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Abstract

Epilepsy is a devastating condition, impacting over 50 million people worldwide. Understanding and treating this

disease remains a challenge because of its heterogeneous manifestations. A deeper understanding of the underlying

biological mechanisms will help pinpoint regions for resection and offer novel targets for pharmacologic or stimulation-

based therapies. Here, we present a biophysically and anatomically-motivated model that simulates intracranially-

recorded epileptic activity in patients. Our model consists of two components: a mean field model that accounts for

the folded geometry of the cortex and electrodes that capture appropriate electrical contributions from neighboring

neuronal sources. We also include three elements that were previously proposed to play important roles in seizure

dynamics: fast-spiking interneuron population, depolarization block, and evolving extracellular potassium that mod-

ulates neural excitability and gap-junction coupling. This model captures several important findings from patient

electrographic data of seizures that have been analyzed in previous studies: (1) An ictal wavefront slowly propagates

outwards from the epileptogenic focus, recruiting neighboring areas into abnormal activity. Traveling waves emerge

within the recruited area and propagate much faster than the ictal wavefront. (2) Contradictory studies proposed that

the source of traveling waves is either a stationary cortical source or a moving ictal wavefront. Our model suggests

that both cases are plausible and the former happens when the focus is persistent and highly excitable. (3) Seizure

terminates spontaneously and synchronously and the frequency of traveling waves decreases before termination. (4)

Network coupling increases shortly after seizure onset, decreases during propagation and increases again approaching

termination. (5) Consistency of wave direction gradually increases, but the direction can occasionally undergo sud-

den changes. Overall, the model serves as a means to begin understanding various mechanisms underlying seizure

initiation, propagation and termination. It is also greatly customizable and can be adapted to a wide range of unique

clinical cases, providing a first step in quick and cost-effective development of personalized therapies.
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Chapter 1

Introduction

Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. Seizures result from

excessive and abnormal electrical activity in the brain and can lead to a vast array of clinical presentations, including

changes in sensation, loss of awareness, convulsion, memory lapse, etc. But seizures, and epilepsy, are essentially

symptoms of other conditions; they can be caused by infections, brain tumors, trauma, stroke and Alzheimer’s disease,

developmental abnormalities and can often have a genetic basis.

Over 50 million people worldwide suffer from epilepsy; 1 in 26 people will develop it in their lifetime [1]. Fifty to

sixty percent of newly diagnosed patients are expected to achieve remission following medical management [2]. The

remaining may be considered candidates for a surgical based therapy. Among those that undergo resective surgeries,

only 40-50% are free of seizures at 10 years. Accurately localizing the epileptogenic source is often the main challenge

in these resections. In addition, surgery is contraindicated for many patients, because of a high risk of damaging

areas of the brain responsible for vital functions. Therefore, understanding and treating this devastating condition

remains a challenge, not only due to the diverse etiologies but also because of its heterogeneous manifestation in both

temporal and spatial domains. Overall, a more accurate prediction of seizure initiation and propagation based on

each patient’s electrographic activity and brain anatomy can help physicians better pinpoint targets for resection.

This would improve the probability of being seizure-free after surgery, reduce complications, and increase the number

of candidates for whom resection is suitable. Characterization of ictogenesis and understanding of seizure dynamics

will also offer targets for pharmacologic and stimulation-based therapies.

Computational models have gained increased attention in the past few decades as a means to begin exploring the

wide variation of seizure dynamics. They are particularly helpful for hypothesizing mechanisms underlying seizure

activity prior to designing experiments, and can also serve as a platform for testing interventions in silico. Various

models have been proposed, each striking a different balance between cellular details and spatial coverage under the

limitation of computational power. In this work, we hope to achieve an appropriate middle ground – we present

a biophysically and anatomically-motivated model with sufficient spatial scope to allow comparison with patients’

intracranial recordings, while including adequate biological details to enable speculation of mechanisms. The model

captures several important findings from patient electrographic data of focal seizures that have been analyzed in

previous studies (Section 1.2). The model is greatly customizable and can be adapted to a wide range of unique

clinical cases, providing a first step in quick and cost-effective development of personalized therapies.
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1.1 Computational models of epilepsy

In the past decades, significant advances have been made in electrode technologies. Epileptic activity can now be

recorded at different scales, either on the scalp or intracranially. Analysis of these rich data sets have underscored

the need for (1) computational models that explain the pathophysiological factors underlying seizure activity; and

(2) tools that extract useful clinical information from the observations. This work centers on the first goal but draws

from previous research that achieved the second objective.

1.1.1 Network models of the brain

The brain is an extremely complex system, and the challenge faced by any modeling approach is to capture

the essential mechanisms while controlling this complexity. The basic building blocks of the nervous system are

neurons. By generating action potentials that travel down nerve fibers, neurons relay signals from one part of

the body to another. However, to further process the signal and extract useful information, interactions between

neurons are essential. Neural circuits are anatomical and functional entities composed of a series of neurons that are

connected through chemical and electrical synapses at the end of dendrites and axon terminals. Via these synapses,

the activity of one neuron directly influences many others, and the composition of activities enables information flow

and processing. To illustrate this framework computationally, networks – nodes connected by edges – are the most

commonly used structure. By formulating a mathematical description of the relationship between stimuli and evoked

neural responses, computational biologists seek to reproduce neural activity patterns recorded experimentally, which

can further aid the understanding of circuit dynamics.

The specific design of neural networks strongly depends on the nature of the data, which can range from single-unit

recordings, to recordings of small populations of neurons as is found in local field potential (LFP) signals, to recordings

that summarize activity of large neuronal populations at lower spatial resolution, like electroencephalographic (EEG)

signals. Accordingly, models at all levels of details have been proposed to explain epileptic activity; a node in the

network can represent a single neuron, a population of neurons of the same type or even multiple populations. Broadly

speaking, existing models for seizures can be categorized into three groups, in decreasing order of cellular details and

increasing order of spatial coverage (see Figure 1.1 for schematic illustrations) [3]:

• Detailed network models : Each node consists of either a principal neuron or an interneuron and edges represent

synapses and/or gap junctions between two neurons [4]. Details like neuron morphology and ion channels are

often included to investigate the impact of cellular abnormalities (e.g. channelopathies). Data sets are usually

local field potential (LFP) signals, which capture the electric potential in the extracellular space around neurons

and can be acquired through microelectrode arrays like NeuroPort.

• Neural mass models (NMMs, or neuronal population models): Each node summarizes the average activity

(e.g. firing rate) and properties (e.g. resting potential) of a population of a specific type of neuron; explicit

cellular details are often kept to the minimal [5, 6]. Interactions between nodes reflect the amount of chemical

and electrical coupling between different cell types. Similar to detailed network models, NMMs are usually

developed in conjunction with LFP recordings. Note that NMMs cannot be used to analyze spatial dynamics
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Figure 1.1: Schematic illustrations of the three categories of network models. (a) In detailed network models, each node is a

neuron and edges represent chemical or electrical connections between neurons. (b) In neural mass models, each node represents a

population of neurons and edges are the global interactions between different populations. (c) In mean field models, each node is a

neural mass model with localized dynamics, and edges represent longer-range interactions.

because activity of all neurons of the same type is averaged.

• Mean field models (MFMs): To capture the both the spatial and temporal evolution of neural activity, mean

field models couple together multiple NMMs [7, 8, 9, 10]. More specifically, each node in the network is a NMM,

with its own subpopulations and local dynamics, and the nodes can interact with each other through long range

connections like myelinated axons. This type of model enables the study of spatiotemporal patterns, including

traveling waves, at the scale of specific cortical regions or even the entire brain. It is most commonly used to

reproduce electroencephalogram (EEG) recordings, obtained either on the scalp or intracranially. Intracranial

EEG (iEEG) includes both depth EEG, which is recorded through thin wires within the depth of the brain,

and electrocorticography (ECoG), where a grid of electrodes are placed directly on the cortical surface.

Besides these categories of biologically-inspired models, mathematical (or phenomenological) models have also

been developed to study seizure dynamics [11]. They usually do not link specific equations to neurological mechanisms,

but instead focus on how the formulations enable evolving, abstract variables to exhibit behaviors similar to that of

real-life recordings. Although more remote from clinical applications, they have the advantage of covering all possible

cases and can be studied analytically. They were not considered for this work because we intend to propose novel

therapies for epilepsy and the underlying mechanisms are of high relevance.

Among biophysical models, a mean field model is utilized here because we are interested in reproducing interesting

spatiotemporal patterns observed in intracranial electrographic data from epilepsy patients. However, we also draw

from detailed network models and include some cellular properties like ion conductance, because abundant research

has suggested that alterations in ion concentration are strongly linked to seizure dynamics. Overall, our model could
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be considered an extended mean field model, with emphasis on anatomical scope while not losing sight of important

biophysical elements that have direct clinical implications.

1.1.2 Mean field models of epilepsy

Among all three categories of seizure models, mean field models are arguably the least researched (although

they are used more often in other capacities, e.g. sleep and anesthesiology research). One potential reason is that

many simplifications need to be made to make models at such large spatial scale run in a reasonable amount of

time. Assumptions are also necessary because we not yet have experimental data with sufficient coverage. Both

of which make reproducing clinical data much more challenging. For example, since the network connectivity and

neural density of the human brain have not been characterized in full, MFMs usually assume that these parameters

are homogenous across the cortex, which is not accurate and can lead to failure to capture some interesting spatial

fluctuation.

One of the most recent MFMs for seizure is proposed by Cosandier-Rimele et al. and it models the relationship

between the activation of brain sources and the corresponding depth EEG and scalp EEG signals [9]. Although it

also briefly describes neuronal dynamics within the cortex, it focuses mainly on how electrical activity is registered by

electrodes. Another model that exhibits the nature of a MFM is the Epileptor neural field model [12]. It is, however,

generally considered a mathematical model instead of a biophysical one. Each network node is represented by five

different variables, which jointly represent three interacting time scales. Spatially, the model is one dimensional

and does not include anatomical information, but it reproduces many qualitative findings on seizure spread and

termination. Lastly, Martinet et al. also proposed a MFM, specifically to address the underlying mechanism of

increased spatial coupling towards the end of a seizure (see Section 1.2.2 for more details) [8]. Our work builds upon

his model, with the aim of capturing additional spatiotemporal features observed in human seizure data.

1.1.3 Perspectives of computational models

Computational models have implications in both neuroscience research and clinical epileptology. They aggregate

large amount of data in a logical manner, and help scientists understand neural dynamics based on neurophysiological

hypotheses, which can then be tested experimentally. In scenarios where experimental assessments are difficult, models

provide a means for testing hypotheses in silico. Clinically, models of epileptic activity can be useful for physicians

facing convoluted and variable situations: they reduce the complexity of the mechanism and emphasize the underlying

physiology. Pharmacologically, such understanding aids in the development of targeting medications. Tailored surgery

on the genesis and propagation of seizures in a patient-specific context is another fascinating perspective of modeling.

Computational models are often criticized for being overly simplified, sacrificing biological realism or imposing

unrealistic assumptions. However, it is noteworthy that the aim of creating theoretical models is often to temporarily

remove the complexity and intertwinement of biological details and unveil the minimal mechanism required to explain

observed phenomena [13]. When a proposed scheme fails to explain the experimental data, more features can be

included and the necessity of them can be examined or proven along the way. On the other hand, if a model is
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successful, biological details can also be added and the researchers will have a clearer idea of how to avoid disturbance

to the existing system. Overall, it is useful to start with a simple model as long as it encompasses flexibility for future

modification and re-evaluation.

1.2 Experimental background

Understanding the spatiotemporal dynamics of seizure and the biological mechanisms governing them is an ex-

tremely difficult task, both because of the limited spatial resolution of recording technologies as well as the hetero-

geneity intra- and inter-patients. However, dynamics at several time scales have been observed in patient data and

modeled computationally: (1) ictogenesis, the transition from the interictal state to seizure – in a focal seizure, there

is usually an onset zone where seizure is initiated; (2) propagation of seizure from recruited areas to non-recruited

areas (slow traveling ictal wavefront); (3) emergence of low amplitude, fast oscillations (> 10 Hz) in recently recruited

areas; (4) transition into spike-and-wave complexes or burst-suppression patterns towards seizure termination, and

(5) synchronized seizure termination. This section will cover several findings related to these dynamics. At the end,

we also briefly discuss the long debated topic of spatial coupling during the ictal period. Many of these findings are

reproduced in our model, and our hope is that it will shine some light on the widely discussed field.

1.2.1 Ictogenesis and ictal wavefront propagation

Current understanding of acquired epilepsy suggests that an insult (e.g. brain tumor, hypoxic injury) leads to

reorganization of the brain, which can include neuronal loss, gliosis (reactive change of glial cells), alterations in

membrane channels/receptors of neurons, etc. These changes make the brain more prone to seizures. However, they

do not fully explain the process of ictogenesis, which specifically refers to the acute process of seizure generation by an

epileptogenic brain. The biological mechanisms underlying ictogenesis has yet to be fully understood, and similar to

the mechanisms underlying propagation and termination, may vary between different epileptic syndromes. Potential

mechanisms that have been proposed include: (1) a shift in the reversal potential of GABA-mediated currents,

resulting in excitation from GABAergic input; (2) exhaustion of presynaptic GABA release; (3) synchronization

of many neurons by interneurons [14, 15, 16, 17, 18]. In this work, we will propose an alternative explanation of

ictogenesis that primarily depends on the slow accumulation of extracellular potassium, which has been proposed to

play an important role in seizure propagation (as described in the next few paragraphs).

After focal seizures initiate in a localized region of the brain, it slowly spreads to a larger cortical area. Mecha-

nistically, areas that are recruited into the seizing zone exhibit high excitatory activity, which directly or indirectly

changes the excitatory and inhibitory balance in connected areas (which are usually but not always neighboring) and

leads to propagation of seizure into those areas. The moving edge of the seizing zone is termed the ictal wavefront

and the speed is usually on the order of 1 mm/s [12, 19]. It is important to note that, standard clinical EEG interpre-

tation techniques usually cannot detect the ictal wavefront. This could possibly be due to its limited spatial extent,

which results in obscuration by spatial averaging of electrodes, or due to its lack of sufficient temporal organization

that produces detectable oscillations [20]. Evidence of ictal wavefront can instead be detected with microelectrodes,

though the ability to evaluate its spatial extent is limited by the spatial span of the electrodes.
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How the ictal wavefront propagates and what determines its velocity are widely debated. Classically, breakdown

or weakening of a surrounding inhibitory barricade is thought to enable spreading of seizure activity. Several in

vitro studies have shown that strong inhibition around the onset focus can suppress the excessive excitatory drive,

preventing local pyramidal cells from being excited and seizure from spreading [21, 22]. If propagation does begin,

inhibitory activity can also control the spread dynamics: Trevelyan et al. found that the higher the number of preictal

inhibitory barrages, the slower the propagation velocity, and that velocities can vary over a 1000-fold range [21]. The

main contributor to this “feed-forward inhibition” is thought to be parvalbumin-expressing fast-spiking interneurons,

which are consistently observed to have increased firing rate prior to interictal-ictal transition in some models of

seizure activity [23, 24, 25, 26, 27]. Although the number of these interneurons are much lower than pyramidal

neurons, they synapse directly on the nearby pyramidal cell bodies at high concentration and thus provide strong

inhibitory power, counteracting the excitatory currents originating from the seizing areas. Electrographically, this

surround inhibition has been described as the ictal “penumbra”, where local field potentials exhibit heterogeneous

activity (representing pyramidal activity mixed with inhibitory activity vetoing it) but the region has yet to be

recruited to seizure.

Various mechanisms have been hypothesized to lead to failure of this inhibitory restraint, allowing runaway

excitation and spreading of seizure. The majority of these mechanisms were observed in animal models. The precise

role of them in human seizures is still unclear, though the increasing amount of human multi-unit and single-unit data

recently has allowed more studies targeting this topic. To date, evidence has pointed to interneuron depolarization

bock and altered chloride homeostasis as two possible etiologies of failed inhibitory restraint.

With regards to the theory of depolarization block, Cammarota et al. utilized Ca2+ imaging to show that the

parvalbumin-expressing fast-spiking interneurons experience a firing impairment caused by membrane depolarization

preceding ictal onset of neighboring pyramidal cells. Other studies have also shown that seizure-like events terminate

when inhibitory neurons resume activity, which further supports the connection between depolarization block and

the seizing state [27]. To the best of our knowledge, the causal relationship between depolarization block and ictal

wavefront propagation is less clear in human in vivo recordings. Ahmed et al. examined firing rate tracings of nearby

fast-spiking interneurons and regular-spiking excitatory neurons from seizing patients [28]. Instead of sequential

activation described above, both populations start firing simultaneously, in contrast to the hypothesis that cessation

of fast-spiking cells precedes and directly leads to seizure propagation. However, in alignment with in vitro data, the

authors also observed that the fast-spiking cells cease firing half-way through a seizure and local seizure amplitude

increases at the same time, thus it is still likely that their inhibitory effect plays a role in altering seizure dynamics.

The mechanism of fast-spiking interneurons entering depolarization block continues to be widely debated. It is

hypothesized that extracellular potassium can play a role. Pathological elevation of extracellular potassium level (to as

high as 12-15 mM) is seen during seizures with both in vivo and in vitro experiments [29, 30, 31, 32]. Theoretically, this

elevation shifts the reversal potential of potassium towards zero and increases the excitability of various populations

of neurons (both excitatory and inhibitory). However, with excessive depolarization, selected populations are prone

to go into depolarization block. To explore the effect of this change computationally, Ahmed et al. developed a single-

cell, Hodgkin-Huxley model [28]. Different from the normal excitatory cells, they modeled fast-spiking interneurons
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with a larger potassium conductance. This is based on prior patch clamp studies, which showed increasing amount of

Kv3.1 channels on fast-spiking cells [33, 34, 35]. After this feature was added, the authors simulated a progressively

increasing extracellular potassium concentration, as observed during seizures. Interestingly, the fast-spiking cells

exhibit features seen in single-cell recordings from seizing patients: their firing rate increases initially, then quickly

ceases midway through the seizure.

To briefly discuss the dynamics of elevating extracellular potassium, it is important to mention the Potassium

Accumulation Hypothesis, initially proposed by Fertziger and Ranck in 1970 [32]. The core idea is that a transient

increase in potassium over a certain threshold can trigger a positive feedback loop: neurons become more depolarized

with elevated extracellular potassium, fire more action potentials and release more potassium into the extracellular

space. Glial cells normally serve as a spatial buffer to prevent excessive accumulation of extracellular potassium

and maintain homeostasis of brain excitability. Specifically, locally elevated potassium drives its influx into glial

cells, which is then distributed via intercellular gap junctions to a distal location where potassium level is low. Glial

tissue also has the ability to store potassium and temporarily relieve any excess. In events of glial dysfunction (e.g.

scarring), this clearance mechanism could be impaired, tilting the excitatory-inhibitory balance of nearby tissue [36].

It is important to point out that, as described above, the observed potassium elevation drives the reversal potential

of potassium towards zero and increases excitability of various neural populations. In addition to driving interneurons

into depolarization block, it also causes excitatory populations to be hyperactive. This duality raises the question

of whether the excitatory population’s hyperactivity alone is sufficient to overcome the inhibitory barrier and enable

seizure propagation, or if breakdown of the inhibitory barrier is necessary.

To conclude this section, we discuss an alternative mechanism for the weakening of inhibitory restraint – dysregu-

lation of chloride homeostasis. This hypothesis first stemmed from studies of neonatal seizures. It was observed that,

in the neonatal period, high expression of NKCC1 and low expression of KCC2 make neurons more susceptible to

intracellular chloride accumulation, which in turn leads to GABA having paradoxical excitatory effect and facilitating

neonatal seizures [37]. Similar alterations in KCC2 and NKCC1 expressions are also seen in adult brain gliomas, which

are known to be highly epileptogenic [38]. It is hypothesized that, during a seizure, intense feedforward activation

from the already-recruited area leads to increased intracellular chloride concentration in the pyramidal cells, compro-

mising (or even reversing) GABA-dependent inhibition from interneurons and contributing to seizure propagation.

However, recent studies have suggested that this mechanism alone is not sufficient to trigger a seizure. Optogeneti-

cally loading pyramidal cells (on mouse neocortical slices) with chloride does not induce ictal events without adjunct

pathology (in the same study, the adjunct pathology was done with bathing model in 4-aminopyridine, a selective

blocker for the delayed rectifier type potassium channels) [39]. Overall, it is likely that multiple mechanisms jointly

enable spreading of ictal-like events.

1.2.2 Spike-and-wave complexes and traveling waves

Once recruited into the seizing zone, neural populations continue to show evolving spatiotemporal dynamics. Low

amplitude, fast oscillations (> 10 Hz) emerge first and later on, large amplitude spike-and-wave complexes (SWCs,

2-3 Hz) are seen. In this work, we will focus on the latter as it is better understood and modeled.
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Figure 1.2: Two theories for source of traveling waves. Adapted from [8]. (a) The expanding ictal wavefront (orange) produces

traveling waves (purple) that are registered by the electrodes (red). Proposed in [40], based on data analysis that shows opposite

directions of ictal wavefront and traveling waves. (b) A fixed cortical source produces traveling waves (purple) that are registered by

the electrodes (red). Supported in [8], as their analysis showed high consistency of traveling wave directions, more suggestive of a

fixed source.

Martinet et al. examined the SWCs in voltage tracings from microelectrode arrays (spacing of 0.4 mm) and

macroelectrode arrays (i.e. electrocorticogram, spacing of 1 cm) implanted in three patients [8]. They showed that

coupling (assessed via coherence, a frequency-domain measure of linear association) between these spatial scales

increases towards seizure termination and decreases with distance between electrodes. To further characterize the

spatial organization of this coupling, the authors analyzed the delay between electrodes and suggested that the

increase in inter-scale coupling during later stages of seizure results from spike-and-wave complexes emerging and

propagating through the field. The estimated speed of these “traveling waves” is between 100 to 1000 mm/s, orders

of magnitudes faster than the recruiting ictal wavefront. In addition, the direction estimates of these waves become

more consistent over time and are similar between seizures in the same patient and across spatial scales, supporting

the source of traveling waves being a fixed cortical location – the ictal core (demonstrated in Figure 1.2b). The

authors concluded with a computational model capturing the observed seizure dynamics. The model includes an

evolving extracellular potassium concentration that modulates neural excitability. Elevated potassium is also hy-

pothesized (and modeled accordingly) to close gap junctions between inhibitory populations via slow acidification of

the extracellular environment and in turn support the emergence of inter-scale coupling. The model presented in this

work is an extension of Martinet et al.’s computational framework (see Chapter 2 for more details) and will further

explore the role of potassium in both ictal wavefront propagation and traveling waves [8].

It is important to note that, another study by Smith et al. reported contradicting results on the source of traveling

waves [40]. They identified that the directions of the waves and the propagating ictal wavefront are opposite, which

led them to hypothesize that the source is moving and consists of the slow ictal wavefront itself (demonstrated in

Figure 1.2a). Both scenarios suggest that seizure terminates when the source of traveling waves dissipates; however,

in the fixed cortical source model, termination requires failure of a small ictal core, while in the moving wavefront

model, termination involves weakening of the entire ictal wavefront. It is possible that both scenarios can occur,

especially in a heterogeneous patient cohort. Part of this work will identify network parameters and underlying

biological mechanisms that determine which scenario dominates.
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Figure 1.3: Characteristics of seizure termination. (a) Adapted from [42]. A neuronal spike raster during seizure in human subject,

showing simultaneous cessation of spiking activity at seizure termination. (b) Adapted from [51]. An example voltage tracing from

ECoG electrode spanning an entire seizure. Increasing inter-spike spacing prior to seizure termination is often referred as “brain chirp”.

1.2.3 Seizure termination

Mechanisms driving seizure termination remain one of least understood topics in epilepsy. However, (macroscopic)

electrographic recordings of seizures from patients usually exhibit some stereotypical dynamics prior to transition to

the post-ictal period. Specifically, there is a characteristic slowing of rhythmic activity (often described as “brain

chirp”, see Figure 1.3b, an example voltage tracing from a single ECoG electrode during seizure) and increasing

coupling (as described in the previous section), followed by sudden and synchronous cessation of activity cross the

recorded field (Figure 1.3a, an example spike raster recorded in vivo during seizure) [41, 42, 43]. This progression

has been studied and modeled in various capacities. Kramer et al. identified the dynamics as a critical transition

between two stable states (attractor states) and reproduced it with a mean field model that exhibit bistability [41].

The same model could also reproduce status epilepticus dynamics, which was hypothesized to represent repeated

approaches to the critical transition without actually crossing it. Interestingly, some of the signatures of critical

transition (specifically, the “flickering” phenomenon, where noise pushes a bistable system between two states) was

not observed at the scale of the microelectrode array, suggesting that seizure termination could be a macroscopic

phenomenon, necessitating collective interaction of neural populations across a larger area.

A more mechanistic model for seizure termination was proposed by Smith et al., who, as described in the previous

section, hypothesized that the ictal wavefront is the source of traveling waves [40]. They designed a mean field model

that suggested that weakening of the ictal wavefront (modeled manually as reduced external input) is sufficient to

reproduce the slowing of rhythmic discharges and eventual cessation, though the underlying mechanism remains to be

determined. Studies in animal models have suggested various biophysical explanations, including depletion of energy

source (e.g. adenosine triphosphate) or neurotransmitters (e.g. glutamate), change in ion gradients across membrane,

decreased pH and modulatory effects from subcortical structures, etc [44, 45, 46, 47, 48, 49, 50]. Unfortunately, testing
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these hypotheses have been very challenging in humans.

1.2.4 Coupling and network organization

One of the most widely debated topic in epilepsy is the role of synchronization, or coupling, between different

brain areas. Historically, seizures were thought to be a state of hyper-synchrony, where increased connectivity in the

seizure focus leads to excessive activity. With advancement of recording technologies, the organization and coupling of

activity are now recognized to evolve during different phases of seizure (onset, propagation, termination and interictal

period). However, there is no consensus on how the coupling actually changes during each period - analyses have

yielded widely varying results, possibly due to differences in coupling measures, type of seizures, electrode type and

placement, definition of seizure phases, etc.

An excellent review on the spatio-temporal evolution of network organization was written by Kramer [51]. Here,

we highlight some of the important content and hypotheses proposed in his review with regards to coupling during

various phases of seizure:

• Onset : In the higher frequency bands, decoupling has been observed between different gyri and during beta

frequency discharges from patients with mesial temporal lobe epilepsy [52, 53]. It is also observed in depth and

strip electrode recordings from patients with complex-partial and secondarily generalized seizures [54]. This

can possibly be interpreted as functional disconnection between distant brain regions when seizure initiates

locally at the focus. Interestingly, when examining lower frequency bands (< 30 Hz), increased correlation was

seen immediately after seizure onset [55]. This may be a reflection of the gradual recruitment of cortex into

seizure activity.

• Propagation: Similarly, there is also lack of consensus regarding the degree of coupling during seizure propaga-

tion. Linear correlation appears to decrease upon transition from seizure onset to propagation, while non-linear

measures (e.g. synchronization likelihood, phase coherence) continues to suggest increased coupling [55, 56, 57].

One proposed theory for decreased coupling during propagation hypothesized that excessive neuronal firing at

seizure onset saturates “hub neurons”, which maintain local connectivity. When these neurons enter refractory

periods, a functional disconnection ensues.

• Approaching termination : Most studies have agreed on the observation that coupling of brain activity increases

approaching seizure termination. This is seen with both linear and non-linear measures, as well as across seizure

types [55, 58, 54]. In particular, synchrony reaches maximal value during the last part of a seizure. As mentioned

in the previous section, Martinet et al. hypothesized that this increase is a result of emergence of traveling

waves. An alternative proposal suggested that a self-organization of neuronal activity aiming to drive the

hyperactive neurons into refractory state could be the source of the increased coupling [59].

1.3 Thesis overview

In this thesis, I present an in silico, network-based, biophysically-motivated representation of realistic seizure

activity in the human brain. It reproduces several experimental findings described above and provides new insights
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into the diagnosis and treatment of epilepsy.

The outline is as follows:

• In Chapter 2, I introduce the mean field model and describe all the mathematical formulations and model

parameters. For each design choice, I will either link it to an existing experimental finding or propose biophysical

mechanisms that support it.

• In Chapter 3, I will present a sample simulation and show how the simulated electrical readings match vari-

ous qualitative and quantitative behaviors of patient recordings. How model parameters influence simulation

outcome and their physiological/medical implications are also discussed.

• In Chapter 4, I summarize the main findings in this thesis and highlight the novelty and contribution of the

model. I also discuss the limitations of the current model and suggest several refinements and prospective

directions of exploration.



Chapter 2

Model Framework and Analytical Tools

I developed an anatomically-motivated model that simulates intracranially-recorded epileptic activity in patients. It

is characterized as a biophysical framework because each variable is associated with a biophysical entity and every

formulation represents a known or hypothesized mechanism. The model consists of two parts that jointly simulate

electrographic recordings: (1) a network-based, cortical mean field model (MFM) that includes an epileptogenic

focus; (2) simulated electrodes that capture appropriate electrical contributions from neighboring neuronal sources

and generate recordings that can be compared to patient data. In this chapter, we will present these two components in

detail and discuss several analytical tools we use to characterize the simulated recordings and facilitate the comparison

between our model and known experimental findings.

2.1 Mean field model

To represent both the spatial and temporal evolution of neural activity, we adapt a mean field model. Many

mean-field formulations exist [9, 10], and here we choose to extend an existing two-dimensional MFM, developed by

Martinet et al. [8], which is itself an adaption of a framework by Steyn-Ross et al., previously applied to simulate

sleep, cognitive states and anesthesia [7]. As described later in this chapter, we modify the model in ref [8] by

transforming the grid-like network into a geometrical brain surface and adding several elements that were previously

proposed to play important roles in seizure dynamics.

In the MFMs proposed by Martinet et al. and Steyn-Ross et al., the cortex is represented as a two-dimensional

grid of nodes (either or 100 × 100, 120 × 120) in square formation, corresponding to approximately 300 mm by 300

mm cortical surface. Each node represents superimposed populations of excitatory and inhibitory neurons within

approximately 9 mm2. Each population is characterized by its average neural activity (average soma potential and

average firing rate). This omits the variability of activity between individual neurons, but since electrodes can only

sense average voltages generated by population of neurons, the model’s ability to capture electrographic data is not

compromised. Nodes are interconnected locally via gap junctions and over long distances via myelinated axons.

To represent the temporal and spatial dynamics mathematically, the soma excitatory and inhibitory potentials

17
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Ve and Vi at grid location ~r = (x, y) obey the following differential equations (adapted from [7]):

τb
∂Vb(~r, t)

∂t
= V rest

b + ∆V rest
b − Vb(~r, t)

+ [ρeψeb(~r, t)Φeb(~r, t) + ρiψib(~r, t)Φib(~r, t)]

+DbO
2Vb(~r, t) (2.1)

where b is either e or i, representing excitatory or inhibitory populations respectively. Symbols with two subscripts

ab adopt a left-to-right convention with presynaptic population a = {e, i} and postsynaptic population b = {e, i}.

O2 = ∂2/∂x2+∂2/∂y2 is the standard 2D-Laplacian operator. The terms in square brackets represent synaptic inputs,

while the final term represents contributions from gap-junction currents between nearby neurons. More specifically,

each parameter is defined as following:

• τb are time constants for the neuron populations, representing how fast a neuron reaches it target value.

• V rest
b are resting potentials for each population. ∆V rest

b are the offsets to the resting potentials, representing

the excitability of neurons. In simulations where a seizure is manually incited, this value is set to a positive

number around the seizure focus.

• ρb are strengths of synaptic connections, approximated with the area under the excitatory and inhibitory

postsynaptic action potential. By definition, ρe > 0 and ρi < 0. These strengths are scaled by reversal

potential functions

ψab =
V rev
a − Vb(~r, t)
V rev
a − V rest

b

(2.2)

which has a value of 1 at resting potential and approaches 0 when soma voltage reaches the reversal potentials

(V rev
e = 0 mV and V rev

i = −70 mV).

• The Φab(~r, t) functions represent synaptic fluxes, which are derived from the following differential equations.

For simplicity, only excitatory neurons emit long-range flux in this model.(
∂

∂t
+ γe

)2

Φeb(~r, t) = γ2
e [Nα

ebφ
α
eb(~r, t) +Nβ

ebQ
β
e (~r, t) + φsceb(~r, t)] (2.3)

(
∂

∂t
+ γi

)2

Φib(~r, t) = γ2
iN

β
ibQi(~r, t) (2.4)

– γb are rate constants, assuming that the reaction of postsynaptic neuron in response to dendritic input

obeys an alpha-function with form γ2te−γt.

– The superscripts α and β denote long-range and local connections respectively. Nα
ab and Nβ

ab are the

number of each type of connection.

– Qb(~r, t) are local fluxes directly proportional to local firing rate, which is approximated as a sigmoidal

function of the soma voltage:

Qb(~r, t) =
Qmax
b

1 + exp[− π√
3

Vb(~r,t)−θb
σb

]
(2.5)

where θb is the average threshold for firing, σb is the standard deviation, and Qmax
b is the maximum firing

rate.
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Figure 2.1: Stepwise updates in model complexity. We first extend the existing two-dimensional model to a triangular mesh of the

sphere, consisting of 10242 nodes. Electrodes are modeled by recording the activity at selected nodes (represented by red dots). For

higher spatial resolution and anatomical accuracy, we further increase the number of nodes to 40962 and morph its shape to match a

sample cortical geometry. Electrodes are modeled by overlaying a 5x5 grid on the area of interest and averaging the activity of nearby

nodes, weighted by reciprocal distances.

– φαeb are fluxes through long-range connections, modeled as damped waves generated by distant excitatory

neurons, obeying the following equation:[(
∂

∂t
+ vΛeb

)2

− v2O2

]
φαeb(~r, t) = (vΛeb)

2Qe(~r, t) (2.6)

where Λeb is the inverse-length scale for axons of excitatory neurons and v is the axonal conduction speed.

– φsc
eb represents input from subcortical sources, modeled as white noise around a constant background 〈φsc

eb〉:

φsc
eb(~r, t) = 〈φsc

eb〉+ a
√
〈φsc
eb〉ξeb(~r, t) (2.7)

where a is a amplitude scaling factor and ξeb is a randomized function that obeys Gaussian distribution.

• Db are the coupling strength between neuron pairs connected via gap junctions. We assume that gap junctions

are only present between neurons of the same type (excitatory-excitatory or inhibitory-inhibitory). In addition,

as there are many more gap junctions between inhibitory neurons than excitatory neurons, it is assumed that

De = Di/100 for easier computing [60] and Di has a minimum value of 0.1.

In the rest of the chapter, we describe various modifications and additions we incorporate into the above base

model:

To begin to understand how seizure activity manifests on the brain surface, we need to design a model that

accounts for the complex cortical geometry. We first simplify the problem by modeling the cortex as a sphere.

Instead of using a square grid in the papers described above, our network is configured as a triangular mesh on the

sphere consisting of 10242 nodes, each connected with six immediate neighbors via weighted edges. The radius of the

sphere is 10 cm and average distance between neighboring nodes is 0.378 cm. See the middle image in Figure 2.1 for

an example of the network.
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Figure 2.2: Cartoon illustration of the model. The dotted rectangle represents one node in the triangular mesh. In each node, one

excitatory (E) and two inhibitory (IFS for fast-spiking interneurons and I for other inhibitory neurons) neural populations interact with

each other through synapses as well as with spatial neighbors (grayed-out circles) through gap junctions and synapses. Activity of each

cell population increases the local extracellular potassium concentration, which diffuses in space and elevates the resting potential of

nearby populations.

After various biophysical modifications are incorporated to adequately capture several qualitative and quantitative

behaviors of patient recordings, we then aim for higher spatial resolution and anatomical accuracy. This is achieved via

increasing the number of nodes to 40962 (keeping the radius at 10 cm, and now average distance between neighboring

nodes is 0.189 cm) and warping the sphere into the geometry of a cortex. The triangular mesh of the cortical surface

is acquired through FreeSurfer. This progression of anatomical complexity is portrayed in the right most image of

Figure 2.1. We assume that the density of neurons and the connectivity between populations are constant across

the entire cortex. This is a significant simplification of the human brain’s heterogenous network, but the model is

designed with great flexibility and customizability to include connectome data when available.

In addition to the geometrical adaptations, we also include several biophysical elements that were previously

known to play important roles in seizure dynamics (cartoon illustration of the model in Figure 2.2). The most

important addition is fast-spiking (FS) interneurons. As described in Section 1.2.1, mice models have suggested

that ictal wavefront propagation (i.e., recruitment of cortex into seizure activity) is possibly dependent on failure of

inhibitory restraint in the setting of FS interneurons entering depolarization block. It is hypothesized that these cells

are more susceptible to depolarization block due to an alteration in potassium conductance, thus they more readily

enter depolarization block as extracellular potassium level increases. To incorporate this into our model, we add a

third neuron population (in addition to the existing excitatory and inhibitory populations) to each node. They are

also inhibitory in nature and depress postsynaptic activity. The subscript used for this population is f , so Qf for

local firing rate of FS interneurons, Nfe for number of synapses from FS interneurons to excitatory neurons, etc. For

simplicity, we do not connect neighboring FS interneurons with gap junctions. To account for the inhibitory input
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from these FS interneurons to local excitatory population, we update Equation 2.1 for the excitatory soma potential

to:

τe
∂Ve(~r, t)

∂t
= V rest

e + ∆V rest
e − Ve(~r, t)

+ [ρeψee(~r, t)Φee(~r, t) + ρiψie(~r, t)Φie(~r, t) + ρfψfe(~r, t)Φfe(~r, t)]

+DeO
2Ve(~r, t) (2.8)

where Φfe obeys (
∂

∂t
+ γf

)2

Φfb(~r, t) = γ2
fN

β
fbQf (~r, t) (2.9)

and for simplicity, we assume: ρf = ρi, γf = γi, and ψfe and Qf (~r, t) obey the same equations as the non-FS

inhibitory neurons.

To model potassium dynamics and its effects, we follow Martinet et al. and include a slowly evolving variable

representing the changing concentration of extracellular potassium, which is known to increase dramatically during

seizure and other abnormal brain conditions. Potassium interacts with the existing variables in several ways. First,

activity of neurons increase the local concentration of potassium, which subsequently diffuses in space or gets reab-

sorbed by glial cells. Similar to the regular-spiking excitatory and inhibitory populations, the FS interneurons also

produce potassium into the extracellular space. However, as their membrane has higher conductivity to potassium,

we hypothesize that they produce potassium at a rate faster than other populations and model this accordingly.

Specifically, the extracellular potassium concentration K obeys the following equation:

τK
∂K

∂t
= −C1K +

C2Qtotal

1 + e−(Qtotal−δ)
+ C3O

2K (2.10)

τK is the time constant for potassium dynamics. The first term represents a decay of K at rate C1 via reabsorption.

As described in Section 1.2.1, in normal tissue, glial cells serve as spatial buffer to prevent excessive accumulation of

extracellular potassium. To capture this in our model, we designate two zones on the geometrical surface: one where

glial function is impaired (pathological zone, small C1) and the rest where potassium homeostasis is adequately

maintained (normal zone, large C1). The second term describes potassium efflux from excitatory and inhibitory

neurons during activity. It is modeled as a sigmoid function scaled by rate C2 and threshold of δ. Qtotal = Qf +

c(Qe + Qi) and c < 1 is a scaling factor representing relative contribution of non-FS vs FS neurons. The last term

represents diffusion of potassium to neighboring locations, at a rate of C3. Of note, elevation of K is limited to a

ceiling value of 12, which was determined from electrically and pharmacologically induced activity in cat cortex [61].

The extracellular potassium K acts to decrease the gap junctions between inhibitory neuron populations (of note,

as described above, the strength of gap junctions between excitatory populations continue to obey De = Di/100):

∂Di
∂t

= −K
τD

(2.11)

where τD is the time constant for this perturbation. In general, this time constant is set at the order of seconds to

minutes so that these variables change slowly.

In order to capture the influence of potassium conductance and intra- and extracellular potassium concentration on

resting membrane potential (and in turn, excitability and activity) of each population, we incorporate the Goldman-



22

Hodgkin-Katz (GHK) voltage equation:

V rest
b =

RT

F
ln

(
pK,b[K

+]o + pNa[Na+]o + pCl[Cl
−]i

pK,b[K+]i,b + pNa[Na+]i + pCl[Cl−]o

)
(2.12)

where px,b is the conductance for ion x = {K,Na,Cl} for population b = {e, i, f}. We abbreviate pNa,b = pNa and

pCl,b = pCl as we assume the conductance for sodium and chloride are approximately the same between different

neuron types. To represent increasing potassium conductance in FS interneurons, we set pK,f = εpK,e = εpK,i where

ε > 1. [x]i,b is the concentration of ion x in the intracellular space for population b = {e, i, f}. [x]o is the concentration

in extracellular space ([K+]o = K as defined above). Similar to conductance, we abbreviate [Na+]i,b = [Na+]i

and [Cl−]i,b = [Cl−]i as we assume the intracellular concentration for sodium and chloride are approximately the

same between different neuron types. We also assume that [K+]i,e and [K+]i,i are constant, as regular-spiking

excitatory and inhibitory neurons produce potassium at a much slower rate so potassium homeostasis can likely keep

the intracellular concentration stable. On the other hand, since we hypothesize that the FS interneurons output

potassium much faster, we model [K+]i,f = [K+]initi,f − υ([K+]o − [K+]inito ) such that the intracellular concentration

proportionally (rate υ) decreases as extracellular concentration increases.

Lastly, to enable depolarization block, we follow Martinet et al. and designate the firing rate of each population

to approach zero when greatly depolarized (membrane voltage less negative). To achieve this, a Gaussian activation

function instead of the sigmoid function described above (Equation 2.5) is applied to convert soma voltage to local

firing rate:

Qb(~r, t) =
Qmax
b

1 + exp[− π√
3

Vb(~r,t)−θb
σb

]
− Qmax

b

1 + exp[− π√
3

Vb(~r,t)−θ′b
σ′
b

]
(2.13)

where θ′b is the average threshold for depolarization block, σ′b is the standard deviation. Of note, Martinet et al.

did not find a role for the depolarization block in generating the low-frequency dynamics simulated in their paper.

However, as detailed in the following chapters, it has significant importance in the simulation of the ictal wavefront

in this project.

Simulation of spontaneous ictogenesis is still a work in progress in our project. For the majority of the simulations

and results presented in Chapter 3, we incorporate a manually-incited seizure focus, where we increase excitability

in a cluster of nodes (i.e. set ∆V rest
b = 8 within these nodes). However, in the last section of Chapter 3, we present

some preliminary data on an advanced model with spontaneous ictogenesis. We also discuss some existing limitations

of this model, and we are are hopeful that, with further work, these limitations can be solved.

The standard values of the above parameters are listed in Table 2.1. The model is written in MATLAB. Sim-

ulation is performed step-wise at a time scale of 0.002 seconds, with most runs lasting a total of 300 seconds (thus

300 ÷ 0.002 = 150, 000 steps in total). Data is sampled and recorded every 0.02 seconds (i.e. 10 steps) for further

analysis. On average, to simulate a 300-second event, the model with 10242 nodes takes 50 minutes and one with

40962 nodes takes approximately 180 minutes.
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Symbol Value Unit Description

τe,i,f 0.04, 0.04, 0.04 s neuron time constant

∆V rest
e,i,f mV offset to resting potential

ρe,i,f 10−3, −1.05× 10−3,

−1.05× 10−3

mV s excitatory and inhibitory synaptic gain

V rev
e,i,f = 0 0, -75, -75 mV reversal potential at the dendrite

γe,i,f 170, 50, 50 1/s excitatory and inhibitory rate constant

Nαee,ei,ef 2000, 2000, 666 - long-range cortico-cortical axonal connectivity

Nβee,ei,ef 800, 800, 266 - local axonal connectivity from excitatory population

Nβie,ii 670, 600 - local axonal connectivity from inhibitory population

Nβfe,ff 5, 20 - local axonal connectivity from FS inhibitory population

Qmax
e,i,f 30, 60, 40 1/s maximum firing rate

θe,i,f -58.5, -58.5, -58.5 mV average threshold for firing

σe,i,f 3, 5, 5 mV standard deviation for firing threshold

θ′e,i,f -40.5, -40.5, -40.5 mV average threshold for depolarization block

σ′e,i,f 1, 1.66, 1 mV standard deviation for depolarization block

Λee,ei,ef 4, 4, 4 1/cm inverse length scale for axons of excitatory population

v 280 cm/s axonal conduction speed

a 4 - subcortical noise scaling factor

〈φsc
ee,ei,ef 〉 300, 300, 100 1/s average subcortical input

Di 0.1 (initial value) cm2 gap junction strength between inhibitory populations

De Di / 100 - gap junction strength between excitatory populations

Df 0 - gap junction strength between FS inhibitory populations

τK 200 s time constant for K dynamics

C1, C2, C3 0.05, 10, 1 -, mM s, cm2 scale factors for various contributors to extracellular K (reabsrop-

tion, production, diffusion)

δ 3 1/s threshold for production of K during neural activity

c 0.1 - relative contribution of non-FS vs FS neurons to extracellular K

τD 133 mV s / cm2 time constant for perturbation of gap junction strength

ε 1.3 conductance for K in FS neurons (relative to normal-spiking)

pNa, pCl 0.04, 0.45 conductance for sodium and chloride (relative to potassium)

υ 18 rate of intracellular K deviation relative to extracellular deviation

Table 2.1: List of parameters used in the model and choices for their values.

2.2 Simulated electrodes

To facilitate comparison between our computational model and electrographic recordings from epilepsy patients,

we also simulate electrodes that capture electrical activity within the mean field model described above. Since

recordings from patients are performed at different scales (10-by-10 microelectrode array with electrode spacing of

0.4 mm and 8-by-8 macroelectrode array with electrode spacing of 10 mm), we also model electrodes at of various

spatial span.
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In the reduced sphere framework (10242 nodes), electrodes are modeled by simply recording the activity at

selected nodes that spatially resemble two concentric hexagons (total 19 electrodes). Example shown as red dots in

the middle image of Figure 2.1. We adapt a hexagonal geometry instead of a grid like structure because it more

appropriately lines up with the triangular mesh. Macroelectrode and microelectrode are both modeled in this manner

with different spatial span, with the former 4 times the size of the latter.

In the more realistic, anatomical framework, we model electrodes by identifying a 5x5 grid that overlays the

cortical area of interest (red dots in the right image of Figure 2.1). More technically, we first identify the desired

location of the center of the grid (somewhere in the pathological zone, small distance away from the designated seizure

initiation site), then compute the vector perpendicular to the brain surface at that location. Lastly, we identify the

plane perpendicular to this vector and tangential to the brain surface, and place the grid on this plane. Again, there

are two types of electrodes with different spatial scale. For the macroelectrode array, the distance between electrodes

is 9 mm, so size of the entire array is 36 x 36 mm. For the microelectrode array, the distance between electrodes is 0.5

mm, so size of the entire array is 2 x 2 mm. Each electrode summarizes activity of nearby network nodes, weighted

by their reciprocal distances, i.e. the closer the node is to the electrode, the more it contributes to its recording.

2.3 Analytical tools

As described in Section 1.2.4, characterizing synchronicity (or coupling) between different areas of the brain is a

key component to understanding dynamics of seizures. Following Martinet et al.’s work in [8], we also assess coupling

via calculation of coherence. Figure 2.3 is reproduced from the same paper and shows an example pipeline for

analyzing a seizure recording from patient. We adapt it to analyze simulated recordings from our model. Specifically,

we estimate the time-dependent coherence between the recorded activity of two electrodes using the Chronux Toolbox.

We divide the data into 10-second windows with 9-second overlap and compute the frequency-dependent coherence

within each window using a time-bandwidth product of 20 and 39 tapers (Figure 2.3a is an example coherogram

between two random electrodes from patient data). To summarize the coherence across the frequency spectrum, we

compute the average coherence between 1 and 13 Hz (Figure 2.3b). This frequency interval is chosen as the highest

coherence in human seizure data is observed within this range (as represented with the red areas in Figure 2.3a).

Furthermore, because coherence between two electrodes varies with distance between them, in order to assess how the

overall coupling evolves throughout a seizure, we also need to define one variable (“global coherence”) that summarizes

the coherence between every pair of electrodes over a certain period of time. Here, we perform linear regression of

coherence versus inter-electrode distance and extract the left-intercept as the global coherence. An example is shown

in Figure 2.3c, which shows coherence versus electrode distance for a single seizure recording from patient. For each

time interval (pre-seizure, early seizure, middle seizure, late seizure), a linear regression is performed. We can see

that, although the left-intercept does not fully capture the distribution of data, it appears to be a good surrogate for

comparison of relative degree of coupling between different time periods.

In order to study the emergence of traveling waves, we employ another analytical tool that seeks to identify

traveling waves from electrode recordings and compute the velocity of these waves. First, we identify the “delay”

between each pair of electrodes. We follow the approach in [62] and [8] and utilize the phase of the coherence.
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Figure 2.3: Example of various analytical tool applied to human recordings. Reproduced from [8]. (a) Coherogram between two

random electrodes. (b) Average coherence between the same two electrodes in (a) within frequency range 1 and 13 Hz versus time.

(c) Coherence versus electrode distance at different periods of a seizure. The left intercept is what we define as the “global coherence”

for a specific period. (d) We compute traveling wave source direction and velocity (at a specific time point) by performing linear

regression of delays between electrodes as a function of their relative location.

Specifically, we identify an interval of 3 Hz (within 1-13 Hz as described above) or larger with consecutive significant

coherence. Within this interval, we perform a linear fit of phase (of the coherence) versus frequency. If the fit is

significantly better than a constant term model, the slope provides an estimate of delay between two electrodes. If

the fit is poor, the delay is considered undefined. To identify traveling waves within the spatial span of an electrode

array (either microelectrodes or macroelectrodes), we incorporate the analysis in [8]. We perform a linear regression

of the delays between each electrode and the central electrode D as a function of their relative location (X,Y) to

the central electrode, D = b0 + b1X + b2Y (Figure 2.3d is an example from patient data). For a fit to be considered

valid, at least 50% of the electrodes for that window have a defined delay and the fit model needs to be significantly

better than constant term model. Once a valid fit is identified, the wave speed is computed as 1√
b21+b

2
2

and direction

of the wave is estimated as the arctan
(
b2
b1

)
.



Chapter 3

Simulation Examples and Analysis Results

Given the large parameter space of our model, the simulation result varies widely depending on choice of combination

of parameters. Many could be physiological and reflect the heterogeneity of patient cohort, while some are much less

likely to be a good representation of human data. To maintain sufficient validity of our model, we frequently revisit

various analyses of human recordings to ensure that our model can reproduce some key qualitative and quantitative

features. In this chapter, we first present a typical simulation from the spherical model and discuss these specific

features. For features where the underlying physiological mechanism is still widely debated, we attempt to contribute

to the discussion by proposing distinct models that could possibly reflect each scenario. In the second section of this

chapter, we present the cortical model, which has higher spatial resolution and anatomical accuracy, and show that

the same features from human recordings can be reproduced as well. Last, we present some preliminary data from

our attempt to simulate the spontaneous occurrence of ictogenesis.

3.1 Spherical model

Figure 3.1 shows a simulation of the model with a spherical network of 10242 nodes. Here, the epileptogenic

focus is manually incited (∆V rest
b = 8 in a cluster of 7 nodes) for 10 seconds (our preliminary result for simulating

ictogenesis without a manual external input is described in Section 3.3). Only the activity of the hemisphere centering

on the epileptogenic focus is shown: blue nodes represent populations that are quiescent and yellow nodes suggest high

excitatory population activity. The pink dots are location of the macroelectrodes (microelectrodes are not plotted).

Neural dynamics are observed at two different time scales.

As described in Section 1.2, neural dynamics are observed at two different time scales in patient recordings. When

seizure initiates in a localized epileptogenic focus, an ictal wavefront slowly propagates to recruit areas into abnormal

activity. Later in the seizure, traveling waves (spike-and-wave discharges) are recorded instead. These waves are

estimated to propagate orders of magnitude faster than the ictal wavefront (100-1000 mm/s versus 1 mm/s). This

two-fold dynamics is accurately captured in our model.

Firstly, if we consider the ictal wavefront as the outer circumference of the area with abnormal activity, we can

see that in the first 150 seconds of simulation, the wavefront is propagating outwards away from the epileptogenic

center. The area that it “sweeps” subsequently begins to exhibit increased firing rate, matching experimental results.
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Figure 3.1: Example spatial maps of simulated activity. Each subfigure shows a snapshot (time t labeled above each) of the

excitatory population activity. Only the hemisphere centered around the focus is shown here. When seizure initiates in a localized

epileptogenic focus, a wavefront slowly propagates outwards, recruiting neighboring areas into high-frequency activity. Later in

the course, traveling waves emerge from the wavefront and propagate through the recruited area. Seizure eventually terminates

spontaneously and synchronously. The simulated macroelectrodes are indicated as pink dots.

In our model, the wavefront expands at a speed approximately 0.7 mm/s, comparable to human experimental data

(estimated at 1 mm/s) [8, 12]. This suggests that the mechanism we included in our model (fast-spiking interneurons

and its susceptibility to enter depolarization block, as defined in Chapter 2) can possibly explain the propagation

of ictal wavefront. Specifically, during seizure propagation, the ictal wavefront generates feed-forward input to

the neighboring unrecruited area and excites the local inhibitory populations there. These inhibitory populations

provide restraint that opposes epileptiform spread while contributing to extracellular potassium accumulation through

positive feedback. The FS interneurons have the strongest interaction with extracellular potassium: their rapid firing

contribute the most to [K+]o and their resting potential is consequently elevated the most due to higher membrane

permeability to potassium and faster loss of intracellular potassium. This positive feedback dynamics makes them

more susceptible to depolarization block. When FS interneurons reach depolarization block, inhibition breaks down

and the area (or node in the network) is recruited into seizure.

Complementary to the global scale dynamics, we also attempt to use this model to explore single-neuron dynamics.

As described in Section 1.2.1, the causal relationship between depolarization block and seizure propagation is less

definitive in human single-neuron recordings. Specifically, Ahmed et al. observed that, around the preictal-ictal

transition, pyramidal cells and nearby FS interneurons are activated simultaneously instead of sequentially (as what

would be expected from the mechanism described in the previous paragraph). We hope to possibly reconcile this

discrepancy with our model. In Figure 3.2, we show the simulated activity of the FS interneurons and excitatory

neurons at a randomly chosen electrode. Notably, FS inhibitory activity increases quickly as the seizure spreads.

There is some simultaneous excitatory activity, but the amplitude is small as it is limited by the interneurons.

Soon after, FS interneuron activity suddenly ceases due to depolarization block; this transition is accompanied by a
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Figure 3.2: Firing rate of each population at a randomly chosen electrode. (1) Entire seizure course. Notably, FS cells (yellow

tracing) cease firing midway through a seizure due to depolarization block and local excitatory activity (blue tracing) dramatically

increases. (2) Zoomed in to the time period around seizure termination. Notably, rhythmic activity slows down prior to complete

cessation.

dramatic increase in local excitatory activity. With these tracings, we wonder if the discrepancy above could stem from

differences in the definition of seizure recruitment and ictal onset. At the peak of the feedforward inhibition, there

could already be some excitatory activity (via feedforward excitation from areas already exhibiting ictal activity),

albeit moderately suppressed by interneurons. Whether this activity is considered as ictal could potentially influence

the interpretation of the causal relationship between depolarization block and seizure recruitment.

Here, we would also like to propose an alternative mechanism for ictal wavefront propagation. Similar to how

elevated extracellular potassium can drive FS interneurons into depolarization block, it also causes excitatory pop-

ulations to be hyper-excitable. To understand if this hyperactivity alone is sufficient to trigger seizure propagation,

we experimented with a model without FS interneurons (in our model, this is equivalent to setting Qmaxf = 0

and Nβ
fe = 0). After exploring the parameter space, we were able to reproduce very similar dynamics (Figure 3.3).

However, to achieve physiological speed for ictal wavefront propagation, the potassium production rate of the normal-

spiking excitatory and inhibitory neurons needs to be high to trigger a sufficiently fast positive feedback of potassium

accumulation. This is certainly possible, especially in patients with channelopathies, and could be suggestive of

distinct mechanisms of seizure propagation in different disease pathologies.

In addition to physiologic ictal wavefront propagation, our model reproduces the traveling waves as well. Seconds

after an area is recruited into the seizing zone, large amplitude spike-and-wave complexes (SWCs, 2-3 Hz) emerge

and propagate, forming traveling waves. The velocity of these waves is approximately 350 mm/s, which is orders of

magnitudes faster than the recruiting ictal wavefront, consistent with observations from human recordings. In our

model, we adapt the mechanism proposed by Martinet et al. to achieve this transition – specifically, increasing local
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Figure 3.3: Simulation of seizure course with model that does not have a fast-spiking interneuron population. (a) Spatial maps at

various time points. (b) Activity of excitatory and inhibitory (regular-spiking) populations. Dynamics of ictal wavefront propagation

and traveling waves are again reproduced, suggesting that hyperactivity of pyramidal cells in setting of elevated extracellular potassium

could be sufficient to explain seizure propagation.

extracellular potassium weakens the gap junction strength between inhibitory populations and allows Hopf (temporal)

instability to drive large-scale oscillations and traveling waves. This is just one of the possible underlying mechanisms

for emergence of traveling waves, but it nicely ties into the ion dynamics (specifically potassium) suspected to

contribute to ictal wavefront propagation.

Source of traveling waves can be either a stationary cortical source or a moving ictal wavefront

Studies have presented contradicting data that support the source of traveling waves as being either a stationary

cortical source or a moving ictal wavefront. Martinet et al. showed that the direction estimates of these waves become

more consistent over time and are similar between seizures in the same patient and across spatial scales, supporting

the source of traveling waves being a fixed cortical location – the ictal core [8]. In contrast, Smith et al. identified

that the directions of the waves and the propagating ictal wavefront are opposite, which led them to hypothesize that

the source is moving and consists of the slow ictal wavefront itself [40].

Our model suggests that both cases are plausible, especially in a heterogeneous patient cohort. If the focus is

transient, the ictal wavefront constitutes a stronger source and produces the traveling waves recorded by electrodes

(as seen in Figure 3.1). On the other hand, if the focus is highly excitable throughout most of the seizure duration,

either due to persistent cortical abnormalities or sustained subcortical input, the epileptogenic focus is very active

and serves as a stationary wave source. To model this, we manually assign ∆V rest
e = 8 to the epileptogenic focus for
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Figure 3.4: Seizure course with highly excitable and persistent epileptogenic focus. In this case, the focus serves as the stationary

wave source when active, different from the simulation in Figure 3.1, where the ictal wavefront serves as the traveling wave source.

200 seconds to indicate persistent excitability. Simulation results are shown in Figure 3.4, which demonstrate that,

when the focus is still active, it continuously emits traveling waves that can be captured by the electrodes.

Coupling within the cortical network increases shortly after seizure onset, decreases during

propagation and increases again approaching termination.

Next, we address the controversial topic of cortical network coupling. As discussed in Section 1.2.4, although it

is generally known that synchronicity of network activity is a feature that distinguishes epileptic cortex from normal

brain, there is not yet a comprehensive and consistent characterization of the cortical organization throughout different

phases of seizure. We contribute to this conversation by assessing the temporal evolution of coupling in our model,

using coherence between pairs of electrodes as surrogate. To enable comparison of coherence across time points,

we define a “global coherence”, which is the left intercept when performing linear regression of coherence versus

inter-electrode distance (see Section 2.3 for details). Figure 3.5 shows how this value changes as seizure progresses.

We note that multiple simulations with either identical or different model parameters show consistent trend in

coherence: it increases shortly after seizure onset, decreases during propagation and increases again approaching

termination. Although readings from both macroelectrodes and microelectrodes show this trend, it is more apparent

at the microscopic scale. By aligning the evolution of coherence with visualized spatial activity at different time

points, we hypothesize that the supporting mechanism is as follows: (1) At seizure onset, coherence increases as the

ictal wavefront propagates across the electrode grid to sequentially recruit populations (nodes) into abnormal activity.

(2) Shortly after recruitment into the seizure zone, gap junction strength between inhibitory populations is still high.

Waves emerge from the ictal wavefront and other seizing areas that have high activity, but the waves are very weak,

do not travel far and collide with other waves soon after emergence. This results in a chaotic dynamics and hence the

decrease in coherence. (3) As potassium accumulates and gap junction weakens, waves can travel over long distances

without inhibition. As a result, the populations with the highest activity (either the ictal wavefront or epileptogenic

focus, as discussed earlier in this section) dominates and serves as the source for traveling waves. The propagation of
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Figure 3.5: Coherence analysis. Global coherence (see text for definition) at the microelectrodes over time. The general trend of

this value is consistent across simulations with varied parameters: it increases at onset, decreases during propagation and increases

again approaching termination.

these waves couples population activity over large cortical areas and supports the increase of coherence approaching

seizure termination.

Consistency of wave source direction increases later in the seizure, but the direction can

occasionally undergo sudden changes.

To quantitatively characterize the spatial organization of the traveling waves and compare it with human seizure

data, we examine the evolution of the estimated source direction at the center of the simulated microscopic and

macroscopic electrodes. Briefly, to compute this, we calculate the delay between each electrode and the central

electrode and estimate the traveling wave direction and velocity by performing multiple linear regression of the delay

over the spatial distribution of the electrode grid (see Section 2.3 for more details). Figure 3.6a shows the evolution

of estimated source direction corresponding to the simulation presented in Figure 3.1. Direction at time points where

the linear fit is poor is not shown as it indicates a lack of detectable traveling waves at the electrode location. We

note that the consistency of source directions increases throughout the seizure at the microscopic and macroscopic

spatial scales, coherent with results from statistical analyses of human seizure data [8]. This applies to both scenarios

where the wave source is either a moving ictal wavefront or a stationary focus. Interestingly, in simulations where the

ictal wavefront initiates traveling waves, analysis reveals sudden changes in source direction several times throughout

the seizure. This phenomenon is previously observed in microelectrode array data from seizure patients (Figure

3.6b shows wave source analysis of recordings from three patient data, reproduced from [8]) and, to the best of our

knowledge, has not been captured in other computational models [63]. Mechanistically, our model suggests that the

spatial heterogeneity of the ictal wavefront governs the changes in direction. Different parts of the ictal wavefront

exhibit different levels of activity and the segment with the highest activity dominates and serves as the source of

traveling waves. As seizure progresses, the ictal wavefront propagates outward from the focus and eventually interacts

with pathological and structural boundaries, resulting in continuous changes in the relative strength of different parts

of the wavefront. As a result, the source direction changes from time to time.
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Figure 3.6: Traveling wave analysis. (a) The source direction and velocity recorded at the microelectrodes over time. Direction

at time points when the linear fit is poor is not shown. Consistency of source direction increases towards seizure termination but

direction occasionally undergo sudden changes. (b) Traveling wave source direction analysis of microelectrode recordings from three

patients, reproduced from [8].

Seizure terminates spontaneously and synchronously and the frequency of traveling waves

decreases before termination.

As discussed in Section 1.2.3, one characteristic electrographic finding of seizure termination is the slowing of

rhythmic activity (“brain chirp”) followed by synchronous cessation of activity across the entire seizing field, irre-

spective of the temporal delay in recruitment. Here, we propose possible supporting mechanism for this dynamics

specifically in the scenario where the ictal wavefront serves as the source of traveling waves. We hypothesize that there

is a different mechanism that supports termination in the scenario with a stationary cortical source, e.g. adaptive

inhibitory input from subcortical sources.

As shown in Figure 3.1, our model successfully captures the spontaneity and synchronicity of seizure termination.

Without varying any global parameter midway through the simulation, abnormal activity ceases spontaneously when

the ictal wavefront reaches the boundary of the pathological zone. Outside of the pathological zone, potassium

homeostasis is normal and fast-spiking neurons do not enter depolarization block from potassium accumulation.

Consequently, the ictal wavefront fails to recruit more areas into seizure and it gradually weakens when confronted

with strong inhibition from the normal brain regions. Since the wavefront serves as the source for traveling waves,

when it dies out, the waves cease and activity stops in the entire recruited zone nearly synchronously. Note that this
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does not imply that the pathological zone has returned to normal physiological stage. In our model, potassium is still

elevated within and the zone is still excitable, but there is not a strong source that generates longer range activity.

To the best of our knowledge, this mechanism of seizure termination has not been proposed previously. Our model

suggests that it is theoretically a possible scenario for synchonized termination of seizure, and further experiments

can be designed to prove or disprove this hypothesis.

Of note, in addition to the spontaneous and synchronous termination of seizure, the model also reproduces the

slowing of rhythmic activity prior to termination. Figure 3.2b shows the firing rate of various populations prior to

seizure termination (i.e. a zoomed in version of 3.2a) and suggests that the frequency of spikes-and-waves decreases

prior to complete cessation. Figure 3.6a also shows that the velocity of traveling waves decreases prior to termination.

This matches very well with the “brain chirp” phenomenon. Mechanistically, this slowing is likely due to weakening

of the ictal wavefront, which as a consequence, leads to weakening of the traveling waves.

We observe that the spontaneous termination of seizure can depend on a wide variety factors. Interestingly,

decreasing the global long-range inhibition Nb
ie by even 0.75% (e.g. from 670 to 665) can lead to failure of spontaneous

seizure termination (Figure 3.7). Traveling waves reach the pathological boundaries, but, instead of being terminated,

they are reflected and continue to produce seizing activity within the pathological zone. This can potentially explain

the dynamical mechanisms of status epilepticus.

Figure 3.7: Simulation that does not terminate spontaneously. When the global long-range inhibition decreases, simulations

occasionally do not terminate spontaneously. Traveling waves are reflected at the pathological boundaries and continue to propagate

indefinitely. We hypothesize that this could be a presentation of status epilepticus.
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3.2 Cortical geometry model

To achieve higher spatial resolution and increase anatomical accuracy (for both the cortical surface and the

modeled electrodes), we further modified the geometry of our model by increasing the number of nodes to 40962 and

warping the sphere into the geometry of a cortex. The triangular mesh of the surface is acquired through FreeSurfer.

Electrodes are modeled by identifying a two 5x5 grids (one for macroelectrodes and one for microelectrodes) that

overlay the cortical area of interest. Each electrode summarizes activity of nearby network nodes, weighted by their

reciprocal distances.

In Figure 3.8, we show a simulation of a full seizure with this new model (in parallel to Figure 3.1). We can see

that neural dynamics are again observed at two different times scales (less obvious here due to unseen parts of the

sulci) – propagation of ictal wavefront and emergence of traveling waves. The seizure terminates spontaneously and

synchronously across the entire cortex, with slowing of rhythmic activity approaching termination (Figure 3.10b). If

we perform various analyses on the simulated recordings from the electrodes (Figure 3.9), we also observe similar

features in human recordings. Coupling within the network increases after seizure onset, decreases during propagation

and increases again approaching termination (Figure 3.10d). Direction of the traveling waves become more consistent

in late stage of seizure and can occasionally undergo sudden changes (Figure 3.10c). This suggests that the spatial

and temporal dynamics produced by our model are likely at the right order of magnitude compared to human data,

such that, with electrodes modeled at the same scale as the real electrodes, the activity observed are quantitatively

and qualitatively comparable to human recordings.
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Figure 3.8: Example spatial maps of simulated activity on the cortex. Similar to Figure 3.1, blue areas represent quiescent

populations while yellow nodes suggest high excitatory activity.
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Figure 3.9: Simulated electrodes on the cortical surface. The yellow dots represent the simulated macroelectrodes, with size

comparable to ECoG grids. The nearby green, red, pink dots are the three closest nodes on the cortical network from which the

electrodes record electrical activity (as described in the text, the activity is weighted by reciprocal distances to the electrode).

Figure 3.10: Various analyses of the simulation from cortical geometry model. (a) Firing rate of each neural population in entire

seizure course. (b) Firing rate of each neural population prior to seizure termination. (c) Source direction and velocity recorded at

the macroelectrodes throughout seizure course. (d) Global coherence at the macroelectrodes over seizure course.
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3.3 Preliminary results for spontaneous ictogenesis

The majority of this work has focused on the dynamics of a focal seizure after the time of ictogenesis, i.e. the

emergence of an epileptogenic focus, where seizure is initiated. Specifically, we have modeled the propagation and

termination after the focus is manually incited. We recognize that modeling the process of spontaneous ictogenesis is

another essential piece of puzzle in understanding the full seizure dynamics and will open many more doors towards

other surgical and pharmacological interventions. We are working towards achieving this goal and we present some

preliminary data in this section.

Similar to seizure termination, ictogenesis is also one of the least understood topic in epilepsy. Animal experiments

have confirmed that various cellular, synaptic, network abnormalities can perturb the excitatory and inhibitory

balance in the brain and lead to onset of seizure. However, the exact mechanism that governs the transition in

human and why there is a sudden perturbation of balance at seizure onset are still unclear. Utilizing existing

components of our model, specifically the elevated extracellular potassium, we would like to propose a possible

mechanism. As discussed in Section 1.2.1, accumulation of extracellular potassium increases neural excitability and

may play an important role in seizure propagation – we hypothesize that it could be the underlying mechanism for

ictogenesis as well. To model this, we modify Equation 2.7 such that there is some rare, high-amplitude, temporally-

and spatially-randomized excitatory current from subcortical structures into the cortex (in addition to the existing

baseline subcortical input):

φsc
eb(~r, t) = 〈φsc

eb〉+ a
√
〈φsc
eb〉ξeb(~r, t) + bξ′eb(~r, t) (3.1)

where ξ′eb(~r, t) is a Bernoulli function with small probability (for example, 0.0001) and b represents the amplitude

of the randomized current (in this case chosen as 28). This excitation contributes to the very slow accumulation

of potassium within the pathological zone, where potassium homeostasis is impaired. Within the pathological zone,

there are several spot locations where potassium accumulates faster than others (e.g. representing locations where

glial function is more impaired) and they gradually become slightly more excitable than surrounding areas. When

one of these locations by chance also receive high-amplitude subcortical input, it may become an epileptogenic focus

and initiate a seizure.

Figure 3.11 shows a simulation with this modified model. Of note, the slow accumulation of potassium is modeled

at the time scale of minutes here, but can easily be adjusted to hours or days (comparable to human seizure frequency)

by modifying parameters. One technical detail to note: The added high-amplitude subcortical input disrupts various

spatiotemporal dynamics produced in the original model. Hence, we have had to modify the model such that the

amplitude of this input (parameter b in Equation 3.1) quickly decreases when there is high cortical activity (e.g.

during the ictal period). With this assumption, the spatiotemporal dynamics simulated are very similar to the

original model, except that now the seizure focus arises spontaneously. All the qualitative and quantitative features

that our original model is able to reproduce consistently hold true. With further exploration of parameter space,

this assumption might not be necessary. However, we also wonder if this could be an alternative representation of

the “Network inhibition hypothesis” proposed by Blumenfeld [50]. In its original form, this hypothesis suggests that

seizures can spread from the cortex to activate inhibitory subcortical structures that in turn deactivate frontal cortex

and lead to loss of consciousness. This could potentially align with our assumption that subcortical input decreases
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Figure 3.11: Example spatial maps with epileptogenic focus arising from randomized subcortical input instead of manually incited.

Similar to Figure 3.1, blue areas represent quiescent populations while yellow nodes suggest high excitatory activity.

during the seizure.

Of note, in this model, there is already some diffuse baseline excitability (from very slow potassium accumulation)

minutes prior to seizure onset. Interestingly, this matches well with some recent experimental data. Although clinically

the onset of seizures is usually considered an abrupt phenomenon, there has been increasing evidence from fMRI and

intracranial EEG that suggest widespread changes in cortical activity hours prior to seizure [64, 65]. Long-term

monitoring with a sensitive potassium probe either in an animal model or epilepsy patient could help understand if

potassium does play a role in ictogenesis.



Chapter 4

Conclusion and Discussion

Despite significant advancements in neuroscience in the past few decades, understanding and treating epilepsy remains

one of the most challenging question in neurology. The brain’s complexity, the disease’s heterogeneous manifestation,

coupled with the difficulty of performing relevant in vivo experiments, all hinder our ability to uncover the underlying

mechanisms that sustain a seizure. Fortunately, the newest electrode technologies have enabled us to record neural

activity at different spatial and temporal scales and allowed us to catch a glimpse of the assorted dynamics. As

a consequence, this calls for new computational models that can explain the physiological factors underlying these

observed activity. Models with different degrees of details have been proposed, all with their own strength and caveats.

Some are able to portray cellular features to the level of individual ion channels and receptors, allowing investigation

of how ion currents influence neural firing. Some target a wider spatial coverage and successfully reproduce the entire

cortical dynamics. With current computational power, it is challenging to achieve both. Our hope is to find an

appropriate middle ground, with sufficient anatomical scope to allow comparison with patients’ ECoG recordings,

while conserving adequate biological details to enable speculation of mechanisms.

Summary of results and discussion. In short, we developed an in silico, network-based, anatomically- and

biophysically-motivated representation of realistic seizure activity in the human brain. We use the model in [8]

as a foundation and added several elements that have been shown to play significant roles in seizure dynamics,

including fast-spiking interneurons, extracellular potassium and its effect on neural excitability and depolarization

block. We also increase the geometrical accuracy by expanding the grid, warping it into cortical surface, and modeling

realistic electrodes that capture electrical activity. Our model reproduces several experimental findings from patient

electrographic data.

Most importantly, our model consistently simulate dynamics at two distinct spatiotemporal scales – ictal wavefront

and traveling waves. When seizure initiates in a small epileptogenic focus, an ictal wavefront slowly propagates

outwards, recruiting neighboring areas into abnormal activity. Later in the seizure, traveling waves (spike-and-

wave discharges) emerge within the recruited area and are seen in both microscopic and macroscopic electrode

recordings. These waves propagate orders of magnitude faster than the ictal wavefront (100-1000 mm/s versus 1

mm/s). Various versions of our model suggest that more than one cellular mechanism can possibly govern these

observations. Specifically, we confirm that breakdown of surrounding inhibitory barrier from depolarization block (as

a result of extracellular potassium accumulation) can precipitate seizure recruitment, but it is certainly not necessary

– hyperexcitability from potassium accumulation alone may be sufficient in overcoming the brain’s normal inhibitory

39



40

barrier, though the potassium production/leakage needs to be relative fast (e.g. in cases of channelopathies). One

possible experiment to differentiate between these two scenarios is to modify the ion conductance of the fast-spiking

interneurons to prevent them from entering depolarization block, then observe if a seizure can be initiated in setting

of high external excitatory input. There are also other possible mechanisms that our framework does not have the

capability of modeling, e.g. collapsed trans-membrane chloride gradient that reduces the strength of surrounding

GABA-dependent inhibition [37, 38]. Including this in our model will require entirely redesigning the properties of

the nodes and edges and will likely compromise other physiologies that our model is currently able to capture. Of

note, in our model, the emergence of traveling waves is dependent on slow potassium accumulation and its effect on

closing gap junctions between inhibitory populations. This has been theorized in literature, though to the best of our

knowledge, has not been proven with experiments [8]. Lastly, one temporal dynamics that we have not delved into

much is the observed low amplitude, fast oscillations prior to transition into spike-and-wave complexes [12]. Revisiting

Figure 3.2a, the excitatory activity (blue tracing) immediately after recruitment could possibly represent this fast

activity. Whether this corresponds to what is recorded in human seizures and what the underlying physiology is

warrant further exploration.

Contradictory studies have proposed that the source of traveling waves is either a stationary cortical source or a

moving ictal wavefront [8, 40]. Our model suggests that both cases are theoretically plausible and the former happens

when the focus is highly excitable and persistent. However, we would also like to point out that the two papers

performed very different analyses and could be why they lead to distinct conclusions. [8] compared the directional

consistency of traveling waves in human data with computational models of either scenario and concluded that the

fixed cortical source is more compatible, while [40] compared the direction of the ictal wavefront against the traveling

waves and suggested that the wavefront is more likely the source. In the future, it may be helpful to revisit these two

analyses using our model (specifically the cortical geometry one). It is possible that only one scenario dominates,

and our model’s more realistic representation of the ictal wavefront along with the ability to account for the sulci and

gyri can help explain why they led to different outcomes. Alternatively, there are experimental procedures that can

possibly distinguish the two scenarios. For example, if the traveling wave source is a fixed cortical source, application

of an external stimulus at this source midway through the seizure should disrupt the emergence of traveling waves.

Another patient electrographic finding that our model is able to reproduce is the trend of spatial coupling through-

out a seizure event. Specifically, the coupling within the cortical network increases shortly after seizure onset, decreases

during propagation and increases again approaching termination. We hypothesize that these are correlated with the

evolution of spatial activities described earlier. At onset, ictal wavefront propagation leads to increase of coherence.

As traveling waves begin to emerge, they initially fail to travel far because gap junctions unite inhibitory populations,

hence coherence is low. Prior to termination, gap junction weakens in setting of potassium accumulation, and waves

can travel longer distance without inhibition, supporting the observed spatial coupling. Of note, the analysis in this

project focuses on coherence within the frequency spectrum 1-13Hz, as the highest coherence in human seizure data

is observed within this range. Many previous coupling analysis have yielded different trends, possibly due to an

alternative choice of frequency range, or differences in coupling measures [52, 53, 54, 55]. Our model, unfortunately,

is not well suited to to simulate activity of higher frequency.
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Lastly, in our model, seizure terminates spontaneously and synchronously and the frequency of traveling waves

decreases before termination, both of which are widely recognized findings from human electrographic recordings.

The mechanism underlying seizure termination is one of the least understood and least studied topics in epilepsy.

We would like to contribute to the conversation by providing an alternative possibility: When the ictal wavefront

approaches the normal tissue, it fails to recruit more area into seizure activity as the potassium homeostasis is intact,

and thus it gradually weakens until fully ceasing. One possible experiment to study this hypothesis is to induce

a global dysfunction of potassium homeostasis by selectively inhibit glial function and examine if seizure fails to

terminate (in other words, always secondarily generalize).

Limitations and future directions. To the best of our knowledge, our model is the first framework that

can represent seizure activity at the scale of the entire cortex. It is also the only biophysical model that unifies

and explains all the above features regarding the spatiotemporal dynamics of seizures. However, several limitations

should be discussed and improved in future iterations of the model. First, our current model assumes homogeneous

connectivity across the entire cortex, which is a necessary simplification at this stage to ensure that the computational

complexity is scalable. In the future, connectome data should be incorporated when available. It would not only help

us understand how heterogeneous long-range activity influences seizure spread but will also allow us to personalize

the model parameters to each patient’s ECoG data and connectome data. Second, we incorporated very limited cell-

level details (e.g. Goldman-Hodgkin-Katz equation, potassium efflux) to help portray the hypothesized mechanisms

underlying seizure dynamics, and by necessity we have to assume some of the variables in these equations are

constant. With greater computing power, the model can more realistically represent ion channels, ion concentrations

and transmembrane fluxes, which will certainly increase the accuracy of the model. Nevertheless, we are hopeful that,

even with the present simplifications, our model can still serve as a means to begin understanding various mechanisms

underlying seizure initiation, propagation and termination.

Clinical implications. With the various hypotheses and results presented here, we would like to suggest poten-

tial medical and surgical therapies for controlling seizures. To target the mechanisms that support seizures, possible

therapies include preventing potassium accumulation by restoring glial function or chelation with pharmacological

measures, and preventing fast-spiking interneurons from entering depolarization block. Alternatively, from a struc-

tural perspective, our model suggests that removal or isolation of the cortical source may disrupt recruitment of tissue

beyond its scope. The beauty of computational models is that these interventions can be tested in silico prior to

designing animal models. This is certainly a future direction of our project.

The model is not only customizable to unique clinical cases, but also allows incorporation of additional biological

and chemical mechanisms as they are discovered through in vivo and in vitro experiments. Ultimately, we envision

continuously refining the model and contributing to personalized medicine by developing an algorithmic pipeline

that tailors treatments (pharmacological, surgical and stimulation-based) in a patient-specific context, based on their

clinical history, imaging data, electrographic activity and seizure subtype. We also anticipate that this framework

will serve as a starting point for the computational modeling of other neurological diseases.
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[16] Rüdiger Köhling, Martin Vreugdenhil, Enrico Bracci, and John G.R. Jefferys. Ictal epileptiform activity is

facilitated by hippocampal GABA(A) receptor-mediated oscillations. Journal of Neuroscience, 2000.

[17] Mark P. Beenhakker and John R. Huguenard. Neurons that Fire Together Also Conspire Together: Is Normal

Sleep Circuitry Hijacked to Generate Epilepsy?, 2009.

[18] Vadym Gnatkovsky, Laura Librizzi, Federica Trombin, and Marco De Curtis. Fast activity at seizure onset is

mediated by inhibitory circuits in the entorhinal cortex in vitro. Annals of Neurology, 2008.

[19] L E Martinet, Omar J Ahmed, Kyle Q Lepage, Sydney S Cash, and Mark A Kramer. Slow Spatial Recruit-

ment of Neocortex during Secondarily Generalized Seizures and Its Relation to Surgical Outcome. Journal of

Neuroscience, 35(25):9477–9490, 2015.

[20] Catherine A. Schevon, Steven Tobochnik, Tahra Eissa, Edward Merricks, Brian Gill, R. Ryley Parrish, Lisa M.

Bateman, Guy M. McKhann, Ronald G. Emerson, and Andrew J. Trevelyan. Multiscale recordings reveal the

dynamic spatial structure of human seizures. Neurobiology of Disease, 127(January):303–311, 2019.

[21] Andrew J Trevelyan, David Sussillo, and Rafael Yuste. Feedforward inhibition contributes to the control of

epileptiform propagation speed. Journal of Neuroscience, 27(13):3383–7, 2007.

[22] Catherine A Schevon, Shennan A Weiss, Guy M Mckhann, Robert R Goodman, Rafael Yuste, Ronald G Emerson,

and Andrew J Trevelyan. Evidence of an inhibitory restraint of seizure activity in humans. Nature communica-

tions, 3:1060, 2012.

[23] Sattar Khoshkhoo, Daniel Vogt, Vikaas S Sohal, Sattar Khoshkhoo, Daniel Vogt, and Vikaas S Sohal. Dynamic

, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures

Dynamic , Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible

Seizures. Neuron, 93(2):291–298, 2017.

[24] Mario Cammarota, Gabriele Losi, Angela Chiavegato, Micaela Zonta, and Giorgio Carmignoto. Fast spiking

interneuron control of seizure propagation in a cortical slice model of focal epilepsy. Journal of Physiology,

4:807–822, 2013.

[25] Michele Sessolo, Iacopo Marcon, Serena Bovetti, Gabriele Losi, Mario Cammarota, Gian Michele Ratto, Tom-

maso Fellin, and Giorgio Carmignoto. Parvalbumin-positive inhibitory interneurons oppose propagation but

favor generation of focal epileptiform activity. Journal of Neuroscience, 2015.

[26] I Toyoda, S Fujita, AK Thamattoor, and PS Buckmaster. Unit Activity of Hippocampal Interneurons before

Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 35(16):6600–

6618, 2015.

[27] Jokubas Ziburkus, John R Cressman, Ernest Barreto, and Steven J Schiff. Interneuron and pyramidal cell

interplay during in vitro seizure- like events. Journal of Neurophysiology, 95(6):3948–3954, 2007.



44

[28] Omar J Ahmed, Mark A Kramer, Wilson Truccolo, Jason S Naftulin, Nicholas S Potter, Emad N Eskandar,

Garth R Cosgrove, Andrew S Blum, Leigh R Hochberg, and Sydney S Cash. Inhibitory single neuron control of

seizures and epileptic traveling waves in humans. BMC Neuroscience, 15(JULY):F3, 2014.

[29] Damian Seung Ho Shin, Wilson Yu, Adrian Fawcett, and Peter Louis Carlen. Characterizing the persistent CA3

interneuronal spiking activity in elevated extracellular potassium in the young rat hippocampus. Brain Research,

1331:39–50, 2010.

[30] Fiona E N LeBeau, Stephen K Towers, Roger D Traub, Miles A Whittington, and Eberhard H Buhl. Fast network

oscillations induced by potassium transients in the rat hippocampus in vitro. The Journal of physiology, 542(Pt

1):167–79, 2002.

[31] Leandro Leite Antonio, Marlene Lulie Anderson, Eskedar Ayele Angamo, Siegrun Gabriel, Zin Juan Klaft,

Agustin Liotta, Seda Salar, Nora Sandow, and Uwe Heinemann. In vitro seizure like events and changes in ionic

concentration, 2016.

[32] Allen P. Fertziger and James B. Ranck. Potassium accumulation in interstitial space during epileptiform seizures.

Experimental Neurology, 1970.

[33] O. P. Hamill, J. R. Huguenard, and D. A. Prince. Patch-clamp studies of voltagegated currents in identified

neurons of the rat cerebral cortex. Cerebral Cortex, 1991.

[34] Marco Martina, Jobst H. Schultz, Heimo Ehmke, Hannah Monyer, and Peter Jonas. Functional and molec-

ular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat

hippocampus. Journal of Neuroscience, 1998.

[35] Bernardo Rudy and Chris J. McBain. Kv3 channels: Voltage-gated K+ channels designed for high-frequency

repetitive firing, 2001.

[36] Ghanim Ullah, John R. Cressman, Ernest Barreto, and Steven J. Schiff. The influence of sodium and potassium

dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal

of Computational Neuroscience, 2009.

[37] Junko Yamada, Akihito Okabe, Hiroki Toyoda, Werner Kilb, Heiko J. Luhmann, and Atsuo Fukuda. Cl- uptake

promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. Journal

of Physiology, 2004.

[38] Johan Pallud, Michel Le Van Quyen, Franck Bielle, Christophe Pellegrino, Pascale Varlet, Marianne Labussiere,

Noémie Cresto, Marie Joseph Dieme, Michel Baulac, Charles Duyckaerts, Nazim Kourdougli, Geneviève Chazal,
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