, a majority of clusters exhibit low values of H (<0.25) as the 
sample size increases. The entropy of cluster 1 exhibits an increase towards the end as we noticed that 
the automatic algorithm splits this cluster in some trials at >80% downsampling. These sub-clusters, 
however, did not show sufficient gene expression differences justifying a subdivision within our dataset. 
K) The Cluster purity (P) of each cluster, indicating how exclusively members of an original cluster are 
placed together, avoiding members of other clusters. Most clusters exhibit a monotonic increase in purity 
with larger sample sizes. The only exceptions are clusters 2 and 3, which appear to slightly intermix at all 
levels because they are closely related.  

(L) Heatmap of relative gene expression showing differentially expressed genes across the 15 habenular 
neuronal types and olfactory placode cluster. Rows correspond to individual genes enriched in individual 
clusters based on a bimodal test (McDavid et al., 2012), and columns are individual cells, ordered by 
cluster identity shown on the t-SNE Plot in Figure 1D. 
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Figure A.2. Mapping of Previously Characterized Regionalized Genes onto Droplet 
Clusters. 
 
(A) Expression patterns of previously described regionalized habenular genes. Genes that were 
previously described to be left-right asymmetric and specific to sub-regions (dHbM = dorso-medial 
habenula, dHbL = dorso-lateral habenula, vHb = ventral habenula) are highlighted with a grey box on top. 
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Figure A.2 (Continued). (B) In vivo expression pattern of nptx2a (dHbL marker) together with registered 
RNA-FISH signals of marker genes.  The largest overlap of high nptx2a expressing cells is with the left 
enriched clusters, Hb08 (wnt7aa+) and Hb09 (adcyap1a+). Panels on the right show individual markers in 
the left habenula. Scale bar indicates 50 µm. 
(C) Quantification of specificity of marker genes found by single cell analysis. Area under the precision 
recall curve (AUCPR) for marker genes (green) versus non-marker genes(red) within the same range of 
expression value [Right panel]. A few marker genes with low AUCPR values constitute those that are 
expressed in smaller clusters or that belong to the immature neuron cluster (Hb13) whose signatures are 
spread across multiple clusters in the dataset (see t-SNE plots in the right).  
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Figure A.3. Spatial Registration and Whole Brain Expression Pattern of Habenular 
Markers, Related to Figures 2.2 and 2.3. 
(A) Total-Erk (t-Erk) confocal stacks of the habenula registered to a reference stack using Computational 
Morphometry Toolkit (CMTK). Shown are outputs across three fish (magenta, yellow and cyan). 

Figure A.3 (Continued). (B) t-Erk confocal stacks of the whole brain registered to a reference stack 
through using Advanced Normalization Tools (ANTS) software package. Shown are outputs across three 
fish (magenta, yellow and cyan). 

(C) Maximum intensity projections of whole brain expression patterns of key habenular markers validated 
in this study to obtain a list of markers that are specific to habenular neuronal types across the brain. Full 
stacks are available through a linked website [See Additional Resources Section].   
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Figure A.4. Quality Control Metrics of SMART-seq2 Data, Related to Figure 2.4. 
 

(A) Distribution of number of genes detected per cell across the filtered SMART-seq2 dataset  

(B) Distribution of read counts per cell across the filtered SMART-seq2 dataset.  

(C) Composition of each cluster by experimental batch. Batch1 represents cells from an enhancer trap 
line that labels a subset of cells labeled by the gng8-GFP line. Batch 2 and Batch 3 represent two 
replicates of the gng8-GFP transgenic line.  

(D) Gamma distribution fit (blue curve) of the distribution of size-factors for SMART-seq2 dataset.  

(E) CV versus mean transcript counts of all expressed genes in the SMART-seq2 dataset 
together with the theoretically expected Poisson relationship (dotted red line) and the 
Poisson Gamma relationship (magenta solid line).  The Brennecke et al. fit is shown in 
yellow. 

(F) CV versus mean read counts of the larval droplet data with Poisson (dotted red line), 
Poisson Gamma (magenta solid line) and Brennecke et al. fits (yellow solid line).  

(G) CV vs mean read counts of mouse genes in the Tasic, Menon et al. dataset (GSE71585) 
together with Poisson, Poisson-Gamma relationship (magenta solid line) and Brennecke et 
al. fits (yellow solid line).  

(H) CV versus mean transcript counts of the retinal bipolar neuron Drop-seq data with 
Poisson (dotted red line), Poisson Gamma (magenta solid line) and Brennecke et al. fits 
(yellow solid line).  

(I) Performance of random forest (RF) model trained on the larval droplet dataset with the 
graph clustering labels shown in Figure 1C. A training set was formed by choosing 70% of 
the cells from the entire dataset, with proportional representation from each cluster. The 
trained RF model was then used to classify each cell in the remaining 30% of the data (test 
set) into learned cluster labels. The result of the classification of the test set is shown as a 
confusion matrix. The last column represents cells that did not receive a maximum vote by a 
margin of > 15 % of the trees, and hence were labeled “unassigned”.  

(J) Correlation of the average expression levels of genes in the SS2 dataset (x-axis) versus the proportion 
of cells expressing each gene (y-axis).  

(K) Correlation of the average expression levels of genes (x-axis) in the droplet dataset versus the 
proportion of cells expressing each gene (y-axis).  

(L) Scatter plot of the proportion of cells expressing each gene in droplet data (y-axis) versus the similar 
proportion in the SS2 data (x-axis).  

(M) Comparison of the distribution of Shannon entropy for two sets of genes in the droplet dataset.1) Top 
25 marker genes found through independent analysis of SS2 dataset (blue), 2) the set of genes that were 
expressed in high proportion of cells in the SS2 data and had little to no expression in the droplet dataset 
(red curve, genes labeled in red in Figure S4J). 
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Figure A.5. Quality Control of Adult Single Cell RNA-seq Dataset, Related to Figure 5. 
(A) Distribution of genes detected across the filtered adult droplet dataset.  

(B) Distribution of UMIs detected across the filtered adult droplet dataset. 

(C) Composition of each cluster by experimental batch post batch correction and filtering.  

(D) FISH for ventral cluster-specific genes cd82a and mprip that are also identified to be expressed in a 
regional manner in the larval ventral habenula. 

(E) FISH labeling of fabp7a, marker for a progenitor-like cells in the adult and larval habenula.  

(F) Violin plot showing expression of gng8 in larval and adult dataset. The expression values of gng8 
(log(TPM+1) >2) were used to filter the adult dataset for RF analysis. The right panel shows a t-SNE plot 
of the resulting gng8 positive in the adult dataset.  

(G) Violin plots showing examples of genes differentially expressed between Ad_Hb02A and Ad_Hb02B. 
Rac2 is enriched in Ad_Hb02A(right) and nebl is enriched in Ad_Hb02B(left) (upper panel). In situ 
hybridization showing right-enriched expression of nebl in the adult habenula.  

(H) Schematic showing the validated neuronal types in the adult habenula in a single coronal slice. 
Schematic represents a projection across all slices assayed. Only information about left–right and dorso-
ventral positioning of neuronal types is represented. 

(I) Anatomical reorganization of the habenula between the time points analyzed in the study and the 
rough mapping of select neuronal types onto this map. As described by previous literature, the habenula 
undergoes complex morphogenetic changes in which the dorso-medial region migrates outwards laterally 
and the ventrolateral region migrates inwards medially. The positioning of the neuronal types found in our 
study corroborates this migratory pattern.  
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Table A.1. Curated Markers for the larval habenula. 

p_Val Avg_diff Cluster Gene Zfin accession 
0 2.1963462 Hb01 g0s2 ZDB-GENE-081022-103 
0 1.95089206 Hb01 adcyap1b ZDB-GENE-020809-4 
0 1.56182068 Hb01 tacr3l  ZDB-GENE-061207-19 
3.33e-314 1.87393612 Hb01 fxyd1 ZDB-GENE-050309-14 
2.32e-310 1.57555627 Hb01 murcb ZDB-GENE-041212-87 
3.97E-273 1.33451062 Hb01 prox1a ZDB-GENE-980526-397 
5.68E-180 1.2915815 Hb01 impact ZDB-GENE-040927-10 
3.37E-265 1.55420984 Hb01 nrgna ZDB-GENE-090710-4 
1.21E-135 1.14665915 Hb01 ttna ZDB-GENE-030113-2 
1.60E-229 1.27062108 Hb01 kcnd1 ZDB-GENE-081105-40 
6.16E-198 1.4024978 Hb01 sdc4  ZDB-GENE-061111-1 
  
4.46E-185 1.5563455 Hb02 adrb2a ZDB-GENE-100414-3 
4.79E-98 1.12566886 Hb02 vav3b ZDB-GENE-070912-251 
4.62E-110 1.58631704 Hb02 gng2 ZDB-GENE-050417-59 
7.44E-102 1.23267433 Hb02 rgma ZDB-GENE-040527-1 
9.21E-102 0.9832537 Hb02 cyth4a ZDB-GENE-090624-6 
  
1.67E-78 2.36732895 Hb03 spx ZDB-GENE-041210-158 
1.58E-62 2.09216043 Hb03 spa17 ZDB-GENE-061027-337 
 
2.28E-195 2.359403 Hb04 cbln2b ZDB-GENE-070615-12 
2.23E-104 0.7233532 Hb04 dcdc2c   
 
5.26E-299 1.2289715 Hb05 c1ql4b ZDB-GENE-131127-59 
7.83E-220 1.040571 Hb05 c1ql4a ZDB-GENE-090313-185 
5.121743e 1.9662987 Hb05 trh ZDB-GENE-020930-1 
2.43E-87 0.5764724 Hb05 ghra ZDB-GENE-070509-1 
  
0 2.30213246 Hb06 foxa1 ZDB-GENE-990415-78 
1.09e-311 2.3294158 Hb06 lrrtm1 ZDB-GENE-050506-80 
1.73E-258 2.26192052 Hb06 pou3f1 ZDB-GENE-980526-372 
2.36E-203 2.03746148 Hb06 pnoca ZDB-GENE-101229-1 
1.15E-140 0.9667398 Hb06 grm8b ZDB-GENE-110421-3 
3.17E-192 1.94459897 Hb06 im:7152348 ZDB-GENE-041111-308 
1.31E-189 1.85119093 Hb06 pmp22b ZDB-GENE-060421-4337 
8.90E-78 1.0310556 Hb06 gpr78 ZDB-GENE-110411-251 
2.45E-109 0.8582727 Hb06 oprl1 ZDB-GENE-040312-4 
 
9.56E-101 1.61846599 Hb07 pcdh7b ZDB-GENE-081104-299 
4.93E-82 1.39875526 Hb07 spon1a ZDB-GENE-000427-9 
2.02E-72 1.30988217 Hb07 tmem98 ZDB-GENE-070112-1092 
5.08E-62 1.41916147 Hb07 eno1b ZDB-GENE-040426-1651 
 
2.65E-212 1.41769201 Hb08 wnt7aa ZDB-GENE-051129-1 
8.32E-202 1.23412746 Hb08 pth2r ZDB-GENE-991123-10 
4.49E-141 1.37118246 Hb08 endouc ZDB-GENE-060503-141 
  
5.90E-268 3.1794816 Hb09 adcyap1a ZDB-GENE-020809-4 
2.83E-169 1.74269084 Hb09 igf2a ZDB-GENE-991111-3 
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Table A.1 (Continued).  
3.83E-122 1.43998887 Hb09 pdyn ZDB-GENE-060417-1 
4.48E-297 1.102586 Hb09 tacr2 ZDB-GENE-090312-188 
1.85E-235 1.061916 Hb09 adra1d ZDB-GENE-090312-203 
1.38E-115 1.54959126 Hb09 bx957297.1   
2.94E-97 1.48947036 Hb09 endouc ZDB-GENE-060503-141 
7.76E-95 1.79844025 Hb09 tac1 ZDB-GENE-060503-904 
  
2.17E-158 1.62781472 HB10 bsnb ZDB-GENE-120628-1 
1.33E-123 1.76522582 HB10 ppp1r1c ZDB-GENE-040718-273 
1.10E-115 1.25526355 HB10 snx8a ZDB-GENE-031202-1 
2.12E-144 0.9108047 HB10 hlfb ZDB-GENE-110420-3 
  
0 5.157643 Hb11 pyya ZDB-GENE-980526-71 
1.69E-302 3.33837838 Hb11 cbln1 ZDB-GENE-040718-226 
1.55E-160 2.16490785 Hb11 sox1b ZDB-GENE-060322-5 
2.10E-159 2.23259612 Hb11 phc2a ZDB-GENE-020312-1 
3.15E-142 2.00260975 Hb11 zfhx4 ZDB-GENE-070530-3 
2.32E-111 2.13785726 Hb11 cpne4a ZDB-GENE-060503-427 
5.67E-125 1.70177706 Hb11 drd4a ZDB-GENE-070112-996 
1.06E-293 1.34716 Hb11 sox1a ZDB-GENE-040718-186 
          
6.65E-256 1.4655357 Hb12 htr1aa ZDB-GENE-071203-1 
8.27E-137 3.04732314 Hb12 hbegfb ZDB-GENE-070820-6 
3.31E-241 1.4732662 Hb12 bmp2b ZDB-GENE-980526-474 
4.51E-169 2.26359047 Hb13 tubb5 ZDB-GENE-031110-4 
1.00E-87 1.1285375 Hb13 fxyd6l ZDB-GENE-071205-8 
2.11E-64 1.0978017 Hb13 rpl26 ZDB-GENE-040426-2117 
 
9.94E-133 5.37707535 Hb14 galn ZDB-GENE-111117-2 
1.16E-100 2.8979173 Hb14 smox ZDB-GENE-031201-3 
4.01E-100 5.13196808 Hb14 agrp ZDB-GENE-040817-1 
1.76E-94 3.49999355 Hb14 rrad ZDB-GENE-030131-5607 
6.90E-64 2.59960022 Hb14 gadd45bb ZDB-GENE-050223-1 
1.75E-62 2.34113759 Hb14 gad2 ZDB-GENE-030909-9 
2.50E-35 3.32589767 Hb14 rgs4 ZDB-GENE-030131-9839 
7.05E-33 2.55014141 Hb14 penka ZDB-GENE-030729-31 
7.02E-30 1.703852 Hb14 gad1b ZDB-GENE-030909-3 
7.02E-33 1.537209 Hb14 slc32a1 ZDB-GENE-061201-1 
2.04E-31 1.491485 Hb14 dlx5a ZDB-GENE-990415-49 
2.04E-21 3.28811127 Hb14 nmu ZDB-GENE-041001-111 
 
4.58E-80 3.81719398 Hb15 kiss1 ZDB-GENE-080128-1 
2.29E-77 4.51223746 Hb15 si:dkey-117i10.1 ZDB-GENE-091204-371 
7.39E-74 3.02185606 Hb15 lmo3 ZDB-GENE-050522-201 
1.30E-60 3.00911414 Hb15 csrp2 ZDB-GENE-040426-1863 
8.83E-58 2.66562076 Hb15 wnt11r   
6.01E-57 2.48047347 Hb15 ak5 ZDB-GENE-030131-8256 
3.25E-51 2.32214249 Hb15 prkcq ZDB-GENE-041210-195 
5.56E-51 2.37258874 Hb15 aoc1 ZDB-GENE-061103-112 
1.08E-44 2.32644535 Hb15 cabp7 ZDB-GENE-101112-4 
2.59E-39 2.24361694 Hb15 crip1 ZDB-GENE-041111-1 
5.43E-38 2.03810874 Hb15 id4 ZDB-GENE-051113-208 
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Table A.1 (Continued). 
5.08E-36 2.19340796 Hb15 ppp1r14ab ZDB-GENE-040426-1783 
5.00E-34 2.13193874 Hb15 necab1 ZDB-GENE-050417-395 
8.58E-31 2.24706434 Hb15 alcama ZDB-GENE-990415-30 
8.48E-30 2.13454652 Hb15 kiss1rb ZDB-GENE-060526-54 
          
0 5.6289242 Olf pvalb5 ZDB-GENE-050417-336 
0 5.26697673 Olf s100z ZDB-GENE-050522-69 
0 4.90646722 Olf icn ZDB-GENE-030131-8599 
0 4.56962686 Olf calb2a ZDB-GENE-040426-1677 
0 4.14434954 Olf gstp1 ZDB-GENE-020806-4 
 
 
 
 
 
Table A.2. Curated Markers for the Adult Habenula. 

Cluster Gene avg_diff p_val 
Ad_Hb01 tac3a 2.44722984 0 
Ad_Hb01 g0s2 2.24103739 0 
Ad_Hb01 fxyd1 2.09698509 0 
Ad_Hb01 nrgna 1.85522745 0 
Ad_Hb01 kctd4 1.84863675 0 
Ad_Hb01 adcyap1b 1.7226187 0 
Ad_Hb01 tgfbi 1.28744007 2.70E-305 
Ad_Hb01 pkdccb 1.30468338 2.50E-235 
Ad_Hb01 nr0b1 1.40459654 8.16E-181 
Ad_Hb01 sst1.1 1.61857087 3.01E-121 
Ad_Hb02A rac2 1.62551156 8.58E-49 
Ad_Hb02A gng8 1.12110562 1.01E-40 
Ad_Hb02A cyth4a 1.12059366 4.54E-40 
Ad_Hb02A adrb2a 1.13151349 2.13E-39 
Ad_Hb02A kctd1 1.12730464 2.67E-35 
Ad_Hb02A fam19a2 1.15683647 4.61E-33 
Ad_Hb02A tgfbi 1.23037644 1.05E-30 
Ad_Hb02A si:ch211-215d8.2 1.19119631 4.60E-27 
Ad_Hb02A rpz5 1.34090933 8.16E-25 
Ad_Hb02A pde6h 1.54942573 1.05E-22 
Ad_Hb02B gng2 2.14258764 0 
Ad_Hb02B tac3a 1.00440902 1.22E-218 
Ad_Hb02B neurod1 1.39895855 9.96E-187 
Ad_Hb02B nwd2 1.03753216 1.39E-132 
Ad_Hb02B kctd12.2 0.91909188 8.75E-130 
Ad_Hb02B syt6b 1.03993435 1.46E-126 
Ad_Hb02B rprma 1.195854 2.84E-118 
Ad_Hb02B lmo1 1.0575783 4.62E-117 
Ad_Hb02B bcl11ba 0.99098964 9.46E-113 
Ad_Hb02B drgx 1.06212687 1.75E-87 
Ad_Hb04 cbln2b 2.58205479 1.80E-133 
Ad_Hb04 kctd12.1 1.0150766 6.34E-51 
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Table A.2 (Continued). 
Ad_Hb04 cart2 1.38071637 3.18E-49 
Ad_Hb04 kctd12.2 0.93777504 5.34E-32 
Ad_Hb04 lmo1 0.98192636 3.86E-28 
Ad_Hb04 neurod1 1.08057742 2.98E-26 
Ad_Hb04 tenm3 1.22363021 2.47E-24 
Ad_Hb04 kctd4 1.11344964 2.02E-22 
Ad_Hb04 tnfrsf9a 0.97374113 7.82E-19 
Ad_Hb04 sst1.1 0.96422791 1.22E-12 
Ad_Hb05 trh 3.03045398 2.79E-96 
Ad_Hb05 spa17 3.54440756 2.76E-89 
Ad_Hb05 sst1.1 3.1010826 5.73E-76 
Ad_Hb05 pyyb 2.81215701 9.17E-68 
Ad_Hb05 spx 3.23627761 4.99E-55 
Ad_Hb05 ralyl 2.03679233 1.40E-54 
Ad_Hb05 qkia 1.92040545 1.02E-51 
Ad_Hb05 zgc:101731 1.78147089 5.04E-43 
Ad_Hb05 tgfbi 1.69315831 3.74E-37 
Ad_Hb05 inaa 1.61376345 2.23E-23 
Ad_Hb06 lrrtm1 2.40440426 0 
Ad_Hb06 im:7152348 2.38501208 0 
Ad_Hb06 cckb 1.86832655 0 
Ad_Hb06 kctd12.1 1.40287132 4.20449610901e-321 
Ad_Hb06 ralyl 2.00521577 1.69E-239 
Ad_Hb06 pou3f1 1.73467475 1.66E-219 
Ad_Hb06 rpz5 1.53508378 3.81E-194 
Ad_Hb06 cygb1 1.45158799 1.24E-166 
Ad_Hb06 foxa1 1.5924108 6.14E-151 
Ad_Hb06 mt2 1.36589083 1.72E-81 
Ad_Hb08 cckb 1.41137168 1.36E-126 
Ad_Hb08 lmo1 1.53004297 3.53E-123 
Ad_Hb08 wnt7aa 1.38658079 8.35E-105 
Ad_Hb08 nwd2 1.31477282 6.21E-97 
Ad_Hb08 ngb 1.52793499 1.98E-96 
Ad_Hb08 pcp4a 1.3575629 1.80E-93 
Ad_Hb08 nrp1a 1.3514505 2.29E-91 
Ad_Hb08 tp53i11b 1.39396329 7.52E-85 
Ad_Hb08 lmo4b 1.34891295 5.99E-84 
Ad_Hb08 vps8 1.31455898 3.29E-76 
Ad_Hb09 adcyap1a 3.68614832 0 
Ad_Hb09 zgc:101731 2.3421248 7.08E-297 
Ad_Hb09 pdyn 2.15198188 9.55E-231 
Ad_Hb09 tac1 2.89311409 8.18E-222 
Ad_Hb09 cckb 1.84067377 7.96E-207 
Ad_Hb09 inaa 1.84777337 1.46E-204 
Ad_Hb09 rasd1 1.9488556 1.24E-178 
Ad_Hb09 pcp4a 1.64467108 7.07E-152 
Ad_Hb09 igf2a 1.72479693 6.48E-145 
Ad_Hb09 zgc:110340 1.44381567 2.71E-80 
Ad_Hb10 spa17 3.73080702 9.15E-79 
Ad_Hb10 pvalb7 3.64389092 8.46E-77 
Ad_Hb10 map1b 2.54583584 2.82E-59 
Ad_Hb10 capgb 1.99205934 6.55E-50 
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Table A.2 (Continued). 
Ad_Hb10 cckb 2.7436949 3.98E-49 
Ad_Hb10 igf2a 1.86745052 2.70E-46 
Ad_Hb10 zgc:101731 1.93596514 1.00E-38 
Ad_Hb10 pdyn 1.99682615 1.68E-37 
Ad_Hb10 cxcl14 1.85672529 1.29E-30 
Ad_Hb10 glulb 2.18424155 3.39E-27 
Ad_Hb11 pyya 4.70634802 7.72E-81 
Ad_Hb11 cbln1 2.80299617 2.73E-64 
Ad_Hb11 sox1b 2.11713167 9.05E-62 
Ad_Hb11 cpne4a 2.59239487 7.03E-55 
Ad_Hb11 sox1a 1.67906494 9.30E-43 
Ad_Hb11 phlda2 1.93545892 1.33E-27 
Ad_Hb11 elavl4 1.57365537 7.86E-24 
Ad_Hb11 cox4i2 1.99771714 2.80E-22 
Ad_Hb11 her9 1.94789283 2.82E-22 
Ad_Hb11 atp1b1b 1.43059384 2.15E-18 
Ad_Hb13 stmn1b 1.63316211 1.36E-138 
Ad_Hb13 gap43 2.2794112 1.94E-118 
Ad_Hb13 tubb5 2.17525365 6.95E-93 
Ad_Hb13 tuba1c 1.10147886 5.77E-61 
Ad_Hb13 tuba1a 1.35927837 1.53E-53 
Ad_Hb13 tmsb 1.56879678 2.37E-46 
Ad_Hb13 marcksb 1.1999096 8.30E-42 
Ad_Hb13 ppp1r14ba 1.05100663 8.96E-40 
Ad_Hb13 sox11a 1.42264698 2.50E-38 
Ad_Hb13 cnp 1.05465716 8.43E-27 
Ad_Hb14 gad2 2.73407918 1.44E-232 
Ad_Hb14 slc32a1 2.35831854 2.25E-183 
Ad_Hb14 gad1b 2.55616368 2.61E-183 
Ad_Hb14 gap43 2.39379392 7.36E-121 
Ad_Hb14 elavl4 2.0627057 2.45E-119 
Ad_Hb14 gata3 1.99403415 3.06E-100 
Ad_Hb14 tal1 1.97932646 1.61E-90 
Ad_Hb14 slc6a1a 1.69445181 9.80E-89 
Ad_Hb14 slc6a1b 1.8243573 1.87E-79 
Ad_Hb14 atp1b1b 1.88404703 1.68E-77 
Ad_VHb01 cntnap2a 1.70548938 0 
Ad_VHb01 kiss1 1.61092335 0 
Ad_VHb01 alcama 1.56455057 0 
Ad_VHb01 aoc1 1.55097374 0 
Ad_VHb01 id4 1.5314773 0 
Ad_VHb01 lmo3 1.48507568 0 
Ad_VHb01 ak5 1.45261531 0 
Ad_VHb01 si:dkey-117i10.1 1.35959225 0 
Ad_VHb01 necab1 1.33507085 0 
Ad_VHb01 ppp1r14ab 1.29793779 0 
Ad_VHb_02 rgs5b 2.58775792 0 
Ad_VHb_02 mcl1a 1.51493726 1.0705299e-310 
Ad_VHb_02 egr4 1.65745152 3.38E-252 
Ad_VHb_02 mprip 1.92182731 5.58E-213 
Ad_VHb_02 pim1 1.31371276 3.53E-206 
Ad_VHb_02 rergla 1.47832147 1.57E-203 
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Table A.2 (Continued). 
Ad_VHb_02 dnajb5 1.56619012 1.14E-184 
Ad_VHb_02 dusp2 1.46250776 4.74E-112 
Ad_VHb_02 nts 1.49442118 2.11E-103 
Ad_VHb_02 fosb 1.33718458 4.37E-98 
Ad_VHb_03 cd82a 2.11749224 2.60E-184 
Ad_VHb_03 ca8 1.33230142 2.13E-77 
Ad_VHb_03 junba 1.29493608 5.04E-77 
Ad_VHb_03 ier2 1.31069424 4.32E-74 
Ad_VHb_03 onecut1 1.14566539 2.57E-73 
Ad_VHb_03 rergla 1.20535413 4.22E-69 
Ad_VHb_03 plk2b 1.38645754 1.00E-60 
Ad_VHb_03 rgs5b 1.21489834 2.62E-51 
Ad_VHb_03 nr4a1 1.15380745 1.10E-46 
Ad_VHb_03 atf3 1.15012263 3.41E-32 
Ad_VHb_04 zgc:173443 3.01383101 3.49E-182 
Ad_VHb_04 si:ch211-251f6.7 2.26987055 1.42E-164 
Ad_VHb_04 mprip 1.65923661 6.43E-25 
Ad_VHb_04 rergla 1.3417044 1.11E-23 
Ad_VHb_04 mcl1a 0.86309876 3.14E-23 
Ad_VHb_04 rgs5b 1.42920437 6.00E-14 
Ad_VHb_04 cabz01063757.1 1.02732584 8.40E-14 
Ad_VHb_04 fam13b 0.94813222 3.45E-13 
Ad_VHb_04 egr4 0.84789345 4.01E-12 
Ad_VHb_04 fosb 1.06725521 7.30E-10 
AdHb_16 her4.2 4.70836249 0 
AdHb_16 fabp7a 4.575113 0 
AdHb_16 her4.1 4.14555086 0 
AdHb_16 her15.2 4.04759396 5.31E-288 
AdHb_16 her15.1 3.86516097 1.03E-280 
AdHb_16 si:ch211-193l2.4 4.05370179 1.91E-258 
AdHb_16 mdka 3.50619513 8.67E-258 
AdHb_16 si:ch211-193l2.5 3.60269108 5.78E-242 
AdHb_16 her4.4 3.9874271 1.56E-235 
AdHb_16 si:ch211-193l2.3 3.71713126 9.49E-229 
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Table A.3. Primers used to generate in situ probes for the in situ atlas. 
 

Genes  Forward Primer Reverse Primer Linearize  Transcribe 
tac3a ccctgtctctgtgtcttgtctg gcctataacccacgacgaaac NotI T3 

tac1 acgacgtttagcttgcgttt accgggagagatgttgtgac NotI T3 
mglur8b accatgttgagtgcctttg aggatgttcgctcatatgg NotI T3 
nrgna aggacgaggacatcatggac agagtatttggctcgccttg NotI T3 
endouc  attttggatggatccctgtg ggtggtggtcttctcagtgg ClaI T7 
gpr139 tcctgctgctgattgtgttc ccgttaccaaatgcaggagt ClaI T7 
prkcq cagatttgacctcccacgat gcttcgcaaccttttattgg ClaI T7 
aoc1 catttcagggagggaaaaca ggctgtgaaaacatcacaattt ClaI T7 
wnt7aa ccgctggatttttcacattt cgcgagtactggtgtgtgtt NotI T3 
pnoca gaagctggcgaaaggagaat gctttgtttgacagattagatgc ClaI T7 
adrb2a atcgttacatcgccatcaca aaatcaggaccagtggaacg NotI T3 

trh ggtgtgtgtgttcgtcttgg ggtggcatgctgcctatatt NotI T3 
pou3f1 accacttatccccgctctct attggtgtcccgtaacgtgt ClaI T7 
pyya tctgtgtctcgggacatttg tgttcagtgctcgtgaaagc ClaI T7 
slc32a1 acaagcccagaatcactgct aatccggcaggttgtatttg ClaI  T7 
lrrtm1 atatcccccaaaacctgagc acttccccaccctccatatc NotI T3 
foxa1 attctcccatgacgaacagc acaggcctggaatacacacc Cla1 T7 
ppp1r1c cagtttgccgttccactttt aggccagaaatgcagaagaa NotI T3 
cbln2b gtggcatagggctctgtctg ggagtatttccatccgccca ClaI T7 
nptx2a atttgtggcactgctgcttg gctctccgtcctgataagcc NotI T3 
fabp7a tctctcaacatggtcgatgc tcccacctctgaacttggac NotI T3 
igf2a agcaggccgaacagatcaaa ttctgtcttcgtgccacagg NotI T3 
murcb gctggagaacaccgtcaaga ctgtcaggcctgcttaagct ClaI T7 
pcdh7b gggctctggacagagaacag gttgacacggatgtcacctg ClaI T7 
wnt11r tctcctctcaggctcagctc tatcgcacttcttgcaggtg ClaI T7 
penka tgatgaactcctggtggact tccatgaatcctccgtatctc NotI T3 
sox1b tctccaggagcccagactaa gttggggtacagcgtgaagt NotI T3 
cpne4a attctctgggcctgttcagc ccaaacgccgggaacatttt NotI T3 
c1ql4b tggttctggtggtggaggta ttccaccgtgcacttttcct ClaI T7 
nebl gcgctgtggaaaaatcgtct caacatagttggcaggcagc NotI T3 
cd82a ctgcgaccaagtacttcctgt acactcttgcaaaggcccat NotI T3 
zgc:173443 acgacttgctgaatcctgct aacacagacaacccacagca NotI T3 
tacr3l acgcacggagagtggtactt cattgggatttggtgctcftt NotI T3 
adcyap1a tgattacgagcagcaaaacg ccgtggccagatacttcttc ClaI T7 
spx atgaaagatttaaggactcttgcgg gtcagtacggctcgtcttcatc HindIII  T7 
tubb5 accggaacctatcacggaga gcgtatctccgagcagttca ClaI T7 
mprip tccatcatctggcaggagga cggaggtatgagagcgtgac SpeI T3 
grm8b tccttccggaggatttttct tggcaggttctgtctccttt NotI T3 
pdyn gcaaaccgtggatggataac atcccccgtatcgttttacc NotI T3 
hlfb cgcagtctgctttcttaggg ggccatgttctctttctcca NotI T3 
galn atgcacaggtgtgtcggtg ttagggttgactgatctcttctga NotI T3 
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Appendix 3: Supplementary Materials for Chapter 3  
 
Table A.4. Allele Information for CRISPR mutants. 
 
 
gpr139 
 
WT gpr139  

 
MEHSHIFTVLTTNSSSWSPRGCPLGQFPVVYYSSLLCLGLPANILTVIILSQLVLRRQKS 
SYNYLLALAVADILVLLLIVFVDFLLEDFILGAPLPHSLNKAVQVLEFSSIHTSIWITVP 
LTIDRYIAVCHPLRYHTVSYPARTRKVILAVYAGCLISSVPYYWWPELWHGLPGASPGGR 
SSSAGQHVLVWVHCATVYLLPCSVFFSLNAIIVRKLRCRRSCFRLRGYSTGKTTAILLAI 
TSVFAVLWAPRTLMILYHLYTVQPAMPGPARLLHLVTDVANMLALLNTGVNFFLYCFISK 
RFRRMAGTVLKAFFRCRKQPPPFYASHNFSITSSPWISPANSHCIKMLVYQYDKNGKPVC 
ISS 
 

 
gpr139 (226bp 
del) 

 
MEHSHIFTVLTTNSSSWSPRGCPLGQFPVVYYSSLLCLGLPANILTVIILSQLVLRRQKS 
SYNYLLALAVADILVLPLGA-Stop 
 

 
gRNA Target 
Sites 
 

gpr139_1: 
TAATACGACTCACTATAggACAACTACCTACTGGCCCGTTTTAGAGCTATGCTGGAAAC 
gpr139_2: 
TAATACGACTCACTATAggCATCTTGGCGGTGTACGCGTTTTAGAGCTATGCTGGAAAC 
gpr139_3: 
TAATACGACTCACTATAggAGCGTAGTGGATGGCACAGTTTTAGAGCTATGCTGGAAAC 
gpr139_4: 
TAATACGACTCACTATAggTGCTGCTGATTGTGTTCGGTTTTAGAGCTATGCTGGAAAC 
 

 
Genotyping 
Primers 

Forward: 5’- GTGATCATCCTTTCTCAGCT-3’ 
Gpr139_reverse_wt: 5’- AAGTCCACGAACACAATCAG-3’ 
Gpr139_reverse_mut: 5’-GACCCACACTAGCACATG-3’ 
 

Genotyping size Mutant: 227 
Wild Type: 117 

 
aoc1 
 
WT aoc1 

 
MWFSWMLLLATLASSSASSRTREWAHHGAMMFADLTPQEMYAVRDYLYSCSELGLTSARG 
TSLKKNSILLMELHVPRKHEALRALDKGQAKPSRQARVVVQFGNQAVPNVTEYIVGPLPF 
PKTYHLKTFKNNKNIRFESRPISAVEYEHLSGVLDKVGSKVNKILQESTGFTYGNCTKRC 
LTFSDIAPRGLTSGERRTWIMLQKFVEGYFIHPVGFEVLVNHKDLDHEKWTVEKVWYNGQ 
YFDSLDEFVEKYEKGTVDKIKLPEHDEEDLFSTYIPRGDMNTRTNIHGAKLVEPQGRRFQ 
VDGNFVEYAGWSFAYRVRSSAGLQIFDLRYNGERIAYEIALQEAIAFYSGDTPAAMQTKY 
IDAGWAMGTSDYELSPGIDCPEIAHFVDLYHYYDTDKPVRYRNALCIFEMTTGIPLRRHF 
NSNFQGGYNFYGGLENHVLVIRTTSTVYNYDYIWDFVFYQNGVMESRVSATGYIHATFFT 
ENGLNYGTRVYNYVLGNLHTHLIHYKVDLDISGRENSFESIDLKYVNFTNPWSPGHTIMQ 
SKLHRTQYETERSAAFRFGKKFPKYLHFYNPNQLNKWGHKKGYRIQYNSHANSVLPRGWR 
EENGIPWSRYPLAVTRHKDSEVTSSSIYTQNDPWEPLVSFEEFVRNNENIVNQDLVAWVT 
VGFLHIPHSEDVPNTATPGNSVGFFLRPFNFFNEDPSLASRSTVIVRPDEKGQPKVQRWT 
PEVVGHCVSDKPFFYNGTYAGV 
 

aoc1 (28bpD, 
92bpD) 
 

 
MWFSWMLLLATLASSSASSRTREWAHHGAMMFADLTPQEMYAVRDYLYSCSELGLTSARG 
TSLKMRCQMSLNTSLAHFHSRRLTIStop 
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gRNA Target 
Sites 
 

 
CCTCCTCATGGAGCTGCATGTTC 
TTCATCACGAACGCGGGAATGGG 
GGTGCAGTTCGGCAACCAAGCGG 
CACTCCGCAAGAAATGTACGCGG 
 

 
Genotyping 
Primers 
 

Forward: tctttccctacacgacGCTCTTCCGATCTCTGCTGGCAACTCTGGCTTCATC 
Reverse: 
tggagttcagacgtgtGCTCTTCCGATCTGTGGGCCAACGATGTATTCAGTGAC 

Genotyping size WT: 389bp 
Mutant: 269bp 

ntsr1 

WT ntsr1  

ntsr1 (D)  

gRNA target 
sites  

ntsr1_1: 
TAATACGACTCACTATAggCCGTGGTCATTGCTTTTGGTTTTAGAGCTATGCTGGAAAC 
ntsr1_2: 
TAATACGACTCACTATAggTGGCTGCCCTACCATGCCGTTTTAGAGCTATGCTGGAAAC 
ntsr1_3: 
TAATACGACTCACTATAggTACTGCTATGTCACTGAAGTTTTAGAGCTATGCTGGAAAC 
ntsr1_4: 
TAATACGACTCACTATAggATTGCTTTTGTGGTGTGCGTTTTAGAGCTATGCTGGAAAC 
 

Genotyping 
primers 

 
Forward: ATGTGATACTGCTGCTTATTATGACTCAG 
Reverse: CCTTTGATCTTTATTGATATTTCAATAAGC 
 
 

 
nts1 

WT nts  
MCRNCGTTNNMQMQLTSFLLLFLLCNGLCSDIDQGKRAIEDEVLRSLLTSKVKASRHIAP 
LWQLPLQDVCRMVNGLGDSWLEAWANEEAAEDTEVHADYEQRVSGTLLQMLEEMHDIQNL 
CRVLQPRELQDEQEYLELEQNSDSPLKRKSPYILKRQLRTNKSRRPYILKRSVIY 
 

nts(D)  
 

gRNA targets nts_1: 
TAATACGACTCACTATAggAGAGGAAGCTGCCACAGGGTTTTAGAGCTATGCTGGAAAC 
nts_2: 
TAATACGACTCACTATAggGGTTGCAGGACCCTGCAGGTTTTAGAGCTATGCTGGAAAC 
nts_3:  
TAATACGACTCACTATAggTATGAGCAGAGGGTCTCGGTTTTAGAGCTATGCTGGAAAC 
nts_4: 
TAATACGACTCACTATAggGGCTCGGTGACTCGTGGCGTTTTAGAGCTATGCTGGAAAC 
 

Genotyping 
Primers 

 
Forward: tctttccctacacgacGCTCTTCCGATCTCATCTGTGCAGGTAAAGGCGAGC 
Reverse: 
tggagttcagacgtgtGCTCTTCCGATCTATTTACAGTCTCAAATAAATGTCTCACC 
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Figure A.6. Preliminary Seq-FISH Optimization Data. 
(A) Colocalization of signal across two rounds of hybridization to assess RNA integrity. 

(B) Optimization of a cell segmentation marker for segmentation of individual cells during automated seq-
FISH analysis. WGA worked best for automated cell segmentation 

(C) Three example ROIs from sequential rounds of hybridization of probes for three different genes 

indicate that the signal amplified is consistent with the expression patterns of forebrain marker genes. 
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Appendix 4: Supplementary Materials for Chapter 4 
 

 
 
Figure A.7. Quality Control Metrics and Expression of Neurotransmitter and 
Neuropeptidergic Genes Among the Telencephalon Clusters.  
(A) Distribution of number of genes(top) and number of UMIs(bottom) detected across the filtered larval 
dataset 

(B) Composition of each cluster by experimental batch post batch correction and filtering 
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Figure A.7 (Continued). (C) Gene Expression profiles of selected neurotransmitters and 
neurotransmitters among the telencephalon clusters.  

(D) Gene Expression profiles of selected neuropeptides and neuropeptide receptors among the 
telencephalon clusters.  

 

 

 

 

 
Figure A.8. Gene Expression profiles of previously known molecular markers of in the A) 
larval and B) adult telencephalon.  



 179 

 
 
Figure A.9. Quality Control Metrics for the Adult Dataset and Performance of Classifier 
Trained on the Larval Data. 
(A) Distribution of number of genes(top) and number of UMIs(bottom) detected across the filtered adult 
dataset 

(B) Composition of each cluster by experimental batch post batch correction and filtering 

(C) Performance of Gradient Boosted Trees (GBT) model trained on the larval dataset with 
the graph clustering labels shown in Figure 1A. A training set was formed by choosing 90% of 
the cells from the entire dataset, with proportional representation from each cluster. The 
trained GBT model was then used to classify each cell in the remaining 10% of the data (test 
set) into learned cluster labels. The result of the classification of the test set is shown as a 
confusion matrix.  
(D) Precision-recall curves for each of the class labels in the larval dataset demonstrating 
high sores for both precision and recall suggesting that the classifier is returning accurate 
results as well as a majority of all positive results.  
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Table A.5: Primers used to generate in situ probes for the in situ atlas (f: forward; r: 
reverse) 
 

Gene Name Primers 

bhlhe22_f  GTTTCGACCGACTGCGGGTA 
bhlhe22_r  AATCCCACGCTCACCAGCAC 
c1ql3b_chr2_f  GGTGCTGGTGCTGGTGATCC 
c1ql3b_chr2_r  GGTGCTGGTGCTGGTGATCC 
cbln1_f  CCATGCATACGCACAGAACGAG 
cbln1_r  CAATGGCGTTTGAGACTCACGGT 
cnp_f  GTGTTTTGTTTGTCAGAAGCAGTGT 
cnp_r  GTCTGAACCGCCTCCACACC 
c1ql3b_chr3_f  ATGCTGGTGCTGGTGCTGG 
c1ql3b_chr3_r  CCGTGGGCTTTGCCACCAT 
crabp1a_f  ATGCCTCCCAACTTCGCCG 
crapp1a_r  TGTGCCAGAAATGGACAAAGAGA 
crhbp_f  TGTGCTTCCTCCTGTTGAGCG 
crhbp_r  GCTGAAGCTCTTGGTGGCCC 
cxcl12b_f  CAAAGTAGTAGCGCTGGTGGCG 
cxcl12b_r  CCACAAAGCAAGCATTAGCATGAGC 
ebf3a_f  TGCAGTCGCTGCTGTGACAA 
ebf3a_r  GCCATGGTGGGACTGGAAGG 
efna1b_f  CGCATGGCGAGATCGCTTCC 
efna1b_r  ATCTAGCCTAGTGTTCACCCGTGTT 
eomesa_f  CAACAGACCGCTGTGGCTCA 
eomesa_r  CCGGCTGCCATAGATGCGAA 
ets2_f  CGCATCTGCGGCATCTCTGA 
ets2_r  CGCTTCCCCGAGGTCTTGTG 
fezf1_f  CCAAGCTCCCGTGGGGAAAG 
fezf1_r  GTGAGTGGGGTCCAGGGGAA 
gabrr2b_f  GTGCCAGTGGGTGTGGATGT 
gabrr2b_r  CAGCCCTCTGAGCGTCCTTT 
gad1b_f  ATTAATGCGGGAAAGTGGATCTGTT 
gad1b_r  GACTTGGTGACGGCGTGATTG 
gbx1_f  TGCCGTACCGACCGCTTATG 
gbx1_r  TGTGGCCCCTGACCAGTGAA 
isg15_f  TGAGCGGTGATGCTACCGTTG 
isg15_r  CGTGTGAACATCACGGCATTGAAA 
lhx6_f  AGAAAGACGACACGCGCTCC 
lhx6_r  CGGCTAAGAGGAAGCTGCGG 
lhx8a_f  CGTCGTCGTTGTCTTTGTCGC 
lhx8a_r  ATGGCTGATGGGCAGCTGTG 
lhx9_f  ATGGAAGTTGTGGGGTGCAAGG 
lhx9_r  CCTGTCTTTTGGGCGAGTTGTTT 
mdka_f  ATGCGGGGCCTGTTTTCCAC 
mdka_r  GGGAAACAGCAGAGGAGTGGC 
mmped2a_f  CGGTATGCCGACACAAGGCAA 
mmped2a_r  GTCCGTCATCGGAAACTTCCACTC 
nfia_f  TCCGCTATGCCTAACACAGGA 
nfia_r  TGGCTCCACTTCATGCCAGC 
nr2f2_f  TGGCCAGTTCACTTGCGAGG 
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Table A.5 (Continued).  
nr2f2_r  AACTGCTCCCCGACAGCAAC 
nrgnb_really_spa17_f  GAGCAGCCAGAGGACATCGC 
nrgnb_really_spa17_r  CCTCACCTGTACGAGTGTCGC 
otpa_f  CGAGCTTCTGGGTCACAGGG 
otpa_r  TTAGGTGAAGCTCATGGACACTG 
penkb_f  AGACTTTACACGCACCGGACA 
penkb_r  ATGAATGCCTCATGCAAACCAGAAT 
ppp1r14aa_f  ACACATACCGGTCATTCCCCTGA 
ppp1r14aa_r  TGCATGTTTCCGTGATGATGGG 
prdm8b_f  CAAGGACGCCAGTGACCAGG 
prdm8b_r  TGGCACACCAGTTCTGAGCG 
prdm12b_f  ACAGTCTTTGGCCCTGTCCG 
prdm12b_r  GCCTGAAGCCCCACTACAGC 
prkcda_f  GAAGGCAAACGGGCATGCAG 
prkcda_r  TCCCAGGCAAGAGCAAGCAC 
pvalb7_f  AGCCCTTGATCAATTCAAAGCTGC 
pvalb7_r  GTGTTCGGTGGCTCTATCACA 
pyyb_f  ATGGCGAGTGCACTGAGATCC 
pyyb_r  TGAGGGTTTGGCTCATGCTGG 
rprma_f  ACCAAACGGACAGTGGCATCT 
rprma_r  ACAATGCTTAAGTTTACCAGAGACC 
rprml_f  TGCTGAATCGCAGTCAGGAGC 
rprml_r  ACCAAATTGCTCATGCGCTTTCC 
scrt1b_f  CACCCCGGCCATTTATGATGGA 
scrt1b_r  CGCCAGTCATAGTCGAGTGCTG 
six3b_f  CGGATCGCCCTCTGCTTCTG 
six3b_r  GGGGATTCTGCCGAGCTGTG 
synpr_f  CTGGGCAAATGCGGGTTAGTG 
synpr_r  AATGGATTTCCCATGTGAGCGAGTC 
tmsb_f  TGGCCGACAAACCCAACATGA 
tmsb_r  TGCTGGTGTGTAGCACCAAA 
trh_f  GGCGGTGTGTGTGTTCGTCT 
trh_r  TGGGAGGTATGAAATCCGACAGC 
uncx_f  CTGCACGGCTTCTGTGGTGA 
uncx_r  CGCGCCGCTGTTGTTGTTTA 
vim_f  AAGCTTGAGAGTGCGCTCCG 
vim_r  CCTTCATGGACTCTCGCAGGC 
zbtb18_f  CAGGAGCCAGGGAGCATGTG 
zbtb18_r  AGTGCCCAGTCTCTGACCGT 
zic2a_f  CTGCATTCACGAGCCAAGCG 
zic2a_r  GTCGGATGCAGGTGGGGATG 
tac3b_withutr_f  AGCGCCCTCGACTACTCCTT 
tac3b_withutr_r  TGCACAAATTATGGCCAACATGC 
grm2a_newlong_f  GCCCGGAGATGTTTGCTGCT 
grm2a_newlong_r  ATGTTGGAGGCCGAGGCTTG 
uts1_withutr_f  GCTCTTCACCTTCCCGCTCC 
uts1_withutr_r  GCGCGTCCCTGAAGGTGTTT 
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Appendix 5: Supplementary Materials for Chapter 5 
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Figure A.10. Neuronal Dynamics within the Habenula in response to Noxious Electric 
Shocks. 
(A) Distribution of shock ON and OFF cells within the habenula 

(B) Different Types of response dynamics found among the on and off cells.  


