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Abstract
Colloidal microspheres, sometimes referred to as ‘model atoms,’ are commonly used

to elucidate self-assembly mechanisms of different materials. One of the important

yet relatively unexplored parameters that affects self-assembly is the geometry of the

substrate on which self-assembly takes place. In this thesis, I examine how substrate

geometry affects self-assembled structures and self-assembly dynamics and demonstrate

how this knowledge can be used to design precisely controlled nanostructures.

Colloidal self-assembly can be designed in various ways – weak attractive inter-

actions between colloidal microspheres give rise to colloidal crystallization, whereas

strong attractive interactions result in random sequential adsorption. I show a number

of methods to tune collloidal interactions to achieve crystallization (packing) and

random sequential adsorption (parking) on the surface of a cylinder. A cylinder has a

a zero Gaussian curvature, but a non-zero mean curvature and a finite circumference.

Using experiment and theory, we demonstrate that the finite circumference and mean

curvature of a cylindrical substrate affect both crystallization and random parking of

colloidal spheres.

A crystal that completely wraps around a cylindrical surface must contend with

closure. We find that the closure constraint gives rise to unique structural features,

such as chirality, line-slip defects, and kinked line-slip defects with fractional vacancies.

We show that the morphology of these structures arises from the crystallization
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dynamics. When colloidal spheres randomly adsorb on a cylindrical substrate, we find

that the surface coverage fraction becomes a function of the curvature of the cylinder

and deviates significantly from the surface coverage fraction on a flat substrate. Both

of these findings provide a pathway to realize self-assembly mechanisms of natural

and artificial tubular structures.

Finally, we show that sphere packing on a spherical substrate can be used to

synthesize patchy colloidal structures. We turn the patchy structures into octahedral

plasmonic nanoclusters using a multi-step synthesis approach. We find that these

nanoclusters have identical optical properties, which indicates robust and precise

control over their geometry. This result shows that what we learn from colloidal

self-assembly and geometry can be applied to design materials with complex structures

and functionality.
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2.8 Confocal images showing the formation of a kinked line-slip defect. At
t = 0, a line-slip defect begins to form when the crystal wraps around
the cylinder. At t = 1.76 min, another line slip starts forming in a
parallel line, leaving fractional vacancies between the two. The line slips
continue to grow until t = 10 min, after which we observe fluctuations
in the kinked shape but not in the number of fractional vacancies. . 22

ix



2.9 Images from Brownian dynamics simulations of crystal growth. In
each image the crystal is shown cut and unwrapped, such that the
entire circumference of the cylinder is visible. All four crystals shown
here form on a cylinder with the same circumference. The line-slip
defect of crystal 1 (identified by the yellow particles) has an angle of
θ = 78.69° with respect to the circumferential axis of the cylinder. As
the crystal grows, the line-slip sometimes forms a kink (frames 3 and
5 from the left) but quickly rearranges into a straight line slip (frame
6). Crystal 2 has a line-slip defect with a smaller θ = 30.26°. In this
case, the line slip fails to follow the crystal growth and traps a number
of fractional vacancies. Crystal 2 has a larger value of δ than crystal 1
(0.67 compared to 0). Crystal 3 and crystal 4 both have line-slip angles
of about θ = 55°, and their values of δ are also in between those for
crystals 1 and 2 (δ = 0.11 for crystal 3 and δ = 0.53 for crystal 4). . 24

2.10 (a) Contour plot showing probability distribution (kernel density esti-
mate) of kinked line-slip defects as a function of δ and θ for 79 simulated
crystals with fixed r. (b) Same type of plot as (a), but showing data
from 116 crystals found in experiment with varying r. The plots show
that the number of fractional vacancies varies with the line-slip angle
in the same way, though the correlation coefficient in the experiment
(-0.49) is smaller than that of simulation (-0.77), likely because the
experimental data are not taken at a single size ratio. . . . . . . . . 25

2.11 (a) (b) Growth model of line-slip defects in two crystals with same
chiral angle φ but different line-slip angles θ. At each time, new particles
(particles with red circular borders) are added to the faces of the crystal
grain. Before the crystal wraps around the cylinder (steps 1, 2, and 3),
particles are equally likely to attach to any of the three faces of the
crystal, resulting in isotropic growth. Once the crystal wraps around,
particles can attach only to the two faces that are not aligned with the
cylinder axis (step 4). In a, both of these faces make approximately the
same angle with the cylinder axis. Thus, the growth rates should be
approximately the same, and the line slip (yellow particles) can grow
straight. In b, the crystal has wrapped around, occluding the vertical
face. As a result, the growth rates on the two faces must differ, and
therefore the line slip tends to incorporate more fractional vacancies. 26

2.12 (a) A line-slip defect in a crystal found in simulation with φ = 41.5°
and θ = 80.5°. (b) A line-slip defect in a crystal found in simulation
with φ = 44.3° and θ = 45°. . . . . . . . . . . . . . . . . . . . . . . . 27

x



2.13 (a) Length of three different faces of crystal over time for the crystal in
Fig. 2.12a. Face 2, which is aligned with the cylinder axis as well as the
line-slip defect grows without competition from the two other faces. As
a result, the line-slip defect is almost straight with negligible fractional
vacancies. (b) Same plot as in a, but for the crystal in Fig. 2.12b.
Here, face 3 is aligned with the line-slip defect but less aligned with
the cylinder axis. It competes with face 2, which is more aligned with
the cylinder axis. As a result, the line-slip defect incorporates many
fractional vacancies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.14 Cylinder diameter as a function of distance from the cylinder tip. The
black dotted line indicates the diameter range used in experiment. . 30

2.15 Sample chamber setup on a microscope stage. Only the colloidal
spheres (diameter 710 nm) are fluorescently dyed (Firefli Fluorescent
Red 542/612 nm). We use a confocal microscope to observe them
forming crystals on the cylinder. . . . . . . . . . . . . . . . . . . . . 33

2.16 (a) Ground state configuration of a line-slip defect with length L =
10. The starting point of the defect is vi and the ending point is vf .
(b) One excited state with the same vi and vf as in (a). (c) Another
excited state with the same vi and vf as in (a), (b). All of the excited
states can be calculated from the possible configurations of n1, n2, and
n3. (d), (e), (f) Excited states of the line-slip defect that ends at a
different vf . The values for n1, n2, and n3 are different from those in
(a), (b), and (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.17 (a) One excited state configuration for vf = 9v1 + v2. (b) The same
excited state configuration for vf = 9v1− v2. This is a mirror image of
the one in (a). Since the number of configurations in this mirror setup
is exactly the same, we calculate only the number of configurations for
vf = 9v1 + v2 and multiply this by 2. (c) Image of the configuration
for the first vf = 10v1. This is also the ground state. (d) Image of the
configuration for the final vf = 10v2. In this configuration, the line-slip
is full of fractional vacancies. This is the maximum vf that is relevant.
If the cylinder circumference (indicated by the dotted black parallel
lines) is larger than the line-slip length L, we must consider all values
of vf starting from the one in (c) and ending in the one in (d). . . . 39

2.18 Equilibrium line-slip length leq as a function of total line-slip length L
for different values of the potential well depth. . . . . . . . . . . . . 42

2.19 A line-slip like defect found in a small crystalline grain on a flat 2D
surface. It relaxes in a short time because the grain is free to translate
and rotate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.20 Closure of a crystal without any line-slip defect. The grain closes within
a few minutes and does not get kinetically trapped. . . . . . . . . . . 44

xi



2.21 Dynamics of a kinked line-slip defect with one fractional vacancy. (a)
Confocal microscope image of the kinked line-slip defect when the
fractional vacancy is at position 0. (b) Confocal microscope image of
the kinked line-slip defect when the fractional vacancy is at position 1.
(c) Position of the kink identified from the confocal images over about
150 min. The kink mostly moves back and forth between positions 0
and 1, but it also jumps to positions 2, 4, and 5 later. However, the
number of bonds stays same the throughout. . . . . . . . . . . . . . 45

2.22 Dynamics of a kinked line-slip defect with many fractional vacancies.
(a) Confocal microscope image of the kinked line-slip defect at different
points in time. (b) Line-slip length l for the defect as a function of time.
l fluctuates, but does not decrease significantly or reach its ground state
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.23 (a) Confocal microscope image of a kinked line-slip defect. Particles
are color-coded based on the number of bonds. The red particles make
bonds with 4 nearest neighbors and the black particles make bonds
with 5 nearest neighbors. (b) Displacement of each red and each black
particle in (a) as a function of time. . . . . . . . . . . . . . . . . . . . 48

2.24 (a) A line-slip defect with a single fractional vacancy. (b) Over time,
the vacancy from (a) moves out of the crystal boundary. (c) A line-slip
defect with a full vacancy on the slip-line. (d) Over time, part of the
vacancy moves out of the crystal boundary creating a fractional vacancy
in a kinked line-slip defect. . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 (a) Confocal image of polycrystals on a cylinder. The red dotted
lines show the position of grain boundaries between each single crystal
wrapped around the cylinder. (b) Model of a cylindrical crystal. . . 52

3.2 (a) Confocal image of polycrystals on a flat 2D surface. To calculate
the average grain length, we draw 9 straight lines at different angles
throughout the image. (b) Line 1 and its surroundings. We find four
grain boundaries shown by the red dotted lines. Therefore, Ngb = 4.
We repeat this procedure to find values of Ngb for all nine lines in (a). 54

3.3 Grain length L measured for various cylinder-to-sphere size ratios DC .
Each blue point corresponds to one crystalline grain on a cylinder. The
blue solid line represents a linear fit while the shaded region around
it shows the span of one standard deviation. The red horizontal line
shows Lav on a flat 2D surface. . . . . . . . . . . . . . . . . . . . . . 55

3.4 Grain area S for different cylinder-to-sphere size ratios DC . The blue
solid line represents a linear fit while the shaded region around it shows
the span of one standard deviation. . . . . . . . . . . . . . . . . . . 56

xii



3.5 (a) Grain anisotropy A measured for various cylinder-to-sphere size
ratios DC . The blue solid line represents a linear fit while the shaded
region around it shows the span of one standard deviation. The red
dotted horizontal line corresponds to a grain of isotropic shape, with
its length equal to its circumference, such that L = πDC and A = 1.0. 57

3.6 Confocal images of crystals growing on a cylinder, as viewed from the
front and back sides of the cylinder. Grains 1, 3, 5, and 7 form about 20
minutes earlier than grains 2, 4, and 6. The chiral angle θ of the seven
grains are θ1 = 40.91°, θ2 = 36.87°, θ3 = 35.32°, θ4 = 39.69°, θ5 = 4.93°,
θ6 = 7.35°, and θ7 = 33.69°. . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Spheres-on-cylinder morphologies in (a) dental plaque “corncob” forma-
tions [5], (b) sea grapes, (c) peppercorn drupes, and (d) winterberries. 63

4.2 (a) Cartoon of spheres adsorbed on a wire. A sectioning plane indi-
cated through the shade change is shown below, with r indicating the
cylinder radius and R the particle radius, ρ indicating the radius of
a particular cross-section through the particle, and ∆φ indicating the
angle subtended by the particle cross-section at the center of the wire.
(b) Two-dimensional representation in the φ − z plane of spheres of
radius R = 1 adsorbing on a cylinder of radius r = 1 and length L = 20. 65

4.3 Longtime coverage ρ(3D)
∞ versus scaled wire size r̃ = r/R (Eq. (4.3))

from effective 2D simulations of spheres parking on a cylinder. The
dashed black line indicates the longtime coverage for random sequential
adsorption of spheres on a plane, limr̃→∞ ρ

(3D)
∞ = (2/3) limr̃→∞ ρ

(2D)
∞ ≈

0.3647, where limr̃→∞ ρ
(2D)
∞ ≈ 0.5471 is the asymptotic coverage of discs

on a plane [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 (a) Schematic (left) and optical micrograph (right) of negatively charged

particles binding irreversibly to a positively charged nanowire (b)
Schematic (left) and optical micrograph (right) of DNA-coated particles
binding to nanowire coated with complementary DNA strands. . . . 68

4.5 (a) Linear particle density λ versus scaled wire size r̃ = r/R and
(b) 3D asymptotic density ρ(3D)

∞ versus scaled wire size r̃ = r/R from
simulations (black crosses), and experiments using either electrostatic
attraction (red squares, yellow circles, and green triangles show results
from three different experiment samples) or DNA hybridization (blue
diamonds). The dashed black line indicates, as in Fig. 4.3, the long-
time coverage for random sequential adsorption of spheres on a plane,
limr̃→∞ ρ

(3D)
∞ ≈ 0.3647. Shaded regions indicate an interval of two stan-

dard deviations from the mean simulation results. In order to reproduce
the experimental uncertainty associated with small particles numbers,
simulations were performed on short wire segments that accommodate
around 50 particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



4.6 Longtime (asymptotic) coverage ρ(2D)
∞ versus scaled wire size r̃ = r/R

(Eq. (4.3)) from simulation. The dashed black line at 0.5471 indicates
the longtime coverage for the random adsorption of discs on the plane
(that is, in the limit r̃ →∞). . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Two-dimensional representation in the φ− z plane of spheres of radius
R = 20 adsorbing on a cylinder of radius r = 1 and length L = 1000.
To compute the angular density-density correlation function, we fix a
particle (shown in red), consider a strip of width ∆y along a direction θ,
and count the number of particles whose centers are contained inside this
strip. Repeating this procedure for all particles and then for different
angles θ yields the plot in Fig. 4.8. . . . . . . . . . . . . . . . . . . . 73

4.8 Plot of the angular density-density correlation 〈n (~r) n (~r′, θ)〉 as a
function of angle θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Varying r̃ = r/R changes the maximal density direction θmax (that is,
the angle for which 〈n (~r) n (~r′, θ)〉 is maximum) as tan θmax ≈ 3r̃. . 75

5.1 Our synthesis scheme for plasmonic clusters consists of seven steps:
(1) We perform seeded-growth emulsion polymerization of styrene on
spherical silica particles with a diameter of 86 nm. (2) We then overgrow
the silica seed and (3) dissolve polystyrene, which results in structures
with six concave dimples. (4) We aminate the residual polystyrene
at the bottom of the dimples to complete the template. (5) We lock
carboxylated silica nanospheres with a diameter of 137 nm onto the
aminated dimples. (6) We convert the carboxylate groups on the silica
satellites into amine groups using ethylene diamine. (7) We grow a thin
gold shell on top of the spheres by the site-specific adsorption of gold
nuclei and subsequent regrowth. . . . . . . . . . . . . . . . . . . . . 83

5.2 (a) TEM images of silica/gold clusters with varying gold shell thick-
nesses, obtained with different amounts of gold precursor: a) 5 mL; b)
10 mL; c) 20 mL; d) 25 mL and e) 35 mL. (b) Nine different clusters
for the regrowth condition of 25 mL gold precursor. . . . . . . . . . 86

5.3 Single-particle spectroscopy setup. (a) Setup for measuring the spec-
trum of light scattered from individual nanoclusters. The light source
is an unpolarized halogen lamp illuminating the sample at an incidence
angle of 65° (25° with respect to the horizontal axis). An objective (50×,
NA = 0.5) is placed on top of the grid to collect the scattered light. An
adjustable aperture is placed in the optical path of the spectrometer
to collect light from only a narrow area (a circle with a diameter of
about 1 µm) surrounding the cluster. To make sure that clusters are
well separated, we dilute the experimental sample. (b) TEM image of
a target cluster (inside red circle) near marker “P” on TEM grid. (c)
The same target cluster imaged with the dark-field microscope. . . . 87

xiv



5.4 Measured spectra of nine individual octahedral clusters. . . . . . . . 88
5.5 Diagram of experimental geometry. Our model accounts for the in-

cidence angle, collection angle, and substrate geometry used in the
experiments. To mimic an unpolarized light source, we add the scat-
tered intensity from two orthogonal polarizations. . . . . . . . . . . . 89

5.6 Cross-sectional view of the geometry of the octahedral cluster simulated
in FDTD, showing the gold shell thickness (23 nm) and separation
between the gold layers on the satellites (1.98 nm), both of which were
estimated from TEM images of clusters before and after the gold plating
step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Finite-difference time-domain (FDTD) simulations reproduce the lo-
cations of the measured peaks. Charge density maps near 700 nm,
808.7 nm, and 892.5 nm show different resonant modes inside the clus-
ter at those wavelengths. As we increase the separation distance between
particles, all the peaks shift to shorter wavelengths. . . . . . . . . . . 91

5.8 STEM-EDX elemental mapping of the gold clusters: bright field TEM
image (top left) and silicon, oxygen, gold and superimposed EDX maps
evidencing the core-shell morphology of the six satellites. . . . . . . . 103

5.9 (a) 3D view of the simulation setup for p-polarized light. (b) Sideview of
the simulation setup for p-polarized light. (c) 3D view of the simulation
setup for s-polarized light. (d) Sideview of the simulation setup for
s-polarized light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.10 Map of refractive index in a cross-sectional plane of an octahedral
nanocluster modeled in simulation. . . . . . . . . . . . . . . . . . . . 106

5.11 Far-field radiation pattern of a modeled nanocluster at three different
wavelengths. The incident light polarization is aligned with the x-axis.
The patterns at 892.5 nm represent electric dipolar radiation and the
patterns at 700 nm represent electric quadrupolar radiation, in both
XY and XZ planes. At the wavelength of 808.7 nm, the quadrupolar
mode shows up in the XY plane (shown by the black arrows). . . . . 107

5.12 Scattering spectra for clusters with different gaps. The total intensity
is the sum of the intensity of s-polarized and p-polarized light. We find
one dominant peak for each of the polarizations. For a 1.98 nm gap
geometry, the peak for s-polarized light is around 770 nm and the peak
for p-polarized light is around 892.5 nm. As the gap increases from
1.98 nm to 4.98 nm, both of the peaks for s-polarized and p-polarized
light blue-shift. As a result, the peaks in the total scattered light
spectra (shown by green plot) also blue-shift. . . . . . . . . . . . . . 108

xv



6.1 (a) Line-slip defect with small gap at the slip and large angle at the
kink. The large angle enables particles at the kink to hop more often.
(b) Line-slip defect with large gap at the slip line and small angle at
the kink. The small angle does not enable particles at the kink to hop
often. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 (a) Crystal with a kinked line-slip defect at room temperature. (b) At
high temperature (60°C), the crystal starts to sublime (bottom right
corner); half of the defect disappears as the crystal starts to sublime. 112

6.3 (a) Image of a cone fabricated by pulling a glass capillary tube. The red
line shows a scale bar with a length of 10 µm. (b) Confocal micrograph
of colloidal particles self-assemble on the surface of a cone through
depletion interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Confocal microscope images of a colloidal crystal made of particles with
two different sizes, 700 nm (green) and 800 nm (red). The top panel
shows variation in structure at their number ratios (a) 90:1 (b) 9:1,
and (c) 1:1. The bottom panel shows the same images in black and
white. Crystals in (e) have smaller grains and more grain boundaries.
They also have more second layers (the bright white spots on top of the
crystals) compared to the crystals in (d). In contrast, the crystals in
(f) have no long-range order and, as a result, do not form a second layer.115

xvi



Prior Publications

This thesis is partly based on the following publication:

• Chapter 4: Edvin Memet, Nabila Tanjeem, Charlie Greboval, Vinothan N.

Manoharan, L Mahadevan, Europhysics Letters 127 (3), 38004 (2019).

Other publications relating in part to work discussed in this thesis are in preparation.

xvii



Acknowledgments

To do a successful experiment, a number of parameters (samples, equipments,

timing etc.) have to work well – I learned this hard truth after spending years of my

training as an experimentalist. In a similar way, I realize that to complete a phD

thesis, quite a few parameters (advisors, mentors, circumstances etc.) need to work

together as well.

I am grateful to my advisor, Vinny Manoharan, for all the knowledge I gained

from him on approaching scientific problems, thinking about concepts, writing and

presenting effectively, and attempting to make good jokes. Thank you for setting

ambitious goals and holding high standards while trusting my ability to reach them.

Thank you for helping me find my passion, get excited about research projects and

career options. I am grateful for all the opportunities and support you have provided

over the years, both explicitly and implicitly. Your mentoring and guidance have

helped me grow and feel confident to step towards the next steps of my career.

It has been a great pleasure working with Professor L. Mahadevan, member of my

thesis committee and collaborator. Thank you for participating in interesting and

productive discussions on projects while also being kind and welcoming in person. I am

grateful to Professor Chris Rycroft, member of my thesis committee and collaborator.

Thank you for providing very helpful feedback on my work and being supportive

throughout.

I thank Edvin Memet for being an amazing collaborator and developing theory of

random parking on a cylinder. I am thankful to Henry Wilkin for his contribution in

simulating cylindrical crystals and useful insights. I thank Dan Beller, who played a

significant role in initiating the project on cylindrical crystals and has provided great

xviii



feedback. I am grateful to Cyril Chomette for developing the synthesis method of

plasmonic nanocluster and for being a wonderful collaborator and friend during his

time at Harvard.

I like to take the opportunity to thank my mentors, colleagues, and friends in

Harvard. Nicholas Schade, my first mentor at Harvard, thank you for being really

supportive during my first couple of years in the lab. You have taught me not to be

afraid to ask any question. I see you as a role model not just in doing science, but also

in honing my creative skills, such as writing songs and parodies for defense/farewell

parties. I thank Jessica Sun for taking over my baby-projects on cones and negative

curvature substrates. Not only did I learn a lot brainstorming and discussing ideas

with you, your fresh and endlessly positive perspectives have given me the much

needed positive energy during my last year of phD. I thank Charlie Greboval and

Talha Rehman, whom I had the opportunity to work with and mentor during summer.

Your contribution to the project and helping me develop mentoring skills will always

be precious.

A significant part of my growth during my time in Harvard did happen outside of

the lab. I thank John Girash, the graduate program director of SEAS, for training

and mentoring me to work as the departmental pedagogy fellow for two years. Taking

his teaching practicum course in my third year was a game-changer for me; since then

I have never stopped ‘putting my teaching-hat on’. Thanks for introducing me to this

wonderful world of pedagogy and be a part of my happiest moments at Harvard. I

am grateful to Marty Samuels for being my mentor at the Bok Center for teaching

and learning; I never get tired listening to and learning from your extraordinarily

xix



insightful and considerate perspectives on teaching.

I am grateful to my colleagues at Manoharan lab with whom I have developed

friendship and collaborations. Irep Gozen, my first postdoc-friend, thanks for being

unnecessarily worried about my willful and temporary disappearances both from lab

and from social media. Your ‘stop complaining and just do it’ attitude will always be

a good reminder for me to think of things objectively. Danai Montalvan, thanks for

constantly reminding and helping me to take care of myself which I forget quite often.

I admire your passion in science and perseverance skill and enjoyed collaborating

with you on the liquid crystal project. LaNell Williams, thanks for being a great

colleague, understanding my personal struggles, and helping me find resources for

additional work opportunities on campus. I thank Guangnan Meng, whose advice

while troubleshooting my experiment almost saved my life twice. I am grateful to

Cheng Zeng for participating in discussions on experiments and helping me find

references for paper. I thank all my other colleagues at the Manoharan lab who helped

me find things around and provided useful feedback on my research and presentations.

I thank my friends outside of the lab - Hemi Gandhi, Shiang Fang, Nanxi Li, Joonhee

Choi, Shruti Mishra, and many others. Meeting with all of you during my first couple

of years has helped my transition into grad school significantly.

Looking back, I’d not be able to pursue a phD if I did not receive the academic

background and support from my undergraduate institution - the University of Tokyo.

I am grateful to my undergraduate thesis advisor Takashi Yatsui, who immediately

after hearing my plans to apply for grad schools said ‘you should apply to Harvard’;

I would not have the courage to do so without him saying that. I am also thankful

xx



to Professor Motoichi Ohtsu, whose comment ‘in research, you only fail when you

decide to give up’ engraved in my mind motivated me to get back to the lab next day

after a failed experiment. I thank my first mentor, Mochizuki Takahiro; who told me

(when I was freaking out after breaking an expensive equipment) ‘we just have to fix

the problem’ – I figured it is a great way to perceive life in general. I am grateful for

the wonderful support I got from my friends in Tokyo during my time there and even

afterwards - Himasha Rukhshani Dharmalapala, Minh Tran Anh, Ken Ong, Susmita

Saha, Shajib, Shouman, Dipto, and other members of the jpugrads community.

Finally, I like to thank my family - my sister, Nafisa Tanjeem, for being the

inspiration of setting bold aims and challenging things that are perceived as ‘normal’.

I thank my little sister, Najifa Tanjeem, for her amazing ability to make me happy

even in difficult situations. Lessons I learned from my mother, Fatema Nasreen, to be

independent and resilient since I was a child, have always encouraged me to explore

new places and ideas fearlessly. I am also thankful for having a caring father, Abdus

Sattar. I thank members of my extended family for being very helpful from time to

time in reminding me who I am and what my goals are.

Growing up as a young girl in Bangladesh, it was not easy to dream of being a

scientist, getting a phD in Applied physics, or even living an independent life. I am

grateful to all the people (some mentioned here, some are not), who paved my way

so that I have dared to build my own dreams and fight against the obstacles waiting

for me. I dedicate my work to students coming from a similar background, who have

decided to never give up pursuing a dream that is much bigger than that of their

surroundings.

xxi



Chapter 1

Introduction

Looking around in nature, we find a variety of structures with interesting geomet-

rical features. The structure of a sunflower head, the pattern on a corncob, and the

spherical and tubular shapes of viruses have drawn the interest of scientists across

multiple disciplines [7, 8, 9]. How do these structures form and why do they take their

natural shape? Although there is no simple answer to these questions, a good way to

approach this problem is to look for the design rules that the building blocks of these

structures follow to assemble into their final shapes.

Current technology does not allow us to observe self-assembly in real time at the

atomic or molecular scale. Fortunately, many aspects of the physics of self-assembly

remain valid even if the building blocks are larger than atoms or molecules, such as

colloidal microspheres [10]. Self-assembled colloidal microspheres have been used to

realize numerous phenomena related to self-assembly, such as phase transitions [11],

crystal nucleation and growth [12], melting [13], and the glass transition [14].

In this dissertation, I use colloidal microspheres to understand the effect of geometry
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on self-assembly. Although this problem has gained attention in recent years, there

are still many unresolved problems because of the diversity of geometric parameters.

I address a few of them here and discuss how this knowledge can be used not only to

understand nature but also to design functional materials inspired by nature.

1.1 Self-assembly of colloidal spheres

In our colloidal systems, solid microspheres with an average diameter in the range

of 700 nm to 1300 nm are dispersed in liquid. These microspheres exhibit Brownian

motion and they self-assemble in experimental timescales owing to their interactions

with each other and their interactions with a surface. Below, I describe the types of

interactions we use to drive self-assembly in our experimental system.

1.1.1 Colloidal interactions

Depletion interaction. Depletion is an entropic interaction that requires a binary

mixture of colloids. Consider a solution with a mixture of large spheres and small

spheres, where small spheres outnumber the large ones (Fig. 1.1). Each large sphere

develops a depletion zone around it where the center of the small spheres cannot

enter owing to their size. When the depletion zones of the large spheres overlap, the

available volume of the small spheres increases, resulting in a net increase of entropy

and reduction of free energy. Consequently, as the system approaches equilibrium, the

large spheres form ‘bonds’ with each other through an attractive interaction. The
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Figure 1.1: Mechanism of depletion interaction in a binary mixture of large spheres
(radius RL) and small spheres (radius RS). The light-blue region around each large
sphere shows the ‘depletion zone’ where the center of the small spheres cannot enter.
The dark-blue region in between the large spheres is the overlap volume of the depletion
zones.

depletion potential can be modeled using the following equations [15, 16]:

U(r) =


−kBTNSVOV if r < 2RS

0 if r ≥ 2RS,

(1.1)

where kB is the Boltzmann constant, T is room temperature, and VOV is the volume

of overlap between the large spheres. VOV is a function of the particle center-to-center

distance r. For two spherical particles, this volume is

VOV (r) =
π

6
(2RL + 2RS − r)2(2RL + 2RS +

r

2
), (1.2)

where RL is the radius of the large spheres and RS is the radius of the small spheres.

In a system with fixed RL and RS, the depth of the interaction potential can be tuned

by changing the number of small spheres (NS).
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Electrostatic interaction. Any neutral body dispersed in a solution can form an

inhomogenous distribution of ions. The distribution of the counter-ions, consisting of a

Stern layer and a diffuse layer, determines the shape of the electrostatic potential away

from the surface [17] (Fig. 1.2a). When two charged bodies come close together, their

double layers overlap, resulting in an attractive or a repulsive electrostatic interaction

(Fig. 1.2b).
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Figure 1.2: (a) A positively charged surface. Some negative counter-ions accumulate
very close to the surface, creating the ‘Stern layer’. Other negative counter-ions diffuse
nearby, forming the ‘diffuse layer’. Both of these layers determine the shape of the
interaction potential which is a function of distance r from the charged surface. Away
from the surface, the charge distribution is uniform and hence the potential is zero.
(b) When two oppositely charged bodies come close to one another, their double layers
as well as the interaction potential curves overlap, resulting in an attractive force.

The potential energy of electrostatic interaction between two spherical charged

4



bodies can be modeled as follows [18]:

U(r) = −kBTZ2
pλB

(
eκRL

1 + κRL

)2
e−κr

r
, (1.3)

where Zp is the surface charge valence on the sphere, λB is the Bjerrum length, and

κ−1 is the Debye screening length

κ−1 =

√
kBTε0ε

2Z2e2ρ
, (1.4)

where ε0 is the dielectric permittivity of vacuum, ε is the dielectric constant, Z is

the valency of the ions in solution, e is the fundamental charge, and ρ is the ion

concentration in solution. The depth of the electrostatic interaction potential can

be tuned by changing the surface charge Zp. The range of the potential depends on

the Debye length κ−1, which can be tuned by changing the ion concentration in the

solution, ρ.

DNA hybridization. Another way to design colloidal interactions is to use DNA

hybridization. Microspheres and surfaces that are covered with complementary DNA

strands assemble owing to the effective attractive interaction shown in Fig. 1.3c. The

depth of this interaction potential can be controlled by tuning the DNA hybridization

enthalpy or by tuning temperature.

1.1.2 Packing and parking

By designing the appropriate interaction potential, one can cause colloidal spheres

to self-assemble into a particular structure. In the case of a weak interaction with

a potential energy depth of a few kBT , particles do not bind irreversibly once they
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Figure 1.3: (a) Diagram of depletion interaction between colloidal spheres and
a flat surface, showing the overlap in excluded volume (blue). (b) Image taken
with a confocal microscope showing colloidal spheres (average diameter 710 nm)
packing on a flat glass surface. The depth of the interaction potential is small
enough that the particles can find their maximum packing configuration. (c) DNA
hybridization between colloidal spheres and a flat surface coated with DNA strands
with complementary sequences. (d) Image taken with a bright-field microscope
showing colloidal spheres (average diameter 1.3 µm) park on a flat glass surface. The
depth of the interaction potential is large, as a result, particles stick irreversibly to
the glass surface.

come into contact with one another or with a surface. As a result, they can explore

different configurations and eventually reach equilibrium. Fig. 1.3a and Fig. 1.3b

shows an example of colloidal spheres packed on a flat glass surface through depletion

interactions. Because of the geometry of the overlap volume, the interaction potential

between a particle and a flat surface is stronger than the interaction potential between

two particles (Fig. 1.3a). Once the spheres attach to the flat surface, they can slide

on the surface, find other particles, bind and unbind multiple times, and eventually
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find a low energy configuration in which particles pack densely (Fig. 1.3b).

In the case of a strong interaction, the particles may fail to reach equilibrium.

One example of such assembly is shown in Fig. 1.3c and Fig. 1.3d, in which case, the

particles and the glass surface are covered with DNA strands with complementary

sequences. In this case, once the particles bind to the surface, they cannot unbind

or slide. As a result, their final configuration is disordered and not densely packed.

This process is often referred to as ‘random parking’ analogous to the problem of

car parking [19]. A system with randomly parked colloidal spheres may never reach

equilibrium; however, it may reach a jammed state in which there is no space left to

add a new particle.

1.2 Self-assembly on a cylindrical substrate

When spheres are packed inside a thin cylinder, they can spontaneously form

helical structures (Fig. 1.4). These diverse structures have been examined in theory

and experiment [1, 20, 21, 22, 23]. The same types of structures have been reproduced

in simulations for a system in which colloidal spheres assemble on the surface of a

cylinder [2]. This work by Wood, Santangelo, and Dinsmore carefully examined the

structures for different ratios of the cylinder circumference to the sphere diameter. The

results show that for some discrete size ratios (shown by the gray circles in Fig. 1.5) a

perfect crystal can be accommodated around the cylinder circumference. For other

size ratios, either an asymmetric crystal (shown by blue dots) or a defect (shown by

orange dots) appears. For a particular size ratio, the preference for asymmetric lattice

or a defect is determined by the interaction range [2].
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Figure 1.4: Close packed configurations of hard spheres inside a cylinder, examined
by Pickett and coworkers. Different configurations are found as the cylinder-to-sphere
diameter ratio D varies in the range of 1 < D ∼ 2.155. Six different regions are
defined as denoted by I-VI; the corresponding structures in those regions are indicated
by the black arrows. Figure reproduced from reference [1].

All of these studies focus on the maximum packing scenario. The non-equilibrium

and random parking scenario have been examined theoretically for cylinders with

large diameter [24]. Nevertheless, there is a lack of experimental studies that examine

the self-assembled structures and assembly dynamics in both finite-temperature and

non-equilibrium cases.

1.3 Overview of thesis

To bridge the gap between theory and experiment, we design experimental systems

to study self-assembly on cylindrical substrates. In Chapter 2, I show the results of an
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Figure 1.5: Phase diagram of chirality (or helicity) as a function of size ratio calculated
by Wood, Santangelo, and Dinsmore [2]. When the interaction range between the
spheres is short, defect structures (orange dots) are preferred over asymmetric crystal
structures (blue dots). Figure reproduced from reference [2].

experimental study on crystallization of colloidal microspheres on a micrometer-sized

cylinder through a weak depletion interaction. I observe a specific type of defect

called as ‘line-slip defect’ in single crystals that wrap around the cylinder, previously

predicted in theory and simulations. Surprisingly, the defects can take varying shapes

that include kinks and fractional vacancies. Using theory and simulations, we and our

collaborators demonstrate that these varying shapes emerge because of anisotropic

crystal growth dynamics on the surface of the cylinder. In Chapter 3, I examine the

size, length, and anisotropy of multiple single crystalline grains formed along the length

of a cylinder. I show that the grain length along the cylinder remains consistent, with

the exception of very thin cylinders, whereas the grain size and anisotropy vary as a

function of cylinder size. In Chapter 4, I demonstrate an experimental system to study
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non-equilibrium random parking on a cylinder with high curvature. Using theory and

simulations, we and our collaborators show that the surface coverage fraction is a

function of cylinder curvature and deviates from the value on a flat 2D surface. I show

that our experimental observations are consistent with this theory. In Chapter 5, I

demonstrate a new multi-step synthesis approach to fabricate octahedral plasmonic

nanoclusters. The synthesis approach developed by our collaborators results in high

yield and precisely controlled geometry. Using dark-field spectroscopy measurements

and finite-difference time-domain simulations, I show that the plasmon resonance

peaks of the nanoclusters are consistent from cluster to cluster, confirming our ability

to control the geometry precisely. Finally, in Chapter 6, I present some new problems

that are inspired by the findings of my experiments, such as defect and sublimation

dynamics of the kinked line-slip structures in cylindrical crystals. Additionally, I

propose and present preliminary results on two systems in which geometric frustration

can be designed in different ways.
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Chapter 2

Crystal morphology and growth

dynamics on a cylinder

The research described in this chapter is done in collaboration with William H.

Wilkin, Daniel A. Beller, and Chris H. Rycroft. The research was supported by the

National Science Foundation under grant no. DMR-1420570.

2.1 Introduction

The morphology of a crystal depends on the curvature and topology of the substrate

it grows on. As shown in experiments on colloidal crystals, a crystal on a surface with

nonzero Gaussian curvature must incorporate topological defects [25, 26, 27] or grow

anisotropically [18] when it becomes large enough. Simulations have also shown that

a crystal growing on a topologically closed surface may face a ‘closure catastrophe’ in

which the accumulation of defects halts the crystal growth [28, 29]. Most studies on
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these constraints have focused on crystals on the surface of a sphere, in which case

both Gaussian curvature and topology affect the crystallization dynamics. A cylinder,

however, has zero Gaussian curvature, but also has a surface that loops back on itself.

Hence, crystals grown on a cylinder provide an opportunity to study the effects of a

closure constraint at zero Gaussian curvature.

One known consequence of the closure constraint is chirality. For hard spheres on

a hard cylinder, theory and simulation have shown that chiral crystals are the ground

states for certain values of the ratio of the cylinder diameter to sphere diameter [21].

Between these size ratios, the ground states incorporate defects known as line slips

[21, 30, 2]. Chiral crystals have been observed in experiments on spherical particles

confined inside a cylinder, where the cylinder is small enough that all the particles

touch the surface [23, 22]. Line slips have been observed in wet foams confined to a

cylinder [31]. However, all of these studies examine only the ground state.

Our study examines how the process of crystallization at finite temperature is

affected by the cylindrical constraint. By directly observing colloidal microspheres

crystallizing on a micrometer-sized cylinder, we can see how the morphology evolves

with time. At long times, we observe chiral crystals and chiral line-slip defects, as

expected, but we also observe some unexpected structures that arise from the growth

process: kinked line slips that incorporate fractional vacancies. We show that as a

crystal wraps around the cylinder, its growth becomes anisotropic, and line-slip defects

that are misaligned with the growth direction form kinks rather than straight lines.

This connection between morphology and growth dynamics may shed some light on

the formation mechanism of many natural and artificial tubular structures.
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2.2 Crystal formation on a cylinder

a cb

Figure 2.1: (a) Scanning electron microscopy image of a tapered optical fiber. Both
thick and thin parts belong to the same fiber. The original fiber diameter is 125 µm,
and the smallest diameter in the tapered part is about 200 nm. (b) Setup for depletion
interaction. Colloidal particles have an average diameter D = 710 nm. Sodium dodecyl
sulfate (SDS) forms micelles with an effective diameter of 30 nm [3, 4]. These micelles
induce a short-ranged depletion force between the particles. We examine crystallization
where the diameter d of the cylinder is between 1.5 µm and 5.5 µm. (c) Projection of
a stack of confocal microscope images of colloidal crystals formed on the surface of a
cylinder.

In our experimental system, a quasi-two-dimensional (2D) colloidal crystal self-

assembles on the surface of a cylinder, driven by a short-ranged depletion interaction

between the particles and between the particles and cylinder. We fabricate a cylinder

by simultaneously heating and pulling a silica optical fiber [32, 33, 34]. This method

results in a tapered cylinder with a diameter d of a few micrometers and with a smooth

surface for crystal growth (Fig. 2.1a). We use colloidal polystyrene particles with an

average diameter of D = 710 nm as building blocks for crystallization. The interaction

range is approximately the effective diameter of the depletant micelles, or about 4.2%
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Figure 2.2: (a) Confocal microscope images of colloidal crystals formed on a flat
2D surface, where there is no closure constraint. Each red dotted box denotes one
single crystalline grain. (b) Confocal microscope images of crystals assembled on
cylinders for different cylinder-to-sphere diameter ratios r = d/D = 4.43 (top) and 2.46
(bottom). Inside each red dotted box, we show the front and back of a single crystal
wrapped around the cylinder. The single crystals are identified by the consistent chiral
angle found at both sides of the cylinder.

of the particle size at the SDS concentration we use (Fig. 2.1b) [3, 4]. We adjust

the concentration of colloidal particles (0.25% w/v) and SDS (33.6–34mM) to avoid

formation of multiple crystal layers or large particle clusters.

After preparing the sample, we observe multiple crystals growing on the cylinder.

Within 3–5 hours, the cylinder is almost entirely covered by particles. On both a flat

surface (Fig. 2.2a) and cylinder (Fig. 2.2b), we observe multiple crystalline grains.

Because our goal is to study the closure of individual grains, we limit our observations

to r = d/D < 10, in which case we see single crystalline grains that wrap completely

around the cylinder and multiple crystalline grains formed along the length of the

cylinder (Fig. 2.2b). Because the diameter of the cylinder varies slowly along its
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length, we can assess the effects of the size ratio by observing crystals on different

parts of the same cylinder. However, the diameter variation of the cylinder across the

length of a single crystal is small enough that we can approximate the geometry as a

cylinder rather than a cone.

2.3 Chiral crystals and chiral defects

Our self-assembled cylindrical crystals have structural features that are not seen in

crystals on a flat surface. One such feature is chirality. Previous work has shown that

perfect chiral crystals should appear for integer values of the chiral indices m and n

[21] (Fig. 2.3a). These indices determine the size ratio and chiral angle of the crystal.

In our experiments, some of the crystals we observe are perfect crystals (Fig. 2.3b).

For these crystals, we characterize the chiral angle, which is easier to measure than

m and n. As shown in Fig. 2.3b, we observe that crystals with different chirality

spontaneously assemble on different parts of the cylinder.

Another structural feature not present in flat crystals is the line-slip defect, which

consists of a line of particle pairs in which each particle has only five nearest neighbors.

The defect is identified from the broken triangular symmetry along a line, which leaves

the symmetry of the rest of the crystal unperturbed. The chirality of a line-slip defect

is related to the chirality of the crystal. We observe line-slip defects in our system, as

shown in Fig. 2.4. Such defects have been observed previously in macroscopic systems

[30, 31] but not, to our knowledge, in a self-assembled system.

Chirality and line-slip defects are specific to cylindrical crystals. Because both

m and n are integers, a perfect crystal can form only for discrete values of the size
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Figure 2.3: (a) Formation of a crystal without any defects requires that the cylinder
circumference C be an integer linear combination of the lattice vectors a1 and a2:
Cm,n = ma1 + na2. The chiral angle φ of the crystal depends on the integers m and n.
For example, configurations (9,0) and (5,5) are achiral, whereas configuration (7,3) is
chiral. (b) Confocal microscope images of crystals with different chirality observed
in experiment. The four crystals are observed at different parts of the same tapered
cylinder. We measure the chiral angle φ of each crystal from the images.

ratio r. Between those size ratios, the ground state must either break symmetry or

incorporate a line-slip defect [21]. Previous simulations on self-assembled cylindrical

crystals suggested that long-ranged interactions favor asymmetric crystals and short-

ranged interactions favor line slips [2]. In our short-ranged system, line-slip defects
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  Bond      network
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Figure 2.4: Images of line-slip defects with different chirality, along with the bond
network extracted from the images. The chirality of a line-slip defect is defined by the
angle θ that the slip line forms with the circumferential axis of the cylinder. The blue
circles show the positions of particles that form the line-slip defect, and the red circles
show the other particles in the crystal. All scale bars are 2 µm.

indeed appear, though at larger size ratios (r = 2.00–8.00) than those probed in these

simulations (r = 0.1–1.4).

The line-slip defects we observe are stable for the duration of our experiments (up
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to 18 hours), except for the formation of some vacancies. As shown in simulation

and theory [21, 2], line-slip defects are ground-state defects that appear at specific

size ratios r and cannot disappear unless the crystal unwraps and finds a different

configuration. We sometimes see defects similar to line slips in 2D crystals on a planar

surface, arising between two different crystalline grains with the same crystalline

orientation. However, such defects disappear when the grains translate. In contrast,

line-slip defects on the surface of the cylinder cannot relax by shear because doing so

would change the circumference of the crystal.

2.4 Line-slip defects with kinks

We also observe a new class of defect not previously seen in simulation. These

defects consist of two or more parallel line-slips, connected by what we call ‘kinks’

(Fig. 2.5). Gaps appear in the kinks, which we call ‘fractional vacancies’ because one

full particle cannot fit inside. We find that kinked line-slip defects emerge in crystals

with different chiral angles and with a variety of number of fractional vacancies, as

shown in Fig. 2.5.

To understand the origin of the kinks and fractional vacancies, we first consider

the possibility that they are equilibrium defects, similar to vacancies in a planar

crystal. As with vacancies, we expect that some fractional vacancies should occur in

equilibrium, owing to entropy. The fractional vacancies would not have appeared in

previous simulations on cylindrical crystals because these simulations examined the

ground states.
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Fractional 
vacancy

Figure 2.5: Confocal images and bond networks of three kinked line-slip defects with
different number of fractional vacancies. n1 is the total length along the line-slip defect
in units of particle center-to-center distance along the lattice direction v1. n2 is the
length along a second lattice direction v2. Along this line, none of the particles are
in contact with another particle across the line-slip; they are instead in contact with
the fractional vacancies. We define the line-slip length l = n1 and the path length,
including the fractional vacancies, as L = n1 + n2.

We use a statistical mechanical model to calculate the equilibrium number of

fractional vacancies and the equilibrium length of the kinked line slips. Two parameters

characterize the geometry: the line-slip length l is the effective length of a line-slip
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Ground state Excited state

Figure 2.6: A model used to calculate the equilibrium length leq of a line slip. The
line slip is where the black and blue halves of the crystals meet. The length of the
red solid line along the line slip is equal to n1, and the length of the red dotted
line is equal to n2. In the limiting case of a straight line-slip defect without any
kinks, n2 = 0 and L = n1 = l. Starting from this ground state, we calculate all the
possible configurations of the defect using lattice vectors v1, v2, and v3, assuming the
circumference of the cylinder is larger than L.

defect, excluding the fractional vacancies, and the total length L is the length including

the fractional vacancies (Fig. 2.5). In the ground state, L = l, but in excited states,

there are fractional vacancies, and the effective line-slip length becomes shorter, such

that l < L (Fig. 2.6). For a given total length L, we calculate all possible configurations

of kinked line-slip defects, as shown in Fig. 2.6, and then we calculate the equilibrium

length leq using Boltzmann statistics. The equilibrium average length leq is smaller

than L, reflecting the number of fractional vacancies in equilibrium.
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Figure 2.7: Plot of l as a function of L for ground states, equilibrium, and experiment.
In the ground state, L = l. The equilibrium length leq represented by the red straight
line is calculated from the model assuming Eb = 4kBT . To find l from experiment, we
measure n1 and n2 from images of 116 crystals and calculate l = n1 and L = n1 + n2.
The black points represent each crystal and the blue boxes show the distribution of l
for each L.

We find that leq predicted by the model is greater than the measured l for most of

the crystals when we choose Eb > 2kBT in the model (Fig. 2.7). Because stable crystal

grains should not form when Eb < 2kBT [18], the experimental Eb must be greater

than 2kBT . From this observation we realize that while the kinks and fractional

vacancies may well correspond to elementary excitations in an equilibrium line-slip

defect, there are many more of them than expected in equilibrium. Thus, we conclude

that the kinked line-slip defects found in experiment are not in equilibrium.
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2.5 Mechanism of kink formation

t=0 min t=1.76 min t=10 min t=11.75 min t=13.75 min

Figure 2.8: Confocal images showing the formation of a kinked line-slip defect. At
t = 0, a line-slip defect begins to form when the crystal wraps around the cylinder.
At t = 1.76 min, another line slip starts forming in a parallel line, leaving fractional
vacancies between the two. The line slips continue to grow until t = 10 min, after
which we observe fluctuations in the kinked shape but not in the number of fractional
vacancies.

An alternative hypothesis for the origin of the kinks is kinetic trapping during

crystal growth. To check whether kinetic trapping might be occurring, we observe

the dynamics of crystal growth in experiment (Fig. 2.8). We find that kinked line

slips tend to form when two parallel line slips grow, trapping fractional vacancies

in between. We find that most kinked defects do not relax and turn into a straight

line-slip defect on the timescale of the experiment, instead showing only thermal

fluctuations near the fractional vacancies (Fig. 2.8). This result suggests that the

kinked defects can indeed be kinetic traps and can result from crystal growth dynamics.
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In contrast, crystals that grow without incorporating a line-slip defect close without

being kinetically trapped.

To understand what dynamics give rise to the kinked morphology, we perform

Brownian dynamics simulations. These simulations confirm that the kinks arise during

growth and not afterward (Fig. 2.9), but they also reveal a surprising feature: the

number of fractional vacancies depends on the chiral angle of the crystal, or the angle

between the line slip and the circumferential axis of the cylinder. In crystals with

larger chiral angles, the line slips are almost straight with very few fractional vacancies,

while in crystals with smaller chiral angles, the line slip incorporates a greater number

of fractional vacancies.

This correlation between the chiral angle and the number of fractional vacancies is

present in both simulation and experiment. To quantify the correlation, we calculate

the parameter δ = (L − l)/L, which is the number of fractional vacancies per unit

length of the total defect. We measure θ and δ for 79 simulated crystals and 116

crystals in experiment and find that δ decreases with increasing θ in both cases, as

shown in Fig. 2.10a and 2.10b.

2.6 Effect of crystal growth anisotropy on morphol-

ogy

The negative correlation between θ and δ provides an important clue about how

the cylindrical geometry affects crystal growth. It suggests that the cylinder itself

makes the growth anisotropic. We make sense of this result as follows. On a flat plane,
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Figure 2.9: Images from Brownian dynamics simulations of crystal growth. In each
image the crystal is shown cut and unwrapped, such that the entire circumference of
the cylinder is visible. All four crystals shown here form on a cylinder with the same
circumference. The line-slip defect of crystal 1 (identified by the yellow particles) has
an angle of θ = 78.69° with respect to the circumferential axis of the cylinder. As the
crystal grows, the line-slip sometimes forms a kink (frames 3 and 5 from the left) but
quickly rearranges into a straight line slip (frame 6). Crystal 2 has a line-slip defect
with a smaller θ = 30.26°. In this case, the line slip fails to follow the crystal growth
and traps a number of fractional vacancies. Crystal 2 has a larger value of δ than
crystal 1 (0.67 compared to 0). Crystal 3 and crystal 4 both have line-slip angles of
about θ = 55°, and their values of δ are also in between those for crystals 1 and 2 (δ
= 0.11 for crystal 3 and δ = 0.53 for crystal 4).
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Figure 2.10: (a) Contour plot showing probability distribution (kernel density
estimate) of kinked line-slip defects as a function of δ and θ for 79 simulated crystals
with fixed r. (b) Same type of plot as (a), but showing data from 116 crystals found
in experiment with varying r. The plots show that the number of fractional vacancies
varies with the line-slip angle in the same way, though the correlation coefficient in
the experiment (-0.49) is smaller than that of simulation (-0.77), likely because the
experimental data are not taken at a single size ratio.

near equilibrium, a crystalline grain grows isotropically. On a finite-sized cylinder,

this is true until the grain wraps around the cylinder. Once the crystal touches itself,

its growth along the circumferential direction of the cylinder is hindered, whereas that

in the axial direction is not. Therefore, if a line-slip is aligned with the cylinder axis

(Fig. 2.11a), its growth will be favored by the crystal growth, compared to a line-slip

that is less aligned with the cylinder axis (Fig. 2.11b).

To validate this interpretation, we observe crystal growth at different line-slip

angles in simulation and measure how the lengths of all three faces of the crystal

change over time. We find that for a line-slip defect with a large chiral angle (θ =

80.5°), the length of the face aligned with the line slip increases with time while the

lengths of other two faces remain stable (Fig. 2.12a and Fig. 2.13a). As a result, this
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Figure 2.11: (a) (b) Growth model of line-slip defects in two crystals with same
chiral angle φ but different line-slip angles θ. At each time, new particles (particles
with red circular borders) are added to the faces of the crystal grain. Before the crystal
wraps around the cylinder (steps 1, 2, and 3), particles are equally likely to attach to
any of the three faces of the crystal, resulting in isotropic growth. Once the crystal
wraps around, particles can attach only to the two faces that are not aligned with the
cylinder axis (step 4). In a, both of these faces make approximately the same angle
with the cylinder axis. Thus, the growth rates should be approximately the same,
and the line slip (yellow particles) can grow straight. In b, the crystal has wrapped
around, occluding the vertical face. As a result, the growth rates on the two faces
must differ, and therefore the line slip tends to incorporate more fractional vacancies.

line slip incorporates few fractional vacancies, resulting in a small value of δ (δ =

0.087). For a line-slip defect aligned further from the cylinder axis (θ = 45°), we find

that the length of the face aligned with the line slip increases over time, but so does

the length of one other face (Fig. 2.12b and Fig. 2.13b). In this case, face 2 is the face

most aligned with the cylinder axis and face 3 is aligned with the line-slip defect, but

less aligned with the cylinder axis. As a result, face 2 and face 3 compete with each
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Figure 2.12: (a) A line-slip defect in a crystal found in simulation with φ = 41.5°
and θ = 80.5°. (b) A line-slip defect in a crystal found in simulation with φ = 44.3°
and θ = 45°.

other, and eventually the line-slip defect acquires a number of fractional vacancies

owing to the growth of face 2. Consequently, we find a larger value of δ (δ = 0.379).

2.7 Conclusion and outlook

We find that the cylindrical constraint results in three different morphologies

for the crystal. The first is a chiral crystal without defects, which appears only at

certain size ratios. The second is a straight line-slip defect, which occurs at size ratios

where a perfect crystal cannot form. The third is the kinked line-slip defect which

incorporates fractional vacancies. This third type of defect is kinetically trapped in

our experimental system.
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Figure 2.13: (a) Length of three different faces of crystal over time for the crystal
in Fig. 2.12a. Face 2, which is aligned with the cylinder axis as well as the line-slip
defect grows without competition from the two other faces. As a result, the line-slip
defect is almost straight with negligible fractional vacancies. (b) Same plot as in a,
but for the crystal in Fig. 2.12b. Here, face 3 is aligned with the line-slip defect but
less aligned with the cylinder axis. It competes with face 2, which is more aligned
with the cylinder axis. As a result, the line-slip defect incorporates many fractional
vacancies.

These results show that a cylindrical surface frustrates the growth of a crystal

that conforms to it. Previous work on colloidal crystals grown on spherical surfaces

has shown that Gaussian curvature is the source of the frustration [18]. But on the

cylinder, which has no Gaussian curvature, the observation of kinetically trapped
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defect structures shows that a closure constraint alone can frustrate growth, similar

to the ‘closure catastrophe’ identified on the sphere [28]. We have shown that the

mechanism of the frustration is the anisotropy of the crystal growth dynamics.

This interplay between growth dynamics and morphology can be useful in under-

standing how different tubular structures form. For example, capsid proteins coat

RNA strands to give rise to uniform cylindrical structures in viruses such as Tobacco

Mosaic Virus (TMV) and bacteriophage T4 [9, 35]. These defectless structures must

have a mechanism to avoid the frustration induced by closure. Some other tubular

structures such as cytoplasmic microtubules can assemble in a cylinder with a seam

line [36, 37]. How different self-assembled structures in nature respond to frustration

remains an interesting question. Other relevant examples of cylindrical self-assembly

include assembly of viral coat proteins on metal nanorod templates [38], closure of

peptide nanotubes [39], transformation of graphene sheets to nanotubes [40], and

formation of crystalline bacterial S-layers [41].

Spontaneously assembled chiral crystals and chiral defects may provide a path to

design chiral materials. Artificially designed chirality has applications in sensing and

motion detection at molecular lengthscales [42, 43, 44, 45], polarization modulation

[46, 47, 48, 49], and optical and mechanical metamaterials [50, 51].

Our results draw a connection between crystal growth anisotropy and the shape of

a line-slip defect. It may be possible to design the shape of the line-slip defect in a

more predictable manner by tuning the strength of the depletion interaction as well as

the cylinder diameter. Another interesting question is at which stage of crystal growth

the anisotropy emerges. We often find that the growth difference between faces of a
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crystal grain emerges even before the crystal meets its own boundary. Finally, the

kinked line-slips are a new class of defects that have not been observed before. Their

near-equilibrium dynamics, melting behavior, interaction with other defects such as

vacancies and grain boundaries, and influence on mechanical properties of a tubular

structure are all worth future investigation.

2.8 Materials and methods
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Figure 2.14: Cylinder diameter as a function of distance from the cylinder tip. The
black dotted line indicates the diameter range used in experiment.

2.8.1 Fabrication of cylinders

We purchase silica optical fibers from Newport Corporation (part number F-SMF-

28) and taper them down to fabricate thin cylinders. To prepare the fiber, we strip the

outer layer using a fiber optic stripper (Thorlabs T06S13) to expose the cladding layer.
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Then we clean the cladding by wiping it with isopropanol (VWR chemicals, 99.5%).

We attach the two ends of the fiber to two motorized stages (Stepping motor controller

supplied by SURUGA SEIKI, Part number D220) and place a hydrogen/oxygen type

3H torch at the center of the fiber. Pulling the fiber using the motorized stages while

the burner applies heat thins the cylinder gradually until it eventually breaks. The

tip of the fiber usually has a diameter of 200 nm to 500 nm. Since the diameter of the

cladding layer is 125 µm, we can achieve a broad diameter range of 0.2 µm to 125 µm.

To estimate the taper rate, we measure the cylinder diameter at different points

along its length from images taken with a scanning electron microscope (SEM).

Fig. 2.14 shows the cylinder diameter as a function of the distance from the tip of the

cylinder. The region of the cylinder we use in the experiment has a diameter between

1.5 µm to 5.5 µm. By performing a linear fit around that region (see plot in Fig. 2.14),

we find that the diameter changes by about 0.18 µm over a length of 100 µm.

2.8.2 Preparation of colloidal suspension

We purchase colloidal polystyrene microspheres with an average diameter of 710 nm

from Microgenics corporation (Thermo Scientific Fluoro-Max R700). We wash 100 µl

of 1 % w/v particles five times by centrifuging at 8100g, removing the supernatant, and

re-dispersing in deionized water (resistivity 18.2 MΩ cm, obtained from a Millipore

Milli-Q Synthesis system). We adjust the particle concentration in the final colloidal

suspension to be about 0.5 % w/v.

We mix the colloidal particles with sodium dodecyl sulfate (SDS, Sigma-Aldrich,

> 99%) with deionized water to make an SDS micellar solution, which gives rise to
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the depletion interaction between the colloidal particles and between the particles

and the cylinder. To prepare the final suspension, we mix 20 µl of 0.5 % w/v colloidal

suspension with 20 µl of SDS solution at 67.6 mM to achieve a particle concentration of

0.25 % w/v and SDS concentration of 33.8 mM. We find that a crystalline monolayer

successfully forms on the cylinder surface when the SDS concentration is between

33.6 mM and 34 mM.

2.8.3 Preparation of roughened glass coverslips

We use two flat glass coverslips to make our sample chamber, which contains the

colloidal suspension and a cylinder (Fig. 2.15). Because the depletion force scales

linearly with the overlap of excluded volume, the depletion attraction between a

spherical colloidal particle and the flat glass surface is more than twice as strong as

the attraction between a colloidal particle and the cylinder. As a result, particles

tend to crystallize on the coverslips instead of the cylinder. To avoid this effect, we

coat the coverslips with a monolayer of smaller colloidal particles (average diameter

300 nm, Life Technologies S37492). The resulting roughness reduces the attraction

between the coverslips and the colloidal particles, as evidenced by the fact that the

particles (diameter 710 nm) crystallize only on the surface of the cylinder and not on

the coverslips.

To attach the smaller colloidal particles to the coverslips, we first wash the 300-

nm polystyrene nanoparticles three times by centrifuging at 12000g, removing the

supernatant, and redispersing in ethanol (Koptec, 190 proof). We adjust the final

concentration of the particle suspension to be 4.0 % w/v. We treat the glass coverslips
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for 3 min with oxygen plasma in a Harrick PDC-32G plasma cleaner at high RF

settings. The plasma treatment and the dispersion in ethanol help the colloidal

suspension wet the coverslips. We spin-coat a droplet of particle suspension (volume

from 50 µl to 100 µl, depending on the surface area of the coverslip to be covered) onto

the coverslip in two steps, using a spin-coater (Headway PWM32): first at 1000 rpm

for 5 s, then at 2500 rpm for 30 s. After spin-coating, we bake the treated coverslips at

52 ◦C for about 30 min to ensure good adhesion between the particles and the glass

surface.

Figure 2.15: Sample chamber setup on a microscope stage. Only the colloidal spheres
(diameter 710 nm) are fluorescently dyed (Firefli Fluorescent Red 542/612 nm). We
use a confocal microscope to observe them forming crystals on the cylinder.

2.8.4 Setup and imaging of sample chamber

To prepare a sample chamber, we place a tapered optical fiber that has been

plasma-treated for 5 min between two roughened coverslips, as shown in Fig. 2.15.
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The plasma treatment reduces irreversible binding between the particles and the glass

cylinder, both of which are negatively charged. The bottom coverslip is 24×60 mm and

the top is 22×22 mm (VWR, no. 1). We place two thin strips of plastic film (Dupont

Teijin film Mylar A 300 gauge) with a thickness of 67 µm between the coverslips to

control the thickness of the sample chamber. We draw a thin line of vacuum grease

(Dow Corning) on top of the bottom cover slip in the shape of a square with one open

side. The part of the fiber where colloidal particles crystallize is contained within

the square. We use binder clips to make a coverslip sandwich with the fiber, plastic

film spacers, and vacuum grease inside. We then apply UV-curable epoxy (Norland

Products, NOA-85) to all three sides of the sample chamber as a secondary seal.

Finally, we inject the mixture of colloidal particles with SDS solution into the chamber

from the open side of the chamber and seal it using a 5-minute epoxy (Devcon). It is

important to have a completely sealed sample chamber because a leak in the seal over

time causes evaporation of the colloidal solution, which may disrupt the self-assembly

of colloidal particles.

We use a confocal microscope (Leica DMI6000) and a water immersion objective

(63×, NA 1.2) to image the system. Crystals form and cover the surface of the cylinder

within 2 h to 5 h of sample preparation. After a crystalline grain wraps around the

cylinder, the typical length of the grain along the cylinder is 15 µm to 20 µm. Within

a typical grain, the diameter of the fiber changes about 0.036 µm owing to the taper,

which is close to the standard deviation in the particle size (0.021 µm, as estimated

from the reported 3 % polydispersity). Therefore, the diameter of the fiber changes

insignificantly on the scale of a crystalline grain, and treating the tapered fiber as a
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cylinder is a good approximation.

2.9 Calculation of equilibrium length of line-slip de-

fect

2.9.1 Model

As described in the main text, to calculate the equilibrium length of a line-slip

defect, we generate all possible configurations of a kinked line-slip defect with path

length L and calculate the equilibrium length leq using Boltzmann statistics. A line-slip

defect in its ground state is straight, as shown in Fig. 2.16a. We define a starting

point of this line slip vi and a terminating point vf . Then we find all the possible

paths between vi and vf , and we repeat for all the possible vf .

The vector vf −vi can be expressed as one or more linear combinations of the unit

vectors v1, v2, and v3 (Fig. 2.16a), which are defined for a 2D hexagonal lattice. We

consider a Cartesian coordinate system where the x-axis is aligned with the line-slip

defect. The vector v1 is aligned with the x-axis as well as the line-slip direction, and

v2 and v3 are aligned at ∓60° with respect to v1:

v1 =

1

0

 . (2.1)

v2 = rot(−60°) · v1 =

 cos(60°) − sin(−60°)

sin(−60°) cos(60°)


1

0

 =

 1
2

−
√

3
2

 . (2.2)
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Figure 2.16: (a) Ground state configuration of a line-slip defect with length L = 10.
The starting point of the defect is vi and the ending point is vf . (b) One excited
state with the same vi and vf as in (a). (c) Another excited state with the same vi
and vf as in (a), (b). All of the excited states can be calculated from the possible
configurations of n1, n2, and n3. (d), (e), (f) Excited states of the line-slip defect
that ends at a different vf . The values for n1, n2, and n3 are different from those in
(a), (b), and (c).

v3 = rot(60°) · v1 =

cos(60°) − sin(60°)

sin(60°) cos(60°)


1

0

 =

 1
2

√
3

2

 . (2.3)
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We set the starting point of the line-slip to vi = [0, 0]T. The end point vf = [xf , yf ]
T

can vary, depending on the number of kinks. The set of all possibilities for vf is

vf =

xf
yf

 ∈ {Lv1, (L− 1)v1 ± v2, (L− 2)v1 ± 2v2, . . . ,±Lv2} . (2.4)

For each vf , we solve the following equation for n1, n2, and n3 to find all possible

line-slip paths:

[
v1 v2 v3

]

n1

n2

n3

 =

xf
yf

 . (2.5)

For each solution i, we calculate the line-slip length li and energy ∆Ei (note that the

path length L = n1 + n2 is constant for all the paths). For any solution, the line-slip

length li = n1,i, since v1 is aligned with the line-slip orientation. We estimate ∆Ei

from the number of broken “bonds,” or depletion interactions, across the line slip. In

a line slip without kinks, each particle interacts with one other particle across the

line slip. Therefore the maximum number of bonds across the line-slip is L, while

the actual number of bonds is n1,i. The energy of the kinked line slip relative to the

ground state is then ∆Ei = (L−n1,i)Eb, where Eb is the well depth of the interparticle

attraction. We can then calculate leq as the equilibrium expectation value over all N

paths:

leq =

∑N
i=1 lie

−∆Ei/kBT∑N
i=1 e

−∆Ei/kBT
. (2.6)

Here, i corresponds to a solution of equations 2.4 and 2.5. The total number of possible

solutions for a given L is N , where

N = NLv1 + 2N(L−1)v1+v2 + ....+ 2NLv2 , (2.7)
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where NLv1 is the number of paths for vf = Lv1, N(L−1)v1+v2 is the number of paths

for vf = (L− 1)v1 + v2, and so on. NLv2 is the number of paths for vf = Lv2. The

coefficients of 2 in (2.7) arise because each kinked geometry has a mirror image with

respect to the line slip (Fig. 2.17a,b).

For a given Ni (for example, Ni = NLv1), we find all solutions sets (n1, n2, n3). For

each solution, we calculate the number of configurations N(n1,n2,n3) from the following

equation:

N(n1,n2,n3) =
(n1 + n2 + n3)!

n1!n2!n3!
(2.8)

In this model, we assume that the cylinder circumference is larger than the line-slip

length L. When the circumference is smaller than L, the crystal loops back on itself

before reaching vf = Lv2. As a result, the higher-order configurations near vf = Lv2

do not contribute to the equilibrium line-slip length, and the value of leq increases.

Therefore, by including all configurations up to vf = Lv2, we calculate the lower

bound of leq. Because our experimental values l are smaller than the lower bound of

leq, the assumption about the circumference does not change the conclusion that the

kinked defects are out of equilibrium.

2.9.2 Example of calculating configurations

To show how the model accounts for the possible geometries of the kinked line

slip, consider an example of a defect with L = 10. Fig. 2.16a–c shows a number of

different paths that start at vi = [0, 0]T and end at vf = 10v1. When these ends are

fixed, all paths can be determined by solving equation (2.5) for n1, n2, and n3 after
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a b

c d

Figure 2.17: (a) One excited state configuration for vf = 9v1 + v2. (b) The same
excited state configuration for vf = 9v1 − v2. This is a mirror image of the one in
(a). Since the number of configurations in this mirror setup is exactly the same, we
calculate only the number of configurations for vf = 9v1 + v2 and multiply this by
2. (c) Image of the configuration for the first vf = 10v1. This is also the ground
state. (d) Image of the configuration for the final vf = 10v2. In this configuration,
the line-slip is full of fractional vacancies. This is the maximum vf that is relevant. If
the cylinder circumference (indicated by the dotted black parallel lines) is larger than
the line-slip length L, we must consider all values of vf starting from the one in (c)
and ending in the one in (d).

substituting the values of vi and vf :

n1

1

0

+ n2

 1
2

−
√

3
2

+ n3

 1
2

√
3

2

 =

10

0

 , (2.9)
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subject to the constraints

n1 + n2 = 10, (2.10)

and

n2 = n3. (2.11)

We consider n1, n2, and n3 to be positive integers only, because negative values create

a detour to the end point vf . These detours have high energy and therefore we expect

their contribution to leq to be negligible.

To enumerate the possible solutions, we use a Python script that loops over n3

from n3 = 0 to n3 = 10 and calculates the corresponding values of n1 and n2 using

equations (2.10) and (2.11). The solutions are

(n1, n2, n3) = (10, 0, 0), (9, 1, 1), (8, 2, 2), . . . , (0, 10, 10). (2.12)

We show the shapes of the line-slips for the first three solutions in Fig. 2.16a,b,c.

For the first solution (n1, n2, n3) = (10, 0, 0), shown in Fig. 2.16a, the path consists of

ten v1 vectors only. In this case, there is only one possible configuration: N(10,0,0) = 1.

The second solution (n1, n2, n3) = (9, 1, 1) is shown in Fig. 2.16b. The path here

consists of nine v1 vectors, one v2 vector, and one v3 vector. The number of possible

configurations is

N(9,1,1) =
(n1 + n2 + n3)!

n1!n2!n3!
=

11!

9!1!1!
= 110. (2.13)

We then use the Python script to calculate Nv1 for all the other solutions in equa-

tion (2.12).

Nv1 = N(10,0,0) +N(9,1,1) + . . .+N(0,10,10) (2.14)
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We next calculate the configurations for a different end point. Fig. 2.16d–f shows

paths for vi = [0, 0]T and vf = 9v1 + v2. Substituting into equation (2.5), we get

n1

1

0

+ n2

 1
2

−
√

3
2

+ n3

 1
2

√
3

2

 = (L− 1)

1

0

+

 1
2

−
√

3
2

 , (2.15)

now subject to the constraints

n1 + n2 = 10, (2.16)

and

n3 = n2 − 1. (2.17)

Now the possible solutions are

(n1, n2, n3) = (9, 1, 0), (8, 2, 1), (7, 3, 2), . . . , (0, 10, 9). (2.18)

From this solution, we repeat the previous steps and calculate all the different con-

figurations N9v1+v2 as well. We then shift the terminating point and repeat until

vf = 10v2 in which case no line-slip defect exists (Fig. 2.17d) and, as a result, l

becomes zero.

2.9.3 Estimation of bond energy Eb

One way to estimate the depth of interaction potential is to measure the average

lifetime of a dimer (a cluster of two particles) and use an Arrhenius equation to extract

the energy barrier [52]:

τ = τDe
U/kBT , (2.19)

where τ is the measured lifetime of a dimer, U is the depth of the potential, and

τD = w2/D is the timescale for the particles to diffuse a distance equal to the range

of the potential w given a diffusion coefficient D.
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Figure 2.18: Equilibrium line-slip length leq as a function of total line-slip length L
for different values of the potential well depth.

We measure τ and D from a movie of the early stages of crystal growth on a

cylinder. We find that the value of τ varies from 0.52 s to 4.64 s. We measure the

diffusion constant using the Python package Trackpy for particle tracking (https:

//github.com/soft-matter/trackpy). Our measured value of the diffusion constant

D is (0.188± 0.035) µm2/s. From these values, we estimate the depth of interaction

potential to be 4–7kBT .

In this estimate, we assume thatD is a constant equal to the single-particle diffusion

coefficient on the cylinder surface. However, D may vary with the interparticle distance

and should in general be smaller than the single-particle value because of hydrodynamic

interactions. Therefore the U we calculate is likely an overestimate.
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In Fig. 2.18, we plot leq and the total line-slip length L for different values of the

potential well depth. We find agreement between our calculated leq and the measured

values only when if the potential well depth is 2kBT , which is significantly lower than

our estimate and likely too low to lead to stable crystals [18].

2.10 Supplementary results

2.10.1 Relaxation of a line-slip-like defect on flat surface

As shown in Fig. 2.19, defects with a form similar to that of a line-slip defect can

appear in flat crystals. However, it is possible for them to relax by shear within a

short time.

t = 0 s t = 1.72 s

Figure 2.19: A line-slip like defect found in a small crystalline grain on a flat 2D
surface. It relaxes in a short time because the grain is free to translate and rotate.

2.10.2 Closure of a crystal without any line-slip defect

We observe the closure of a crystal that does not have a line-slip defect. As shown

in Fig. 2.20, in the absence of a line-slip defect, the crystal can close perfectly without
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becoming kinetically trapped.

t = 0 t = 45 s t = 150 s t = 405 s

Figure 2.20: Closure of a crystal without any line-slip defect. The grain closes within
a few minutes and does not get kinetically trapped.

2.10.3 Long time dynamics of kinked line-slip defects

We observe the dynamics of kinked line-slip defect over about 2 h. In Fig. 2.21,

we show one kinked line-slip defect with only one fractional vacancy. According to

our definition of the line-slip length l, in this case l = L− 1 and n2 = 1. Although in

equilibrium, it is possible that one fractional vacancy can form or disappear owing to

thermal fluctuations, we find that the fractional vacancy in the line-slip in Fig. 2.21

does not disappear in the observed timescale. Instead, it moves back and forth from

one position to another (Fig. 2.21a–c), keeping the the total number of bonds constant.

The only way for this line-slip to reach its ground state is for the fractional vacancy to

translate along the line-slip until it reaches the grain boundary and exists the crystal.
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Figure 2.21: Dynamics of a kinked line-slip defect with one fractional vacancy. (a)
Confocal microscope image of the kinked line-slip defect when the fractional vacancy
is at position 0. (b) Confocal microscope image of the kinked line-slip defect when
the fractional vacancy is at position 1. (c) Position of the kink identified from the
confocal images over about 150 min. The kink mostly moves back and forth between
positions 0 and 1, but it also jumps to positions 2, 4, and 5 later. However, the number
of bonds stays same the throughout.

However, given the timescale of one fractional vacancy moving back and forth as

measured in Fig. 2.21c, it may take a very long time for the vacancy to diffuse out of
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Figure 2.22: Dynamics of a kinked line-slip defect with many fractional vacancies.
(a) Confocal microscope image of the kinked line-slip defect at different points in time.
(b) Line-slip length l for the defect as a function of time. l fluctuates, but does not
decrease significantly or reach its ground state value.

the crystal. This result indicates that kinked line-slip defects with a relatively small

number of fractional vacancies can be kinetically trapped if the fractional vacancies

are far from a crystal boundary.

We observe the dynamics of another kinked line-slip defect with a higher number

of fractional vacancies over about 100 min (Fig. 2.22). This line-slip starts with l = 5,
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n2 = 7, and L = 12. Over time, the line-slip length l shows small fluctuations and

does not significantly decrease, indicating that kinked line-slip defects with a higher

number of fractional vacancies are kinetically trapped.

2.10.4 Particle motion at the kinks

The kinked line-slip defects exhibit small fluctuations in line-slip length over a

long period of time. To understand the nature of these fluctuations, we quantify

the motion of the particles adjacent to the kinks on a kinked line-slip defect. Using

Trackpy, we identify the locations of eight particles (Fig. 2.23a) at each frame of

the movie and calculate their displacements. We track two sets of particles; the red

particles that make bonds with 4 nearest neighbors and the black particles that make

bonds with 5 nearest neighbors (Fig. 2.23a). As plotted in Fig. 2.23b, we find that

the red particles are more mobile compared to the black particles. Their maximum

displacement is close to 0.35 µm, which is less than a particle diameter. This result

makes sense because the space available for fractional vacancies at the kinks should be

less than a particle diameter. Although most black particles are immobile, one black

particle has a huge displacement at around 25 s, which is related to the motion of the

neighboring red particle.

From these results we see that motion at the kinks is not uniform – particles

adjacent to the fractional vacancies (which usually have 4 neighbors) are more mobile

compared to the particles adjacent to the line slip (which usually have 5 neighbors).

The less mobile particles restrict the diffusion of the fractional vacancies along the

line-slip.
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a b

Time (seconds)

Figure 2.23: (a) Confocal microscope image of a kinked line-slip defect. Particles
are color-coded based on the number of bonds. The red particles make bonds with 4
nearest neighbors and the black particles make bonds with 5 nearest neighbors. (b)
Displacement of each red and each black particle in (a) as a function of time.

2.10.5 Interaction of line-slip defect with other defects

We observe the processes in which a line-slip defect in a small crystal can interact

with the crystal boundary and vacancies. In the kinked line-slip shown in Fig. 2.24a,

the fractional vacancy eventually exits the crystal boundary (Fig. 2.24b) and the

line-slip reaches the ground state. Following a similar process, a kink can enter through

the boundary resulting in a fractional vacancy in the line-slip.

We find that line-slip defects can interact with full vacancies too. The line-slip

defect shown in Fig. 2.24c has a vacancy in it. Over time, part of the full vacancy

diffuses out of the crystal boundary leaving a fractional vacancy as well as a kink in

the line-slip (Fig. 2.24d).
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We observe both of these interactions in a small crystalline grain and on a short

timescale. For larger grains as shown in Fig. 2.21 and Fig. 2.22, these interactions

happen locally and do not significantly change the structure of the line-slip defect.

However, they may play an important role during the growth of the crystals in

determining the local shape of the line-slip defect with kinks.

b

c

a

d

Figure 2.24: (a) A line-slip defect with a single fractional vacancy. (b) Over time,
the vacancy from (a) moves out of the crystal boundary. (c) A line-slip defect with
a full vacancy on the slip-line. (d) Over time, part of the vacancy moves out of the
crystal boundary creating a fractional vacancy in a kinked line-slip defect.
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Chapter 3

Structure of colloidal polycrystals on

a cylinder

The research described in this Chapter was supported by the National Science

Foundation under grant no. DMR-1420570.

3.1 Introduction

A polycrystalline material is made of multiple crystalline grains; the structure of the

grains control the mechanical, optical, and electrical properties of the material [53, 54].

Polycrystals made of colloidal particles are used to study numerous microscopic

phenomena, such as grain boundary fluctuations [55], grain growth in the presence

of impurities [56, 57], and grain boundary sculpting [58]. However, most studies on

colloidal polycrystals focus on crystals grown in bulk, ignoring the effect of their

substrate geometry.
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We examine the structure of colloidal polycrystals on the surface of a cylinder.

A cylinder with a length much larger than its diameter imposes a closure constraint

along its circumferential direction, but not along its axial direction. This anisotropic

constraint is not present for a crystal formed on a flat 2D substrate with no size

constraint in any direction. As we have seen in Chapter 2, in such a system, single

crystals close around the circumference of the cylinder and multiple single crystals

form along the length of the cylinder. In Chapter 2, we focused only on morphology

and growth dynamics of each single crystal. Here, we measure the size and shape of all

single crystalline grains for different cylinder-to-sphere size ratios and compare them

to the values for crystalline grains formed on a flat 2D surface. These measurements

not only indicate how polycrystalline structure is different on a cylindrical substrate,

but also help our understanding of grain growth mechanisms and grain boundary

dynamics on a cylinder.

3.2 Methods

3.2.1 Polycrystals on cylindrical substrate

We use the same experimental system demonstrated in Chapter 2. As shown in the

confocal images of Fig. 3.1a, crystals with different orientations or chirality can form

along the length of a cylinder. We find that the grain boundaries are mostly aligned

with the circumferential axis of the cylinder. Because of this geometry, we assume the

crystalline grain to have a cylindrical shape (Fig. 3.1b). Using this approximation, we

calculate three geometrical parameters of each crystalline grain on a cylinder: length
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L, area S, and anisotropy A.

Length L We measure length L̃ (in pixels) of each grain from the confocal images

and normalize it by the particle center-to-center distance dsp (in pixels):

L =
L̃

dsp
. (3.1)

FrontBack

a b

Figure 3.1: (a) Confocal image of polycrystals on a cylinder. The red dotted lines
show the position of grain boundaries between each single crystal wrapped around the
cylinder. (b) Model of a cylindrical crystal.
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Area S We calculate the normalized area of a grain from its cylindrical approxima-

tion:

S = πDcL, (3.2)

where Dc is the normalized cylinder diameter:

Dc =
D̃c

dsp
. (3.3)

Anisotropy A We calculate anisotropy of the crystal grain from the ratio of the

crystal length to the cylinder circumference:

A =
L

πDc

. (3.4)

3.2.2 Polycrystals on flat 2D substrate

We calculate the average length of crystal grains using the grain intercept method

[59]. On a confocal image of 2D polycrystals (Fig. 3.2a), we draw multiple straight

lines in the horizontal, vertical, and diagonal directions. To calculate the grain length

L, we measure the length of each line L̃, normalize it by the particle center-to-center

distance dsp, then divide it by the number of grain boundaries Ngb that we find along

the line. We repeat this process for all lines (all 9 lines drawn on Fig. 3.2a) to calculate

L for each line, and then take the mean from those nine values to calculate an average

Lav for that image.

L =
Lline

Ngb
, (3.5)

where

Lline =
L̃

dsp
. (3.6)
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a b

Figure 3.2: (a) Confocal image of polycrystals on a flat 2D surface. To calculate
the average grain length, we draw 9 straight lines at different angles throughout the
image. (b) Line 1 and its surroundings. We find four grain boundaries shown by the
red dotted lines. Therefore, Ngb = 4. We repeat this procedure to find values of Ngb

for all nine lines in (a).

3.3 Results

3.3.1 Length L

We find that the grain length L increases very slowly with cylinder-to-sphere

size ratio DC . As shown by the linear fit in Fig. 3.3, the average grain length L on

a cylinder approaches the average grain length on a flat 2D surface for DC ≈ 3.0.

However, for DC . 3.0, we find quite a few grains with L < Lav.

To calculate Lav for a flat 2D surface, we measure Lav from four different confocal
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Figure 3.3: Grain length L measured for various cylinder-to-sphere size ratios DC .
Each blue point corresponds to one crystalline grain on a cylinder. The blue solid
line represents a linear fit while the shaded region around it shows the span of one
standard deviation. The red horizontal line shows Lav on a flat 2D surface.

images at four different spots on a flat 2D crystal. Each image is similar to the one in

Fig. 3.2b. The values of Lav we find are 20.37, 21.52, 20.77, and 19.78. We take an

average of all the four values to calculate the mean Lav = 20.61 which is shown by

the red horizontal dotted line in Fig. 3.3. To calculate the distribution for cylindrical
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crystals (blue scatter plot points in Fig. 3.3), we measure the lengths of 330 crystalline

grains from 11 different experimental samples.

Cylinder-to-sphere size ratio DC

A
re

a 
S

Figure 3.4: Grain area S for different cylinder-to-sphere size ratios DC . The blue
solid line represents a linear fit while the shaded region around it shows the span of
one standard deviation.

3.3.2 Area S and anisotropy A

Using equations 3.2 and 3.4, we calculate the area S and anisotropy A for each of

the 330 crystal grains. As shown in Fig. 3.4 and Fig. 3.5, the area S increases and

anisotropy A decreases with the cylinder-to-sphere size ratio DC .
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Figure 3.5: (a) Grain anisotropy A measured for various cylinder-to-sphere size ratios
DC . The blue solid line represents a linear fit while the shaded region around it shows
the span of one standard deviation. The red dotted horizontal line corresponds to a
grain of isotropic shape, with its length equal to its circumference, such that L = πDC

and A = 1.0.

3.4 Discussions and outlook

Our results show that structure of polycrystals on a thin cylinder deviates from

that of on a flat surface. The average grain length on a thin cylinder is shorter than

that of a flat surface. To understand these results, we consider how the mechanism

of grain growth may differ between a cylinder and flat substrate. From classical
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nucleation theory [60], we know that the free energy of the formation of a circular

crystalline grain with radius r in 2D can be expressed as

∆G = 2πrγ − πr2∆µn, (3.7)

where γ is the line tension of the crystal boundary, ∆µ is the difference in chemical

potential between the crystal and fluid phases, and n is the number of particles in the

crystal per unit area.

The bulk energy (second term in equation 3.7) favors crystal growth while the

interfacial energy (first term in equation 3.7) opposes it. Once a grain surpasses

the size of a critical nucleus, it can keep growing by acquiring particles from the

surrounding fluid. At room temperature, the crystal boundary fluctuates and interacts

with other nearby crystalline grains. This often leads to the shrinking and eventual

disappearing of the smaller of the two interacting grains because a large crystal has

lower surface energy per unit area compared to a small crystal. This process is called

Ostwald ripening [61], in which the components of a discontinuous phase preferentially

diffuse from smaller to larger droplets through the continuous phase.

Another possible grain growth mechanism is the coalescence of two grains into a

single, larger grain [62, 63]. This merging is preferred when (i) the angle between the

grain boundaries is sufficiently small, and (ii) the grains themselves are small enough

to rotate or translate to merge with each other.

On a flat 2D surface, both ripening and coalescence contribute to grain growth.

However, on a cylindrical surface, the condition for coalescence is stricter than that on

a flat surface. Once a grain wraps around a cylinder, it can not coalesce with another

grain because it loses the degrees of freedom to translate or rotate with respect to the
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Figure 3.6: Confocal images of crystals growing on a cylinder, as viewed from the
front and back sides of the cylinder. Grains 1, 3, 5, and 7 form about 20 minutes
earlier than grains 2, 4, and 6. The chiral angle θ of the seven grains are θ1 = 40.91°,
θ2 = 36.87°, θ3 = 35.32°, θ4 = 39.69°, θ5 = 4.93°, θ6 = 7.35°, and θ7 = 33.69°.

cylinder axis. As we observe crystal growth on a cylinder experimentally (Fig. 3.6),

we see that some grains finish wrapping around the cylinder (grains 1, 3, 5, and 7)

before others even nucleate (grains 2, 4, and 6). The ones that wrap around earlier are

stable and do not merge into the adjacent grains even though the mismatch in their

chiral angles or orientations is quite small. As shown in Fig. 3.6, the chiral angles of

grains 1, 2, 3, and 4 are very similar, but they do not merge with each other, and then

maintain their boundaries for a long period of time (t = 61min and t = 91.7min).
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This is probably why we find that the average grain length L is smaller than Lav on a

2D surface specifically for thin cylinders. On a thin cylinder, a grain can wrap around

the cylinder quickly and once it does, grain growth through coalescence may slow

down. Afterwards, grains can still grow through Ostwald ripening, but ripening is

driven by particle diffusion from one grain to another, which may not be possible to

observe on experimental timescales.

Furthermore, Ostwald ripening may be slowed by the absence of curvature at the

grain boundaries. Because the grain boundaries are oriented normal to the cylinder

axis, their interfacial energy remains constant during growth (Fig. 3.1). Consequently,

as a fully wrapped crystal grows, it does not pay any additional cost in interfacial

energy.

60



Chapter 4

Random parking of colloidal spheres

on a cylinder

This Chapter is based on the following publication: Europhysics Letters 127 (3),

38004 (2019) – Edvin Memet, Nabila Tanjeem, Charlie Greboval, Vinothan N.

Manoharan, L. Mahadevan.

This work was supported by the Harvard MRSEC under National Science Founda-

tion grant no. DMR-1420570.

4.1 Introduction

Adsorption processes in which particles are randomly deposited on an extended

substrate can occur in a broad range of physical, chemical, and biological systems,

such as binding of ligands on polymer chains, chemisorption, physisorption, coating,

paint, filtration, designing composites, drug delivery, and solid-state transformations
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[64, 65, 66, 67, 24, 68]. On the one hand, the monolayer adsorption of small molecules

is usually described by an equilibrium picture, resulting from adsorption-desorption

kinetics, particle hopping, or diffusion [64, 69]. On the other hand, larger molecules

(proteins, viruses, bacteria, colloids, cells) may interact with the surface so strongly

that they exhibit virtually no desorption, surface diffusion, or reaccomodation, and do

not interact with subsequently adsorbed molecules except for steric exclusion effects

[70, 71, 72, 69]. The irreversible particle deposition that occurs in such nonequilibrium

systems can be modeled as a random sequential adsorption (RSA) process [69, 73],

also known as a “car parking problem” in the one-dimensional continuum case [74].

Two natural questions are of central interest in RSA [75, 76, 77]. The first is the

surface coverage fraction ρ∞ – the ratio of surface covered by adsorbed particles to the

total collector area in the longtime limit, when there is no more space for additional

particles to adsorb. This surface coverage fraction is smaller than the close-packing

density. The second is the kinetics of particle adsorption ρ (t). The answers to both

these questions depend on the geometry, dimensionality, size, and shape of the particles

being adsorbed [67].

The simplest version of the problem is the case of uniform size segments being

adsorbed on an infinite line, solved analytically by Renyi [74]. Since then, many

variants of this problem have been studied by considering the role of dimensionality

and shape of both the particles and the substrate as well as particle size distribution.

These include considerations of heterogeneous 1D particles on 1D substrates, 1D

particles on flat 2D substrates (needles on a plane [78, 70], polymer chains on a

lattice [79, 65], dimers on a ladder [80, 81]), 2D particles on flat 2D substrates (disks,
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rectangles/ellipses [82, 78] with fixed or arbitrary orientation, stars and other concave

objects [83], mixed concave/convex objects [67], or compound objects [76] on a plane

or on a narrow strip [84]); 3D particles on fractals [85] or porous solids [69]; and 3D

particles on flat 2D substrate (polydisperse spheres on a plane [86]).

Figure 4.1: Spheres-on-cylinder morphologies in (a) dental plaque “corncob” forma-
tions [5], (b) sea grapes, (c) peppercorn drupes, and (d) winterberries.

Here we consider the adsorption of spheres on a cylindrical wire, inspired by a

range of biological systems that exhibit such a morphology, such as those shown

in Fig. 4.1. These include dental plaque which exhibits a “corncob” morphology

(Fig. 4.1a), comprised of streptococci held by an extracellular polysaccharide matrix

on large filamentous bacteria [87, 5], and fruits such as peppercorn, winterberry, and

seagrapes (Fig. 4.1b, c, and d), where phyllotaxis may also be relevant [21, 88]. Despite

the commonality of these observations, there seem to be few studies on the adsorption

of objects onto curved substrates.
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Some exceptions include parking on spheres [71, 89, 24, 19, 90, 91, 92], hyperboloids

[92], projective planes [92], and cylinders [24]. Previous studies [24, 93] have argued

that the asymptotic coverage ρcyl
∞ for random parking of spheres of radius R on a

cylinder of radius r and length L can be related to that of disks on a flat plane

by effectively unrolling the cylinder that passes through the centers of the particles:

ρcyl
∞ := N∞πR

2/ (2πrL) = ρplane
∞ (1 +R/r), where N∞ is the number of particles

adsorbed in the infinite time limit. This approximation is valid for relatively small

values of R/r but breaks down as particles become larger compared to the cylinder

(R/r →∞) – in other words, when wire curvature becomes important. Here, we do

not limit ourselves to the weak curvature regime and use a combination of analysis,

simulations, and experiments to characterize the asymptotic coverage of spheres on a

rigid wire as a function of R/r.

4.2 Theory

We start by noting that the adsorption of spheres of radius R on a cylinder of

radius r is characterized by two degrees of freedom – the axial coordinate z and the

azimuthal angle φ (Fig. 4.2a). Consequently, it is possible to map the 3D geometry

of this process onto a 2D adsorption problem in the φ − z plane, where spheres

are characterized by an angular envelope with an extent that depends on the axial

coordinate. Such a transformation has been used previously in studies pertaining to

the packing of spheres inside a cylinder [1, 30, 94]. To find this angular envelope,

consider a sphere whose center is located at (z0, φ0). In a horizontal slice at height

z, the radius of the circle is s(z − z0) =
√
R2 − (z − z0)2 and its angular extent is
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Figure 4.2: (a) Cartoon of spheres adsorbed on a wire. A sectioning plane indicated
through the shade change is shown below, with r indicating the cylinder radius and R
the particle radius, ρ indicating the radius of a particular cross-section through the
particle, and ∆φ indicating the angle subtended by the particle cross-section at the
center of the wire. (b) Two-dimensional representation in the φ− z plane of spheres
of radius R = 1 adsorbing on a cylinder of radius r = 1 and length L = 20.

∆φ = arcsin (s(z − z0)/(R + r)) (Fig. 4.2a). This gives us an equation for φ(z) – that

is, the shape of a sphere in the φ− z plane:

φ(z − z0) = φ0 ±∆φ

= φ0 ± arcsin

[√
R2 − (z − z0)2

(R + r)

]
,

(4.1)

where z − z0 ∈ [−R, R].

Consequently, random sequential adsorption of spheres on a cylinder is equivalent

to random sequential adsorption of oblong 2D objects with shape given by Eq. 4.1

65



Figure 4.3: Longtime coverage ρ(3D)
∞ versus scaled wire size r̃ = r/R (Eq. (4.3))

from effective 2D simulations of spheres parking on a cylinder. The dashed black
line indicates the longtime coverage for random sequential adsorption of spheres on
a plane, limr̃→∞ ρ

(3D)
∞ = (2/3) limr̃→∞ ρ

(2D)
∞ ≈ 0.3647, where limr̃→∞ ρ

(2D)
∞ ≈ 0.5471 is

the asymptotic coverage of discs on a plane [6].

on a 2D strip of width 2π and length L (Fig. 4.2b). We simulate the latter process

for different values of the ratio between cylinder and particle size r̃ ≡ r/R, using

periodic boundary conditions. For each deposition attempt we generate a pair of

random numbers (φ, z) representing a potential adsorption site and check for overlaps

with existing particles in the vicinity. In the absence of overlaps, the trial particle

is successfully adsorbed and remains fixed thereafter; otherwise it is removed from

the system. Since reaching a completely blocked state in which there remains no

space for new particles to adsorb may take very long, we instead extrapolate N∞, the

asymptotic number of particles deposited on the cylinder, from the longtime kinetics

[95, 83, 82]. That is, for particles with two degrees of freedom, ρ∞ − ρ (τ) ∼ τ−1/2, as

τ →∞ [96], where scaled time τ is the attempt number times the area fraction of a

particle scaled by the total area of the substrate. In addition, to minimize boundary

effects, we use a cylinder size L that is large compared to the particle size R [76].
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To find the longtime coverage from N∞, we define coverage as the ratio of occupied

to available area in the 2D φ− z space (where “area” has dimensions of length, since

it is defined in the φ− z plane). The area occupied by a sphere is A = Ã R where Ã

is the dimensionless area, Ã = 2

∫ 1

−1

arcsin

[√
1− z̃2

1 + r̃

]
dz̃, expressed in terms of the

scaled axial coordinate z̃ = (z − z0) /R and scaled cylinder radius r̃ = r/R. If we let

N be the total number of spheres adsorbed up to the current time and L→∞ be the

length of the cylinder, the 2D coverage density is given by

ρ(2D) (r̃) =
NÃR

2πL
=

1

2π

N

L̃
Ã =

λ (r̃) Ã (r̃)

2π
, (4.2)

where L̃ = L/R is the scaled cylinder length and λ = N/L̃ is the scaled linear particle

density. We note that in the limit r̃ → 0, we have Ã→ 4 and ρ(2D) → 2λ (r̃) /π, while

as r̃ →∞, Ã→ π/r̃ and ρ(2D) → λ (r̃) / (2r̃).

To help facilitate the comparison to experiments, we convert the surface coverage

ρ(2D) to a three-dimensional coverage representing the ratio between the total volume

of the adsorbed spheres and the total available volume – that is, the volume of the

cylindrical annulus of inner radius r and outer radius r + 2R:

ρ(3D) (r̃) =
4/3NπR3

4πRL (R + r)
=

1

3

N

L̃

1

1 + r̃
=

1

3

λ (r̃)

1 + r̃
. (4.3)

We note that in the low-curvature regime, r̃ → ∞, ρ(3D) → λ (r̃) / (3r̃) ≈ 0.3647

(Fig. 4.3), while in the high-curvature regime, r̃ → 0, ρ(3D) → λ (r̃) /3.

How do these densities compare to the maximum densities achieved by close-packed

spheres on the surface of a cylinder? To get the maximum packing density as a function

of the ratio of wire and particle size, we refer to the literature on packing spheres

inside cylinders [1, 30, 97, 21]; as long as there is a single layers of particles inside
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the cylinder (that is, all the particles are in contact with the cylinder), the packing

densities can be easily mapped to densities corresponding to packing on the surface

of a cylinder. Using this method we find that the ratio of random to close-packed

densities varies around 0.62. For example, when r̃ → 0, the random parking density is

around 0.288 (Fig. 4.3), while the densest packing of spheres inside a cylinder twice as

large as the particles is around 0.47, giving a ratio of 0.61. Similarly, when r̃ = 0.5,

the corresponding ratio is approximately 0.63.

4.3 Experiments

a

b

Figure 4.4: (a) Schematic (left) and optical micrograph (right) of negatively charged
particles binding irreversibly to a positively charged nanowire (b) Schematic (left)
and optical micrograph (right) of DNA-coated particles binding to nanowire coated
with complementary DNA strands.

To test our predictions, we designed an experimental system consisting of colloidal

microspheres that can irreversibly attach to a wire (see Materials and Methods for

details of the protocols). An aqueous dispersion of microspheres, which have an

average radius R = 0.65µm, is allowed to adhere to a silica wire via two different

kinds of attractive interactions to drive the microsphere to adsorb: electrostatic and
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b

Figure 4.5: (a) Linear particle density λ versus scaled wire size r̃ = r/R and (b)
3D asymptotic density ρ(3D)

∞ versus scaled wire size r̃ = r/R from simulations (black
crosses), and experiments using either electrostatic attraction (red squares, yellow
circles, and green triangles show results from three different experiment samples)
or DNA hybridization (blue diamonds). The dashed black line indicates, as in
Fig. 4.3, the longtime coverage for random sequential adsorption of spheres on a plane,
limr̃→∞ ρ

(3D)
∞ ≈ 0.3647. Shaded regions indicate an interval of two standard deviations

from the mean simulation results. In order to reproduce the experimental uncertainty
associated with small particles numbers, simulations were performed on short wire
segments that accommodate around 50 particles.

DNA-mediated interactions. For electrostatic-mediated adsorption, we use oppositely

charged microspheres and nanowires. The surfaces of the colloidal polystyrene micro-

spheres contain negatively charged sulfate groups. To impart positive charge to the

nanowire, we coat it with a cationic polyelectrolyte, poly-diallyldimethylammonium
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chloride. After the colloidal microspheres are dispersed in water in the presence of the

nanowire, they adsorb on the wire surface (Fig. 4.4a).

For DNA-mediated adsorption, we functionalize the colloidal microspheres and

silica nanowire with complementary DNA strands, which at room temperature can

form strong, irreversible bonds between the wire and the particles (Fig. 4.4b). The

DNA strands contain a dibenzocyclooctyne (DBCO) group, which binds to an azide

group of a polymer layer deposited on the surfaces of the wire and the microspheres.

For both electrostatic and DNA-mediated adsorption, we do not observe particles

diffusing on the surface or desorbing within the experimental timescale. Furthermore,

in both systems, the range of the interaction between adsorbed particles is much

smaller than the particle size. Thus, both experimental systems provide a reasonable

realization of the random sequential adsorption process. Using experiments on wires

with different radii that range from 0.1–0.6 µm allows us to examine adsorption over

a range of r̃ values.

To find ρ(3D)
∞ experimentally, we count the number of particles N∞ adsorbed on

a wire segment of length L and average radius r and compute the normalized linear

particle density for that segment, λ∞ (r̃) = N∞/L̃. The results from experiments using

electrostatic interactions are consistent between different samples (red squares, yellow

circles, and green triangles in Fig. 4.5a) and with results obtained using DNA-mediated

attraction (blue diamonds in Fig. 4.5b).

We see that our experimental results are consistent with results of simulations

(Fig. 4.5a, black line) on wire segments of comparable length to the wire segments

in the experiments (Fig. 4.4a and 4.4b). While a few experimental points lie outside
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the two-sigma interval (Fig. 4.5a, black shaded region) of the simulation results,

these deviations are likely associated with the effects of energetics and kinetics. In

our analysis and simulations, all contacts are assumed to be point contacts, while

in reality, the contact interactions have a non-zero range. As a result, the energy

of a contact decreases as the curvature of the wire increases. Consequently, the

regime in which wires are highly curved (small r̃) is difficult to probe experimentally

because weakly bound particles on highly curved wires can detach more quickly,

leading to undersaturation. Indeed, the data are consistent with this hypothesis –

the measured densities at the smallest r̃ values for both the electrostatic and DNA-

mediated interactions fall below the simulated values (Fig. 4.5a and 4.5b, red squares

and blue diamonds). Nonetheless, outside of these values, the experimental results

agree with those of simulation, and, importantly, both the simulations and experiments

show that the longtime coverage lies below that for random sequential adsorption on

a plane (Fig. 4.5b). These results validate our understanding of random sequential

adsorption at weak to moderate wire curvature (r̃ & 0.2).

4.4 Discussions

Although energetic and kinetic limitations prevent us from experimentally exploring

the limit of high wire curvature (r̃ . 0.2), we can understand this regime theoretically

in terms of the effective parking of 2D shapes on the unwrapped cylinder (Eq. (4.2)).

Simulations in this regime reveal a surprising effect: ρ(2D)
∞ varies non-monotonically with

wire radius (Fig. 4.6), in contrast to λ∞ and ρ(3D)
∞ , both of which vary monotonically

with r̃ (Figs. 4.3, 4.5a, 4.5b). To understand this, we note that from Eq. (4.2) we see
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Figure 4.6: Longtime (asymptotic) coverage ρ(2D)
∞ versus scaled wire size r̃ = r/R

(Eq. (4.3)) from simulation. The dashed black line at 0.5471 indicates the longtime
coverage for the random adsorption of discs on the plane (that is, in the limit r̃ →∞).

that ρ(2D)
∞ is the product of two terms that depend on the scaled cylinder radius r̃.

While Ã = 2
∫ 1

−1
arcsin

[√
1− z̃2/(1 + r̃)

]
dz̃ necessarily decreases as r̃ increases,

the asymptotic particle density λ̃∞ increases with r̃, since the maximum angular

extent ∆φmax = sin−1 (1/(1 + r̃)) decreases, allowing for more spheres to fit around

the wire. The contrasting behavior of the two terms indeed allows for the observed

non-monotonicity in ρ(2D)
∞ , though it does not guarantee it. In contrast, we find ρ(3D)

∞

increases monotonically with r̃ in simulations (Fig. 4.3), even though Eq. (4.3), which

expresses ρ(3D)
∞ as the ratio of two terms that both increase with r̃, does not exclude

non-monotonic behavior.

Having examined the longtime coverage as a function of wire curvature, we now

turn to the second quantity of interest, the kinetics of particle adsorption. Interestingly,

in idealized conditions where the energetics of the substrate-particle interaction play
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Figure 4.7: Two-dimensional representation in the φ− z plane of spheres of radius
R = 20 adsorbing on a cylinder of radius r = 1 and length L = 1000. To compute the
angular density-density correlation function, we fix a particle (shown in red), consider
a strip of width ∆y along a direction θ, and count the number of particles whose
centers are contained inside this strip. Repeating this procedure for all particles and
then for different angles θ yields the plot in Fig. 4.8.

no role, there is a near-universal law (for convex particles) associated with the kinetic

approach to the asymptotic coverage, described by a power-law form [67, 98]

ρ∞ − ρ (τ) ∼ τ−1/df , τ →∞, (4.4)

where time τ is defined so that each trial (adsorption attempt) corresponds to a scaled

time increment equal to the area of an adsorbing particle scaled by the system area

and df represents the number of degrees of freedom of the object. In our system

df = 2, meaning that we expect to find ρ∞−ρ (τ) ∼ τ−1/2. However, we also note that

quasi-one-dimensionality emerges with increasing wire curvature, in that the 2D strip

in φ− z space becomes increasingly narrow in the φ direction, which could change the
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asymptotic kinetics accordingly [84]. For example, in the limit r̃ → 0, the strip allows

no more than two spheres to fit (tightly) around the cylinder at the same value of z.

However, we do not observe a crossover to 1D asymptotic kinetics in our simulations

as r̃ → 0, which suggests that the asymptotic exponent df = 2, independent of the

scaled cylinder size r̃.

Figure 4.8: Plot of the angular density-density correlation 〈n (~r) n (~r′, θ)〉 as a function
of angle θ.

Strongly and weakly charged colloidal chiral orderings in cylinders have been

studied both theoretically and experimentally [20, 99]. An interesting question is

whether any chiral order emerges on short scales in our random adsorption process,

where the system is not allowed to relax to its ground state. Long-time adsorption

structures such as those shown in Fig. 4.7 suggest that there may be preferential

alignment along certain directions. To quantify the alignment, we define an angular

density-density correlation 〈n (~r) n (~r′, θ)〉 which counts pairs of particles whose centers
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Figure 4.9: Varying r̃ = r/R changes the maximal density direction θmax (that is,
the angle for which 〈n (~r) n (~r′, θ)〉 is maximum) as tan θmax ≈ 3r̃.

are aligned at an angle θ within some tolerance ∆y (Fig. 4.7, red shaded regions).

An example of this correlation function is shown in Fig. 4.8 for the case in which we

consider only pairs of particles within a range of 10R from each other. From visual

inspection of Fig. 4.7, the density-density correlation function exhibits two moderate

peaks at values of ±θmax symmetric around θ = 0. Sufficiently increasing the range

over which we compute density correlations will eventually lead to the disappearance

of the peaks. This is what we expect intuitively: as noted previously, random parking

densities are only about 60% of the maximum close-packing densities, which suggests

that ordering cannot survive on arbitrarily large scales.

Repeating this analysis for different values of r̃ = r/R, we find that the maximal

density direction θmax varies with r̃ (Fig. 4.9, black crosses) such that the relationship

between tan θmax and r̃ is linear: tan θmax ≈ 3r̃ (Fig. 4.9, red dashed line). Very large
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particles (R � r or r̃ → 0) tend to be slightly more aligned axially, while smaller

particles (increasing r̃), with θmax → π/2, tend to be more aligned radially (to take

advantage of the additional space available due to substrate curvature).

4.5 Conclusion

In this chapter, we have examined the random adsorption of large spherical particles

on a thin cylindrical wire. By reducing the 3D adsorption problem to an effective

2D problem, we showed that curvature effects can indeed become significant and

thus cannot be treated as a small perturbation. In order to test our predictions for

the longtime particle density λ∞ as a function of the ratio r̃ of particle to wire size,

we performed experiments in which the particle-wire interaction was mediated by

electrostatics or DNA hybridization and showed the results are consistent with each

other and with the results of simulations. While the high curvature limit was not

accessible experimentally because of kinetic effects, simulations in this regime reveal an

intriguing non-monotonic behavior of the 2D asymptotic coverage ρ(2D)
∞ . Meanwhile,

the 3D asymptotic coverage ρ(3D)
∞ varies monotonically with the ratio r̃ of wire to

particle size, providing a recipe for designing structures with well-defined volume

coverage simply by tuning the ratio of the radii. Accounting for the energetics of

substrate and particle deformation is a natural, if complicated, next step.
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4.6 Materials and methods

4.6.1 Nanowire fabrication

We fabricate a thin cylindrical wire by tapering an optical fiber made of silica

(supplied by Newport Corporation, part number F-SMF-28). First, we strip the outer

layer from a piece of a fiber and clean the cladding by wiping it with isopropanol. We

then attach the two ends of the fiber to two motorized stages (Stepping motor controller

supplied by SURUGA SEIKI, Part number D220) and place a hydrogen/oxygen type

3H torch at the center of the fiber. Pulling the fiber by the motorized stages while the

torch applies heat thins the wire down gradually until it eventually breaks [32, 33, 34].

The resulting wires are imaged with scanning electron microscopy, which allows us

to measure the local wire diameter. Data from four different nanowires show that

the change in wire diameter is approximately linear and gradual along the length of

the fiber. Diameter variations for four different wires per 10µm length are 1.76 nm,

3.63 nm, 5.12 nm, and 3.85 nm.

4.6.2 Preparation of positively charged nanowire

We submerge the nanowire overnight in a 1M KOH solution to impart a negative

charge to its surface. After the KOH treatment, we wash the nanowire five times with

MilliQ water and transfer it to a solution of poly-diallyldimethylammonium chloride

(shortened as polyDADMAC, purchased from Polysciences Inc., Molecular weight

240,000) in 20mM Tris-HCl buffer, prepared by mixing 28% w/w polyDADMAC in

water with 40mM Tris-HCl in 50:50 ratio and vortexing for 30 s. After waiting 4–5
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hours to allow the polyDADMAC to coat the nanowire, providing a positively charged

surface, we take the nanowire out and wash it well with MilliQ water.

4.6.3 Preparation of negatively charged colloidal particles

We purchase 8% w/v sulfate-modified polystyrene particles (supplied by Molecular

Probes, Life Technologies Inc.) with an average diameter of 1.3µm and wash them

three times by centrifuging at 4000g and re-dispersing in MilliQ water. After the

final wash, we disperse them in 0.05mM NaCl in water, resulting in a final particle

concentration of 2% w/v.

4.6.4 Preparation of DNA functionalized nanowire

To functionalize the silica nanowire with DNA oligonucleotides, we first clean

it by overnight submersion in 1M KOH, then rinse with MilliQ water five times,

and transfer it into (3-aminopropyl) triethoxysilane (APTES) solution. We prepare

the solution by mixing 100mL methanol (99.9%, supplied by VWR), 5mL glacial

acetic acid (99.8%, supplied by Acros Organics), and 3mL APTES (99%, supplied

by Sigma-Aldrich). After treating the nanowire in this solution for 30min, we rinse

it with methanol and MilliQ water and transfer it to a PEG solution. The PEG

solution is prepared by mixing NHS-PEG (5000 Da, supplied by Nanocs) and NHS-

PEG-N3 (5000 Da, supplied by Nanocs) in 10:1 ratio and dissolving them in 0.1M

sodium bicarbonate buffer. We place the nanowire along with 192µL of PEG solution

between two glass coverslips and leave it overnight, at room temperature, so that the

amino groups from APTES can form covalent linkages through N -hydroxysuccinimide
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(NHS) chemistry and form a PEG layer. The following day, we take the nanowire out

from the PEG solution and rinse it with MilliQ water. Afterward, we attach DNA

oligonucleotides to the NHS-PEG-N3 molecules on the nanowire surface by copper-free

click chemistry [100]. The DNA strands are 64-bases long and are synthesized with a

dibenzocyclooctyne (DBCO) group on the 5′- end (purchased from Integrated DNA

Technologies, HPLC purified). We put the nanowire in 10µM of 168µL DBCO-DNA

(5′-T50-AAGAGTAGGTTGATG-3′) in phosphate buffer, sandwich it between two

coverslips, and leave it for 24 h before finally rinsing the nanowire with MilliQ water.

4.6.5 Preparation of DNA functionalized colloidal particles

To coat the polystyrene microspheres with high density DNA brushes (5′-T50-

CCACATCAACCTACT-3′) we incorporate a diblock copolymer made from polystyrene

and poly(ethylene oxide)-azide into the microspheres and then attach DBCO-DNA to

the azide functional group using copper-free click chemistry [101].

4.6.6 Sample setup, imaging, and data anaysis

After either functionalization method, we place the functionalized nanowire between

two glass coverslips to make a sandwich sample chamber whose thickness is set to 67µm

using mylar-film spacers. We then inject the suspension of particles and wait 10min

before washing out excess particles. We wash by injecting a control solution with the

same salt concentration as the colloidal suspension. We use NaCl for electrostatic

screening in both cases: 0.05mM NaCl for electrostatic interactions and 200mM NaCl

for DNA-mediated interactions.
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Finally, we image the sample using a 60× water immersion objective. Using optical

microscopy images (Fig. 4.4a, 4.4b), we count the number of particles on wire segments

of about 30 µm (chosen such that the segment diameters do not vary significantly

along the length) and calculate Ñ . We assign error bars on r̃ = r/R based on the

known polydispersity in particle size and the uncertainty in estimating the diameter

of the wire. To calculate this uncertainty, we use the uncertainty in fitting and the

difference in wire diameter between the two ends of the segment analyzed. Because

the experimental images analyzed do not have periodic boundary conditions at the

end of the wire segments, we find a number of particles that are only partially in the

field of view of each analyzed segment. For each segment, we assign a lower limit of

Ñ by not counting those particles and an upper limit by counting them. Then we

calculate the mean and standard deviation of Ñ to assign an error bar to Ñ .
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Chapter 5

Polyhedral plasmonic nanoclusters

through multi-step colloidal chemistry

The research described in this Chapter is performed in collaboration with Nicholas

B. Schade, Cyril Chomette, Mona Tréguer-Delapierre, Serge Ravaine, and Etienne

Duguet. This work was supported by the National Science Foundation under grant

no. DMR-1420570.

5.1 Introduction

Fabricating plasmonic structures for three-dimensional optical metamaterials [102,

103] requires precise arrangements of metal and dielectric. The optical response of

such materials is sensitive to nanometer-scale variations in both the thickness of

metal coatings as well as the distances between metal surfaces. To date, two general

approaches have been developed to create such structures: lithography, in which metal
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and dielectric are patterned and deposited stepwise [104, 105, 106, 107, 108] and

self-assembly, in which metallodielectric nanoparticles form nanoclusters, driven by

DNA-mediated [109, 110] or capillary interactions [111, 112]. Lithographic approaches

offer precise control over morphology but limited throughput, and they do not easily

scale to three dimensions. Self-assembly approaches offer high precision but limited

control over morphology. Here we demonstrate a third approach that is based neither

on lithography nor self-assembly: multi-step colloidal synthesis. Starting from highly

monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using

seeded-growth polymerization. We then overgrow the silica and remove the polystyrene

to create a template to which we attach exactly six silica satellite particles that we

can then coat with gold. Using single-particle spectroscopy, we demonstrate that

this approach leads to clusters with plasmonic resonances that are reproducible from

cluster to cluster. By comparing the spectra to theory, we show that the chemical

synthesis approach can control the distances between metallic and dielectric surfaces

to nanometer-scale precision. More broadly, our approach illustrates how different,

high-yield colloidal synthesis elements can be combined to produce bulk quantities of

specific morphologies, much as is done in organic synthesis.

5.2 Multi-step synthesis of plasmonic nanoclusters

We focus on the creation of nanoclusters with octahedral symmetry because the

high symmetry may enable their use in metafluids [113, 114]. We first synthesize a

silica template with octahedrally-coordinated “dimples” [115, 116], as shown in steps

1–4 of Fig. 5.1. This method takes advantage of several high-yield synthetic steps: a
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Figure 5.1: Our synthesis scheme for plasmonic clusters consists of seven steps: (1) We
perform seeded-growth emulsion polymerization of styrene on spherical silica particles
with a diameter of 86 nm. (2) We then overgrow the silica seed and (3) dissolve
polystyrene, which results in structures with six concave dimples. (4) We aminate
the residual polystyrene at the bottom of the dimples to complete the template. (5)
We lock carboxylated silica nanospheres with a diameter of 137 nm onto the aminated
dimples. (6) We convert the carboxylate groups on the silica satellites into amine
groups using ethylene diamine. (7) We grow a thin gold shell on top of the spheres by
the site-specific adsorption of gold nuclei and subsequent regrowth.

multi-stage silica-particle synthesis process [117] that results in seed particles with

a polydispersity index of only 1.002 (see Materials and methods); the templated

synthesis of polystyrene colloidal molecules [118], which results in octahedral clusters

with a yield as high as 80% [117, 119]; the overgrowth of the silica core followed by

removal of the polystyrene spheres [115]; and the regioselective functionalization of

the resulting concave dimples in the silica.

The challenge is to attach metal to the resulting functionalized, dimpled, octa-
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hedrally symmetric silica particles such that the distance between metal surfaces is

controlled to nanometer-scale precision or better. In self-assembly approaches, this

precision can be achieved by functionalizing gold nanoshells with a self-assembled

monolayer and clustering them with capillary forces [111, 112], but this method yields

clusters with many different morphologies. Another self-assembly approach involves

attaching DNA-functionalized gold nanoparticles to DNA origami templates [110].

This method also leads to precise control over the separation distance, but it produces

clusters with different numbers of particles and morphologies. By contrast, the dimpled

templates offer greater control over the morphology, but until now no approach has

led to precise control over the separation distance. In previous work, gold satellites

were grown directly on the dimpled templates [120]. This approach requires iterative

growth and oxidative etching of the gold, which results in the satellites varying in size

and shape. Hence the interparticle distances are not well controlled. In the present

study, we first attempted to lock pre-synthesized, highly monodisperse, ultra-smooth

gold spheres [121] to the dimples, but we obtained a low yield of six-particle clusters,

perhaps because of the large density difference between silica and gold.

Therefore, instead of attaching gold directly to the dimples, we pursue a multi-step

approach, as shown in steps 5–7 of Fig. 5.1. We first attach silica spheres to the

dimples and then grow a gold layer on top of them. We lock highly monodisperse

silica particles (polydispersity index 1.001) onto the dimples through amide coupling,

building on a previously developed recipe [122]. To fill all the dimples, we use a large

excess of these particles (400:1). Then we use a seeded-growth method [123] to grow

a gold film of controlled thickness on the silica. Growth occurs only on the silica
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satellites and not the central particle because the satellites are functionalized with

carboxyl groups, which we can selectively convert to amine groups prior to gold plating.

This approach takes advantage of the very low polydispersity of the silica synthesis

reaction [124, 117] and the sensitivity of the seeded-growth gold plating technique

to precisely control the separation distance between the gold layers. Furthermore,

because the silica core size and gold shell thickness can be changed independently,

our approach provides independent control over the two geometrical features that

control the frequency of the plasmon resonances: the separation distance and the

separation-to-diameter ratio [125].

5.3 Characterization of plasmonic nanoclusters

Transmission electron microscopy (TEM) confirms successful synthesis. As shown

in Fig. 5.2a, we can control the thickness of the gold shell by changing the amount

of gold precursor in the synthesis step. We find that for a shell thickness of about

25 nm, the geometry remains consistent from cluster to cluster (Fig. 5.2b). Elemental

mapping using energy-dispersive X-ray analysis (EDX) shows that the gold layer is

specifically deposited on each of the six silica satellites, while the central silica particle

remains gold-free (Fig. 5.8). The microscope images confirm that the nanoclusters

have octahedral symmetry and that the number and approximate positions of the

core-shell particles are consistent from cluster to cluster. We estimate the morphology

yield to be as high as 80%. This value is determined by the yield of silica/polystyrene

colloidal molecules [117, 119] achieved in step 1 of Fig. 5.1, because the rest of the

steps are performed with nearly perfect yield. Furthermore, because each step of the
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Figure 5.2: (a) TEM images of silica/gold clusters with varying gold shell thicknesses,
obtained with different amounts of gold precursor: a) 5 mL; b) 10 mL; c) 20 mL; d)
25 mL and e) 35 mL. (b) Nine different clusters for the regrowth condition of 25 mL
gold precursor.

synthesis is done in bulk, we can scale up the procedure to produce these clusters at

gram scales or more.

Because the gold shells are separated by only a few nanometers—too small to

measure precisely with TEM—we infer these separation distances and their variation

using single-particle spectroscopy and simulation. The plasmon resonances provide

the most stringent test of the precision of our technique because they are sensitive

to very small changes or variations in the separation [113]. We start by identifying
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a b

c

Figure 5.3: Single-particle spectroscopy setup. (a) Setup for measuring the spectrum
of light scattered from individual nanoclusters. The light source is an unpolarized
halogen lamp illuminating the sample at an incidence angle of 65° (25° with respect
to the horizontal axis). An objective (50×, NA = 0.5) is placed on top of the grid
to collect the scattered light. An adjustable aperture is placed in the optical path of
the spectrometer to collect light from only a narrow area (a circle with a diameter of
about 1 µm) surrounding the cluster. To make sure that clusters are well separated,
we dilute the experimental sample. (b) TEM image of a target cluster (inside red
circle) near marker “P” on TEM grid. (c) The same target cluster imaged with the
dark-field microscope.

each octahedral cluster on a grid with alphabetical markers using TEM (Fig. 5.3b),

then transfer the TEM grid to a microscope stage (Fig. 5.3a). We set the illumination

angle such that the objective collects only the light scattered by each nanocluster.

After identifying the nanoclusters in this dark-field setup (Fig. 5.3c), we measure the

spectrum of scattered light using a spectrometer attached to the microscope.

We find that all nine clusters from Fig. 5.2b show two major peaks, one at

(791.5± 6.5) nm and the other at (886.2± 5.9) nm (Fig. 5.4). Positions of the first
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Figure 5.4: Measured spectra of nine individual octahedral clusters.
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Figure 5.5: Diagram of experimental geometry. Our model accounts for the incidence
angle, collection angle, and substrate geometry used in the experiments. To mimic
an unpolarized light source, we add the scattered intensity from two orthogonal
polarizations.

peaks are at 788.2 nm, 795.0 nm, 790.1 nm, 783.0 nm, 800.7 nm, 783.3 nm, 790.7 nm,

790.0 nm, and 802.8 nm. Positions of the second peaks are at 897.0 nm, 884.1 nm,

884.7 nm, 878.8 nm, 881.2 nm, 888.1 nm, 879.2 nm, 890.4 nm, and 892.2 nm. We iden-

tify the peak positions for each cluster by searching for the local maxima in its

spectrum. The small uncertainty in peak positions suggests that the separation dis-

tance is consistent from cluster to cluster. To make a quantitative statement about

how precise this distance is controlled, we first use a model to determine where the

resonances come from, then explore how changing the separation distance affects the

resonances.

To understand the origin of the scattering peaks, we use finite-difference time-
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Figure 5.6: Cross-sectional view of the geometry of the octahedral cluster simulated
in FDTD, showing the gold shell thickness (23 nm) and separation between the gold
layers on the satellites (1.98 nm), both of which were estimated from TEM images of
clusters before and after the gold plating step.

domain (FDTD) simulations. Our simulation accounts for the experimental setup

(Fig. 5.5)—including, for example, the substrate and the numerical aperture of the

lens—and the geometry of the nanoclusters (Fig. 5.6). We coarsely estimate the

positions of the particles and the interparticle separations from TEM images, then

refine these values to obtain agreement between the simulation and experiment.

We find that the model reproduces the peaks at 808.7 nm and 892.5 nm when the

interparticle separation is 1.98 nm (Fig. 5.7). Furthermore, by mapping the charge
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Figure 5.7: Finite-difference time-domain (FDTD) simulations reproduce the locations
of the measured peaks. Charge density maps near 700 nm, 808.7 nm, and 892.5 nm
show different resonant modes inside the cluster at those wavelengths. As we increase
the separation distance between particles, all the peaks shift to shorter wavelengths.

density in the simulations (Fig. 5.7) and calculating the far-field radiation pattern at

different wavelengths (Fig. 5.11), we find that the peak at 892.5 nm originates from
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an electric dipolar resonance, and the peak at 808.7 nm has an electric quadrupolar

component. The model does not explain all the features of the spectra. The peak

close to 700 nm, which appears in only three of the nine spectra, and the variation in

the heights of the peaks at 808.7 nm and 892.5 nm might arise from variations in the

measurement conditions, such as in the incident angle or relative orientation of the

cluster with respect to the incident light direction.

With this understanding of the peak origins, we examine how changing the sepa-

ration distance affects the locations of the resonances. Previous theoretical studies

have shown that the dipolar resonances in a tetrahedral cluster are very sensitive to

the ratio of the inter-particle separation distance to particle diameter [113]. When

this ratio changes from 0.02 to 0.04, the electric dipolar resonance shifts by about

100 nm. From the separation estimated with TEM (2–5 nm) and the overall diameter

of the core-shell geometry, we estimate that the separation-to-diameter ratio of our

octahedral cluster is between 0.011 and 0.027. Within this range, we expect the

resonance peaks to be at least as sensitive as those in the previous study [113].

We use our simulation to confirm this sensitivity. By changing the inter-particle

separation from 1.98 nm (shell thickness 23 nm, diameter 137+46 = 183 nm, separation-

to-diameter ratio 0.011) to 4.98 nm (shell thickness 21.5 nm, diameter 137+43 = 180 nm

separation-to-diameter ratio 0.022), the dipolar peak at 892.5 nm blue-shifts about

90 nm (Fig. 5.7) and the higher-order peak at 808.7 nm blue-shifts about 50 nm. The

uncertainty in peak positions from experimental measurements is an order of magnitude

smaller, 5.9 nm for the dipolar peak and 6.5 nm for the higher-order peak. Assuming

a linear relationship between peak positions and interparticle separations, we estimate
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the uncertainty in interparticle separation to be 0.2 nm to 0.4 nm. From this result, we

conclude that using this synthesis method, very high precision (less than a nanometer)

in controlling interparticle separations can be achieved.

To be clear, “nanometer precision” refers to the average distance between the gold

layers on the silica satellites. As can be seen in Fig. 5.2a, the gold layers have a

roughness that is much larger than a nanometer. This roughness might contribute to

the observed variation in amplitude of the peaks from cluster to cluster. However, the

consistency of the peak positions from cluster to cluster indicates that the average

separation distance is very well controlled. In previous measurements of the spectra

of individual nanoclusters [126, 127], the measurements varied from cluster to cluster,

while bulk measurements of nanoclusters [128, 129] show spectral broadening arising

from the variation in cluster geometry.

5.4 Conclusion

Future work might extend this approach to produce other plasmonic structures,

including ones that display a magnetic resonance. To this end, it may be useful to

control the dimple geometry of the silica core; by tuning the core size, it is possible

to make tetrahedral and dodecahedral geometries [115, 130]. Also, because the core

size, shell thickness, and interparticle separation can be tuned independently of one

another, there are many ways to tune the positions of the plasmon resonances. Thus

the multi-step synthesis scheme is a versatile way of producing “artificial plasmonic

molecules” [113].
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More generally, our method illustrates the degree to which colloidal morphology

can now be controlled through chemistry. The precision of our method stems from the

versatility of seeded-growth reactions. These are used to create the highly monodisperse

silica particles for the core and satellites, to control the thickness of the gold films,

to overgrow the silica core, and to make the octahedral cluster of sacrificial polymer

particles that coordinate the central silica core. This last reaction relies on a geometrical

effect [19] that results in a narrow distribution of numbers of particles attached to a

central core, even when the initial seeds of those particles are randomly distributed on

the core surface [131]. A similar process in which spheres adsorb onto a central core—

rather than grow on it—is the basis of a recent synthesis method for making patchy

colloidal particles with controlled morphology [132]. Like our method, this method

uses multiple high-yield synthesis steps to produce large quantities of specific clusters.

Such schemes, which resemble the multi-step synthetic schemes used to produce

complex molecules from organic reagents, represent a new and emerging paradigm in

colloidal materials. They have clear advantages over self-assembly and lithography:

they can produce bulk quantities of complex three-dimensional structures in bulk with

no annealing required. Our results demonstrate that the multi-step approach can

meet even the most stringent requirements for precision over the assembly.
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5.5 Materials and methods

5.5.1 Synthesis of spherical silica particles

We use a two-stage protocol [124, 117] to synthesize silica particles. The first

stage is the synthesis of pre-seeds. We pour 100 mL of 6mM L-arginine aqueous

solution (purchased from Sigma-Aldrich, 99 %) in a 150 mL double-walled vial equipped

with a reflux condenser. When the temperature stabilizes at 60 ◦C, we add 10 mL

tetraethoxysilane (TEOS, Sigma-Aldrich 99 %). We set the magnetic stirring to

150 rpm for a 3 cm cylindrical magnetic stirrer to generate a small and stable vortex

and an interface of constant surface area between both phases. The reaction continues

until the TEOS (upper phase) fully disappears, typically in two days. We estimate the

diameter of the as-obtained silica pre-seeds from TEM imaging and find an average

value of 29.2 nm and a polydispersity index (PDI) of 1.01. The dry extract method

allows us to determine the silica concentration (25.2 g L−1) and then to calculate the

concentration of pre-seeds (8.8× 10−17 L−1). In the second stage, we re-grow these

silica pre-seeds in a 1 L flask surmounted by a bubbler where 455 mL ethanol (Sigma-

Aldrich), 35 mL ammonia (J.T. Baker, 28–30 % in water) and 10 mL pre-seed aqueous

dispersion are mixed by magnetic stirring. Then the proper volume of TEOS is added

dropwise using a syringe pump at the rate of 0.5 mL h−1 to reach a TEOS/silica weight

ratio of 83. In such conditions, the diameter of the silica particles increases to 86 nm

(PDI = 1.002) and the final concentration of the silica particles is 1.47× 10−16 L−1. To

achieve 137 nm silica particles (PDI = 1.001), we use this last silica particle dispersion

and add TEOS dropwise again to reach a TEOS/silica weight ratio of 20.
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5.5.2 Functionalization of silica particles with carboxylic acid

groups

We modify the 137 nm silica particle surfaces with amino groups and then derivatize

into carboxylic ones following a previously reported protocol [133]. We carry out the

reaction just after the regrowth stage, in the same reacting medium, where we add an

amount of APTES (aminopropyltriethoxysilane, Sigma-Aldrich, 98 %) corresponding

to 20 functional groups per nm2 of silica surface. We stir the dispersion for 12 h at room

temperature. Then we add a volume of glycerol (Sigma-Aldrich, 99 %) corresponding

to 10 % of the dispersion volume. We evaporate ethanol and water using a rotary

evaporator set at 90 ◦C. We heat the dispersion in glycerol, in an oil bath set at 105 ◦C

for a subsequent 2 h thermal treatment under the vacuum produced by a rotary vane

pump (RV5 from Edwards). Finally, we wash the particles by performing four cycles

of centrifugation/redispersion in ethanol (12,000g for 20 min). We check the efficiency

of the reaction by ζ-potential measurements performed in water, which show a value

of (+35± 3) mV in the 4–10 pH range.

Next, we transfer the aminated silica particles to dimethylformamide (DMF) by

performing three centrifugation/redispersion cycles (12,000g for 20 min). Between the

second and third cycle, we add an amount of triethylamine (TEA, Sigma-Aldrich,

99.5 %) corresponding to 50 functional groups per nm2 of silica surface. We adjust the

volume to 50 mL and transfer the dispersion into a round-bottom flask placed in an oil

bath set at 60 ◦C for dehydration for 2 h under the vacuum of the rotary vane pump.

We add an amount of succinic anhydride (Sigma-Aldrich, >99 %) corresponding to

50 functional groups per nm2 of silica surface and let react overnight at 60 ◦C. We
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wash the particles by two centrifugation/redispersion cycles in ethanol and three extra

ones in DMF (12,000g for 20 min). We add an amount of TEA corresponding to 50

functional groups per nm2 before the last washing cycle, and we dehydrate the last

dispersion under the vacuum of the rotary vane pump. We check the efficiency of

the reaction by ζ-potential measurements performed in water, which show a value of

(+35± 5) mV in the 5–10 pH range, and by infrared absorption spectroscopy, which

shows the presence of amide and carboxylate groups in stretching bands at 1650 cm−1

and 1730 cm−1, respectively.

5.5.3 Synthesis of dimpled silica particles from silica/polystyrene

octahedra

We prepare batches of silica/polystyrene octahedra made of a central 86 nm

silica core and six polystyrene (PS) satellite nodules by seeded-growth emulsion

polymerization of styrene, according to a previously developed procedure [117, 119].

Briefly, this procedure consists of the emulsion polymerization of styrene performed in

the presence of the 86 nm silica particles, which are surface modified with methacryl-

oxymethyltriethoxysilane (MMS, ABCR, 98 %).

The MMS modification reaction is carried out just after the silica regrowth stage,

in the same reacting medium, where we add an amount of MMS corresponding to 0.5

functional groups per nm2 of silica surface. We let react under stirring for 3 h at room

temperature before heating to 90 ◦C for 1 h under reflux of ethanol. We concentrate

the dispersion with the rotary evaporator to remove ethanol and ammonia and replace

them with water. Then we let the dispersion cool down at room temperature and
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dialyze against water for three days. We measure the particle concentration by the

dried extract method.

In a 250 mL three-neck flask, equipped with a stirring anchor and a condenser

surmounted by a bubbler, we introduce water, the 86 nm silica seed dispersion (con-

centration 7.3× 1015 L−1), and a surfactant mixture (3 g L−1) made of Symperonic

NP30 (95 % w/w) and sodium dodecyl sulfate (SDS, Sigma-Aldrich, >90 %, 5 % w/w).

We thoroughly deaerate the dispersion by bubbling nitrogen through it while stir-

ring (170 rpm). We emulsify by adding styrene (Sigma-Aldrich, 99 %, 100 g L−1) at

250 rpm for 15 min. We carry out the polymerization at 70 ◦C after addition of sodium

persulfate (Sigma-Aldrich, 99 %, 0.5 % w/w with respect to styrene). After 6 h, the

monomer-to-polymer conversion is 80 % as determined by the dried extract method.

We characterize the sample by TEM and determine statistically that it consists of

octahedra with a morphology yield higher than 80 %. The average diameter of the PS

satellites is 150 nm.

We overgrow the silica cores using a previously reported method [115]. We prepare

a mixture of 450 mL ethanol and 35 mL ammonia (1M) and first add a volume of

the polymerization medium to fix the octahedron concentration to 1.5× 1014 L−1.

Then we add 4.5 mL TEOS (10 % v/v in ethanol) at a rate of 1 mL h−1. We make

the silica surface hydrophobic by adding a volume of propyltrimethoxysilane (PTMS,

Sigma-Aldrich, >98 %) corresponding to 50 functional groups per nm2 of the silica

surface area. We complete the reaction under stirring at ambient temperature for 12 h.

Finally, we wash the particles by performing three cycles of centrifugation (12,000g

for 20 min) and redispersion in ethanol. TEM experiments show that the diameter of
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the silica core increases from 86 nm to 145 nm.

To dissolve the PS satellites, we add a volume of DMF equal to 10 % of the total

volume. Subsequently we heat the dispersion to 70 ◦C and partially evaporate it under

vacuum using a rotary evaporator. Then we increase the temperature to 90 ◦C and let

the evaporation continue until the dispersion changes from white to almost transparent.

To remove the dissolved PS, we perform three cycles of centrifugation/redispersion in

THF (10,000g for 20 min).

5.5.4 Amination of the residual PS macromolecules at the bot-

tom of the dimples

For this procedure, we use a previously reported recipe [116]. Briefly, after transfer-

ring the as-prepared dimpled silica particles in chloroform, we add butyl chloromethyl

ether in chloroform (3M; 5 mL) and 0.3 mL tin tetrachloride (SnCl4, Sigma-Aldrich,

>99 %). We set the temperature to 45 ◦C and then age the mixture overnight. Finally

we wash the nanoparticles using three cycles of centrifugation/redispersion (5,000g for

15 min) in aqueous HCl solution (4 % w/w) and then in water/ethanol (50/50 w/w)

before redispersion in 20 mL DMF. We perform the amination using 1013 chloromethy-

lated silica particles in DMF and 3 mL ethylene diamine (Fluka, 99.5 %), such that

the ethylene diamine is in excess to minimize cross-linking. We heat the system to

90 ◦C and let the reaction proceed overnight under stirring. We wash the nanoparticles

using two cycles of centrifugation/redispersion (12,000g for 20 min) in ethanol and

two additional cycles in water. After having protonated the amino groups with a

few drops of HCl, we centrifuge the dispersion and redisperse the particles in water.
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Lastly, we transfer the aminated dimpled silica particles into DMF by performing

two cycles of centrifugation/redispersion (12,000g for 20 min). We add an amount of

TEA corresponding to 50 functional groups per nm2 of surface of a sphere of similar

diameter and we wash the solution one more time with DMF. Finally, we remove the

remaining water from the dispersion by heating at 50 ◦C under stirring and vacuum

generated by a rotary vane pump for 1 h.

5.5.5 Synthesis of silica/silica octahedra

To assemble the 137 nm carboxylated spherical silica particles onto the 145 nm

aminated dimpled silica particles, we use a peptidic coupling reaction. We perform the

reaction in DMF, activating the carboxylate groups with ethyl chloroformate (ECF,

Sigma-Aldrich, >97 %) used in exact stoichiometry, avoiding thoroughly the presence

of water, and efficiently deprotonating the reactive groups with triethylamine (TEA).

In a 1.5 mL Eppendorf tube, we introduce the DMF dispersion of carboxylated

silica particles and an amount of ECF corresponding to 4 functional groups per nm2 of

silica surface, mix on a vortexer, and homogenize on a roller mixer for 2 min. Then we

add the DMF dispersion of aminated dimpled silica particles in excess, such that there

are 400 carboxylated particles for each aminated dimpled ones, and we let the assembly

proceed for 30 min on the roller mixer. We transfer the dispersion to 40 mL water

(containing 0.1 mL TEA) and attempt to selectively remove the excess of carboxylated

particles by performing three centrifugation/redispersion cycles (500g for 20 min). We

check the assembly success and silica/silica octahedron morphology by TEM.
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5.5.6 Gold decoration of silica satellites of the silica/silica oc-

tahedra

We grow a gold shell specifically onto the silica satellites by first turning the

carboxylate groups into amino ones, then adsorbing tiny gold nanoparticles (diameter

of 2–5 nm prepared by following a previously developed recipe [134]) selectively on the

satellites. A gold plating solution (GPS) prepared according to a previously reported

protocol [123] is then used to grow a gold shell on the gold-seed-covered satellites.

Because the carboxylate groups are deactivated at the time of the purification

step in water, we re-activate them by transferring them into DMF and adding ECF

under conditions previously described. After 5 min, we add an amount of ethylene

diamine corresponding to 50 functional groups per nm2 of the silica satellite surface

and let the mixture react overnight. Then we wash the particles by three centrifuga-

tion/redispersion cycles in water (2,000g for 10 min), acidify using a few drops of HCl

to protonate the amino groups, and wash one more time with water.

In parallel, we prepare the tiny gold seeds in a 500 mL flask by introducing

227.5 mL water, 7.5 mL aqueous solution of NaOH (Sigma-Aldrich, 98 %, 0.2M) and

5 mL tetrakis(hydroxymethyl)phosphonium chloride (THPC, Aldrich, 80 %) aqueous

solution (120 µL in 10 mL). After homogenization for 15 min under stirring, we quickly

inject 10 mL HAuCl4 (25mM, Sigma-Aldrich, 99.9 %). The solution turns from pale

yellow to brown in a few seconds, indicating the formation of gold nanoparticles.

We put these tiny gold nanoparticles (30 mL) in contact with the silica/silica

octahedra (1 mL) by mixing both dispersions, and we let the selective adsorption

proceed over a roller mixer for at least 4 h. We wash the particles and remove excess
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gold seeds by three centrifugation/redispersion cycles in water (500g for 20 min).

To make the GPS, we prepare a 10 mL stock solution of gold precursor from

HAuCl4 (25mM) and store it in the dark at 4 ◦C. In a 100 mL flask, we mix 8 mL

gold stock solution and 300 mg potassium carbonate and then fill the flask to a total

volume of 100 mL with water. We stir the solution overnight at 4 ◦C.

In a 50 mL falcon tube, we introduce the gold decorated silica/silica octahedra

(0.5 mL), PVP solution (10 mL, 10 g L−1), the GPS solution (25 mL), and formaldehyde

(1.25 mL). We let the reaction proceed for at least 12 h over a roller mixer. Then we

wash the nanoparticles using three cycles of centrifugation (3,000g for 15 min) and

redispersion in water. To tune the gold shell thickness, we vary the amount of GPS

solution (X mL) and formaldehyde (X/20 mL) where X is the value of targeted shell

thickness in nanometer. We vary the value of X from 5 to 35 to achieve clusters with

different shell thicknesses as shown in Fig. 5.2a.

5.5.7 Characterization techniques

Transmission electron microscopy (TEM). We perform TEM measurements

using a Philips CM20 microscope that operates at 75 kV. We prepare the samples

by depositing one drop of the colloidal dispersion on a conventional carbon-coated

copper grid. We then air-dry the grids at room temperature and store in a closed box

to prevent dust accumulation.

Scanning transmission electron microscopy (STEM). We perform STEM

measurements coupled with energy dispersive X-ray spectroscopy (EDX) using a JEOL
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2200 FS equipped with a field emission gun which operates at 200 kV (PLACAMAT,

UMS 3626 CNRS/Univ. Bordeaux). STEM-EDX images are shown in Fig. 5.8.

Figure 5.8: STEM-EDX elemental mapping of the gold clusters: bright field TEM
image (top left) and silicon, oxygen, gold and superimposed EDX maps evidencing
the core-shell morphology of the six satellites.

Single-particle dark-field spectroscopy. To prepare a sample for single-particle

spectrocopy, we mix a dispersion of 10 µL of the gold-decorated octahedra with 450 µL

of ultrapure deionized water (obtained from a Millipore Synthesis) in an Eppendorf tube.

We homogenize the dispersion using a vortexer and an ultrasonic bath. We deposit

3 µL of this suspension on a TEM grid (Electron Microscopy Sciences, model number

LF200) and let it dry. The TEM grids contain squares with distinct alphabetical

markers and are covered with a thin layer of Formvar, a hydrophobic polymer. After

drying the suspension on the grid, we observe the sample with a TEM and identify

the locations of octahedral clusters using the alphabetical markers on the TEM grid.

Finally, we transfer the grids to the spectroscopy setup.
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In the dark-field setup, we use an unpolarized white light beam from a halogen

goose neck lamp (supplied by Cole Parmer, 41723-Series high intensity illuminator).

We focus the beam on the sample using a 20× long working distance Olympus objective.

The incidence angle of light is about 65° with respect to the direction perpendicular

to the sample. This oblique incidence angle ensures that only the scattered light

passes through the collection objective. We mount the sample on a rotation stage

which is placed on a motorized stage connected to the microscope-spectrometer setup

(LabRAM HR Evolution Raman spectrometer from HORIBA Scientific). We collect

scattered light from the sample using a 50× long working distance Olympus objective

with a numerical aperture of 0.5. We use an adjustable aperture situated in the optical

path of the spectrometer to collect scattered light from only the surroundings of one

cluster, with an area of approximately 1 µm2.

We measure the spectrum of scattered light from individual clusters by subtracting

the signal from the background and then normalizing by the incident light spectrum:

I =
Isc − Ibg

Iinc
, (5.1)

where Isc is the measured intensity of the scattered light with a cluster in the field of

view and Ibg is the measured intensity of the scattered light without a cluster. Iinc is

the intensity of incident light recorded from a Spectralon diffuse reflectance standard

(supplied by Labsphere).

5.5.8 Modeling optical properties of plasmonic nanoclusters

We use the commercial package Lumerical to perform finite-difference time-domain

(FDTD) simulations of scattering from the nanoclusters. We use a total-field-scattered-
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a b

c d

Figure 5.9: (a) 3D view of the simulation setup for p-polarized light. (b) Sideview
of the simulation setup for p-polarized light. (c) 3D view of the simulation setup for
s-polarized light. (d) Sideview of the simulation setup for s-polarized light.

field (TFSF) implementation, which allows us to separate the scattered field from the

incident field. We model a cluster by implementing the octahedral geometry with the

approximate parameters measured from TEM images. To replicate the experimental

setup, we place the cluster on a substrate (thickness 30 nm, refractive index 1.5) and

implement an incidence angle of 25°. The simulation setup is shown in Fig. 5.9.

Fig. 5.10 shows a cross-sectional view and the mapping of refractive index across

the model of the cluster. It shows the presence of the gold shells surrounding spherical

silica particles. From simulations, we measure the scattered light at coordinates in the

far-field, a centimeter away from the cluster (approximately the distance between the

cluster and objective lens in experiment). We implement the numerical aperture by
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defining a cone with a cone angle of 30° and integrating the scattered light intensity

over the area of the base of the cone. To measure the response to our unpolarized light

source, we perform simulations separately with s-polarized and p-polarized incident

light and take their sum. To plot the far-field radiation patterns as shown in Fig. 5.11,

we calculate the intensity of scattered light along the perimeter of a circle with a

diameter of 1 m placed in three different planes: the XY , Y Z, and XZ plane.

Silica
Gold

Figure 5.10: Map of refractive index in a cross-sectional plane of an octahedral
nanocluster modeled in simulation.
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700 nm 808.7 nm 892.5 nmXY
YZ
XZ

Figure 5.11: Far-field radiation pattern of a modeled nanocluster at three different
wavelengths. The incident light polarization is aligned with the x-axis. The patterns
at 892.5 nm represent electric dipolar radiation and the patterns at 700 nm represent
electric quadrupolar radiation, in both XY and XZ planes. At the wavelength of
808.7 nm, the quadrupolar mode shows up in the XY plane (shown by the black
arrows).
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Figure 5.12: Scattering spectra for clusters with different gaps. The total intensity is
the sum of the intensity of s-polarized and p-polarized light. We find one dominant
peak for each of the polarizations. For a 1.98 nm gap geometry, the peak for s-polarized
light is around 770 nm and the peak for p-polarized light is around 892.5 nm. As
the gap increases from 1.98 nm to 4.98 nm, both of the peaks for s-polarized and
p-polarized light blue-shift. As a result, the peaks in the total scattered light spectra
(shown by green plot) also blue-shift.
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Chapter 6

Conclusion and outlook

The experimental systems in this thesis demonstrate progress toward a general

understanding of packing and parking of colloidal spheres and potential applications.

Experiments on close packing on a cylinder through weak colloidal interactions confirm

that chiral crystals and chiral line-slip defects emerge owing to the cylindrical geometry.

Moreover, we observe new structural features, such as kinked line-slip defects with

fractional vacancies. This observation led to our investigation on crystallization

dynamics, and we find a close connection between morphology and crystal growth

dynamics. Inspired by the structures of snowflakes and rock crystals, studies on crystal

morphology and growth dynamics have been an intensive area of study for more

than a century now [135]. Our results, which indicate that geometry of the substrate

plays a crucial role in both morphology and growth dynamics, might inspire future

investigations on other substrate geometry.

Our experiments on random parking on a cylinder through strong colloidal interac-

tions show that cylinders with higher curvature have lower surface coverage compared
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to a surface with no curvature. Our theory and simulations confirm that this is a

geometric effect and not just a kinetic and energetic one.

Experiments on multi-step colloidal synthesis demonstrate that colloidal packing

can be used to design patchy structures with well defined symmetry, and those

structures can be coated with plasmonic materials. This result shows that by combining

effects of substrate geometry with colloidal chemistry, it is possible to design structures

with precise geometry at the nanoscale.

Below I outline opportunities of future investigations that have been inspired by

our findings.

6.1 Future directions for self-assembly on a cylinder

6.1.1 Frustration at kinks

We showed in Chapter 2 that the kinked line-slip defects stay kinetically trapped

for hours even when they have low energy with only one fractional vacancy. This result

can be attributed to the shape of the kink itself. Preliminary results from simulation

show that the line-slip geometry can vary depending on the sphere-to-cylinder size

ratio and the chiral angle of the crystal. As shown in Fig. 6.1, a line-slip defect with

smaller gaps at the slip has a larger angle at its kink, and a line-slip defect with larger

gaps at the slip has a smaller angle at its kink. The small angle at the kink can make

it hard for the particle at kink to move because doing so requires stretching the crystal

or moving out of the plane. This effect should be verified and measured in experiment,

which will require confocal images with higher spatial and temporal resolution.
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Figure 6.1: (a) Line-slip defect with small gap at the slip and large angle at the kink.
The large angle enables particles at the kink to hop more often. (b) Line-slip defect
with large gap at the slip line and small angle at the kink. The small angle does not
enable particles at the kink to hop often.

6.1.2 Design of different interactions

All our experiments and simulations were carried out with a fixed range of inter-

action potential. Frustration at the kinks can be attributed to the short interaction

range. Future investigations might address how the structure and dynamics of kinked

line-slip defect vary with the range of interaction. Moreover, our crystallization scheme

driven by depletion does not allow crystallization on a cylinder with a diameter less

than a particle diameter. More specific interactions, such as DNA-mediated attraction,

could make it possible to study crystallization at small size ratios, thereby providing

an opportunity to compare structures directly with previous simulations [1, 2].

6.1.3 Sublimation dynamics at kinked line-slip defects

Previous research has examined the sublimation dynamics of colloidal crystals

[136] and premelting at dislocations and grain boundaries [137]. How the kinked
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line-slip defect contributes to sublimation and whether premelting is observed at the

defect are both interesting questions for future investigation. Experiments to answer

these questions can be done with our current system. At high temperature, the size of

SDS micelles shrinks, reducing the depth of interaction potential and causing melting

[136]. We present preliminary results for such a system in Fig. 6.2, in which at high

temperature, partial melting of a crystal with line-slip defect is observed.

a b

low T high T

Figure 6.2: (a) Crystal with a kinked line-slip defect at room temperature. (b) At
high temperature (60°C), the crystal starts to sublime (bottom right corner); half of
the defect disappears as the crystal starts to sublime.

6.1.4 Self-assembly on dynamic substrate

All of the experiments presented in this thesis consider a cylinder and spheres with

fixed size and shape. However, changing the cylinder diameter geometry dynamically

[138] or bending the substrate [2] both can affect the dynamics of crystal defects. One

approach to examine such dynamics is to use thermoresponsive colloidal spheres such

as poly-(N -isopropylacrylamide) microgel spheres that change diameter in response
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to temperature. Such a system has been used previously to examine packing inside

thin cylinders [22]. One might use this system to observe dynamics of kinked line-slip

defects.

6.1.5 Chirality and optical properties

Crystallization on a cylinder spontaneously results in chiral crystals and chiral

defects. Because the chirality depends only on the size ratio of the cylinder to the

spheres, the crystallization process can be used to design structures at any lengthscale.

The field of chiral metamaterials requires 3D chiral nanoscale building blocks containing

plasmonic nanoparticles. To date, most of the promising designs focus on producing

single helices using lithography [48] or DNA origami [139, 42]. The chirooptical

properties of our chiral crystals, which resemble carbon nanotubes have not been

investigated. Thus there are opportunities for both future experiments and modeling

of optical properties.

6.2 Self-assembly in different geometry

6.2.1 Crystallization on a cone

There are almost unlimited possibilities for the geometries on which we can study

self-assembly. An immediate opportunity is to investigate colloidal self-assembly on

the surface of a cone. A cone has a zero Gaussian curvature just like a cylinder (except

at its tip), but its mean curvature varies along its length. In contrast to a cylinder, a

single crystal with fixed chirality will fail to form on the surface of a cone without
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a b

Figure 6.3: (a) Image of a cone fabricated by pulling a glass capillary tube. The red
line shows a scale bar with a length of 10 µm. (b) Confocal micrograph of colloidal
particles self-assemble on the surface of a cone through depletion interactions.

defects or fractional vacancies, except on cones with very specific cone angles. We

show in Fig. 6.3 that it is possible to design an experimental system where colloidal

spheres self-assemble on a cone surface using the same colloidal interactions that we

used for cylinders.

6.2.2 Self-assembly with bidisperse colloidal particles

Another way to induce geometric frustration is to use a bidisperse colloidal system.

In Fig. 6.4 we show preliminary results for crystallization of colloidal spheres on a flat

surface using two different sizes of colloidal particles, 700 nm (green particles) and

800 nm (red particles). As we change their number ratio, the structure of the crystal

changes. For high enough ratios (90:1 and 9:1) the 800 nm particles act as impurities

in the crystal, influencing the crystal grain size (Fig. 6.4a,d and 6.4b,e). For equal
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a b c

d e f

Figure 6.4: Confocal microscope images of a colloidal crystal made of particles with
two different sizes, 700 nm (green) and 800 nm (red). The top panel shows variation
in structure at their number ratios (a) 90:1 (b) 9:1, and (c) 1:1. The bottom panel
shows the same images in black and white. Crystals in (e) have smaller grains and
more grain boundaries. They also have more second layers (the bright white spots on
top of the crystals) compared to the crystals in (d). In contrast, the crystals in (f)
have no long-range order and, as a result, do not form a second layer.

numbers of both sizes, we end up with short-ranged crystalline order (Fig. 6.4c,f).

The effects of impurities on defects such as grain boundaries in bulk colloidal crystals

have been investigated to some extent [56, 57]. However, how impurities affect defects

induced by geometric frustration, such as a line-slip defect, is not known and leaves

ample opportunities to explore.
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6.3 Final remarks

Inspired by the diversity of structures in nature from flowers to viruses, we explored

self-assembly of colloidal particles under different conditions of geometry. There are

still numerous unexplored questions in this area of study that have not been addressed

even with the colloidal model system. How our understanding of the model system

relates to the reality of structures present in nature is another question yet to be

investigated. Nevertheless, the colloidal system provides opportunities to design new

materials because of their promise in bottom-up self-assembly. Being part of a research

project with both inspiration from nature and real-world applications has been a great

privilege for me, and I look forward to the future possibilities in this area of research.
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