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Uncovering the Pathology of Rheumatoid Arthritis with Single Cell Immunoprofiling 

 

 

Abstract 

 

 

Rheumatoid arthritis (RA) is a chronic multi-systemic autoimmune disorder affecting nearly 25 

million people worldwide, yet its underlying causes remain unclear. Genetic studies of patients 

with RA have highlighted the role of dysfunction in the adaptive immune system, particularly 

among CD4+ T cell populations. While defining the precise CD4+ T cell subsets that are 

dysregulated in RA patients is critical to deciphering pathogenesis, much of the work in the field 

has relied on animal models or derives from bulk analyses of immune cells, which can lead to 

overlooking rare or transitional cell types due to the heterogenous nature of immune 

populations. The recent introduction of high dimensional single-cell analyses have improved the 

ability to resolve complex mixtures of cells; however, identifying disease-associated cell types or 

cell states in patient samples remains challenging due to technical and inter-individual 

variation. In particular, case-control analysis of disease using single cell data requires a 

quantitative approach to determining which cells provide the most information (and which cells 

are uninformative) while accounting for confounding effects from batch or technical variation; 

properly grouping those cells into biologically relevant populations, and then determining 

whether the abundance of these populations is statistically different between cases and controls. 

Mixed effects modeling of Associations of Single Cells (MASC) is a novel reverse single cell 

association strategy to determine if a cellular subpopulation is associated with case-control 

status while controlling for technical confounders and biological covariates. This method 

revealed important changes in the abundance of disease-associated immune and stromal 
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populations – specifically an expansion of cytotoxic CD4+ T cells and HLA+ sublining 

fibroblasts in RA. Compared to peripheral blood, synovial fluid and synovial tissue samples from 

RA patients were significantly enriched for both of these populations, indicating that these cell 

types are present in high abundance at the specific locus of RA pathogenesis. The methods 

developed for the analysis of single cell data are broadly applicable, support performing 

association testing with high-dimensional single cell data, and can help identify other cellular 

populations that are critical to rheumatic disease pathogenesis. 
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 Autoimmune disorders result from immunological dysfunction wherein the capacity of 

an organism’s immune system to ignore or tolerate its own tissues is compromised, leading to 

the targeted destruction of healthy cells and attendant pathological complications. There is a 

wide spectrum of diseases classified as autoimmune disorders, including both diseases that 

affect a specific organ or tissue –  like type 1 diabetes (pancreas)1, celiac (intestine)2, and 

multiple sclerosis (central nervous system)3 – as well as diseases that affect a variety of tissues 

and organ systems, like systematic lupus erythematosus4. The class of autoimmune disorders 

consists of over 100 distinct syndromes and have a global prevalence of 3-5%, although the 

accuracy of these estimates are complicated by the observation that many autoimmune diseases 

have varied presentation and share symptoms and subphenotypes, which impedes accurate 

diagnosis and classification5,6. Broadly, autoimmune disorders are well known for 

demonstrating clear sex differences in prevalence; in general, females are more frequently 

affected than males, although the exact sex bias differs between specific conditions and does not 

necessarily indicate sex-specific differences in disease severity7.  

Generally, autoimmune disorders are considered to share at least one fundamental 

etiology – the breakdown of immunological tolerance. Tolerance is the process of how the 

immune system normally prevents itself from targeting self-molecules, cells or tissues instead of 

exogenous pathogens8. A critical step in this mechanism is central tolerance, which takes place 

in the thymus and bone marrow where T and B lymphocytes develop. Lymphocytes that 

demonstrate the capacity to react to self-antigens are typically negatively selected against and 

removed, although this is not perfect and some autoreactive lymphocytes are able to escape this 

process. However, various methods of peripheral tolerance allow for the control of autoreactive 

lymphocytes that have escaped central tolerance and prevent further damage. Thus, the mere 

presence of autoreactive lymphocytes is not necessarily pathogenic on its own; rather, the 

development of autoimmunity likely involves deficiencies in both central and peripheral 
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tolerance – leading to an increase in escape of autoreactive cells and a reduced ability to control 

them (Figure 1-1). 

 

Dysfunction in Immune Tolerance Can Lead to Autoimmunity 

 
Figure 1-1. A simplified overview of the mechanism of immunological tolerance. In central tolerance, T 
and B lymphocytes develop in the thymus and bone marrow, respectively, and cells that do not strongly 
react to the presentation of self-antigens are exported to the periphery. Autoreactive cells (aT and aB) are 
typically selected against and deleted or induced to become less autoreactive. If autoreactive cells make 
it to the periphery, they are typically controlled by the mechanisms listed in the green box on the right. 
However, endogenous and exogenous insults to this system, as shown in red box in the right, can 
promote the survival and proliferation of autoreactive T and B cells, leading to the development of 
autoimmunity. (Adapted from Theofilopoulos et al., 2017)9  
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The idea that autoimmunity results from a break in adaptive tolerance is generally 

accepted, although recent findings suggest that a substantial number of autoimmune diseases 

involve disruption to the innate immune system as well10. Regardless, the immune pathologies 

underlying specific autoimmune disorders remain unclear; while some diseases share common 

signatures of autoreactivity and are amenable to treatment with similar therapeutics, the fact 

that the course of an autoimmune disease often differs from patient to patient and through 

different phases within the same patient may indicate that different pathogenic mechanisms are 

at work at any given time or in any given individual. Individuals may suffer from more than one 

autoimmune disorder simultaneously; however, whether this is the result of a shared 

immunopathogenic mechanism is complicated by the observation that many autoimmune 

diseases share symptoms and subphenotypes which complicate accurate classification5. Overall, 

autoimmune disorders represent a set of highly complex and heterogeneous syndromes that 

require detailed experimentation and analysis to understand. The remainder of this work will 

focus on the specific immunopathologies that underlie rheumatoid arthritis. 

 Rheumatoid arthritis (RA) is a chronic, multisystemic autoimmune disorder affecting 

0.5-1% of the adult population11. The most notable symptom of RA is persistent inflammation of 

the synovial tissues, leading to swelling at the flexible joints and eventual destruction of the 

surrounding cartilage and bone. Damage to these tissues causes loss of joint function and severe 

disability12 in RA patients, while increased bone fragility and comorbid cardiovascular disease 

are thought to be major contributors to increased mortality13-15. Although various treatments are 

available for the management of RA11,16,17, the disease is currently incurable and rarely resolves 

spontaneously. Overall, RA is a debilitating disease that causes significant burden: it is 

estimated that RA decreases expected lifespan by up to 10 years18,19.  

RA susceptibility is thought to involve the complex interplay of environmental risk 

factors, genetic risk factors, and autoimmunity20. The best understood environmental trigger for 

RA is smoking, which nearly doubles disease risk and affects RA severity in a dose-dependent 
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manner18. Estimates of RA heritability from twin studies range from 50-65%, about half of 

which is explained by known disease-associated variants21,22.  The strongest genetic associations 

for RA are observed at the major histocompatibility complex (MHC) locus, driven by variants in 

the genes HLA-DRB1, HLA-DPB1, and HLA-B23. The MHC, located on chromosome 6, is 

consists of genes that encode molecules involved in antigen presentation; thus, genetic variants 

in this region are likely to play a critical role in distinguishing self from nonself. Although 

roughly three times as much phenotypic variance in RA is explained by MHC associations as 

opposed to non-MHC associations, numerous genome-wide association studies (GWAS) have 

identified over a hundred other RA risk loci outside of the MHC24-26. 

 The genetic signature of RA can potentially highlight the specific immune systems that 

are affected by disease; in this case, associations both in the MHC and outside of it indicate a 

significant role for a specific compartment of the adaptive immune system. HLA-DRB1 and 

HLA-DPB1 are components of the MHC class II molecule, which antigen presenting cells use to 

present antigens to CD4+ T cells. Polymorphisms in this locus affect the range of antigens that 

MHC class II molecules can bind and present in order to activate CD4+ T cells23,27. Genetic risk 

alleles outside of the MHC locus also point to a role for CD4+ T cells, playing important roles at 

various points in pathways important for T cell activation, for the differentiation of regulatory 

(Treg) and effector (Teff)  cell subsets, and for maintenance of subset identity25,28. In addition, 

non-MHC RA risk loci are enriched among genes preferentially expressed in effector memory 

CD4+ T cells over other immune cell types29,30. CD4+ T cells are frequently found infiltrating the 

synovium in RA, often in dense lymphocyte aggregates31,32; interfering with T cell activation by 

blocking costimulatory signals with abatacept (CTLA4-Ig) is an effective therapy for clinical 

RA33. 

 While it is clear that CD4+ T cells play an important role in promoting RA pathology, 

pinpointing the specific T cell phenotypes or functions that are most relevant in this disease has 

been challenging. CD4+ T cells are typically categorized by the level of expression of surface and 
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intracellular proteins that reflect functionally distinct cell types34,35. In response to cytokine 

stimulation, naïve CD4+ T cells are polarized into effector and regulatory subsets that activate 

specific gene expression programs, produce cytokines and other signaling molecules, and 

perform different functions36-38 (Figure 1-2).  

 

CD4+ T Cell Differentiation 

 

Figure 1-2. An overview of CD4+ T cell differentiation. The addition of cytokines and other molecules 
labeled along each line promotes the differentiation of naïve CD4+ T cells into a specific subset; as 
shown by the blocking arrows, some of these molecules can repress differentiation into other subsets as 
well. The proteins labeled inside each cells’ nucleus represent the lineage-defining transcription factor for 
that subset (along with the corresponding STAT signaling molecule), while the molecules listed to the 
right are specifically produced by that subset. (Adapted from Sethi et al., 2012)37. 
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There is considerable evidence that the activity of pro-inflammatory Teff cells and 

suppressive Treg cells is dysregulated in rheumatoid arthritis39-41. At various times, studies have 

implicated an imbalance in the abundance and capacity of T helper 1 (Th1), T helper 2 (Th2), T 

helper 17 (Th17), and Treg subtypes42-48. Yet the fundamental cell types and mechanisms that 

underlie the pathogenesis of RA remain unclear. In part, this is because much of what is known 

about the role of CD4+ T cells in autoimmunity has been derived from animal models of RA49. 

While these models may adequately replicate the phenotypical characteristics of the disease, the 

differences between the two species’ immune systems mean that cell types or functions that may 

be directly relevant for human pathology could play a minor role or be completely absent in the 

mouse50-52. 

Moreover, CD4+ T cells are highly heterogeneous, displaying diverse combinations of 

surface markers and effector functions. This heterogeneity makes it difficult to describe T cell 

infiltrates as bulk populations; such analyses are liable to miss potentially relevant cell 

phenotypes because they are rare or transitory in the sample. This heterogeneity also explains 

the extent of contradictory literature on the function and role of CD4+ T cells in RA – for 

example, it may indeed be true that in two separate experiments, Treg cells appear to be 

compromised or functional, solely due to the proportions of cells sampled in the bulk mixture 

and the markers used to define the populations. The highly complex and plastic nature of these 

cells means that pinpointing the specific T cell phenotypes or functions that are most relevant in 

this disease has been challenging and has highlighted the value of single cell analyses to resolve 

the diverse  D4+ T cell compartment.  

The recent rapid expansion of single cell technologies has led to a dramatic advance in 

the ability to study complex populations in large-scale with high dimensionality (Figure 1-3). 

This high-dimensional single cell profiling may lead to the identification of specific T cell 

populations or states that are mechanistically linked to disease and ideal for therapeutic 

targeting. The following section reviews recent advances in single cell immunoprofiling and 
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describe their early application in RA in advance of the next chapter describing the necessary 

methodological and bioinformatic considerations to maximize the potential of single cell 

technologies in its application to define mechanisms of immune-mediated diseases53.  

 

Advances in Single Cell Technologies 

 

Figure 1-3. The number of unique molecules that can be simultaneously characterized for a single cell 
has progressively increased. The introduction of new fluorchromes has improved polychromatic flow 
cytometry and enabled the development of 18-color assays. Mass cytometry, which uses stable isotopes 
of non-biological rare earth metals linked to antibodies to detect protein epitopes, is currently capable of 
acquiring 44 markers simultaneously. Current equipment for experiments are limited by the availability of 
isotopically pure reagents.  

 

Low-dimensional single cell analysis of T cells in RA 

 Single cell assays have a long history in the field of autoimmunity, beginning in 1969 

with the initial use of fluorescent assays to label and sort immune cell populations54-57. 

Cytometry has been thoroughly exploited in the exploration of lymphocyte heterogeneity in 
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RA58-62. Subsequent improvements in flow cytometry technology have steadily increased the 

number of parameters that can be measured for each cell, provided access to cytoplasmic and 

nuclear protein expression through intracellular staining, and facilitated measurement of cell 

signaling using antibodies specific for the phosphorylation state of signaling molecules63. Flow 

cytometric analyses of T cells from RA synovial tissue and fluid have highlighted the dramatic 

‘activated’ phenotype of T cells within the RA joint, consistent with an ongoing autoimmune 

response directed at the synovium64,65. Synovial T cells frequently express CXCR3, suggesting 

Th1 differentiation, and loss of CD27, suggesting a chronically activated state66-68. 

 Immunophenotyping of peripheral blood CD4+ T cells from RA patients has also 

identified characteristic changes, including expansion of Th17 cells relative to Tregs40,69, and an 

expansion of CD28- T cells61,70. Unfortunately, studies of peripheral blood T cells in RA have 

often yielded inconsistent results. For example, the abundance of Treg cells in RA peripheral 

blood has been observed to be reduced or expanded compared to healthy controls in different 

studies71-75; in addition, conflicting results have been reported concerning the suppressive 

capability of Treg cells in RA41,76-79. While single cell experiments can overcome the limitations of 

bulk assays of heterogenous populations, some of this inconsistency is rooted in methodological 

issues that will need to be addressed as investigators begin to apply single cell technologies to 

autoimmune diseases. Specific issues have included the use of small sample sizes, variability in 

cohorts, technical noise resulting in batch effects, publication bias, and the lack of principled 

statistical methodology and criteria. 

 

High-dimensional analyses reveal an expanded view of CD4+ T cell heterogeneity.  

The recent development of mass cytometry - a fusion of mass spectrometry and flow 

cytometry that is capable of the simultaneous acquisition of over 40 parameters on a single cell 

level – has further extended the dimensionality of single cell cytometric assays80. Mass 

cytometry relies upon staining cells with the same target-specific antibodies that are commonly 
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used in flow cytometry to tag markers of interest; however, in mass cytometry antibodies are 

labeled with pure, non-radioactive rare earth isotopes instead of fluorescent proteins. After 

staining, single cells are analyzed by a time-of-flight mass spectrometer by integrating the 

detection of heavy metal reporter ions to determine expression levels for each labeled 

antibody81-83.  

Single cell immunoprofiling by mass cytometry has already been used to reveal 

remarkable heterogeneity within conventional T cell subsets. Wong et al. used mass cytometry 

to profile CD4+ T cells across eight human tissue types and described 75 different populations, 

including multiple Th1 populations for each TH subset. Many cell populations were tissue-

specific and differed based the expression of trafficking receptors and cytokine production84. 

They observed that certain populations co-expressed “key” cytokines like IFN-g, IL-4, and IL-

17A that are typically restricted to a single CD4+ TH subset, in line with previous findings 

highlighting the phenotypic plasticity between CD4+ TH lineages85-88, reviewed in36. Other 

studies have taken advantage of high-dimensional single cell mass cytometry analysis to 

describe multiple populations of TREG and TFH cells89,90.  

While advances in flow cytometry and mass cytometry enable users to define single cells 

across many parameters, the set of proteins to be measured must be decided a priori, limiting 

the use of these technologies in unbiased discovery studies. In contrast, single cell 

transcriptomic analysis presents an opportunity to define single cell expression profiles without 

relying on prior knowledge. Several different single cell RNA-seq (scRNA-seq) methods have 

been developed over the past decade91-95 and successfully applied in various immunological 

studies, such as identifying differentiation pathways in immune cell lineages96,97, establishing 

novel transcriptional regulatory networks98, and revealing functional diversity among lymphoid 

cell populations99,100.  

Single cell RNA-seq technologies provide an orthogonal approach to cytometry-based 

methods for establishing CD4+ T cell heterogeneity. As CD4+ T cell subsets are differentiated by 
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their putative functionality, quantifying of transcript expression on the single cell level can be 

used to identify gene expression programs that underlie those functional divisions. Single cell 

sequencing of T cells isolated from patients with liver cancer identified 11 distinct CD4 and CD8 

T cell populations, some of which were expanded in hepatocellular carcinoma and marked by 

specific gene signatures101. The functional diversity of natural killer T (NKT) cells is difficult to 

characterize using cytometry alone; however, single cell RNA-seq analysis revealed differential 

patterns of gene expression that resolve NKT subsets and indicate potential functions102. Single 

cell transcriptomic profiling is also particularly useful for understanding T cell differentiation 

and proliferation, as the expression of key transcription factors and other regulatory genes can 

be easily ascertained and used to assign cells to differentiation trajectories103,104. 

 

Early high-dimensional analyses of T cells in RA 

These same technologies are already being used in RA tissue and blood to define key 

features of pathogenic CD4+ T cell populations in RA. For example, mass cytometry was applied 

to evaluate the heterogeneity of CD4+ T cells that infiltrate RA synovium105. This high-

dimensional analysis identified a T ‘peripheral helper’ (TPH) cell population that is markedly 

expanded in RA synovium, constituting ~25% of synovial CD4+ T cells. TPH cells, characterized 

as PD-1hi CXCR5- CD4+, display a unique capacity to infiltrate inflamed tissues and enhance 

local B cell antibody production and differentiation into plasma cells. A preliminary single-cell 

RNA-seq analysis of a single RA synovial sample also demonstrated the presence of multiple T 

cell subsets, including a population of peripheral helper T cells, in the RA T cell infiltrate106. 

In a distinct approach, Ishigaki and colleagues used parallel single cell transcriptomics 

and T cell receptor (TCR) sequencing to identify and analyze expanded CD4+ T cell clones in RA 

patients107. Expanded memory CD4+ T cells in both the synovium and periphery are 

phenotypically similar in expression to senescent T cells, upregulating Granzyme B and 

downregulating CD28. Intriguingly, the majority of expanded memory T cell clones did not 
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belong to the well-defined TH1 or TH17 subsets despite their established association with 

RA40,42,108. Although the findings are limited by the small number of donors studied, this study 

suggests that as yet undefined CD4+ T cell populations may undergo expansion in RA and may 

be relevant to RA pathology.   

One potential benefit of characterizing the extent of CD4+ T cell diversity with high-

dimensional analyses is that it may provide a means to differentiate between pathogenic and 

non-pathogenic variants of known T cell subsets. For example, single cell RNA-seq was used to 

define a spectrum of pathogenicity for TH17 cells isolated from mice with experimental 

autoimmune encephalomyelitis (EAE) and identify key genes involved in the process109. 

Similarly, immunoprofiling of Treg cells in RA described the discovery of a novel senescent-like 

Treg cell population characterized by the loss of CD28 expression and increased numbers of 

double stranded DNA breaks. Compared to standard TREG cells, CD28- Treg cells had impaired 

suppressive function and produced higher amounts of proinflammatory cytokines IFN-g and 

TNF110. 

 

Identifying biomarkers through cell phenotyping  

As the diversity, precision, and cost of therapeutics in RA has increased, the importance 

of being able to determine the option best-suited for a given patient up front has become 

increasingly clear. There is now a major need for biomarkers to predict response to therapies 

with distinct mechanisms of action; however, efforts using multiplexed cytokine profiling and 

genetic variation have not yet led to clinically applicable tools111,112. The increased resolution of 

single cell assays is an asset for revealing disease biomarkers, as the ability to characterize the 

diversity of lymphocyte populations can be leveraged to monitor the abundances of multiple 

populations longitudinally or in a case-control context. Changes in the frequency of disease-

associated populations that can be easily measured in peripheral blood can be used as a 

powerful readout of disease state in less accessible compartments.  
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Several studies have suggested the potential ability to identify specific lymphocyte 

populations whose peripheral frequencies are predictive of treatment response in order to guide 

therapeutic decisions. Tracking CD4+ T cell populations by flow cytometry in patients with early 

RA receiving methotrexate and healthy controls revealed that higher abundances of naïve CD4+ 

T cells are significantly associated with increased chances of remission113. Response to treatment 

with tocilizumab, an IL-6 receptor inhibitor, is associated with higher baseline frequencies of 

natural killer (CD3-CD56+) cells114 and higher increases in the frequencies of Treg cells in the 

periphery115. A case-control study of RA patients and healthy controls demonstrated that IL-10+ 

producing LAG3+ Treg cells are specifically increased after treatment with abatacept, and that the 

magnitude of this increase is correlated with the strength of response116. Immunoprofiling 

studies have also revealed changes in the function of lymphocyte populations in response to 

therapy: for example, RA patients who respond well to anti-TNF treatment have higher 

production of GM-CSF from T cells117. Response to TNF inhibition therapy is also associated 

with a higher abundance of CD8+ T cells that are specifically reactive to apoptotic epitopes118. 

Studies such as these fuel hope for the development of predictive cellular biomarkers, though 

none have been prospectively validated and adopted for use clinically to date.  

 Recent advances in availability and throughput have made single cell technologies a 

practical choice for conducting immunoprofiling studies to understand mechanisms of disease 

and define predictive biomarkers. The application of these methods in RA include the profiling 

of blood, as many studies referred to above already have done, but also performing 

immunoprofiling in human tissue. For human immunology to successfully leverage the large 

quantities of observational data that emerge from single cell queries of the immune system, we 

will need to develop and reliably apply robust statistical methods and study design principles in 

single cell studies. Taking full advantage of the power of single cell analysis will require 

overcoming technical, methodological, and bioinformatic challenges. 



 
 
 
 

Chapter 2:  

Methodology of Single Cell Analysis 
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The analysis of single cell data is complicated by a unique set of factors not typically 

considered when conducting analyses of bulk transcriptomic or proteomic data. Unlike in bulk 

analyses, where variation among particular cells is masked within each sample analyzed 

individually, single cell experiments are sensitive to cell-to-cell differences. This variation 

represents both variation due to biological differences between cells and variation due to 

technical effects that affect how well or poorly the cell itself is analyzed. Thus while bulk 

analyses allow for the assumption that differential informativeness of cells will be averaged 

within an experiment, the proper analysis of single cell data requires the application of novel 

pre-processing and analysis methods to maximize the biological information captured in the 

experiment. For example, given that single cell data is particularly vulnerable to batch effects, a 

good analysis methodology will rely on both good experimental design and post-assay analytic 

techniques to maximize the power of the data. Important factors to consider in design include 

ensuring that samples are collected from the same source, handled in the same fashion, and 

assayed using the same protocols to the extent that it is possible. Ideally, samples would be 

prepared using the same lot of reagents; however, this can be difficult to achieve, and steps such 

as RNA preparation or antibody staining should be performed in a limited number of batches. 

Given that large-scale association studies typically require performing assays in batches, sample 

randomization is crucial. Mixing cases and controls within each batch guards against the 

possibility of discovering biological associations that are perfectly confounded with batch, which 

can be difficult to account for post-hoc; if possible, it is also best to randomize samples in 

respect to other known factors that may confound analyses, such as samples that can be 

stratified by sex or medication history. Moreover, sample processing is best conducted in a short 

window of time and using the same equipment to minimize technical variation to the greatest 

possible extent. 

 The choice of tools for computational analysis of high-dimensional data is another 

important consideration in conducting single cell immunoprofiling studies. Although produced 
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using very different technologies, both transcriptomic and cytometric single cell data can be 

analyzed similarly by treating the data as matrices where rows represent single cells and 

columns represent expression measurements for transcripts or proteins. Beyond just dealing 

with batch and technical effects, other important issues must be dealt with prior to performing 

single cell analyses. In the context of studying disease association, analysis of single cell 

immunoprofiling data can be split into two steps: clustering, where the goal is to identify groups 

of cells that are related by similarity of expression, and association testing, where the goal is to 

determine significant changes in the abundance or character of immune cell populations in 

disease. 

 

Addressing batch and technical effects 

Among the many considerations that must be taken into account when designing single 

cell immunophenotyping experiments, one of the most prominent is determining how to handle 

batch effects. Here we use the term ‘batch’ to refer to a set of samples processed together in a 

single experimental run, and the term ‘batch effect’ to refer to variation in a dataset caused by 

technical variation in the processing of different batches of samples. Large-scale microarray 

assays powerfully illustrated the dramatic effects that differences in machine sensitivity, 

preparation or handling of samples, or protocol variations can have on the results of 

transcriptomic analyses119-122. Single-cell technologies such as mass cytometry and scRNA-seq 

are even more vulnerable to confounding from batch effects due to extensive intra-individual 

and inter-individual heterogeneity of expression among single cells. Application of single cell 

profiling to human tissues, where cases and controls may respond differently to sample 

processing and manipulation, could provide an additional source of batch effects. 

Indeed, Hicks et al. has demonstrated that variable detection rate and other technical 

effects account for much of the “biological” variation that was presented in some of the early 

single cell transcriptomic studies123. Careful experimental design can partially alleviate the 
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influence of batch effects in single cell profiling studies; however, others have shown that 

common normalization methods for scRNA-seq like spike-in controls and the use of unique 

molecular identifiers (UMIs) are insufficient for fully removing technical variation124. For single 

cell transcriptomic studies, critical steps include applying quality control methods to remove 

poorly captured cells and quantifying transcripts to determine cell expression levels. In single 

cell cytometry studies, quality control is often performed by selecting cells for analysis based 

upon forward and side scatter parameters (flow cytometry) or DNA content (mass cytometry) 

and inclusion of a live/dead marker, while marker expression quantification is normally 

provided by onboard software.  

However, since batch variability is difficult to completely eliminate post hoc, careful 

experimental design is essential. First, the importance of minimizing variation in experimental 

procedure cannot be overstated. Best practices include ensuring that samples are collected from 

the same source, handled in the same fashion, and assayed using the same protocols to the 

extent that it is possible. Ideally, samples would be prepared using the same lot of reagents; 

however, this can be difficult to achieve, and steps such as RNA preparation or antibody staining 

should be performed in a limited number of batches. Second, as large-scale studies typically 

require performing assays in batches, sample randomization is crucial. Interspersing cases and 

controls within each batch guards against the possibility of discovering biological associations 

that are perfectly confounded with batch. Finally, ensuring that sample processing is done in a 

short window of time and that samples are assayed using the same equipment also minimizes 

technical variation. For example, the AMP RA/SLE network significantly reduced batch effects 

by processing and assaying samples in a single location, as opposed to trying to analyze data 

obtained at different sites125. 
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Applying quality control methods to single cell data 

In Fonseka, Rao, et. al., I analyzed single cell mass cytometry data acquired from 26 RA 

case and osteoarthritis control peripheral blood samples126. This study – including the specific 

settings used in to perform quality control – will be described in further detail in upcoming 

chapters, but briefly: we obtained peripheral blood samples from cases and controls, purified 

the samples for CD4+ memory T cells (Tmem) using negative selection, and then assayed the 

samples with a 32 marker mass cytometry panel. We divided each sample and performed non-

antigenic stimulation with anti-CD3/anti-CD28 beads, yielding two experimental conditions 

that we labeled resting (rest) and stimulated (stim). Upon investigating the single cell protein 

expression data, I found that technical and batch effects confounded my ability to detect 

biological differences in CD4 Tmem populations between cases and controls, despite explicitly 

balancing the numbers of cases and controls across stimulation conditions in each batch. 

 To mitigate the influence of batch effects and spurious clusters, I first removed poorly 

recorded events and low-quality markers before further analysis. I removed those markers (1) 

that have little expression, as these markers are not informative, (2) that were either uniformly 

negative or positive across batches, as this indicated that the antibody for that marker was not 

binding specifically to its target, and (3) with significant batch variability. I concatenated 

samples by batch and measured the fraction of cells negative and positive for each marker, then 

calculated the ratio of between-batch variance to total variance for each marker’s negative and 

positive populations, allowing us to rank and retain 20 markers that were the least variable 

between batches (Figure 2-1). For single-cell transcriptomic data, an analogous step would 

involve removing genes with low numbers of supporting reads or genes whose expression varies 

widely between batches.   
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Marker Between-Batch Variance in a Mass Cytometry Experiment 

 

Figure 2-1. The ratio of between-batch variance to total variance for 30 markers used in Fonseka, Rao et. 
al. The top six markers were removed from downstream analysis as they showed a high amount of their 
variance was driven by batch and confounding biological case-control differences. Four other markers 
were also removed as they were uniformly negative or positive across batches and samples, indicating 
that the marker was uninformative or that the antibody was not demonstrating specific binding for its 
target, respectively. 

 
Once low-quality markers were identified and removed, I removed events that were 

likely to be artifacts. I first removed events that had extremely high signal for a single marker: 

events that have recorded expression values at or above the 99.9th percentile for that marker are 

removed. These events were considered unlikely to be intact, viable cells, given that their 

measured protein expression was orders of magnitude higher than normal. Next, a composite 

“information content” score (eq. 1) for each event i was created in the following manner: the 

expression x for each marker M is rescaled from 0 to 1 across the entire dataset to create 



 

 20 

normalized expression values yi for each event i. The sum of these normalized expression values 

was used to create the event’s information content score. 

1) #$%&' = ∑ *',,
,-.
,-/  

The information content score reflects that events with little to no expression in every 

channel are less informative than events that have more recorded expression. Events with low 

scores (#$%&' < 0.05) were considered unlikely to be informative in downstream analysis and 

were removed. In addition, events that derived more than half of their information content score 

from expression in a single channel were also removed (eq. 2): 

2) #$%&' ∗ 0.5 < max
,∈.

(*',,) 

Potential explanations for these events include poorly stained cells or artifacts caused by 

the clumping of antibodies with DNA fragments. These antibody-DNA clumps would pass the 

quality control metrics inherent to the CyTOF 2 platform and preliminary gating as they 

resembled real cells based on DNA content. A final filtering step retained events that were 

recorded as having detectable expression in at least Mmin markers, where Mmin may vary from 

experiment to experiment based on the panel design and expected level of co-expression 

between channels. In this experiment, because we had isolated samples for CD4+ Tmem cells, we 

expected considerable co-expression between different markers in the panel, and could use the 

lack of co-expression as an indication of which cells were of low complexity and informativeness. 

The quality control steps described here are specific for mass cytometry analysis and need to be 

optimized separately for use with transcriptomic data.   

 

Clustering methods for single cell data 

 As previously stated, the goal of clustering algorithms is to group single cells into 

biologically meaningful populations using some metric of similarity, principally gene expression 

for single cell transcriptomic data and protein expression for single cell flow and mass cytometry 
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data. There are a wide-range of clustering algorithms available with different sets of parameters; 

however, perhaps one of the most important features of any clustering algorithm is whether 

eventual cell-cluster assignment relies on “hard” or “soft” clustering. While an algorithm that 

uses hard clustering will produce a set of one-to-one assignments between cells and clusters, a 

soft clustering assignment will typically provide the probability of a given cell belonging to all 

clusters. Therefore, soft clustering algorithms allow for a cell to be assigned to multiple clusters 

at the same time, albeit with differing levels of confidence. Another important feature of 

clustering algorithms is the number of clusters detected; while algorithms like k-means 

clustering allow for this number to be explicitly chosen, others use one or more hyperparameters 

to control the eventual number of clusters in an indirect fashion. 

While many different algorithms have been applied to the analysis of single cell data, the 

following methods represent some of the state-of-the-art tools for performing single cell 

immunophenotyping studies. Seurat is an R package that contains multiple methods for 

clustering and visualizing single cell sequencing data, as well as performing differential 

expression testing between groups and finding associations127. It is currently widely used in 

single cell RNA-sequencing studies Multiple clustering methods have been developed for the 

analysis of flow cytometry128,129 and mass cytometry81,130-134; a recent comparison of these 

methods identified FlowSOM130 and PhenoGraph132 as the best performers135. In Fonseka, Rao 

et. al., I performed clustering after preprocessing data from each sample using the quality 

control metrics described previously. After applying quality control measures to each sample, I 

combined data from cases and controls into a single dataset. It was critical to ensure that each 

sample contributed equal numbers of cells to this dataset, as otherwise the largest samples 

would dominate the analysis and confound association testing.  After sampling an equal number 

of cells from each sample, I partitioned these cells into populations using the DensVM 

algorithm134. This clustering algorithm requires as input a dimensionally-reduced version of the 
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expression data alongside the expression data itself; next, it uses a kernel density estimator to 

identify peaks of density on the dimensionally-reduced projection over a range of bandwidths 

(effectively, the width of the peak in two dimensions). This step returns a set of clusterings at 

each bandwidth tested; the “correct” bandwidth is then determined using the elbow method – 

that is, by identifying the first place where increasing the bandwidth yields the same number of 

peaks. After selecting a set of peaks, the algorithm then treats uses the clusters defined by these 

peaks as training data for a support vector machine model that assigns all cells into clusters 

based upon the full expression matrix.  

In order to compare the robustness of the clustering result found by this algorithm, I 

performed additional clustering using two other algorithms, FlowSOM and Phenograph. We 

independently clustered the resting dataset with Phenograph and FlowSOM using the same cells 

and markers used to cluster the data with DensVM. We set k to 19 for FlowSOM clustering to 

explicitly match the number of clusters found by DensVM; for Phenograph, we used the default 

setting of k = 30 for the resolution hyperparameter (importantly, this does not ask the algorithm 

to produce 30 clusters). To evaluate quantify the ability of different clustering algorithms to 

define clusters that was explaining marker fluctuations, I defined an information theory-based 

metric to evaluate the relative information content captured by each set of clusters in terms of 

marker intensity, which I named the Cluster Informativeness Metric (CIM).  I selected this 

approach since it is separate from the objective functions that the clustering algorithms were 

attempting to optimize.  

First, for each cell, I normalized marker intensities so that they summed to one. Then I 

defined a null Qi representing the average normalized intensity for marker i across all cells. I 

also defined Pi,j which is the mean intensity of marker i of cells from cluster j.  Then for each 

cluster j I calculated their KL divergence for each of the M markers (eq. 3). 

3) ;<=,>?@> ∥ BC = ∑ @',> ln
FG,H

IG

.
'  
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A cluster with low divergence from the average expression of markers across the entire dataset 

will capture less marker intensity information than one with a high divergence, as biologically 

valid clusters will have unique marker profiles that differ greatly from one another and from the 

average marker expression profile.  

I defined a similar metric to quantify the extent to which individual batches were accounting 

for differences in cluster composition. In this instance I calculated Pi,j which is the proportion of 

cells from cluster j that batch i contributed. I also calculate Qi which is the proportion of cells 

that batch i contributes overall to the dataset. With this definition I can calculate the KL 

divergence for each of the M batches (eq. 4). 

4) ;<=,>?@∙> ∥ BC = ∑ @',> ln
FG,H

IG

.
'  

A cluster that contains cells with low divergence from the null distribution of cells across 

batches is affected less by batch effects than one with a high divergence score, and a cluster 

completely free of batch effects should have a K-L divergence of zero. Thus, this approach 

allowed me to evaluate clustering methods agnostically and measure their ability to identify 

biologically distinct populations that were not driven by confounded batch effects. For this 

study, I demonstrated that the DensVM method produced biologically informative clusters with 

less influence from batch effects than the other two algorithms; however, this finding is unique 

to the dataset in question and not necessarily generalizable (Figure 2-2).  
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Performing association testing with single cell data 

While the set of algorithms available for clustering single cell data is rapidly expanding, 

there is a relative paucity of methods designed to perform association testing with single cell 

data136,137. This is a significant issue because inter-individual variation and technical variation 

can influence cell population frequencies and must be accounted for in an association 

framework. For example, it is well established that the ratio of naïve to memory T cell 

proportions shifts with age, with older individuals having a higher frequencies of the latter cell 

types138-141. Consider a hypothetical single cell association study comparing the abundance of  T 

cell populations between two groups that yields a finding that individuals from group 1 have a 

lower frequency of Tmem cells than individuals in group 2. While this differential abundance 

phenotype appears be associated with group status, it is actually driven by group 2 

disproportionally consisting of older individuals and causing an apparent shift in cell 

a b

0.0

0.1

0.2

0.3

0.4

DensVM FlowSOM Phenograph
Method

0.0

0.2

0.4

0.6

0.8

1.0

DensVM FlowSOM Phenograph
Method

p = 2.06 x 10-7 

p = 4.72 x 10-6 

C
lM

(M
ar

ke
r I

nt
en

si
ty

 In
fo

rm
at

iv
en

es
s)

 

C
lM

(B
at

ch
 In

fo
rm

at
iv

en
es

s)
 

Cluster Informativeness Metric Analysis of Mass Cytometry Clustering Approaches 

 

Figure 2-2. We clustered the same dataset using three different clustering algorithms, DensVM, 
Phenograph, and FlowSOM. These algorithms identified 19 (DensVM and FlowSOM) or 21 (Phenograph) 
clusters. (a) Clusters found by DensVM, Phenograph, and FlowSOM had similar average CIM scores 
when considering marker expression, indicating that the clusters found by these algorithms were similarly 
informative. That is, marker intensities were different from the average marker expression profile across 
clusters to the same extent. (b) Clusters found by Phenograph and FlowSOM had a significantly higher 
CIM score when considering batch than those found by DensVM, indicating that the Phenograph and 
FlowSOM clusters were more affected by batch effects. We assessed significance using a Wilcoxon rank 
sum test and p-values were Bonferroni adjusted to control for multiple testing. 
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frequencies between groups. Avoiding a false-positive result like this requires a association 

testing framework capable controlling for both technical effects and the high levels of inter-

individual variability in the human immune system. 

At first glance, a straightforward approach would be to use a difference-of-means test to 

determine if the abundance of a given single cell population was associated with a given 

attribute, like case-control status of the sample. Assume that proper pre-processing and 

clustering of a single cell dataset has yielded a set of biologically meaningful single cell cluster 

assignments and that we have data linking each cell to the feature we want to test for 

association, such as whether the cell comes from a case or control sample. Under this strategy, 

we would reduce the single cell data of each sample to a set of frequencies for each cluster – that 

is, we would create a matrix with k samples by n clusters, where each row described the 

proportion of cells in sample k in each of n clusters. We can then group the samples by the 

feature we want to test for association and test whether the average proportion of cells in a given 

cluster is significantly different between cases and controls using a standard parametric or non-

parametric difference-of-means test. As an example, suppose we have clustered single cell data 

from 10 cases and 10 controls into 11 clusters and we wish to determine if the frequency of 

cluster 9 is different in cases and controls. We can calculate the average proportion of cells in 

cluster 9 for each sample, then group the sample and perform a t-test (Figure 2-3). Conversely, 

we could use a binomial testing approach where we measure the number of total cells in the 

cluster from cases and controls, then compare that to the expected number given the size of the 

cluster relative to the entire dataset. Under this approach, we determine whether there is a 

significant association between cluster abundance and case-control status by testing for 

deviation from a chi-square distribution (Figure 2-4). Note that in the following examples, the 

Barnes-Hut implementation of the t-Distributed Stochastic Neighbor Embedding (t-SNE) 

algorithm has been used to provide a two-dimensional visualization of the simulated data142.	  
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Performing Single Cell Association Testing Under a Difference-of-Means Framework 

 

Figure 2-3. In this simulated example of a single cell association study, cells have been combined across 
10 case and 10 control samples and clustered into 11 populations. The cells are shown projected into a 
two-dimensional embedding using the t-SNE algorithm on the left. On the right, each dot represents the 
percentage of a given sample’s cells that were assigned to cluster 9, grouped by case-control status. A 
two-sample t-test fails to reject that there is no significant difference between the abundance of cluster 9 
in cases and controls. 

 
Performing Single Cell Association Testing Under a Binomial Framework 

 
Figure 2-4. Similarly to Figure 2-3, simulated cells have been combined across 10 case and 10 control 
samples and clustered into 11 populations. The cells are shown projected into a two-dimensional 
embedding using the t-SNE algorithm on the left. On the right, a two-by-two contingency table shows the 
number of cells observed and expected to be in cluster 9 from case and control samples. In this 
simulation, equal numbers of cells were used from each sample so the expectation is that the groups 
should be balanced. Under a binomial testing framework, the observed number of case cells is 
significantly more than would be expected. 
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 It turns out that neither of these approaches is particularly appropriate for performing 

single cell data association testing. Under the difference-of-means testing approach, all single-

cell observations are collapsed into per-sample proportions for each cluster. This is problematic 

for populations that are in low-frequency in the dataset; namely, the error around the point 

estimate of the cluster’s frequency in each sample increases with as the number of observations 

– here, single cells assigned to the cluster – decreases. Using a binomial framework to perform 

association testing suffers from inflated Type 1 error; the significant p-values obtained are likely 

to be false positives because this approach assumes that each cell is an independent measure, 

which is a poor assumption for single cell data. Given the strong influence of batch effects upon 

single cell data and high levels of inter-individual variability in the human immune system, it is 

important that any association testing model is able to take these factors into consideration in a 

transparent manner. These observations led me to develop a novel statistical method for 

performing association testing with single cell data, one that would be able to account for 

technical covariates and inter-individual differences while directly testing for associations 

between single cells and the outcome of interest. 

 

Mixed-effects modeling of Associations of Single Cells (MASC) 

 MASC is a ‘reverse’ association strategy where the case-control status is an independent 

variable, rather than the dependent variable, and uses mixed-effects logistic regression to test at 

the single cell level the association between population clusters and disease status. MASC 

accepts user-identified populations regardless of clustering method, directly reports the 

significance of case-control associations for each cluster, provides an estimate of the effect size 

of the association itself, and incorporates both technical covariates (e.g. batch) and clinical 

covariates when modeling associations, a key feature when analyzing high-dimensional datasets 

of large disease cohorts. This approach allows for capturing inter-individual differences between 

donors, as well as modeling the influence of technical and clinical covariates that might 
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influence a cell to be included as a member of one cluster versus another, allowing the user to 

directly assess the contribution of these covariates to differential cluster abundance.  

Importantly, MASC is not dependent on any particular method of clustering, allowing the 

user to partition their single cell data using the method of their choice – even by using 

traditional bivariate gating to define populations using cytometry data. The rest of this chapter 

will cover the statistical framework underlying MASC, while the following chapters will 

demonstrate the successes of MASC when applied to single cell association studies of 

rheumatoid arthritis. 

Given a single cell dataset in which all cells have been assigned to a given cluster, the 

relationship between single cells and clusters can be modeled using mixed-effects logistic 

regression to account for donor effects and other technical variation (eq. 5). Employing the 

model used in Fonseka, Rao et al. as an example, I was able to model the age and sex of sample k 

as fixed effect covariates, whereas the donor and batch that cell i belongs to were modeled as 

random effects. The random effects variance-covariance matrix treated each sample and batch 

as independent gaussians. Each cluster was individually modeled. Note that this baseline model 

did not explicitly include any single cell expression measures. 

 

5) log M NG,H

/ONG,H
P = Q> + STU'V'TWUX',Y + (Z'|\) + (]'|^) 

where _',> is the odds of cell i belonging to cluster j, Q>  is the intercept for cluster j, STU'V'TWU is a 

vector of clinical covariates for the kth sample, (Z'|\) is the random effect for cell i from kth 

sample, (]'|^) is the random effect for cell i from batch m. 

 

To determine if any clusters were associated with case-control status, I included an 

additional covariate that indicated whether the kth sample is a case or control (eq. 6)  
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6) log M NG,H

/ONG,H
P = Q> + STU'V'TWUX',Y + (Z'|\) + (]'|^) +	STW`aX',Y 

Here, _',> is the odds of cell i belonging to cluster j, Q>  is the intercept for cluster j, STU'V'TWU is a 

vector of clinical covariates for the kth sample, (Z'|\) is the random effect for cell i from kth 

sample, (]'|^) is the random effect for cell i from batch m, STW`a indicates the effect of kth 

sample’s case-control status. 
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I compared the two models (baseline and full) using a likelihood ratio test (eq. 7) to find the 

test statistic D, which is the ratio of the likelihoods for the baseline and full models. The term D 

is distributed under the null by a c2 distribution with 1 degree of freedom, as there is only one 

additional parameter in the full model compared to the null (case-control status). I then derived 

a p-value by comparing test statistic D of the likelihood ratio test to the value of the c2 

distribution with 1 degree of freedom (eq. 6), allowing us to find clusters in which case-control 

status significantly improves model fit. A significant result (p < 0.05 after multiple testing 

correction) indicated that cluster membership for a single cell is influenced by case-status after 

accounting for technical and clinical covariates. The effect size of the case-control association 

can be estimated by calculating the odds ratio from bcase. Note that if a feature of interest 

includes multiple groups, then MASC can be used to test for association between g groups using 

g-1 indicator variables.  

To test the robustness of MASC compared to other association testing approaches, I took the 

clustered mass cytometry data from Fonseka, Rao et al., and permuted the sample case-control 

labels 10,000 times to break up any cluster associations with case-control status. I then tested 
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for case-control associations using MASC and binomial tests for each cluster in each of the 

permuted datasets and recorded the p-values produced by each method. Since the effect of this 

permutation strategy is to remove any case-control associations, 5% of trials should obtain p-

values below 0.05 purely due to random chance; conversely, higher proportions of trials 

obtaining p values < 0.05 would indicate that the method has inflated type 1 error. MASC 

demonstrated only a slight inflation in type 1 error, with 6.5% of trials obtaining p < 0.05, while 

the binomial association testing approach was highly inflated, with 66.1% of trials obtaining p < 

0.05 (Figure 2-5). 

 

Type 1 Error Rates for MASC and Binomial Association Tests 

 

Figure 2-5. MASC demonstrates well-controlled type 1 error rates. (left) MASC was run on the resting 
dataset after randomizing case-control labels 10000 times to eliminate any case-control associations. The 
proportion of p-values at different thresholds are plotted for each cluster. (right) P-values obtained in the 
same manner for binomial association tests on clusters found in the resting dataset. 

 
 I also used the same permutation framework (randomizing case-control labels on a 

sample-by-sample basis) to confirm that the p-values generated by MASC were coherent. In 

each permutation, we tested each cluster for how often the number of cells from cases was in 

excess of their observed number and generated explicit permutation p-values for each cluster 

found in both experimental conditions. This showed that the p-values produced by MASC were 

concordant with the p-values derived from explicit permutation testing (Figure 2-6). 
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Comparison of MASC and Explicit Permutation p-values 

 

Figure 2-6. Association p-values as calculated by MASC (y-axis) and by explicit permutation (x-axis) 
correlate in both resting and stimulated datasets. Spearman's correlation coefficients for (left) and (right) 
were rs = 0.82 and rs = 0.86, respectively. 

 

MASC is a robust framework for performing association testing with any form of single 

cell data; while it was developed for use with mass cytometry data, it has been successfully 

applied to single cell transcriptomic datasets as well. Applying MASC to scRNA-seq data 

requires including a different set of technical covariates in the model – for example, it is useful 

to include cell-specific metrics of quality, like complexity or read depth. I applied MASC to a 

single cell transcriptomic dataset from a study that analyzed frozen kidney biopsies of patients 

with lupus nephritis (LN) and healthy controls143. The dataset clustered single cells into 21 

leukocyte populations, which I tested for case-control association using MASC. Here, I included 

the sex of the sample as a technical covariate in the model, alongside two other fixed-effect 

covariates: the percentage of mitochondrial reads and the number of unique molecular 

identifiers (UMIs), which serve as measures of complexity. This model also included the sample 

identifier itself as a random effect to account for interindividual differences. MASC was able to 

identify six populations that were significantly altered between cases and controls (Table 2-1). 
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MASC Analysis of Single Cell Transcriptomic Data 

Table 1-1. MASC was run on a single cell RNA-seq dataset derived from kidney biopsies of lupus 
nephritis patients and healthy controls143. Out of 21 clusters, MASC identified 6 clusters that were 
significantly associated with case-control status. The name of the cluster and number of cells are listed, 
followed by the association p-value generated by MASC, the resulting q values from applying an false 
discovery rate correction of 5%, and the odds ratio of the case-control status term in the model. 

Cluster Cells MASC p value MASC q value MASC Odds Ratio 

CB0 245 9.06 x 10-6 1.62 x 10-4 13515835.1 

CB1 81 2.27 x 10-3 9.09 x 10-3 49941195.9 

CM2 86 1.62 x 10-5 1.62 x 10-4 0.1 

CT0 220 5.26 x 10-5 3.51 x 10-4 0.1 

CT2 348 1.30 x 10-4 6.50 x 10-4 23.0 

CT4 195 5.24 x 10-3 1.75 x 10-2 6.8 

 
 The results from this MASC analysis indicate that two of the clusters (CM2, CT0) were 

decreased in lupus nephritis samples compared to healthy controls, while the other four clusters 

were expanded. Although at first glance, the odds ratios calculated for clusters CB0 and CB1 may 

seem incorrect given how extreme they are, these results merely reflect the fact that these cell 

types are effectively exclusive to the LN kidney samples (Figure 2-7). Arazi et al. identified these 

populations as activated B cells (CB0) and plasma cells (CB1), noting that B cells were almost 

entirely absent from the healthy control samples anyway. MASC also identified two CD8+ T cell 

populations that were expanded in LN samples: CT2, which resembled cytotoxic T lymphocytes, 

and CT4, which was described as a second population of CD8+ cells specifically marked by 

expression of the granzyme GZMK. Correspondingly, the T cell population that was depleted 

from LN samples, CT0, was most similar to naïve CD4+ T cells. Finally, the CM2 cluster that 

was also identified as depleted from LN samples represents typical kidney macrophages that 

have relatively similar abundances in cases and controls, but differ in their gene expression 

programs.  
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Abundance of B Cell Clusters CB0 and CB1 in Lupus Nephritis and Control Samples 

 

Figure 2-7. Per-sample abundance data calculated for the B cell clusters CB0 and CB1 that were 
detected as significantly expanded by MASC. Both of these clusters are exclusive to the lupus nephritis 
kidney samples and were not present in healthy controls. Data is calculated from 24 cases and 10 
controls. 

 
In summary, MASC is a single cell association testing method that is adaptable to any 

case-control experiment in which single cell data are available. Such experimental setups could 

include cytometry assays, single cell transcriptomics, and even single cell ATAC-seq – all MASC 

requires is a set of cluster assignments for all the single cells under analysis. Because the 

framework of MASC is flexible, it supports building models with technical covariates that are 

important to control for in a specific context or experimental setup. MASC is capable of testing 

for associations between cluster abundance and any feature of interest, such as disease 

progression, medication usage, or even patient ancestry. MASC is a useful tool for performing 

single cell immunophenotyping studies, and its ability to resolve novel subpopulations of T cells 

and fibroblasts in RA patients will be covered in the following two chapters. However, another 
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potential application of MASC is using the method on simulated single cell datasets to 

understand how to best power single cell association testing experiments.   

 

Power analysis of single cell association testing studies  

In planning any association testing study, it is useful to have an estimate of the minimum 

number of samples needed to reliably detect an effect of a given size. Power analyses provide a 

method of calculating these metrics by simulating data under a varied set of conditions and then 

measuring how often association tests detect significantly significant results for a given effect 

size. In the context of single cell association studies, I focus here on calculating the power to 

detect differential abundance – that is, a change in the frequency of a population or clusters of 

single cells – and its association with a factor of interest. MASC presented itself as an obvious 

option to perform these analyses; its flexible framework allows for directly measuring the effects 

of experimental design choices like the number of donors or batches upon study power.  

To test the effectiveness of using MASC in this manner, I started by using the mass 

cytometry data collected in Fonseka, Rao et al. as a model of a single cell study. These data were 

collected from 26 case and 26 control samples over 10 batches, assayed by mass cytometry, and 

then analyzed as a concatenated dataset created by randomly sampling 1000 cells from each 

donor (after pre-processing to remove low-quality and uninformative cells). For this analysis, I 

created synthetic single cell mass cytometry datasets by randomly downsampling either the 

number of donors or the number of cells per donor in the dataset. To avoid creating unbalanced 

replicates when downsampling donors, I ensured that I removed equal numbers of cases and 

controls each time. I then ran MASC on each synthetic replicate and calculated the proportion of 

trials in which MASC was able to detect an association between a differentially abundant 

population, which has an abundance of 2.8% in RA samples and about half as much in controls, 

and case-control status. 
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Reducing the number of cells included from each donor while maintaining that the 

synthetic datasets had 26 case and 26 control donors reduced the power to detect the 

differentially abundant population, with roughly 300 cells per donor being required to maintain 

statistical power of 50%. Intriguingly, reducing the number of donors while keeping the number 

of cells sampled per donor at 1000 cells degraded power much more quickly; in these analyses, 

removing just two or three donors yielded simulations in which the differentially abundant 

population could only be detected half of the time (Figure 2-8). While these results could 

obviously be specific to this dataset and not generalizable, they fit a hypothesis for single cell 

association testing study design. Especially in the context of human immunology, in which inter-

individual differences in population frequencies are fairly large, more donors are needed to 

detect differential abundance than cells contributed per donor. It is likely that there is a 

saturation point (which will vary according to experiment) after which additional cells provide 

minimal information about the true frequencies of cell populations; i.e. estimates of population 

frequencies within a donor stabilize more quickly than the variance in population frequencies 

across donors. 

To explore this further, I used MASC to conduct power analyses on simulated single cell 

transcriptomic data, allowing me to directly set the number of donors and cells per donor rather 

than using downsampling, as well as incorporate varying amounts of batch and donor variance. 

The simulation strategy I followed relies on an existing single cell transcriptomic dataset – 

namely, a study of patients in Lima who were either diagnosed as active tuberculosis (TB) 

progressors or as having latent TB. Performing a power analysis of this TB dataset was 

particularly of interest because we had received sequencing data generated from 48 donors and 

wanted to estimate what our power to detect differentially abundant cell populations would be 

once all 259 donors had been sequenced.  
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Power to Detect Differential Abundance in a Single Cell Mass Cytometry Dataset 

 

Figure 2-8. The percentage of trials that detected a significant differential abundance case-control 
association in synthetic replicates of the mass cytometry data used in Fonseka, Rao et al. (top) 
The number of cells contributed by each donor was decreased in synthetic datasets and MASC 
was used to detect differential abundance for each replicate. (bottom) Same as top, except that 
the number of donors was decreased in synthetic datasets while the number of cells per donor 
was fixed. Each datapoint represents a proportion calculated across 25 replicates. 
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In this experiment, memory T cells were isolated from patient samples by negative 

selection and subjected to simultaneous mRNA and protein assay following the Total-seq 

protocol, which uses antibody-tagged oligos to detect protein expression alongside mRNA 

quantification144. The samples were multiplexed prior to sequencing, but because they were  

genotyped, we were able to use demuxlet to accurately assign cells to samples and remove 

doublets145.  After performing standard normalization and QC, the final dataset consisted of 

69972 cells, with an average of 1458 cells and 1113 non-zero genes per donor. We then 

partitioned the dataset into 30 clusters using Seurat146,147 after integrating the single cell and 

protein expression data with Harmony148.  

To conduct power analyses with this data, I used the following strategy to create 

simulated datasets. First, I used principal components analysis to project the data into a low-

dimensional representation and then summarized each of the single cell clusters as two 

dimensional centroids using the first two principal components. All of the cells belonging to a 

cluster were then used to define their a cluster-specific variance in each dimension, yielding a 

set of 30 clusters defined by their means and variances in two dimensions.  Next, I defined a 

vector indicating the expected frequency of all thirty clusters for each donor. This vector differed 

between cases and controls, as it was generated by measuring the observed cluster frequency in 

cases and controls, as well as the between-donor variance of each clusters’ proportion. This 

ensured that cases and controls did not have the exact same proportions cells in each cluster.  

Because these simulations were intended to calculate the power to detect differential abundance 

once the full set of samples had been sequenced, I simulated donors using 1500 cells and 1000 

genes. The simulated cells for each donor were probabilistically assigned clusters according to 

the expected cluster frequency vector for that donor. Then, cells in each cluster were placed in 

low-dimensional space using a bivariate normal distribution parametrized by the cluster-

specific centroids and variance; as these dimensions are derived from a principal components 

analysis and are orthonormal, the off-diagonal elements of the variance-covariance matrix were 
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set to 0. To simulate the effect of inter-individual differences, the two-dimensional locations for 

each cell are perturbed by adding noise generated from independent mean-0, variance-1 

gaussians. This process yields a matrix of cells by two dimensions for each donor. I then 

multiplied that matrix by the transpose of a matrix of with the shape of genes by two-

dimensions, where I assumed each gene’s expression was modeled by a random gaussian. While 

a gaussian distribution does not necessarily describe the observed expression patterns of single 

cell transcriptomics, the types of distributions do best model the single cell expression are not 

currently well-defined in the field149-152. Finally, the simulated expression matrices were 

concatenated across cases and controls, the resulting data was clustered using the same settings 

used to generate the original clustering, and the simulated clusters were tested for case-control 

associations with MASC. I created simulations for two different sample sizes – 48 and 240 

donors – using balanced numbers of cases and controls and 100 replicates per simulation; I 

then aggregated the power results across the replicates. I grouped clusters by their simulated 

fold-change between cases and controls, where a fold-change of 1 indicates that the cluster was 

at the same frequency in cases and controls, and a fold-change of 2 indicates that the cluster was 

twice as abundant in cases than controls. Simulated studies of 48 donors were only able to 

reliably detect fold-changes of 1.5 or greater, while simulations with 240 donors achieved 75% 

power for clusters that were between 1.2 and 1.3-fold expanded in cases (Figure 2-9). 
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Differential Abundance Power Analysis on TB Progressors and Non-Progressors Dataset 

 

Figure 2-9. The power to detect differentially abundant populations increases with the number of donors 
included in the study. MASC was used to perform association testing on simulated single cell RNA-seq 
datasets with either 48 or 240 donors split evenly into cases and controls. One hundred replicates were 
performed for each simulation; results were grouped by the effect size of the population in question. 

 

Although this “quick and dirty” simulation strategy was effective for conducting power 

analyses in this study, the method has many potential areas of improvement. First, the 

underlying distributions used to model gene expression could be changed from random 

gaussians to a more appropriate distribution for simulating count data, such as the Poisson or 

negative binomial. Second, while the two principal components captured a significant amount of 

variability in this dataset, a more robust method could be expanded to use any number of 

dimensions to annotate cluster centroids. Finally, a different method of simulation could rely on 

the fact that the transform matrix of a PCA already provides a link between the low-dimensional 

representation of cells and their projection into an expression matrix. Here, batch, donor, and 

other technical effects would be modeled as shifts in low-dimensional space, pushing cells away 

from their cluster centroids in a consistent manner. That is to say that cells from the same donor 

and batch would have the same batch and donor-effect vectors added to them, while cells from 

the same batch but different donors would have a different donor-effect vector to represent 



 

 40 

inter-individual differences.  After perturbation, the modified representation can then be 

multiplied by the transpose of the PCA transform matrix to return a single cell expression 

matrix. It is currently unclear what the best strategy for simulating single cell transcriptomic 

data is, especially in the context of performing association testing for differential abundance; the 

majority of tools in the field have been designed for calculating power for differential expression 

analyses153-157. While there is certainly more to be done, MASC can play an important role as a 

state-of-the-art method for conducting differential abundance testing with single cell data. The 

following two chapters of this work will demonstrate the ability of MASC to identify disease 

relevant changes in immune cell populations when applied to single cell studies. 



 
 
 

Chapter 3:  

Mixed-Effects Association of Single Cells Identifies an Expanded Effector CD4+ T Cell 

Subset in Rheumatoid Arthritis 
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Abstract 

High dimensional single-cell analyses have improved the ability to resolve complex 

mixtures of cells from human disease samples; however, identifying disease-associated cell types 

or cell states in patient samples remains challenging due to technical and inter-individual 

variation. Here we present Mixed-effects modeling of Associations of Single Cells (MASC), a 

reverse single cell association strategy for testing whether case-control status influences the 

membership of single cells in any of multiple cellular subsets while accounting for technical 

confounders and biological variation. Applying MASC to mass cytometry analyses of CD4+ T 

cells from the blood of rheumatoid arthritis (RA) patients and controls revealed a significantly 

expanded population of CD4+ T cells, identified as CD27- HLA-DR+ effector memory cells, in 

RA patients (OR = 1.7; p = 1.1	 ×	10Oq). The frequency of CD27- HLA-DR+ cells was similarly 

elevated in blood samples from a second RA patient cohort, and CD27- HLA-DR+ cell frequency 

decreased in RA patients who responded to immunosuppressive therapy. Mass cytometry and 

flow cytometry analyses indicated that CD27- HLA-DR+ cells were associated with RA (meta-

analysis p = 2.3 x 10-4). Compared to peripheral blood, synovial fluid and synovial tissue samples 

from RA patients contained ~5-fold higher frequencies of CD27- HLA-DR+ cells, which 

comprised ~10% of synovial CD4+ T cells. CD27- HLA-DR+ cells expressed a distinctive effector 

memory transcriptomic program with Th1- and cytotoxicity-associated features, and produced 

abundant IFN-g and granzyme A protein upon stimulation. We propose that MASC is a broadly 

applicable method to identify disease-associated cell populations in high-dimensional single cell 

data.  
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Introduction 

The advance of single cell technologies has enabled investigators to resolve cellular 

heterogeneity with unprecedented resolution. Single cell assays have been particularly useful in 

the study of the immune system, in which diverse cell populations often consisting of rare and 

transitional cell states may play an important role158. Application of single cell transcriptomic 

and cytometric assays in a case-control study has the potential to reveal expanded pathogenic 

cell populations in immune-mediated diseases.  

Rheumatoid arthritis (RA) is a chronic, systemic disease affecting 0.5-1% of the adult 

population, making it one of the most common autoimmune disorders worldwide19. RA is 

triggered by environmental and genetic risk factors, leading to activation of autoreactive T cells 

and B cells that mediate an autoimmune response directed at the joints20,22. CD4+ T cells have 

been strongly implicated in RA pathogenesis39,40. For one, the strongest genetic association to 

RA is with the HLA-DRB1 gene within the MHC; these polymorphisms affect the range of 

antigens that MHCII molecules can bind and present in order to activate CD4+ T cells22,23,27. 

Furthermore, many RA risk alleles outside of the MHC locus also lie in pathways important for 

CD4+ T cell activation, differentiation into effector (Teff) and regulatory (Treg) subsets, and 

maintenance of subset identity20,24,25,27-29. Defining the precise CD4+ T cell subsets that are 

expanded or dysregulated in RA patients is critical to deciphering pathogenesis. Such cell 

populations may be enriched in antigen-specific T cells and may aid in discovery of dominant 

disease-associated autoantigens. In addition, these populations may directly carry out 

pathologic effector functions that can be targeted therapeutically105.  

For many autoimmune diseases, directly assaying affected tissues is difficult because 

samples are only available through invasive procedures.  Instead, querying peripheral blood for 

altered immune cell populations is a rapidly scalable strategy that achieves larger sample sizes 

and allows for serial monitoring. Flow cytometric studies have identified alterations in specific 

circulating T cell subsets in RA patients, including an increased frequency of CD28- CD4+ T 
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cells61,159,160; however, the expansion of CD28- T cells represents one of the relatively few T cell 

alterations that has been reproducibly detected by multiple groups. Limited reproducibility may 

be the consequence of differences in clinical cohorts, small sample sizes, methodologic 

variability, and use of limited, idiosyncratic combinations of phenotypic markers53. 

The advent of mass cytometry now allows for relatively broad assessment of circulating immune 

cell populations with >30 markers81, enabling detailed, multiparametric characterization of 

lymphocyte subsets. This technology provides the potential to define and quantify lymphocyte 

subsets at high resolution using multiple markers. While the discovery of novel cellular 

populations has been enabled by rapid progress in developing sensitive clustering 

methods91,132,161-163, a key challenge that remains is establishing methods to identify cell 

populations associated with a disease. In particular, inter-individual variation and technical 

variation can influence cell population frequencies and need to be accounted for in an 

association framework. Single cell association studies, with either mass cytometry or single-cell 

RNA-seq, require statistical strategies robust to inter-individual donor variability and technical 

effects that can skew cell subset estimates. For example, mass cytometry studies need to control 

for variability in machine sensitivity, reagent staining, and sample handling that can lead to 

batch effects. Inter-individual differences can lead to real shifts in cell population frequencies at 

baseline, while technical effects can lead to apparent shifts in cell population frequencies. 

Here we describe a robust statistical method to test for disease associations with single cell data 

called MASC (Mixed-effects modeling of Associations of Single Cells), which tests at the single 

cell level the association between population clusters and disease status. It is a ‘reverse’ 

association strategy where the case-control status is an independent variable, rather than the 

dependent variable. We applied MASC to identify T cell subsets associated with RA in a mass 

cytometry case-control immunophenotyping dataset that we generated focused on CD4+ T cells. 

This high-dimensional analysis enabled us to identify disease-specific changes in canonical as 

well as non-canonical CD4+ T cell populations using a panel of 32 markers to reveal cell lineage, 
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activation, and function82,164. Using MASC, we identified a population of memory CD4+ T cells, 

characterized as CD27- HLA-DR+, which was expanded in the circulation of RA patients. 

Further, we found that CD27- HLA-DR+ T cells were enriched within inflamed RA joints, 

rapidly produced IFN-g and cytolytic factors, and contracted with successful treatment of RA. 

 

Results 

Statistical and computational strategy 

We acquired single cell mass cytometry data from RA case and osteoarthritis (OA) 

control peripheral blood samples (Figure 3-1), and then applied MASC after stringent quality 

controls to remove technical artifacts and poorly stained cells that are typically observed in mass 

cytometry data (Materials and Methods). First, we objectively defined subsets of cells using 

an equal number of random cells from each sample so that they contributed equally to the 

subsequent analyses. We then used DensVM134 to cluster the mass cytometry data. Finally, we 

applied MASC to identify differentially abundant cellular populations associated with disease.   

MASC is a reverse association strategy that uses single cell logistic mixed-effect modeling to test 

individual cellular populations for association by predicting the subset membership of each cell 

based upon fixed effects (e.g. sex) and random effects (e.g. batch, donor). It assumes a null 

model where the subset membership of each single cell is estimated by fixed and random effects 

without considering the case-control status of the samples. Thus, under this null framework, we 

assume that variation in cluster frequencies are not associated with case-control status. We then 

measured the improvement in model fit when a fixed effect term for the case-control status of 

the sample was included with a likelihood ratio test. This framework allowed us to evaluate the 

significance and effect size of the case-control association for each subset while controlling for 

inter-individual and technical variability. 
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Mixed-effects modeling of Associations of Single Cells (MASC) overview  
 

 
Figure 3-1. Single cell transcriptomics or proteomics are used to assay samples from cases and controls, 
such as immunoprofiling of peripheral blood. The data is then clustered to define populations of similar 
cells. Mixed-effects logistic regression is used to predict individual cell membership in previously defined 
populations. The addition of a case-control term to the regression model allows the user to identify 
populations for which case-control status is significantly associated. 
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To ensure that MASC had appropriately calibrated type 1 error, we ran the analysis 

10,000 times after permuting case-control labels using the dataset described below to obviate 

almost any case-control association that might be present. We then recorded the reported p-

values for each cluster. Under ideal circumstances, 5% of these 10000 trials would achieve a p-

value < 0.05 purely by chance in this random a data set; conversely, an inflated method would 

have much greater than 5% of trials obtaining a p-value < 0.05.  This approach demonstrated 

that MASC has only a modestly inflated type I error rate for the 19 clusters in the dataset, with 

6.5% of trials obtaining p<0.05 (Figure S1A). We found that including both donor and batch 

random effects was critical; eliminating random effects in the model led to highly inflated p-

values with 66.1% of trials obtaining p<0.05 (Figure S1B). As an alternative and frequently 

used strategy, we also tested a simple binomial test for case-control association. This approach 

is limited in our view as it fails to model donor specific and technical effects. Unsurprisingly, we 

found that this commonly used approach produced highly inflated results in comparison to 

MASC, with 65.7% of trials obtaining p<0.05 (Figure S1C). 

 

Experimental strategy 

We applied MASC to mass cytometric analysis of memory CD4+ T cells that were 

magnetically isolated from peripheral blood mononuclear cells from patients with established 

RA (cases) and non-inflammatory OA controls (Table 3-1). We either (1) rested the cells for 24 

hours or (2) stimulated the cells with anti-CD3/anti-CD28 beads for 24 hours before analyzing 

cells with a 32-marker mass cytometry panel that included 22 markers of lineage, activation, 

and function (Table S1). This experimental design allowed us to interrogate immune states 

across cases and controls and also capture stimulation-dependent changes. After stringent 

quality control measures, we analyzed a total of 26 RA cases and 26 controls.  
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Clinical characteristics of patient cohorts 
 

Table 3-1. Mean ± SD is shown. Parentheses indicate percentages. CRP: C-reactive protein. CDAI: 
clinical disease activity index. “Other biologics” includes rituximab, tofacitinib, and abatacept. 
   Mass cytometry cohort 

 
Flow cytometry cohort       

  Controls Cases Controls Cases       

Blood Cross-
sectional cohorts 

Number 26 26 27 39       
Age 57 ± 15 66 ± 9 61 ± 14 58 ± 14       
Female 19 (73) 20 (77) 18 (64) 30 (77)       
ACPA- or RF-positive N/A 22 (85) N/A 39 (100)       
CRP (mg/L) N/A 8.6 ± 16.9 N/A 9.8 ± 17.9       

CDAI N/A 9.3 ± 4.4 N/A 13.7 ± 7.4 
      

Methotrexate 0 18 (69) 0 18 (46)       

Anti-TNF 0 10 (38) 0 16 (41) 
      

Other biologics 0  5 (19) 0 9 (23) 
      

  
 

     

 
  

Longitudinal 
cohort 

        

Blood 
Longitudinal 
cohort 

Number 18 
        

Age 49 ± 17         

Female 17 (94)         

ACPA- or RF-positive 18 (100) 
        

CDAI Before  17.6 ± 9.3 
        

CDAI After 6.3 ± 4.2 
        

Started methotrexate 7 
        

Started anti-TNF 4 
        

Started other biologic 7 
        

 
 

      

 
Patient #1 #2 #3 #4 #5 #6 #7 #8 #9 

Synovial Tissue 
Donors 

Age 57 54 76 46 46 79 62 63 52 

Sex F F F F F F M M F 

CRP (mg/L) 25 8 8 11 17 19 13 66 76 

CDAI 14 9 17 15 21 25 5 9 N/A 

Methotrexate No Yes No No No No No Yes No 

Biologic therapy Yes Yes Yes Yes Yes No No No No 
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We randomly sampled 1000 cells from each of the 52 samples so that each sample 

contributed equally to the analysis, preventing samples that happened to have more cells 

captured by the mass cytometry assay from being overrepresented. We projected resting and 

stimulated T cell data separately using the Barnes-Hut modification to the t-SNE (t-distributed 

stochastic neighbor embedding) algorithm142 so that all cells from all samples were projected 

into the same two dimensions using all markers in the panel with the exception of CD4 and 

CD45RO, which we used to gate CD4+ memory T cells for analysis.  

 

Clustering Approach 

Projecting the data into t-SNE space revealed areas of local density that consisted 

predominantly of cells from RA or OA samples (Figure S2). We wanted to identify CD4+ 

memory T cell populations in an unsupervised manner. Currently, clustering high-dimensional 

single cell data (such as mass cytometry or single cell RNA-seq data) is an active area of 

research, and there is no consensus on the best clustering strategy. Hence we objectively 

considered multiple clustering algorithm options. We evaluated DensVM134, FlowSOM130, and 

Phenograph132, which were identified as among the best-performing in a recent benchmarking 

comparison of clustering methods for high dimensional cytometry data135. The DensVM method 

uses an t-SNE projection of the dataset to first estimate the number of clusters by searching for 

local densities on the projection with varying bandwidths before classifying cells based on the 

similarity of expression. Phenograph works by creating a graph representing phenotypic 

similarities between cells and identifying clusters using Louvain community detection. The 

FlowSOM algorithm builds a self-organizing map with a minimum spanning tree to detect 

populations, then classifies cells in a meta-clustering step using consensus hierarchical 

clustering. We clustered cells with all three methods using the same selection of markers that 

was used to create t-SNE projections. 
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After running all three algorithms on the dataset, we identified 19, 19, and 21 clusters for 

DensVM, FlowSOM, and Phenograph respectively. An ideal clustering algorithm would define 

clusters that are distinct from each other in terms of marker intensities. However, cluster 

intensity differences should not be driven by batch effects; that is, clusters should not be 

disproportionately constituted by cells from any individual batch. 

In order to quantify the extent to which clustering approaches defined clusters with distinct 

marker intensities, we utilized a Marker Informativeness Metric (MIM) (Materials and 

Methods). All three methods were similar in their ability to generate clusters with distinct 

marker intensities (Figure S3A). Then, to determine whether those intensity differences were 

dependent on batch differences, we used a Cluster Informativeness Metric (CIM)-based metric 

to assess whether clusters were disproportionately represented by individual batches 

(Materials and Methods). Here, we observed that Phenograph and FlowSOM were much 

more sensitive to batch effects than clusters identified by DensVM (p < 2 x 10-3, Wilcoxon rank 

sum test, Figure S3B). Consistent with this quantitative assessment, we observed that in our 

data FlowSOM and Phenograph produced clusters that were constituted exclusively of or 

dominated by cells from a specific batch. Thus, we chose to analyze clusters identified by the 

DensVM algorithm going forward. 

 

Landscape of CD4+ Memory T Cell Subsets 

 We observed substantial diversity among resting CD4+ memory T cells in both cases and 

controls, consistent with previous reports demonstrating a breadth of phenotypes in CD8+ T 

cells and CD4+ T cells84,89,165. We identified 19 distinct subsets in resting (R) memory CD4+ T 

cells (Figure 3-2A, S4A, S5). Central memory T cells (TCM) segregated from effector memory T 

cells (TEM) by the expression of CD62L (Figure 3-2B). Five subsets (subsets 1 – 5) of TCM cells, 

all expressing CD62L, varied in expression of CD27 and CD38, highlighting the heterogeneity 

within the TCM compartment (Figure 3-2E). We identified two Th1 subsets (subsets 8 and 12) as 
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well as two Treg subsets (subsets 7 and 11).  Both Treg subsets expressed high levels of CD25 and 

FoxP3, and subset 11 also expressed HLA-DR, reflecting a known diversity among Treg 

populations in humans (32).  

When applied to the stimulated CD4+ T cell data in a separate analysis, DensVM 

identified 21 subsets amongst all case and control samples (Figure 3-2C, S4B, S5). As 

expected, certain activation markers, such as CD25 and CD40L, were broadly expressed across 

most subsets after stimulation (Figure 3-2D). Mass cytometry robustly detected cytokine 

production from stimulated CD4+ memory T cells (Figure 3-2D, 3-2F). Activated effector cells 

identified by the production of IL-2 were separated into three groups (subsets 1 – 3) according 

to relative expression of TNF. Cytokine expression after stimulation also improved the ability to 

resolve certain CD4+ T effector subsets, such as Th17 cells (subset 15) and Th1 cells (subset 12). 

However, we were unable to resolve the Treg subtypes that were observed in the resting T cells; 

after stimulation, all CD25+ FoxP3+ cells were grouped together (subset 21). The set of cells that 

did not activate after stimulation (subsets 16, 17, and 19) were easily identified by the lack of 

expression of activation markers such as CD25, CD40L, and cytokines, and the retention of high 

CD3 expression. 

	  



 

 53 

Diversity of CD4+ memory T cells before and after stimulation 

 

Figure 3-2. (A) t-SNE projection of 50,000 resting CD4+ memory T cells sampled equally from RA 
patients (n=24) and controls (n=26). DensVM identified 19 populations in this dataset. (B) Same t-SNE 
projections as in (A) colored by the density of cells on the SNE plot or the expression of the markers 
labeled above each panel. (C) t-SNE projection of 52,000 CD4+ stimulated memory T cells sampled 
equally from RA patients (n=26) and controls (n=26). Cells were stimulated for 24 hours with anti-
CD3/anti-CD28 beads. (D) Same t-SNE projections as in (C) colored by the density of cells on the SNE 
plot or the expression of the markers labeled above each panel. (E) Heatmap showing mean expression 
of indicated markers across the 19 populations found in resting cells. (F) Heatmap showing mean 
expression of indicated markers across the 21 populations found after stimulation. Protein expression 
data are shown after arcsinh transformation. All markers but CD4 and CD45RO were used to create t-
SNE projections and perform clustering. 
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Identifying Populations that are Enriched or Depleted in RA Samples 

We next sought to identify subsets that were significantly overrepresented or 

underrepresented in patient cells. The frequency of RA cells in each subset ranged from 36.7% to 

63.6% in the resting state, and 38.9% to 65.7% in the stimulated state (Table S2, Figure S6A). 

Visualizing the density of the t-SNE projections revealed that related cells clustered into dense 

groups both at rest and after stimulation (Figure 3-2B, 3-2D), and plotting t-SNE projections 

of cells from cases and controls separately while coloring by density clearly suggested 

differential abundance of RA cells among clusters (Figure S2). Accounting for subject-specific 

and batch-specific random effects with MASC (Materials and Methods), we observed three 

populations with significantly altered proportions of cells from cases in the resting T cell data. 

Most notably, we observed enrichment in subset 18 (p = 5.9	 ×	10Os, Table 3-2, Figure 3-3A); 

this subset consisted 3.1% of total cells from cases compared to 1.7% of cells from controls and 

achieved an odds ratio (OR) of 1.9 (95% confidence interval [CI] = 1.3 – 2.7). Conversely, subset 

7 (p = 8.8	 ×	10Os, OR = 0.6, 95% CI = 0.5 – 0.8) and subset 12 (p = 2.0	 ×	10Oq, OR = 0.5, 95% 

CI = 0.4 – 0.8) were underrepresented for RA cells. 

 

Overview of subsets found to be significantly expanded in RA 
 

Table 3-2. RA proportion reflects the fraction of cells in the subset that were from RA donors. The 95% 
confidence interval is shown next to the odds ratio. 
Condition Description Subset RA Proportion P value Odds Ratio Test 

Resting HLA-DR+,CD27-  18 0.636 u. v	 ×	wxOy 1.9 (1.3 – 2.7) MASC 

Stimulated HLA-DR+, CD27- 18 0.619 w. z	 ×	wxOz 1.7 (1.2 – 2.2) 

 

MASC 

Flow cytometry 
replication 

Gated  

HLA-DR+, CD27- 

NA NA y. y	 ×	wxO{ NA One-tailed 

t test 

Meta-analysis HLA-DR+, CD27- NA NA {. z	 ×	wxOy NA Stouffer’s Z-
score 
method 
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MASC identifies a population that is expanded in RA

 
Figure 3-3. (A, B) Odds ratios and association p-values were calculated by MASC for each population 
identified the resting (A) and stimulated (B) datasets. The yellow line indicates the significance threshold 
after applying the Bonferroni correction for multiple testing. (C) Flow cytometry dot plot of gated memory 
CD4+ T cells from a single RA donor shows the gates used to identify CD27- HLA-DR+ memory CD4+ T 
cells (blue quadrant).  (D) Flow cytometric quantification of the percentage of CD27-, HLA-DR+ cells 
among blood memory CD4+ T cells in an independent cohort of seropositive RA patients (n = 39) and 
controls (n = 27). Statistical significance was assessed using a one-tailed t-test after assessing normality 
with a Shapiro-Wilk test (p > 0.52). 
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To confirm the robustness of this analytical model, we conducted a stringent 

permutation test that was robust to potential batch effects. To control for batch, we reassigned 

case-control labels randomly to each sample, retaining the same number of cases and controls in 

each batch. For each T cell subset we recorded the number of case cells after randomization to 

define a null distribution. In the real data, we observed that 753 out of the 1184 cells in subset 18 

were from case samples. In contrast, when we permuted the data we observed a mean of 550 

cells and a standard deviation of 63 cells from case samples. In only 93 out of 100,000 

permutations did we observe more than 753 cells from case samples in the randomized data 

(permutation p = 9.4 × 10Os, Table S2). We applied permutation testing to every subset and 

found that the p-values produced by permutation were similar to p-values derived from the 

mixed-effects model framework (Spearman’s r = 0.86, Figure S6B-C). When we considered 

the subsets identified as significant by MASC, both subsets 18 (permutation p = 9.4 × 10Os) and 

7 (permutation p = 1.8 × 10Os) retained significance whereas subset 12 demonstrated nominal 

evidence of case-control association (permutation p = 1.3 × 10Om). 

Next, for each resting T cell subset, we identified corresponding subsets in the stimulated 

T cell dataset using a cluster centroid alignment strategy to calculate the distance between 

subsets across datasets (Materials and Methods). Subset 18 in the resting dataset was most 

similar to subset 18 in the stimulated dataset, while subset 7 in the resting dataset was most 

similar to subset 21 in the stimulated dataset (Figure S6D-E). Applying MASC, we observed 

case-control association for subset 18 in the stimulated data (p = 1.2 × 10Oq, OR = 1.7, 95% CI = 

1.2 – 2.2), while subset 21 (p = 0.55) was not significant in the stimulated data (Table 3-2, 

Figure 3-3B). We identified one additional population subset that was significant in the 

stimulated dataset: subset 20 (p = 1.7 × 10Oq, OR = 1.7, 95% CI = 1.2 – 2.3) (Table S3).  

We wanted to ensure that the results we observed were not an artifact of using DensVM to 

cluster the cytometry data. When we used Phenograph and FlowSOM to cluster the same mass 

cytometry dataset, we observed a CD27-, HLA-DR+ cluster with either method (Figure S7A, 
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S7C) with association to RA by MASC (Figure S7B, S7D). We also assessed how analysis by 

MASC compared to Citrus137, an algorithm that uses hierarchical clustering to define cellular 

subsets and then builds a set of models using the clusters to stratify cases and controls.  When 

applied to the same case-control resting dataset, Citrus was unable to produce models with an 

acceptable cross-validation error rate, regardless of the method used (Figure S8).  

 

CD27- HLA-DR+ CD4+ Effector Memory T Cell Expansion in RA  

After noting that subset 18 demonstrated robust association with RA, we interrogated 

the key features of this population. The lack of CD62L expression in subset 18 indicated that this 

subset was an effector memory T cell population. To define the markers that best differentiated 

this subset from other cells, we calculated the MIM for the expression of each marker in the 

subset for both the resting and stimulated datasets (Materials and Methods, Figure 3-4A). 

The expression of HLA-DR and perforin were notably increased in subset 18 compared to all 

other cells, while the expression of CD27 was decreased in this subset (Figure 3-4B). We 

observed that gating on CD27 and HLA-DR largely recapitulated subset 18 in both the resting 

cells and the stimulated cells (Figure 3-4C and 3-4D), with an F measure of 0.8 and 0.7 

respectively (Materials and Methods). Although HLA-DR is a known to be expressed on T 

cells in response to activation, it takes several days to induce strong HLA-DR expression166. 

Thus, it is likely that cells in subset 18 expressed HLA-DR prior to stimulation, such that 

analyses of both resting and stimulated cells identified the same HLA-DR+ CD27- effector 

memory T cell population.  
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CD27 and HLA-DR expression specifically mark the expanded population 
 

 
Figure 3-4. (A) Plot of the Kullback-Liebler divergence for each marker comparing cluster 18 to all other 
cells (grey) in both the resting dataset (red) and the stimulated dataset (blue). (B) Density plots showing 
expression of the five markers most different between cluster 18 cells (resting = red, stimulated = blue) 
and all other cells in the same dataset (black line). (C) Left: t-SNE projection of clusters identified in 
resting dataset; Middle: Same t-SNE projection, with cells gated as CD27- HLA-DR+ colored in red; Right: 
F-measure scores were calculated for the overlap between gated cells and each cluster in the resting 
dataset. (D) Left: t-SNE projection of clusters identified in stimulated dataset; Middle: Same t-SNE 
projection, with cells gated as CD27- HLA-DR+ colored in red; Right: F-measure scores were calculated 
for the overlap between gated cells and each cluster in the stimulated dataset. 
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In order to confirm the expansion of the CD27- HLA-DR+ T cell population in RA 

patients that we observed by mass cytometry, we evaluated the frequency of CD27- HLA-DR+ T 

cells in an independent cohort of 39 seropositive RA patients and 27 non-inflammatory OA 

controls using conventional flow cytometry (Table 3-1). We determined the percentage of 

memory CD4+ T cells with a CD27- HLA-DR+ phenotype by gating individual samples from 

each group (Figure 3-3C, Figure S9A, Figure S10). Consistent with the mass cytometry 

analysis, CD27- HLA-DR+ cells were significantly expanded in the RA patient samples (p = 

0.044, one-tailed t test, Shapiro Wilk normality test p > 0.52, Figure 3-3D). The frequency of 

this subset was 0.8% in controls and 1.7% in RA samples, which was similar to the two-fold 

enrichment we observed in the mass cytometry data. We then considered the mass cytometry 

and flow cytometry association results together in a meta-analysis, confirming that CD27- HLA-

DR+ cells significantly associated with RA (p = 2.3 x 10-4, Stouffers Z-score method, Table 3-2). 

To assess the effect of RA treatment on CD27- HLA-DR+ cell frequency, we quantified 

CD27- HLA-DR+ cell frequencies in 23 RA patients before and 3 months after initiation of a new 

medication for RA. We dichotomized patients as those who experienced a clinical response, 

defined as a reduction in CDAI (Clinical Disease Activity Index) (61) scores (ΔCDAI-), versus 

those that did not, defined as an increase in CDAI scores (ΔCDAI+). We observed that changes 

in CD27- HLA-DR+ cell frequency tracked with clinical response to treatment initiation (p = 

3.49x10-4, Wilcoxon signed-rank test, Figure 3-5A). Specifically, in the 18 ΔCDAI- patients, the 

frequency of CD27- HLA-DR+ cells significantly reduced by 0.7-fold (p = 0.006, Wilcoxon 

signed-rank test, Figure S11B); in contrast, the 5 ΔCDAI+ patients in this same trial had an 

1.8-fold increase in CD27- HLA-DR+ cells, although the increase was not statistically significant 

on its own. We did observe a significant difference in the CD27- HLA-DR+ frequency fold-

change between patients experiencing a CDAI reduction versus not (p = 0.02, Wilcoxon rank 

sum test, Figure S11A).  
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CD27- HLA-DR+ memory CD4+ T cells are expanded in the blood and joints of patients with active 
RA 
 

 
Figure 3-5. (A) Flow cytometric quantification of the frequency of CD27- HLA-DR+ memory CD4+ T cells 
in 18 RA patients prior to starting a new medication, plotted against change in cell frequency after 3 
months of new therapy. Treatment significantly reduced CD27- HLA-DR+ cell frequency as determined by 
a Wilcoxon signed-rank test. (B) Flow cytometric quantification of the percentage of memory CD4+ T cells 
with a CD27- HLA-DR+ phenotype in cells from seropositive RA synovial fluid (n=8) and synovial tissue 
(n=9), compared to blood samples from RA patients and controls. Blood sample data are the same as 
shown in Fig. 3D. Significance was assessed using one-tailed t-test after determining normality with a 
Shapiro-Wilk test (p > 0.52) and applying a Bonferroni correction for multiple testing. 
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The decrease in frequency of CD27- HLA-DR+ cells in patients responding to treatment 

escalation was accompanied by a slight increase in the frequency of CD27+ HLA-DR- cells: 

CD27+ HLA-DR- cells represented an average of 86.2% of CD4+ memory T cells before 

treatment, and an average of 87.9% of CD4+ memory T cells afterwards (p = 0.009, Wilcoxon 

signed-rank test, Figure S11C). These results confirm that CD27- HLA-DR+ CD4+ T cells were 

expanded in the circulation of RA patients and decreased with effective disease treatment. We 

also examined the relationship between the frequency of CD27- HLA-DR+ CD4+ T cells and 

disease activity or therapeutic use, but we found no significant associations (Figure S12). 

To determine whether CD27- HLA-DR+ T cells were further enriched at the sites of 

inflammation in seropositive RA patients, we evaluated T cells in inflamed synovial tissue 

samples obtained at the time of arthroplasty (Table 3-1) and in inflammatory synovial fluid 

samples from RA patients. In a set of 9 synovial tissue samples with lymphocytic infiltrates 

observed by histology, the frequency of CD27- HLA-DR+ cells was significantly increased 5-fold 

(p < 0.01, Wilcoxon rank-sum, median 10.5% of memory CD4+ T cells) compared to blood 

(Figure 3-5B). Notably, in 2 of the tissue samples, >20% of the memory CD4+ T cells displayed 

this phenotype. CD27- HLA-DR+ cells were similarly expanded in synovial fluid samples from 

seropositive RA patients (p < 0.001, Wilcoxon rank-sum, median 8.9% of memory CD4+ T cells, 

n=8). Thus, CD27- HLA-DR+ T cells were enriched at the primary sites of inflammation in RA 

patients.  

 

Functional and Transcriptional Features of CD27- HLA-DR+ CD4+ Effector 

Memory T Cells 

To evaluate the potential function of the CD27- HLA-DR+ cell subset, we performed 

RNA-seq on CD27- HLA-DR+ CD4+ T cells with other effector populations to identify 

transcriptomic signatures for this subset (Figure S9B-D). We sorted and sequenced the 

following CD4+ T cell populations: naïve CD4+ T cells (TN), central memory CD4+ T cells 
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(TCM), regulatory CD4+ T cells (TReg), and all four CD27-/+ HLA-DR-/+ subsets – defined as 

DR+27+ Effector T cells (DR+27+), DR+27- Effector T Cells (DR+27-), DR-27+ Effector T Cells 

(DR-27+), and DR-27- Effector T Cells (DR-27-) – from peripheral blood mononuclear cells 

(PBMCs) in 7 RA cases and 6 OA controls. In total we generated 1.1 billion reads for 90 samples. 

We aligned reads with Kallisto167 and applied stringent quality controls to remove genes that 

lacked sufficient expression (Materials and Methods), ultimately resulting in a set of 15,234 

genes for analysis.  

We performed principal component analysis (PCA) on the expression data (Figure 3-

6A). The first PC, capturing 4% of the total variation, separated cell types along a naïve to 

effector axis, with the CD27- HLA-DR+ subset representing the extreme case with the highest 

PC1 values, and naïve T cells with the lowest PC1 values. We examined the genes with the 

highest PC1 loadings and found that PC1 was associated negatively with CCR7 and positively 

with CXCR3 and CCR5. This finding was consistent with the elevated expression of CXCR3 and 

CCR5 we observed in the mass cytometry analyses of CD27- HLA-DR+ cells. We note that 

CXCR3 and CCR5 are both chemokine receptors associated with a Th1 phenotype. In addition, 

PRF1 (perforin), a cytotoxic factor, was also strongly associated with PC1. The extreme position 

of CD27- HLA-DR+ cells along the continuum of CD4+ T cells suggested a possible late or 

terminal effector memory phenotype. To further explore this naïve to effector gradient, we used 

the gene loadings along PC1 to perform gene set enrichment analysis (GSEA) and identify the 

pathways that were most associated. Intriguingly, the naïve to CD27- HLA-DR+ axis was 

strongly correlated with naïve vs effector and natural killer (NK) vs CD4+ T cell gene signatures 

(Figure 3-6B). 
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Transcriptomic characterization of CD27- HLA-DR+ memory CD4+ T cells identified a Th1-skewed 
cytotoxic phenotype 

 

 
Figure 3-2. RNA-seq characterization of CD27- HLA-DR+ (DR+27-) cells and 6 related CD4+ T cell 
populations: naive T cells (Tnaive), regulatory T cells (Treg), central memory t cells (TCM), and three 
populations of effector memory T cells, CD27+ HLA-DR- (DR-27+), CD27+ HLA-DR+ (DR+27+), and 
CD27- HLA-DR- (DR-27-). (A) PCA plot (top) and PC1 gene loadings (bottom) of 90 samples from the 7 
CD4+ T cell populations. Cells were colored on the PCA plot according to known cell type. Normal 
confidence ellipses at 1 standard deviation were plotted for each cell type. The 300 most positive and 300 
most negative PC1 gene loadings for each cell type were averaged and plotted in the heatmap. Genes 
relevant to the CD27- HLA-DR+ population were labeled. (B) Gene set enrichment analysis was 
performed on all genes, ranked on their PC1 loadings. Two significantly enriched gene sets: NK signature 
(GSE22886 NAIVE CD4 T CELL VS NK CELL DN) and effector memory t cell signature (GSE11057 
NAIVE VS EFF MEMORY CD4 T CELL) are shown. (C) Distribution of log-scaled expression of six 
canonical Th1 genes: CCR5, CIITA, CXCR3, IFNG, TBX21 (Tbet), and TNF. Populations are ordered by 
PC1 loading values, with CD27- HLA-DR+ population highlighted in red. (D) Distribution of log-scaled 
gene expression of six canonical cytotoxic genes: GNLY, GZMA, GZMB, GMZK, NKG7, and PRF1. 
Populations are ordered by PC1 loading values, with the CD27- HLA-DR+ population highlighted in red. 
Reported p-values in (C) and (D) correspond to a linear model of gene expression against ordered cell 
type (as an ordinal variable), with p-values adjusted for multiple testing by the Benjamini Hochberg 
procedure. (E) Cytokine expression determined by intracellular cytokine staining of peripheral effector 
memory CD4+ T cells after in vitro stimulation with PMA/ionomycin. The percentage of cells positive for 
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Figure 3-6 (continued). each stain is plotted for CD27+ HLA-DR- and CD27- HLA-DR+ subsets. Each dot 
represents a separate donor (n = 12; 6 RA patients and 6 controls, except for the quantification of 
Granyzme A and perforin where n = 6; 3 RA patients and 3 controls). Statistical significance was 
assessed using a Wilcoxon signed-rank test. 

 
The association of CXCR3 and CCR5 with PC1 prompted us to examine the expression of 

Th1-associated genes in these cells. The effector memory cell populations showed increased 

expression of multiple Th1-associated genes, including IFNG (IFN-g) and TBX21 (Tbet), 

compared to naïve, Treg, and central memory cells. In addition, expression of these Th1-

associated genes was higher in CD27- HLADR+ compared to CD27+ HLADR- effector memory 

cells, which constituted the majority of the effector memory T cell pool (Figure 3-6C). In 

contrast, cytokines characteristic of other polarized Th subsets (IL17A, IL4, IL21, TGFB1) and 

transcription factors associated with other Th subsets (RORC, GATA3, BCL6, FOXP3) were not 

elevated in CD27- HLA-DR+ cells compared to other effector populations (Figure S13A). We 

noted that the transcription factor CIITA was also increased in CD27- HLA-DR+ cells (Figure 

3-6C). CIITA is well-known for its role as a regulator of MHC class II; indeed, we observed that 

targets of CIITA such as HLA genes were significantly overexpressed in the CD27- HLA-DR+ 

population compared to other populations (Figure S13B).  

As the expression of PRF1 was positively associated with PC1, we wanted to assess the 

relationship between the expression of cytotoxic gene programs and the naïve to effector PC1 

gradient.  We used gene set enrichment analysis (GSEA) to query whether NK cell-associated 

genes were upregulated in the CD27-HLA-DR+ population. Specifically, we ranked genes by 

their degree of differential expression, comparing expression in CD27-HLA-DR+ cells versus 

that seen in all other cell types. For NK cell-associated genes, we used the previously defined 

geneset from MSigDB that defines genes upregulated in NK cells versus CD4+ T cells. Indeed, 

genes that were highly expressed in NK cells similarly showed high expression in CD27- HLA-

DR+ cells, while genes with low expression in NK cells showed similarly low expression in 

CD27- HLADR+ cells (Table S4). Consistent with the enrichment results, a set of genes 
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characteristically associated with cytolytic cells, including PRF1, GZMB, GZMA, GNLY, and 

NKG7 were all increased in expression in CD27- HLADR+ cells compared to most other T cell 

populations analyzed (Figure 3-6D). These results indicate that the CD27- HLA-DR+ cells 

expressed a transcriptomic signature characteristic of cytotoxic cells. 

We also evaluated the production and expression of cytokines and cytolytic factors at the 

protein level by intracellular flow cytometry. We assessed production of effector molecules by 

cells after in vitro stimulation with PMA + ionomycin, a stimulation method that readily reveals 

T cell capacity for cytokine production. Consistent with RNA-seq analyses, CD27- HLA-DR+ 

cells also more frequently expressed perforin (p = 0.031, one-tailed Wilcoxon signed-rank test) 

and granzyme A (p = 0.015, one-tailed Wilcoxon signed-rank test) than did CD27+ HLA-DR- 

cells, which constituted the majority of memory CD4+ T cells. In addition, CD27- HLA-DR+ 

cells produced IFN-g at a much higher frequency (p = 0.009, one-tailed Wilcoxon signed-rank 

test, Figure 3-6E). Percent positivity for each marker was determined by selecting an 

expression level threshold to determine positive staining (Figure S14). Taken together, broad 

analyses of gene expression and targeted measures of effector molecule production at the 

protein level indicated that CD27 HLA-DR+ T cells are a Th1-skewed T cell population capable 

of producing cytotoxic molecules. 
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Discussion 

Mass cytometry has been successfully applied to decipher the heterogeneity of human T 

cells in multiple settings, including for the identification of disease-specific changes to 

circulating immune cell populations and mapping of developmental pathways84,90,133. It and 

other emerging single cell strategies offer a promising avenue to characterize the T cell and other 

immunological features of a wide-range of diseases in humans. However, successful application 

of mass cytometry on a larger scale (>20 samples) to conduct association studies on clinical 

phenotypes in humans has been limited thus far168-171, in part due to the limited availability of 

effective association testing strategies. 

Although there are many approaches to cluster single cell data91,130,132,134,161-163, extension 

of these methods to perform case-control association testing is not straightforward. The 

simplest strategy would be to define subsets of interest by clustering the cells and then 

comparing frequencies of these subsets in cases and controls with a univariate test such as a t-

test or a non-parametric Mann-Whitney test. While commonly used in flow cytometry analysis, 

this approach is dramatically underpowered, as it relies upon reducing single-cell data to 

potentially inaccurate per-sample subset frequencies.  

In contrast, our methodology takes full advantage of single cell measurements by using a 

“reverse-association” framework to test whether case-control status influences the membership 

of a given cell in a population - that is, each single cell was treated as a single event. However, 

these cells are not entirely statistically independent. Failing to account for dependencies, for 

example by using a binomial test or not accounting for random effects, can result in 

considerably inflated statistics and irreproducible associations (Figure S1). Using a mixed-

effects logistic regression model allowed us to account for covariance in single cell data induced 

by technical and biological factors that could confound association signals (Figure 3-1, Figure 

S1B), without inflated association tests. MASC also allows users to utilize technical covariates 

that might be relevant to a single cell measurement (e.g. read depth per cell for single cell RNA-
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seq or signal quality for mass cytometry) that might influence cluster membership for a single 

cell. 

We note that Citrus, an association strategy to automatically highlight statistical 

differences between experimental groups and identify predictive populations in mass cytometry 

data137, was unable to identify the expanded CD27- HLA-DR+ population. We believe that our 

methodology compared favorably to Citrus because it incorporated both technical covariates 

(e.g. batch) and clinical covariates when modeling associations, a key feature when analyzing 

high-dimensional datasets of large disease cohorts. Additionally, the agglomerative hierarchical 

clustering framework in Citrus substantially increased the testing burden and limited power.  

Although we found that clustering with DensVM outperformed FlowSOM and Phenograph on 

our data (Figure S3), we want to emphasize that many clustering methods have emerged to 

analyze both cytometry and single cell RNA-seq data; clustering single cell data remains an 

active field of research172,173. There continues to be controversy as to the best strategies, most 

appropriate metrics, and the optimal parameter choices173-176. Available clustering approaches 

utilize a variety of methods, such as graph-based community detection, self-organizing maps130, 

and density-based clustering132,162,177. As neural networks and as a subclass, autoencoders, have 

been proven to be powerful general nonlinear models, we implemented an autoencoder-based 

clustering approach that we tested on our datasets. We found this clustering method also had 

potential and should be further investigated in the future (Figure S14). As different clustering 

strategies may be more appropriate for different datasets, we have implemented MASC 

specifically to allow for different clustering options based on user preference. 

The CD27- HLA-DR+ T cells identified by MASC in blood samples from RA patients 

were further enriched in both synovial tissue and synovial fluid of RA patients. The 

accumulation of these cells in chronically inflamed RA joints, combined with lack of CD27, 

suggests that these cells have been chronically activated. Loss of CD27 is characteristic of T cells 

that have been repeatedly activated, for example T cells that recognize common restimulation 
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antigens178-180. Importantly, the broader CD27- CD4+ T cell population did not itself differ in 

frequency between RA patients and controls, in contrast to the expanded population of CD27- 

HLA-DR+ cells identified by MASC. We hypothesize the CD27- HLA-DR+ T cell population in 

RA patients may be enriched in RA antigen-specific T cells, offering a potential tool to identify 

relevant antigens in RA. 

Expression of HLA-DR suggests recent or continued activation of these cells in vivo. The 

well-known HLA class II association to RA may also suggest an important role in disease 

susceptibility for this subset. Despite the suspected chronic activation of these cells, CD27- HLA-

DR+ cells did not appear functionally exhausted. CD27- HLA-DR+ cells rapidly produced 

multiple effector cytokines upon stimulation in vitro, with an increased predisposition to IFN-� 

production. These cells also showed increased expression of cytolytic molecules such as 

granzyme A and perforin on both the transcriptomic and proteomic level. 

CD4+ cytotoxic T cells expressing granzyme A and perforin, also with a CD27- phenotype, are 

reported to be expanded in patients with chronic viral infections181 (53). Of note, CD4+ cells that 

are perforin+ and granzyme A+ have been observed in RA synovial samples182,183 and other 

chronic inflammatory conditions66,184. Interestingly, cytolytic CD4+ T cells lack the capacity to 

provide B cell help, suggesting that this is a distinct population from the expanded T peripheral 

helper cell population in seropositive RA105,182. These findings nominate CD27- HLA-DR+ T cells 

as a potential pathogenic T cell population that may participate in the chronic autoimmune 

response in RA.  

Although we were able to detect significant associations between the frequency of CD27- 

HLA-DR+ cells and clinical response (Figure 3-5A), we recognize the need for a larger study to 

detect other subtle subphenotypic associations, such as association with specific therapeutics or 

disease activity (Figure S15). To this end, larger prospective cohorts with deep 

immunophenotyping of CD4+ T cells in blood and tissue will be critical.  
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We note that this study has certain limitations. First, the degree of expansion of CD27- 

HLA-DR+ T cells in the periphery is modest and varies between individuals. While we were able 

to recover the majority of cells identified as expanded by MASC in our mass cytometry 

experiments using CD27 and HLA-DR as markers; we note that the more fine-grained 

immunophenotyping may help to refine phenotypes that even more specifically pinpoint the 

disease-associated T cell population. While we have characterized these cells as effector memory 

CD4+ T cells that produce molecules associated with cytotoxicity and Th1 phenotype, further 

characterization is needed in future studies. For example, we assigned an effector memory 

phenotype to the CD27- HLA-DR+ cell subset based on upon mass cytometry data; however, the 

mass cytometry panel did not specifically measure the expression of CD45RA. While this would 

appear to leave open the possibility that these cells might belong to a TEMRA (CD45RO+ 

CD45RA+) subset, we note that our sorting strategy for cells prior to assay by mass cytometry 

specifically excluded CD45RA+ cells and consider this possibility unlikely. In addition, our study 

focused exclusively on CD45RO+ memory CD4+ T cells, thus we have not assessed other CD4+ 

T cells populations that may also have cytotoxic features, including T effector memory 

CD45RA+ (TEMRA) cells185. A broader cytometric assessment of T cell and other immune cell 

phenotypes in RA will be of interest in subsequent studies. Also, we did observe that the mRNA 

and protein expression of specific markers was not always concordant. Applying more recently 

developed single cell techniques that ascertain protein and mRNA expression simultaneously 

would better describe the dynamics of CD27- HLA-DR+ T cells in response to stimulation144,186. 

We anticipate that MASC will be applied test for case-control associated differential abundance 

across multiple cell types in the future. 

In summary, the MASC single-cell association modeling framework identified a Th1-

skewed cytotoxic effector memory CD4+ T cell population expanded in RA using a case-control 

mass cytometry dataset. The MASC method is adaptable to any case-control experiment in 

which single cell data are available, including flow cytometry, mass cytometry, and single cell 
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RNA-seq datasets. Although current single cell RNA-seq studies are not yet large scale, ongoing 

projects may benefit from using the MASC framework in case-control testing, or testing for 

other clinical subphenotypes such as specific treatment response or disease progression. 

Materials and Methods 

Study Design 

The objective of this research study was to profile immune subsets in peripheral blood samples 

from RA patients and osteoarthriris (OA) controls to identify disease-related alterations or 

changes in frequency among CD4+ T cells. Human subject research was performed in 

accordance with the Institutional Review Boards at Partners HealthCare and Hospital for 

Special Surgery via approved protocols (Partners HealthCare Protocol 2014P00255) with 

appropriate informed consent as required. Patients with RA fulfilled the ACR 2010 Rheumatoid 

Arthritis classification criteria, and electronic medical records were used to ascertain patients’ 

rheumatoid factor and anti-CCP antibody status, C-reactive protein level, and medication use. 

Synovial tissue samples for mass and flow cytometry were collected from seropositive RA 

patients undergoing arthroplasty at the Hospital for Special Surgery, New York or at Brigham 

and Women’s Hospital, Boston. Samples with lymphocytic infiltrates on histology were selected 

for analysis. Sample inclusion criteria were established prospectively, with the exception of 

samples that were excluded from the study due to poor acquisition by the mass cytometer. The 

study sample size was a result of including all samples that passed quality control and not set 

prospectively.  

Synovial fluid samples were obtained as excess material from a separate cohort of patients 

undergoing diagnostic or therapeutic arthrocentesis of an inflammatory knee effusion as 

directed by the treating rheumatologist. These samples were de-identified; therefore, additional 

clinical information was not available.  
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Blood samples for clinical phenotyping were obtained from consented patients seen at Brigham 

and Women’s Hospital. We performed medical record review for ACPA (anti-citrullinated 

protein antibody) positivity according to CCP2 (cyclic citrullinated protein) assays, C-reactive 

protein (CRP), and RA-specific medications including methotrexate and biologic DMARDS. For 

blood cell analyses in the cross-sectional cohort, the treating physician measured the clinical 

disease activity index (CDAI) on the day of sample acquisition. For RA patients followed 

longitudinally, a new disease-modifying antirheumatic drug (DMARD) was initiated at the 

discretion of the treating rheumatologist, and CDAIs were determined at each visit by trained 

research study staff. Blood samples were acquired before initiation of a new biologic DMARD or 

within 1 week of starting methotrexate and 3 months after initiating DMARD therapy187. 

Concurrent prednisone at doses ≤10mg/day were permitted. All synovial fluid and blood 

samples were subjected to density centrifugation using Ficoll-Hypaque to isolate mononuclear 

cells, which were cryopreserved for batched analyses. 

 

Sample Preparation for Mass Cytometry 

We rapidly thawed cryopreserved PBMCs and isolated total CD4+ Memory T cells by negative 

selection using MACS magnetic bead separation technology (Miltenyi). Subsequently, we rested 

the CD4+ Memory T cells for 24 hours in complete RPMI (Gibco) sterile-filtered and 

supplemented with 15% FBS, 1% Pen/Strep (Gibco), 0.5% Essential and Non-Essential Amino 

Acids (Gibco), 1%Sodium Pyruvate (Gibco), 1% HEPES (Gibco), and 55µM 2-mercaptoethanol 

(Gibco). We activated the cells using Human T-Activator CD3/CD28 Dynabeads (ThermoFisher) 

at a density of 1 bead:2 cells. At 6 hours prior to harvesting (t=18 hours of stimulation), we 

added Monensin and Brefeldin A 1:1000 (BD GolgiPlug and BD GolgiStop). After 24 hours of 

stimulation, we incubated the cells with a rhodium metallointercalator (Fluidigm) in culture at a 

final dilution of 1:500 for 15 minutes as a viability measure. We then harvested cells into FACS 

tubes and washed with CyTOF Staining Buffer (CSB) composed of PBS with 0.5% BSA (Sigma-
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Aldrich), 0.02% sodium azide (Sigma-Aldrich), and 2µM EDTA (Ambion). We spun the cells at 

500xg for 7 minutes at room temperature. We incubated the resulting cell pellets in 10ul Fc 

Receptor Binding Inhibitor Polyclonal Antibody (eBioscience) and 40ul of CSB for 10 minutes at 

4C. The samples were then incubated for 30 minutes at 4C on a shaker rack with 1ul of the 

following eighteen CyTOF surface antibodies in a cocktail brought to a volume of 50ul/sample in 

CSB: Anti-Human CD49D (9F10)-141Pr (Fluidigm), Anti-Human CCR5 (CD195)(–P-6G4) - 

144Nd (Fluidigm), Anti-Human CD4 (RPA-T4) -145Nd (Fluidigm), Anti-Human CD8a (RPA-

T8) -146Nd (Fluidigm), Anti-Human CD45RO-147Sm (Brigham and Women’s Hospital CyTOF 

Core), Anti-Human CD28-148Nd (BWH CyTOF Core), Anti-Human CD25 (IL-2R– (2A3) - 

149Sm (Fluidigm), Anti-Human PD1-151Eu (BWH CyTOF Core), Anti-Human CD62L (DREG-

56)-153Eu (Fluidigm), Anti-Human CD3 (UCHT1) -154Sm (Fluidigm), Anti-Human CD27 

(L128) -155Gd (Fluidigm), Anti-Human CD183[CXCR3](G025H7)-156Gd (Fluidigm), Anti-

Human CCR7-170Er (BWH CyTOF Core), Anti-Human ICOS-160Gd (BWH CyTOF Core), Anti-

Human CD38 (HIT2)-167Er (Fluidigm), Anti-Human CD154 (CD40L) (24-31)-168Er 

(Fluidigm), Anti-Human CXCR5[CD185](51505)-171Yb (Fluidigm), and Anti-Human HLA-DR 

(L243) -174Yb (Fluidigm). We washed the cells with 1 ml of CSB and spun at 700xg for 5 

minutes at RT. Post spin, we aspirated the buffer from pellet and added 1 ml 1:4 ratio of 

concentrate to diluent of a Foxp3 / Transcription Factor Staining Buffer Set (eBioscience) 

supplemented with formaldehyde solution (Sigma-Aldrich #F1268) to a final concentration of 

1.6%. We incubated the cells at room temperature on a gentle shaker in the dark for 45 minutes. 

We washed the cells with two ml of CSB + 0.3% saponin (CSB-S), and spun at 800xg for 5 

minutes. We incubated the cell pellet with 1ul of the following fourteen intracellular antibodies 

and 10ul of a solution of Iridium (1:25) in CSB-S brought to a total volume of 100ul for 35 

minutes at r.t. on a gentle shaker: Anti-Human IL-4 (MP4-25D2)-142 (Fluidigm), Anti-

Mouse/Human IL-5 (TRFK5) -143Nd (Fluidigm), Anti-Human IL-22 (22URTI) -150Nd 

(Fluidigm), Anti-Human TNFα (Mab11) -152Sm (Fluidigm), Anti-Human IL-2 (MQ1-17H12)-
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158Gd (Fluidigm), Anti-Human IL21-159Tb (BWH CyTOF Core), Anti-Human IFNg (B27) -

165Ho (Fluidigm), Anti-Human GATA3-166Er (BWH CyTOF Core), Anti-Human IL9-172Yb 

(BWH CyTOF Core), Anti-Human Perforin (B-D48)-175Lu (Fluidigm), Anti-Human IL10-176Yb 

(BWH CyTOF Core), Anti-Human IL17A-169Tm (BWH CyTOF Core), Anti-Human Foxp3 

(PCH101)-162Dy (Fluidigm), and Anti-Human Tbet-164Dy (BWH CyTOF Core). Post-

incubation, we washed the cells in PBS and spun them at 800xg for 5 minutes. We resuspended 

the pellet in 1 ml of 4% formaldehyde prepared in CSB and incubated the cells for 10 minutes at 

r.t. on a gentle shaker, followed by another PBS wash and spin at 800xg for 5 minutes. We 

washed the pellet in 1ml of MilliQ deionized water, spun at 800xg for 6 minutes, and 

subsequently resuspended the resulting pellet in deionized water at a concentration of 700,000 

cells per ml for analysis via the CyTOF 2. We transferred the suspensions to new FACS tubes 

through a 70µm cell strainer and added MaxPar EQ Four Element Calibration Beads (Fluidigm 

#201078) at a ratio of 1:10 by volume prior to acquisition. 

 

Mass Cytometry Panel Design  

We designed an antibody panel for mass cytometry with the goal of both accurately identifying 

CD4+ effector memory T cell populations and measuring cellular heterogeneity within these 

populations. We chose markers that fell into one of five categories to generate a broadly 

informative panel: chemokine receptors, transcription factors, lineage markers, effector 

molecules, and markers of cellular activation and exhaustion (Table S1). 

 

Mass Cytometry Data Acquisition  

We analyzed samples at a concentration of 700,000 cells/ml on a Fluidigm-DVS CyTOF 2 mass 

cytometer. We added Max Par 4-Element EQ calibration beads to every sample that was run on 

the CyTOF 2, which allowed us to normalize variability in detector sensitivity for samples run in 

different batches using previously described methods188. We used staining for iridium and 
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rhodium metallointercalators to identify viable singlet events. We excluded samples where 

acquisition failed or only yielded a fraction of the input cells (< 5%). The criteria for sample 

exclusion were not set prospectively but were maintained during all data collection runs. 

As samples were processed and analyzed on different dates, we ran equal numbers of cases and 

controls each time to guard against batch effects. However, as CyTOF data are very sensitive to 

day-to-day variability, we took extra steps to pre-process and normalize data across the entire 

study.  

 

Flow Cytometry Sample Preparation  

For flow cytometry analysis of the validation and longitudinal blood cohorts and synovial 

samples, cryopreserved cells were thawed into warm RPMI/10% FBS, washed once in cold PBS, 

and stained in PBS/1% BSA with the following antibodies for 45 minutes: anti-CD27-FITC 

(TB01), anti-CXCR3-PE (CEW33D), anti-CD4-PE-Cy7 (RPA-T4), anti-ICOS-PerCP-Cy5.5 (ISA-

3), anti-CXCR5-BV421 (J252D4), anti-CD45RA-BV510 (HI100), anti-HLA-DR-BV605 (G46-6), 

anti-CD49d-BV711 (9F10), anti-PD-1-APC (EH12.2H7), anti-CD3-AlexaFluor700 (HIT3A), anti-

CD29-APC-Cy7 (TS2/16), propidium iodide. Cells were washed in cold PBS, passed through a 

70-micron filter, and data acquired on a BD FACSAria Fusion or BD Fortessa using FACSDiva 

software. Samples were analyzed in uniformly processed batches containing both cases and 

controls. 

 

Flow Cytometry Intracellular Cytokine Staining 

Effector memory CD4+ T cells were purified from cryopreserved PBMCs by magnetic negative 

selection (Miltenyi) and rested overnight in RPMI/10%FBS media. The following day, cells were 

stimulated with PMA (50ng/mL) and ionomycin (1µg/mL) for 6 hours. Brefeldin A and 

monensin (both 1:1000, eBioscience) were added for the last 5 hours. Cells were washed twice in 

cold PBS, incubated for 30 minutes with Fixable Viability Dye eFluor 780 (eBioscience), washed 
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in PBS/1%BSA, and stained with anti-CD4-BV650 (RPA-T4), anti-CD27-BV510 (TB01), anti-

HLA-DR-BV605 (G46-6), anti-CD20-APC-Cy7 (2H7), and anti-CD14-APC-Cy7 (M5E2). Cells 

were then washed and fixed and permeabilized using the eBioscience Transcription Factor 

Fix/Perm Buffer. Cells were then washed in PBS/1%BSA/0.3% saponin and incubated with anti-

IFN-γ-FITC (B27), anti-TNF-PerCp/Cy5.5 (mAb11), anti-IL-10-PE (JES3-9D7) and anti-IL-2-

PE/Cy7 (MQ1-17H12) or anti-granzyme A-AF647 (CB9) and anti-perforin-PE/Cy7 (B-D48) for 

30 minutes, washed once, filtered, and data acquired on a BD Fortessa analyzer. Gates were 

drawn to identify singlet T cells by FSC/SSC characteristics, and dead cells and any 

contaminating monocytes and B cells were excluded by gating out eFluor 780-positive, CD20+, 

and CD14+ events.  

 

Synovial Tissue Processing 

Synovial samples were acquired after removal as part of standard of care during arthroplasty 

surgery. Synovial tissue was isolated by careful dissection, minced, and digested with 100µg/mL 

LiberaseTL and 100µg/mL DNaseI (both Roche) in RPMI (Life Technologies) for 15 minutes, 

inverting every 5 minutes. Cells were passed through a 70µm cell strainer, washed, subjected to 

red blood cell lysis, and cryopreserved in Cryostor CS10 (BioLife Solutions) for batched analyses.  

 

RNA Library Preparation and Sequencing 

Seven RA case samples and six OA control samples were flow sorted into the following seven 

cellular subsets for low-input RNA-Sequencing: TCM, TN, TReg, DR+27+, DR+27-, DR-27+, 

DR-27-. We rapidly thawed the case and control samples of cryopreserved peripheral blood 

mononuclear cells, and MACS enriched the samples for CD4+ T cells (Miltenyi). We rested the 

samples overnight in complete RPMI/10% FBS. Following the rest, we prepared the samples for 

fluorescence activated cell sorting (FACS). We washed the cells once in cold PBS, and incubated 

them with eBioscience human FC Receptor Binding Inhibitor (Thermo). Subsequently, we 
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stained the samples in PBS/5% FBS for 45 minutes with the following antibodies: FITC CD27 

(Biolegend), PE CD25 (Biolegend), Pe/Cy7 CD127(IL-7Ra) (Biolegend), Brilliant Violet 510 

HLA-DR (Biolegend), Brilliant Violet 605 CD45RA (Biolegend), APC CD62L (Biolegend), Alexa 

Fluor 700 CD4 (Biolegend), APC/Cy7 CD14 (Biolegend), and APC/Cy7 CD19 (Biolegend). Post-

stain, we washed the cells in cold PBS, passed them through a 70-micron filter, and acquired the 

samples on a BD FACSAria Fusion cytometer. 1000 cells from each subset were sorted and 

collected into 5ul of TCL Lysis Buffer (Qiagen) with 1% b-me. We processed and collected the 

samples uniformly in batches containing both cases and controls, and randomized the samples 

within the plate. We prepared sequencing libraries using the Smart-Seq2 protocol. Sequenced 

libraries were pooled and sequenced with the Illumina HiSeq 2500 using 25bp paired-end 

reads. We removed one outlier with low read depth. The remaining libraries were sequenced to a 

depth of 6-19M reads.  

 

Flow Cytometry Data Analysis 

Flow cytometry data were analyzed using FlowJo 10.0.7 (TreeStar Inc.), with serial gates drawn 

to identify singlet lymphocytes by FSC/SSC characteristics. Viable memory CD4+ T cells were 

identified as propidium iodide-negative CD3+ CD4+ CD45RA- cells. We then calculated the 

frequency of various populations from the pool of memory CD4+ T cells. 

 

Gene Expression Quantification 

We quantified cDNAs on canonical chromosomes (autosomal, X, Y, and mitochondrial) in 

Ensembl release 83 with Kallisto v0.43.1 in transcripts per million (TPM). This analysis 

quantified inferred counts and length-normalized expression (TPM) of transcripts. To quantify 

gene expression, we collapsed transcripts mapping to the same HGNC genes symbol by 

summing the TPM values over. We filtered transcripts that were not sufficiently well expressed, 

omitting those that did not have at least 5 counts in at least 10 samples. This resulted in 15,234 
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well expressed genes out of 27,717 total genes. For differential expression analysis and principal 

components analysis (PCA), we used log (base 2) transformed TPM values. 

 

Principal Component Analysis 

Using the gene-level log2 TPM expression metric described above, we selected the top 500 most 

variably expressed genes for PCA, excluding genes with lower than 1 mean or 0.75 standard 

deviation expression. We used the removeBatchEffect function in the R Limma package, with 

default parameters, to regress out donor-specific contributions to gene expression. To prevent 

the absolute range of a strongly expressed gene from dominating the signal in the PCA, we 

scaled gene expression using the base R scale function on the rows of the expression matrix. 

This function centers and scales a vector by subtracting the mean and dividing by standard 

deviation. We then re-normalized the samples by centering and scaling the columns, with the 

same R function. Finally, we used prcomp in R to perform PCA on the resulting gene expression 

matrix. 

 

Correlation Analysis 

 For individual genes, we computed association of their expression with the proposed ordering 

of cell types, along the naïve to effector gradient. In this association, we modeled expression as a 

linear function of cell type, encoded as an ordinal variable, and donor, one-hot encoded as a 

categorical variable. The statistical significance of the association was estimated with the lm 

function in R, followed by adjustment using the Benjamini-Hochberg procedure. 

 

Gene Set Enrichment Analysis 

We performed gene set enrichment analysis using the R package gage directly on orderings 

defined by previous analyses. To enrich pathways from the PCA results, we used gene loadings 

for each principle component. For differential expression, we used the estimated t statistics. In 
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order to produce barcode plots for select pathways, we reanalyzed these pathways using the R 

liger package.  

 

Mixed-effects modeling of Associations of Single Cells (MASC) 

Here, we present a flexible method of finding significant associations between subset abundance 

and case-control status that we have named MASC (Mixed-effects modeling of Associations of 

Single Cells). The MASC framework has three steps: (1) stringent quality control, (2) definition 

of population clusters, and (3) association testing.  Here we assume that we have single cell 

assays each quantifying M possible markers where markers can be genes (RNA-seq) or proteins 

(cytometry). 

 

Quality control. To mitigate the influence of batch effects and spurious clusters, we first 

removed poorly recorded events and low-quality markers before further analysis. We removed 

those markers (1) that have little expression, as these markers are not informative, and (2) with 

significant batch variability. First, we concatenated samples by batch and measured the fraction 

of cells negative and positive for each marker. We then calculated the ratio of between-batch 

variance to total variance for each marker’s negative and positive populations, allowing us to 

rank and retain 20 markers that were the least variable between batches. We also removed 

markers that were either uniformly negative or positive across batches, as this indicated that the 

antibody for that marker was not binding specifically to its target. For single-cell transcriptomic 

data, an analogous step would involve removing genes with low numbers of supporting reads or 

genes whose expression varies widely between batches.   

Once low-quality markers were identified and removed, we removed events that were likely to 

be artifacts. We first removed events that had extremely high signal for a single marker: events 

that have recorded expression values at or above the 99.9th percentile for that marker are 

removed. These events were considered unlikely to be intact, viable cells. Next, a composite 
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“information content” score (eq. 1) for each event i was created in the following manner: the 

expression x for each marker M is rescaled from 0 to 1 across the entire dataset to create 

normalized expression values yi for each event i. The sum of these normalized expression values 

was used to create the event’s information content score. 

1) #$%&' = ∑ *',,
,-.
,-/  

The information content score reflects that events with little to no expression in every channel 

are less informative than events that have more recorded expression. Events with low scores 

(#$%&' < 0.05) were considered unlikely to be informative in downstream analysis and were 

removed. In addition, events that derived more than half of their information content score from 

expression in a single channel were also removed (eq. 2): 

2) #$%&' ∗ 0.5 < max
,∈.

(*',,) 

Potential explanations for these events include poorly stained cells or artifacts caused by the 

clumping of antibodies with DNA fragments. A final filtering step retained events that were 

recorded as having detectable expression in at least Mmin markers, where Mmin may vary from 

experiment to experiment based on the panel design and expected level of co-expression 

between channels. The quality control steps described here are specific for mass cytometry 

analysis and will need to be optimized for use with transcriptomic data.   

 

Clustering. After applying quality control measures to each sample, we combined data from 

cases and controls into a single dataset. It was critical to ensure that each sample contributed 

equal numbers of cells to this dataset, as otherwise the largest samples would dominate the 

analysis and confound association testing.  After sampling an equal number of cells from each 

sample, we partitioned these cells into populations using DensVM (26), which performs 

unsupervised clustering based on marker expression. We note that partitioning the data can be 

accomplished with different clustering approaches – such as SPADE or PhenoGraph for mass 
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cytometry data – or even by using traditional bivariate gating, as MASC is not dependent on any 

particular method of clustering (Figure S5) 

 

Association testing. Once all cells were assigned to a given cluster, the relationship between 

single cells and clusters was modeled using mixed-effects logistic regression to account for 

donor or technical variation (eq. 3). We modeled the age and sex of sample k as fixed effect 

covariates, whereas the donor and batch that cell i belongs to were modeled as random effects. 

The random effects variance-covariance matrix treated each sample and batch as independent 

gaussians. Each cluster was individually modeled. Note that this baseline model did not 

explicitly include any single cell expression measures. 

3) log M NG,H

/ONG,H
P = Q> + STU'V'TWUX',Y + (Z'|\) + (]'|^) 

where _',> is the odds of cell i belonging to cluster j, Q>  is the intercept for cluster j, STU'V'TWU is a 

vector of clinical covariates for the kth sample, (Z'|\) is the random effect for cell i from kth 

sample, (]'|^) is the random effect for cell i from batch m. 

To determine if any clusters were associated with case-control status, we included an additional 

covariate that indicated whether the kth sample is a case or control (eq. 4)  

4) log M NG,H

/ONG,H
P = Q> + STU'V'TWUX',Y + (Z'|\) + (]'|^) +	STW`aX',Y 

Here, _',> is the odds of cell i belonging to cluster j, Q>  is the intercept for cluster j, STU'V'TWU is a 

vector of clinical covariates for the kth sample, (Z'|\) is the random effect for cell i from kth 

sample, (]'|^) is the random effect for cell i from batch m, STW`a indicates the effect of kth 

sample’s case-control status. 

5) ; = −2 ∗ ln	(
likelihood for null model
likelihood for full model

) 
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We compared the two models using a likelihood ratio test (eq. 5) to find the test statistic D, 

which is the ratio of the likelihoods for the baseline and full models. The term D is distributed 

under the null by a c2 distribution with 1 degree of freedom, as there is only one additional 

parameter in the full model compared to the null (case-control status). We derived a p-value by 

comparing test statistic D of the likelihood ratio test to the value of the c2 distribution with 1 

degree of freedom (eq. 6), allowing us to find clusters in which case-control status significantly 

improves model fit. A significant result (p < 0.05 after multiple testing correction) indicated that 

cluster membership for a single cell is influenced by case-status after accounting for technical 

and clinical covariates. The effect size of the case-control association can be estimated by 

calculating the odds ratio from bcase. If a dataset includes multiple groups, then we can test for 

association between g groups using g-1 indicator variables. This approach allowed us to capture 

inter-individual differences between donors, as well as model the influence of technical and 

clinical covariates that might influence a cell to be included as a member of one cluster versus 

another.  

 

Mass Cytometry Data Analysis  

We analyzed 50 magnetically sorted peripheral blood samples (26 cases, 24 controls) in the 

resting condition and 52 samples (26 cases, 26 controls) in the stimulated condition by CyTOF. 

Here, we stimulated samples by incubating them with Human T-Activator CD3/CD28 

Dynabeads (ThermoFisher) at a density of 1 bead:2 cells for 24 hours. Two samples were only 

analyzed after stimulation due to low numbers of available PBMCs. We ran aliquots of a 

standard PBMC sample alongside cases and controls with each CyTOF run to allow us to 

measure batch variability directly, as these aliquots should not be biologically dissimilar. We 

then used these data to find markers that had stained poorly or varied significantly between 

batches and removed them analysis. After acquisition, each sample was gated to a CD4+, 
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CD45RO+ population using FlowJo 10.1 (TreeStar, USA) and combined into a single dataset 

before analyzing the data using MASC as previously described. We performed the data filtration 

steps requiring cells to demonstrate measurable expression (arcsinh-transformed expression > 

0) in at least 5 markers (Mmin = 5). This removed 3.0-6.0% of all events captured in each sample. 

We first removed the initial noise factor applied to all zero expression values in mass cytometry 

by subtracting 1 from expression values and setting any negative values to 0, then applied the 

inverse hyperbolic sine transform with a cofactor of 5 to the raw expression data, using the 

following equation:  * = sinhO/
ÇÉÑ	(ÖO/,Ü)

á
 

To partition the data, we first randomly selected 1000 cells from each sample and applied the t-

Distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Barnes-Hut implementation)142 

to the reduced dataset with the following parameters: perplexity = 30 and theta = 0.5. We did 

not include channels for CD4 or CD45RO in the t-SNE clustering as these markers were only 

used in gating samples to confirm the purity of CD4 memory T cell selection. We performed 

separate t-SNE projections for resting and stimulated cells. To identify high-dimensional 

populations, we used a modified version of DensVM134. DensVM performs kernel density 

estimation across the dimensionally reduced t-SNE map to build a training set, then assigns 

cells to clusters by their expression of all markers using an SVM classifier. We modified the 

DensVM code to increase the range of potential bandwidths searched during the density 

estimation step and to return the SVM model generated from the t-SNE projection.  

To create elbow plots, we ran DensVM using 25 bandwidth settings evenly spaced along the 

interval [0.61, 5] for the resting data and [0.66, 5] for the stimulated data. We normalized 

marker expression to mean 0 variance 1 in each dataset before calculating the fraction of total 

variance explained by between-cluster variance. 

Association testing for each cluster was performed using mixed-effects logistic regression 

according to the MASC method. Donor and batch were included as random-effect covariates, 

donor sex and age was included as a fixed-effect covariate, and donors were labeled as either 
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cases (RA) or controls (OA). To confirm the associations found by MASC, we conducted exact 

permutation testing in which we permuted the association between case-control status and 

samples within batches 10,000 times, measuring the fraction of cells from RA samples that 

contributed to each cluster in each permutation. This allowed us to build an empirical null for 

the case-control skew of each cluster, and we could then determine for each cluster how often a 

skew equal or greater to the observed skew occurred. We adjusted the p-values for the number 

of tests we performed (the number of clusters analyzed in each condition) using the Bonferroni 

correction.  

 

Cluster Alignment 

We aligned subsets between experiments using the following strategy: In each experiment, 

expression data was first scaled to mean zero, variance one to account for differences in 

sensitivity. We used the mean expression value for marker column to define a centroid for each 

cluster in both datasets. For a given cluster in the first dataset (query dataset), we calculated the 

Euclidean distance (eq. 7) between that cluster and cluster centroids in the second dataset 

(target dataset) across all shared markers. The cluster that is most similar to the cluster in query 

dataset is the cluster with the lowest distance in the target dataset, relative to all other clusters 

in that dataset. 

7) dist(à, â) = 	∑ ä(àY − âY)m
<
Y-/  

Here, q refers to the query cluster and t to the target cluster, while qk and tk indicate the 

normalized mean expression of marker k (out of K total markers) in clusters q and t respectively. 

 

Marker Informativeness Metric (MIM) 

We wanted to determine which markers best separated a given population from the rest of the 

data in a quantitative manner, as finding a set of population-specific markers is crucial for 

isolating the population in vivo. In order to do this, we examined the distribution of expression 
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for each marker individually in the entire dataset (Q) and the population of interest (P). We then 

grouped expression values for P and Q into 100 bins, normalized the binned vector to 1, and 

calculated the Kullback-Leibler divergence from Q to P for that marker with the following 

equation:  

;<=(@ ∥ B) = ∑ @' log
FG

IG

'-/ÜÜ
'-/   

The divergence score can be interpreted as a measure of how much the distribution of 

expression for a given marker in the entire dataset resembles the distribution of expression for 

that marker in the population of interest. Higher scores represent lower similarity of the 

marker’s expression distributions for P and Q, indicating that the expression profile of that 

marker is more specific for that population. By calculating this score for every marker, we can 

rank and identify markers that best differentiate the population of interest from the dataset. 

 

Biaxial Gating and Cluster Overlap  

To determine the concordance between biaxial gating of CD27- HLA-DR+ cells and cluster 18, 

we first selected cells that had normalized expression values of CD27 < 1 and HLA-DR >= 1. We 

then calculated an F-measure statistic between the cells selected using the CD27 and HLA-DR 

gates and each cluster identified in the resting and stimulated datasets (eq. 8). Here, precision is 

defined as the number of cells in each cluster tested that fall into the CD27- HLA-DR+ gate, 

while recall is defined as the number of cells gated as CD27- HLA-DR+ that are in each cluster. 

8) %,aW`ãåa = 2 ×
çåaT'`'éV	×	åaTWUU

çåaT'`'éV	èå	aTWUU
 

Clustering Informativeness Metric (CIM) 

We compared clustering sets that contained either 19 (FlowSOM and DensVM) or 21 

(Phenograph) clusters. We independently clustered the resting dataset with Phenograph and 

FlowSOM using the same cells and markers used to cluster the data with DensVM. We set k to 
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19 for FlowSOM clustering to match the number of clusters found by DensVM; for Phenograph, 

we used the default setting of k = 30. 

To evaluate quantify the ability of different clustering algorithms to define clusters that was 

explaining marker fluctuations, we defined an information theory-based metric to evaluate the 

relative information content captured by each set of clusters in terms of marker intensity. We 

selected this approach since it is separate from the objective functions that the clustering 

algorithms were attempting to optimize.  

First, for each cell, we normalized marker intensities so that they summed to one. Then we 

defined a null Qi representing the average normalized intensity for marker i across all cells. We 

also defined Pi,j which is the mean intensity of marker i of cells from cluster j.  Then for each 

cluster j we calculate their KL divergence for each of the M markers (eq. 9). 

9) ;<=,>?@> ∥ BC = ∑ @',> ln
FG,H

IG

.
'  

A cluster with low divergence from the average expression of markers across the entire dataset 

will capture less marker intensity information than one with a high divergence, as biologically 

valid clusters will have unique marker profiles that differ greatly from one another and from the 

average marker expression profile.  

We defined a similar metric to quantify the extent to which individual batches were accounting 

for differences in cluster composition. In this instance we calculated Pi,j which is the proportion 

of cells from cluster j that batch i contributed. We also calculate Qi which is the proportion of 

cells that batch i contributes overall to the dataset. With this definition we calculate the KL 

divergence for each of the M batches (eq. 10). 

10) ;<=,>?@∙> ∥ BC = ∑ @',> ln
FG,H

IG

.
'  
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A cluster that contains cells with low divergence from the null distribution of cells across batches 

is affected less by batch effects than one with a high divergence score, and a cluster completely 

free of batch effects should have a K-L divergence of zero.  

 

Autoencoder Clustering 

We performed clustering analysis using a deep autoencoder and a Gaussian Mixture Model 

(GMM). The autoencoder was designed with an architecture of 3 hidden layers, with depths of 8, 

2, and 8 nodes, respectively. We trained the model with no regularization and 300 epochs. The 

two modes from the middle hidden layer were then used as features to learn a GMM. The 

number of clusters was chosen a priori to match the number discovered in the DensVM analysis. 

All parameters not specific in this section were set to default values. 

 

Meta-Analysis 

We used Stouffer’s Z-score method to define a meta-analysis p-value for the significant 

expansion of CD27- HLA-DR+ cells in RA. We converted p-values from the resting mass 

cytometry and flow cytometry analyses to Z-scores, and found a meta-analysis Z-score by taking 

the sum of these scores divided by the square-root of the number of scores – which was two, in 

our case. We then derived a meta-analysis p-value from the Z-score using the standard normal 

distribution. 

 

All analyses were performed using custom scripts for R 3.4.0. We used the following packages: 

flowCore189 to read and process FCS files for further analysis, lme4190 to apply mixed-effects 

logistic regression, ggplot2191, pheatmap192 for data visualization, and cytofkit193  for the 

implementation of FlowSOM and Phenograph clustering algorithms. RNA-seq analyses were 

conducted using Kallisto167  to align reads and gage194 and liger195 to perform gene set 
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enrichment analysis. The h2o196 package and mclust197 packages were used to implement the 

autoencoder clustering method. 
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Abstract 

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), 

we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA-seq and flow 

cytometry to T cells, B cells, monocytes and fibroblasts from 51 samples of synovial tissue from 

patients with RA or osteoarthritis. Utilizing an integrated strategy based on canonical 

correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. 

Combining mass cytometry and transcriptomics together revealed cell states expanded in RA 

synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, 

ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ T peripheral helper (Tph) and T 

follicular helper (Tfh). We defined distinct subsets of CD8+ T cells characterized by a GZMK+, 

GZMB+ and GNLY+ phenotype. We mapped inflammatory mediators to their source cell 

populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts, and 

IL1B production to pro-inflammatory monocytes. These populations are potentially key 

mediators of RA pathogenesis. 
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Introduction 

Rheumatoid arthritis (RA) is an autoimmune disease affecting up to 1% of the population 

where a complex interplay between many different cell types drives chronic inflammation in the 

synovium of the joint tissue33,198,199. This inflammation leads to joint destruction, disability and 

shortened life span200. Defining key cellular subsets and their activation states in RA is a critical 

step to define new therapeutic targets for RA. CD4+ T cell subsets39,182, B cells201, 

monocytes202,203, and fibroblasts204-206 have established relevance to RA pathogenesis. Here, we 

use single cell technologies to view all of these cell types simultaneously across a large collection 

of samples from inflamed joints. We believe a global single-cell portrait of how different cell 

types work together would advance our understanding of therapeutics. 

Application of transcriptomic and cellular profiling technologies to whole synovial tissue 

has already identified specific cell populations associated with RA198,207-209. However, most 

studies have focused on a pre-selected cell type, surveyed whole tissues rather than 

disaggregated cells, or used only a single technology platform. The latest advances in single-cell 

technologies offer an opportunity to identify disease-associated cell subsets in human tissues at 

high resolution in an unbiased fashion84,106,210,211. These technologies have already been used to 

discover roles for T peripheral helper (Tph) cells105 and HLA-DR+CD27– cytotoxic T cells126 in 

RA pathogenesis. Studies using scRNA-seq has defined myeloid cell heterogeneity in human 

blood212 and identified a distinct subset of PDPN+CD34–THY1+ (THY1, also known as CD90) 

fibroblasts enriched in RA synovial tissue106,213.  

To generate high-dimensional multi-modal single-cell data from synovial tissue samples 

collected across a collaborative network of research sites, we developed a robust pipeline214 in 

the Accelerating Medicines Partnership Rheumatoid Arthritis and Lupus (AMP RA/SLE) 

consortium. We collected and disaggregated tissue samples from patients with RA and 

osteoarthritis (OA), and then subjected constituent cells to scRNA-seq, sorted-population bulk 

RNA-seq, mass cytometry, and flow cytometry. We developed a unique computational strategy 
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based on canonical correlation analysis (CCA) to integrate multi-modal transcriptomic and 

proteomic profiles at a single cell level. A unified analysis of single cells across data modalities 

can precisely define contributions of specific cell subsets to pathways relevant to RA and chronic 

inflammation. 

 

Results 

Generation of parallel mass cytometric and transcriptomic data from synovial 

tissue  

In phase 1 of AMP RA/SLE, we recruited 36 patients with RA that met the 1987 

American College of Rheumatology (ACR) classification criteria and 15 patients with OA from 10 

clinical sites over 16 months (Table S1) and obtained synovial tissues from ultrasound-guided 

biopsies or joint replacements (Methods, Figure 4-1a). We required that all tissue samples 

included had synovial lining documented by histology. Synovial tissue disaggregation yielded an 

abundance of viable cells for downstream analyses (362,190 +/- 7,687 (mean +/- SEM) cells per 

tissue). We used our validated strategy for cell sorting214 (Figure 4-1a) to isolate B cells 

(CD45+CD3-CD19+), T cells (CD45+CD3+), monocytes (CD45+CD14+), and stromal fibroblasts 

(CD45-CD31-PDPN+) (Figure S1a). We applied bulk RNA-seq to all four sorted subsets for all 

51 samples. For samples with sufficient cell yield (Methods), we also measured single-cell 

protein expression using a 34-marker mass cytometry panel (n=26, Table S2), and single-cell 

RNA expression in sorted cell populations (n=21, Figure 4-1b). 
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Overview of synovial tissue workflow and pairwise analysis of high-dimensional data 

 

Figure 4-1. a. We acquired synovial tissue, disaggregated the cells, sorted them into four gates 
representing fibroblasts (CD45-CD31-PDPN+), monocytes (CD45+CD14+), T cells (CD45+CD3+), and B 
cells (CD45+CD3-CD19+). We profiled these cells with mass cytometry, flow cytometry, sorted low-input 
bulk RNA-seq, and single-cell RNA-seq. Here, we use Servier Medical Art by Servier for the joint picture. 
b. Presence and absence of five different data types for each tissue sample. c. Schematic of each 
dataset and the shared dimensions used to analyze each of the three pairs of datasets with canonical 
correlation analysis (CCA). d. CCA finds a common mapping for two datasets. For bulk RNA-seq and 
single-cell RNA-seq, we first find a common set of g genes present in both datasets. Each bulk sample si 
gets a coefficient ai and each cell ci gets a coefficient bi. The linear combination of all samples s1...n 
arranges bulk genes along the canonical variate CVs1 and the linear combination of all cells c1...m arranges 
single-cell genes along CVc1. CCA finds the coefficients a1...n and b1...m that arrange the genes from the two 
datasets in such a way that the correlation between CVs1 and CVc1 is maximized. After CCA finds the first 
pair of canonical variates, the next pair is computed on the residuals, and so on. 
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Summary of computational data integration strategy to define cell populations 

To confidently define RA-associated cell populations, we integrated multiple data 

modalities (Figure 4-1b, c). We use bulk RNA-seq data as the reference point because it was 

available for all of the donors and most of the cell types, it had the highest dimensionality and 

least sensitive to technical artifacts (Figure 4-1b). 

Integrating scRNA-seq with bulk RNA-seq data ensures robust discovery of cell 

populations. Here, we used CCA to find linear combinations of bulk RNA-seq samples and 

scRNA-seq cells (Figure 4-1c, d) to create gene expression profiles that were maximally 

correlated. These linear combinations captured sources of shared variation between the two 

datasets and allowed us to identify individual cell populations that drive variation in the bulk 

RNA-seq data. We analyzed the scRNA-seq data by using the canonical variate coefficients for 

each cell to compute a nearest neighbor network, identifying clusters with a community 

detection algorithm, and evaluating the separation between clusters with Silhouette analysis 

(Methods, Figure S2b). 

We identified cell clusters in mass cytometry data with density-based clustering134. Next, 

we used CCA to identify linear combinations of bulk RNA-seq genes and mass cytometry cluster 

abundances that maximize correlation across patients. These canonical variates offer a way to 

visualize genes and mass cytometry clusters together. We then queried this CCA result with the 

best marker genes from scRNA-seq to establish a relationship between each scRNA-seq cluster 

and each mass cytometry cluster (Methods). We also used CCA to associate bulk gene 

expression in each sample with proportions of cells in different flow cytometry gates. 

 

Flow cytometry features define a set of RA synovia that are leukocyte-rich 

Histology of RA synovial tissues revealed heterogeneous tissue composition with variable 

lymphocyte and monocyte infiltration (Figure 4-2a, b, Figure S2c, d).  
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Distinct cellular composition in synovial tissue from OA, leukocyte-poor RA, and leukocyte-rich 
RA patients 

 
Figure 4-2. a. Histological assessment of synovial tissue derived from OA (n = 15 independent tissue 
samples), leukocyte-poor RA (n = 17 independent tissue samples), and leukocyte-rich RA (n = 19 
independent tissue samples). b. Cellular composition of major synovial cell types by flow cytometry. c. 
Synovial T cells, B cells, and monocytes by flow cytometry in samples from OA (n = 15), leukocyte-poor 
RA (n = 17), and leukocyte-rich RA (n = 19). Leukocyte-rich RA tissues were significantly higher infiltrated 
in synovial T cells (Student’s one-sided t-test P = 4x10-9, t-value = 8.92, df = 22.27) compared to 
leukocyte-poor RA and OA. Leukocyte-rich RA tissues were significantly higher infiltrated in synovial B 
cells (Student’s one-sided t-test P = 1x10-3, t-value = 3.50, df = 20.56) compared to leukocyte-poor RA 
and OA. Center value is mean. Statistical significance levels: ****P<1x10-4 and ***P<1x10-3. d. 
Quantitative histologic inflammatory scoring of both sublining cell layer and lining layer. Leukocyte-rich 
RA samples (n = 19) exhibited higher (Student’s one-sided t-test P = 1x10-3, t-value = 3.21, df = 30.66) 
Krenn inflammation scores than leukocyte-poor RA (n=15) and OA tissues (n = 10) samples. Center 
value is mean. e. Correlation between leukocyte infiltration assessed by cytometry with histologic 
inflammation score (n = 44 biologically independent samples). Student’s one-sided t-test P = 3x10-09, t-
value = 7.15, df = 46.51. f. tSNE visualization of synovial cell types in OA, leukocyte-poor RA, and 
leukocyte-rich RA by mass cytometry density plot. 
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This heterogeneity was expected, because variation in tissue immune cell infiltration reflects 

local disease activity in the source joint. Consequently, we employed a data-driven approach to 

separate samples based on flow cytometry of lymphocyte and monocyte infiltration in each 

tissue sample (Figure S1b,c). We calculated a multivariate normal distribution of these 

parameters based on OA samples as a reference, and for each RA sample we calculated the 

Mahalanobis distance from OA215. We defined the maximum OA distance (4.5) as the threshold 

for defining leukocyte-rich RA (>4.5, n=19) or leukocyte-poor RA (<4.5, n=17) samples 

(Methods, Figure S1d). Whereas leukocyte-rich RA tissues had significant infiltration of 

synovial T cells and B cells, leukocyte-poor RA tissues had cellular compositions more similar to 

OA (Figure 4-2c). Synovial monocyte abundances were similar between RA and OA (Figure 

4-2c). 

To test if our classification indicates inflammation, we assessed tissue histology and 

assigned each sample a Krenn inflammation score216. Samples we classified as leukocyte-rich RA 

had a significantly higher Krenn inflammation score than leukocyte-poor RA or OA (Figure 4-

2d). In contrast, synovial lining membrane hyperplasia was not significantly different between 

leukocyte-rich RA, leukocyte-poor RA, and OA samples (Figure 4-2d). We observed significant 

correlation between synovial leukocyte infiltration measured by flow cytometry and the 

histological Krenn inflammation score (Figure 4-2e). Mass cytometry in 26 synovial tissues 

was consistent with flow cytometry and histology. OA and leukocyte-poor RA samples were 

characterized by high abundance of fibroblasts and endothelial cells; while leukocyte-rich RA 

tissues were characterized by high abundance of CD4 T, CD8 T, and B cells (Figure 4-2f, 

Figure S3a). 

 

Single-cell RNA-seq analysis reveals distinct cell subpopulations 
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Next, we analyzed 5,265 scRNA-seq profiles passing quality control (Methods), including 1,142 

B cells, 1,844 fibroblasts, 750 monocytes, and 1,529 T cells. We used canonical variates (from 

CCA with bulk RNA-seq) to define 18 cell clusters that were independent of donor (n=21) and 

technical plate (n=24) effects (Figure 4-3a, b, Figure S2c, Figure S4a). In contrast, 

conventional PCA-based clustering led to clusters that were confounded by batch effects 

(Figure S4b). All of the clusters in the PCA-based clustering, excluding clusters confounded by 

batch, were identified in CCA-based clustering. Next, we compared expression values between 

cells in the cluster and all other cells to select cluster marker genes (Methods, Table S4). For 

selected genes, we show expression values in each cell positioned in a t-distributed Stochastic 

Neighbor Embedding (tSNE) (Figure 4-3c-f). Among fibroblasts, we identified four putative 

subpopulations (Figure 4-3c): CD34+ sublining fibroblasts (SC-F1), HLA-DRAhi sublining 

fibroblasts (SC-F2), DKK3+ sublining fibroblasts (SC-F3), and CD55+ lining fibroblasts (SC-F4). 

In monocytes (Figure 4-3d), we identified IL1B+ pro-inflammatory monocytes (SC-M1), 

NUPR1+ monocytes (SC-M2), C1QA+ monocytes (SC-M3), and interferon (IFN) activated 

monocytes (SC-M4). In T cells (Figure 4-3e), we identified three CD4+ clusters: CCR7+ T cells 

(SC-T1), FOXP3+ regulatory T cells (Treg cells) (SC-T2), and PDCD1+ Tph and T follicular helper 

(Tfh) (SC-T3); and three CD8+ clusters: GZMK+ T cells (SC-T4), GNLY+GZMB+ cytotoxic 

lymphocytes (CTLs) (SC-T5), and GZMK+GZMB+ T cells (SC-T6). Within B cells (Figure 4-3f), 

we identified four cell clusters, including naive IGHD+CD27- (SC-B1) and IGHG3+CD27+ 

memory B cells (SC-B2). We identified an autoimmune-associated B cells (ABCs) cluster (SC-

B3) with high expression of ITGAX (also known as CD11c) and a plasmablast cluster (SC-B4) 

with high expression of immunoglobulin genes and XBP1, a transcription factor for plasma cell 

differentiation217.  
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High-dimensional transcriptomic scRNA-seq clustering reveals distinct cell type subpopulations. 

 
Figure 4-3. a. 18 clusters across 5,265 cells from all cell types on a tSNE visualization. b. Cluster 
abundances across donors. c. Fibroblasts: three types of THY1+ sublining fibroblasts (SC-F1, SC-F2, and 
SC-F3) and CD55+ lining fibroblasts (SC-F4). d. Monocytes: two activated cell states of IL1B+ pro-
inflammatory (SC-M1) and IFN-activated (SC-M4) monocytes. e. T cells: CD4+ subsets: SC-T1, SC-T2, 
SC-T3, and CD8+ subsets: SC-T4, SC-T5, and SC-T6. f. B cells: HLA+ (SC-B1, SC-B2, and SC-B3) and 
plasmablasts (SC-B4). The cluster colors in c-f are consistent with (a).   
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We assessed protein fluorescence measurements of typical cell type markers, which were 

consistent with our identified scRNA-seq clusters (Figure S2e). Cell density quantified from 10 

histology samples was correlated with the lymphocyte flow cytometric cell yields, suggesting that 

samples with the most single cell measurements are those with the best yields and the most 

inflammation (Figure S5). 

 

Distinct synovial fibroblasts defined by cytokine activation and MHC II 

expression 

To identify the fibroblast subpopulations overabundant in leukocyte-rich RA synovia, we 

selected marker genes for each cluster and assessed their expression levels in bulk RNA-seq 

from sorted fibroblasts (CD45-PDPN+) from RA and OA patients. For example, genes associated 

with HLA-DRAhi (SC-F2) fibroblasts were more highly expressed in bulk RNA-seq samples from 

leukocyte-rich RA than OA (t-test p<1x10-3 for HLA-DRA, IFI30, and IL6) (Figure 4-4a). Since 

the expression profile of a bulk tissue sample is an aggregate of the expression profiles of its 

constituent cell populations, this result suggests expansion of HLA-DRAhi (SC-F2) fibroblasts in 

RA tissues. Genes associated with CD55+ fibroblasts (SC-F4) were significantly more highly 

expressed in bulk RNA-seq samples from OA than leukocyte-rich RA (t-test p<1x10-3 for 

HBEGF, CLIC5, HTRA4, and DNASE1L3) (Figure 4-4a). CD55+ fibroblasts (SC-F4) were the 

most transcriptionally distinct subset from the three THY1+ clusters (SC-F1-3), including the 

highest expression of lubricin (PRG4), suggesting that these cells represent synovial lining 

fibroblasts and THY1+ fibroblasts (SC-F1-3) represent sublining (Figure 4-4a). Next, we use 

the averaged expression level of the best marker genes for each scRNA-seq cluster (AUC>0.7) 

and tested for differential expression in bulk RNA-seq fibroblast samples from leukocyte-rich 

RA and OA synovia. The gene averages for HLA-DRAhi sublining fibroblasts (SC-F2) and CD34+ 

sublining fibroblasts (SC-F1) were higher in leukocyte-rich RA compared to OA (t-test p=2x10-6 
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and p=2x10-3, respectively), while the gene averages for CD55+ lining fibroblasts (SC-F4) were 

higher in OA than leukocyte-rich RA (t-test p=5x10-7) (Figure 4-4b).  

	  



 

 102 

 

Distinct synovial fibroblast subsets defined by cytokine activation and MHC II expression  
 

 
Figure 4-4. a. scRNA-seq analysis identified three sublining subsets, CD34+ (SC-F1), HLAhi (SC-F2), and 
DKK3+ (SC-F3) and one lining subset (SC-F4). Differential analysis between leukocyte-rich RA (n = 16) 
and OA (n = 12) bulk RNA-seq fibroblast samples shows marker genes upregulated or downregulated in 
leukocyte-rich RA. Fold changes with 95% confidence interval (CI). b. By querying the leukocyte-rich RA 
(n = 16) and OA (n = 12) fibroblast bulk RNA-seq samples, scRNA-seq cluster HLA-DRAhi (SC-F2) and 
CD34+ (SC-F1) fibroblasts are significantly overabundant (two-sided Student’s t-test P=2x10-6, t-
value=6.2, df = 23.91 and P=2x10-3, t-value = 3.20, df = 25.41, respectively) in leukocyte-rich RA relative 
to OA. Lining fibroblasts (SC-F4) are overabundant (two-sided Student’s t-test P=5x10-7, t-value=-5.31, df 
=21.97) in OA samples. Fold changes with 95% CI. c. Pathway enrichment analysis for each cluster. 
Two-sided Kolmogorov-Smirnov test with 105 permutations; Benjamini-Hochberg FDR is shown. d-e. 
Identified subpopulations from fibroblasts (n = 25,161) and disease status from 6 leukocyte-rich RA, 9 
leukocyte-poor RA, and 8 OA by mass cytometry on the same gating with scRNA-seq. f-g. Normalized 
intensity of distinct protein markers shown in tSNE visualization and averaged for each cluster heatmap. 
h. CCA projections of mass cytometry clusters and bulk RNA-seq genes. First two canonical variates 
(CVs) separated genes upregulated in leukocyte-rich RA from genes upregulated in OA. HLAhi genes are 
highly associated with THY1+CD34-HLA-DRhi by mass cytometry. i. Integration of mass cytometry clusters 
with scRNA-seq clusters based on the top markers (AUC > 0.7) for each scRNA-seq cluster using top 10 
canonical variates in the low-dimensional CCA space. We computed the spearman correlation between 
each pair of scRNA-seq cluster and mass cytometry cluster in the CCA space and performed permutation 
test 104 times. Z-score is calculated based on permutation p-value. We observed HLAhigh sublining 
fibroblasts by scRNA-seq are strongly correlated with THY1+CD34-HLA-DRhi fibroblasts by mass 
cytometry. 
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Consistent with the role of synovial fibroblasts in matrix remodeling, the sublining 

fibroblast subsets (SC-F1-3) expressed genes encoding extracellular matrix constituents (Figure 

4-4c). HLA-DRAhi sublining fibroblasts (SC-F2) expressed genes related to MHC class II 

presentation and the interferon gamma-mediated signaling pathway (IFI30) (Figure 4-4a,c), 

suggesting upregulation of MHC class II in response to interferon-gamma signaling in these 

cells. We identified a novel sublining fibroblast subtype (SC-F3) that is characterized by high 

expression of DKK3, CADM1 and COL8A2 (Figure 4-4a). 

To independently confirm the presence of four fibroblast subpopulations discovered by 

scRNA-seq, we analyzed CD45-PDPN+ cells in mass cytometry data, and found eight putative 

cell clusters with differential protein levels of THY1, HLA-DR, CD34, and Cadherin-11 without 

obvious batch effects (Figure 4-4d-g, Figure S3b). CCA revealed that greater abundance of 

THY1+CD34-HLA-DRhi fibroblasts measured by mass cytometry is associated with higher 

expression of IL6, CXCL12, and HLA-DRA in bulk RNA-seq of the same samples, suggesting 

these cells are in an active cytokine-producing state (Figure 4-4h). CCA allowed us to place 

mass cytometry clusters in the same space as bulk RNA-seq genes, so we could query the 

positions of scRNA-seq genes within this space to find the correspondence between scRNA-seq 

clusters and mass cytometry clusters (Figure 4-4i, Methods). We found HLA-DRAhi sublining 

fibroblasts (SC-F2) correspond to THY1+CD34-HLA-DRhi fibroblasts (z-score=2.8), and CD34+ 

sublining fibroblasts (SC-F1) correspond to THY1+CD34+HLA-DRlo fibroblasts (z-score=2.7) 

(Table 4-1). Consistent with differential expression analysis of bulk RNA-seq, we found that 

THY1+CD34-HLA-DRhi cells in the mass cytometry data were overabundant in leukocyte-rich RA 

relative to leukocyte-poor RA and OA controls (36% versus 2% of fibroblasts, MASC OR = 33.8 

(95% CI: 11.7-113.1), one-sided MASC p=1.9x10-5) (Table 4-1). 
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Connection between cell populations determined by mass cytometry and scRNA-seq clusters and 
disease associations 

 
Table 4-1. Bold mass cytometry clusters are significantly enriched in leukocyte-rich RA (one-sided 
Benjamini-Hochberg FDR q value < 0.05). Two significant digits are given to the one-sided F-tests 
conducted on nested models with MASC. 95% confidence interval (CI) for the odds ratio (OR) is given for 
each mass cytometry cluster. Where possible, we have identified the most similar scRNA-seq clusters for 
each cluster found by mass cytometry. The mass cytometry analysis is performed on downsampled 
datasets of 25,161 fibroblasts from 23 patients, 15,298 monocytes from 26 patients, 19,985 T cells from 
26 patients, and 8,179 B cells from 23 patients.  
  leukocyte-poor leukocyte-rich  One-sided leukocyte-rich   

scRNA-seq cluster mass cytometry cluster RA and OA RA MASC p value OR (CI)  
 THY1- Cadherin-11- 21% 4% 1.00 0.04 (0-0.2)  
Lining (SC-F4) THY1- Cadherin-11+ 18% 2% 1.00 0.1 (0-0.3)  
 THY1- CD34+ HLA-DRhi 7% 3% 0.87 0.5 (0.3-1.2)  
 THY1- CD34- HLA-DRhi 17% 15% 0.48 1.2 (0.3-4.4)  
HLAhi sublining (SC-F2) THY1+ CD34- HLA-DRhi 2% 36% 1.9x10-5 33.8 (11.7-113.1)  
DKK3+ sublining (SC-F3) THY1+ CD34- HLA-DRlow 16% 15% 0.66 0.8 (0.3-1.8)  
CD34+ sublining (SC-F1) THY1+ CD34+ HLA-DRlow 18% 4% 1.00 0.2 (0.1-0.4)  
 THY1+ CD34+ HLA-DRhi 2% 21% 1.6x10-4 25.5 (7.5-101.8)  
NUPR1+ (SC-M2) CD11c- 30% 4% 1.00 0.1 (0-0.4)  
IL1B+ (SC-M1), IFN-activated (SC-M4) CD11c+ CCR2+ 34% 40% 0.23 1.6 (0.7-3.6)  
 CD11c+ CD38- 13% 2% 1.00 0.1 (0-0.3)  
 CD11c+ CD38- CD64+ 13% 3% 0.93 0.3 (0.1-1)  
IL1B+ (SC-M1), IFN-activated (SC-M4),  
C1QA+ (SC-M3)  

CD11c+ CD38+  15% 51% 6.7x10-5 7.8 (3.6-17.2)  

 CD4- CD8- 15% 9% 0.95 0.6 (0.3-1)  
CCR7+(SC-T1) CD4+ CCR2+ 26% 13% 1.00 0.4 (0.2-0.7)  
 CD4+ HLA-DR+ 6% 2% 0.83 0.7 (0.2-4.1)  
 CD4+ PD-1+ ICOS- 13% 12% 0.81 0.9 (0.5-1.6)  
Tph and Tfh (SC-T3) CD4+ PD-1+ ICOS+ 11% 25% 2.7x10-4 3.0 (1.7-5.2)  
 CD8+ PD-1- HLA-DR- 14% 9% 0.76 0.7 (0.3-1.5)  
GZMK+GZMB+(SC-T6), GZMK+ (SC-T4),  
CTLs (SC-T5) 

CD8+ PD-1- HLA-DR+ 2% 1% 0.64 0.9 (0.4-2.2)  

 CD8+ PD-1+ HLA-DR- 13% 14% 0.40 1.1 (0.6-1.9)  
Tph and Tfh (SC-T3) CD8+ PD-1+ HLA-DR+ 1% 15% 9.2x10-5 11.8 (4.9-34.2)  
plasmablasts (SC-B4) CD38++ CD20- IgM- IgD- 6% 12% 0.01 3.3 (1.2-10.5)  
 CD38++ CD20- IgM+ HLA-DR+ 1% 3% 0.01 6.9 (1.3-83.1)  
Memory B cells (SC-B2) IgM- IgD- HLA-DR-  27% 2% 1.00 0.1 (0-0.3)  
 CD38+ HLA-DR++ CD20- CD11c+ 19% 6% 0.56 0.9 (0.1-6.7)  
ABCs (SC-B3) IgM- IgD- HLA-DR++ CD20+ CD11c+ 4% 12% 2.7x10-3 5.7 (1.8-22.3)  
 IgM- IgD- HLA-DR+ 32% 20% 0.98 0.4 (0.2-1)  
 IgA+ IgM- IgD- 5% 4% 0.68 0.9 (0.5-1.6)  
Naïve B cells (SC-B1) IgM+ IgD- 22% 11% 0.97 0.5 (0.2-1)  
 IgM+ IgD+ CD11c- 12% 26% 0.02 4.0 (1.3-12.0)  
 IgM+ IgD+ CD11c+ 4% 7% 0.14 2.2 (0.74 - 7.7)  
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To validate that the protein surface markers from mass cytometry were capturing the 

same transcriptional populations from scRNA-seq, we isolated fibroblasts from 10 synovial 

tissue samples based on surface protein levels of THY1 and HLA-DR and applied bulk RNA-seq 

(Figure S6a). We trained a linear discriminant analysis (LDA) classifier on fibroblast scRNA-

seq data and used it to determine the most similar scRNA-seq cluster for each bulk RNA-seq 

sample. The sorted THY1+HLA-DR+ fibroblast population was similar to THY1+HLA-DRAhi (SC-

F2) and the THY1- HLA-DR- population was similar to THY1- (SC-F4) (Figure S7a-d). Genes 

upregulated in the sorted THY1+HLA-DR+ fibroblasts included the interleukin IL6 and the 

chemokine CXCL12, consistent with the scRNA-seq data. 

 

Activation states define heterogeneity among synovial monocytes 

We identified four transcriptionally distinct monocyte subsets in the scRNA-seq data: 

IL1B+ pro-inflammatory monocytes (SC-M1), NUPR1+ monocytes (SC-M2), C1QA+ monocytes 

(SC-M3) and IFN-activated SPP1+ monocytes (SC-M4) (Figure 4-5a). In bulk RNA-seq 

monocyte samples from leukocyte-rich RA and OA donors, we found that genes associated with 

IL1B+ monocytes (SC-M1), including NR4A2, HBEGF, PLAUR and the IFN-activated gene 

IFITM3 were significantly upregulated in leukocyte-rich RA samples (t-test p<1x10-4). In 

contrast, marker genes associated with NUPR1+ monocytes (SC-M2) were downregulated in 

leukocyte-rich RA relative to OA (Figure 4-5a). Next, we took the average of the top marker 

genes (AUC>0.7) for each monocyte scRNA-seq subset and tested for differential expression of 

these averages in the bulk RA versus OA RNA-seq data. This analysis suggests that leukocyte-

rich RA synovia have a greater abundance of IL1B+ monocytes (t-test p=6x10-5) and IFN-

activated monocytes (t-test p=6x10-3), but lower abundance of NUPR1+ monocytes (t-test 

p=2x10-5) (Figure 4-5b). These data suggest that cytokine activation drives expansion of 

unique monocyte populations in active RA synovia. 



 

 106 

Unique activation states define synovial monocytes heterogeneity 
  

 
Figure 4-5. a. scRNA-seq analysis identified four subsets: IL1B+ pro-inflammatory monocytes (SC-M1), 
NUPR1+ monocytes (SC-M2) with a mixture of leukocyte-poor RA and OA cells, C1QA+ (SC-M3), and 
IFN-activated monocytes (SC-M4). Differential analysis by bulk RNA-seq on leukocyte-rich RA samples (n 
= 17) and OA samples (n = 13) revealed upregulation/downregulation of cluster marker genes. Effect 
sizes with 95% CI are given. b. By querying the bulk RNA-seq, we found scRNA-seq cluster IL1B+ pro-
inflammatory monocytes (two-sided Student’s t-test P=6x10-5, t-value=4.56, df =26.33) and IFN-activated 
monocytes (two-sided Student’s t-test P=6x10-3, t-value=3.28, df =23.68) are upregulated in leukocyte-
rich RA (n = 17) compared to OA (n = 13), while SC-M2 is depleted (two-sided Student’s t-test P=2x10-5, 
t-value=-5.62, df=26.81) in leukocyte-rich RA. Error bars indicate mean and 95% CI. c. Pathway 
enrichment analysis indicates the potential pathways for each subset. Two-sided Kolmogorov-Smirnov 
test with 105 times permutation was performed; Benjamini-Hochberg was used to control the FDR of 
multiple tests. The standard names for the immunological gene sets from up to bottom are: Genes down-
regulated in neutrophils versus monocytes (GSE22886); Genes down-regulated in healthy myeloid cells 
versus SLE myeloid cells (GSE10325); Genes down-regulated in control microglia cells versus those 24 h 
after stimulation with IFNG (GSE1432); Genes down-regulated in unstimulated macrophage cells versus 
macrophage cells stimulated with LPS (GSE14769); Genes up-regulated monocytes treated with LPS 
versus monocytes treated with control IgG (GSE9988); Genes up-regulated in monocytes versus myeloid 
dendritic cells (mDC) (GSE29618); Genes up-regulated in monocytes versus plasmacytoid dendritic cells 
(pDC) (GSE29618). d. Detection of pro-inflammatory IL-1β in inflamed synovium by multicolor 
immunofluorescent staining with antibodies CD14 (red), IL-1β (green), and counterstained with DAPI 
(blue) identified CD14+IL-1β+ cells (white arrow). The experiment was repeated > 5 times with staining of 
6 independent leukocyte-rich RA samples with similar results. Image was acquired at 200 magnification. 
Scale bar is 50 μm. e-f. Identified subpopulations from monocytes (n = 15,298) and disease status from 6 
leukocyte-rich RA, 9 leukocyte-poor RA, and 11 OA by mass cytometry on the same gating with scRNA-
seq. g-h. Normalized intensity of distinct protein markers by tSNE visualization and averaged for each 
cluster in heatmap. i. Integration of identified mass cytometry clusters with bulk RNA-seq reveals genes 
that are associated with CD11c+CD38+ and CD11c+CCR2+, like IFITM3, CD38, HBEGF, ATF3, and 
HLA+ genes. j. Integration of mass cytometry clusters and scRNA-seq clusters revealed that  
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Figure 4-5 (continued). CD11c+CD38+ by mass cytometry are significantly associated with IL1B+ pro-
inflammatory (SC-M1) monocytes.  
 

With GSEA, we tested MSigDB immunologic gene sets and found IL1B+ monocytes (SC-

M1) have relatively high expression levels of genes defining the LPS response in monocytes and 

macrophages (Figure 4-5b). This suggests IL1B+ monocytes (SC-M1) are similar to TLR-

activated IL-1-producing pro-inflammatory monocytes. Among Gene Ontology gene sets, we 

found SPP1+ monocytes (SC-M4) express genes induced by type I and II IFN (Figure S8a), 

including IFITM3 and IFI6 (Figure 4-5a). The transcriptional profiles of monocytes in SC-M2 

and SC-M3 do not align with known activation states, possibly indicating that these clusters 

represent cell phenotypes tailored to the unique homeostatic needs of the synovium. 

Immunofluorescence staining confirmed the presence of CD14 and IL-1β positive cells in 6 

tissue samples, consistent with an enrichment of the IL1B+ pro-inflammatory monocytes (SC-

M1) phenotype in RA synovium (Figure 4-5d, Figure S9a,b). 

In the mass cytometry data, we identified five CD14+ monocyte clusters (Figure 4-5e-h, 

Figure S3c). Using CCA to integrate mass cytometry and bulk RNA-seq data, we found that 

samples with a greater abundance of CD11c+CCR2+ and CD11c+CD38+ using mass cytometry also 

had a higher expression of IFITM3, PLAUR, CD38, and HLA genes (Figure 5i). This was 

consistent with a correspondence between the CD11c+CD38+ mass cytometry cluster and the 

activated monocyte scRNA-seq cluster IL1B+ (SC-M1) and SPP1+ (SC-M4) (z-score=2.3 and 2.3, 

respectively) (Figure 4-5j, Table 4-1). Supporting this finding, we confirmed that 

CD11c+CD38+ monocytes are significantly expanded in leukocyte-rich RA (OR = 7.8 (95% CI: 

3.6-17.2), one-sided MASC p=6.7x10-5) (Table 4-1). Conversely, NUPR1+ monocytes (SC-M2) 

correspond to CD11c- monocytes in mass cytometry and are inversely correlated with 

inflammatory monocyte populations (z-score=2.7) (Figure 4-5j, Table 4-1). 

To confirm that putative populations from mass cytometry correspond to those 

identified by scRNA-seq clusters, we sorted CD14+ monocytes from 4 synovial tissue samples 
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using CD11c and CD38 protein markers and assayed them with RNA-seq (Figure S6c). 

Importantly, we found that CD14+ synovial cells had high expression of both CD11c and CD38 

particularly in the RA samples. The CD14+CD11c+++CD38+++ and CD14+CD11c+CD38- sorted cells 

were consistent with IL1B+ pro-inflammatory (SC-M1) and NUPR1+ (SC-M2) cells, respectively 

(Figure S7e-h). These data, alongside the mass cytometry data, support the findings of greater 

abundance of IL1B+ pro-inflammatory (SC-M1) monocytes and lower abundance of NUPR1+ 

(SC-M2) monocytes in leukocyte-rich RA samples. 

  

Heterogeneity in synovial CD4 and CD8 T cells defined by effector functions 

We found three CD4+ and three CD8+ T cell subsets in the scRNA-seq data (Figure 4-

6a). CCR7+ T cells (SC-T1) expressed genes in the MSigDB immunologic gene set for central 

memory T cells (Figure 4-6a, c). The two other CD4+ populations, FOXP3+ Treg cells and 

PDCD1+ Tph and Tfh cells, were marked by high expression of FOXP3 (SC-T2) and CXCL13 (SC-

T3) by examining differentially expressed genes between these two clusters18 (Figure S8c). 

CXCL13, a chemokine expressed by Tph cells, was upregulated in bulk-sorted T cells 

(CD45+CD14-CD3+) from leukocyte-rich RA compared to OA (t-test p=1.2x10-4) (Figure 4-6a). 

We found that the average of marker genes for Tph and Tfh cells (SC-T3) (AUC>0.7) was higher 

in leukocyte-rich RA than OA samples (t-test p=0.01) (Figure 4-6b), suggesting greater 

abundance of Tph and activated T cells in RA than OA. We identified three CD8 T cell subsets 

characterized by distinct expression patterns of effector molecules GZMK, GZMB, GZMA and 

GNLY (Figure 4-6a). We defined these populations as GZMK+ (SC-T4), GNLY+GZMB+ 

cytotoxic T lymphocytes (CTLs) (SC-T5), and GZMK+GZMB+ T cells (SC-T6). GZMK+GZMB+ T 

cells (SC-T6) also expressed HLA-DPA1 and HLA-DRB1, and other genes suggestive of an 

effector phenotype (Figure 4-6a, c). 
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Synovial T cells display heterogeneous CD4 and CD8 T cell subpopulations in RA synovium 

 

 
Figure 4-6. a. scRNA-seq analysis identified three CD4+ subsets: CCR7+ (SC-T1), Treg cells (SC-T2), and 
Tph and Tfh (SC-T3); and three CD8+ subsets: GZMK+ (SC-T4), CTLs (SC-T5), and GZMK+GZMB+ (SC-
T6). Differential expression analysis on leukocyte-rich RA (n = 18) comparing with OA (n = 13) on sorted 
T cell bulk RNA-seq samples revealed that CXCL13 is most significantly enriched in leukocyte-rich RA 
compared to OA. Effect sizes with 95% CI are given. b. Disease association of scRNA-seq clusters by 
aggregating top markers (AUC>0.7) by comparing leukocyte-rich RA (n = 18) with OA (n = 13)  using bulk 
RNA-seq. Tph and Tfh cells (SC-T4) are upregulated (two-sided Student’s t-test p=0.01, t-value=2.73, df 
=29.00) in leukocyte-rich RA. Error bars indicate mean and 95% CI. c. Pathway analysis based on 
immunologic gene set enrichment indicates the potential enriched T cell states pathways. Two-sided 
Kolmogorov-Smirnov test with 105 times permutation was performed; Benjamini-Hochberg was used to 
control the FDR of multiple tests. The brief description of the standard names from up to bottom are: 
Genes up-regulated in CD4 high cells from thymus: Treg versus T conv (GSE42021); Genes up-regulated 
in comparison of effector CD8 T cells versus memory CD8 T cells (GOLDRATH); Genes down-regulated 
in comparison of effector memory T cells versus central memory T cells from peripheral blood 
mononuclear cells (PBMC) (GSE11057); Genes up-regulated in comparison of effective memory CD4 T 
cells versus Th1 cells (GSE3982); Genes up-regulated in comparison of T follicular helper (Tfh) cells 
versus Th17 cells (GSE11924). d. Detection of CD3+CD8+IFNγ+ (white arrow) in inflamed RA synovium 
by multicolor immunofluorescent staining with antibodies CD3 (green), CD8 (red), IFNγ (white), and 
counterstained with DAPI (blue). The experiment was repeated > 5 times with staining of 6 independent 
leukocyte-rich RA samples with similar results. Image was acquired at 200 magnification. Scale bar is 50 
μm. e-f. Identified subpopulations from T cells (n = 19,985) and disease status from 6 leukocyte-rich RA, 
9 leukocyte-poor RA, and 11 OA by mass cytometry. g-h. Distinct patterns of protein markers by tSNE 
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Figure 4-6 (continued). and heatmap that define these clusters. i. Integration of identified mass cytometry 
clusters with bulk RNA-seq using CCA reveals bulk genes that are associated with CD4+PD-1+ICOS+ and 
CD8+PD-1-HLA-DR+ by mass cytometry. j. Integration of mass cytometry clusters with scRNA-seq 
clusters on the top markers (AUC>0.7) for each scRNA-seq cluster in the top 10 canonical variates. Z-
score based on permutation test reveals that CD4+PD-1+ICOS+ and CD8+PD-1+HLA-DR+ by mass 
cytometry are highly associated with Tph and Tfh (SC-T3) by scRNA-seq; CD8+PD-1-HLA-DR+ T cells by 
mass cytometry are highly associated with CD8+ T cells (SC-T4, SC-T5, and SC-T6). 

 
To confirm these findings, we applied intracellular staining to tissues from RA samples 

and RNA-seq to sorted CD8 T cells. Intracellular staining of GZMK and GZMB proteins in 

disaggregated tissue samples from patients with RA revealed that the majority of CD8 T cells in 

synovial tissue express GZMK (Figure S10a). Furthermore, we found that most HLA-DR+ CD8 

T cells express both GZMB and GZMK by intracellular protein staining (Figure S10b). In a 

comparison of 7 synovial tissue samples, CD8 T cells had higher proportion of IFNê+ cells than 

CD4 T cells from the same sample (Figure S10c,d). We also applied immunofluorescence to 6 

synovial tissue samples and found that IFNê+CD3+CD8+ T cells were more frequent in RA than 

OA (Figure 4-6d, Figure S9c,d). Overall, these results closely mirror the findings from the 

scRNA-seq clusters. 

Using mass cytometry, we identified nine putative T cell clusters among the synovial T 

cells (CD45+CD14-CD3+) (Figure 4-6e-h, Figure S3d). By integrating bulk RNA-seq with 

mass cytometry cluster abundances, we found that higher gene expression of CXCL13 and 

inhibitory receptors TIGIT and CTLA4 was associated with greater abundance of the 

CD4+PD-1+ICOS+ mass cytometry cluster. Greater abundance of CD8+ PD-1-HLA-DR+ cells was 

associated with greater expression of IFNG (Figure 4-6i). We found correspondence between 

Tph and Tfh cells (SC-T3) and CD4+PD-1+ICOS+ T cells (z-score = 3.4). CD8+ subsets including 

GZMK+GZMB+ (SC-T6), CTLs (SC-T5), and GZMK+ (SC-T4) tracked with CD8+PD-1-HLA-DR+ T 

cells by mass cytometry (Figure 4-6j, Table 4-1). In addition, CD4+PD-1+ICOS+ cells were 

significantly overabundant in leukocyte-rich RA (MASC OR = 3 (95% CI: 1.7-5.2), one-sided 

MASC p=2.7x10-4) (Table 4-1).  
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Autoimmune-associated B cells expanded in RA synovium by single-cell RNA-seq 

We identified four synovial B cell clusters with scRNA-seq: naive B cells (SC-B1), 

memory B cells (SC-B2), ITGAX+ ABC cells (SC-B3), and plasmablasts (SC-B4) (Figure 4-7a). 

GSEA with Gene Ontology pathways suggested that SC-B1, SC-B2, and SC-B3 clusters represent 

activated B cells (Figure S8b). GSEA with MSigDB immunological gene sets revealed that SC-

B1 cells express naive B cell genes, while SC-B2 and SC-B3 cells express IgM and IgG memory B 

cell genes (Figure 4-7b). SC-B3 cells express high levels of ITGAX and TBX21 (T-bet), which 

are markers of autoimmunity-associated B cells (Figure 4-3f and Figure 4-7a)218,219, as well as 

markers of recently activated B cells including ACTB220. High expression of AICDA is consistent 

with the recently reported transcriptomic analysis of CD11c+ B cells from SLE peripheral 

blood221. Interferon stimulated genes (GBP1 and ISG15) are also expressed in ABCs (SC-B3) and 

upregulated in leukocyte-rich RA (Figure 4-7a). While ABCs (SC-B3) constitute a relatively 

small proportion of all B cells, they are almost exclusively derived from two patients with 

leukocyte-rich RA (Figure 4-3b). To confirm the presence of ABCs in human tissues, we 

applied immunofluorescence staining to 6 synovial tissue samples. RA synovium had increased 

numbers of CD20+T-bet+ CD11c+ B cells compared to OA synovium. Specifically, we observed 

ABC cells in tissue sections from the same inflamed tissue samples that had a high proportion of 

ABCs by scRNA-seq analysis (Figure 4-7c, Figure S9e, f). 
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Synovial B cells display heterogeneous subpopulations in RA synovium 

 

Figure 4-7. a. scRNA-seq analysis identified naive B cells (SC-B1), memory B cells (SC-B2), 
autoimmune-associated B cells (ABCs) (SC-B3), and plasmablasts (SC-B4). Differential expression 
analysis is given by comparing leukocyte-rich RA (n = 16) with OA (n = 7) using bulk RNA-seq B cell 
samples. Effect size with 95% CI are given. b. Pathway enrichment analysis using immunologic gene sets 
indicates the distinct enriched pathways for each scRNA-seq cluster. Two-sided Kolmogorov-Smirnov test 
with 105 times permutation was performed; Benjamini-Hochberg was used to control the FDR of multiple 
tests. The standard names for the immunological gene sets from up to bottom are: Genes up-regulated in 
plasma cells versus memory B cells (GSE12366); Genes up-regulated in comparison of B cells versus 
plasmacytoid dendritic cells (pDC) (GSE29618); Genes up-regulated in B lymphocytes: naive versus 
plasmablasts (GSE42724); Genes up-regulated in B lymphocytes: human germinal center light zone 
versus dark zone (GSE38697); Genes up-regulated in comparison of memory IgM B cells versus plasma 
cells from bone marrow and blood (GSE22886); Genes up-regulated in comparison of memory IGG and 
IGA B cells versus plasma cells from bone marrow and blood (GSE22886). c. Detection of CD20+T-
bet+CD11c+ (white arrow) in inflamed synovium by multicolor immunofluorescence. Immunofluorescent 
staining with antibodies CD20 (red), CD11c (white), T-bet (green), and counterstained with DAPI (blue). 
The experiment was repeated > 5 times with staining of 6 independent leukocyte-rich RA samples with 
similar results. Image was acquired at 200 magnification. Scale bar is 50 μm. d-e. Identified 
subpopulations of B cells (n = 8,179) and disease status from 6 leukocyte-rich RA, 9 leukocyte-poor RA, 
and 8 OA by mass cytometry. f-g. Distinct expression patterns of protein markers by tSNE and averaged 
for each cluster in heatmap. h. Integrating mass cytometry clusters with bulk RNA-seq data using CCA 
shows that CD38+CD20-Ig- (plasmablasts) population is highly associated with gene expression of plasma 
cells makers, like XBP1. i. Integration of mass cytometry clusters with scRNA-seq clusters suggested that 
CD38++CD20-IgM+HLA-DR+ and CD38++CD20-IgM-IgD- are significantly associated with plasmablast (SC-
B4); IgM-IgD-HLA-DR++CD20+CD11c+ B cells are associated with ABCs (SC-B3). 
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We identified 10 putative B cell clusters in the mass cytometry data (CD45+CD3-CD14-

CD19+) (Figure 4-7d-g, Figure S3e). CCA analysis showed that samples with higher gene 

expression of CD38, MZB1, and plasma cell differentiation factor XBP1 had greater abundance 

of CD38++CD20-IgM-IgD- plasmablasts (Figure 4-7h). Plasmablasts (SC-B4) corresponded 

with CD38++CD20-IgM-IgD- B cells (z-score=2.7) (Figure 4-7i, Table 4-1). ABCs (SC-B3) 

corresponded with the IgM- IgD- HLA-DR++ CD20+ CD11c+ mass cytometry cluster (z-score=1.6), 

which is significantly overabundant in leukocyte-rich RA (OR = 5.7 (95% CI: 1.8-22.3), one-

sided MASC p=2.7x10-3) (Figure 4-7i, Table 4-1). Mass cytometry analysis further identified 

three putative subsets within CD11c+ cells: IgM-IgD-HLA-DR++CD20+CD11c+, CD38+HLA-

DR++CD20-CD11c+, and IgM+IgD+CD11c+, which is suggestive of additional heterogeneity within 

ABCs.  

To demonstrate that CD19+CD11c+ cells by surface protein markers correspond to SC-B3 

(ABCs), we flow-sorted CD19+CD11c+ cells from an independent cohort of 6 RA synovial samples 

and applied RNA-seq (Figure S6b). We show that these RNA-seq profiles are most consistent 

with ABC cells (Figure S7i-k). In these sorted samples, we found more putative marker genes 

(e.g. ZEB2 and CIITA) and interferon-induced genes (IFITM3 and IFI27) for the ABC 

population (Figure S7l). 

  

Inflammatory pathways and effector modules revealed by global single cell 

profiling 

We used bulk and single cell transcriptomes of sorted synovial cells to examine 

pathologic molecular signal pathways. First, principal component analysis (PCA) on post-QC OA 

and RA bulk RNA-seq samples (Figure S11a,b) showed that cell type accounted for most of the 

data variance. Each cell type expressed specific marker genes, PDGFRA for fibroblasts, C1QA for 

monocytes, CD3D for T cells, and CD19 for B cells (Figure S11c). Within each cell type, PCA 
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showed that leukocyte-rich RA samples separated from OA and leukocyte-poor RA samples 

(Figure S11d-g). Differential gene expression analysis between leukocyte-rich RA and OA 

(FC>2 and FDR<0.01) revealed genes upregulated in leukocyte-rich RA tissues: 173 in 

fibroblasts, 159 in monocytes, 10 in T cells, and 5 in B cells. To define the pathways relevant to 

leukocyte-rich RA, we used GSEA weighted by gene effect sizes on Gene Ontology pathways and 

identified type I interferon response and inflammatory response (monocytes and fibroblasts) 

(Figure S11h-i), Fc receptor signaling (monocytes), NF-kappa B signaling (fibroblasts), and 

interferon gamma (T cells) (Figure 4-8a). Leukocyte-rich RA samples had significantly higher 

expression of some genes in fibroblasts and monocytes: inflammatory response genes (PTGS2, 

PTGER3, and ICAM1), interferon response genes (IFIT2, RSAD2, STAT1, and XAF1), and 

chemokine or cytokine genes (CCL2 and CXCL9) (Figure 4-8b), consistent with a coordinated 

chemotactic response to interferon activation. T cells had upregulation of interferon regulatory 

factors (IRFs), including IRF7 and IRF9, and monocytes had upregulation of IRF7, IRF8 and 

IRF9. Taken together, pathway analysis suggests crosstalk between immune and stromal cells in 

leukocyte-rich RA synovia. Inflammatory response genes upregulated in leukocyte-rich RA had 

comparable expression levels between leukocyte-poor RA and OA synovial cells (Figure 4-8b) 
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Transcriptomic profiling of synovial cells reveals upregulation of inflammatory pathways in RA 
synovium 

 

 
Figure 4-8. a. Pathway enrichment using bulk RNA-seq identified shared and unique inflammatory 
response pathways for each cell type. Two-sided Kolmogorov-Smirnov test with 105 permutations was 
performed on 18 leukocyte-rich RA, 17 leukocyte-poor RA, and 14 OA. b. Bulk RNA-seq profiling of 
genes obtained from the significantly enriched pathways from (a) shows the averaged gene expression 
from each group (18 leukocyte-rich RA, 17 leukocyte-poor RA, and 14 OA) normalized across all cell type 
samples. c. scRNA-seq profiling resolved that inflammatory cytokines/chemokines, interferon responsive, 
and inflammatory responsive genes were driven by a global upregulation within a synovial cell type or 
discrete cell states. 
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Next, we asked whether inflammatory cytokines upregulated in leukocyte-rich RA are 

driven by global upregulation within a single synovial cell type, or specific upregulation within a 

discrete cell subset defined by scRNA-seq. Whereas TNF was produced at a high level by 

multiple monocyte, B cell and T cell populations; IL6 expression was restricted to HLA-DRAhi 

sublining fibroblasts (SC-F2) and a subset of B cells (SC-B1) (Figure 4-8c); CD8 T cells, rather 

than CD4 T cells, were the dominant source of IFNG transcription in leukocyte-rich synovia.  

We also observed cell subset-specific responses to inflammatory pathways. Toll-like 

receptor signaling pathway was enriched in B cells and monocytes in leukocyte-rich RA tissues 

(Figure 4-8a). At the single cell level, we observed that TLR10 was only expressed by activated 

B cells, indicating that TLR10 has a functional role within the B cell lineage. In contrast, TLR8 

was elevated in all RA monocyte subsets. The hematopoietic cell-specific transcription factor 

IRF8 was expressed in a significant fraction of monocytes and B cells that cooperatively regulate 

differentiation of monocytes and activated B cells in RA synovium. SLAMF7 is highly expressed 

by pro-inflammatory monocytes (SC-M1), IFN-activated monocytes (SC-M4), CD8 T cells, and 

plasmablasts (SC-B4). 

Furthermore, mass cytometry analysis across all identified cell clusters revealed that 

leukocyte-rich RA patients show high cell abundances of HLA-DRhi fibroblast populations, Tph 

cells, CD11c+CD14+ monocytes, and CD11c+ B cell populations (Figure S3f). 

 

Discussion 

Using multi-model, high-dimensional synovial tissue data we defined stromal and 

immune cell populations overabundant in RA and described their transcriptional contributions 

to essential inflammatory pathways. Recognizing the considerable variation in disease duration 

and activity, treatment types, and joint histology scores222, we elected to use a molecular 

parameter, based on percent leukocytes of the total cellularity, to classify our samples at the 
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local tissue level. We note that differences in leukocyte enrichment of joint replacement samples 

and biopsy samples were best explained by leukocyte infiltration and not by the histological 

scores (Figure S1, Figure S11d-g).  

This study and a previous study223 have highlighted sublining fibroblasts as a potential 

therapeutic target in RA. Sublining fibroblasts are a major source of pro-inflammatory cytokines 

such as IL6 (Figure 4-4), and a specific subset of sublining fibroblasts expressing MHC II (SC-

F2, THY1+CD34-HLA-DRhi) was >15 fold expanded in RA tissues. Further studies are needed to 

define molecular mechanisms that regulate sublining fibroblast expansion in RA. T cells, B cells, 

and monocyte proportions track with expression of individual fibroblast genes (Figure S11j). 

We found DNASE1L3, a gene whose loss of function is associated with RA224 and systemic lupus 

erythematosus225 to be highly expressed in CD55+ lining fibroblasts (SC-F4) (Figure 4-4a). We 

identified a novel fibroblast subset (SC-F3) with high expression of DKK3+ (Figure 4-4), 

encoding Dickkopf3, a protein upregulated in OA that prevents cartilage degradation in vitro226. 

Transcriptional heterogeneity in the synovial monocytes indicated that distinct RA-

enriched subsets are driven by inflammatory cytokines and interferons (Figure 4-5). This 

suggests monocytes may be differentially polarized by unique cytokine combinations in local 

microenvironments. These newly identified inflammatory phenotypes align with RA therapeutic 

targets, including anti-TNF therapies and interferon pathway JAK kinase inhibitors227. The 

NUPR1+ (SC-M2) monocytes were inversely correlated with tissue inflammation, and expressed 

high levels of monocyte tissue remodeling factors such as MERTK (Figure 4-5)228. 

Alternatively, NUPR1+ markers such as osteoactivin (GPNMB) and cathepsin K (CTSK) may 

indicate a subset of osteoclast progenitors that control bone remodeling (Figure 4-5)227,229. 

Furthermore, spatial studies—particularly focused on lining versus sublining, perivascular and 

lymphocyte aggregate-associated monocytes—will help understand the functional roles of these 

subsets. 
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Single cell classification of T cell subsets in RA synovium demonstrated CD4+ T cell 

heterogeneity that is consistent with distinction between the homing capacity and effector 

functions of these subsets. Consistent with previous studies, we observed expansion of 

PDCD1+CD4+ Tph cells (SC-T3) within leukocyte-rich RA. We also found CD8 T cell subsets (SC-

T4-6) characterized by a distinct granzyme expression pattern (Figure 4-6a). A larger study 

may be better powered to differentiate the relative expansion of individual subpopulations. 

This study is the first to report the presence of autoimmune-associated B cells (SC-B3) by 

transcriptomic sequencing in human leukocyte-rich synovial RA and, in fact, in any human 

autoimmune target tissue. This B cell population was first reported in aging mice and 

subsequently seen in autoimmune mice and SLE patient peripheral blood221,230. We observed a 

heterogeneity of CD11c+ B cells detectable in both IgD+ and switched B cell populations by mass 

cytometry. The gene expression of other ABCs markers suggests a balance between germinal 

center (IRF8 and AID) and plasma cell (SLAMF7) differentiation within the RA synovium. We 

have few B cells from OA synovia (Figure 4-2b), which limited our ability to identify RA-

associated B cell subsets through case-control comparisons (Figure 4-7g).        

A critical unmet need in RA is identifying therapeutic targets for patients failing to 

respond to disease-modifying antirheumatic drugs (DMARDs)231. We observed upregulation of 

chemokines (CXCL8, CXCL9, and CXCL13), cytokines (IFNG and IL15232,233), and surface 

receptors (PDGFRB and SLAMF7) in distinct immune and stromal cell populations, suggesting 

potential novel targets. This study was enabled by advances in the statistical integration of 

single-cell data and our recent work optimizing robust methodologies for disaggregation of 

synovial tissue214. 

We developed advanced strategies to integrate multiple molecular datasets by 

modulating technical artifact from single cell technologies123, while emphasizing biological 

signals. CCA has been successfully employed in other contexts to integrate high-dimensional 
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biological data234,235. Our CCA-based strategy analyzed scRNA-seq data using canonical variates 

that capture variance that are present in both single-cell and bulk RNA-seq data. The shared 

variances likely represent biological trends, and not technical factors that would likely be 

uncorrelated in these two independent datasets. We further confirmed that the identified 

scRNA-seq clusters are well correlated with the bulk RNA-seq data and also the mass cytometry 

data (Figure S12, S13). 

The two single cell modalities used in this study, mass cytometry and scRNA-seq, 

complement each other. Single-cell RNA-seq captures expression of thousands of genes, but at 

the cost of sparse data236. Mass cytometry captures hundreds of thousands of individual cells, 

but measures a limited number (~40) of pre-selected markers81. However, since markers are 

backed with decades of experimental experience they can be effective at defining cellular 

heterogeneity237. To make the analysis consistent, we gated mass cytometry cells on the same 

markers upon which the scRNA-seq was gated. Combining mass cytometry with the extended 

dimensionality of scRNA-seq enables quantification of well-established cell populations and 

discovery of novel cell states, such as the CD8 T cell states noted here. As an ongoing AMP phase 

2 study, we are examining larger numbers of ungated cell populations from ~100 synovial tissue 

patients with RA by capturing mRNA and protein expression simultaneously186 with detailed 

clinical data and ultrasound score evaluation of synovitis. We anticipate that this larger study 

will enable us to not only discover additional subpopulations, but to better define their link to 

clinical sub-phenotypes. 

It is essential to interrogate the tissue infiltration of diseases other than RA, including 

SLE, type I diabetes, psoriasis, multiple sclerosis and other organ targeting conditions. 

Application of multiple single-cell technologies together can help define key novel populations, 

thereby providing new insights about etiology and potential therapies. 
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Materials and Methods 

Study design and patient recruitment 

The study was performed in accordance with protocols approved by the institutional review 

board. A multicenter, cross-sectional study of individuals undergoing elective surgical 

procedures and a prospective observational study of synovial biopsy specimens from patients 

with RA ≥ age 18, with at least one inflamed joint, recruited from 10 contributing sites in the 

network. Synovial tissues were obtained from joint replacement procedures or ultrasound-

guided biopsies, followed by cryopreservation in cryopreservation media Cryostor CS10 (Sigma-

Aldrich) and transit to a central technology site. 

 

Histological assessment of synovial tissue and quality control 

Synovial tissue quality and grading of synovitis were evaluated in formalin-fixed, paraffin-

embedded sections by histologic analysis (H and E staining). Specimens were identified as 

synovium by the presence of a lining layer or by characteristic histologic features of synovium, 

including the presence of loose fibrovascular or fatty tissue lacking a lining layer. Samples 

consisting of dense fibrous tissue, joint capsule or other tissues were determined not to be 

synovium. For each histological and molecular analysis, we generated pooled data from 6-8 

separate fragments from different sites in the same joint. Thus, this should be representative of 

the whole tissue and mitigate much of the biopsy site-to-site variability. Krenn lining scores (0-

3) and inflammation scores (0-3) for each tissue sample were determined independently by 

three pathologists216. 

 

Tissue disaggregation for mass cytometry and RNA-sequencing 

For pipeline analysis, synovial tissue samples stored in cryovials were disaggregated into single 

cell suspension as describe. Briefly, synovial tissue fragments were separated mechanically and 
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enzymatically in digestion buffer (Liberase TL (Sigma-Aldrich) 100 ug/mL and DNase I (New 

England Biolabs) 100 ug/ml in RPMI) in a 37oC water bath for 30 minutes. Single cell 

suspensions from disaggregated synovial tissues were assessed for cell quantity and cell viability 

by trypan Blue. For samples with more than 200,000 viable synovial cells, 50% of all synovial 

cells were allocated for analysis by mass cytometry and the remaining cells were allocated for 

RNA-seq. For samples with less than 200,000 viable synovial cells, all synovial cells were 

utilized for RNA-seq analysis. 

 

Synovial cell sorting strategy for RNA sequencing 

Synovial T cells, B cells, monocytes, and fibroblasts were isolated from disaggregated synovial 

tissue, as described214. Briefly, disaggregated synovial cells were stained with antibodies against 

CD45 (HI30), CD90 (5E10), podoplanin (NZ1.3), CD3 (UCHT1), CD19 (HIB19), CD14 (M5E2), 

CD34 (4H11), CD4 (RPA-T4), CD8 (SK1), CD31 (WM59), CD27 (M-T271), CD235a (KC16), using 

human TruStain FcX in 1% BSA in Hepes-Buffered Saline (HBS,20 mM HEPES, 137 mM NaCl, 

3mM Kcl, 1mM CaCl2) for 30 minutes. 1000 viable (PI-) T cells (CD45+, CD3+, CD14-), 

monocytes (CD45+, CD3-, CD14+), B cells (CD45+, CD3-, CD14-, CD19+), and synovial fibroblasts 

(CD45-, CD31-, PDPN+) were collected by fluorescence-activated cell sorting (BD FACSAria 

Fusion) directly in buffer RLT (Qiagen) for bulk RNA-seq. For single cell RNA-seq, live cells of 

each population were re-sorted into 384-well plates single cells with a maximum of 144 cells for 

each cell type, per patient sample.  

 

Flow sorting strategy for bulk RNA-seq experimental validation 

For bulk RNA-seq validation experiments, RA and OA synovial tissue were disaggregated and 

synovial cells were stained with cell-type specific antibody panels. For each cell subset, up to 

1000 cells were collected directly into buffer TCL (Qiagen). Antibody panels used to define cell 
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subsets are fibroblasts: CD90 (5E10), podoplanin (NZ1.3), HLA-DR (G46-6); B cell subsets: 

HLA-DR (G46-6), CD11c (3.9), CD19 (SJ25C1), CD27 (M-T271), IgD (IA6-2), CD3 (UCHT1), 

CD14 (M5E2), CD38 (HIT2); Monocyte subsets: CD14-BV421 (M5E2), CD38-APC (HB-7), and 

CD11c-PECy7 (B-ly6). Immediately prior to sorting, DAPI or LIVE/DEAD viability dye was 

added to cell suspensions and cells were passed through a 100µm filter. Synovial cell subsets 

were sorted based on flow cytometry gating schema shown in Supplementary Fig. 6. In all, 

we sorted THY1- DR- populations from 4 OA samples, THY1+DR- population from 4 OA and 6 

RA samples, and THY1+ DR+ population from 6 RA samples. For monocytes, we sorted 

CD14+CD11c+++CD38+++ population from 2 RA samples and CD14+CD11c+ CD38- population 

from 2 OA samples. For B cells, we sorted CD11c-IgD-CD27+ population from 6 RA samples, 

CD11c-IgD+CD27- population from 3 RA samples, CD19+CD11c+ population from 3 RA samples, 

and plasma cells from 3 RA samples. 

To validate the identified single-cell populations using bulk RNA-seq, we fit an LDA 

(Linear Discriminant Analysis) classifier on the scRNA-seq cell clusters and then classified each 

flow sorted bulk RNA-seq sample. For each cell type, 1) we trained an LDA model on the scRNA-

seq clusters with the top 500 marker genes for each cluster; 2) Next, we applied this LDA model 

to classify each sample of bulk sorted cells and estimated the maximum posterior probability for 

each sample. In summary, we tested if we could sort new cells from new, independent samples 

and see the same gene expression profiles in the new bulk samples as the original scRNA-seq 

samples. 

 

Multicolor immunofluorescent staining of paraffin synovial tissue 

Briefly, 5 mm thick formalin fixed paraffin sections were incubated in a 60oC oven to melt 

paraffin. Slides were quickly transferred to xylenes to completely dissolve the paraffin and after 

5 minutes transferred to absolute ethanol. Slides were left in absolute ethanol for 5 minutes and 
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then transferred to 95% ethanol. At the end of the 5 minutes immersion in 95% ethanol, slides 

were rinsed several times with distilled water and transfer to a plastic coplin jar filled with 1X 

DAKO retrieval solution (S1699, Dakocytomation). Antigens were unmasked by immersing of 

plastic coplin jar in boiling water for 30 minutes. Slides were let cool down for 10 minutes at 

room temperature and washed several times with distilled water. Non-specific binding was 

blocked with 5% normal donkey serum (017-000-121, Jackson ImmunoResearch Laboratories,) 

dissolved in PBS containing 0.1% Tween 20 and 0.1% Triton X-100.  Without washing, blocking 

solution was removed from slides and combinations of primary antibodies were added to PBS 

containing 0.1% Tween 20 and 0.1% Triton X-100. Primary antibodies to detect IFNg+ T cells 

include goat anti-CD3 epsilon (clone M-20, Santa Cruz Biotechnology), mouse anti-human CD8 

(clone 144B, GeneTex), and rabbit anti-human IFNg (Biorbyt, orb214082). To visualize ABC, we 

incubated slides with goat anti-human CD20 (LifeSpan Biosciences, LS-B11144), rabbit anti-

Tbet (H-210, Santa Cruz Biotechnology) and biotinylated mouse anti-human CD11c (clone 

118/A5, Thermo Fisher Scientific). To identify IL1B+ monocytes, we used a mixture of goat anti 

human CD14 (119-13402, RayBiotech) biotinylated rabbit anti-human IL1b (OABF00305-

Biotin, Aviva Systems Biology) and mouse anti-human CD16 (clone DJ130c, LifeSpan 

Biosciences). Finally, slides were probed with rabbit monoclonal anti-human CD90 (2694-1, 

Epitomics), rat anti-human HLADR (cloneYE2/36 HLK, LifeSpan Biosciences) and mouse anti-

human CD45 (clone F10-89-4, abcam) to detect fibroblasts, Class II expressing cells and 

hematopoietic cells, respectively. Slides with primary antibodies were incubated in a humid 

chamber at room temperature, overnight. Next morning, primary antibodies for triple T cell 

stain and for detecting ABC’s were revealed with Alexa Fluor 568 donkey anti-goat IgG (A-

11057, Thermo Fisher Scientific), Alexa Fluor 488 donkey anti-rabbit (771-546-152, Jackson 

ImmunoResearch Laboratories) and Alexa fluor 647 donkey anti-mouse (715-606-151, Jackson 

ImmunoResearch Laboratories) . Primary antibodies in the stain for monocytes were revealed 

with Alexa Fluor 568 donkey anti-goat Ig G, Alexa fluor 488 streptavidin (S11223, Thermo 
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Fisher Scientific) and Alexa Fluor 647 donkey anti-mouse Ig G. Primary antibodies in the stain 

for fibroblasts and hematopoietic cells were detected with Cy3 donkey anti-rabbit (711-166-152, 

Jackson ImmunoResearch Laboratories), Alexa Fluor 488 donkey anti-rat Ig G (A-21208, 

Thermo Fisher Scientific) and Alexa Fluor 647 donkey anti-mouse Ig G. After 2 hours of 

incubation, slides were washed and mounted with Vectashield mounting media with DAPI (H-

1200, Vector Laboratories). Pictures were taken with an Axioplan Zeiss microscope and 

recorded with a Hamamatsu camera. Double immunofluorescence pictures were obtained by 

merging individual channels in NIH Image J software. 

 

Estimation of number of cells by counting nuclei 

To estimate number of cells, we counted number of nuclei in 5 random 200x fields that show 

synovial lining with Image J NIH software. Briefly, original color TIFF files were first 

transformed into 8-bit grayscale images. We use similar settings to adjust threshold in 8-bit 

images (Lower threshold level: 0, Upper threshold level: 60). Next, we used process: binary: 

watershed to separate nuclei. In the analyze icon, we select analyze particles and we use equal 

settings to count particles in our images (Size (pixel2): 50-infinity, circularity 0.00-1.00, Show: 

outlines) and we selected to display results. We visually confirmed that individual nuclei were 

outlined in the final image and calculate the average number of cells/200x field in individual 

samples. 

 

Tissue samples classification based on leukocyte infiltration 

We classified RA tissue samples into leukocyte-poor RA and leukocyte-rich RA based on 

Mahalanobis distance from OA samples computed on leukocyte abundance measured by flow 

cytometry. We first took OA samples as a reference, and calculated a multivariate normal 

distribution of the percentages of live T cells, B cells, and monocytes. Here we used the 
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mahalanobis function in R: data x = a matrix of all 51 samples by flow gates of T cells, B cells, 

and monocytes; center = mean of T cells, B cells, and monocytes for all OA samples; covariance 

= covariance of T cells, B cells, and monocytes for all OA samples. We calculated the square root 

to get Mahalanobis distance for each sample, 

^ëℎ = ä(ì − î)′ñO/(ì − î). 

We then defined the maximum value of all OA samples (4.5) as a threshold to define 19 

leukocyte-rich RA (>4.5) and 17 leukocyte-poor RA (<4.5) samples in our cohort 

(Supplementary Fig. 1d). 

 

Bulk RNA-seq gene expression quantification 

We sorted cells into the major immune and stromal cell populations: T cells, B cells, monocytes 

and synovial fibroblasts. We then performed RNA sequencing. Full-length cDNA and 

sequencing libraries were performed using Illumina Smart-eq2 protocol238. Libraries were 

sequenced on MiSeq from Illumina to generate 35 base paired-end reads. Reads were mapped to 

Ensembl version 83 transcripts using kallisto 0.42.4 and summed expression of all transcripts 

for each gene to get transcripts per million (TPM) for each gene167. 

 

Bulk RNA-seq quality control 

For quality control of bulk RNA-seq data, we began by defining common genes as the set of 

genes detected with at least 1 mapped fragment in 95% of the samples. Then, for each 

sample, we computed the percent of common genes detected in that sample. Low quality 

samples are those that have less than 99% of common genes detected, and these were 

discarded. We found that the low-quality samples also had low cell counts 

(Supplementary Fig. 11a). After discarding 25 low quality samples, we used 167 good 



 

 126 

quality samples, including 45 fibroblast samples, 46 monocyte samples, 47 T cell samples, 

and 29 B cell samples in all bulk RNA-seq analyses. Cell lineage markers, PDGFRA, C1QA, 

CD3D, and CD19, are expressed selectively by fibroblasts, monocytes, t cells, and b cells, 

respectively (Supplementary Fig. 11c). 

 

Single-cell RNA-seq gene expression quantification 

Single-cell RNA-seq was performed using the CEL-Seq2 method47 with the following 

modifications. Single cells were sorted into 384-well plates containing 0.6 µL 1% NP-40 buffer 

in each well. Then, 0.6 µL dNTPs (10mM each; NEB) and 5 nl of barcoded reverse transcription 

primer (1 µg/µL) were added to each well along with 20 nL of ERCC spike-in (diluted 

1:800,000). Reactions were incubated at 65°C for 5 min, and then moved immediately to ice.  

Reverse transcription reactions were carried out, as previously described (Hashimshony et al., 

2016), and cDNA was purified using 0.8X volumes of Agencourt RNAClean XP beads (Beckman 

Coulter). In vitro transcription reactions (IVT) were performed, as described followed by EXO-

SAP treatment. Amplified RNA (aRNA) was fragmented at 80°C for 3 min and purified using 

Agencourt RNAClean XP beads (Beckman Coulter). The purified aRNA was converted to cDNA 

using an anchored random primer and Illumina adaptor sequences were added by PCR. The 

final cDNA library was purified using Agencourt RNAClean XP beads (Beckman Coulter). 

Paired-end sequencing was performed on the HiSeq 2500 in High Output Run Mode with a 5% 

PhiX spike-in using 15 bases for Read 1, 6 bases for the Illumina barcode and 36 bases for Read 

2. We mapped Read2 to human reference genome hg19 using STAR 2.5.2b, and removed 

samples with outlier performance using Picard. We quantified gene levels by counting UMIs 

(Unique Molecular Identifiers) and transforming the counts to Log2(CPM+1) (Counts Per 

Million). 
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Single-cell RNA-seq quality control 

For quality control of single-cell RNA-seq data, we filtered out molecules that are likely to be 

contamination between cells, and we used several metrics to exclude poor quality cells. We 

identified molecules that are likely to represent cell-to-cell cross-contamination as follows. 

Many single-cell RNA-seq library preparation protocols include pooling and amplification of 

cDNA molecules from a large number of cells. This can introduce cell-to-cell contamination. We 

found that molecules represented by a small number of reads are more likely to be contaminant 

molecules derived from other cells. We developed a simple algorithm to set a threshold for the 

minimum number of reads per molecule, and we ran it separately for each quadrant of 96 wells 

in each 384-well plate. We used 2 marker genes expected to be exclusively expressed in each of 

the 4 cell types: PDGFRA and ISLR for fibroblasts, CD2 and CD3D for T cells, CD79A and 

RALGPS2 for B cells, and CD14 and C1QA for monocytes. We counted nonzero expression of 

these genes in the correct cell type as a true positive and nonzero expression in the incorrect cell 

type as a false positive. Then we tried each threshold for reads per molecule from 1-20 and chose 

the threshold that maximizes the ratio of true positive to false positive (Supplementary Fig. 

14). This left us with 7,127 cells and 32,391 genes. Next, we discarded cells with fewer than 

1,000 genes detected with at least one fragment. We also discarded cells that had more than 

25% of molecules coming from mitochondrial genes. This left us with 5,265 cells. We discarded 

genes that had nonzero expression in fewer than 10 cells. We show all post-QC single cells based 

on the number of genes detected and percent of molecules from mitochondrial genes for each 

identified cluster (Supplementary Fig. 15). 

 

Mass cytometry sample processing and quality control 

We collected 6 leukocyte-rich, 9 leukocyte-poor RA, and 11 OA samples for mass cytometry 

analysis, and processed the samples, as described previously214. Briefly, we analyzed samples on 
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a Helios instrument (Fluidigm) after antibody staining and fixation (Supplementary Table 

2). Mass cytometry data were normalized using EQ™ Four Element Calibration Beads 

(Fluidigm), as previously described188. Cells were first gated to live DNA+ cells prior to gating for 

specific cell populations using the following scheme: B cells (CD3-CD14-CD19+), fibroblasts 

(CD45-PDPN+), monocytes (CD3-CD14+), and T cells (CD3+CD14-). All biaxial gating was 

performed using FlowJo 10.0.7. 

 

Integrative computational pipeline for scRNA-seq clustering 

We developed a graph-based unbiased clustering pipeline based on canonical correlation 

analysis to take advantage of the shared variation between single-cell RNA-seq and bulk RNA-

seq. We used this computational pipeline to analyze single cells from each cell type. The overall 

flowchart is shown in Supplementary Fig. 2. We describe the details of each step as follows: 

1) We first selected the highly variable genes such that the mean and standard deviation are in 

the top 80% of the density distributions from the single-cell RNA-seq matrix ó(ò genes by ^ 

cells,  ô/,...,,) and bulk RNA-seq matrix (ò genes by ö samples, õ/,...,V), respectively. We focused on 

the highly variable genes detected in both scRNA-seq and bulk RNA-seq datasets. 

2) Based on the shared highly variable genes, we integrated single-cell RNA-seq with bulk RNA-

seq by finding a linear projection of bulk samples and single cells such that the correlation 

between the genes are maximized using the CCA method239. CCA finds two vectors a and b that 

maximize the linear correlations ôúù(óû̀ /, óûT/), where óû̀ /= ë/õ/+ëmõm+. . . +ëVõV and óûT/= 

ü/ô/+ümôm+. . . +ü,ô,. Each bulk sample	õ'  gets a coefficient 	ë'	and each cell	ô'  gets a 

coefficient	ü'. The linear combination of all samples õ/,...,V arranges bulk genes along the 

canonical variate óû̀ / and the linear combination of all cells ô/,...,, arranges single-cell genes 

along óûT/. CCA defines the coefficients ë/,...,V and ü/,...,V  that arrange the genes from the two 
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datasets in such a way that the correlation between óû̀ / and óûT/ is maximized. After CCA finds 

the first pair of canonical variates, the next pair is computed on the residuals, and so on. 

3) We calculated the cell-to-cell similarity matrix using Euclidean distance on the top ten CCA 

canonical variates. 

4) We built up a K-nearest neighbors (KNN) graph based on the cell-to-cell similarity matrix 

(Euclidean distance) based on local ordinal embedding (LOE), a graph embedding method. We 

then converted the KNN neighbor relation matrix into an adjacency matrix using the 

graph.adjacency function from igraph R package; 

5) We clustered the cells using the Infomap algorithm for community detection by applying a 

cluster_infomap function from igraph R package to decompose the cell-to-cell adjacency matrix 

into major modules by minimizing a description of the information flow; 

6) We then constructed a low dimensional embedding using tSNE based on the cell-to-cell 

distance matrix using the following parameters: perplexity = 50 and theta = 0.5; 

7) We identified and prioritized significantly differentially expressed genes for each distinct 

cluster based on percent of non-zero expressing cells, AUC score240, and fold-change; 

8) For pathway analysis, we downloaded gene sets from Gene Ontology (GO) terms on April 

2017. This included 9,797 GO terms and 15,693 genes. We also used the immunological 

signatures from 4872 hallmark gene sets from MSigDB241 to test enrichment of all the tested 

genes sorted by decreased AUC scores for each cluster by 105 permutation tests242. We used the 

liger R package (https://github.com/JEFworks/liger) to do gene set enrichment analysis 

(GSEA). 

To identify the most reasonable and stable clusters, we ran this pipeline repeatedly while tuning 

the number of top canonical variates (4, 8, 12, 16, and 20) that were incorporated for the cell-to-

cell similarity matrix, and the number of k (50, 100, 150, 200, 250, and 300) to build up the K-



 

 130 

nearest neighbors’ graph. We chose the clusters that yielded the greatest number of 

differentially expressed genes. We used Silhouette analysis243,244 on the cell-to-cell Euclidean 

distance matrix to evaluate our clustering results (Supplementary Fig. 2b). For each cell, the 

silhouette width õ(†) is defined as follows: 

õ(i) =
°(')OW(')

ÇÉÑ	(W('),°('))
, 

where ë(†) is the average dissimilarity between a cell and all the other cells in the same cluster 

and ü(†)  is the average distance between a cell and all cells in the nearest cluster to which the 

cell does not belong. The measure range is [-1, 1], where a value near 1 indicates a cell is far from 

neighboring clusters, a value near 0 indicates a cell is near a decision boundary, and a value near 

-1 indicates the cell is closer to a neighboring cluster than its own cluster. 

Thus, for each pair of single-cell RNA-seq and bulk RNA-seq, we ran our pipeline on the shared 

samples that have both datasets for each cell type (Figure 4-1b). For integrating fibroblast 

data, we used 45 bulk RNA-seq samples, 1,844 single cells and 7,016 shared highly variable 

genes; for integrating monocyte data, we used 47 bulk RNA-seq samples, 750 single cells and 

7,016 shared highly variable genes; for integrating T cell data, we used 47 bulk RNA-seq 

samples, 1,716 single cells and 7,003 shared highly variable genes; for integrating B cell data, we 

used 29 bulk RNA-seq samples, 1,142 single cells and 7,023 shared highly variable genes. 

 

Mass cytometry clustering 

We created mass cytometry datasets for analysis by concatenating cells from all individuals for 

each cell type. For donors with more than 1,000 cells, we randomly selected 1,000 cells to 

ensure that samples were equally represented. In this way, we created downsampled datasets of 

25,161 fibroblasts from 23 patients, 15,298 monocytes from 26 patients, 19,985 T cells from 26 

patients, and 8,179 B cells from 23 patients for analysis. We then applied the tSNE algorithm 
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(Barnes-Hut implementation)142 to each dataset using the following parameters: perplexity = 30 

and theta = 0.5. We used all markers except those used to gate each population in the SNE 

clustering. To identify high-dimensional populations, we used a version of DensVM134, modified 

as in126. DensVM performs kernel density estimation across the dimensionally reduced SNE map 

to build a training set, then assigns cells to clusters by their expression of all markers using an 

SVM classifier. We modified the DensVM code to increase the range of potential bandwidths 

searched during the density estimation step and to return the SVM model generated from the 

tSNE projection. We summarized the details of the clusters with proportion of cells from each 

disease cohort in Supplementary Table 3.  

 
Disease association test of cell populations 

We tested whether abundances of individual populations were altered in RA case samples 

compared to OA controls using two ways. First, we assessed whether marker genes (AUC > 0.7, 

20 < n < 100) characteristic of each scRNA-seq cluster were differentially expressed in the same 

direction in scRNA-seq and bulk RNA-seq datasets. Second, we applied MASC126, a single cell 

association method for testing whether case-control status influences the membership of single 

cells in any of multiple cellular subsets while accounting for technical confounds and biological 

variation. We specified donor identity and batch as random-effect covariates. 

 

Integration of bulk RNA-seq with mass cytometry 

We used CCA to associate the abundances of mass cytometry clusters with gene expression in 

bulk RNA-seq. We started by selecting the samples that had both data types. The mass 

cytometry data matrix has samples and clusters, where the values represent proportions of cells 

from each sample in each cluster. The bulk RNA-seq data matrix has samples and genes, where 

the values represent proportions of gene abundance from each sample in each gene. CCA 
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identifies canonical variates (a linear combination of bulk RNA-seq genes and a linear 

combination of mass cytometry cluster proportions) that maximize correlation of samples along 

each canonical variate. In other words, it tries to arrange samples from each dataset in a similar 

order along each canonical variate. We ran CCA separately for fibroblasts, monocytes, T cells, 

and B cells. For fibroblasts, we associated 2,299 genes with 8 mass cytometry clusters on 22 

samples. For monocytes, we associated 2,161 genes with 5 mass cytometry clusters on 25 

samples. For T cells, we associated 2,255 genes with 9 mass cytometry clusters on 26 samples. 

For B cells, we associated 22,95 genes with 10 mass cytometry clusters on 17 samples. 

 

Finding correspondence between scRNA-seq clusters and mass cytometry 

clusters 

1) For each cell type, we ran CCA with mass cytometry clusters with bulk RNA-seq. Each gene is 

correlated with each canonical variate (CV). Also, each mass cytometry cluster is correlated with 

each CV. By visualizing these correlations, we can see the positions of bulk RNA-seq genes and 

mass cytometry clusters in the same space (Figure 4-4h). 

2) We then associated single-cell RNA-seq clusters with mass cytometry clusters by projecting 

cluster markers (AUC > 0.7) for each single-cell RNA-seq cluster in the CCA space acquired 

from step 1). 

3) We took the average across the cluster marker genes for each single-cell RNA-seq cluster for 

each CV and obtained an “average CV” matrix. 

4) Based on the “average CV” matrix, we computed Spearman correlation between the scRNA-

seq average CV and the CV for mass cytometry clusters. 

5) Next, we generated a null distribution for the Spearman correlations by shuffling the scRNA-

seq gene names and then repeating steps 2-4 10,000 times. 
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6) For the 10,000 replicates of CCA matrix, we repeated from step 2 to step 5. Then, we counted 

how many times the correlation of each pair was greater than the observed value from step 4). 

d¢ù^£âëâ†úö	d	 = 	
/	è	`ã,(Téå§•¶ß®Téå)

/	è	/a©
. 

7) Finally, we converted the to a d¢ù^£âëâ†úö	d to a ™ − õôúù¢. 

 

Differential expression analysis with bulk RNA-seq 

We classified all the samples into OA, leukocyte-poor RA, and leukocyte-rich RA synovial tissues 

based on the quantitative analysis of T cells, B cells, and monocytes by flow cytometry. PCA on 

bulk RNA-seq samples showed separation of leukocyte-rich and leukocyte-poor RA on the first 

or second principal components. For differential analysis, we used the limma R package to 

identify significantly differentially expressed genes. We used the Benjamini-Hochberg method 

to estimate false discovery rate (FDR). 

 

Identification of markers for distinct scRNA-seq clusters 

Based on the single-cell RNA-seq clusters, we identified cluster marker genes by comparing the 

cells in one cluster with all other clusters from the same cell type, based on Log2(CPM+1). We 

prioritized cluster marker genes using three criteria: 1) percent of non-zero expressing cells > 

60%; 2) are under the receiver-operator curve (AUC)240 > 0.7; and 3) fold-change (FC) > 2.  

 

Intracellular flow cytometry of synovial tissue T cell stimulation 

Disaggregated synovial tissue cells were incubated with Fixable Viability Dye (eBioscience) and 

Fc blocking antibodies (eBioscience) followed by staining for surface markers in Brilliant Stain 

Buffer (BD Bioscience). Cell were then fixed and permeabilized using an intracellular staining 
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kit (eBioscience), followed by intracellular staining for granzymes or cytokines. Antibodies used 

in this study include anti-CD45 (clone HI30) from BD Biosciences; anti-CD3 (clone UCHT1), 

anti-CD8 (clone SK1), anti-CD14 (clone M5E2), anti-CD4 (clone RPA-T4), anti-HLA-DR (clone 

L243), anti-granzyme B (clone GB11), and anti-granzyme K (clone GM26E7) from Biolegend; 

and anti-IFNG (clone 4S.B3) and anti-TNF (clone MAb11) from eBioscience. Data were collected 

on a BD Fortessa flow cytometer and analyzed using FlowJo 10.5 software. Disaggregated 

synovial tissue cells were incubated with a cell stimulation cocktail containing PMA and 

ionomycin (eBioscience) in RPMI with 10% fetal calf serum (Gemini). After 15 minutes, 

brefeldin A (eBioscience) was added. The cells were incubated at 37C 5% CO2 for an additional 2 

hours. The cells were then collected and stained for intracellular cytokines following the 

protocol above and the data was shown in Supplementary Fig. 10. 

 

Statistics  

Results are shown as mean with 95% confidence intervals. The statistics tests used were t-test 

and Kolmogorov-Smirnov test, unless otherwise stated, as described with one-sided or two-

sided in the figure legends. Benjamini-Hochberg FDR < 0.01 and Fold-change > 2 were 

considered to be statistically significant when appropriate. 

 

Reporting Summary 

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article. 
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Data Availability 

The single-cell RNA-seq data, bulk RNA-seq data, mass cytometry data, flow cytometry data, 

and the clinical and histological data this study are available at ImmPort 

(https://www.immport.org/shared/study/SDY998 and 

https://www.immport.org/shared/study/SDY999, study accession codes SDY998 and SDY999).  

The raw single-cell RNA-seq and mass cytometry data are deposited in dbGAP 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001457.v1.p1. The 

source code repository of the computational and statistical analysis is located at 

https://github.com/immunogenomics/amp_phase1_ra. Data can also be viewed on 3 different 

websites at https://immunogenomics.io/ampra, https://immunogenomics.io/cellbrowser/, and 

https://portals.broadinstitute.org/single_cell/study/amp-phase-1. 
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The advent of single cell technologies has the potential to revolutionize the study of RA 

by offering an unbiased approach to detecting and characterizing cell heterogeneity in blood and 

tissue. The work in this dissertation serves to advance the field of single cell disease-association 

studies, providing both an effective method for performing association tests with single cell data 

while controlling for confounding effects and evidence of multiple populations that are 

potentially linked to the pathogenesis of rheumatoid arthritis. This section will cover the 

strengths of MASC and its future utility; the characterization of novel disease-linked immune 

cell populations; and the future of single cell association studies more broadly. 

 

Single cell disease association studies 

Traditionally, the most common way to understand which cell populations are linked to 

disease has been to study them in isolation. Multi-step experiments in which populations of 

interest are first isolated based upon phenotypic markers and then characterized by secondary 

assays have taken advantage of fluorescence-activated cell sorting (FACS) to provide a non-

destructive method of partitioning single cells into discrete populations. This approach can be 

quite useful, especially when the disease-associated populations are known and express markers 

that allow them to be easily separated by FACS. For example, celiac disease is an autoimmune 

disorder known to be triggered the presentation of ingested gluten to CD4+ T cells in the small 

intestine245,246. As the disease-relevant population is already known in celiac, researchers have 

been able to use HLA-bound tetramers that have gluten loaded to specifically isolate gluten-

reactive T cells and perform further characterization experiments247-249. Conversely, in diseases 

like RA where the pathogenic immune populations are not obvious, the experimental strategy of 

sorting and characterization is considerably less effective and such have yielded discordant 

results. Inconsistencies can be partially attributed to variation in markers used across different 

studies or the difficulty of resolving highly heterogeneous populations with bulk cell assays – 

which may be overcome with advancing single cell technologies.  
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This work details critical elements to consider when conducting single cell disease 

association studies: first, the importance of proper experimental design to minimize batch and 

technical variation from the outset; second, the varied approaches to identifying populations in 

single cell datasets and how to comparatively evaluate single cell clustering methods with 

quantitative metrics; and finally a robust statistical strategy for performing association testing, 

MASC (Mixed-effect modeling of Associations of Single Cells). This method accepts user-

identified populations regardless of clustering method, directly reports the significance of case-

control associations for each cluster, provides an estimate of the effect size of the association 

itself, and incorporates both technical covariates (e.g. batch) and clinical covariates when 

modeling associations, a key feature when analyzing high-dimensional datasets of large disease 

cohorts. MASC outperforms naïve association-testing strategies – like difference-of-means and 

binomial tests – and demonstrates better controlled error rates. MASC compares favorably to 

other single cell association methods like Citrus137, which uses nested hierarchical clustering and 

penalized regression models to identify features (defined here as clusters of single cells or 

median expression levels of markers within a cluster) that are predictive of clinical endpoints. In 

contrast to MASC, which is able to operate on any clustered single cell dataset, Citrus requires 

down-sampling cells from each sample and does not retain single cell resolution, which impedes 

the interpretation of clusters found to be predictive. As demonstrated in Chapter 2, MASC is an 

effective method for performing association testing with single cell transcriptomic data and can 

easily include method-specific technical covariates, like the sequencing lane samples were 

processed in. Indeed, we are currently employing MASC to identify differentially abundant T cell 

populations in a multimodal transcriptomic and proteomic dataset; similarly, MASC could be 

used to identify associations of clusters defined by epigenomic features in single cell ATAC-seq 

datasets250. 
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Single cell experiments reveal immune populations associated with RA 

 In two separate single cell association studies, we were able to describe novel immune 

populations and robustly identify which populations were statistically associated with disease 

status.  As shown in Chapter 3, single cell mass cytometry resolved a diverse set of CD4+ T cell 

populations, many of which had not been well characterized in the past. While established CD4+ 

populations like Th1 and Treg cells were not significantly more abundant in RA patients 

compared to controls, MASC identified an RA-associated population of CD4+ T effector memory 

cells defined by the expression of HLA-DR and the lack of CD27. Analyzing the transcriptome of 

these cells and closely related populations allowed us to define a gradient from naïve CD4+ cells 

to the expanded CD27- HLA-DR+ population, demonstrating that CD4+ populations could be 

organized by increased expression of gene sets linked to cytotoxicity and effectorness. While the 

CD27- HLA-DR+ population was rare in peripheral blood, it was highly expanded in tissue and 

produced cytotoxic molecules upon stimulation, suggesting that population may represent an 

attractive target as a biomarker or as a therapeutic target.  

 Cytotoxic T cells have been traditionally defined as the subset of mature CD8+ T 

lymphocytes that play a major role in destroying cells targeted by the immune system, such as 

virally-infected and tumoral cells251,252. In cytotoxic CD8+ T cells, cell-killing activity is 

dependent on interactions between the T cell receptor (TCR) and MHCI-bound peptides253,254. 

Termed cytotoxic T lymphocytes or CTLs, these cells are capable of causing cell death through 

multiple, well-described mechanisms: primarily the export of perforin through granule 

exocytosis and the induction of the Fas/Fas-ligand apoptosis pathway, although the release of 

cytotoxic cytokine molecules like TNF and IFN-g are also thought to play a role255. Although the 

majority of literature describing cytotoxicity in T cells refers to CTLs, there has been evidence of 

CD4+ T cells with cytotoxic properties for a long time256-259. A recent single cell study in mice 

demonstrated that age polarizes CD4+ T cells towards extreme effector states, including a 
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cytotoxic subset characterized by the production of TNF, IFN-g, perforin, and Granzyme B upon 

stimulation260. In humans, cytotoxic CD4+ T cells have been strongly associated with chronic 

viral infections, which, like autoimmune disorders, share the feature of cells being exposed to 

antigens for long periods of time181,261-263. Thus, the chronic inflammatory context of rheumatoid 

arthritis may promote the differentiation of CD4+ effector cells into the CD27- HLA-DR+ 

phenotype, which resemble CD4+ CTLs and express molecules like perforin. CD4+ CTLs have 

been observed in other autoimmune disorders264-266, such as the recent observation of cells with 

similar surface marker phenotypes and transcriptomic profiles in IgG4-related disease184 and 

celiac disease267.  

While the loss of expression of CD27 on CD4+ T cells is well-characterized as a marker of 

T cells that are antigen-experienced and have reached a terminal differentiation state260, the 

functional role of the expression of HLA-DR in CD27- HLA-DR+ cytotoxic CD4+ T cells is less 

clear. It has been previously observed that a subset of regulatory CD4+ T cells expresses HLA-

DR on their surface; these cells are considered to be highly-suppressive compared to typical Treg 

cells and play an important role in mediating transplant rejection268-270. The CD27- HLA-DR+ 

population observed as expanded in RA were distinctly not similar to Treg cells, lacking 

expression of the lineage-defining transcription factor FoxP3. However, it is intriguing that 

HLA-DR+ Treg cells are known to be particularly vulnerable to Granzyme B-induced cell death 

expressed from other CD4+ T cells271. One hypothesis for the functional role of CD27- HLA-DR+ 

cytotoxic CD4+ T cells in rheumatoid arthritis could be that they are particularly effective at 

nullifying the anti-inflammatory effects of regulatory T cells at peripheral sites of disease where 

they are most enriched, like the synovium. In keeping with this theory, peripheral CD4+ HLA-

DR+ T cells have been shown to compromise the functional capacity as well as resist 

suppression by Treg cells in tuberculosis, a disease characterized by chronic T cell activation272. 

Finally, it is notable that a recent single cell study of innate and adaptive T cell populations 

identified an innateness gradient with adaptive cells on one end and natural killer cells on the 
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other273. When characterized transcriptomically, CD27- HLA-DR+ cells were the most innate-

like compared to both naïve and other memory CD4+ populations. As the more innate-like cells 

contained significant amounts of pre-formed mRNA for cytokines like IFN-g, this finding may 

suggest that CD27- HLA-DR+ cells are poised for rapid, pro-inflammatory effector functions. 

Although further characterization experiments are clearly required, there are many lines of 

evidence suggesting that CD27- HLA-DR+ CD4+ T cells are functionally relevant to RA 

pathology – as well as to autoimmunity more broadly – and represent a high-priority target for 

development as biomarkers or therapeutic targets. 

 Chapter 4 describes a large-scale case-control study of RA synovial tissue samples, from 

the Accelerating Medical Partnerships Rheumatoid Arthritis/Systemic Lupus Erythematosus 

(AMP RA/SLE) network, which involves obtaining, disaggregating, and performing single cell 

profiling on synovial tissue from cases and controls to query both immune infiltration and 

stromal adaptions. In this study, we were able to align multiple modes of single cell 

transcriptomic, bulk transcriptomic, and proteomic data to more robustly detect disease-linked 

populations. In this study, the limited sample size prevented us from performing differential 

abundance analyses using the single cell transcriptomic data alone. However, by defining cell 

populations with mass cytometry and using MASC to identify differential abundance, we were 

able to annotate disease-relevant populations transcriptomically by aligning mRNA-based 

clusters and protein-based clusters with CCA. We identified sublining fibroblasts, pro-

inflammatory monocytes, autoimmune-associated B cells, and PD-1hi T cells as expanded in RA 

patients compared to osteoarthritis (OA) controls. While sublining fibroblasts had previously 

been linked to RA223, the combination of single cell modalities allowed us to resolve a population 

of THY1+CD34-HLA-DRhi fibroblasts that was nearly 15-fold expanded and produced massive 

amounts of the pro-inflammatory cytokine IL6, highlighting this specific subset as a therapeutic 

target. We saw that PD-1hi T cells were expanded in the RA synovium, partially replicating 

previous observations that peripheral helper T cells were expanded in RA. The observation of an 
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expansion of autoimmune-associated B cells was particularly striking, as this had not previously 

been demonstrated in RA. An advantage of the AMP RA/SLE network is that these discoveries 

can be directly followed up on in a larger cohort of about 100 synovial tissue samples from RA 

patients, which is currently planned for the next phase of the project. The greatly increased 

sample size of this study should improve our ability to detect more subtle case-control 

associated shifts in abundance, as the preliminary data in Chapter 2 suggests.  

 

Looking forward with single cell immunoprofiling 

The rapid expansion of high-dimensional single-cell technologies in the past decade has 

revolutionized the study of systems characterized by a diversity of cell types, like the immune 

system. By capturing cell-to-cell heterogeneity that is obscured by bulk analyses, methods such 

as mass cytometry and single-cell RNA-seq (scRNA-seq) provide the opportunity to measure 

proteins and genes that reflect each T cell’s functional program. New technologies like single-cell 

ATAC-seq (scATAC-seq) identify accessible regions of DNA across the genome and support 

clustering of single cells by their active regulatory elements, which may represent a more 

functionally-accurate way to define populations250. Single cell repertoire sequencing provides 

the opportunity to uniquely identify individual T and B cell clones as well as trace their 

expansion in a disease setting274,275. Beyond integrating data across studies and across assays, 

the next stage of advancement for single cell technologies is be the simultaneous acquisition of 

transcriptomic and proteomic data from a single cell. Multiple methods for conducting such 

analyses have been described144,186,276,277 but have yet to be applied in any large-scale 

immunoprofiling efforts. The ability to obtain this type of data would allow research into the 

temporal dynamics of transcription and protein expression as well as provide higher-resolution 

definition of single cells. Alongside the development of combined single-cell transcriptomic and 

proteomic assays, work is currently ongoing on optimizing methods that can perform both 
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single cell RNA-seq and repertoire sequencing, or single cell ATAC-seq and repertoire 

sequencing, simultaneously278,279.  

Given the high levels of inter-individual variability in the human immune system, the 

ability to aggregate data across multiple studies is an attractive goal for conducting well-

powered analyses. Currently, data aggregation is challenging due to the high dimensionality of 

single cell data and the difficulty of overcoming different datasets for analysis which include 

differences in the use of specific sequencing protocols, technical batch effects, and differences in 

sample handling. Standardization of normalization and quality control methods will be key, as 

small differences in data processing can overpower biological signals in the noisy context of 

immunoprofiling; for example, the use of different software pipelines for processing single cell 

RNA-seq data will impede combined analysis. We have demonstrated one method of aligning 

single cell data across modalities with canonical correlation analysis; another recently developed 

method called Harmony involves finding a joint projection of different datasets optimized such 

that the influence of batch and sample effects is minimzed148.  

For immunological applications, a key initial step should be to better characterize human 

lymphocytes using single cell data. Building a reference map of the human immune system is a 

difficult and complicated task; however, the dendritic cell atlas or the work of Wong et al. 

characterizing T cells across tissues provide examples of the power of this approach84,212. 

Incorporating data on from multiple assays to define lymphocyte profiles will be essential for 

understanding their functional impact, as shown by multiple studies that utilize repertoire 

sequences or expression data in combination with single cell cytometry to identify disease-

relevant populations168,280,281. The development of new peptide-MHC multimeric complexes 

supports the detection and isolation of antigen-specific lymphocytes at much lower frequencies 

than was previously feasible282, while new methods have been recently developed to provide 

high-throughput single cell repertoire sequencing of B and T lymphocytes283,284. 
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High-dimensional single cell analyses of RA synovium have revealed novel lymphocyte 

and stromal cell populations that are pathologically expanded in the joints of RA patients. These 

cell populations may now be evaluated as potential therapeutic targets. New single cell 

technologies will enable detailed characterization of the specific clones of CD4+ T cells that are 

expanded in RA and help highlight new cell phenotypes to pursue as therapeutic targets or 

biomarkers. However, the increased resolution of single cell analyses will be wasted without 

defining a set of statistically-sound standards for experiments that enable combining 

experimental data across batches, assays, and studies. As the magnitude of data that is produced 

by single cell immunoprofiling increases and reveals unprecedented levels of diversity among 

immune cell, methodological rigor will be critical for properly deciphering mechanisms of 

disease. 
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Supplementary Figure 1 – MASC Type 1 Error 

(a) MASC demonstrates well-controlled type 1 error rates. MASC was run on the resting dataset 
after randomizing case-control labels 10000 times to eliminate any case-control associations. 
The proportion of p-values at different thresholds are plotted for each cluster. (b) MASC p-
values obtained in the same manner as previous, but without donor or batch specific random 
effect terms. (c) P-values obtained in the same manner for binomial association tests on 
clusters found in the resting dataset.  
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Supplementary Figure 2 – SNE Projection Density 

(a) SNE projections of datasets before (top) and after (bottom) stimulation, split by case-control 
status. Coloring the SNE projections by density identifies regions that are differentially abundant 
between RA and control samples. 
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Supplementary Figure 3 – Cluster Informativeness Metric Analysis of Clustering 
Approaches 

We clustered the same dataset using three different clustering algorithms, DensVM, 
Phenograph, and FlowSOM. These algorithms identified 19 (DensVM and FlowSOM) or 21 
(Phenograph) clusters. (a) Clusters found by DensVM, Phenograph, and FlowSOM had similar 
average CIM scores when considering marker expression, indicating that the clusters found by 
these algorithms were similarly informative. That is, marker intensities were different from the 
average marker expression profile across clusters to the same extent. (b) Clusters found by 
Phenograph and FlowSOM had a significantly higher CIM score when considering batch than 
those found by DensVM, indicating that the Phenograph and FlowSOM clusters were more 
affected by batch effects. We assessed significance using a Wilcoxon rank sum test and p-
values were Bonferroni adjusted to control for multiple testing. 
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Supplementary Figure 4 – DensVM Clustering Elbow Plots 
 
In order to define the optimal number of clusters, we use the the elbow strategy. We clustered 
data with DensVM across a range of bandwidth values, yielding different numbers of clusters at 
each of the 25 bandwidth values chosen. We then took the ratio of between-cluster variance to 
total variance to measure the amount of variance explained by each set of clusters. The set of 
clusters used in our analyses is marked in red and an exponential fit to the points shown is 
plotted as a dashed blue line. (a) DensVM clustering of the resting dataset produced 3-290 
clusters across different bandwidths. The bandwidth producing 19 clusters (red) is at an 
inflection point for the amount of between-cluster variance explained. (b) DensVM clustering of 
the stimulated dataset produced 3-225 clusters across different bandwidths. The bandwidth 
producing 21 clusters (red) is at an inflection point for the amount of between-cluster variance 
explained.  
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[data shown in separate file: Appendix_I_Supplementary_Figure_5.pdf] 
  
Supplementary Figure 5 – Marker Expression Distribution Plots for DensVM Clusters 
 
For each cluster in the resting (n = 19) and stimulated (n = 21) datasets, we plotted the 
distribution of marker expression for cells in the cluster against the expression distribution for 
that marker for cells across the entire dataset. Expression specific to the cluster is colored in 
red, while dataset expression is colored in dark grey. Mass cytometry expression values are 
shown after applying a standard arcsinh transformation.  
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Supplementary Figure 6 – Association Permutation Testing and Cluster Alignment 

(a) The enrichment or depletion of RA cells relative to the overall proportion is shown for all 
clusters identified in the resting (left) and stimulated (right) datasets. (b, c) Association p-values 
as calculated by MASC (y-axis) and by explicit permutation (x-axis) correlate in both resting and 
stimulated datasets. Spearman's correlation coefficients for (b) and (c) were rs = 0.82 and rs = 
0.86, respectively. (d) Clusters in the stimulated dataset ranked by their overall distance from 
cluster 18. After normalizing marker expression in each cluster, cluster centroids were created 
and Euclidean distances were calculated between all clusters in the stimulated dataset and 
cluster 18 in the resting dataset. (e) Same as (d), but for distance from cluster 7 in the resting 
dataset. 

  

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
A

 F
ol

d 
En

ric
hm

en
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a

b

d

c

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

� �

�

�

1

2

3 4

5

6

7

8

9

10

11

12

13
14

1516

17

18

19

0

1

2

3

4

0 1 2 3 4
− log10P   Permutation

−
lo

g 1
0P

   
M

ix
ed

  M
od

el

Rest Dataset

�

� �

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�
1

2
3

4

5

6
7

8

9
10

11

12

13
14

15
16

17

18

19

20

21

0

1

2

3

4

0 1 2 3 4
− log10P   Permutation

−
lo

g 1
0P

   
M

ix
ed

  M
od

el

Stim Dataset

0

2

4

6

8

Sub
se

t 1
8S

Sub
se

t 2
0S

Sub
se

t 1
3S

Sub
se

t 1
4S

Sub
se

t 1
0S

Sub
se

t 3
S

Sub
se

t 1
2S

Sub
se

t 5
S

Sub
se

t 2
S

Sub
se

t 8
S

Sub
se

t 7
S

Sub
se

t 2
1S

Sub
se

t 1
S

Sub
se

t 1
6S

Sub
se

t 1
9S

Sub
se

t 4
S

Sub
se

t 9
S

Sub
se

t 1
1S

Sub
se

t 6
S

Sub
se

t 1
7S

Sub
se

t 1
5S

Su
bs

et
 1

8R
 C

en
tro

id
 D

is
ta

nc
e

e

0

2

4

6

8

Sub
se

t 2
1S

Sub
se

t 4
S

Sub
se

t 7
S

Sub
se

t 1
1S

Sub
se

t 6
S

Sub
se

t 1
4S

Sub
se

t 5
S

Sub
se

t 8
S

Sub
se

t 1
0S

Sub
se

t 9
S

Sub
se

t 2
S

Sub
se

t 1
3S

Sub
se

t 1
6S

Sub
se

t 1
S

Sub
se

t 3
S

Sub
se

t 1
2S

Sub
se

t 1
7S

Sub
se

t 2
0S

Sub
se

t 1
9S

Sub
se

t 1
8S

Sub
se

t 1
5S

Su
bs

et
 7

R
 C

en
tro

id
 D

is
ta

nc
e



 

 175 

 

Supplementary Figure 7 – Phenograph and FlowSOM Clustering. 

(a) Phenograph identified 21 clusters in the resting dataset, including an CD27- HLA-DR+ TEM 
population (cluster 4) that is significantly expanded in RA. (b) Odds ratios and association p-
values were calculated by MASC for each cluster identified by Phenograph. The yellow line 
indicates the significance threshold after applying the Bonferroni correction for multiple testing. 
(a) FlowSOM identified 19 clusters in the resting dataset, including an CD27- HLA-DR+ TEM 
population (cluster 19) that is nominally expanded in RA. (b) Odds ratios and association p-
values were calculated by MASC for each cluster identified by FlowSOM. The yellow line 
indicates the significance threshold after applying the Bonferroni correction for multiple testing. 
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Supplementary Figure 8 – Association Testing with Citrus 

Citrus was run on the resting dataset but failed to produce models with acceptable error rates 
using either L1-penalized regression (a) or nearest shrunken centroid (b) methods. Model 
features found to be associated with case-control status by either method are unlikely to be 
meaningful given the extremely high cross-validation error. 
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Supplementary Figure 9 – Flow Cytometry and RNA-seq Gating Strategies 

(a) Gating strategy used to isolate CD27- HLA-DR+ cells for flow cytometry quantification. Cells 
were first gated to lymphocytes using forward and side scatter parameters, then to CD4+ 
memory T cells before being split into four populations based upon the expression of CD27 and 
HLA-DR. (b) Gating strategy used to isolate populations for RNA sequencing. Cells were gated 
to lymphocytes using forward and side scatter parameters, then gated as CD14- CD19- to 
remove any non T cell lymphocytes. Cells were then gated to CD4+ T cells before isolating the 
following populations: regulatory T cells (CD25+ CD127-), central memory T cells (CD62L+ 
CD45RA-), naïve T cells (CD62L+ CD45RA+) and effector memory T cells (CD62L- CD45RA-).  
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Supplementary Figure 9 (continued) Effector memory T cells were then split into four 
populations based upon the expression of CD27 and HLA-DR. (c) Expression of CD45RO and 
CD45RA is shown for all four effector memory populations analyzed by RNA-seq. CD27- HLA-
DR+ cells are uniformly CD45RA- CD45RO+. (d) Same as (c), but the expression of CD62L and 
CCR7 are shown.  
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Supplementary Figure 10 – CD27 and HLA-DR Expression in Flow Cytometry Cohort 
 
The expansion of the CD27- HLA-DR+ T cell population in RA patients was validated in an 
independent cohort of 39 seropositive RA patients and 27 controls using flow cytometry. The 
frequency of CD27 and HLA-DR cells among CD4+ memory T cells is shown for 10 
representative donors, 5 cases and 5 controls. 
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Supplementary Figure 11 – CD4+ Effector Memory T Cell Populations in a Clinical 
Response Cohort 

We quantified the frequency of CD27- HLA-DR+ T cells in 23 RA patients before and 3 months 
after initiation of a new medication for RA. Patients were separated into those who experienced 
a clinical response (n = 18) versus those that did not (n = 5), defined as a reduction (-ΔCDAI) or 
an increase in CDAI scores (+ΔCDAI). (a) The fold-change in CD27- HLA-DR+ frequency was 
significantly different between the two groups of patients (p=0.02, Wilcoxon rank sum test). (b) 
We quantified CD27- HLA-DR+ cell frequencies in patients who experienced a reduction in 
disease activity after initiation of a new medication for RA and those who did not. The frequency 
of the CD27- HLA-DR+ subset significantly decreased in -ΔCDAI individuals (p=0.006, 
Wilcoxon rank sum test), but did not significantly change among +ΔCDAI individuals. (c) Same 
as (b), except that the frequency of CD27+ HLA-DR- was quantified in ΔCDAI and +ΔCDAI 
individuals. We calculated frequencies of CD27- HLA-DR+ and CD27+ HLA-DR- cells from all 
CD4+ memory T cells, and assessed significance with Wilcoxon signed-rank tests. 
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Supplementary Figure 12 – CD27- HLA-DR+ Frequency and Clinical Characteristics 
 
The frequency of CD27- HLA-DR+ cells was quantified as the percentage of memory CD4+ T 
cells in an independent cohort of 39 seropositive RA patients and 27 controls using conventional 
flow cytometry. RA patients were then dichotomized by clinical disease activity index (CDAI) 
scores, methotrexate use (MTX) or anti-TNF therapy use (aTNF). The frequency of CD27- HLA-
DR+ cells was not significantly different between groups in any comparison. 
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Supplementary Figure 13 – RNA-seq Analysis of CD4+ T Cell Subsets 

(a) Expression of lineage-defining transcription factors for CD4+ T helper subsets shown for 
each population analyzed by RNA-seq. Populations are ordered by principal component 1 
loadings, from naïve to effectors. (c) The expression of selected targets of transcription factor 
CIITA is shown for each sequenced T cell population. 
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Supplementary Figure 14 – Flow Cytometry Expression Quantification 

The expression of markers granzyme A, perforin, and IFN-g across all samples are displayed, 
with the gating used to to define percent positivity for those markers. The same gates were used 
to analyze CD27+ HLA-DR- and CD27- HLA-DR+ populations. The expression plots of 
granzyme A and perforin show the concatenation of six samples (3 RA, 3 OA), while the 
expression plot of IFN-g shows concatenation of 12 samples (6 RA, 6 OA). 
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Supplementary Figure 15 – Using a Neural-Net Auto-encoder to Cluster Mass Cytometry 
Data 
 
(a) Schematic of the deep auto-encoder that was trained upon the rest data using 3 hidden 
layers. Clustering was then performed on the middle layer (2 node) projection (highlighted in 
green). (b) Clusters identified by the auto-encoder were tested for case-control associations 
using MASC. None of the clusters reached significance after correcting for multiple hypothesis 
testing. (c) The Jaccard index was calculated between each cluster identified by DensVM (x-
axis) and the autoencoder (y-axis). The most significant disease-associated auto-encoder 
clusters share significant overlap with the original DensVM clusters. 
  

CD25

TNFa

CD62L

...

IL5

CD25

TNFa

CD62L

IL5

...

a

De
ns
VM

_1

De
ns
VM

_2

De
ns
VM

_3

De
ns
VM

_4

De
ns
VM

_5

De
ns
VM

_6

De
ns
VM

_7

De
ns
VM

_8

De
ns
VM

_9

De
ns
VM

_1
0

De
ns
VM

_1
1

De
ns
VM

_1
2

De
ns
VM

_1
3

De
ns
VM

_1
4

De
ns
VM

_1
5

De
ns
VM

_1
6

De
ns
VM

_1
7

De
ns
VM

_1
8

De
ns
VM

_1
9

GMM_1

GMM_2

GMM_3

GMM_4

GMM_5

GMM_6

GMM_7

GMM_8

GMM_9

GMM_10

GMM_11

GMM_12

GMM_13

GMM_14

GMM_15

GMM_16

GMM_17

GMM_18

GMM_19

0

0.1

0.2

0.3

0.4

0.5

c

15

104 14191118 17 13
39 25 121716681

0.1

0.01

0.001

1/4 1/2 1 2 4

Odds Ratio

P 
va

lu
e

 

b



 

 185 

Isotope Marker Clone 
Nd143Di IL-5 TRFK5 
Nd144Di CCR5 NP-6G4 
Nd145Di CD4* RPA-T4 
Nd146Di CD8a RPA-T8 
Sm147Di CD45RO* UCHL1 
Nd148Di CD28 CD28.2 
Sm149Di CD25 2A3 
Eu151Di PD-1 EH12.2H7 
Sm152Di TNF MAb11 
Eu153Di CD62L DREG-56 
Sm154Di CD3 UCHT1 
Gd155Di CD27 L128 
Gd156Di CXCR3 G025H7 
Gd158Di IL-2 MQ1-17H12 
Dy162Di FoxP3 PCH101 
Ho165Di IFN-g B27 
Er167Di CD38 HIT2 
Er168Di CD40L 24-31 
Tm169Di IL-17A BL168 
Yb171Di CXCR5 51505 
Yb174Di HLA-DR L243 
Lu175Di Perforin B-D48 

 

Supplementary Table 1: Panel design for mass cytometry experiments. Markers that are 
starred were only used for gating purposes to confirm the purity of CD4 memory T cell isolation 
and were not including in clustering or downstream analyses. 
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Cluster 
Cell 

Number 
RA 

Proportion 
Permutation 

p value 
MASC 
p value 

Odds 
Ratio 

Odds 
Ratio, 
2.5% CI 

Odds 
Ratio, 

97.5% CI 
1 6000 0.493 2.43E-01 7.12E-01 1.0 0.8 1.3 
2 4506 0.475 4.18E-01 2.36E-01 0.8 0.6 1.1 
3 3994 0.492 4.71E-01 9.60E-01 1.0 0.8 1.3 
4 2776 0.437 1.24E-01 6.40E-01 0.9 0.7 1.2 
5 2205 0.498 4.69E-01 8.78E-01 1.0 0.7 1.3 
6 1578 0.406 7.68E-03 9.31E-03 0.7 0.5 0.9 
7 2100 0.385 1.80E-04 8.78E-04 0.6 0.5 0.8 
8 2138 0.389 3.94E-02 6.20E-02 0.6 0.3 1.0 
9 3856 0.497 3.27E-01 5.39E-01 1.1 0.8 1.6 
10 2317 0.467 3.64E-01 1.81E-01 0.8 0.5 1.1 
11 790 0.486 4.89E-01 8.96E-01 1.0 0.6 1.5 
12 1421 0.367 1.34E-02 2.03E-03 0.5 0.4 0.8 
13 965 0.602 9.90E-02 1.54E-01 1.4 0.9 2.1 
14 2781 0.568 7.59E-02 2.56E-01 1.3 0.8 1.9 
15 1048 0.586 2.57E-02 5.29E-02 1.5 1.0 2.2 
16 7507 0.461 3.54E-01 4.89E-01 0.9 0.7 1.2 
17 1020 0.520 2.09E-01 3.30E-01 1.2 0.9 1.5 
18 1184 0.636 9.40E-04 5.59E-04 1.9 1.3 2.7 
19 1814 0.507 1.91E-01 2.17E-01 1.2 0.9 1.6 

 

Supplementary Table 2: MASC analysis of the 19 clusters identified in the resting dataset. 
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Cluster 
Cell 

Number 
RA 

Proportion 
Permutation 

p value 
MASC 
p value 

Odds 
Ratio 

Odds 
Ratio, 
2.5% CI 

Odds 
Ratio, 

97.5% CI 
1 2518 0.430 8.35E-02 2.45E-01 0.7 0.4 1.2 
2 1757 0.429 4.10E-02 1.37E-01 0.7 0.5 1.1 
3 2981 0.586 1.64E-02 1.48E-01 1.3 0.9 1.8 
4 2086 0.440 5.32E-02 4.15E-02 0.7 0.4 1.0 
5 3202 0.463 1.38E-01 1.71E-01 0.8 0.5 1.1 
6 2031 0.435 8.83E-02 3.35E-02 0.6 0.4 1.0 
7 3687 0.452 8.10E-02 9.26E-02 0.7 0.5 1.1 
8 3834 0.565 1.52E-02 4.56E-02 1.2 1.0 1.5 
9 1160 0.389 4.66E-03 1.68E-03 0.5 0.4 0.8 
10 2908 0.416 3.47E-03 4.67E-03 0.7 0.5 0.9 
11 4742 0.478 6.32E-02 2.11E-01 0.9 0.7 1.1 
12 3934 0.469 2.17E-01 1.67E-01 0.8 0.5 1.1 
13 2436 0.501 4.97E-01 7.52E-01 1.0 0.7 1.3 
14 4462 0.522 3.26E-01 8.27E-01 1.0 0.8 1.3 
15 755 0.458 3.45E-01 2.61E-01 0.7 0.4 1.3 
16 1459 0.657 2.66E-03 1.05E-02 1.6 1.1 2.3 
17 1701 0.646 1.29E-01 3.04E-01 1.4 0.8 2.4 
18 1182 0.619 7.90E-04 1.28E-03 1.7 1.2 2.2 
19 1483 0.626 1.23E-01 1.60E-01 1.4 0.9 2.4 
20 911 0.618 7.90E-04 1.61E-03 1.7 1.2 2.3 
21 2771 0.487 2.68E-01 5.48E-01 0.9 0.7 1.2 

 

Supplementary Table 3: MASC analysis of the 21 clusters identified in the stimulated dataset. 
  



 

 188 

Gene Set Pathway p value q value Size Enrichment 
GSE22886 NAÏVE CD4 T CELL VS NK CELL 8.45E-13 1.01E-11 159 NK CELL 
GSE3982 CENT MEMORY CD4 T CELL VS NK CELL 3.53E-08 1.74E-07 159 NK CELL 
GSE27786 CD4 T CELL VS NK CELL 1.59E-04 6.38E-04 170 NK CELL 
GSE3039 CD4 T CELL VS NKT CELL 5.07E-03 1.22E-02 166 NKT CELL 
GSE3982 EFF MEMORY CD4 T CELL VS NK CELL  1.67E-01 3.35E-01 149 NK CELL 

 
Supplementary Table 4: Gene set enrichment analysis of genes differentially expressed in 
CD27- HLA-DR+ cells. Q values represent FDR corrected p-values, using an FDR of 5%. The 
number of genes in each set is listed as size. Enrichment indicates which cell type gene 
signature was enriched in genes specific for CD27- HLA-DR+ cells. 
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Supplementary Figure 1 – Flow cytometry gating scheme and a data-driven approach to 
separate samples based on flow cytometry data. 

a. Flow cytometry gating: stromal fibroblasts (CD45–PDPN+), monocytes (CD45+CD14+), T cells 
(CD45+CD3+), and B cells (CD45+CD3–CD19+). b. As a percentage of live cells: synovial T cells, 
B cells, and monocytes for OA-arthro (OA arthroplasty), RA-arthro (RA arthroplasty), and RA-
biopsy (RA biopsy) by flow cytometry. c. Comparison of lymphocytes (T and B cells) and 
monocytes, as a percentage of live cells by flow cytometry. d. Mahalanobis distance from OA 
samples. Each dot represents a donor. Each panel highlights the contribution of T cells, B cells, 
and monocytes to the distance (y-axis). We defined leukocyte-rich RA samples as those with 
Mahalanobis distance from OA greater than 4.5 (dashed line). We identified 19 leukocyte-rich 
RA, 17 leukocyte-poor RA, and 15 OA samples in our cohort. 
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Supplementary Figure 2 – scRNA-seq analysis pipeline and distribution of identified 
subsets by scRNA-seq, flow cytometry, and protein fluorescence on each cell. 

a. CCA-based integrative pipeline of scRNA-seq analysis. 1) We first select the highly variable 
genes from both scRNA-seq and bulk RNA-seq; 2) We integrate single cells with bulk samples 
based on the selected genes from both sides and learn a linear projection that the correlation 
between both sides are maximized using CCA; 3) we then calculate a cell-to-cell similarity 
matrix based on the top 10 canonical variates from CCA; 4) We build a K-nearest neighbors 
(KNN) network on the cell-to-cell similarity matrix and then convert it into an adjacency matrix; 
5) we cluster the cells using the Infomap community detection algorithm to identify major groups 
on the cell-to-cell adjacency matrix; 6) we visualize the cells with tSNE; 7) We perform 
differential gene expression analysis on the identified cell type clusters and report three 
statistics: AUC, percent of non-zero expressing cells, and fold change; 8) finally, we perform 
gene set enrichment analysis to find pathways associated with each identified cell cluster. b. 
Silhouette analysis of 18 scRNA-seq clusters. The measure range is [-1, 1], where a value near 
1 indicates a cell is far from neighboring clusters, a value near 0 indicates a cell is near a 
decision boundary, and a negative value indicates a cell is closer to a neighboring cluster. The 
features of the boxes are as follows. The box represents the 25th and 75th quantiles. The 
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Supplementary Figure 3 (continued) center line represents the 50th quantile. The low whisker 
is the lowest value greater than -1.5 times the inter-quartile range plus the 25th quantile. The 
high whisker is the greatest value less than 1.5 times the inter-quartile range plus the 75th 
quantile. The points are values outside the range of the whiskers. d. Cellular composition of 
major synovial cell types for each donor by flow cytometry. e. Flow cytometry protein 
fluorescence of cell type markers on each single cell: PDPN, THY1 (CD90), CD45, CD19, 
CD14, and CD3. 
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Supplementary Figure 4 – Mass cytometry data analysis. 

a. Protein markers of synovial cells (3,000 downsampled) from all donors by mass cytometry. 
Color represents intensity of expression level. b-e. Distribution of identified subpopulations for 
each cell type. f. Cell counts of all clusters by comparing all the 26 donors reveal that leukocyte-
rich donors show high cell abundance of HLA-DR+ fibroblasts (THY1+ CD34– HLA-DR+ and 
THY1+ CD34+ HLA-DR+), Tph cells (CD4+ PD-1+ ICOS+), two CD14+ monocytes subpopulations 
(CD11c+ CCR2+ and CD11c+ CD38+), and a B cell subpopulation (IgM+ IgD+ CD11c+).  
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Supplementary Figure 5 – Comparison of CCA-based clustering and PCA-based 
clustering on batch effect correction performance. 

a. Cells colored by 18 scRNA-seq clusters (top), 24 384-well plates (middle), and 21 donors 
(bottom) using the CCA-based integrative pipeline. b. Cells colored by scRNA-seq clusters, 
plates, and donors using PCA-based clustering by Seurat R package. Small clusters of cells 
from single donors are circled.  
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Supplementary Figure 5 – Cell density quantification on 10 histological synovial samples. 

a. Correlation between cell density (cell counts per 200x field) and flow cytometric cell yields on 
B cells. b. Correlation between cell density (cell counts per 200x field) and flow cytometric cell 
yields on T cells. In general, we observed that the samples where we get the most single cell 
measurements are exactly the samples with the best yield and also the ones with the most 
inflammation. 
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Supplementary Figure 6 – Flow cytometry gating schema for experimental validations. 

To identify and subset the immune and stroma populations that emerged from the scRNA-seq 
analyses, we sorted synovial cell subsets and disaggregated synovial tissues based on markers 
revealed by the scRNA-seq analysis. a. Flow gating strategy for synovial fibroblasts. b. Flow 
gating strategy for synovial B cells. c. Flow gating strategy for synovial monocytes. See 
Methods for more details. 
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Supplementary Figure 7 – Bulk RNA-seq analysis for flow sorted subpopulations of 
synovial fibroblasts, monocytes, and B cells to validate identified scRNA-seq clusters. 

For each cell type, we trained a linear discriminant analysis (LDA) model on the scRNA-seq 
clusters. Next, we applied this LDA model to classify each bulk RNA-seq sample 
(Supplementary Figure 6). After discovering scRNA-seq cluster markers (top 500 genes sorted 
by AUC for each cluster), we wanted to test if we could sort new cells from independent 
samples and see the same gene expression profiles in the new bulk samples as the original 
scRNA-seq samples. a. LDA projection of training data on single-cell fibroblasts (SC-F1-4). b. 
LDA projection of bulk RNA-seq samples that include sorted THY1-DR- populations from 4 OA, 
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Supplemental Figure 7 (continued) THY1+DR- population from 4 OA and 6 RA, and 
THY1+DR+ population from 6 RA. c. Posterior probabilities showing confidence of assigning 
each sorted fibroblast bulk sample to fibroblast scRNA-seq clusters. d. Genes (top 10 by Z-
score) that are differentially expressed between two scRNA-seq clusters (SC-F2 and SC-F4) 
are also differentially expressed in the sorted bulk RNA-seq. e. LDA projection of training data 
on single-cell monocytes (SC-M1-4). f. LDA projection of bulk RNA-seq samples that include 
sorted CD14+CD11c+++CD38+++ population from 2 RA and CD14+CD11c+CD38- population 
from 2 OA. g. Posterior probabilities showing confidence of assigning each sorted monocyte 
bulk sample to monocyte scRNA-seq clusters. h. Genes (top 10 by Z-score) that are 
differentially expressed between two scRNA-seq clusters (SC-M1 and SC-M2) are also 
differentially expressed in the sorted bulk RNA-seq. i. LDA projection of training data on single-
cell B cells (SC-B1-4). j. LDA projection of bulk RNA-seq samples that include sorted CD11c-
IgD- CD27+ population from 6 RA, CD11c- IgD+ CD27- population from 3 RA, CD19+CD11c+ 
population from 3 RA, and plasma cells from 3 RA. k. Posterior probabilities showing confidence 
of assigning each sorted B cell bulk sample to B cell scRNA-seq clusters. l. Genes (top 10 by Z-
score) that are differentially expressed between two scRNA-seq clusters (SC-B3 and SC-B4) 
are also differentially expressed in the sorted bulk RNA-seq. 
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Supplementary Figure 8 – Pathway enrichment analysis for identified scRNA-seq 
clusters. 
a. Enriched pathways on each monocyte cluster by scRNA-seq. b. Enriched pathways on each 
B cell cluster by scRNA-seq. c. Identified Treg (SC-T2) and Tph and Tfh (SC-T3) scRNA-seq 
clusters. We used hierarchical clustering with R functions hclust() and cutree(k=2) to pinpoint 
the previously characterized rare cell populations. 
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Supplementary Figure 9 – Multi-color immunofluorescent staining of paraffin synovial 
tissue from target RA and OA patient samples. 

We performed multi-color immunofluorescence images to validate the unique cellular and 
molecular signatures revealed by the scRNA-seq analysis and show the contrasting cellular and 
molecular features of the microenvironment in the inflamed RA and OA synovia. a. Numerous 
CD14+IL-1β+ co-localization in inflamed RA synovium tissue (denoted by white box). b. Very few 
CD14+IL-1β+ cells in the OA synovium. c. Numerous CD3+CD8+IFNg+ T cells in RA biopsy 
(denoted by white box). d. Low numbers of CD3+CD8+IFNg+ T cells in the synovium of OA. e. An 
increased number of CD20+T-bet+CD11c+ B cells in the inflamed RA synovium (denoted by 
white box). f. very scared B cells and specially T-bet+CD20+ B cells in synovial tissues of OA. 
Globally, we found enrichment for the populations of interest in the biopsies of RA inflamed 
synovium, compared to specific populations in OA synovia. Images were acquired at 200x 
magnification. Scale bar is 100 îm. 
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Supplementary Figure 10 – Granzyme expression and cytokine production by synovial 
tissue CD8 T cells.   

a. RA synovial tissue samples were disaggregated, stained for surface markers and intracellular 
granzyme B (GZMB) and granzyme K (GZMK), and analyzed by flow cytometry. Shown are 
plots of GZMB versus GZMK expression by CD8 T cells from three representative tissue 
specimens out of eight total tissues analyzed. b. GZMK and GZMB expression patterns by HLA-
DR+ CD8 T cells. c. IFNg production by CD4 and CD8 T cells from RA synovial tissue, 
measured by intracellular flow cytometry after stimulation with PMA/ionomycin. Cells from the 
same synovial tissue sample are connected by a line. (one–tailed Student’s t-test p = 0.028, t-
value = 2.1, df = 10.94). d. TNF production by CD4 and CD8 T cells from RA synovial tissue 
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Supplementary Figure 11 – Bulk RNA-seq data analysis. 

a. Quality control of bulk RNA-seq samples. Common genes are defined as the set of genes 
detected with at least 1 mapped fragment in 95% of the samples (13,041 genes). X-axis is the 
number of cells for each bulk RNA-seq sample. Y-axis is the percentage of detected common 
genes for each sample. We discarded 25 low quality samples that have less than 99% (dashed 
line) of common genes detected, resulting 167 post-QC samples in all. b. PCA analysis on all 
the post-QC samples shows that most of the variance in the bulk RNA-seq data is due to cell 
type. c. Cell type marker genes show that there is no obvious contamination in the bulk RNA-
seq data. d-g. PCA analysis on samples from each cell type. The samples from leukocyte-rich 
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Supplementary Figure 11 (continued) RA appear distinct from leukocyte-poor RA and OA 
samples. This difference in transcriptional signatures in inflamed tissue is largely determined by 
altered cellular composition. h-i. Distribution of significantly enriched GO terms in leukocyte-rich 
RA by GSEA. Leukocyte-rich fibroblasts and monocytes share the common pathways of Type I 
interferon and inflammatory response. j. Correlation between bulk RNA-seq genes and immune 
cell type abundances in RA synovial fibroblasts. Integrating bulk RNA-seq samples from 
fibroblasts with multiple cell type flow gates reveals that T cells, B cells, and monocytes that are 
abundant in RA synovial tissue directly influence the expression of fibroblasts in the RA 
synovium. 
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Supplementary Figure 12 – Correlation between bulk RNA-seq expression and proportion 
of non-zero expressing cells on scRNA-seq cluster markers. 
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Supplementary Figure 12 (continued) The expression level of a gene in a bulk RNA-seq 
sample can indicate the abundance of cells expressing that gene in the bulk sample. In other 
words, it is possible to infer the abundance of some cellular subpopulations from bulk RNA-seq 
data. We depict two marker genes per scRNA-seq cluster and show the bulk RNA-seq 
expression (x-axis) is correlated with the percent of non-zero expressing cells over the total 
number of cells (y-axis) for the overlapped a. fibroblast samples, b. monocyte samples, c. B cell 
samples, and d. T cell samples. Pearson’s R-squared and p value are given using the limma R 
package for each correlation scenario. The grey zone represents 95% confidence level interval 
for predictions from a linear model. 
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Supplementary Figure 13 – Correlation between mean proteomic expression by mass 
cytometry and transcriptomic expression by bulk RNA-seq on the overlapped samples. 

Two typical protein/gene markers per cell type were shown for a. fibroblast samples on THY1 
and CD34, b. monocyte samples on CD38 and CCR2, c. B cell samples on CD11c and IgD, 
and d. T cell samples on CD8a and PDCD1. Pearson’s R-squared and p value are given using 
the limma R package for each correlation scenario. The grey zone represents 95% confidence 
level interval for predictions from a linear model. 
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Supplementary Figure 14 - Dynamic filtering strategy for scRNA-seq quality control. 

We selected 2 marker genes expected to be exclusively expressed in each of the 4 cell types: 
PDGFRA and ISLR for fibroblasts, CD2 and CD3D for T cells, CD79A and RALGPS2 for B 
cells, and CD14 and C1QA for monocytes. We counted nonzero expression of these genes in 
the correct cell type as a true positive and nonzero expression in the incorrect cell type as a 
false positive. a. Estimated optimal thresholds for reads per unique molecular identifier (UMI) 
shown for three example quadrants (Q2, Q1, Q4) of three scRNA-seq plates (S006, S008, 
S011). The reader per UMI threshold determines which UMIs we discard. By discarding UMIs 
with few supporting reads, we can reduce the false positive rate (FPR), but this comes at the 
cost of also reducing the true positive rate (TPR). b. After selecting the optimal threshold that 
maximizes the ratio of TPR to FPR for each quadrant, we visualize the FPR and TPR for each 
quadrant. We noticed that some quadrants had poor performance even after optimizing the 
reads per UMI, so we discarded the cells from the red outlier quadrants. c. An example of gene 
expression for MMP2 across all cells before and after filtering the reads per UMI threshold. This 
matrix metalloproteinase is known to be expressed by fibroblasts, but not by other cell types, so 
we did not expect to see MMP2 expression in cell types other than fibroblasts. After applying the 
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Supplementary Figure 14 (continued) reads per UMI threshold to discard UMIs that are 
probably contaminants, MMP2 gene expression is closer to our a priori expectation: very few B 
cells, monocytes, and T cells express this gene. Note that we did not use MMP2 to determine 
the optimal reads per UMI threshold. 
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Supplementary Figure 15 – Assessment of quality of scRNA-seq data for each identified 
cluster. 

We excluded cells with less than 1000 genes detected (at least 1 read). We also excluded cells 
with more than 25% of UMIs coming from 32 mitochondrial genes. This figure shows the post-
QC single cells used in our scRNA-seq analyses. 
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Supplemental Table 1. Clinical characteristics of 51 recruited patients.  
  OA leukocyte-

poor RA 
leukocyte-rich 
RA 

  (n=15) (n=17) (n=19) 

Demographic 
variables 

Age, mean 71 64.2 57.3 

 (Range) (64-81) (42-79) (36-71) 

 Females, n (%) 10 (66.7) 15 (82.4) 14 (73.7) 

RA-related 
variables 

Mean years of disease 
duration  

 15.7 5.5* 

 (range)  (<1-51) (<1-29) 

 RF positive, n (%)  8 (47.1) 16* (84.2) 

 CCP positive, n (%)  10 (58.8) 14 (73.7) 

DMARDs  Prednisone, n (%)  10 (55.6) 4* (22.2) 

 Methotrexate, n (%)  7 (41.2) 3 (15.8) 

 TNFi, n (%)  4 (23.5) 2 (10.5) 

 Rituximab, n (%)  0 (0) 1 (5.3) 

 Abatacept, n (%)  1 (5.9) 1 (5.3) 

 Tofacitinib, n (%)  2 (11.8) 1 (5.3) 

DMARDs = Disease-Modifying Antirheumatic Drugs.  
TNFi = TNF inhibitors (infliximab, etanercept, adalimumab, golimumab).   
RhF = Rheumatoid Factor. CCP = Cyclic Citrullinated Peptide.  
*Significant p-value between leukocyte-poor RA and leukocyte-rich RA. 
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Supplemental Table 2. Antibody staining and fixation of mass cytometry panel.

marker clone Metal Dilution
CD45 HI30 141Pr 1:100
CD19 HIB19 142Nd 1:100
RANKL MIH24 143Nd 1:50
CD64 10.1 144Nd 1:100
CD16 3G8 145Nd 1:100
CD8a RPA T8 146Nd 1:100
FAP Poly 147Sm 1:50
CD20 2H7 148Nd 1:100
CD45RO  UCHL1 149Sm 1:100
CD38 HIT2 150Nd 1:100
CD279/PD-1 EH12.2H7 151Eu 1:100
CD14 M5E2 152Sm 1:100
CD69 FN50 153Eu 1:100
CD185/CXCR5 J252D4 154Sm 1:100
CD4 RPA T4 155Gd 1:100
Podoplanin NC-08 156Gd 1:100
CD3  UCHT1 158Gd 1:100
CD11c Bu15 159Tb 1:100
CD307d/FcRL4 413D12 160Gd 1:100
CD138 MI15 161Dy 1:100
CD90 5.00E+10 162Dy 1:50
CCR2 K036C2 163Dy 1:100
Cadherin 11 3C10 164Dy 2:25
FoxP3 PCH101 165Ho 1:50
CD34 581 166Er 1:100
CD146/MCAM SHM-57 167Er 1:50
IgA 9H9H11 168Er 1:100
ICOS C398.4A 170Er 1:100
CD66b G10F5 171Yb 1:100
IgM MHM-88 172Yb 1:200
CD144/VE-Cadherin BV9 173Yb 1:100
HLA-DR L243 174Yb 1:100
IgD IA6-2 175Lu 1:100
CD106/VCAM-1 STA 176Yb 1:100
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Supplemental Table 3: Identified mass cytometry populations with proportion of cells from 

each disease cohort and on tailed FDR q value. 

 
[data shown in separate file: Appendix_II_Supplementary_Table_3.pdf] 
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Supplemental Table 4: Top 20 marker genes for each single-cell RNA-seq cluster. 

[data shown in separate file: Appendix_II_Supplementary_Table_4.pdf] 
 


