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Abstract 

 

Detecting anomalies and predicting failure of industrial refrigeration equipment 

are paramount to guarantee a reliable supply chain and consumer safety in a variety of 

industries such as pharmaceutical and grocery.  Failure can be predicted by performing an 

anomaly analysis on internal temperature data that has been collected by Internet of 

Things (IoT) sensors.  Such an analysis involves monitoring a refrigeration unit’s defrost 

cycle, which is the seasonal (i.e. periodic) component of its temperature time series. 

In many industries, Recurrent Neural Networks (RNNs) are used to analyze and 

forecast time series data, and Long Short Term Memory (LSTM) cells are used to 

remember long term dependencies.  When using deep learning tools to analyze time 

series data, a major challenge is modeling datasets with heterogeneous seasonal 

components. 

This thesis investigates the ability of RNNs built with LSTM cells to detect 

defrost events from within temperature time series that were recorded using IoT sensors. 

Because defrost events are seasonal and heterogeneous across time series, the successful 

detection of defrosts is dependent on an RNN’s ability to build a model of heterogeneous 

seasonality. 

We conducted our research in two phases.  During the first phase, we generated 

datasets of simulated refrigeration temperature time series and used them to train and test 

RNNs, resulting in a 95% classification accuracy rate.  During the second phase, we 
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analyzed the challenges inherent in modeling heterogeneous seasonality in our time series 

datasets.  We designed new experiments and modeled heterogeneous seasonality using 

binary datasets consisting of 1s and 0s.  Using a binary dataset whose seasonal patterns 

were heterogeneous in both frequency and phase, RNNs achieved 100% forecasting 

accuracy.  However, when we added confounding features to the dataset, forecasting 

accuracy dropped to 71% as confounding features could easily be confused with the 

seasonal patterns of time series data.  Our results revealed that RNNs are best suited to 

model heterogeneous seasonality in datasets that do not contain confounding features. 
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Chapter I.  

Introduction 

The temperature fluctuations inside a refrigeration unit (i.e. a refrigerator or 

freezer) are predominantly driven by the unit’s compressor cycle and defrost cycle. A 

compressor cycle is the intermittent operation of the unit’s cooling system.  As the 

compressor cycles, a thick layer of frost can accumulate around the cooling system, 

creating a thermal barrier that greatly decreases its efficiency and impedes its ability to 

regulate its temperature.  To mitigate this problem, many refrigeration units periodically 

defrost.  During a defrost event, a heater drives up the internal temperature in order to 

melt the layer of frost.  A defrost event lasts for only a short time so that the unit’s 

contents are not impacted. 

Most defrost events occur at specific, regular time intervals.  Compared to a 

compressor cycle, a defrost cycle usually has a much larger thermal amplitude and a 

much lower frequency (i.e. a larger period).  When a refrigeration unit’s temperature time 

series is plotted, the defrost events usually take the shape of a precipitous spike followed 

by a return to normal temperatures (see Figure 1). 
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Figure 1​. A typical time series of refrigeration temperature readings.  The defrost cycle has a far greater 
amplitude than the compressor cycle, and repeats at specific, regular intervals.  Note that the time series is 
not actually continuous; it is an ordered set of discrete time point values that have been connected for the 
sake of visualization. 
 

In the context of time series analysis, a pattern that repeats at specific, regular 

intervals within a time series is referred to as the “seasonal” component of the time series. 

A seasonal component is characterized by its frequency, the shape of the repeating 

pattern, and its phase (i.e. the locations in time of the repeating pattern). 

When a dataset is composed of many time series, it can be useful to describe the 

relationship that exists between the time series’ seasonal components.  A dataset shall be 

called seasonally “homogeneous” when the seasonal component of every time series has 

the same frequency, the same phase, and the same repeating shape.  Conversely, a dataset 

shall be called seasonally “heterogeneous” if any of these criteria are not met.  In other 

words, a heterogeneous dataset is one whose seasonal components have either 

heterogeneous frequencies, heterogeneous phases, or heterogeneous shapes. 

Defrost cycles are the seasonal component of a refrigeration unit’s temperature 

time series.  Their characteristics are dependent on the refrigeration unit’s design, use 

case, environment, age, and condition.  As a result, defrost cycles vary greatly between 

units.  For example, their shapes can vary in amplitude, width, smoothness, upward 
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trajectory, and downward trajectory.   Therefore, refrigeration temperature datasets are 

almost guaranteed to be seasonally heterogeneous, in that their seasonal components (the 

defrost cycles) will have varying seasonal frequencies, phases, and shapes.  

1.2 Problem Statement 

When a refrigeration unit is unable to keep cool, its temperature sensitive contents 

can quickly spoil.  In commercial settings, refrigeration problems can lead to the loss of 

large amounts of food or pharmaceuticals, and can endanger the health and safety of 

consumers.  That is why it is crucial that refrigeration problems be detected as quickly as 

possible, preferably as they occur.  Unfortunately, refrigeration units are not always 

designed to notify users when a problem is occurring, or when a catastrophic malfunction 

is impending.  Consequently, users must find alternative ways to detect refrigeration 

issues. 

One such way is to place an IoT temperature sensor inside of a unit, take periodic 

readings, and watch for anomalies in the resulting time series.  An anomaly is an 

indicator that the unit is starting to malfunction, or that it is being used improperly.  For 

example, if a refrigerator’s temperature suddenly rises, but it is not defrosting, this could 

mean that the cooling system has stopped working, or that the door has been left ajar.  If 

the defrost cycle frequency changes, this could indicate that the unit is about to 

malfunction. 

In order for a user to recognize an anomaly in real time, they must be able to 

distinguish between an anomaly and a defrost event.  Because both defrosts and 

3 



anomalies oftentimes involve a sudden rise in temperature, they can easily be confused. 

Therefore, it is necessary for the user to identify the seasonal defrost cycle within the 

time series of temperature readings, so they can then judge how the last time points fit 

into that cycle. 

Clearly, it would be useful if users could detect when defrosts are occurring.  One 

technique that is sometimes used to identify defrosts is to plot the unit’s up-to-date 

temperature readings.  The human eye can then easily observe the seasonal defrost 

pattern and judge where the latest readings fall in the defrost cycle.  However, this 

technique is tedious and oftentimes infeasible.  An automated approach to defrost 

detection using temperature readings would be preferable. 

This thesis describes an investigation into the ability of recurrent neural networks 

(RNNs) to automatically determine whether or not a refrigeration unit is defrosting, using 

only a time series of internal temperature readings.  The first phase of the thesis project 

tested whether or not RNNs could serve as defrost detectors.  RNNs were trained to 

classify the defrost status (defrost vs. no defrost) of the last time points in temperature 

time series, as if they were making real time, up to date classifications. 

Simulated data had to be used to train and test the RNNs.  Refrigeration 

temperature datasets exist, but none come with time point labels indicating whether or not 

the unit was defrosting.  Therefore, they cannot be used for supervised learning. 

Consequently, the thesis project began with the fabrication of a labeled dataset that 

simulated real refrigeration temperature time series.  For the duration of this paper, this 

dataset will be referred to as the “simulation dataset”.  The simulation dataset captures 

4 



much of the complexity of real refrigerator temperature time series, which are not only 

seasonally heterogenous, but are also sometimes chaotic and erratic for no apparent 

reason.  For example, entire defrost cycles are sometimes missing, and at other times, 

temperatures will misleadingly rise and fall as if a defrost is occurring. 

As described later, experiments with the simulation dataset had mixed results.  It 

is possible that the RNN classification accuracy suffered because the RNNs had difficulty 

modeling the heterogeneous seasonal components contained in the dataset.  However, 

because we do not fully understand the limitations of RNNs, it is difficult to know for 

sure whether the gaps in performance were caused by an inability to model the dataset’s 

heterogeneous seasonal components or some other intrinsic characteristic of the dataset. 

With this in mind, the thesis project included a second phase to more definitively test the 

ability of RNNs to model datasets with heterogeneous seasonal components.  During this 

second phase, the RNNs were trained and tested on fabricated binary datasets consisting 

of sparse, binary time series.  Within each time series, 1s appear in a seasonal fashion, at 

specific, regular intervals.  The RNNs were tasked with forecasting whether the next time 

point value in the series’ seasonal component would be a 0 or a 1.  Because the time 

series are binary, the RNNs were forced to predict values based on nothing but the 

number of time points that had elapsed since the previous seasonally occurring 1. 

Multiple binary datasets were created and tested, each with different 

heterogeneity characteristics.  They were designed to tease apart an RNN’s ability to 

handle different types of complexities, including heterogeneous phases, heterogeneous 
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frequencies, and the presence of confounding features.  See the Methods section for a 

more detailed description of the binary datasets. 

This thesis has far reaching implications.  If RNNs could be trained to provide 

real time classifications for seasonally heterogeneous time series, they would be useful in 

a wide array of time series applications.  For example, they could be used to perform 

anomaly detection in applications involving home appliances, industrial machinery, 

vehicles, or even human organs. 

1.3 Requirements 

Before an RNN can classify a time series’ terminal defrost status, it must first 

learn to model refrigeration temperature patterns, and most importantly, seasonal defrost 

cycles.  However, before it can model defrost cycles, the RNN must be able to recognize 

the individual defrost events that appear throughout each time series in the training data. 

Defrost events can be identified by their typical shape and their repeating, evenly spaced 

seasonal pattern.  Shape alone is insufficient, since many time series contain confounding 

features, which are features that in some way resemble a defrost and that might fool a 

defrost detector into outputting a false positive. 

Modeling refrigeration temperature patterns is further complicated by the fact that 

defrost cycles are heterogeneous across refrigeration units.  The defrost pattern for one 

unit is independent of the defrost pattern of any other unit, unless they happen to be 

identical models and are operating in similar conditions.  Defrost patterns vary in not 
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only frequency and shape, but also phase.  A defrost cycle’s phase is defined by the 

locations at which the repeating pattern starts and stops relative to the time series indices. 

Figure 2 illustrates some of the differences that can exist in the temperature 

patterns of different refrigeration units.  It shows real data that was sampled by 

temperature sensors in various refrigerators and freezers.  It highlights the many ways in 

which real data can differ, and some of the complications that can make the data difficult 

to model.  Note that the time series seasonal components vary in frequency, phase, and 

shape.  

  All of the variations and all of the complex features present in Figure 2 needed 

to be replicated in the simulation dataset.  The different characteristics of the real data 

were each simulated as a separate time series and then added together to create a final 

simulated time series for the dataset.  See the Methods section for a detailed description 

of how the different characteristics were constructed and then combined. 
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Figure 2​. Examples of real refrigerator temperature time series.  They have been chosen to showcase 
common ways in which the data varies.  To the right of each time series plot is a description of a 
complication that makes the time series different from a standard refrigerator temperature time series.  Note 
that the time series are not actually continuous; they are ordered sets of discrete time point values that have 
been connected in the plots.  (a) A standard refrigerator temperature time series.  (b) The time series drifts 
up and down over time, and the compressor cycles are tall and chaotic. (c) The defrosts are wide and 
prolonged, in contrast to the spike contour that typically characterizes defrosts. (d) The compressor cycles 
are not visible.  (e) An unexplained event occurs, causing the temperature to change dramatically.  It could 
indicate that a problem occurred, such as a door was left open or that the refrigerator malfunctioned.  (f) 
The defrosts have an unusually high frequency, demonstrating that defrost frequency can vary greatly 
between refrigerators.  (g) An example with no apparent defrost or compressor cycles.  The RNN classifier 
must learn to avoid false positives when no defrosts are present.  (h) The time series shifts up and down at 
various points in time.  (i) The time series includes temperature spikes that resemble defrosts.  These spikes 
are confounding features because they might fool a defrost detector into outputting false positives. 
 

Much of the variation shown in Figure 2 is caused by differences in the design of 

the refrigeration units.  However, some of the variation is caused by the placement of its 

contents, its contents’ thermal properties, or the placement of the temperature sensor.  For 

example, the range of temperature values can be reduced if the heating or cooling 

elements are covered, or if the temperature sensor is obstructed. 
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Some of the complications mentioned in Figure 2 might be explained by factors 

that are external to the refrigeration unit.  For example, temperature shifts, temperature 

spikes, and cooling interruptions could be caused by a refrigerator door being left open, 

or by an interruption to the unit’s power.  

Note that the goal of the thesis project was not to create an RNN that can only 

detect defrosts for just one time series.  Instead, the RNN was intended to be a generic 

tool that detects defrosts within any refrigeration unit’s time series.  Therefore, it needed 

to perform well on large datasets with heterogeneous seasonal components.  However, it 

is worth noting that if real refrigeration temperature data came with defrost labels, it 

might be possible to custom train an RNN to predict defrost events in just one 

refrigeration unit and avoid all challenges associated with heterogeneity. 

In order to classify the defrost status of the final time points in a time series, an 

RNN may have to perform three subtasks.  The first subtask is perhaps the most difficult; 

the RNN must detect the time series’ unique defrost pattern, including its frequency, 

shape, and location.  Because the dataset is heterogeneous, the RNN cannot only learn to 

model one specific defrost pattern.  Rather, it needs to build a generic seasonal model that 

adapts to the defrost pattern of each test example in real time.  Once the network has 

detected a time series’ defrost pattern, it must then determine where in that pattern the 

time series terminates.  In other words, it must determine the location of the final time 

points with respect to the defrost cycle.  This relative location provides the network with 

information about how likely it is that the last time points are part of a defrost event. 

Finally, the network must compare the shape of the last portion of the time series to the 
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typical shape of a defrost event.  In order to classify the defrost status of the final time 

points in the time series, the RNN must decide how likely it is that a defrost is occurring 

based upon its terminal location in time relative to its seasonal defrost cycle, and on the 

shape of the last portion of the time series.  This can be a difficult task, especially when 

the defrost is just beginning and has not yet caused the temperature to rise. 

A defrost detector is a classifier that behaves like both a classifier and a 

forecaster.  Like a traditional machine learning classifier, the defrost detector must detect 

features contained in data (in this case, the seasonal patterns) and use them to make an 

abstract judgement (defrost vs. no defrost).  However, classifiers typically make 

judgements about an entire set of inputs, whereas a defrost detector needs to make 

judgements about individual data points.  The ability to evaluate individual time points is 

a quality typically found in forecasting tools.  Like a forecaster, the defrost detector must 

know the temporal locations of the data’s features.  For example, it must determine where 

the last time points in the time series fall within the seasonal defrost cycle.  Despite the 

fact that defrost detection has a forecasting-like quality, it differs from previous time 

series forecasting applications in that it forecasts time point classes rather than time point 

values. 

Before an RNN defrost detector can classify seasonally heterogeneous data, it 

must learn a general model of seasonality, so that it can work with a wide range of 

seasonal profiles.  Most previous research on forecasting or classifying seasonal data has 

revealed that RNNs are able to model seasonally homogeneous datasets, but that they 

struggle with seasonally heterogeneous datasets (as discussed in Chapter 2) 
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[11,13,17,18,19].  This suggests that an RNN may only be able to learn to model a single 

seasonal pattern.  However, this limitation has not been firmly established by previous 

research, and so it was worthwhile to test whether it manifests itself in the application of 

defrost detection. 
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Chapter II.  

Prior Work 

No previous research specifically deals with the real time detection of defrosts 

using temperature time series data.  Therefore, the following is a general overview of the 

research that currently exists on modeling and predicting time series with seasonal 

components.  The major topics covered are Seasonal-Trend Decomposition (STL 

Decomposition) [1], Exponential Smoothing [2], AutoRegressive Integrated Moving 

Average (ARIMA) [3], Machine Learning Models [4-8], and Deep Learning Neural 

Networks [9-20]. 

2.1 Traditional Univariate Time Series Modeling Techniques 

STL Decomposition is a forecasting method used to decompose a time series into 

three components: a trend time series, a seasonal component, and a residual (or error) 

time series [1].  STL decomposition requires that the time series’ seasonal frequency is 

known in advance so that it can be passed in as an input parameter.  It does not provide a 

way to determine an unknown seasonal frequency.  Therefore, it cannot be used to detect 

defrosts, since defrost detection requires a tool that can infer unknown seasonal 

frequencies. 

Exponential smoothing (ES) is another forecasting method that generates error, 

trend, and seasonal components [2].  These components are built using weighted averages 

12 



of past data.  ES has the same drawback as STL, which is that the seasonal frequency 

must be known in advance.  Therefore, ES cannot be used to analyze multiple time series 

with varying, unknown seasonal frequencies. 

Autoregressive integrated moving average (ARIMA) models are a popular tool 

for modeling univariate time series.  ARIMA is a generalization of older models, 

including autoregressive models, moving average models, and autoregressive moving 

average models [3].  Despite its flexibility, ARIMA has a major drawback in that it 

requires the user to select and tune parameters for each time series.  As a result, each time 

series analysis requires its own ARIMA model.  A single ARIMA cannot autonomously 

classify many different time series with varying seasonal characteristics.  This lack of 

flexibility and automation makes ARIMA unsuitable for modeling heterogeneous 

seasonal time series with unknown seasonal frequencies. 

2.2 Machine Learning Models 

Hundreds of machine learning models have been applied to time series 

classification problems [4].  For example, Lines et al. [5] were able to classify time series 

using a nearest neighbors algorithm with dynamic warping.  Baydogan et al. [6] used 

random forest classifiers, and Bostrom et al. [7] used an ensemble of discriminant 

classifiers.  In all of these applications, classification was done on entire time series rather 

than on individual time points, and so their methodologies cannot be used to detect 

defrost. 

13 



Kulkarni et al. [8] used machine learning tools to conduct some of the only 

research that has been done on refrigerator temperature time series classification. 

Specifically, they explored the topic of refrigerator temperature time series anomaly 

detection.  In other words, they created a tool that could look at temperature data and 

detect if a refrigerator is malfunctioning.  They used an approach that combined 

seasonality-trend decomposition and random forest machine learning classifiers (a type of 

classification tree model).  Their dataset consisted of temperature time series examples 

from supermarket refrigerators, and they labeled each time series as either anomalous or 

non-anomalous depending on whether or not a repair work order had been opened on the 

associated refrigerator within some maximum span of time from when the data was 

collected. 

Their work differs from this thesis project in that they generated classifications for 

entire time series, while this thesis project involved classifying individual time points. 

Furthermore, Kulkarni et al. were interested in classifying time series anomalies rather 

than identifying defrosts.  Lastly, their work differs in that they used real, labeled data, 

whereas this thesis worked with fabricated datasets. 

2.3 Deep Learning Models 

Recently, deep learning neural networks have been used to model time series data 

with great success [9].  Recurrent neural networks are typically used for time series 

forecasting, since they are excellent at modeling temporal relationships, while 

convolutional neural networks are more popular for time series classification tasks [9,10]. 
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A major challenge in modeling time series datasets with recurrent neural networks 

is that RNNs struggle to learn long term dependencies.  For example, they have difficulty 

encoding long term seasonal patterns.  Fortunately, this shortcoming can sometimes be 

alleviated by building the RNN out of Long Short Term Memory (LSTM) cells [11]. 

LSTM cells are well suited to capture the relationships that exist between data separated 

by large numbers of time points [12].  As a result, LSTMs have been used in many time 

series applications that involve long term dependencies, including forecasting [13] and 

anomaly detection [14]. 

Both Nelson et al. [15] and Zhang et al. [16] tested the ability of RNNs to model 

seasonal time series datasets, and they concluded that performance improves when the 

time series are deseasonalized during preprocessing.  Deseasonalization is the process of 

removing the seasonal component from a time series before it is modeled. 

More recent research has revealed that RNNs are capable of modeling seasonality 

when they are trained on large datasets of seasonally homogeneous time series 

[11,13,17,18].    Again, homogenous datasets are those that consist of time series whose 

seasonal components share the same frequency, shape, and phase.  These studies 

suggested that when an RNN is trained on a homogeneous dataset, it is able to learn the 

underlying, shared seasonal pattern, which improves forecast accuracy [11]. 

Consequently, RNNs are increasingly used in big-data time series applications, often 

resulting in state of the art performance that surpasses traditional univariate statistical 

techniques. 
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Hewamalage et al. [11] studied the ability of recurrent neural networks to forecast 

seasonal time series datasets.  They too concluded that RNNs can directly model 

seasonality when trained on seasonally homogeneous datasets.  However, they also 

demonstrated that performance degrades when an RNN attempts to model datasets with 

heterogeneous seasonal components, suggesting that RNNs struggle to model 

heterogeneous seasonality.  They recommended that heterogeneous datasets be 

deseasonalized during preprocessing. 

Smyl [18] used a dynamic computational graph neural network to win the M4 

time series forecasting competition.  He used a novel hybrid approach that combined 

exponential smoothing with LSTM networks.  The model was able to learn from large 

datasets whose seasonal components had homogenous seasonal frequencies but 

heterogeneous phases.  The seasonal frequencies were known upfront and used during the 

exponential smoothing step to extract the seasonal component of each time series. 

Bandara et al. [17] achieved state of the art time series forecasting results using a 

process that included a decomposition stage followed by an LSTM network stage.  They 

created the “Long Short-Term Memory Multi-Seasonal Net (LSTM-MSNet), a 

decomposition based, unified prediction framework to forecast time series with multiple 

seasonal patterns” [17].  In one version of their framework, the time series was 

deseasonalized prior to entering the recurrent neural network.  Traditional univariate 

decomposition techniques were used, requiring that the seasonal frequency had to be 

known in advance.  In a second version, the seasonality was left intact as the data entered 

the recurrent neural network.  In testing this later version, Bandara et al. discovered that 
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the RNN was good at learning to forecast seasonal data so long as all of the examples in 

the dataset were seasonally homogenous.  Conversely, the same RNN had trouble 

learning from data whose seasonal components had heterogeneous shapes and phases. 

When the seasonally heterogeneous data was deseasonalized during preprocessing, 

forecast accuracy improved.  Bandara did not test datasets whose seasonality varied in 

frequency, leaving open the question of whether or not seasonal frequency heterogeneity 

would further confound the recurrent neural network. 

Bandara et al. [13] presented a novel approach to modeling heterogeneous time 

series datasets.  They used a time series clustering technique to create groups of similar 

time series, and then trained LSTM networks to learn customized models for each group. 

However, prior to training the LSTM networks, they used STL decomposition to 

deseasonalize the data.  Therefore, this technique only works for datasets with known 

seasonal frequencies. 

Lai et al. [19] were able to effectively model seasonal data using a hybrid 

convolutional and recurrent neural network.  The convolutional layer captured short term 

patterns while the recurrent layers captured long term patterns.  In order to model the 

longest term seasonal patterns in the data, the recurrent layers featured temporal-skip 

connections which passed recurrent cell state data directly to temporally distant iterations 

of the same recurrent layers, extending the temporal reach of the information.  The skip 

connections were tuned to match the periods of the seasonal patterns so that the network 

could look back at the previous cycle when predicting the current cycle.  This method 

was very successful as long as the dataset’s seasonal components all had the same 
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frequency.  When heterogeneous datasets were tested, the neural network’s prediction 

performance dropped below that of traditional univariate statistical techniques. 

Laptev et al. [20] proposed a method for improving forecast accuracy on 

heterogeneous time series data.  They used two separate modules in their process, an 

LSTM based autoencoder and an LSTM forecaster.  They trained the LSTM autoencoder 

to generate extra features that would assist the LSTM forecaster in making predictions. 

The extra features were concatenated onto the original time series before being fed to the 

LSTM forecaster.  This resulted in a 14% accuracy increase over an LSTM forecaster 

trained without the extra features. 

Much of the aforementioned deep learning research has demonstrated that RNNs 

are good at modeling deseasonalized datasets and datasets with homogeneous seasonal 

components [11,13,17,18].  Multiple papers have discussed the difficulty that RNNs have 

in modeling heterogeneous seasonal datasets [11,17,19].  This thesis examines the extent 

of this difficulty, and explores whether RNNs can model heterogeneous seasonality in the 

context of defrost detection. 

This research is different from most previous research on time series classification 

because it is concerned with classifying individual data points rather than entire time 

series [9].  It is also different from previous research on forecasting time series because it 

requires feature detection, classification, and the creation of labels. 
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Chapter III.  

Methods 

The following is a description of the methods used to generate datasets, build 

neural network architectures, and train and test the networks.  Sections 3.1 and 3.2 

describe the methods used during the defrost detection experiments, and Section 3.3 

describes the methods used during the binary dataset forecasting experiments. 

3.1 Simulation Dataset Generation 

The simulation dataset  is made up of a collection of simulated time series,X , )( Y  

, and a collection of corresponding time series labels,X , , .., ]X = [ 1 X2 . XM  

.  Multiple dataset sizes were tried, including ,Y , , .., ]Y = [ 1 Y 2 . Y M 000M = 1  

, and .  Ultimately, the largest dataset gave the best results, and so000M = 5 0000M = 2  

all of the results that will be described later in this thesis were achieved using the 

 dataset. Each time series is an ordered set of ​ℕ​ real values, such that0000M = 2  

, with  .  Multiple time series lengths were tried, includingx , , .., ]Xm = [ 1 x2 . xN xn ∈ R  

, , and .  For each time series, there is a corresponding50N = 1 00N = 5 000N = 1  

ordered set of  defrost labels, , with .  EachN y , , .., ]Y m = [ 1 y2 . yN T rue, F alse}yn ∈ {   

label represents the defrost status of one time point.  A label of ‘True’ means that the time 

point was part of a defrost event, and a label of ‘False’ means that it was not. 
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The simulation dataset was designed to resemble real refrigeration unit 

temperature data.  Figure 3 provides an example of a simulated time series and its labels. 

Each simulated time series was built using a combination of the following simulated 

features: compressor cycles, defrost cycles, cooling interruptions, shifts, drift, random 

noise, and random temperature spikes. 

Each simulated time series was given a 50% probability of including a 

compressor cycle, drift, Gaussian noise (centered at zero), cooling interruptions, random 

temperature spikes, and sudden shifts.  Note that in some cases, Gaussian noise can be 

used to simulate an especially chaotic compressor cycle, and so the effective probability 

of a simulated compressor cycle was 75%. 

Each simulated compressor cycle (the standard, non Gaussian noise version) 

moved up and down linearly and with a consistent amplitude.  The baseline width of the 

compressor cycles was sampled using , but it was made to driftamma(k , θ )w = g = 6  = 1  

slightly over time, and to rise and fall sinusoidally so as to mimic the variations in 

temperature gradients that might occur in a real refrigeration unit during the span of a 

day.  The compressor cycle heights were randomly sampled using .amma(1, )h = g 2  

Some real refrigeration units have no perceptible defrost cycle.  Therefore, each 

simulated time series was only given a 90% probability of featuring a defrost cycle.  This 

meant that when the RNNs were trained to detect defrosts, they had to attempt to avoid 

outputting false positives whenever they were presented with a time series that had no 

defrost cycle.  This was difficult, especially because some of the compressor cycles have 

relatively large amplitudes, which makes them easily confused for defrosts. 

20 



Each simulated defrost cycle was randomly parameterized with 

 and .  The widthseriod amma(k , θ 2)p = g = 3  = 2 eight .5 amma(k .5, θ )h = 1 + g = 1  = 3  

(measured in time points) of the upward and downward portions of the defrost events 

were determined separately, using .idth amma(1, )w = g 5  

  Regardless of whether or not a time series featured a defrost cycle, it was still 

given a 50% probability of featuring random temperature spikes.  These temperature 

spikes were designed to resemble defrosts, and so they will be referred to as “counterfeit 

defrosts”.  A counterfeit defrost is an example of a confounding feature in a time series, 

since it can easily fool a defrost detector into mistakenly outputting a false positive.  The 

point of the counterfeit defrosts was to force the RNNs to learn to differentiate between 

defrosts that are part of a seasonal pattern and confounding features that are not.  The 

resulting defrost detector should be more robust since it would make decisions based 

upon long term temporal relationships, rather than relying exclusively upon short term 

temperature patterns. 
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Figure 3​. (a) A time series of simulated temperature readings.  (b) A continuous plot of the corresponding 
defrost labels, where the label of True has been converted to 1 and a label of False has been converted to 0. 
(c) The same time series, but this time color coded according to the time point labels, with red indicating a 
label of True and blue indicating a label of False.  Note that both the time series and the associated labels 
are discrete data points that have been connected in the plots for the sake of visualization. 
 

3.2 Simulation Dataset Experiments 

3.2.1 RNN Architectures 

Many different RNN architectures were built and tested.  Each RNN featured 

either 1 or 2 layers of long-short-term-memory (LSTM) cells [21], followed by a single 

cell dense layer with a sigmoid activation function.   The number of LSTM cells per 

recurrent layer were either 1, 2, or 10.   A binary cross entropy loss function and an 

Adam optimizer [22] were used to update weights. 

The RNN was built using Keras on top of Tensorflow [23].  The LSTM layers 

were built with CuDNNLSTM, a fast LSTM implementation that is designed to work on 

GPUs and backed by the NVIDIA CUDA Deep Neural Network Library [24]. 
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3.2.2 Training 

Before being fed to the RNN, every time series was standardized to have a mean 

of 0 and a standard deviation of 1.  The dataset was then split such that 1K training 

examples were reserved for validation, and another 1,000 training examples were 

reserved for testing. 

Training was done using batches of size 1, 8, 16, and 64.  For each training 

dataset / RNN architecture combination, a loss function value was calculated for each 

epoch using the validation data.  Training was cut off when the loss stopped decreasing. 

3.2.3 Classification Task 

For each training example, the entire time series of timepoints was fed into the 

RNN, and then the RNN outputted a single defrost classification and performed 

backpropagation.  In theory, an RNN could be trained to classify any time point in the 

sequence, but since this thesis project was concerned with real time defrost detection, the 

RNNs were trained to classify the last time point (with the exception that some were 

instead trained to classify the second or third from last).  The dataset was balanced such 

that half of the time series ended with a time point that had a defrost status of ‘True’ and 

the other half ended in ‘False’. 
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3.2.4 Performance Measures 

After being trained, the RNNs were tested using simulated test data.  Their 

classification performances were evaluated using four metrics: overall accuracy, 

sensitivity, specificity, and precision.  The latter three metrics can be understood in terms 

of True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives 

(FN). 

ensitivityS = T P
T P +F N  

Sensitivity is the portion of defrost time points that are correctly classified. 

pecif icityS = T N
T N+F P  

Specificity is the portion of non-defrost time points that are correctly classified. 

recisionP = T P
T P +F P  

Precision is the portion of time points that the RNN has classified as ‘True’ that are 

actually part of a defrost event. 

3.2.5 Plotting Results 

Classification performance can be observed visually if a time series is plotted and 

then color coded according to its time point classifications.  Before such a plot can be 

color coded, classification must be generated for the time points in the time series. 

Because the RNNs are trained to only provide a classification for the last time point in a 

time series, an iterative “sliding window” method was used to generate classification for 
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consecutive time points.  As shown in Figure 4, a window of length ​N​ was slid across the 

subject time series, where ​N​ is the number of time points that are given to the RNN as 

input before it makes a classification.  At each position, the windowed segment of ​N​ time 

points was fed to the RNN and the last time point was classified.  Once the desired range 

of time points had been classified, they could be plotted and color coded using the 

classifications.  This process did not generate classifications for the first ​N-1​ time points, 

and so the x-axis of the resulting classification plots had to start at time point ​N​. 

Classification plots were created using both simulated data and real refrigeration 

unit temperature data.  One of their major benefits was that they provided a way to 

visually assess RNN classification performance on real world data. 
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Figure 4​. A sliding window is used to collect classifier input segments.  Each window is used to classify 
the last time point in the window. 
 

3.3 Binary Dataset Experiments 

3.3.1 Binary Datasets Overview 

In order to more directly test the ability of RNNs to model seasonality, a second 

exploration was done using four fabricated binary datasets.  Each binary dataset  isX , )( Y  

composed of a two equally sized sets of time series,  andX , , .., ]X = [ 1 X2 . XM  

.   provided the input data that was fed into the RNNs, while Y , , .., ]Y = [ 1 Y 2 . Y M X Y

provided the target outputs that the RNNs were trained to forecast.  The time series in Y

are the seasonal components of the corresponding time series in , meaning that theX  

RNN was trained to predict the seasonal component of .  Dataset sizes wereX  

 and , and time series lengths were  and .5000M = 1 5000M = 2 01N = 5 001N = 1  
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Each input time series array in  is an ordered set of ​ℕ​ binary values, such thatX  

, where .  Contained in each input time series is ax , , .., ]Xm = [ 1 x2 . xN 0, }xn ∈ { 1  

seasonal component in which 1s appear at specific, fixed intervals.  The seasonal 

frequency remains constant over the duration of each time series, but can change between 

time series. 

In two of the four binary datasets, all time point values are set to 0 except for 

those that are part of the seasonal pattern of 1s.  In the other two datasets, 1s appear 

randomly throughout the time series.  Because these randomly placed 1s are not a part of 

any seasonal pattern, they shall be referred to as noise.  To create noise within a binary 

datasets, each time point value was given a  probability of being turned into a 1.  The/p1  

noise in the binary datasets are a type of confounding feature, since the randomly placed 

1s are indistinguishable from the seasonally placed 1s.  A randomly placed 1 can be 

thought of as being analogous to the “counterfeit defrosts” in the refrigeration simulation 

datasets, since both of them can be easily mistaken as being a part of a seasonal pattern. 

For each input time series, there is a corresponding ordered set of  binaryN  

values, , where .   is the seasonal component of ,y , , .., ]Y m = [ 1 y2 . yN 0, }yn ∈ { 1 Y m Xm  

which means that  is the noiseless version of .  In noiseless datasets, .Y m Xm Y m = Xm  

All binary datasets were evaluated using the same performance measures and 

plotting techniques that were used to evaluate the refrigeration simulation datasets.  See 

the previous sections entitled “Performance Measures” and “Plotting Results”.  Note that 

when the sliding window method was used on a binary dataset time series, it resulted in a 
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plot that was color coded using forecasts rather than classifications.  These plots were 

referred to as forecast plots. 

3.2.2. Binary Dataset 1: Homogeneous Frequencies, Heterogeneous Phases 

Binary Dataset 1 was designed to have seasonal components with homogeneous 

seasonal frequencies and heterogeneous phases.  The seasonal components all have a 

period of 100 time points, but their phases vary randomly.  The dataset has no noise, and 

so the input time series are identical to their seasonal components.  See Figure 5 for 

examples of the time series in Binary Dataset 1. 

 

 

Figure 5​. Three examples taken from Binary Dataset 1.  For each example, the input is shown in the upper 
plot, and its seasonal component (S.C.) is shown in the lower plot.  The time series share a common 
seasonal period of 100 time points, but their seasonal patterns have different phases.  There is no noise in 
this dataset. 
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3.3.3 Binary Dataset 2: Homogeneous Frequencies, Heterogeneous Phases, Confounding 

Features 

Binary Dataset 2 is identical to Binary Dataset 1 except for that noise has been 

added.  The seasonal components have homogeneous frequencies and heterogeneous 

phases.  1s appear not only as part of the expected seasonal pattern, but also at random 

time points that are not a part of the seasonal pattern.  These randomly placed 1s are 

confounding features.  See Figure 6 for examples of the time series in Binary Dataset 2. 

 

 

Figure 6​. Three examples taken from Binary Dataset 2.  For each example, the input is shown in the upper 
plot, and its seasonal component (S.C.) is shown in the lower plot.  The time series share a common 
seasonal period of 100 time points, but their seasonal patterns have different phases.  There is noise in this 
dataset. 
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3.3.4 Binary Dataset 3: Heterogeneous Frequencies, Heterogeneous Phases 

Binary Dataset 3 is composed of time series whose seasonal components have 

both heterogeneous periods and heterogeneous phases.  The seasonal components have 

periods that were randomly sampled from a uniform distribution ranging from 2 time 

points to 100 time points.  Their phases vary randomly.  The dataset has no noise, and so 

the input time series are identical to their seasonal components.  See Figure 7 for 

examples of the time series in Binary Dataset 3. 

 

 

Figure 7​. Three examples taken from Binary Dataset 3.  For each example, the input is shown in the upper 
plot, and its seasonal component (S.C.) is shown in the lower plot.  The seasonal components in the dataset 
have heterogeneous periods and phases.  There is no noise in this dataset. 
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3.3.5 Binary Dataset 4: Heterogeneous Frequencies, Heterogeneous Phases, Confounding 

Features 

Binary Dataset 4 is identical to Binary Dataset 3 except for that noise has been 

added.  The seasonal components have both heterogeneous periods and heterogeneous 

phases.  1s appear not only as part of the expected seasonal pattern, but also at random 

time points that are not a part of the seasonal pattern.  These randomly placed 1s are 

confounding features.  See Figure 8 for examples of the time series in Binary Dataset 4. 

 

 

Figure 8​. Three examples taken from Binary Dataset 4.  For each example, the input is shown in the upper 
plot, and its seasonal component (S.C.) is shown in the lower plot.  The seasonal components in the dataset 
have heterogeneous periods and phases.  There is noise in this dataset. 
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3.3.6 Forecasting Task 

In the previous experiments, RNNs were trained to classify the final time point in 

a time series.  In the binary dataset experiments, RNNs were instead trained to forecast 

the next time point after the final time point in a time series.  But instead of forecasting 

the next value in an input time series , the RNN was tasked with forecasting the nextXm  

value in the corresponding seasonal component time series .  Given the binary natureY m  

of the time series, the RNN was forced to make predictions based entirely on the number 

of input time points that have elapsed since the last time point at which it saw a “1” in the 

input time series.  If the RNN failed to model the time series’ seasonal component, then it 

had no way to predict seasonally occurring 1s, and its true-positive prediction rate would 

have suffered. 

Many different RNN architectures were tested.  Each architecture had either 1 or 

2 layers of LSTM cells followed by a single cell dense layer with a sigmoid activation 

function.  The number of LSTM cells per layer were either 1, 2, or 10.  A binary cross 

entropy loss function and an adam optimizer were used for training. 

For the training examples of length 501, the first 500 time points were used as the 

input time series, and the final time point of the seasonal component, , was used asY m
501  

the target value that the RNN was taught to predict.  For training examples of length 

1001, the first 1000 time points of  were the input, and the target was .  ForXm Y m
1001  

each training example, the RNN made a single prediction and performed backpropagation 
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once.  The training datasets were designed so that the forecasted values were balanced, 

meaning that 50% of time series end in 0s, and 50% in 1s.  
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Chapter IV.  

Results and Discussion 

The following is a discussion of the results from the defrost detection 

experiments, which are covered in Sections 4.1 and 4.2, and the binary dataset 

forecasting experiments, covered in Section 4.3. 

4.1 Simulation Dataset Results 

The first set of experiments involved training RNNs to classify a refrigeration 

temperature simulation dataset.  The classes were balanced, meaning that half of the 

examples ended in a defrost, and the other half did not.  Various training configurations 

were tested, including the following: 

● The time series lengths were 150, 500, and 1000 

● Batch sizes of 1, 8, 16, and 64 

● 1 and 2 layers of LSTM cells 

● 1, 2, and 10 LSTM cells per layer 

In all of these experiments, the RNNs were trained to classify either the last, second to 

last, or third to last time point.  Table 1 provides a selection of the best results.  
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Experiment Configuration  Classification Performance 

LSTM 
Layers 

Cells Per 
Layer 

Target 
Time 
Point 

 Overall 
Accuracy 

Sensitivity Specificity Precision 

1 1 -1  0.84 0.79 0.87 0.84 

1 2 -1  0.90 0.88 0.92 0.90 

1 10 -1  0.94 0.91 0.97 0.96 

1 20 -1  0.94 0.91 0.97 0.96 

1 10 -2  0.94 0.88 0.97 0.95 

1 10 -3  0.94 0.86 0.97 0.92 

2 1, 1 -1  0.84 0.80 0.86 0.82 

2 2, 2 -1  0.91 0.86 0.94 0.93 

2 10,10 -1  0.95 0.94 0.96 0.95 

2 10,10 -3  0.94 0.86 0.97 0.93 
 
Table 1​. A selection of the best result from experiments on a simulated temperature dataset in which the 
defrost and non-defrost classes are balanced.  For each configuration, the best classification performance is 
shown.  Various parameters were tried, including batch sizes of 1, 8, 16, and 64, and time series lengths of 
N=150, N=500, and N=1000.  The target time point indicates which time point was classified, with -1 
indicating the last time point, -2 indicating the second to last time point, and -3 indicating the third to last 
time point. 
 

The highest accuracy is 95%, which was achieved by the RNN with 2 LSTM 

layers, with 10 LSTM cells per layer.  Besides having the highest metrics, this network 

also had the lowest false positive rate, at 2%, and lowest false negative rate, at 3%.  

For every configuration, performance always improved as the size of the 

simulated training dataset was increased.  The best scores were achieved using the largest 
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dataset, which had 20,000 examples.  The optimal batch size was either 1 or 8 in all 

cases.  Surprisingly, it did not make a major difference whether the last, the second from 

last, or the third from last time point was the target for classification.  One might expect 

that classifying the third from last time point would have the best results, since the RNN 

would be able to use the two subsequent time points (the last and second from last) as 

context in making the classification decision.  On the other hand, one might expect that 

RNNs would more naturally classify the last time point, since an RNN’s cell activation 

states continue to change all the way up to the last time point.  However, neither 

hypothesis is supported by the results. 

For every configuration, specificity was higher than precision, which was higher 

than sensitivity, indicating that the RNNs had more success classifying non-defrost time 

points correctly than defrost time points.  This makes sense, since non-defrost time points 

generally fall within a relatively narrow temperature range.  Defrost time points are 

sometimes more challenging to classify, since many defrost cycles begin and end with 

time points whose temperature values fall within the typical temperature range of 

non-defrost time points. 

All four metrics indicate that the RNNs had some success at detecting defrosts, 

but they were far from perfect.  It would be useful to know what kind of mistakes were 

made.  More specifically, it would be useful to know whether the RNNs had succeeded at 

modeling heterogeneous seasonality and were actually using seasonal periods in their 

classification decisions, or if they were just classifying time point values based on 

temperature trajectories and variances. 

36 



The following classification plot analysis attempts to answer this question.  Figure 

9 shows a classification plot for a real temperature time series whose temperature 

readings were taken from inside an actual refrigerator.  The defrosts in this time series are 

relatively easy to identify, and they all have roughly the same shape.  The classifications 

were generated using the sliding window method and the best performing RNN, which 

was the 2 layer, 10 LSTM cells/layer RNN.  As can be seen in the plot, the classifications 

were very accurate, with only one misclassification.  Because a non-defrost time point 

was classified as a defrost time point, this mistake is a false positive.  Note that some of 

the time points that were classified as non-defrost have higher temperatures than some of 

the time points that were classified as defrosts, indicating that the RNN was not just 

basing its decisions on the temperature value alone. 

 

 

Figure 9​.  Classification plot for a simple, orderly temperature time series.  The classifications were 
generated using the sliding window method with a window size of 500 time points, and they were made by 
the 2 Layer, 10 LSTMs/layer RNN configuration.  Time points that were classified as defrost are shown in 
blue, and non-defrosts are shown in gray.  The plot contains only one obvious misclassification.  It has been 
highlighted with a red box. 
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Figure 10 shows a classification plot for a more chaotic and complex time series, 

again using the same 2 layer, 10 LSTM cells/layer RNN.  The time series is not 

simulated; the temperature readings were taken from inside an actual refrigerator.  Three 

obvious false positives appear in the plot, indicating that performance has diminished. 

This suggests that the trained RNN was not robust enough to model the more complicated 

time series. 

 

 

Figure 10​.  Classification plot for a chaotic, complex temperature time series.  The classifications were 
generated using the sliding window method with a window size of 500 time points, and they were made by 
the 2 Layer, 10 LSTMs/layer RNN.  Time points that were classified as defrost are shown in blue, and 
non-defrosts are shown in gray.  Red boxes are used to highlight obvious misclassifications. 
 

In both Figures 9 and 10, at least some portion of every defrost was detected, 

suggesting that the RNN is not prone to missing entire defrosts.  This provides important 

context for the 6% error in sensitivity that was measured during testing.  The error was 

probably caused by the RNN’s failure to correctly classify the time points at the 
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beginnings or the ends of individual defrost events.  As long as the RNN detects some 

portion of each defrost, the 6% sensitivity error is not cause for concern. 

On the other hand, the 2% false positive rate becomes more alarming when 

viewed in the context of the false positives shown in Figures 9 and 10.  These false 

positives are not connected to any defrost, and are in fact separated from any defrost by 

many time points.  Therefore, the RNN did not merely misjudge the exact start or end 

point of a defrost; rather, it completely misjudged the location at which a defrost can 

occur.  Upon inspection, it seems likely the 2% false positive rate is predominantly 

caused by false positives of this sort.  

These mistakes demonstrate that the RNN was making two types of mistakes, the 

second of which is a major problem.  The first type of mistake was that it was confusing 

non-defrosts temperature patterns for defrost patterns.  In other words, the RNN was 

being fooled by confounding features.  For example, the RNN might have seen a random 

temperature spike and mistook it for a defrost.  This mistake is understandable, since 

there is no one “correct” defrost shape.  In fact, the shape of a defrost varies not only 

between time series in the dataset, but also between defrosts within a single time series. 

The second type of mistake, however, was that the RNN failed to utilize defrost 

seasonality (or periodicity) in its predictions.  It failed to measure and enforce a 

consistent time interval (or period) between defrosts, implying that it has either failed to 

recognize that defrosts are seasonal, or is unable to learn the basic nature of seasonality in 

a heterogeneous dataset.  Enforcement of periodicity is critical because it is the most 

reliable way to detect defrosts.  Even though a defrost’s shape can vary within a time 
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series, its frequency is usually consistent, and therefore, reliable (unless the refrigeration 

unit is failing in some way). 

Figure 11 makes it clear that the RNN was in fact failing to use seasonality in its 

predictions.  The figure shows a simulated time series that has been classified and plotted 

using the sliding window method.  The plot is filled with misclassifications, and more 

importantly, there appears to be no utilization of seasonal time intervals in the 

classification decisions.  Many of the positively classified time points are right next to 

each other, while others are spaced out by a great deal of time.  Rather than being 

clustered around the correct defrost locations, the false positives are randomly placed. 

There are three possible explanations for this behavior: either the RNN lacks a model of 

seasonal time intervals, it has a weak and inconsistent model, or it has an accurate model 

but isn’t using it well. 

 

 

Figure 11​.  Classification plot for a simulated temperature time series with “counterfeit defrosts”.  The 
upper plot shows the correct classifications, with defrost time points in blue.  The lower plot shows the 
classifications that were outputted by the 2 Layer, 10 LSTMs/layer RNN.  Classifications were generated 
using the sliding window method with a window size of 500 time points.  Time points that were classified 
as defrost are shown in blue, and non-defrosts are shown in gray.  Misclassifications are surrounded by red 
boxes. 
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4.2 Attempt to Remediate Poor Modeling of Seasonality 

Up to this point, the RNN failed to effectively model seasonality, as revealed by 

its tendency to output randomly placed false positives.  These false positives were 

typically out of sync with the temporal spacing of the time series’ seasonal defrost 

patterns.  One way to compel the RNN to learn to use seasonality in its predictions is to 

infuse the training data with time series that ended in counterfeit defrosts.  When a time 

series ends in a counterfeit defrost, the RNN must attempt to learn to classify the time 

series as non-defrost, or “False”.  However, the only way to recognize a counterfeit is to 

learn the seasonal spacing that characterizes the true defrosts.  If the RNN failed to model 

seasonality, then it would misclassify any time series that ends in a counterfeit defrost, 

and the false positive rate would rise. 

Two additional simulated datasets were generated in order to test whether the 

RNN could be compelled to learn seasonality.  The first new dataset featured balanced 

classes, meaning that half of its time series ended in defrosts and the other half did not. 

Of the time series that ended in non-defrosts, half ended in counterfeit defrosts.  This 

dataset shall be referred to as the “50/25/25 dataset”.  The second new dataset was split 

into thirds, so that one third ended in defrosts, one third in counterfeit defrosts, and the 

last third in neither defrosts nor counterfeit defrosts.  This dataset shall be referred to as 

the “33/33/33 dataset”.  The original dataset (from Section 4.1) shall be referred to as the 

“50/50 dataset”.  Note that the 33/33/33 dataset is unbalanced, since the labels are 33% 

True and 67% False. 
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These new datasets were used to train an RNN with 2 layers and 10 LSTM cells 

per layer.  The resulting performance metrics are shown in Table 2, and classification 

plots for a simulated time series are shown in Figures 12. 

 

Ratio of Training Data Time Series  Classification Performance 

Defrost Counterfeit 
Defrost 

Neither Defrost 
Nor Counterfeit 
Defrost 

 Overall 
Accuracy 

Sensitivity Specificity Precision 

50% 0% 50%  0.95 0.94 0.96 0.95 

50% 25% 25%  0.87 0.86 0.87 0.86 

33% 33% 33%  0.87 0.83 0.89 0.87 
 
Table 2​. Classification results after training the 2 layer, 10 LSTM cells per layer RNN on datasets with 
different ratios of time series types.  The first time series type is a time series whose last time point is part 
of a defrost event and that has a label of True.  The second type is a time series whose last time point is part 
of a counterfeit defrost and has a label of False.  The third type is a time series whose last time point is not 
part of a defrost or a counterfeit defrost, and has a label of False. 
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Figure 12​. The top plot shows a simulated time series whose defrost time points are color coded blue.  The 
subsequent three plots are classification plots that were generated using the sliding window method and the 
RNN with 2 layer, 10 LSTM cells per layer.  Each classification plot was made after a different dataset was 
used to train the RNN.  A description of each dataset is provided to the right of the plot.  
 

All of the additional datasets resulted in lower performance metrics than the 

original dataset.  Surprisingly, the addition of time series that ended in counterfeit 

defrosts did not improve the precision scores, suggesting that the RNNs were still either 

unable to model the datasets’ heterogeneous seasonal components, or that they were still 

not relying heavily enough upon their internal models of seasonality when making their 

classification decisions. 

The last plot in Figure 12 suggests that the 33/33/33 model might have learned to 

pay some attention to seasonal spacing, since the false positives are spaced closer to the 
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actual defrost.  An alternative explanation is that the model was simply less prone to 

classifying any time point as ‘True’ because it was trained with an unbalanced dataset. 

The model’s precision score was 0.87, well below that of the 50/50 models.  Furthermore, 

its sensitivity score plummeted to 0.83, indicating that it also outputted a large number of 

false negatives. 

Thus far, it has been unclear whether or not the trained RNNs have succeeded at 

modeling the heterogeneous seasonality in the simulated dataset.  While the accuracy 

metrics have been somewhat impressive, the classification plots have revealed false 

positives that seem incompatible with a good model of seasonality.  The next section, 

which focuses on the binary dataset experiments, will attempt to provide a clearer 

understanding of what RNNs are capable of doing with heterogeneous datasets.  This will 

hopefully provide some much needed context that sheds light on the results from the 

simulated dataset. 

4.3 Binary Dataset Results 

As stated earlier, previous research has shown that RNNs can successfully predict 

datasets with fully homogeneous seasonal components, but that they struggle to predict 

datasets with heterogeneous seasonal components.  This calls into question whether 

RNNs can be taught to model more than one seasonal pattern, let alone an entire 

heterogeneous dataset. 

The next set of experiments was designed to provide a better understanding of 

whether RNNs are able to model heterogeneous seasonality.  RNNs were trained and 
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tested on multiple binary datasets which had varying degrees of heterogeneity.  The 

RNNs were tasked with forecasting the next value in the seasonal component of the input 

time series.  The heading for each section describes the heterogeneity condition that is 

being tested in the experiments.  The binary dataset experiments attempt to answer three 

questions: 

1. Can RNNs model datasets whose seasonal components have heterogeneous 

phases? 

2. Can RNNs model datasets whose seasonal components have heterogeneous 

frequencies? 

3. Is the ability of RNNs to model heterogeneous seasonal datasets compromised by 

the presence of confounding features in the time series that resemble the shape of 

the seasonal features?  Note that in the context of the simulated refrigeration unit 

data, the seasonal features are the defrosts, and the confounds are the “fake 

defrosts”.  In the context of the binary datasets, the seasonal features are the 

seasonally occurring “1”s, and the confounds are the randomly positioned “1”s 

(also referred to as “noise”). 

Note that the binary dataset experiments do not delve into the question of whether RNN 

can model datasets whose seasonal components have varying shapes. 
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4.3.1 Homogeneous Frequencies, Heterogeneous Phases 

The first set of binary dataset experiments test whether RNNs can learn models of 

seasonality that are flexible enough to predict seasonal patterns with heterogeneous 

phases, but that are otherwise homogeneous.  In order to answer this question, RNNs 

were trained to forecast Binary Dataset 1, which has homogeneous seasonal frequencies 

and heterogeneous phases (see Figure 5 for examples).  The forecasted values are 

balanced, meaning that for half of the examples in the dataset, the next value in the 

seasonal component time series is a “1”, and for the other half, it is a “0”.  The dataset 

was used to train an RNN with 1 LSTM layer with 10 cells. 

After 30 epochs of training, the RNN had learned to perfectly forecast the test 

data.  The accuracy, sensitivity, specificity, and precision were all 1.  The sliding window 

method was used to generate forecast plots for three test examples.  The forecast plots, 

which are shown in Figure 13, are flawless, providing visual evidence that the RNN has 

successfully modeled the dataset’s 100 time point seasonal period.  This demonstrates 

that RNNs are capable of modeling seasonal datasets with constant frequencies, even if 

the phases of the seasonal components vary across examples. 
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Figure 13. ​Forecast plots for three test examples from Binary Dataset 1.  They all have seasonal periods of 
100 time points, but their seasonal patterns have heterogeneous phases.  The sliding window method was 
used to compile the RNN’s forecasts into forecast plots.  For each example, the forecast plot is shown 
below the original time series.  Note that the forecast plots perfectly match the original time series, 
indicating that the RNN has successfully modeled seasonal patterns with a period of 100 time points. 
 

4.3.2 Homogeneous Frequencies, Heterogeneous Phases, Confounding Features 

During the second set of binary dataset experiments, the same RNN architecture 

was trained and tested on Binary Dataset 2  (see Figure 6 for examples), which is similar 

to Binary Dataset 1 except for that it includes noise, which acts as a collection of 

confounding features in the input time series.  After training, the RNN had an accuracy, 

sensitivity, specificity, and precision of 0.99.  Figure 14 shows forecast plots for three 

example time series.  The seasonally occurring “1”s are highlighted in red to draw 

attention to the fact that the RNN has successfully forecasted every one.  This indicates 

that the RNN has successfully encoded the 100 time point period in the seasonal pattern, 

despite the presence of confounding features in the time series.  However, the RNN also 
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outputted a number of false positives, or “1”s that are not a part of the seasonal pattern, 

suggesting that the presence of confounding features in the input has caused the RNN to 

encode some sort of additional, useless prediction scheme. 

 

 

Figure 14. ​Forecast plots for three test examples taken from Binary Dataset 2, which is identical to Binary 
Dataset 1 except for that it includes noise.  The sliding window method was used to compile the RNN’s 
forecasts into forecast plots.  For each example, the original time series is shown in the top plot, the target 
seasonal pattern (the pattern that the RNN is trying to predict) is shown in the middle plot, and the actual 
forecasts outputted by the RNN are shown in the bottom plot.  Highlighted in red are the seasonal patterns 
of “1”s.  Note that the forecast plots perfectly predict the seasonal pattern, indicating that the RNN has 
successfully modeled a seasonal pattern with a period of 100 time points.  However, there are also many 
false positives in the forecast plots. 
 

4.3.3 Heterogeneous Frequencies, Heterogeneous Phases 

During the third set of binary dataset experiments, RNNs were trained to forecast 

the time series examples in Binary Dataset 3 (see Figure 7 for examples), whose seasonal 
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components have heterogeneous frequencies and phases.  The seasonal frequencies were 

randomly sampled from a discrete uniform distribution, .  The RNNeriod nif (2, 0)p = u 5  

had 1 LSTM layer with 10 cells. 

After many attempts at training, a model was generated with a perfect accuracy 

score.   This model was used to generate forecast plots from time series with varying 

seasonal frequencies and phases.  Figure 15 shows forecast plots for seven example time 

series with seasonal periods of 10, 30, 50, 70, 100, 150, and 200.  The figure shows in red 

the number of time points that elapse between when the RNN saw a “1” in the input and 

when it predicted that the subsequent “1” would occur.  This quantity of elapsed time 

points is equivalent to the seasonal period that was predicted by the RNN.  This predicted 

period stayed consistent over the duration of each forecast plot. 

The forecast plots are perfect over a wide range of periods, indicating that the 

model adapted to the seasonal period of the input time series.  Notably, the RNN even 

successfully forecasted time series with seasonal periods that exceeded the range of 

periods in the training data.  For example, when the RNN was given an input time series 

with a seasonal period of 90 time points, it successfully forecasted a period of 90 time 

points, even though the training data only contained time series with a maximum seasonal 

period of 50 time points.  This means that the RNN has encoded a model for seasonality 

that generalizes beyond the scope of the training data. 

However, the model’s flexibility did have its limits.  When the input’s seasonal 

period was 100 time points, the predicted period fell slightly short with 99 time points. 

As the input’s period was increased further, the predicted period could not keep pace and 
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eventually reached an upper limit of 232 time points.  Comparing the forecast plots for 

the input time series with periods of 300 and 400, it can be seen that the predicted period 

remains at 231 time points even though the actual period has increased by 100 time 

points. 

 

 

Figure 15. ​Forecast plots for seven input time series with heterogeneous phases and with varying seasonal 
frequencies of 10, 30, 50, 90, 100, 300, and 400.  The sliding window method was used to compile the 
RNN’s forecasts into forecast plots.  For each example, the original time series is shown in the upper plot, 
and the RNN’s forecasts are shown in the lower plot.  Highlighted in red is the “predicted period”, or the 
seasonal period as predicted by the RNN. 
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4.3.4 Heterogeneous Frequencies, Heterogeneous Phases, Confounding Features 

The last set of binary dataset experiments again tested the ability of RNNs to 

model heterogeneous seasonal frequencies and phases, but this time with the addition of 

noise, which acts as a collection of confounding features in the input time series.  Binary 

Dataset 4  (see Figure 8 for examples) was used to train and test RNNs with 1 and 2 

layers of LSTM cells, with 10 cells per layer. 

Despite many attempts to train a model to make accurate predictions, the best 

performing model only had an accuracy of 71%.  The model’s sensitivity score was 62% 

and its specificity score was 78%, meaning that it was outputting both false positives and 

false negatives.  Figure 16 shows forecast plots that were generated using the best model. 

As can be seen, the predicted periods are erratic.  Clearly, the addition of confounding 

noise to a seasonally heterogeneous dataset makes it far more difficult for an RNN to 

model and forecast the dataset’s seasonal components. 
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Figure 16. ​Forecast plots for seven input time series with heterogeneous phases and with varying seasonal 
frequencies of 10, 30, 50, 90, 100, 300, and 400.  The time series contain noise.  The sliding window 
method was used to compile the RNN’s forecasts into forecast plots.  For each example, the original time 
series is shown in the top plot, and the RNN’s forecasts are shown in the bottom plot. 
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Chapter V.  

Summary and Conclusion 

After being trained to classify the defrost status of time series in the refrigeration 

temperature simulation dataset, an RNN with 2 layers of 10 LSTM cells was able to 

achieve 95% accuracy on the simulated test set.  Unfortunately, it was impossible to 

measure the RNN’s accuracy on real refrigeration units’ temperature time series, since 

class labels are not available.  However, classification plots made it possible to visually 

inspect the RNN’s performance on real data.  Multiple plots showed false positives at 

time points that did not make sense, given the seasonality of the defrost cycles.  These 

mistakes called into question the ability of RNNs to model heterogeneous seasonality. 

This question was explored in the binary dataset experiments. 

During the Binary Dataset 1 experiment, the trained RNNs had a 100% 

forecasting accuracy rate when modeling a dataset with homogeneous seasonal periods 

and heterogeneous seasonal phases.  However, the accuracy dropped to 99% during the 

Binary Dataset 2 experiments, in which the input time series includes confounding 

features that are indistinguishable from the seasonal features.  The 1% error rate was 

entirely caused by false positives.  The empirical nature of this thesis project makes it 

difficult to know for sure that these false positives are unavoidable.  This question can be 

revisited in future research. 
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During the Binary Dataset 3 experiments, the trained RNN had a 100% 

forecasting accuracy rate when modeling a dataset whose seasonal components have both 

heterogeneous frequencies and heterogeneous phases.  This result suggests that RNNs are 

capable of modeling datasets with heterogeneous seasonal components, and contradicts 

the suggestions made in previous research that RNNs can only reliably model 

homogeneous datasets [11,17,19].  However, during the Binary Dataset 4 experiments, 

the accuracy dropped to 71%, suggesting that when confounding features are present in a 

dataset, it cannot model heterogeneous seasonal components.  Therefore, an RNN can 

only be relied upon to model a heterogeneous dataset if it does not contain confounding 

features. 

The results from the binary dataset experiments provide insights that can be used 

to explain the errors that were made during the experiments involving the refrigeration 

temperature simulation dataset.  Since the simulation dataset is seasonally heterogeneous 

and includes confounding features (counterfeit defrosts), it is very unlikely that an RNN 

could learn a model to predict the seasonal components in the individual time series. 

This is why the RNN was prone to outputting false positives at inappropriate time points, 

since it never had the ability to fully discern the proper seasonal intervals. 

Because refrigeration temperature datasets are seasonally heterogeneous and 

contain a variety of confounding features, RNNs are not the correct tool to use to predict 

the presence of defrosts, unless a high false positive rate is acceptable.  As an alternative, 

a future research project might explore the possibility of using convolutional neural 

networks to detect defrosts. 
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Appendix: Project Code

May 12, 2020

In [0]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

import pickle

import random

%tensorflow_version 1.x

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, CuDNNLSTM

from tensorflow.keras.models import load_model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

# Import all functions that are needed to create the simulated refrigeration

# temperature dataset and the toy datasets.

from Refrigeration_Unit_Simulation import *

from Generate_Binary_Datasets import *

1 Phase 1: Defrost Detection

We start by building a dataset of simulated refrigeration temperature data.

In [0]: # X is the temperature data, Y is the defrost label data.

X,Y,_ = simulate_refrigerator_data(num_simulations=22000, time_series_len=500, \

x0y0_ratio=0.50, x1y1_ratio=0.50, \

x1y0_ratio=0)

Let us plot the first example in the dataset to see how the temperature data and defrost labels
are related. This is the code for Figure 3.

In [9]: fig, axs = plt.subplots(3, sharex=True, sharey=False, \

gridspec_kw={'hspace': 0}, figsize=(8,4))

fig.add_subplot(111, frameon=False)

plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, \

right=False)

plt.xlabel('Time Point', fontsize=10)

axs[0].plot(X[0])

axs[0].set(ylabel='Temperature')
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axs[1].plot(Y[0])

axs[1].set(ylabel='Label')

colormap = np.array(['b','r'])

axs[2].scatter(np.arange(len(X[0])), X[0], c=colormap[Y[0].astype(int)])

axs[2].plot(X[0])

axs[2].set(ylabel='Temperature')

for ax in axs:

ax.label_outer()

plt.show()

Next we preprocess the data, which included splitting the dataset into training, validation, and
test sets. Then we build the recurrent neural network and train it with the training data. Finally,
we print out the confusion matrix and the performance metrics. Note that the results shown here
do not match any of the results described in the thesis document, since this is not one of the
training attempts that made it into the selection.

In [21]: # Reduce Y to its last time points, since these are what the network will be

# trained to predict.

Y = Y[:,-1]

# Create training, validation, and test sets

N = 20000 # Size of training set

x_train, x_val, x_test = X[0:N,:], X[N:(N+1000),:], X[(N+1000):,:]

y_train, y_val, y_test = Y[0:N], Y[N:(N+1000)], Y[(N+1000):]

x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1))

x_val = np.reshape(x_val, (x_val.shape[0],x_val.shape[1],1))

x_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[1],1))

2



# Build Recurrent Neural Network

model = Sequential()

model.add(CuDNNLSTM(10, return_sequences=True))

model.add(CuDNNLSTM(10))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', \

metrics=['accuracy'])

# Train the model

history = model.fit(x_train, y_train, batch_size=8, epochs=30, verbose=0, \

validation_data=(x_val, y_val), shuffle=True)

model = load_model('Models/model_RNN_CuDNN_2Layer_10Neuron_SimData_50_50_\

NoNoise_15epoch_20K_TrainData.h5')

# Print the Performance Metrics

from sklearn.metrics import confusion_matrix

predictions = model.predict_classes(x_test)

cf = confusion_matrix(y_test, np.reshape(predictions, (len(predictions),)))

print(cf)

print('sensitivity: ', cf[1][1]/(cf[1][1]+cf[1][0]))

print('specificity: ', cf[0][0]/(cf[0][0]+cf[0][1]))

print('precision: ', cf[1][1]/(cf[1][1]+cf[0][1]))

[[386 177]

[ 29 408]]

sensitivity: 0.9336384439359268

specificity: 0.6856127886323268

precision: 0.6974358974358974

Let us examine the performance of the trained model using classification plots. We will use
real refrigeration temperature data. This is code for Figures 9 and 10.

In [8]: file = open('train_data.pickle', 'rb')

data = pickle.load(file)

file.close()

model = load_model('Models/model_RNN_CuDNN_2Layer_10Neuron_SimData_50_50_\

NoNoise_15epoch_20K_TrainData.h5')

t = data[52][3000:4000]

test_predictions = predict_consecutive_readings(readings=t, look_back=500, \

model=model)

test_predictions = np.reshape(test_predictions, (500))

plt.figure(figsize = (10,5))

plt.plot(np.arange(500,1000), t[499:999], c='tab:gray', linewidth=1)

colormap = np.array(['tab:gray','b'])
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sizemap = np.array([10,40])

plt.scatter(np.arange(500,1000), t[499:999], \

c=colormap[test_predictions.astype(int)], \

s=sizemap[test_predictions.astype(int)])

plt.xlabel('Time Point', fontsize=14)

plt.ylabel('Temperature $^\circ$C', fontsize=14)

plt.show()

t = data[63][3000:4000]

test_predictions = predict_consecutive_readings(readings=t, look_back=500, \

model=model)

test_predictions = np.reshape(test_predictions, (500))

plt.figure(figsize = (10,5))

plt.plot(np.arange(500,1000), t[499:999], c='tab:gray', linewidth=1)

colormap = np.array(['tab:gray','b'])

sizemap = np.array([10,40])

plt.scatter(np.arange(500,1000), t[499:999], \

c=colormap[test_predictions.astype(int)], \

s=sizemap[test_predictions.astype(int)])

plt.xlabel('Time Point', fontsize=14)

plt.ylabel('Temperature $^\circ$C', fontsize=14)

plt.show()
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1.1 Attempt to Remediate Poor Modeling of Seasonality.

So far, all trained models have failed to demonstrate that they are effectively using seasonality
in their classification decisions. Therefore, we now build two additional datasets, each of which
feature "counterfeit defrosts". The presence of these confounding features will hopefully force the
RNN to learn to leverage seasonality in its classification decisions.

In [0]: X2,Y2,_ = simulate_refrigerator_data(num_simulations=22000, \

time_series_len=500, x0y0_ratio=0.50, x1y1_ratio=0.50, x1y0_ratio=0)

X3,Y3,_ = simulate_refrigerator_data(num_simulations=22000, \

time_series_len=500, x0y0_ratio=0.50, x1y1_ratio=0.50, x1y0_ratio=0)

We now use the previous code to train two additional models. After the two models are
trained, we load all three models and compare their classification performances on a simulated
time series. This is code for Figure 12.

In [22]: model1 = load_model('Models/model_RNN_CuDNN_2Layer_10Neuron_SimData_50_50_\

NoNoise_15epoch_20K_TrainData.h5')

model2 = load_model('Models/model_RNN_CuDNN_2Layer_10Neuron_SimData_50_25_25_\

NoNoise_15epoch_20K_TrainData.h5')

model3 = load_model('Models/model_RNN_CuDNN_2Layer_10Neuron_SimData_33_33_33_\

NoNoise_15epoch_20K_TrainData.h5')

np.random.seed(886); random.seed(886)

n=1000

t, y, i = generate_simulation(n=n, end_in_defrost=False, \

end_in_fake_defrost=False)

plot_len = 300
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look_back = 500

plot_start = look_back-1

plot_end = plot_start + plot_len

test_predictions1 = np.reshape(predict_consecutive_readings(readings=t, \

look_back=look_back, model=model1), (n-look_back))[:plot_len]

test_predictions2 = np.reshape(predict_consecutive_readings(readings=t, \

look_back=look_back, model=model2), (n-look_back))[:plot_len]

test_predictions3 = np.reshape(predict_consecutive_readings(readings=t, \

look_back=look_back, model=model3), (n-look_back))[:plot_len]

colormap = np.array(['tab:gray','b'])

sizemap = np.array([10,40])

fig, axs = plt.subplots(4, sharex=True, sharey=False, \

gridspec_kw={'hspace': 0}, figsize=(6.5,6.5))

fig.add_subplot(111, frameon=False)

plt.tick_params(labelcolor='none', top=False, bottom=False, \

left=False, right=False)

plt.xlabel('Time Point', fontsize=18)

plt.ylabel('Temperature $^\circ$C', labelpad=20, fontsize=18)

axs[0].plot(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c='tab:gray', linewidth=1)

axs[0].scatter(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c=colormap[y[plot_start:plot_end].astype(int)], \

s=sizemap[y[plot_start:plot_end].astype(int)])

axs[0].text(x=815, y=1, s='Correct\nClassifications', fontsize=16)

axs[1].plot(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c='tab:gray', linewidth=1)

axs[1].scatter(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c=colormap[test_predictions1.astype(int)], \

s=sizemap[test_predictions1.astype(int)])

axs[1].text(x=815, y=1, s='Classifications Using\n50/50 Training Dataset', \

fontsize=16)

axs[2].plot(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c='tab:gray', linewidth=1)

axs[2].scatter(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c=colormap[test_predictions2.astype(int)], \

s=sizemap[test_predictions2.astype(int)])

axs[2].text(x=815, y=1, s='Classifications Using\n50/25/25 Training Dataset', \

fontsize=16)

axs[3].plot(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c='tab:gray', linewidth=1)

axs[3].scatter(np.arange(look_back,look_back+plot_len), t[plot_start:plot_end], \

c=colormap[test_predictions3.astype(int)], \

s=sizemap[test_predictions3.astype(int)])

axs[3].text(x=815, y=1, s='Classifications Using\n33/33/33 Training Dataset', \

fontsize=16)

for ax in axs:

ax.label_outer()
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plt.show()

2 Phase 2: Toy Dataset Experiments

2.1 Toy Dataset 1

We start by creating Toy Dataset 1, whose seasonal components have homogenous periods and
heterogeneous temporal positions.

In [0]: num_runs = 16000

N = 15000 # Size of training set

len_run=501

num_x0y0 = int(num_runs/2)

num_x1y1 = int(num_runs/2)

num_x1y0 = int(num_runs*0)

X,Y,P = generate_binary_training_data(len_run=len_run, noise=False, period=100, \

period_range=None, start=None, num_x0y0=num_x0y0, \

num_x1y1=num_x1y1, num_x1y0=num_x1y0)

In order to better understand the dataset, we plot a few examples from the dataset and their
seasonal components. This is code for Figure 5.
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In [11]: fig = plt.figure(figsize = (4.5,4.5), frameon=False, linewidth=10, edgecolor='b')

for i in range(3):

#X,Y,p = generate_binary_run(len_run=500, noise=True, period=100, start=None)

subplot_loc = 3*i+1

axs = fig.add_subplot(8, 1, subplot_loc)

axs.plot(X[i])

axs.set_yticks(ticks=np.array([0,1]))

axs.set_ylim([-.2,1.2])

axs.text(x=-80, y=0.35, s='Input', fontsize=14)

axs.set_title('Example {i}'.format(i=(i+1)), loc='left', fontsize=15)

axs = fig.add_subplot(8, 1, subplot_loc+1)

axs.plot(Y[i])

axs.set_yticks(ticks=np.array([0,1]))

axs.set_ylim([-.2,1.2])

axs.set_yticklabels(np.array(['False', 'True']))

axs.text(x=-80, y=0.4, s='S.C.', fontsize=14)

axs.set_xlabel('Time Point')

fig.subplots_adjust(left=0.3, right=2)

plt.show()

We split Toy Dataset 1 into training and test sets. We use the training set to train an RNN, and
then use the test set to generate performance metrics. Note that these metrics are slightly different
from the results shown in the body of the Thesis, since those results were acheived after many
attempts at training.

In [24]: X = np.reshape(X, (X.shape[0],X.shape[1],1))

x_train, x_test = X[:N,:-1], X[N:,:-1]

y_train, y_test = X[:N,-1,0], X[N:,-1,0]

model_RNN = Sequential()
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model_RNN.add(CuDNNLSTM(10))

model_RNN.add(Dense(1, activation='sigmoid'))

optimizer = Adam(learning_rate=0.01)

model_RNN.compile(loss='binary_crossentropy', optimizer=optimizer, \

metrics=['accuracy'])

callback = EarlyStopping(monitor='val_acc', restore_best_weights=True, \

patience=10)

history = model_RNN.fit(x_train, y_train, batch_size=64, epochs=30, verbose=0, \

validation_data=(x_test, y_test), shuffle=True,\

callbacks = [callback])

plt.plot(history.history["val_loss"]); plt.show()

from sklearn.metrics import confusion_matrix

tt = model_RNN.predict_classes(x_test)

cf = confusion_matrix(y_test, np.reshape(tt, (len(tt),)))

print(cf)

print('sensitivity: ', cf[1][1]/(cf[1][1]+cf[1][0]))

print('specificity: ', cf[0][0]/(cf[0][0]+cf[0][1]))

print('precision: ', cf[1][1]/(cf[1][1]+cf[0][1]))

[[493 12]

[ 0 495]]

sensitivity: 1.0

specificity: 0.9762376237623762
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precision: 0.9763313609467456

We visualize the RNN’s forecasting performance by generating three new time series and cre-
ating forecasting plots. The plots demonstrate that the forecasts are accurate. This is code for
Figure 13.

In [16]: fig = plt.figure(figsize = (4.5,4.5), frameon=False, linewidth=10, \

edgecolor='b')

for i in range(3):

x, y, p = generate_binary_training_data(len_run=(1000), period=100, \

start=None, num_x0y0=1, noise=False)

x = np.ravel(x)

y_hat = predict_consecutive_binary_readings(readings=x, look_back=499, \

model=model)

subplot_loc = 3*i+1

axs = fig.add_subplot(8, 1, subplot_loc)

axs.plot(x[499:999])

axs.set_yticks(ticks=np.array([0,1]))

axs.set_ylim([-.2,1.2])

axs.text(x=-115, y=0.3, s='Input Time Series', fontsize=8)

axs.set_title('Example {i}'.format(i=(i+1)), loc='left', fontsize=11)

axs = fig.add_subplot(8, 1, subplot_loc+1)

axs.plot(np.arange(0,len(y_hat)),y_hat)

axs.set_yticks(ticks=np.array([0,1]))

axs.set_ylim([-.2,1.2])

axs.text(x=-115, y=0.25, s='Forcasted Values', fontsize=8)

axs.set_xlabel('Time Point', fontsize=10)

fig.subplots_adjust(left=0.3, right=2)

plt.show()
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We can now tweek the above cells to create, train with, and test Toy Datasets 2, 3, and 4. When
building Toy Datasets 2 and 4, we set ’noise’ to True. When building Toy Datasets 3 and 4, we set
’period’ to None and we set ’period_range’ to (2,100).

In [0]:

11
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import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import random

def add_gaussian_noise(n, scale=1, start=0, bottom=float("-inf"), 
top=float("inf")):

    """Generate a numpy array populated with Gaussian noise values.
    
    Parameters:
    n (int): Number of time points
    scale (float): The standard deviation of the Gaussian distribustion from 

which the noise is sampled.
    start (int): The time point at which the noise begins.  Previous time 

points are set to 0.
    bottom (float): The lower limit of the noise values.
    top (float): The upper limit of the noise values.
    """
    
    t = np.zeros(n)
    for i in range(start,n):
        t[i] = min(max(np.random.normal(loc=0, scale=scale),bottom),top)
return np.array(t)

def add_sine_wave(n, period):
    """Generate a numpy array of length 'n', populated with values from a sine 

wave."""
    
    start = 2*np.pi*random.random()
    return np.array([np.sin(start + 2*np.pi*i/(period-1)) for i in range(n)])

def add_chaotic_drift(n, scale=0.1):
    """Generate a numpy array of length 'n' whose values drift.
    
    The amount that each value drifts from the previous value is sampled from a 

continuous uniform distribution
    with a min of -0.5*scale and a max of 0.5*scale.
    """
    
    t = [(random.random()-0.5)*scale for i in range(n)]
    for i in range(1,len(t)):
        t[i] = t[i-1] + t[i]
    return np.array(t)

def add_anchored_drift(n, top=1, bottom=-1):
    """Generate a numpy array of length 'n' whose values drift but stay within 

the range 'top' to 'bottom'."""
    
    t = np.zeros(n)
    delta = np.random.normal(loc=0, scale=0.35)
    for i in range(1,n):
        sign_ = 1 if t[i-1]>=0 else -1
        move_away_probability = 0.5 - sign_*t[i-1]/2
        scale = max(1/50, 0.7*move_away_probability)
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        distance = abs(np.random.normal(loc=0, scale=scale))
        move_away = 1 if np.random.binomial(n=1,p=move_away_probability) else 

-1
        delta = 0.9 * delta + (1-0.9) * sign_ * distance * move_away
        t[i] = t[i-1] + delta
        if t[i] > top or t[i] < bottom:
            t[i] = t[i-1]
    return t

def add_random_shifts(n):
    """Generate a numpy array of length 'n' whose values shift up and down 

randomly."""
    
    t = np.zeros(n)
    i=1
    while i < n:
        if np.random.binomial(n=1, p=0.005):
            duration = min((n-i), int(np.random.gamma(1.5,4)))
            direction = (1 if (t[i-1]<=0) else -1) * (1 if np.random.binomial(n

=1, p=0.8) else -1)
            height = np.random.gamma(3,0.7)
            for j in range(duration):
                t[i+j] = t[i-1] + height * j/duration * direction
            i+=duration

else:
            t[i] = t[i-1]
            i+=1
    return t

def add_compressor(n, height):
    """Generate a numpy array of length 'n' whose values simulate a compressor 

cycle.
    
    The array values move up and down cyclically.  The period of each cycle can 

change slightly over time,
    but the 'height' remains constant. 
    """
    
    baseline = max(np.random.gamma(6,1), 0.5)
    num_cycles = round(n/baseline*1.5)
    drift = add_anchored_drift(num_cycles) * baseline/10
    period = np.random.normal(288 / random.randint(1,3))
    cycle = add_sine_wave(n=num_cycles, period=period) * baseline/40
    intervals = [baseline+drift[i]+cycle[i] for i in range(num_cycles)]
    t = np.zeros(n)
    end_of_current_cycle = 0
    end_of_prev_cycle = 0
    next_cycle = 0
    for i in range(1, n):
        while i > end_of_current_cycle:
            end_of_prev_cycle = end_of_current_cycle
            end_of_current_cycle = end_of_current_cycle + intervals[next_cycle]
            next_cycle += 1
        halfway = end_of_prev_cycle + (end_of_current_cycle-end_of_prev_cycle)/

2
        if i <= halfway:
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            t[i] = height * (i - end_of_prev_cycle) / (halfway - 
end_of_prev_cycle)

        else: t[i] = height * (end_of_current_cycle - i) / 
(end_of_current_cycle - halfway)

    return t

def spawn_defrost(height, num_readings_up_average, num_readings_down_average):
    """Generate a numpy array whose values simulate the temperatures of a 

single defrost event."""
    
    num_readings_up = int(max(round(np.random.normal(loc=

num_readings_up_average, scale=num_readings_up_average/5)),1))
    num_readings_down = int(max(round(np.random.normal(loc=

num_readings_down_average, scale=num_readings_down_average/5)),1))
    t_up = [height/num_readings_up*i for i in range(1,num_readings_up+1)]
    t_down = [(height-height/num_readings_down*i) for i in range(1,

num_readings_down)]
    t = t_up+t_down
    return np.array(t)

def add_defrosts(n, height_baseline, anomalous=False, all_anomalous=True, 
end_in_defrost=False):
"""Generate a numpy array of length 'n' whose values simulate a defrost 
cycle.

    
    Each defrost event is simulated separately, which creates a small amount of 

variation between defrost events
    in the same array.
    Each defrost event's height and each interval between two defrost is 

determined by applying a small amount
    of random variation to a baseline value that remains constant throughout 

the array.
    A defrost event is called 'anomalous' when gaussian noise is added to its 

height and to the interval between
    it and the next defrost event.
    If anomalous is set to True, then setting all_anomalous to True makes all 

defrosts anomalous.
    If anomalous is set to True and all_anomalous is set to False, then only 

the second half of the defrosts 
    will be anomalous.
    
    Parameters:
    n (int): Number of time points
    anomalous (bool): If True, make at least some of the defrosts are anomalous 

(inconsistent in height and period).
    all_anomalous (bool): If True, make all defrosts anomalous, rather than 

just the second half.
    end_in_defrost (bool): If True, a defrost will be occurring during the last 

time point in the array.
    """
    
    t = np.empty(shape=(0))
    labels = []
    interval_baseline = max(np.random.gamma(3,22), 12)
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    anomaly_range = (0 if (not anomalous) else (n if all_anomalous else (int(n/
2))))

    num_readings_up_average = round(min(max(np.random.gamma(1,5),1), 
interval_baseline/4))

    num_readings_down_average = round(min(max(np.random.gamma(1,5),1), 
interval_baseline/4))

    if end_in_defrost:
        height = height_baseline + add_gaussian_noise(1, bottom=-

height_baseline/2, top=height_baseline*2, \
                                                      scale=(height_baseline/2 

if anomalous else 
height_baseline/5))

        defrost = spawn_defrost(height, num_readings_up_average, 
num_readings_down_average)

        cutoff_defrost = defrost[random.randint(0,(len(defrost)-1)):]
        t = np.append(t, cutoff_defrost)
        labels = labels + ([True]*len(cutoff_defrost))
        interval = int(interval_baseline + \
                       add_gaussian_noise(1, bottom=-interval_baseline, \
                                          scale=(interval_baseline/2 if 

anomalous else interval_baseline/
20)))

        t = np.append(t, np.zeros(interval))
        labels = labels + ([False]*interval)
else:

        cutoff_interval = random.randint(0,round(interval_baseline))
        t = np.append(t, np.zeros(cutoff_interval))
        labels = labels + ([False]*cutoff_interval)
    while len(t) < n:
        height_noise_scale = (height_baseline/2 if (len(t)<anomaly_range) else 

height_baseline/5)
        height = height_baseline + add_gaussian_noise(1, bottom=-

height_baseline/2, top=height_baseline*2, \
                                                      scale=height_noise_scale)
        defrost = spawn_defrost(height, num_readings_up_average, 

num_readings_down_average)
        t = np.append(t, defrost)
        labels = labels + ([True]*len(defrost))
        interval_noise_scale = (interval_baseline/2 if anomalous else 

interval_baseline/20)
        interval = int(interval_baseline + add_gaussian_noise(1, bottom=-

interval_baseline, scale=interval_noise_scale))
        t = np.append(t, np.zeros(interval))
        labels = labels + ([False]*interval)
    t = np.flip(t[0:n])
    labels = np.flip(labels[0:n])
    return t, labels, interval_baseline

def add_random_events(n):
    """Generate a numpy array of length 'n' whose values simulate random spikes 

in a time series.
    
    The random spikes can go either up or down, and their heights fluctuate 

more than defrost heights.
    """
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    num_events = int(abs(np.random.normal(loc=int(n/50), scale=int(n/50))))
    t = np.zeros(n)
    for i in range(num_events):
        height = np.random.gamma(1,1)
        num_readings_up = round(max(np.random.gamma(1.5,3),1))
        num_readings_down = round(max(np.random.gamma(1.5,3),1))
        defrost = spawn_defrost(height=height, num_readings_up=num_readings_up, 

num_readings_down=num_readings_down)
        event = [0]
        for up in range(num_readings_up):
            event = event + [event[up-1] + np.random.normal(loc=height/

num_readings_up, scale = height/num_readings_up)]
        for down in range(num_readings_down):
            event = event + [event[num_readings_up+down-1] + np.random.normal

(loc=height/num_readings_up, \
                                                                              

scale = height/
num_readings_up)]

        direction = (1 if np.random.binomial(n=1,p=0.5) else -1)
        event = event*direction
        location = random.randint(0,n-1-len(event))
        t[location:(location+len(event))] = event
    return np.array(t)

def add_fake_defrosts(n, height_baseline):
    """Generate a numpy array of length 'n' whose values simulate counterfeit 

defrosts in a time series.
    
    Each counterfeit defrost's height is determined by applying a small amount 

of random variation to a 
    baseline value, the 'height_baseline', which remains constant throughout 

the array.
    """
    
    num_defrosts = int(abs(np.random.normal(loc=int(n/200), scale=int(n/200))))
    t = np.zeros(n)
    for i in range(num_defrosts):
        height = np.random.normal(loc=height_baseline, scale=(height_baseline/5

))
        num_readings_up_average = round(max(np.random.gamma(1.5,2.5),1))
        num_readings_down_average = round(max(np.random.gamma(1.5,2.5),1))
        defrost = spawn_defrost(height, num_readings_up_average, 

num_readings_down_average)
        location = random.randint(0,n-1-len(defrost))
        t[location:(location+len(defrost))] = defrost
    return np.array(t)

def add_fake_defrost_to_end(n, height_baseline):
    """Generate a numpy array of length 'n' that ends in a defrost.  All other 

values are zero"""
    
    t = np.zeros(n)
    height = np.random.normal(loc=height_baseline, scale=(height_baseline/5))
    num_readings_up_average = round(max(np.random.gamma(1.5,2.5),1))
    num_readings_down_average = round(max(np.random.gamma(1.5,2.5),1))
    defrost = spawn_defrost(height, num_readings_up_average, 
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num_readings_down_average)
    cutoff = random.randint(1,len(defrost))
    t[-cutoff:] = defrost[:cutoff]
    return t

def generate_simulation(n, defrosts=None, compressor=None, chaotic_drift=None, 
gaussian_noise=None, \

                        random_events=None, fake_defrosts=None, random_shifts=
None, anomalous=False, all_anomalous=True, \

                        end_in_defrost=False, end_in_fake_defrost=False, 
chaotic_drift_scale=0.2, \

                        noise_scale=0.5, verbose=False):
    """Simulate a time series of refrigeration temperature readings.
    
    Simulate a refrigeration temperature time series by built by adding 

together component time series, each of 
    which are simulated separately.  Component time series include a compressor 

cycle, a defrost cycle, drift, 
    gaussian noise, random events, counterfeit defrosts, and random shifts.  

Each of these components is 
    associated with a boolean parameter that controls whether or not the 

component is added to the time series.
    If any of these parameters are left as None (their default), then that 

component will have some random chance 
    of being included.
    
    Parameters:
    n (int): Length of the time series.
    defrosts (bool or int): If True or 1, add a defrost cycle to the time 

series.
    compressor (bool or int): If True or 1, add a compressor cycle to the time 

series.
    chaotic_drift (bool or int): If True or 1, add drift to the time series.
    gaussian_noise (bool or int): If True or 1, add gaussian noise to the time 

series.
    random_events (bool or int): If True or 1, add random spikes up and down to 

the time series.
    fake_defrosts (bool or int): If True or 1, add counterfeit defrosts to the 

time series.
    random_shifts (bool or int): If True or 1, add random shifts up and down to 

the time series.
    anomalous (bool): If True, make at least some of the defrosts are anomalous 

(inconsistent in height and period).
    all_anomalous (bool): If True, make all defrosts anomalous, rather than 

just the second half.
    end_in_defrost (bool): If True, a defrost will be occurring during the last 

time point in the array.
    end_in_fake_defrost (bool): If True, a counterfeit defrost will be 

occurring during the last time point in the array.
    chaotic_drift_scale (float): The variance of the distribution from which 

the drift step sizes are sampled.
    noise_scale (float): The variance of the Gaussian distribution from which 

the noise is sampled.
    verbose (bool): If True, print the components that were added to the time 

series.
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    Returns:
    simulated_run (numpy array): Simulated time series of temperature readings.
    labels (numpy array): Simulated time series of defrost labels.
    interval_baseline (float): Defrost periods' baseline value before random 

variance is added.
    """
    
    if (end_in_defrost and end_in_fake_defrost):
        raise ValueError('Cannot end in both a fake and real defrost')
    if defrosts == None:
        defrosts = np.random.binomial(n=1,p=0.9)
    if compressor == None:
        compressor = np.random.binomial(n=1,p=0.5)
    if chaotic_drift == None:
        chaotic_drift = np.random.binomial(n=1,p=0.5)
    if gaussian_noise == None:
        gaussian_noise = np.random.binomial(n=1,p=0.5)
    if random_events == None:
        gaussian_noise = np.random.binomial(n=1,p=0.5)
    if ((fake_defrosts == None) and defrosts):
        fake_defrosts = np.random.binomial(n=1,p=0.5)
    if random_shifts == None:
        random_shifts = np.random.binomial(n=1,p=0.5)

simulated_run = add_anchored_drift(n)
    if chaotic_drift:
        simulated_run = simulated_run + add_chaotic_drift(n, scale=

chaotic_drift_scale)
    if compressor:
        comp_cycle_height = max(np.random.gamma(1,2), 0.25)
    if gaussian_noise:
        random_noise_scale = abs(np.random.normal(loc=noise_scale, scale=

noise_scale/2))
        if verbose: print('random_noise_scale is ', random_noise_scale)
        simulated_run = simulated_run + add_gaussian_noise(n, scale=

random_noise_scale)
    if random_events:
        simulated_run = simulated_run + add_random_events(n)
    if random_shifts:
        simulated_run = simulated_run + add_random_shifts(n)
    
    height_baseline = 1.5 + np.random.gamma(1.5,3)
    if compressor: height_baseline = max(height_baseline, 2*comp_cycle_height)
    if gaussian_noise: height_baseline = max(height_baseline, 5*

random_noise_scale)
    interval_baseline = 0
    if defrosts:
        d, labels, interval_baseline = add_defrosts(n, height_baseline=

height_baseline, anomalous=anomalous, \
                                                    all_anomalous=all_anomalous

, end_in_defrost=
end_in_defrost)

        simulated_run = simulated_run + d
        if compressor:
            if np.random.binomial(n=1,p=0.5):
                simulated_run = simulated_run + add_compressor(n, height=
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comp_cycle_height)*np.invert(labels)
            else: simulated_run = simulated_run + add_compressor(n, height=

comp_cycle_height)
    else:
        labels = np.array([0]*n)
        if compressor: simulated_run = simulated_run + add_compressor(n, height

=comp_cycle_height)
    if fake_defrosts:
        fd = add_fake_defrosts(n=n, height_baseline=height_baseline)
        simulated_run = simulated_run + fd
    if end_in_fake_defrost:
        fd = add_fake_defrost_to_end(n=n, height_baseline=height_baseline)
        simulated_run = simulated_run + fd
    if verbose:
        print('chaotic_drift={}, compressor={}, gaussian_noise={}, 

fake_defrosts={},\
        random_shifts={}'.format(chaotic_drift, compressor, gaussian_noise, 

fake_defrosts, random_shifts))
    return simulated_run, labels, interval_baseline

def simulate_refrigerator_data(num_simulations, time_series_len, x0y0_ratio=0.5
, x1y1_ratio=0.4, x1y0_ratio=0.1):

  """Generate an entire dataset of simulated refrigeration temperature time 
series.

  Parameters:
  num_simulations (int): The number of simulated time series in the dataset.
  time_series_len (int): The length of each simulated time series.
  x0y0_ratio (float): The portion of simulated time series that will not end in 

a defrost or a counterfeit defrost.
  x1y1_ratio (float): The portion of simulated time series that will end in a 

defrost.
  x1y0_ratio (float): The portion of simulated time series that will end in a 

counterfeit defrost.
  
  Returns:
  X (numpy array): An array of simulated refrigeration temperature time series.
  Y (numpy array): An array of defrost label time series.
  P (numpy array): An array of the baseline defrost interval values used to 

build each time series.
  """
  
  num_x0y0 = int(num_simulations*x0y0_ratio)
  num_x1y1 = int(num_simulations*x1y1_ratio)
  num_x1y0 = int(num_simulations*x1y0_ratio)

  X=np.zeros(((num_x0y0+num_x1y1+num_x1y0), time_series_len))
  Y=np.zeros(((num_x0y0+num_x1y1+num_x1y0), time_series_len))
  p=np.zeros((num_x0y0+num_x1y1+num_x1y0))
  
  for i in range(num_x0y0):
    X[i,:], Y[i,:], p[i] = generate_simulation(n=time_series_len, 

end_in_defrost=False, end_in_fake_defrost=False)
  for i in range(num_x1y1):
    ind = num_x0y0+i
    X[(ind),:],Y[(ind),:],p[ind] = generate_simulation(n=time_series_len, 
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end_in_defrost=True, end_in_fake_defrost=False)
  for i in range(num_x1y0):
    ind = num_x0y0+num_x1y1+i
    X[(ind),:],Y[(ind),:],p[ind] = generate_simulation(n=time_series_len, 

end_in_defrost=False, end_in_fake_defrost=True)
  P = np.reshape(np.array(p), (len(p),1))
  Z = np.concatenate((X,Y,P), axis=1)
  np.random.shuffle(Z)
  X = Z[:,0:X.shape[1]]
  Y = Z[:,X.shape[1]:-1]
  P = Z[:,-1]
  del Z
  return (X,Y,P)

def predict_consecutive_readings(readings, look_back, model):
    """Classify consecutive time series values using the sliding window method.
    
    Parameters:
    readings (numpy array): The input time series.
    look_back(int): The size of the sliding window
    model (tensorflow.keras.Model): The model that will make the 

classifications.
    
    Returns:
    A numpy array of classification values.
    """
    
    input = []
    num_predictions = len(readings) - look_back
    test_predictions = [-1]*num_predictions
    for i in range(num_predictions):
        x = readings[i:i+look_back]
        x = (x-np.mean(x))/np.std(x)
        input.append(x)
    input = np.array(input)
    input = np.reshape(input, (input.shape[0],input.shape[1],1))
    return model.predict_classes(input)
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import numpy as np

def generate_binary_run(len_run, noise=False, period=None, mean_period=None, 
period_range=None, start=None,\

                        force_end_in_1=False, force_end_in_0=False, 
force_end_in_fake_1=False):

  """Generate a binary time series with a seasonal component for a toy dataset.
  
  If 'period' is 'None', then the seasonal component's period will be set to 

'period'.
  If 'period' is 'None' and 'mean_period' is not 'None', then the seasonal 

component period will be sampled 
  from a Gaussian distribution centered at 'mean_period'.  
  If 'period' is 'None', 'mean_period' is 'None', and 'period_range' is not 

'None', then the seasonal 
  component period will be sampled from a uniform distribution with a min of 

'period_range[0]' and a max of
  'period_range[1]'.
  If 'period', 'mean_period', and 'period_range' are all 'None', then the 

seasonal component period will be 
  sampled from a Gaussian distribution centered at 'len_run'/10.
  
  'force_end_in_1', 'force_end_in_0', and 'force_end_in_fake_1' are used to 

control the characteristics of
  the last time point in the time series.  See parameter descriptions below.
  Between 'force_end_in_1', 'force_end_in_0', and 'force_end_in_fake_1', only 

one can be set to True.
  If all three parameters are set to 'False', then the placement of the 

seasonal component will be random.
  
  Parameters:
  len_run (positive int): The desired length of the time series.
  noise (bool): Whether to add noide to the time series.
  period (positive int): The desired period of the seasonal component.
  mean_period (int): Center of Guassian distribution from which the period is 

sampled.
  period_range (tuple or list): Min and max values of a uniform distribution 

from which the period is sampled.
  start (int): The time point at which the first 1 of the seasonal component 

occurs.
  force_end_in_1 (bool): If True, force the last of the seasonally occurring 1s 

to fall on the last time point.
  force_end_in_0 (bool): If True, prevent the last of the seasonally occurring 

1s from falling on the last time point.
  force_end_in_fake_1 (bool): If True, prevent the last of the seasonally 

occurring 1s from falling on the last time 
                              point, but then set the last time to the value 1 

anyways.

  Returns:
  X (numpy array): Time series values
  Y (numpy array): Seasonal component values
  period (int): Time series period
  """
  if start and (force_end_in_1 or force_end_in_0):
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    raise ValueError('Cannot assign a start value if either force_end_in_1 or 
force_end_in_0 are True.')

  if (force_end_in_1 and force_end_in_0):
    raise ValueError('force_end_in_1 and force_end_in_0 cannot both be True.')
  if (force_end_in_fake_1 and force_end_in_0) or (force_end_in_fake_1 and 

force_end_in_1):
    raise ValueError('force_end_in_fake_1 and force_end_in_0 or force_end_in_1 

cannot both be True.')
  if (force_end_in_fake_1 and start==0):
    raise ValueError('force_end_in_fake_1 and start=0 cannot both be True.')
  X = np.zeros(len_run)
  Y = np.zeros(len_run).astype(int)
  if period == None:
    if mean_period:
      period = int(max(6,(np.random.normal(loc=mean_period, scale=mean_period/3

))))
    elif period_range:
      period = int(np.random.uniform(period_range[0], period_range[1]))
    else:
      period = int(max(6,(np.random.normal(loc=int(len_run/10), scale=int

(len_run/10/3)))))
  #If start==None, assign a value to start
  if force_end_in_1:
    start = 0
elif (force_end_in_0 or force_end_in_fake_1) and (start == None):
    start = int(np.random.uniform(1,period))
  elif start == None:
    start = int(np.random.uniform(0,period)) 

  if force_end_in_fake_1:
    noise=True
    X[0] = 1
  
  if noise:
    for i in range(len_run):
      if np.random.binomial(n=1,p=(1/period)):
        X[i]=1

  current = start
  while current < len_run:
    X[current] = 1
    Y[current] = 1
    current += period
  
  if (force_end_in_1 or force_end_in_0 or force_end_in_fake_1):
    X = np.flip(X)
    Y = np.flip(Y)
  
  return X,Y,period

def generate_binary_training_data(len_run, noise=True, period=None, mean_period
=None, period_range=None, start=None, num_x0y0=0, num_x1y1=0, num_x1y0=0, 
num_unspecified_end=0):

  """Generate a toy dataset containing binary time series with seasonal 
components.
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  If 'period' is 'None', then all seasonal component periods will be set to 

'period'.
  If 'period' is 'None' and 'mean_period' is not 'None', then the seasonal 

component periods will be sampled 
  from a Gaussian distribution centered at 'mean_period'.  
  If 'period' is 'None', 'mean_period' is 'None', and 'period_range' is not 

'None', then the seasonal 
  component periods will be sampled from a uniform distribution with a min of 

'period_range[0]' and a max of
  'period_range[1]'.
  If 'period', 'mean_period', and 'period_range' are all 'None', then the 

seasonal component periods will be 
  sampled from a Gaussian distribution centered at 'len_run'/10.
  
  Parameters:
  len_run (positive int): The desired length of each time series.
  noise (bool): Whether to add noide to each time series.
  period (positive int): The desired period of every seasonal component.
  mean_period (int): Center of Guassian distribution from which the periods are 

sampled.
  period_range (tuple or list): Min and max values of a uniform distribution 

from which the periods are sampled.
  start (int): The time point at which the first 1 of the seasonal components 

occurs within each time series.
  num_x0y0 (int): The number of time series whose last seasonally occurring 1 

falls on the last time point.
  num_x1y1 (int): The number of time series whose last seasonally occurring 1 

doesn't fall on the last time point.
  num_x1y0 (int): The number of time series whose last seasonally occurring 1 

doesn't fall on the last time point,
                  but whose last time is guaranteed to be set to the value 1 

anyways.
  num_unspecified_end (int): The number of time series whose seasonal 

components can fall anywhere.

  Returns:
  X (numpy array): 2D array of time series values
  Y (numpy array): 2D array of seasonal component values
  P (numpy array): 1D array of time series periods
  """
  
  X=np.zeros(((num_x0y0+num_x1y1+num_x1y0+num_unspecified_end), len_run))
  Y=np.zeros(((num_x0y0+num_x1y1+num_x1y0+num_unspecified_end), len_run))
  p=np.zeros((num_x0y0+num_x1y1+num_x1y0+num_unspecified_end))
  for i in range(num_x0y0):
    X[i,:], Y[i,:], p[i] = generate_binary_run(len_run=len_run, noise=noise, 

period=period, mean_period=mean_period, period_range=None, start=start, 
force_end_in_1=False, force_end_in_0=True, force_end_in_fake_1=False)

  for i in range(num_x1y1):
    ind = num_x0y0+i
    X[(ind),:],Y[(ind),:],p[ind] = generate_binary_run(len_run=len_run, noise=

noise, period=period, mean_period=mean_period, period_range=None, start
=start, force_end_in_1=True, force_end_in_0=False, force_end_in_fake_1=
False)

  for i in range(num_x1y0):
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    ind = num_x0y0+num_x1y1+i
    X[(ind),:],Y[(ind),:],p[ind] = generate_binary_run(len_run=len_run, noise=

noise, period=period, mean_period=mean_period, period_range=None, start
=start, force_end_in_1=False, force_end_in_0=False, force_end_in_fake_1
=True)

  for i in range(num_unspecified_end):
    ind = num_x0y0+num_x1y1+num_x1y0+i
    X[(ind),:],Y[(ind),:],p[ind] = generate_binary_run(len_run=len_run, noise=

noise, period=period, mean_period=mean_period, period_range=None, start
=start, force_end_in_1=False, force_end_in_0=False, force_end_in_fake_1
=False)

  P = np.reshape(np.array(p), (len(p),1))
  Z = np.concatenate((X,Y,P), axis=1)
  np.random.shuffle(Z)
  X = Z[:,0:X.shape[1]]
  Y = Z[:,X.shape[1]:-1]
  P = Z[:,-1]
  del Z
  return (X,Y,P)
  
def predict_consecutive_binary_readings(readings, look_back, model):
    """Generate an array of forecasted values using the sliding window method
    
    Parameters:
    readings (array): The input time series
    look_back(int): The size of the sliding window
    model (tensorflow.keras.Model): The model that will make forecasts
    """
    
    input = []
    for i in range(len(readings)-look_back):
        x = readings[i:i+look_back]
        input.append(x)
    input = np.array(input)
    input = np.reshape(input, (input.shape[0],input.shape[1],1))
    return model.predict_classes(input)


