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Abstract

Simulations play an essential role in developing autonomous vehicles and ver-

ifying their safe operation. They enable research in sensor fusion with synthetic data

and allow low-cost experimentation with different design decisions, like the number,

location, and specifications of various sensors on vehicles. Apart from industrial sim-

ulation tools, researchers have been using game engine based simulators, mainly to

generate training data for artificial intelligence systems and to test their decision

making in virtual worlds. These simulators currently support camera and lidar sen-

sors but lack a physics-based radar implementation. Automotive radars that serve

for advanced driver-assistance systems today are evolving into imaging radar systems

for autonomous vehicles. Therefore it is critical to be able to simulate them in the

same environment together with other sensors. In this thesis, we aim to develop a

generic radar sensor plugin using a raytracing method and to integrate it into one of

the game engine based autonomous vehicle simulators.
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Chapter 1: Introduction

1.1. Motivation

Autonomous driving companies need to demonstrate the safety of their prod-

ucts by driving with their systems for millions of miles [1]. Any changes in hardware

or software implementation will require more testing on the road. Simulations provide

a low-cost alternative to road tests and can expose the system-under-test to complex,

repeatable scenarios [2]. The overarching goal is to verify the correctness of decisions

made by an artificial intelligence subsystem. The functionality of this system depends

on the fusion of high quality and rich sensory information [3].

The development of environmental perception sensors is a costly industry-wide

effort which requires modeling and simulation to improve sensor and system design,

and our understanding of the data collected from road tests. In effect, simulations are

virtual labs where we can test experimental sensors and environmental models with

plugins. Many proprietary simulators are available from multiple vendors to aid sensor

system research and development [4]; however, open-source tools impact research

productivity more by allowing modifications and enhancements. From a scientific

point of view, they also allow repeatability and comparison of results. Software

modularity and well-defined interfaces for plugins are critical to orchestrating an

ecosystem of open and closed-source tools together. In our application context, Robot

Operating System (ROS) provides a good example [5, 6].
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(a) CARLA (b) DeepDrive

(c) LGSVL Simulator (d) Baidu Apollo Simulator

(e) AirSim (f) Udacity Simulator

Figure 1.1: Game engine based autonomous vehicle simulators. CARLA and Deep-
Drive are based on Unreal Engine. LGSVL Simulator and Baidu Apollo Simulator
are based on Unity game engine. AirSim simulates quadcopters and cars, it can
work with both Unreal and Unity. Udacity Simulator, which is based on Unity, was
developed as a teaching tool.
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In recent years, academic and industrial researchers released multiple simula-

tors for autonomous vehicle research based on popular game engines. [7, 8, 9, 10].

These simulators spawn numerous actors within a predefined environment and allow

the user or an algorithm to control their motion (Fig4.5). It’s also possible to record

multimodal sensor data for training deep neural networks and experiment with sensor

fusion architectures for more accurate and robust object classification, visual-inertial

odometry [11], or reinforcement learning [12].

A game engine mainly organizes user interface, physics engine, and rendering

[13]. 3D games provide visual feedback to the users by simulating camera models and

allow them to control camera positions and orientations. Therefore, for autonomous

driving applications, rendering quality based on the physics of light is highly relevant.

Game engines employ rasterization techniques, which involve shader programs run-

ning on graphics processing units (GPU). The resulting images are approximations

and not physically accurate. There is another rendering technique called raytracing,

which traces a high number of light rays between sources and cameras within a scene,

producing photorealistic results [14]. Unfortunately, raytracing for high-quality im-

ages was quite slow until recently. Today, with improved GPU architectures, it’s

possible to get real-time raytracing (RTRT) in game engines (Fig.1.3).

To generate useful synthetic data for our applications, we should apply physically-

based rendering for all perception sensors: cameras, lidars, and radars. The last two

are active ranging sensors based on the propagation of self-generated electromag-

netic waves within the environment and their reflections from objects. Therefore, we

can apply similar techniques used for visible light with modifications to the material

properties based on the frequency of operation. Inherently, lidar simulations can use

low-density raytracing because of the spatial coherence of laser beams. On the other

hand, radars emit waves in a wide angular span, and the response of materials can
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Figure 1.2: Sensor simulation stack

Figure 1.3: Unreal Engine RTRT

Figure 1.4: Unity Engine RTRT

be drastically different at microwave frequencies.

Current simulators have implemented various camera imperfections like lens

distortion. They also provide lidar implementations utilizing a raycasting mechanism

within the game engine framework, and currently, they lack a physics-based radar

sensor. Implementing a radar simulator for a particular game application or a game

engine would potentially tie the source code to a specific framework, limiting its porta-

bility. Ideally, the rendering engines should utilize lower-level APIs for all perception

sensors and use real-time raytracing for simulations. This opens up an opportunity

to develop software libraries that can function as engine plugins. Recently introduced

technologies DXR and Vulkan raytracing provide necessary foundations [15].

In Figure 1.2, we depict the context of this thesis as “Sensor Simulation Libs”.

Our software integration targets leftmost vertical (OptiX + Unreal Engine + CARLA)

with a future goal to move towards the right. Note that this is not a technology

dependency stack, but a visualization for how to bring various tools together to serve

the business needs which could be either R&D efforts or direct applications.
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1.2. Outline

The thesis is organized as follows:

• In Chapter 1, we provide the motivation for the thesis project.

• In Chapter 2, we review the main components of the thesis: automotive radars,

raytracing, and game engine based simulators.

• In Chapter 3, we describe software architecture relating to the plugin and its in-

tegration; we also point out software design decisions and some implementation

details.

• In Chapter 4, we demonstrate the capabilities and discuss the limitations of the

simulator and plugin with use cases and benchmarks.

• In Chapter 5, we provide a summary and conclusions.
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Chapter 2: Background

In this chapter, we review working principles of radar, describe FMCW and

TDM-MIMO concepts, highlight difficulties in electromagnetic wave simulations in

the automotive radar context, and motivate raytracing as an alternative approach.

We then describe raytracing with OptiX framework and provide an overview of game

engine based autonomous vehicle simulators.

2.1. Radar

Radar stands for radio detection and ranging. It was initially developed as

a military technology and later found use in many application contexts. It uses

scattered electromagnetic waves (EM) to extract information about the components

of the environment they travel in, mostly for detection and classification of objects

of interest, and estimating their positions and velocities.

A radar system consists of one or more transmitting and receiving antennas,

and signal processing systems. With transmitting antennas, it sends EM waves at

certain frequency towards direction of interest and collects scattered waves using

receiving antennas. If transmitting and receiving antennas are co-located, it’s called

a monostatic radar, if they are separated it’s called bistatic (Fig.2.1).

Received signals first go through analog stages, then digitized with converters,

and processed based on their modulation schemes. The amplitude of the received

6



Figure 2.1: Monostatic and bistatic radar

signal mainly depends on the reflection properties of the materials of target objects,

and its frequency shifts due to Doppler effect.

Considering the monostatic case, if we send continuous waves towards the

object, they are reflected back with frequency shift δf/f = −2v/c, where v is the

relative velocity of the object wrt to the antenna, and c is the speed of light. We call

this operation mode continuous wave (CW) mode. The received power Pr depends

on the transmitted power Pt, the antenna gains Gr and Gt, the wavelength λ, the

distance R of the object and its radar cross section (RCS) σ:

Pr =
PtGtGrλ

2σ

(4π)3R4
(2.1)

RCS is an orientation-dependent measure of reflectivity, and defined as:

σ =
Power reflected to receiver per unit solid angle

Incident power density/4π
(2.2)

σ(θo, φo, θi, φi) = lim
R→∞

4πR2 | ~Es(θo, φo)|2

| ~Ei(θi, φi)|2
(2.3)

where ~Es and ~Ei are the electric fields of scattered and incident waves, (θo, φo) and

(θi, φi) are the observation and incidence directions in target’s local coordinates. It is

generally reported relative to 1m2 in decibels: σdBsm = 10 log10(σ/1m2). RCS plays
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an important role in the detectability of targets and reducing it is a system design

objective in military applications [16].

The scattering characteristics of targets depend on the frequency f of wave.

For a smooth target of size L and a wave with wavelength λ = c/f , there are three

characteristic regions:

• λ � L: (Rayleigh) Low-frequency regime with small phase variations across

the body, resulting in mostly isotropic scattering patterns.

• λ ≈ L: (Mie) Resonance regime where all parts of the body contribute to

scattering, resulting in oscillatory behavior in σ vs. λ.

• λ � L: (Optical) High-frequency regime with σ strongly angle dependent.

Mostly isolated points are responsible for the scattering peaks.

The best illustration for these regimes is the cross section of a spherical object.

In Figure 2.2, for spherical raindrops of radius a, we show the ratio of RCS to optical

cross section πa2 at 77GHz, where k = 2π/λ ≈ 1.6mm−1. We assumed the relative

permittivity for water at this frequency is around 10 − 20j. Notice, in the optical

regime, for large raindrops ka > 10, σ ≈ πa2.

In the radar equation 2.1, we can control the antenna gains, transmitted power

and the wavelength. If the object and its orientation is also known, σ, we can provide

an estimate of its range; unfortunately neither is known. To recover the range, rather

than CW operation, we send pulses, which echo back from the object and received

after a duration δt = 2R/c. While these operation modes provide us with R and

v, characterizing the object requires more information. If the object itself is moving

and its orientation is changing due to a combination of translation and rotation, from

observations of its radar cross section we can get its features. Similarly, for stationary

distributed objects, we can scan the direction of interest or move the antennas to get

8



Figure 2.2: Scattering from spherical raindrops

cross section information from different directions. All these measurements can be

combined to form an image.

2.2. Automotive Radar

Since the early experiments in 1970s, automotive radars have been under de-

velopment and in use since 1999 for active safety and driver assistance functions [17].

Using well-known radar processing methods it’s possible to measure the distance, az-

imuth angle and radial velocity of objects around the vehicle [18]. Today, with an

increasing focus on autonomous driving, automotive radars are going through signif-

icant transformations to satisfy a new set of requirements for environmental percep-

tion. For example, they will generate dense point clouds, and be used in ego-motion

estimation, radar-based localization and object classification [19]. Object detection,
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classification and tracking form a central application theme for all perception sen-

sors. Researchers have successfully applied machine learning for these tasks with

automotive radar data alone [20, 21, 22, 23, 24]. While it is possible to extract this

information from individual sensors, fusing data from multiple sensors can produce

more accurate results. Novel sensor fusion systems introduced in recent years mostly

rely on deep neural networks; there are multiple works fusing radar data with cameras

and lidars [25, 26, 27, 28, 29]. An important factor enabling these type of applications

is the availability of datasets collected with radar sensors with improved resolutions

[30, 31, 32]. The previous generation of automotive radars used 24GHz (λ = 12.5mm)

frequency, and the current generation is based on 77GHz (λ = 3.9mm). With smaller

wavelengths, we can achieve better resolutions.

Even though automotive radars have been deployed for two decades now, there

are still challenges in modeling these sensors, including multipath propagation, sepa-

rability of close objects, and the sensitivity of RCS [33]. It is also difficult to accurately

simulate them. To our knowledge, there is no synthetic radar dataset available yet.

In the next two sections, we introduce some concepts used in automotive radars

today, which we use in our simulations.

2.2.1 FMCW Radar

Frequency Modulated Continuous Wave (FMCW) is a common modulation

scheme used in radars. In a particular form of it, the frequency is ramped up pe-

riodically at T0, called chirping (Fig.2.3). We define a linear chirp f(t) = fc + Kt

with three parameters: The frequency fc around which this modulation happens is

called the center frequency, the ramp rate K defines its slope, and B = K∆T is the

bandwidth. The duration of the chirp is ∆T = T0 − TR, where TR is the reset time

between successive chirps. We can express the signal in complex form: s(t) = ejφ(t),

10



where φ(t) =
∫

2πf(t)dt is the phase.

Consider a monostatic radar with 1 transmitter (TX) and 1 receiver (RX).

When the signaled is echoed back from a target at distance R, it is delayed, s(t− τ),

by an amount τ = 2R/c and its frequency is shifted by fd ≈ 2fcv/c, where v is the

relative radial velocity of the target and c is the speed of light. At the receiver, the

returned signal is mixed with the transmitted signal and filtered to get components

upto an IF bandwidth. Due to the shape of signal (Fig.2.3), for a stationary target,

we observe a beat frequency at fb = Kτ ; therefore we can measure R in term of fb:

R = Kc/2fb. The IF signal is sampled during the ramp at sampling frequency fs,

and we get nmax = ∆Tfs samples, where n is the sample index. By looking at the

1D-FFT of this signal segment, we can idenfity fb for range estimation.

For a moving target fb = Kτ+fd which couples R and v, and requires another

independent measurement for velocity. The periodicity of the signal helps measuring

the changes from chirp to chirp. For example, for a non-accelerating target, we can

assume Rp = Rp−1 + vT0, where p is the chirp index. After pmax = P chirps, we

accumulate nmax × pmax samples. If we lay them out on a 2D grid, we can define

a fast time with steps 1/fs in n-direction, and also a slow time with steps T0 in

p-direction. After approximations, the sampled IF signal can be expressed as [18]:

d(n, p) ≈ exp

{
j2π

[(
K

2R

c
+ fd

)
n

fs
+ fdpT0 + fc

2R

c

]}
(2.4)

An analysis with more terms is provided in [34]. Due to term fdpT0, using a 1D-FFT

in p-direction, we can find fd as a measure of v.

If we have one TX sending the chirped waveform, and nRX RXs, for each RX

we get nmax×pmax samples. Stacking these samples, we form a radar cube (Fig.2.4a).

If the RXs are positioned as a uniformly spaced array (Fig.2.4b), depending on the
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direction of the target on the plane of observation, each RX receives an extra phase-

shifted signal, δϕ = (2π/λ)∆RX sinφ, where ∆RX is inter-RX spacing. With these

additions, we can approximate the samples in the radar cube as:

d(l, n, p) ≈ exp

{
j2π

[(
K

2R

c
+ fd

)
n

fs
+ fcl

∆RX sinφ

c
+ fdpT0 + fc

2R

c

]}
(2.5)

where l is the RX index. With a 1D-FFT in l-direction we can estimate sinφ. The

maximum angle that can be observed with a uniform linear array (ULA) of RXs is

given by: sin−1(λ/2∆RX).

For multiple targets, there will be multiple echoes at different amplitudes,

coming from different directions, each shifted in time and frequency. The overall

equation for the cube becomes:

d(l, n, p) =
∑
q

αqdq(l, n, p) + ξq(l, n, p) (2.6)

where q is the target index, α is the return amplitude and ξ is additive noise.

The resolutions for range and velocity are give by: δR = c/2B, δv = λ/2PT0.

The frequencies in l-direction are uniformly spaced, but the arcsin results in an angle-

dependent angular resolution δφ = λ/lmax∆RX cosφ. For ∆RX = λ/2 and φ = 0:

δφ = 2/lmax. And theoretical field of view is: −π/2 < φ < π/2.

Figure 2.3: FMCW radar concept
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(a) Radar cube concept
(b) Uniform Linear Array (ULA)

2.2.2 TDM-MIMO Radar

Increasing the number of RXs results in higher number of angle bins and bet-

ter angular resolutions. However, there is a cost associated with additional TX/RX

antennas. Time division multiplexing (TDM) with multiple TXs provides a solution.

By adjusting the distance between the TX antennas to ∆TX = nRXλ/2, and alternat-

ing the chirp sequence (Fig.2.5), the phases of the received signals at the RXs become

equivalent to an arrangement with a single TX and nTXnRX virtual RX antennas

[18, 34] (Fig.2.6). Using this method, it is possible to create virtual antenna arrays

that is not resticted to a line, and therefore can also provide elevation θ information.

Different types of antenna arrangements and modes of sequencing the chirps will re-

quire specific processing; therefore for this thesis we will restrict our virtual antenna

array to y-axis and a round-robin TX chirp sequence. (Fig.2.7).

In Table2.1, we provide example settings for a medium range and a short range

radar system. With TDM, the total number of channels for the radar cube becomes

lmax = nTXnRX , and the number of total chirps P = nTXpmax.
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Figure 2.5: TDM chirp sequencing

Figure 2.6: Virtual antenna arrays

Figure 2.7: Radar field of view and MIMO antennas

2.3. Radar Simulation

Automotive radar simulations require electromagnetic wave solutions at mil-

limeter wavelengths. Traditional techniques for solving Maxwell’s equations involve

partial differential equation solvers or integral equation solvers, such as finite ele-

ment method, finite difference time domain, method of moments, and fast multipole

method [35]. In the automotive context, space-time discretization employed with
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Parameter Symbol Radar1 Radar2 Units
Number of TXs nTX 2 4 units
Number of RXs nRX 4 16 units
Ramp rate K 10 50 THz/s
Pulse period T0 36 48 µs
Reset time TR 4 16 µs
Sampling Frequency fs 16 32 MHz
Center Frequency fc 77 77 GHz
Bandwidth B 0.32 1.60 GHz
Repetitions P 2× 64 4× 32 units
Maximum range Rmax 120 48 m
Maximum rel. vel. vmax 13.5 5.07 m/s
Range resolution δR 46.9 9.37 cm
Doppler resolution δv 0.42 0.32 m/s
Angle resolution δφ 14 1.8 deg
Cube height lmax 8 64 units
Cube width pmax 64 32 units
Cube depth nmax 512 1024 units

Table 2.1: Example radar settings

these techniques would result in solutions requiring very high memory and process-

ing times. Since we are dealing with short wavelengths compared to the size of the

simulation domain, a combination of approximate methods in geometric and physical

optics is particularly helpful. In this section, we review these methodologies and the

tools we use for our work.

2.3.1 RCS Simulation

Comptutation of radar cross section requires numeric integration of far-zone

scattered fields; ignoring induced magnetic currents, we write electric ~Es and magnetic

fields ~Hs as:

~Es(r, θ, φ) ≈ −jkη
4πr

e−jkr
∫
V

~J(~r′)ejk(r̂·~r′)dV ′ (2.7)

~Hs ≈
r̂ × ~Es
η

(2.8)
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where ~J is the induced electric current density due to the incident field, k = 2π/λ

is the wavenumber, ~r′ is the local coordinate on the object, r̂ is the direction of

observation, and η is the impedance of material.

For perfect electric conductors (PEC), the fields can not penetrate into the

body and reflect from the surface, therefore the volume integral turns into a surface

integral with induced currents on the surface. For dielectric and magnetic materials,

the fields penetrate into the body and the computations become more demanding.

For simplicity we ignore magnetic materials in this thesis.

Matrix based methods solve these volume and surface integral equations by a

mesh discretization. However, the number of degrees of freedom increases significantly

with larger volumes and mesh details, and the application of these methods become

infeasible. Therefore we turn to a collection of raytracing approximations called

microwave optics [16], which include geometric optics (GO), physical optics (PO),

geometric theory of diffraction (GTD) and physical theory of diffraction (PTD). We

only use GO and PO in the thesis.

GO refers to using specular rays to approximate wavefronts and is based on a

set of postulates:

• λ� R, where R is the wavefront curvature, meaning if we zoom in enough, the

waves look like plane waves.

• Level sets of equal phases along the rays represent the wavefront.

• Rays travel in straight lines.

• Polarization can only change with reflection and refraction and is a constant

along a ray.

• Multiple neighboring rays form a tube, with constant energy flux (Fig.2.8).
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PO uses GO to compute surface currents on mesh primitives, then computes

the far-zone fields, Eqn.2.7, to approximate RCS.

Figure 2.8: Raytube concept. Total energy passing through A1 and A2 are the same.

Tools. We identified three easy-access scattering simulation tools. (1) Ray-

trAMP [36] supports monostatic RCS of objects with PEC material, written in C++,

but needs to be built on Windows OS. (2) RaiderTracer [37] is MATLAB based, free,

allows multibounce effects, but closed-source. (3) POFACETS [38] is also MATLAB

based, has a good set of examples and documentation. Therefore we decided to focus

on POFACETS.

POFACETS. is a collection of MATLAB scripts with a GUI, and provides basic

CAD models. It can compute monostatic and bistatic RCS of triangle-faceted mod-

els using PO approximations (Fig2.9). For material model, it can either use surface

resistivity, or explicitly provided reflection coefficients for parallel and perpendicular

polarizations. It also supports a simplified ground reflection model for additional

scattering. For numerical integration of radiation integrals, it uses a semianalytical

method based on [39], which requires two parameters for a Taylor series approxima-

tion. Selection of these parameters affects the results, and sometimes causes unwanted

spurs. PO method itself also gets less accurate for observer directions away from the

specular direction.
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Partly because of its availability, some multiobjective optimization applica-

tions used it [40, 41]. Recently, it was also used to generate a dataset of time-varying

RCS of rotating objects for classification [42].

It does not explicitly implement GO with rays, only iterates over facets and

checks if they are exposed to the incident field by using facet normal. Therefore,

unlike RaiderTracer, it doesn’t provide multi-bounce effects, and not reliable except

for simple geometies.

(a) RCS of an F-35 model at 300MHz (b) Polar RCS plot at θ = 90deg

Figure 2.9: Example monostatic RCS plot with POFACETS

2.3.2 Raytracing

In raytracing, we test a set of line segments, called rays, for intersection with a

set of primitives (Fig.2.10). When an intersection is detected, we use the information

from the hit point and the primitive to check some rules we set, and decide what to

do next, which could involve branching, generating new rays recursively, computing

and storing data or something else.

Raytracing of visible light has been successfully applied to static scenes to

generate photorealistic rendering results under different lighting conditions. It is also
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applicable to other domains of physics where a ray representation is valid.

Figure 2.10: Ray-triangle intersection

Shooting and bouncing rays (SBR) is a raytracing approach to EM simulation,

initially introduced in [43] for RCS computation of partially open cavities. It starts

with a set of rays propagating towards the opening of a cavity, which is made of

PEC and internally covered with a dielectric layer of certain thickness. GO is used

to compute multiple, polarization dependent reflections of rays entering the cavity,

together with adjustments to the wavefront curvature based on the reflector geometry.

At the exit from the cavity, PO approach is employed to compute the backscattered

radiation.

For better results, we have to use a higher number of rays, in return increasing

the computational work. It is possible to accelerate both raytracing and physical

optics portions of the SBR method using general purpose programming of the GPUs

[44, 45, 46, 47].

While there is significant flexibility of what the raytracing rules might be,

there is a common structure to all raytracing programs. NVIDIA developed OptiX

raytracing engine [48, 49] which has a software development kit freely available to

developers. With raytracing cores in current GPUs, hardware acceleration enables

real-time raytracing. Several researchers reported implementations of SBR method

benefiting from this framework [50, 51], and recent activity in automotive radar sim-
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ulations also indicates the use of SBR method and OptiX framework [52, 53, 54].

OptiX defines a state diagram for the lifetime of a ray and a set of user-

defined programs that are executed on certain conditions (Fig.2.11a). A context is

a collection of user-defined programs, variables and buffers, that contain information

about primitives, lighting, material properties, etc. We can trace multiple types

of rays within a particular context. Each ray type is assigned to a ray generation

program that defines origin, direction, start time and end time for each ray. A launch

is a single run of ray generation programs from an entrypoint, which could be a

pin-hole camera. Rays can carry user-defined data called payload. Ray generation

program can initialize the payload and call the rtTrace function to start tracing.

The scene information is stored as a tree structure (Fig.2.11b). Nodes can

be geometries, materials, groups of geometries or acceleration structures. When a

ray is traced, it’s checked for intersection with the primitives of geometry instances.

An intersection program is bound for each geometry instance. The SDK comes with

default programs for ray-triangle intersections. What happens when a particular

ray-type and material pair is programmed with hit programs. They are called after

intersections are reported. A ray may intersect with multiple primitives and in many

applications the closest one is the most relevant. This particular intersection is han-

dled by closest hit program. It may also happen that a ray does not intersect with

anything, in that case a miss program is executed.

2.3.3 Game Engine Based Simulators

Game engines are highly complex and optimized software frameworks [13].

They provide a development environment for game designers with advanced level

editors, and game applications use their programmability with APIs. Game levels

contain multiple game objects, sometimes called actors. They may have 3D represen-
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(a) OptiX call graph
(b) OptiX context

Figure 2.11: NVIDIA OptiX raytracing framework [49]

tations with a mesh and materials associated with textures, and the game designer

defines their behavior. A physics engine updates the transform of each active game

object based on the laws of mechanics and can provide animation effects by moving

vertices or segments of the mesh with respect to the other parts. A rendering en-

gine uses the mesh and transform information of each game object, decorated with

textures, to create a scene and displays it as visual feedback to the player. Since

two separate tasks, simulation and visualization, use the same data simultaneously,

to maintain real-time performance, they are handled by different threads, and data

sharing between them is defined and managed by the game engine framework.

There are multiple game engines available, targeting various platforms and

employing different programming languages. The two most popular game engines

are Unreal Engine by Epic Games [55] and Unity by Unity Technologies [56]. Both

of them allow the creation of 3D levels and let the players control the motion of a

camera with keyboard and mouse, to navigate the 3D level to perform game-related

tasks.

In recent years, 3D games got attention from researchers working on au-
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tonomous vehicle development. Games provide excellent simulated environments for

software-in-the-loop and hardware-in-the-loop testing. Also, for perception research,

they enable capturing camera and other sensor data to train neural networks. The

ground truth information is directly available and can be used to label these synthetic

datasets automatically. We can evaluate the performance of computer vision tasks

with specific sensor specs and arrangements. We can record user input and train neu-

ral networks to control the vehicle. Using a software agent as the user, we can also

research reinforcement learning. Since games allow multiple players, they are suit-

able for multi-agent simulations, and we can check the prediction and decision-making

performance of the system during complex, repeatable scenarios. This experimenta-

tion feature has enormous value for system designers. In particular, rare events are

unlikely to appear in real-world data collection, but we can systematically generate

them in simulation.

Researchers at Microsoft released AirSim as a drone and car simulator using

Unreal Engine [8]. Intel Labs, TRI, and CVC created CARLA simulator, also based

on Unreal [7]. LG Silicon Valley Lab released LGSVL simulator using Unity [9].

There are reviews available, including a few other simulators [57, 58, 59]; we will only

highlight these three popular projects.

Unreal Engine. by Epic Games is a source-available commercial software [55].

Access to their source code is possible with free developer registration on their website

and joining Epic Games organization on Github. They provide binaries for Windows

and Mac systems and instructions for building on Linux with clang toolchain. Unreal

Engine is highly modular and can be extended with modules and plugins (Fig.2.12a).

CARLA and AirSim are examples of game applications, and they contain Carla and

AirLib game plugins, respectively.
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CARLA. (Car Learning to Act) is an autonomous vehicle simulator with a

focus on urban environments [60]. It is open source under MIT License and available

on Github. It provides free assets of buildings, vehicles, pedestrians, infrastructure

elements, etc., and comes with multiple predesigned towns. It emphasizes multi-agent

aspects of complicated urban driving and provides autopilot vehicles and pedestrian

controllers. It has a client-server architecture with a Python API (Fig.2.12b). It

allows multiple clients to connect to the simulator and perform actions. With the API,

we can change agents’ behavior, generate traffic, control the weather, etc. CARLA

comes with a full suite of autonomous driving related sensors: camera, depth camera,

lidar, radar, IMU, and GPS. It is possible to extend this sensor suite. It can import

maps generated by standard tools and perform traffic scenario simulation. It can

also work with ROS, making it available to a plethora of robotics algorithms and

applications developed earlier.

AirSim. was initially developed for drone simulation to study reinforcement

learning [61]. It is also open-source with MIT License. It comes fully equipped

for hardware-in-the-loop testing with PX4 controller. It can work with cars, has

experimental support for Unity and wrappers for ROS. Similar to CARLA, it provides

a client-server architecture with a Python API. It features multiple sensors: camera,

barometer, IMU, GPS, magnetometer, distance sensor, and lidar. AirSim defines

sensors as a third-party library plugin, called AirLib. Unlike Carla, this plugin is less

coupled to Unreal Engine.

Unity. by Unity Technologies is also a commercial game engine with a differ-

ent business model than Unreal [56]. It is also cross-platform and used in multiple

different industries. In Unity, we write scripts in C# and use MonoDevelop to com-

pile them. We can introduce external code in C++ via native plugins. Similar to

Unreal, its API is well-documented and available online. LGSVL and Baidu Apollo
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(a) UnrealEngine modularity
(b) CARLA components

Figure 2.12: Unreal Engine module/plugin concepts and CARLA architecture

simulators are based on Unity. The latter was not publicly released at the time of

this writing, so we only use LGSVL simulator and simple scenes in Unity editor.

LGSVL Simulator. by LG Silicon Valley Lab is a more recent simulator with

a focus on simulation-as-a-service for commercial R&D and applications [62]. It is

open-source and available on Github, but has a custom user license. It comes with

a few vehicle and town models, and a full sensor suite for autonomous driving with

a sensor plugin interface. It is suitable for software-in-the-loop and hardware-in-the-

loop testing, synthetic data generation, and V2X infrastructure simulation. It can be

used to create digital-twins of real-world locations. Like other simulators, it has ROS

bridge functionality and can work with autonomous driving stacks like Autoware.
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Chapter 3: Radar Sensor Plugin

In this chapter, firstly, we clarify our goals and motivate multiple use cases

to identify minimum software requirements. Then, we define a software architecture

satisfying these requirements. We provide high-level details of software design and im-

plementation compatible with the defined architecture. Lastly, we provide examples

of how to integrate this plugin to various game engines and simulators.

3.1. Software Requirements

Our main goal is to develop a radar sensor simulator integrated into multiple

autonomous vehicle simulators via plugin interfaces. As discussed in Chapter 1, we

would like our simulator to be portable between game engines. This implies that we

have to extract primitive data from the engines and homogenize it before exposing

it to our radar simulator. These extra steps taken impose performance penalties and

may dictate certain design decisions, like the use of shared memory. In addition,

we plan to create multiple radar units in the game and provide radar processing

capabilities to each of them. Therefore, on a personal gaming PC, it can quickly

become impossible to design a real-time system.

Another drawback working outside of the game engines is the difficulty of de-

velopment in the absence of sophisticated utilities like game editors. At a minimum,

we have to reconstruct a 3D world from game data, visualize it, and navigate it. These
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extra features will also ease debugging. Since there will be multiple software com-

ponents that have to work together, we have to test them independently before any

integration efforts. At the interfaces of every major component in the system, which

makes significant amounts of data transformations, we have to dump intermediate

data and replay it to test the next component.

Figure 3.1: Abstract blocks of the overall system

To discuss specific use cases, let us introduce abstract block diagrams of com-

ponents of the overall system (Fig.3.1). Agent can be a human or some software di-

rectly interfacing with the GameEngine. GameEngine::IN could be user inputs from

keyboard, mouse, or API calls. GameEngine::OUT could be a display or some other

data provided as feedback to the Agent. GameEngine::FILEOUT1 port is used for

saving game data. Memory input/output ports of GameEngine and RadarSimulator

symbolize shared memory read/write operations. RadarSimulator::FILEIN1 is used

for material databases, predefined configurations, antenna patterns, etc. RadarSimu-

lator::FILEOUT1 symbolizes recording homogenized game data, whereas RadarSim-

ulator::FILEOUT2 symbolizes saving plots, raw and processed radar cubes. Radar-

Simulator::MEMIN2 is used for replaying homogenized data recordings. In light of

these definitions, we created a table of essential use cases (Table 3.1) and listed re-

quirements (Table 3.2).
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UseCase1 Save game data

UseCase2 Replay game data

UseCase3 Record homogenized data

UseCase4 Replay homogenized data

UseCase5 Raytrace and process data

UseCase6 Integrated Radar Simulator

UseCase7 Headless Radar Simulator

Table 3.1: Use case block diagrams
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R.1 We should be able to record raw game data required for radar simulation.

R.2 We should be able to replay saved game data.

R.3 We should be able to visualize replayed game data.

R.4 We should be able to record, replay and visualize homogenized game data.

R.5 We should be able to define a radar with different antenna configurations.

R.6 We should be able to set sweep configurations for a radar.

R.7 We should be able to spawn radars in the game.

R.8 We should be able to attach radars to vehicles.

R.9 We should be able to visualize what each radar sees.

R.10 We should be able to explore the field of view of each radar visually.

R.11 We should be able to construct a radar cube using raytracing.

R.12 We should be able to perform FFTs on the radar cube.

R.13 We should be able to create range-angle and range-doppler plots.

R.14 We should be able to overlay these plots on the visualization.

R.15 We should be able to send processed data back to the vehicle simulator.

Table 3.2: List of requirements
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3.2. Software Architecture

Based on the use cases and requirements, we defined an initial architecture for

RadarPlugin and RadarSimulator. In Fig.3.2, we show their internal layers referenced

to UseCase6. We have the following responsibilities for each layer:

• RadarObserver : Identify all relevant objects within the game that are of interest

for radar simulation and communicate them to RadarBridge.

• RadarBridge: Put object data on shared memory or dump to filesystem. Also,

receive processed data from shared memory and distribute it to individual sen-

sors in the game.

• GameDataReceiver : Copy object data from shared memory.

• SimulationDataManager : Create internal representations of game objects.

• RaytracerDataManager : From internal representations, generate raytracer spe-

cific data to be consumed in simulation. Put these in shared memory or dump

them to the filesystem.

• RaytracerSimulator : Perform raytracing using radar configurations and antenna

patterns, generate radar cube, and process it to create range-angle and range-

doppler plots. Put results on shared memory or dump to filesystem.

• UI + Visualization: Provide an OpenGL based viewport and user interactions

with mouse and keyboard.
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Figure 3.2: Software architecture diagram

3.3. Software Design

3.3.1 RadarPlugin Design

Our goal with RadarPlugin is to create an interface between our simulator

and the vehicle simulator. Inherently it has to know about both the game engine

and the vehicle simulator. Specifically for Unreal Engine, we want this to be a game

plugin, like Carla itself, and be a part of the game project CarlaUE4. Considering

we want to have our simulator externally developed, we decided to define it as a third

party library plugin. We call this library libRadarSim.so, which is generated from the

software components in the green block diagram (Fig.3.2).

RadarObserver should be unique, be created when the game starts, and should

survive until the end. At every tick, it should go through all objects and keep track

of newly spawned or removed objects. It should also wait for the physics engine to

finish to have an accurate representation of the world.

RadarBridge should serialize mesh, material, and transform data of every ob-
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ject RadarObserver requests. It should also parse multi-radar processed data received

from RaytracerSimulator and provide any data packet to the radar sensor it belongs

to.

To satisfy R.1, RadarPlugin also dumps game data into a folder for each tick

and follows a particular file naming convention.

3.3.2 RadarSimulator Design

Based on the use cases and the architecture, we decided to split RadarSimu-

lator into two modules. The first module GameMeshViewer is responsible for data

transformations and creates a 3D full scene mesh which we can visualize and navigate

(Fig.3.3). It can be run independently with a GameDataReplayer as in UseCase2.

These satisfy R.2 and R.3. It can also save full scene mesh, velocities, and sensor

transforms to partly satisfy R.4 in UseCase3.

The second module is RaytracerSimulator, which is slightly more compli-

cated because it has the responsibility to satisfy all remaining requirements (Fig.3.4).

Firstly, it completes R.4 by providing a FullSceneReplayer, which reads recorded data

from the filesystem and puts them into the shared memory as input to the simulator

(UseCase4). It also has a more complex visualization and user interface design due

to multiple radar support.

In the end, application radars will be defined by the Agent using a script.

Sweeps can be configured by indicating a prototype name from a preconfigured list

known by the simulator, or individually by overriding default parameter values (R.6).

Since this information originates at the game engine side, it has to be communicated

as part of RadarState. Similarly, antenna pattern filenames have to be specified for

each antenna. The pattern files should contain gain values for a grid of points on the

unit sphere (R.5).
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The vehicle simulator needs proxy objects for each radar in the simulator.

They do not have to define a mesh but should be constructed as attachable elements.

Therefore we need to modify the vehicle simulator’s source code to support our plugin

(R.7, R.8).

Figure 3.3: Simplified class diagram for GameMeshViewer module

Figure 3.4: Simplified class diagram for RaytracerSimulator module
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3.3.3 Visualization and UI Design

OptiX samples implement a simple window using OpenGL Utility Toolkit

(GLUT) library. They utilize mouse for zooming in/out and arcball rotation. Ray-

tracing results are copied over to a 2D texture buffer for display. They also provide

SDK utility functions to overlay text. We did not need a graphical user interface and

decided adding more functionality to these with keyboard shortcuts would be enough.

Firstly, to provide navigation within the game environment, we need to add

translations and rotations to the raytracing camera. Translations can be axis-aligned

with the global coordinate system or the camera’s local coordinates. For rotations,

it is more intuitive to use local coordinates by implementing yaw, pitch, and roll

motions. We used QWEASD keys for translation as they are common in 3D games.

For rotations, we used HOME, END, and arrow keys.

When radars are added to the game, we should be notified and see a list

of available units to investigate. With multiple radars in the game, we need some

functionality to select and/or cycle between them. Numeric keys are appropriate for

this requirement. When the user selects a radar, we can move the camera directly to

display its point of view. Since a radar’s field of view can be visualized better from

the top, we can assign another camera that follows the radar. We can allow the user

to lock or unlock this follower camera to the radar. Also, when a vehicle is removed

from the game, any radar attached to it will go out of scope. If a particular radar

on that vehicle was selected at that instant, we should automatically fall back to a

global camera view. We either have to define a default initial global camera location

or keep track of that last coordinates of the global camera. Based on all these, we

decided to define two cameras per radar, a proxy and a follower, and a single global

camera. A follower initially starts locked at the radar like the proxy. Keypress L
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changes its locked state, and camera motion keys can be used to move it around the

vehicle.

We should also display other useful information on the screen, like the position

of the camera and the selected radar unit. See Figure 4.15 for implementation.

3.4. Software Implementation

We developed everything on a personal gaming PC with NVIDIA GeForce

RTX 2060 Super GPU. We mainly used clang as the compiler, googletest for test-

ing, a mixture of CMake and make based workflows, OpenCV for plotting, a mixture

of Boost library, and some recent C++ additions. We also used CUDA and thrust

library, mainly for signal processing. Below we highlight domain level details of our

implementation.

3.4.1 Coordinate Systems

We decided to implement everything on a flat earth, in a right-handed coor-

dinate system with the gravity vector in -z direction. Game engines have different

conventions for handedness and even default gravity direction (Fig.3.5). For an agnos-

tic mesh viewer, either camera coordinates and motion semantics have to be adjusted,

or the whole mesh has to be represented in a common coordinate system. The former

solution does not penalize performance and is helpful during the debug phase. The

latter requires updates to vertex positions, translations, and quaternions; it is helpful

during the replay phase and for engine-independent tasks. Since we update internal

mesh representations only at spawn time, its performance penalty is not significant,

except for the first tick during which the whole map requires an update. The soft-

ware component responsible for game data capture and feedback has to provide these

functionalities.
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Figure 3.5: We converted Unreal and Unity coordinates into a common system

3.4.2 Antenna Patterns

Numerous antenna designs exist for 77GHz radar systems [63]. For our appli-

cation, we only need to understand how we should assign a power level and polar-

ization to our rays in ray generation program, and how we can compute each ray’s

contribution to the radar cube on the receive-side.

The total power radiated from an antenna, P0 is distributed over the unit sphere:

P0 =

∫
S2

U(θ, φ)dΩ, dΩ = sin θdθdφ (3.1)

where the distribution function U(θ, φ) has units of Watts. We can compare an

antenna to an isotropic one with the same total power U0 = P0/4π, by defining

directive gain:

D(θ, φ) =
U(θ, φ)

U0

(3.2)

Directivity is the maximum of directive gain D0 = maxS2 D(θ, φ), and antenna gain

takes into account all nonidealities G0 = eD0, where 0 < e < 1 is called efficiency.

Far from the antenna, the E-field takes the form:

~E = ~p(θ, φ)
e−jkr

r
(3.3)
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where ~p is the field pattern. Also, E-field and power per unit area are related by:

U(θ, φ) =
| ~E|2

2Z0

r2 =
|~p|2

2Z0

(3.4)

where Z0 is the impedance of free space.

When we generate a set of ray directions on the sphere, we have to partition

the total power P0 between the rays by assigning spherical patches Ai to each ray i:

Pi =

∫
Ai

U(θ, φ)dΩ,
∑
i

Pi = P0, ∪iAi = S2 (3.5)

Ray sampling from a uniform distribution with latitude-longitude or octahedral con-

centric mapping is common in practice. Even though these methods would statisti-

cally achieve their goal, they stretch the sampling domain [64]. We prefer the ray-

to-ray distance between neighbors almost constant. We noticed the use of Fibonacci

lattice is more appropriate in this case [65, 54]. Since Fibonacci lattice divides the

full solid angle almost uniformly, we can make a first-order approximation to Eqn.3.5

by assuming the power density is constant over the patch:

Pi ≈ U(θi, φi)

∫
Ai

dΩ =
4π

2N + 1
U(θi, φi) (3.6)

We usually indicate the polarization of an antenna with H and V symbols,

corresponding to horizontal and vertical polarizations, respectively. If the radiated

waves have electric field directions mostly in the elevation direction, we call the an-

tenna vertically polarized; if the electric field is in the azimuth direction, it is hori-

zontally polarized. Based on TX and RX polarizations, we may have, HH, HV , V H

and V V type systems. In the automotive context, we will assume microstrip patch

antennas are used in V V setting.
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Practical antenna patterns can be quite complicated, and considering the ef-

fects of bumpers [52], it is best to utilize measurement results of the patterns as

inputs, for example, on a uniform grid of θ and φ values. We assumed the user would

provide us antenna patterns for each TX and RX antenna. There are also some

standard antenna file formats available, like MSI and PLN, but they specify patterns

only in equatorial (θ = π/2) and longitude cuts (φ = boresight). MATLAB antenna

toolbox uses them to approximate on a full grid.

Assuming we have U(θj, φk) on a grid, we decided to apply bilinear interpola-

tion to compute U(θi, φi). Depending on the use case, other internal representations

of the pattern can also be used, like a set of spherical harmonic coefficients [66, 67],

with an argument that only some of these coefficients are sensitive to large frequency

sweeps. It requires fitting measurement values to spherical harmonics basis, but cur-

rently presents unnecessary complexity for our project.

(a) Dipole antenna pattern (b) Artificial antenna pattern

Figure 3.6: Example antenna patterns. On the left, the radiation pattern of a dipole
antenna, and on the right, an artificially generated high directivity antenna pattern,
similar to antenna patterns of automotive radars. The colors represent power in dB.
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3.4.3 Antenna Transforms

Antenna gain is defined within antenna coordinate frame A. When we generate

a ray in A, we need to know its origin and direction in the world coordinate frame

W. Likewise when we receive a signal in W, we have to convert its direction back

to the corresponding receive antenna’s coordinate frame in order to assign reception

gain correctly.

We can define a multi-antenna radar system with transforms from each antenna

coordinate frame to the radar coordinate frame, TRA. From the game engine, we can

get the transform of a vehicle TWV or a radar unit within the world directly, TWR.

Also, we have to specify how a radar is mounted on the vehicle TV R. Overall, we

have a chain of transformations:

TWA
kji = TWV

k TV R
kj TRA

ji (3.7)

where i, j, and k are antenna, radar, and vehicle indices, respectively. In general,

each transform T can be represented as a 6 degrees of freedom matrix in homogenous

coordinates:

T =

 R t

0T 1

 (3.8)

where R is a rotation matrix and t is a translation vector. Game engines usually

provide a unit quaternion q representation instead of R, and library functions to get

16 float values for T.

3.4.4 Material Properties

We need material properties to compute reflected and scattered fields. Frequency-

dependent impedance of a material medium is given by Eqn.3.9, where ω is the
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Figure 3.7: Transforms between antenna, radar, vehicle and world coord systems

angular frequency of the electromagnetic wave, and µ, ε, σ are the permeability, per-

mittivity, and conductivity of the material, respectively. For a perfect electric con-

ductor, as σ → ∞ then ZPEC → 0. For a non-conductive material as σ → 0 then

ZNC →
√
µ/ε = Z0

√
µr/εr, where Z0 =

√
µ0/ε0 ≈ 376.73 Ω is the impedance of free

space, µr = µ/µ0 and εr = ε/ε0 are the relative permeability and permittivity of the

material. The propagation constant is given by γ = α + iβ =
√
jωµ(σ + jωε); for

a conductive material σ > 0, it has a real part which corresponds to an exponential

power loss.

Z =

√
jωµ

σ + jωε
(3.9)

When a wave comes to an interface between two different materials, some of

the incoming power is reflected and the rest is transmitted (Fig.3.8). Reflection and

transmission coefficients for perpendicular and parallel polarized waves are different

and are given by equations in Table3.3. Also, boundary conditions result in geometric

constraints: sin θi = sin θr and
√
ε1µ1 sin θi =

√
ε2µ2 sin θt. These are known as Snell’s

laws.

From the game engines, we extract a surface mesh representation of the geom-

etry; hence we only have triangles to assign materials to, but not tetrahedrons with a

material volume. This poses an important problem when defining the transmission of

waves between two volumes separated by a triangular interface. Therefore we had to

39



Reflection Coefficient Transmission Coefficient

TE Γ⊥ = η2 cos θi−η1 cos θt
η2 cos θi+η1 cos θ1

τ⊥ = 2η2 cos θi
η2 cos θi+η1 cos θt

TM Γ‖ = η2 cos θt−η1 cos θi
η2 cos θt+η1 cos θi

τ‖ = 2η2 cos θi
η2 cos θt+η1 cos θi

Table 3.3: Reflection and transmission coefficients for TE & TM waves

Figure 3.8: Reflection and refraction of plane EM wave at interface

make some assumptions and simplifications: incoming volume is always air and the

triangles represent one of the material arrangements shown in Fig.3.9. We exposed εr,

µr, σ, and film thickness t to material properties of triangles, and decided to adjust

properties of air based on the weather conditions.

If the application considers only a single frequency or the material properties

do not change considerably within the sweep bandwidth, another approach would

be to provide reflection and transmission coefficients for various material stacks. We

did not want to take this approach since it would require a lookup table for other

frequencies. Providing a small set of thickness values for material stacks together

with their permitivities, permeabilities and conductivities, allows wider frequency

applications as long as those values aren’t too sensitive to frequency. We believe a
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great majority of relevant materials in the field can be mapped into our simplified

set. Also, extending this set requires minor code changes.

Figure 3.9: Simplified material models

In the simulations, we tag metals as PEC. If they have some coating, we use

a dielectric layer with thickness t, which could be any thick paint, water layer, etc.

For transparent materials, we define a single dielectric layer with both sides

air. The thickness for automotive glass is between 3 − 5mm with εr ≈ 6.75 and

loss tangent σc/ωε ≈ 0.003, resulting in a transmission loss around 2-5dB at 77GHz

depending on incidence [68].

We consider anything else as dielectric, which fills the other half-space. For

more complex material compositions, parameters can be selected for an equivalent

surface resistivity.

Vehicles. There are different types of vehicles available in the game: cars,

trucks, motorcycles, bikes, minibusses, etc. They are our first-class citizens, and their

accurate mesh and material representation is critical. When extracting the game

data, we selected a high level-of-detail (LOD) mesh. They all define a skeletal mesh

composed of components joint by a specific structure and allows the physics engine

to create animations. When the wheels are animated, reflections from their updated

mesh can automatically encode micro-doppler effects [69]. In the figure, we show the

model of a small car captured from the game editor. We see enough detail to allow

material composition. In Table 3.4, we listed the tagged materials. The model is

defined for appearance and texture selections are not necessarily related to material

properties. For example, both the roof and the pillar are set as plasticgray material.
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Tag Part Material
1 Roof & Pillars Metal
2 Windshield Glass
3 Wiperblades Metal
4 Internals Rubber
5 Wheels Metal
6 Tires Rubber
7 License plate Metal
8 Lower body Metal
9 Upper body Metal

Table 3.4: BMW Isetta model materials

However, the pillars should be made of metal. Similarly, wiper blades should contain

both metal and non-metal parts. It is crucial to go over different models and update

their materials, particularly the body should be set to metal. For the thesis, we are

not much concerned about the remaining details.

Road, Buildings, Infrastructure. We assume the road is asphalt with εr ≈ 2.6

[70], the pavement and buildings are made of concrete with εr ≈ 4.9 [71]. Ideally, the

road should result in diffuse reflections, which we did not consider in the thesis. We

also did not consider the road state: dry, wet, and icy road conditions have different

backscattering characteristics [70]. Other elements in the environment also reflect

radar signals. For example, infrastructure elements on the side of the road are, in

general, made of metals.

Pedestrians. When considering pedestrians, we need to capture the reflectivity

of human skin and garments correctly. In-depth studies exist on the millimeter-wave

response of human skin [72, 73]. The reflection coefficient of dry skin at 30C, 77GHz,

is reported around -5.15dB [72]. An artificial mannequin design for radar testing [74]

uses multilayer materials to mimic the overall reflection coefficient, assumed to be

around −4.7dB. Based on the simplified model for the RCS σped ≈ |Γ|2σPECped , we can

compute an effective dielectric layer covering the PEC material.
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Like vehicles, pedestrians are also represented with skeletal mesh components

and support animations. Therefore we may capture micro-doppler signatures while

they are walking [75, 76].

Figure 3.10: Examples of CARLA actors with skeletal mesh components

Weather. Adverse weather is an important problem for autonomous driving

and demands a robust perception system that we can only construct by involving all

sensor modalities [77]. Even though cameras and lidar are vulnerable to fog, rain, and

snow, in general, radar gets much less affected by them. As indicated by experiments,

fog has little to no effect on radar [78], so we decided to focus on rain, which results

in significant changes in the material properties of air, the road surface, and even

directly on the sensor [79].

Carla 0.9.6 contains precipitation and precipitation deposits in WeatherParam-

eters specified as float values between 0 and 100. precipitation deposits modify the

road surface, but they do not introduce a mesh layer. Since our data extraction did

not include dynamic materials, we currently can not handle it. We could add a ran-

dom behavior for the road material that affects the hit program. However, we decided

not to create material-specific hit programs and branch within a single hit program

based on the material properties. So, we do not have a way to identify the road

surface, other than explicitly checking for specific parameters, which would couple

code to the material database. Therefore we decided to use only precipitation. First,

we assumed a linear scale with a full physical scale 100mm/h rainfall corresponding
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to the value 100, and followed the rain scattering model in [78]:

σrain = ηV, η =

∫ ∞
0

σ(λ,D)ND(D)dD (3.10)

where η is rain reflectivity, V is observation volume, σ(λ,D) is backscattering from

a single drop of diameter D, and ND(D) is the raindrop distribution. For Marshall-

Palmers drop-size distribution:

ND(D) = N0e
−ΛD, N0 = 0.08cm−4, Λ = 41I−0.21cm−1 (3.11)

where I is rainfall rate in mm/h. We used the same reference for Mie scattering

[80], numerically integrated Eqn.3.10 and plotted in Fig.3.11 for comparison, and

created a table η(I) to use within our simulations. Then, we interpolated η based

on precipitation, and for each range-angle bin, we computed an estimated σrain to

add corresponding power values to the processed cube. Rainfall direction is related

to wind direction and intensity, but we did not want to add too much complexity yet

and assumed rainfall downwards; hence the doppler dimension for the rain clutter was

filled with the radial component of relative velocity, projected on the radar plane.

3.4.5 Data Communication

During our simulations, multiple processes and threads share or exchange data

over shared memory with pointers. We implemented a semaphore-based locking mech-

anism between data producers and consumers. We have memory regions allocated

for all mesh vertices, indices, materials, transforms, vertex velocities, and radar con-

figuration and data. We use each memory region for data serialization following a

specific format.

To reduce the data transfer between the game engine and the simulator, at
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Figure 3.11: Rain reflectivity (1/m) as a function of rainfall (mm/h)

every tick, we only put newly spawned actors mesh data to the shared memory. Since

there are internal representations of the world on the radar simulator side, we only

need to transfer transforms for every actor. For animated skeletal meshes, we still

need to transfer all mesh data.

3.4.6 Raytracing

After reviewing raytracing-based radar simulator implementations reported by

others [45, 54, 52], we decided how to proceed with our work.

The original SBR method [43] defines a bounding surface for a cavity and

computes the radiation integral on this surface. At the exit, from a set of rays repre-

senting a volume trace, an effective area is computed. At each bounce, based on the

surface curvature, the wavefront area is updated. From a geometric perspective, it is

well suited for cavity problems with twice-differentiable surfaces. In our applications,

we can consider the vehicles as cavities since there will be some transmission of waves

through the glass; however, if we take into account the inner material composition of
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the vehicles and the size of the glass-covered area, this is not necessary.

Another item to consider is the ray generation. Ref. [45] highlights three ap-

proaches based on how much mesh information is used to assign ray directions. The

first one is a sensor-centric, mesh-blind approach similar to [54]. Since it is obser-

vational, it can help us understand the effects of parameters used in the ray-tracing

method itself. The other two involve the mesh to improve accuracy by directing

rays towards objects or triangle centers. After the first bounce, we still need an ap-

proach to handle the remaining bounces based on new hit positions. Assuming the

first interaction will result in higher contributions to the received power than others,

this method may be suitable for investigating the limits of detectability. Its perfor-

mance may degrade and fluctuate based on the density of mesh in the game. The

other approach they considered is directing rays on an implicit mesh on the bounding

boxes of objects, which is influenced by the SBR cavity method and addresses the

mesh-dependent performance issue.

A fluctuating performance may cause issues when we run the simulator to-

gether with the game engine; therefore, we decided to take the first approach and did

not inform the ray generation about the mesh of the environment and followed [54],

as noted in the antenna pattern discussions.

Considering the number of rays GPUs can handle today, we can make the

solid angle assigned to a ray tiny. Therefore we can treat the ray as a cone rather

than having a spherical cap. Let us say we have 2N + 1 Fibonacci rays, the area of

spherical cap assigned to a ray is given by:

A = 2πR2(1− cosα) =
4πR2

2N + 1
(3.12)

where 2α is the apex angle. When N is large, we can approximate: α ≈
√

2/N . For
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N = 1M , α ≈ 0.08 degrees; N = 20k can probe better than 1.5 degree resolution.

Furthermore, if we consider the ratio of spherical cap height to the radius of travel,

h/R = 1 − cosα, depending on how much phase error tolerance we can accept, it is

possible to compute the minimum rays required:

∆φmax =
2π

λ
h ≈ Rmax

N
(3.13)

For λ ≈ 4mm, Rmax = 200m, and phase error of 1% of a full cycle, we have to use at

least N = 5M rays. Given that GPUs support multi Gray/sec raytracing capabilities,

this is not a concern. So, we decided on a ray model where each ray represents the

axis of a cone.

Next, we considered reflections of the ray-cone. If we compute the radius of

cone base: r = R sinα ≈ R
√

2/N , at R = 200m and N = 5M , r ≈ 13cm comparable

to the range bin and generally much larger than triangle side lengths. By sampling

the space without considering mesh details, our ray will hit a single triangle within

that solid angle. Applying SBR requires extracting the curvature estimates using the

vertices around the hit area and updating ray-cone parameters. Instead, we decided

R = 200m is far enough to assume geometry and material errors, and considered the

ray hits an area equal to the projection of the cone-base, with the material of the

hit position. If the mesh around this far-hit location is dense and contains multiple

materials, then radar would give fluctuating and noisy signals. We assumed this was

acceptable and by-passed the details required for SBR. As a result, our ray-cones

hit flat triangles, where both principal surface curvatures, κ1and κ2 are 0, and they

reflect without divergence as ray-cones with the same solid angle and mirrored origin

(Fig.3.14). This approach also allows us to apply our PO code developed for triangles

directly. When a ray hits a much larger triangle than its projected base, we assume
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Figure 3.12: Example rays Figure 3.13: Triangle aberration

it hits a similar triangle with a scaled area (Fig.3.13). Therefore we did not have to

define a numerical integration over the whole area. There is also an ambiguity on

how we should apply integration if multiple rays hit the same triangle. Our approach

implicitly defines a new triangulation based on hit sampling, instead of using the

original geometry. If the ray hits close to the sides, an effective scaled triangle may

fall partly outside of the original triangle, and if the projected base is larger than

the original triangle, the overall area may cover it as a whole and some more on the

same plane. We call these resolution-limited effects triangle aberration. If the mesh

contains big elongated triangles or at hit with low elevation angles, we may encounter

issues with this method.

Figure 3.14: Reflection of a ray-cone from κ1,2 = 0, κ1,2 > 0 and κ1,2 < 0 surfaces
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3.4.7 Data Processing

After filling the radar cube with sampled values of the return signals, we need

to process it to detect objects in the scene. As mentioned in the previous chapter,

there are different signal processing approaches depending on the requirements from

the overall radar system. For completeness, we decided to implement the primary

FFT processing, create canonical Range-Angle and Range-Doppler plots, and send

them back to the game client. Plots are helpful in testing and debugging the software.

There are multiple libraries available for signal processing on GPUs, including:

cuFFT, NPP, Thrust and ArrayFire. We implemented FFTs with cuFFT, and for the

remaining parts used vanilla CUDA and Thrust functions. For reducing the 3D cube

into a 2D image, we used maximum power value along the collapsed dimension. We

then converted the range-angle image into a polar form. Implementing thresholding

with CFAR to get detections and target tracking are beyond the scope of the thesis

and can be done on the client-side.

3.4.8 CARLA Integration

At the beginning of our project, we fixed our development versions of CARLA

and UnrealEngine to 0.9.6 and 4.22.3, respectively. During the course of the project,

both tools added new features and capabilities. CARLA introduced a radar sensor

defined by horizontal and vertical fields of view, range, and points per second. The

implementation of this sensor is based on random raycasting within Unreal frame-

work, acts as a high-level abstraction of a radar, and does not contain any details of

radar design, underlying physics or signal processing (Fig.3.15). Nonetheless, CARLA

project successfully leverages many ecosystem tools, thereby provides the best play-

ground for our experiments.
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Figure 3.15: CARLA 0.9.7 includes a point-cloud radar implementation [81]

To integrate our third-party plugin, we followed their documentation, where

they provide detailed instructions for adding a SafeDistanceSensor as an example

[82]. First, we defined a new Actor class ImagingRadar, which is as a proxy of our

radar sensor within the game. It is responsible for providing radar configuration

to our simulator and expects processed data in return. An ImagingRadar object

directly communicates with the RadarBridge and queries whether there is any data

packet addressed to its UUID. Since there is a singleton RadarBridge in our current

implementation and all ImagingRadars either expect or ignore processed data, we

decided to communicate only during their tick events. Otherwise, this situation calls

for an Observer design pattern [83].

We wanted to be flexible regarding the contents of processed data; therefore

defined our serialization on top of a raw data buffer, which is already serialized by

LibCarla. In Fig.3.16, we show the layout of the data frame provided by libRadarSim

to RadarBridge over shared memory and the data packet provided by RadarBridge

to individual ImagingRadar objects over heap memory. As a result, a simple extra

deserialization step on the receiving end is required during sensor callback. Currently,

by default, we provide range-angle and range-doppler plots together with processed

radar cube all in the same packet. This can be easily changed or extended by adjusting
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Figure 3.16: Radar data serialization

the number of fields in the header without any recompilation of plugins. Since the

output data types and their contents are dependent on the implementation of signal

processing and the intended application, we decided to leave the packet definition

widely open and designed a very thin API to any external signal processing clients.

For example, to get a point-cloud representation, our basic FFT implementation

requires an additional CFAR detection step as post-processing. The resulting number

of points may not be constant, and they can be grouped and associated with particular

objects that can be tracked. These steps are common in radar processing, and their

results can be included in the data packet.

Lastly, we exposed our radar measurement to PythonAPI as an array and

registered our sensor to LibCarla, which completes the implementation of full data

cycle starting from a Python client, going through CARLA application, radar plu-

gin, raytracing simulation and returning from the same path to the Python client

(Fig.3.17)
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Figure 3.17: CARLA + RadarSim: Components of integrated system

3.4.9 AirSim Integration

AirSim was also developed in Unreal Engine; therefore, our GameMeshViewer

should work out of the box. We only needed to copy our code to the Plugins directory

to trigger a build. For our plugin to start working, RadarObserver should be placed

at the current level or spawned with C++ API.

For ImagingRadarTool to work, we have to make modifications to AirLib, an-

other third-party sensor library. It exposes a C++ API, uses rpclib for server-client

interaction, and also had Python wrappers. We followed their Lidar implementa-

tion to create the required proxy class ImagingRadar with the same functionality in

CARLA.

3.4.10 Unity Engine and LGSVL Integration

In Unity, game objects may have multiple behaviors attached as scripts. We

converted RadarObserver and RadarBridge to C# scripts. The program workflow in

each is the same as in their C++ equivalents. However, to reuse the data commu-

nication functionality of RadarBridge, which is mostly independent from the engine,
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we used the native plugin approach and loaded it as a dll file. We wrote wrapper

functions in RadarBridge.cs to call RadarBridge library functions. RadarObserver

and the mesh information extraction sections of RadarBridge are engine dependent;

we followed Unity documentation to implement them.

As in the Unreal plugin, these behaviors should be instantiated in the game

application. We put a dummy object in the scene called RadarBall and attached

RadarObserver and RadarBridge behavior to it. We also created an ImagingRadar

script that searches for the RadarBall to communicate with the RadarBridge. With

these three behaviors, our plugin can work with any Unity application. To integrate

with LGSVL we followed their specific sensor plugin instructions and adapted our

ImagingRadar to include ROS writers that publish image messages of range-angle

and range-doppler plots.
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Chapter 4: Results

Since we developed our plugin library independent from a game engine or an

application, it is possible to create lightweight simulators for different purposes. In

this chapter, we introduce our standalone applications and plugin. We benchmark

our RCS simulator on standard shapes and discuss the effects of mesh size and ray

density. Then we show our application to navigate the game environment. Lastly,

we describe our imaging radar application and show the results of plugin integration

with multiple vehicle simulators.

4.1. RCS Tool

POFACETS provides a good starting point to understand RCS computations.

We fixed our working version to 4.3. Since we had other mesh viewers already, its

GUI functionality was not required; we directly used scripts that enable automation

for testing and allows us to use Octave. We refactored the code for readability,

which uses global variables and no structs while passing many related arguments

to functions. Next, we profiled it and decided to convert facet computation to a

mex file. This conversion gave us a speed factor of ×7, and GPU implementation

without any optimization resulted in ×20K effective speed up. Then, we created file

format converters between its facet format and .obj files. With these modifications,

POFACETS turned into a tester to cross-check our results as we developed our code
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for the GPU.

All facets in POFACETS are triangles. To compute the RCS of a complex ob-

ject, it goes through all facets and adds their contribution. It first checks whether a

facet is illuminated from the incidence direction based on the vertex winding normal.

Then it transforms the incident field to local coordinates of the facet and computes

scattered fields in the observer direction using an integral formulation. To replicate

this behavior, we decided to implement a raycasting method for hit detection and

computed the radiation integrals on the scaled facets corresponding to rays’ hit loca-

tions, as discussed in the previous chapter.

We created a set of parallel rays directed towards the object over a rectangular

region, which is large enough to cover the object’s projection (Fig.4.1). For every

computation in the azimuth direction, we rotated the rays’ origins and directions. In

effect, the rectangular region is an RCS camera. We also placed a pinhole camera

at the same location and performed regular light raytracing in another context for

visualization. By default, pinhole camera follows the observer direction, and stepping

the azimuth angle creates a simple rotation animation. During the scan, we also plot

computed RCS values overlayed on the viewport and print them on stdout to save for

external plotting. After the scan is complete, the user can move the model around

and capture the RCS result with the model (Fig.4.2). They can also provide the

polarization of the incident field and its fixed direction for bistatic RCS computation

using command line arguments.

4.1.1 Benchmarks

NASA Almond. The most common shape used in computational electromag-

netics RCS benchmarks is NASA almond (Fig.4.3a), which was designed as an exper-

imental test body to assess the performance of anechoic chambers [84]. Its surface is
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Figure 4.1: RCS Tool concept

Figure 4.2: RCS Tool application

described with a parametric equation set given in Table 4.1. L = R2 +R1 sinα is the

body length. The constants satisfy the equations: A2/A1 = B2/B1 = (R2/R1)2 =

1− cosα and 2 ≤ A2/B2 ≤ 20. The original almond has size L = 9.936 in ≈ 25.24cm.

Since it has a convex shape, considering a single ray-triangle intersection will
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Table 4.1: NASA almond parametric equations

(a) NASA Almond (b) Cone-Sphere and Single-Ogive

Figure 4.3: Example benchmark shapes

(a) Trihedral corner reflector (b) Modified trihedral with bottom plate

Figure 4.4: Example corner reflectors
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(a) Almond RCS at 75GHz after filtering (b) Comparison with [85] at 75GHz

(c) Comparison with [86] at 21GHz
(d) Comparison with POFACETS at 21GHz

(e) Comparison with [87] at 9GHz (f) Comparison with [87] at 9GHz

Figure 4.5: RCS results and comparisons with publications. Top-left: Spikes occur
due to semianalytical integration region. Top-right: Our result is overlayed in red
color. We also see variations around he tip which is filtered out while removing
the spikes. Mid-left: Our result is using a low density of rays that matches MoM
computations. Mid-right: POFACETS, with a tighter phase bound, does not generate
spikes and matches well to our computation. Bottom-left: Cone-sphere, Bottom-right:
Single-ogive. All plots are VV. 58



be sufficient for RCS computation; therefore we can use both POFACETS and RCS

Tool. Our wavelength of interest is around λ ≈ 3.9mm. Since λ� L, we are already

in the high-frequency region for scattering and expect accurate results from the PO

tools. Most of the published results were for f < 10GHz, but we identified two papers

with MoM simulation results at 21GHz and 75GHz [86, 85]. Computing the RCS by

solving the matrix problem takes hours; with RCSTool, we can scan the almond in

less than a minute. However, the PO approximation, and particularly the integration

method we use, has some drawbacks. In Figure 4.5a, we show the output of RCSTool

in blue, which contains spikes; we adopted the integration scheme in [39], which uses

a Taylor series expansion for the phase. We need to adjust the number of terms

included in the series and the size of the region. For demonstration, we instead low-

pass filtered the values, shown in red color. In Figure 4.5b, we overlayed our results

on the published plot [85]. We see a good match, even for the filtered-out values

between 0-60 degrees. This region corresponds to the conical part of the almond, and

the oscillatory values can be physical rather than numerical artifacts. If we look at

results for 21GHz, in Fig. 4.5c, the same region does not have a smooth RCS; MoM

computations are in blue and dashed red. On the other hand, in Fig. 4.5d, we see

POFACETS predicts smoother values. Our overlayed results, shown in red, for the

same simulation, have only one different parameter, the grid density of rays is 15

times more on the right. We have an explanation for this contradictory result; with

more rays we lost physical accuracy. PO approximation only considers a particular

facet to compute the scattered fields, and the facet has to be large enough, 2.5 to

4.5 times the wavelength according to POFACETS documentation. With a fine-

refined mesh this is no longer true; our almond had average facet side of 0.75mm,

and λ@21GHz ≈ 14.3mm. Using a low density of rays, the implicit triangle per

ray becomes larger, and accuracy improves. These considerations will be important
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in game engine computations where we will adjust ray-limited resolution for radar

simulation, creating an implicit level-of-detail (LOD). Also in the game mesh, for

almost all objects of interest, the triangle sizes will be greater than 1cm(≈ 2.5 ×

λ@77GHz).

Cone-sphere and Single-ogive. There are a few other benchmark shapes pro-

posed in [87, 88]. In Figure 4.3b, we show two of them: a cone-sphere and a single-

ogive. Their parametric equations and RCS results for a few frequencies are presented

in [87]. These objects are L1 ≈ 689mm and L2 = 254mm in length and have diameters

D1 ≈ 149mm and D2 = 101.6mm. We simulated them at 9GHz, where λ ≈ 33.3mm;

therefore, the first one is relatively closer to the optics regime. In Figure 4.5e and

4.5f, we overlayed our results on plots from [87]. As we noticed for the almond, we can

not get a good match for regions around sharp tips; PO is not a good approximation

when the surface normal and the direction of incidence are quite dissimilar. For the

single-ogive, the region outside 70 − 110degrees is highly sensitive to the ray density

and not reliable.

Corner reflectors. POFACETS and RCS Tool are limited in applications since

they do not consider multiple reflections; POFACETS provides a ground reflection

option that only applies to a particular setting. These tools can not predict the RCS

for a trihedral corner reflector in Fig.4.4a. At the boresight:

σ =
4πa4

3λ2
(4.1)

where a is the side length. For a = 10cm, at 21GHz, σ = 3.123dBsm; however, PO

without any reflections results in σ = −21.6dBsm, which is much smaller, highlighting

the importance of considering multiple reflections. In the real world, the radar may

encounter many concave corners like this one.
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For low grazing angles, Sandia researchers designed a modified trihedral reflec-

tor shown in Fig. 4.4b. For a = 15cm and b = 50cm, they simulated the design with

a raytracing method at 10GHz(λ = 3mm) and showed a good match with their geo-

metric predictions [89]. We will come back to this example in the ImagingRadarTool

section.

RCS of Vehicles and Pedestrians. Test models have simple shapes and smooth

variations of RCS. However, our main objects of interest are vehicles and pedestri-

ans. In Fig.4.6b we plotted RCS of a car model, with PEC material, which looks

acceptable.

We also simulated a PEC pedestrian model (Fig.4.7a), and subtracted 4.7dB

based on [74]. As we expect, the RCS data is very noisy (Fig.4.7b). When we plotted

the histogram of it (Fig.4.7c), we get a distribution very similar to [90], with average

-4.3dB rather than -8.1dB. These variations are normal with the effects of clothing.

(a) Car model
(b) Car RCS

Figure 4.6: RCS of a car model

4.2. Game Mesh Viewer

Next, we worked on our first use case, recording game data. At every tick,

RadarBridge puts mesh and transform data into folders on the filesystem or directly
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(a) Pedestrian
(b) Pedestrian RCS (c) RCS histogram

Figure 4.7: RCS of a pedestrian and its histogram

on the shared memory. To inspect this data, we developed another application,

GameMeshViewer (Fig.4.8-4.9). By providing a command-line argument, the user

can make it work online with the game engine or replay recorded data. Depending

on which game engine the data originates from, it is scaled, rotated, and translated

in a conventional right-handed coordinate system. Using the delta time for the tick,

we compute a velocity field on the vertices based on previous transforms of the same

mesh objects. Game data also contain materials for every triangle; however, we do

not need texture information for radar simulation. For better visualization without

texture, we assigned random color values to triangles.

The full scene for the game can be huge, and it is a concern for performance

reasons. We mainly used the default Town03 map in CARLA during experiments.

At the initial tick, we export around 7,000 objects. Transformed meshes of all these

objects are combined to form the global scene mesh. OptiX organizes this mesh

with an acceleration structure for performance, and GameMeshViewer runs raytracing

with a pinhole camera model. We have about 5.4M vertices, 4.1M triangles, and

300 materials in the initial scene. It takes 80ms launch time for XGA resolution

(1024x768). After spawning around 400 new actors with detailed mesh, we reach

11M triangles and the launch time doubles. We are using a GeForce RTX 2060
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Actor Triangles Vertices Materials Avg size (mm)
Pedestrian (child) 9428 5817 9 14.8
Pedestrian (adult) 23500 19294 16 17.3
Bicycle 3968 2972 2 47.1
Car 19539 16258 13 79.9
Minibus 18541 16015 18 89.7
Truck 15980 10110 15 106
Jeep 19453 15494 15 89.6
Motorcycle 22694 20173 5 32.2
Building1 10728 16185 4 410
Building2 32870 34500 4 1062

Table 4.2: Mesh statistics for a sample of actors

Super, which is capable of 6G rays per second. The GPU memory usage increases

about 1GB with the actors, so our limitation is computational only. Without any

performance optimizations, compute utilization is around 30%. While acceptable for

viewing the world, raytracing in the global mesh would degrade the fps.

GameMeshViewer is agnostic to radar sensor objects’ existence; it can work

as a partially implemented plugin inside AirSim or LGSVL.

Unreal Engine Editor provides a statistics display about primitives. We can

read which objects are in the game, how many actors exist, the type of mesh they

use, the number of triangles, and memory usage for each item. Based on our RCS

discussions, we would like to know more about the mesh details. We explored saved

game data and looked at statistics for different types of objects and their material

composition. We show some examples in Figure 4.10 and Table 4.2.

4.3. Imaging Radar Tool

Next, we developed the radar raytracing code and enhanced the mesh viewer

to switch between multiple cameras, a global camera and two cameras for each radar.

Using the classes we designed for the plugin, we created another tool that can run
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Figure 4.8: GameMeshViewer application displaying recorded CARLA data

together with the game engine or independently from recordings. For each radar, data

processing automatically creates range-angle and range-doppler plots and puts them

on the shared memory for RadarBridge to distribute to proxy radars in the game.

We also display these plots on the screen as textures for the selected radar unit. In

Fig.4.15, we show a pair of examples corresponding to the scene in Fig.4.11. We are

using Radar2 prototype with a maximum range 48m in Table 2.1. We annotated

some of the objects in the scene. These plots are intermediate results between raw

data and point clouds, but they contain more relevant information, which makes them

useful for machine learning applications. We also optionally dump unprocessed and

processed radar cubes to the filesystem for the same reason.
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Figure 4.9: GameMeshViewer displaying LGSVL Simulator’s Shalun Environment

While developing radar raytracing contexts, we decided to filter the primitives

by distance to the sensor. Having the full scene in each context is unnecessary; it

would cost too much memory and increase the time for intersection checks. Since

radar signals may bounce multiple times, there is a possibility that objects behind

the sensor might also be needed. We defined a maximum radius for each radar to

construct a spherical context with the sensor at the center.

Corner reflectors. Unlike the RCS tool, where we performed raycasting and

looked for compatible results with POFACETS, we can perform multiple reflections

with the radar tool. We need at least three reflections for the corner reflectors.

We created an empty scene and placed a corner reflector (Fig.4.4a) at the

origin. Then, we oriented our radar at the boresight direction (θ = 54.7 and φ = 45)

and placed it more than R � 10a distance to enable paraxial approximation, and

angular position with antenna gains close to unity (Gt ≈ 1, Gr ≈ 1). Under these

conditions, we can read the value from the cube, proportional to the received power

Pr, and compute RCS using Eqn.2.1. We use a sphere as a reference target, σ = πa2.
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Figure 4.10: Random-colored meshes and their histograms of triangle side-lengths
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(a) Topview

(b) Range-Angle plot

Figure 4.11: Example scene

There are multiple problems with this setting, however. The reflected fields

are not captured by the antenna; since they are parallel to the incoming direction and

the solid angle is small. The scattered fields are off from the parallel direction and

have different phases dependent on R. Since the target is far away, the density of rays

is small, which adds to numerical uncertainty. To alleviate some of these problems,

we defined a method of ray zooming. Instead of a uniform lattice on the sphere, we

generate rays on the spherical rectangle [θmin, θmax] × [φmin, φmax]. First, we used a

uniform grid of size b
√
Nc × b

√
Nc. We select N based on the hit area, so that PO

approximation and our numerical scheme works the best. For a = 10cm, λ = 3.9mm,

R = 10m, we need around 1.15deg angular field of view in both azimuth and elevation.

And to get hit areas around 4λ2, we need discretization around 0.045deg, leading to

N ≈ 625. Raycasting with RCS tool results in σ ≈ −21.37dBsm, which is about

the cross section of a sphere with r = a/2. Our zoomed grid approach resulted in

−12dBsm, which is still too small compared to the actual value of 14.4dBsm. As
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expected, when we increased N the results got even worse. To solve this problem,

we need to keep the hit area constant but increase the density of rays, which we

can implement with a Monte-Carlo approach. We chose the base-area of ray-cones

4πλ2 and used N = 10k rays. Our new estimation was 6.8dBsm, which is 17.5% of

the actual RCS. Due to triangle aberration, we effectively offset the edges outwards.

With geometric approximations, we can compute the RCS of the implicit target with

aeff ≈ a(1 + λ/a), resulting in 15.072dBsm. This is actually an upper bound. Next,

we changed R = 5m and computed ≈ 21dBsm. Clearly, this is above the upper

bound and indicates an error source. Sandia modified reflector has about 15x area of

this trihedral reflector. We adjust N to accommodate the same ray intensity. Also,

we use a reference reflector with a = 15cm at R = 20m. Based on [89], we expect

2.5dBsm higher RCS value at the same boresight direction, around 23.95 dBsm. Our

simulations resulted in 20.78 dBsm instead. These are significant improvements over

scattering with raycasting. However, since we are not using parallel rays, when the

power is calculated at the receive antennas, there are extra phases depending on the

ray lengths and scattering angle offsets, which we believe are the main sources of error

here.

Scene Description Format. For testing the tool with more complex scenes, we

defined a scene description format that brings together multiple obj files. We specify

their positions and orientations with a translation and a quaternion, and also their

velocities with a translational velocity and angular velocity. After parsing this file,

we generate a combined obj file for the scene and a corresponding velocity-field file.

With scripting, it is possible to generate a set of obj files and velocity files, forming

an animation. Even though this is restricted to solid-body motions, it is still good

enough for testing.

In Figure 4.12, we show an example scene generated with this scene description
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utility and corresponding range-doppler plots. We placed a mid-range radar (Radar1

configuration in Table 2.1) to the front-middle location of a jeep, at 0.5m height. We

have five actors (2 pedestrians, 2 cars and 1 minibus) in the scene. In Figure 4.12b, we

show their positions and velocities. We included three range-doppler plots: Fig.4.12c

is for the static scene to identify different objects by their distance to the ego vehicle.

Fig.4.12d shows as the scene is running with the jeep moving north with 6m/s speed.

We directly see the minibus moves away with +8m/s, and Car1 gets closer at speed

around -11m/s. For the other actors, we have to project their relative velocities to

the ego vehicle in the radial direction. Ped1 and Ped2 are at positions (7.07, 6.07)m

and (21.21, -21.21)m, where +x-axis is north, +y-axis is west, and the origin is at the

radar. We compute their relative velocities as: -3.25m/s and -4.24m/s, respectively.

Similarly, Car2 is at (64,-20)m, and its relative velocity is -8.11m/s. All these numbers

are compatible with the middle plot. In Fig.4.12e, we show the same scene with the

jeep standing still. Therefore, Ped2 is at 0m/s, and Ped1 is moving away with speed

+1.3m/s. Car1 and Car2 are getting closer with -5m/s and -2.4m/s, respectively.

Since the minibus is moving away with +14m/s and our radar has maximum velocity

around 13.5m/s, we see an aliasing effect on the negative side. In such cases, we have

to track the object on multiple frames for correct velocity estimates.

In Figure 4.13, we show an urban setting with multiple buildings, vehicles, and

pedestrians. We used settings for a short-range radar (Radar2 in Table2.1). Fig.4.13c

is an annotated range-angle plot corresponding to the top view in Fig.4.13b. In this

case, the radar plots are slightly difficult to interpret due to complexity for various

reasons. Firstly, we did not implement processing methods to suppress sidelobes from

the FFT; therefore, we can misinterpret high sidelobes, particularly in the angular

direction, as false targets with lower return signal. Secondly, we used 5 reflections for

each ray; multiple reflections can result in ghost targets. Thirdly, the color-mapping
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(a) Scene from the road (b) Scene from the top

(c) RD (static scene) (d) RD (egovel= 6m/s) (e) RD (egovel= 0m/s)

Figure 4.12: Range-Doppler examples using scene description utility

process itself distorts our perception. We use R4 power correction so that the targets

far away do not fade out. The colormap is dynamically scaled using the current

minimum to maximum levels. We convert values for range-angle in rectangular grid

(Fig.4.13d) to circular grid (Fig.4.13c). In this process, we introduce extra samples,

which are interpolations of measured values. Since the angular resolution decreases

as |φ| → π/2, these samples form wider arcs. They do not add extra information but

affect our perception. Correct interpretation requires sidelobe suppression methods,

filtering, peak detections, and tracking. These are client-side tasks and beyond the
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scope of this thesis.

Detectability is another problem. The kid and the ball do not clearly appear

in the range-angle plot. This could be related to the building that falls around the

same range-angle bins, and also, for example, the ball not getting hit by enough rays.

Pedestrians mostly walk slowly and orthogonal to the radial direction; therefore, we

do not see them in the range-doppler plot (Fig.4.13e), which is captured with Radar1

settings. Car1 is parked, the minibus is approaching, and Car2 is going away. Our

ego vehicle is not moving, and most of the scene appear at 0m/s as a line.

(a) Scene from the road (b) Scene from the top

(c) Range-Angle plot (d) Range-Angle (e) Range-Doppler

Figure 4.13: An urban setting using scene description utility

Rolling wheel. We simulated a wheel with tire (Fig.4.14a) in rolling without

slipping motion. In this motion, the contact point’s velocity is zero, and the top of

the tire moves at twice the center’s speed (Fig.4.14b). The overall diameter of the tire
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is around 0.57m, and we used center speed 2m/s, resulting in angular velocity 7.02

rad/s. In Figure 4.14c, we plotted the histogram of vertex velocities in the rolling

direction. We observed the wheel from right and behind, at about 30deg. This angle

results in a cosine scaling of the maximum speed on the histogram from 4m/s to

3.5m/s. When we plot the FFT output for range-doppler, we see a single peak with

long skirts (Fig.4.14d). The doppler bins range from -5.07m/s to 5.07m/s for Radar2

settings. Without a threshold value, it is not meaningful to indicate an observed

velocity range, but the peak includes [0, 3.5]m/s range.

(a) Wheel and tire model

(b) Rolling without slipping

(c) Vertex vy histogram
(d) Range-Doppler

Figure 4.14: Rolling wheel model

Using with CARLA. CARLA has a startup script that accepts command-line

parameters. We extended these parameters with: --radar plugin, --headless plugin,

and --[0|1][0|1][0|1]. We can run CARLA with Unreal Editor and integrated
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plugin with the first two options. The first one automatically opens up a GLUT-based

GUI, and the second one is intended for remote operations without a GUI. If neither

of these options is specified, then we have to run GameMeshViewer or ImagingRadar-

Tool externally. The third option is a set of flags indicating: write game data to the

filesystem, enable shared memory, expect processed data back to the game. For ex-

ample, to run CARLA without any radar plugin, integrated or external, use --000.

We can run with the external tool without writing game data nor expecting processed

data back by using --010. The third flag depends on the second one, for example,

--001 would be invalid, but --011 is valid. In Figure 4.16 we show the game inside

the editor running concurrently with the external ImagingRadarTool.

In Fig.4.15, we show the GUI of the tool with a recorded scene from CARLA,

and in Fig.4.16, we show it running together with the game engine editor. We imple-

mented a spherical mesh filter for the radar context. The radius of the filter is greater

than the maximum range of the radar. The physics of each radar is also decoupled.

In Fig.4.17, we show another scene and annotated the overlay plot with objects.

Notice that the horizontal field of view of the proxy camera is smaller than the radar.

In Fig.4.18, we show the dependence of the details to the number of rays used.

We generally use maximum bounce nb = 5. In Fig.4.19b, we show the output from

a raycast simulation (nb = 1). We also normalize the power level for each distance

R by multiplying with R4 (Eqn.2.1); without this extra step, the output looks like

Fig.4.19a.

Unity. In Unity, we define the plugin behavior inside RadarObserver.cs script

with booleans and use external tools. In Figure 4.20, we show a simple static scene

in the editor and ImagingRadarTool running concurrently.
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Figure 4.15: ImagingRadarTool

Figure 4.16: ImagingRadarTool running online with Unreal Editor CARLA game
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(a) Proxy camera (b) Top view RA overlay

Figure 4.17: Scene near the gas station

(a) N = 500k (b) N = 5M

Figure 4.18: Range-Angle with different number of rays, nb = 5

(a) Without R4 correction (b) Raycasting nb = 1

Figure 4.19: Range-Angle plots with N = 5M
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Figure 4.20: ImagingRadarTool running online with Unity Editor

Figure 4.21: Another scene from Town03 of CARLA
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Chapter 5: Summary

Our main goal was to create a tool to generate synthetic radar data for au-

tonomous driving research. We wanted our tool to work with game engines to capture

multi-modal sensor data using publicly available vehicle simulators. Our approach

was to replicate game data in memory and simulate electromagnetic wave propaga-

tion and scattering at the high-frequency regime using raytracing. We developed an

FMCW MIMO radar simulator and integrated it via plugin interfaces to multiple

vehicle simulators built with different game engines.

Below, we share some of our experiences during this project and point out

possible future improvements.

5.1. Conclusions and Future Work

In general, we did not have any issues with the build-systems themselves.

Using multiple Linux, game engine, and simulator versions causes some problems

with compiler and other system dependencies. We experimented with Dockerized

builds to solve these issues for Unreal-based simulators, which requires significant

disk space. Eventually, we decided to fix our development versions.

Game data replication is costly and affects the overall performance. It requires

an understanding of how each game engine organizes its data. We could only cover a

subset of all possible mesh data in Unreal and found it easier to work with Unity in
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this respect; however, replication performance was better with Unreal.

Data homogenization enabled us to define our radar simulator as an external

software component and made it portable; however, as highlighted in the first chapter,

creating lower-level libraries and reusing them within engine plugins might be a better,

more efficient approach. Only for practical reasons, we chose to build game plugins.

We had limited information on what types of data we could extract from the

game engines. Some of the decisions on raytracing implementation got affected by

it. Since our raytracing approach samples the geometry limited by solid-angle size,

using detailed mesh for distant objects, will not increase accuracy. Therefore we could

have selected appropriate LOD for some of the meshes in each radar scene to improve

performance.

We did not have much time to delve into numerical methods for the radiation

integral; instead, we focused on other software development activities. That is why we

accepted the side effects of triangle aberration. We still need some carefully designed

experiments to observe any issues and implement something more accurate later.

We introduced mesh filtering for radar scenes late, right after we build the

global scene mesh. It caused significant performance problems than the one it in-

tended to solve. Rather than a single-stage vertex-distance-based filter, we could

have used a pre-filter using an axis-aligned bounding box for each component at

SimulationDataManager or even at RadarBridge. Such changes would have resulted

in slightly different responsibilities for multiple classes and would have changed the

shared memory organization. We decided to leave it for future performance improve-

ments.

Finding material properties at 77GHz was another difficulty we faced. A

straightforward internet search did not result in links to easily accessible material

databases. We had to search the materials individually and collate data from pub-

78



lished materials. We assumed material properties as constants to avoid material

updates, which is too ideal; for example, a thin water film may form on objects based

on weather conditions, or water puddles or ice might form on the road surface. These

nonidealities were beyond the scope of our thesis. Incorporating weather information

into sensor state data can also be useful to mimic variations of averages in space for

large scale simulations.

Since we used separate managers for each radar and already filtered their

mesh, we can quickly adapt the implementation to work on multiple GPUs. Having

different contexts raytraced independently limits some use cases. For example, with

many radars on the road, there is a possibility that they may interfere, and without

a global context, we can not simulate this effect. However, we can simulate multiple

radars on the same vehicle with the same filtered mesh and process them on the same

GPU.

We did not consider any waveforms other than periodic upward-ramps with

linear chirp. We can apply similar semianalytic approaches for other waveforms.

We also did not carefully consider timing effects, and assumed radars start

transmitting at the beginning of each tick. Since we processed data at every tick, we

implicitly assumed that the game FPS was equal to the radar frame rate. We fixed

game engine timestep to get deterministic delta time values; however, our imple-

mentation is slow, and when the real-time FPS goes below 10Hz, the physics engine

continues updating positions. We require a velocity scaling to correct this behavior.

The samples of the IF signal, which we filled our radar cube, do not contain all

the terms from the mixer. For a high-performance radar system, we have to include

more terms. In that case, we also have to raytrace on a motion-blurred scene, which

would increase the computational cost.
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