
Epidemiological and Economic Evaluation of 
Disease Burden in the United States: Data, Models, 
and Applications

Citation
Li, Yunfei. 2020. Epidemiological and Economic Evaluation of Disease Burden in the United 
States: Data, Models, and Applications. Doctoral dissertation, Harvard T.H. Chan School of Public 
Health.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365692

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365692
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Epidemiological%20and%20Economic%20Evaluation%20of%20Disease%20Burden%20%20in%20the%20United%20States:%20Data,%20Models,%20and%20Applications&community=1/4454687&collection=1/13398961&owningCollection1/13398961&harvardAuthors=a3ac5f120822aa5ddd9e27bc0a3316b6&departmentGlobal%20Health%20and%20Population
https://dash.harvard.edu/pages/accessibility


 
 

 
 

EPIDEMIOLOGICAL AND ECONOMIC EVALUATION OF DISEASE BURDEN  

IN THE UNITED STATES: DATA, MODELS, AND APPLICATIONS 

 

 

 

 

 

 

 

Yunfei LI 

 

 

 

 

A Dissertation Submitted to the Faculty of 

The Harvard T.H. Chan School of Public Health 

in Partial Fulfilment of the Requirements 

For the Degree of Doctor of Science 

In the Department of Global Health and Population 

Harvard University 

Boston, Massachusetts 

November 2020 

 

 

 

 

 

 

 

 



 

ii 
 

Dissertation Advisor: Dr. Joshua A Salomon                                                                         Yunfei LI 

Epidemiological and Economic Evaluation of Disease Burden in the United 
States: Data, Models, and Applications 

Abstract 

This dissertation is comprised of three studies that evaluate disease burden in the United States, for 

specific chronic and infectious diseases. These studies use mathematical modelling to synthesize 

empirical evidence and estimate both epidemiological and economic outcomes. In the first paper, I 

investigate trends in the prevalence and incidence of diabetes and diabetes diagnosis among adults 

ages 20 years and older in the United States, over the period 2000-2016. Using an age-stratified 

Markov model of undiagnosed and diagnosed diabetes, I examine trends in true incidence of diabetes 

and the diagnosis rates. The model is estimated using repeated cross-sectional survey data on the 

prevalence of undiagnosed and diagnosed diabetes from the National Health and Examination Survey 

(NHANES) 1988-1994 and 1999-2016. In the second paper, I develop a novel model to assess the 10-

year risk of fatal-plus-non-fatal cardiovascular disease (CVD) for patients with type 2 diabetes mellitus 

in the United States. This model is constructed as a sex-and-cohort stratified Cox proportional-hazards 

model using pooled data on fatal-plus-non-fatal CVD outcomes from 5 prospective cohorts. The 

resulting risk prediction equation provides more accurate predictions of total CVD risk compared to 

current risk scores and can to be used in future comparative effectiveness and cost-effectiveness 

analyses to simulate outcomes of primary intervention policies targeted toward diabetic populations. 

In the third paper, I investigate disparities in health and economic outcomes associated with N. 

gonorrhoeae infection in the US in 2015. With probability tree models, I quantify the lifetime quality-

adjusted life-years and costs associated with gonorrhea and its sequelae in the US and examine 

disparities in burden across race/ethnicity. These three studies report findings of substantive 

importance within each disease area. They also illustrate the utility of mathematical models for 

synthesizing data, estimating outcomes that would be difficult or impossible to measure empirically, 

and answering questions directly relevant to the goals of planning and prioritizing prevention policies. 
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Chapter 1. Introduction 

Estimates of the health and economic implications of disease are needed to inform policymaking, 

evaluate health system performance, and quantify health disparities. Disease burden estimates aim 

to capture the impact of diseases, injuries and risk factors in a given population.1 Disease burden is 

measured using a variety of indicators that can describe the impact of disease from its early stages to 

the final clinical manifestation and health consequences: sickness, recovery, disability, or death. 

Epidemiological measures of disease burden include mortality, morbidity, and trends in these 

indicators over time. To facilitate comparison of the burden of different diseases and to consider both 

mortality and morbidity in a single measure, several summary health measures have been devised, 

including quality-adjusted life-years (QALYs)2 and disability-adjusted life-years (DALYs).3–5 In addition 

to measures of the population health impact of disease, assessing the economic consequences of 

health conditions provides complementary information for policy-making. Economic evaluation 

focuses on the direct and indirect costs of diseases for individuals, households, healthcare systems, 

and societies.6  

Both epidemiological and economic evaluation of disease impact at population-level rely on 

estimating measures of disease frequency such as prevalence or incidence. In addition, a 

comprehensive assessment of disease burden requires estimation of prevalence and/or incidence of 

health consequences and complications secondary to the disease. For comparative analysis across 

diseases, mapping from occurrence of disease-specific events into generic measures can be 

accomplished using additional information such as duration of disability, magnitude of health losses 

associated with different disabilities, and relevant costs.  

Information about the prevalence or incidence of disease typically provide the starting point for 

measuring disease burden. Prevalence and incidence of disease in the United States are commonly 

estimated from nationally-representative health surveys, surveillance and disease registration 

systems, administrative databases or prospective epidemiological studies. While direct analysis of 
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these data sources can provide policy makers and researchers an intuitive and timely description of 

epidemiological patterns of disease, direct estimation from these sources will often lead to biased 

measures. For example, there have been several studies that used national surveillance data to 

estimate the prevalence and incidence of diabetes from 1980 to 2017.7–11 However, overall diabetes 

prevalence was underestimated by studies based on self-reported diagnosis in the National Health 

Interview Survey (NHIS) or Behavioral Risk Factor Surveillance (BRFSS), as almost a quarter of diabetes 

cases remain undiagnosed.12 The incidence of diagnosed diabetes, estimated using the NHIS or the 

National Health and Nutrition Examination Surveys (NHANES), will be a biased estimate of the true 

incidence of diabetes without considering the effects of changes in diabetes diagnosis rates.13 Several 

cohort studies have attempted to estimate diabetes incidence, but these studies also have important 

limitations.14,15 Estimation of current incidence is challenging in cohort studies that rely on long 

duration of follow-up and therefore track incidence over an extended period. Incidence estimates 

from cohort studies using claims data may lack generalizability to the general population, because 

study participants enrolled in commercial insurance programs will not be representative of the 

national populations.  

Prevalence and incidence of disease complications and sequelae are important components of a 

comprehensive disease burden evaluation, especially when the disease complications and sequelae 

are long-term chronic conditions that may have significant health effects and economic costs. For 

example, cardiovascular disease (CVD) causes 70% of deaths among patients with diabetes in the 

United States, and contributes substantially to the total health and economic burden of diabetes.16,17 

The prevalence and incidence of CVD among diabetic populations can be directly observed using 

disease registration data linked with hospital records or vital registration. However, national diabetes 

registries (NDRs) are only available in limited number of developed countries (Denmark, Sweden, 

Australia) worldwide. In the absence of such data in the US, one can indirectly estimate CVD risk 

among diabetics by applying a CVD risk prediction equation to data from the most recent nationally 

representative datasets such as NHANES. However, current CVD risk prediction equations for diabetic 
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populations have limitations. CVD risk prediction equations developed in the general population 

including diabetes as a predictor, such as the 2013 ACC/AHA Pooled Cohort Risk Equation18, tend to 

underestimate CVD risk for diabetic populations, due to differences in CVD incidence between the 

diabetic and general populations.19–21 Diabetes-specific prediction models, such as the United 

Kingdom Prospective Diabetes Study Outcomes Model 2 (UKPDS OM2)22 and the Risk Equations for 

Complications Of type 2 Diabetes (RECODe)23, were developed and validated in populations of people 

with diabetes outside of the United States or in clinical trial populations, and may lack generalizability 

to populations in the United States.  

Measuring long-term health and economic burden associated with a defined disease requires an 

overarching framework to aggregate measures of disease occurrence, measures of downstream 

health consequences, and summary measures such as QALYs lost and total related costs. QALYs lost 

and costs of disease and sequelae require estimation of disutilities, durations, and costs associated 

various health outcomes that are relevant to the natural history of disease, and interventions and 

policies relating to the disease. In the context of gonorrhea and other sexually transmitted diseases 

(STDs) in racial and ethnic minorities, disparities have been measured using incidence and prevalence 

in several previous studies.24–27 However, incidence and prevalence of gonorrhea only represent 

disease frequency without assessing downstream complications secondary to infection. Measuring 

disparities in gonorrhea-associated burden requires assessment of both short- and long-term health 

outcomes and costs relating to the sequelae of gonococcal infections.  

In this dissertation, I report three studies that employ mathematical modeling to evaluate the 

epidemiological and economic disease burden of specific health conditions in the United States. In 

each study, I develop models that incorporate observed data and other relevant evidence specifically 

in the disease area of diabetes and diabetic cardiovascular complications, and in the disease area of 

gonorrhea. The overall goal is to address some of the challenges in estimation of disease burden 

described above, and to answer the following three questions: 
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I. How has the epidemiological burden of diabetes changed over recent decades in the United 

States? 

II. What is the 10-year risk of cardiovascular disease (CVD) for patients with type 2 diabetes in 

the United States? What is the epidemiological burden of CVD among diabetic populations in 

recent years in the United States? 

III. What is the health and economic burden of gonorrhea, and related disparities, in recent years 

in the United States? 

In the second chapter of this dissertation, “Dynamic Modeling of Prevalence and Incidence Trends for 

Diabetes and Diabetes Diagnosis among Adults Aged 20 Years or Older, United States, 2000-2016”, I 

examine how the epidemiological burden of diabetes in the United States has changed over recent 

decades. To do so, I develop a dynamic mathematical model that simulates progression of individuals 

from no diabetes, to undiagnosed diabetes, to diagnosed diabetes. This model allows the estimation 

of incidence and diagnosis rates from cross-sectional data. I fit this model using repeated cross-

sectional survey data on the prevalence of undiagnosed and diagnosed diabetes from the National 

Health and Examination Survey (NHANES) 1988-1994 and 1999-2016. Using the fitted model, I 

estimate trends in the incidence of diabetes and diagnosis rates, both of which determine trends in 

incidence of diagnosed diabetes. Overall, I estimate a 17-year period of decreasing prevalence of 

undiagnosed diabetes and increasing prevalence of diagnosed and total diabetes, and decreasing 

incidence of diabetes, decreasing rates of diabetes diagnosis, and decreasing incidence of diagnosed 

diabetes over the same period.  

In the third chapter, “Risk score to predict cardiovascular disease (CVD) risk for patients with type 2 

diabetes mellitus (T2DM) in the United States: a pooled analysis of prospective cohorts”, I develop a 

novel CVD risk prediction model specifically for populations with T2DM in the US, and compare the 

performance of this model to published CVD risk scores that can be applied to diabetic patients. The 

model is constructed as a multivariable risk factor model estimated using pooled data on fatal-plus-
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non-fatal CVD outcomes from 5 prospective cohorts. I find that this model predicts an accurate 10-

year fatal-plus-non-fatal CVD risk for patients with T2DM in the US, with good discrimination and 

calibration performance. This performance is superior to the 2013 ACC/AHA Pooled Cohort Risk 

Equation, which underestimates 10-year atherosclerotic CVD risk in diabetic populations. The model 

developed in this study can be used to quantify total diabetes-specific CVD burden in the US over the 

next decade, and to simulate health outcomes for future studies that evaluate the effectiveness and 

cost-effectiveness of primary prevention options for diabetic patients.  

In the fourth chapter, “Disparities in health and economic outcomes associated with N. gonorrhoeae 

infection in the United States: costs and quality-adjusted life-years lost in 2015”, I evaluate the health 

and economic burden of gonorrhea and assess disparities in this burden across race/ethnicity. To 

implement this analysis, I develop probability tree models that capture clinical outcomes of gonorrhea 

and sequelae. These models allow quantification of both short- and long-term consequences and costs 

of gonococcal infection and sequelae, and synthesize information on gonorrhea and sequelae from 

different sources into a consistent framework that allows an integrated analysis of disparities in 

gonorrhea disease burden. I use these models to estimate attributable disease burden in terms of the 

discounted lifetime costs and quality-adjusted life-years (QALYs) lost due to incident infections 

acquired during 2015. I report population-level disease burden, disaggregated by sex, age, 

race/ethnicity, and for men who have sex with men (MSM). This analysis shows the highest absolute 

burden of both QALYs and costs to be in Non-Hispanic Black women, and the highest per-capita burden 

to be in MSM and American Indian/Alaska Native women.  In the final chapter of this dissertation I 

provide a synthesis of key themes across the three studies.  

In summary, this dissertation uses mathematical models to evaluate the epidemiological and 

economic burden of three different diseases in the United States. These results illustrate the use of 

mathematical modelling to synthesize observed data to infer epidemiological trends that are not 

always directly observable, to quantify the short-term and long-term health outcomes associated with 
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disease and complications, and to measure disparities in the health and economic burden of disease 

across population subgroups. 
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Abstract 

Background 

Although the prevalence and incidence of diagnosed diabetes are thought to have decreased in the 

United States after 2008, there is a lack of population-based estimates describing national trends in 

the prevalence of undiagnosed and all diabetes, and trends in the incidence of diabetes and rates of 

diabetes diagnosis.  

Methods 

We developed an age-stratified Markov model of undiagnosed and diagnosed diabetes in the US adult 

population. In this model, smooth functions were used to represent year- and age-specific incidence 

of diabetes and rates of diabetes diagnosis. Using Bayesian methods, we calibrated this model 

separately for men and women, using nationally representative data on the prevalence of 

undiagnosed and diagnosed diabetes from the National Health and Nutrition Examination Survey 

(NHANES III and Continuous NHANES 1999-2016). We estimated the prevalence of all, undiagnosed, 

and diagnosed diabetes, as well as the incidence of diabetes and diagnosed diabetes over the period 

2000-2016. Prevalence and incidence trends were summarized as the annual percentage change (APC).  

Results  

Overall, the age-standardized prevalence of all diabetes per 100 adults was estimated to increase from 

10.4 (95% uncertainty interval, 8.9 to 12.0) in 2000 to 12.0 (10.3 to 14.1) in 2016. Over the same period, 

the age-standardized prevalence of diagnosed diabetes per 100 adults increased from 6.8 (5.7 to 8.0) 

to 8.9 (7.5 to 10.5), and the age-standardized prevalence of undiagnosed diabetes per 100 adults 

decreased from 3.6 (2.7 to 4.7) to 3.2 (2.0 to 4.7). For diabetes-free adults, the age-standardized 

incidence of diabetes per 1,000 person-years decreased from 7.5 (6.6 to 8.5) in 2000 to 6.9 (4.3 to 

10.7) in 2016. For adults with undiagnosed diabetes, the age-standardized rate of diabetes diagnosis 

per 1,000 person-years decreased from 168 (142 to 201) to 144 (98 to 208) during 2000-2016. Among 
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adults without diagnosed diabetes, the age-standardized incidence of diagnosed diabetes per 1,000 

person-years decreased from 6.2 (5.5 to 6.9) to 5.7 (4.4 to 7.4) during 2000-2016. Trends within 

individual age categories were generally similar to these age-standardized results. However, the 

prevalence of undiagnosed diabetes and incidence of diabetes among men and women ages 20-49 

years increased over 2000-2016. The age-standardized incidence of diagnosed diabetes in men ages 

65 years and older increased with an APC of 1.5% (-2.2% to 5.2%) during 2000-2016. 

Conclusions 

During 2000-2016, incidence of diabetes, rates of diabetes diagnosis, and incidence of diagnosed 

diabetes decreased in the US adult population. Continuing diabetes prevention efforts, monitoring 

and screening are needed to further reduce diabetes incidence and diabetes complications. 
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Background  

Diabetes is a leading cause of disease burden in the United States.1,2 Between 1990 and 2016, diabetes 

rose from the sixth leading cause of disability-adjusted life-years (DALYs) to the fourth, with an 

estimated 66 thousand deaths, 2.5 million years lived with disability (YLDs) and 3.8 million DALYs 

attributable to diabetes in the U.S. in 2016.3 Estimated economic costs due to diabetes increased by 

26% from 2012 to 2017,4 reaching $327 billion, including $237 billion in direct medical costs and $90 

billion in reduced productivity.4,5 Systematic analyses of patterns and trends in diabetes are needed 

by policymakers to assess population health needs and to plan and evaluate different intervention 

strategies.  

There have been several studies that used national surveillance data to describe the prevalence and 

incidence of diabetes from 1980 to 2017.6–11 Some studies have reported a 20-year increase in 

prevalence of diagnosed diabetes nationally between the 1990s and the mid-2000s, followed by a 

plateau through 2017.6,8 However, studies based on self-reported diagnosis in the National Health 

Interview Survey (NHIS)6,8 or Behavioral Risk Factor Surveillance (BRFSS)12 will underestimate overall 

diabetes prevalence, as undiagnosed diabetes accounted for an estimated 24% of all diabetes in 

2017.13 Prevalence of laboratory-confirmed diabetes, including undiagnosed cases, has been 

measured in the National Health and Nutrition Examination Surveys (NHANES).7,11 In addition to 

prevalence, studies have also examined trends in the incidence of diagnosed diabetes,6,8 which is 

determined by both trends in true incidence and trends in diagnosis rates.10,14 Disentangling these two 

drivers of trends in incident diagnosed diabetes is challenging without directly measured, laboratory-

confirmed diagnosis data that allows separating diagnosed and undiagnosed diabetes.  

To overcome these limitations and provide contemporary, unbiased estimates of the epidemiological 

trends of diabetes incidence and diagnosis, we constructed a dynamic model that incorporated both 

undiagnosed and diagnosed diabetes. We estimated this model using nationally representative cross-

sectional data, including information not only on self-reported diabetes diagnoses but also on 
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laboratory-measured glucose levels. Using the fitted model, we examined trends in rates of 

prevalence of all, undiagnosed and diagnosed diabetes, and in rates of incidence of diabetes, 

diagnosed diabetes, and diabetes diagnosis over the period 2000-2016.  

Methods 

Analytic overview 

We developed a Markov model of undiagnosed and diagnosed diabetes in the U.S. population ages 

20 years and older (Figure 2.1). Hazard rates for mortality among people without diabetes were 

estimated from the general all-cause mortality data reported in United States life tables, with 

adjustment for diabetes-related mortality using the Second National Health and Nutrition Examination 

Survey Mortality Study (SNHANES-MS).15,16 Annual, age-specific transition rates from disease free to 

undiagnosed and from undiagnosed to diagnosed diabetes were specified using B-spline surfaces, 

which are flexible continuous functions in two dimensions (age and time), and separate functions were 

estimated for men and women. We calibrated this model to nationally representative NHANES III and 

Continuous NHANES data describing the prevalence of undiagnosed and diagnosed diabetes. A 

Bayesian approach was used to estimate model parameters, operationalized using incremental 

mixture importance sampling (IMIS).17 We examined model fits using both visual inspection and 

posterior prediction interval checks.18 Prevalence and incidence trends were summarized as the 

annual percentage change (APC) between 2000 and 2016. Analyses were undertaken in R (R-3.5.2).   
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Figure 2.1. Disease states in the Markov model of undiagnosed and diagnosed diabetes.* 

*Details on the states in the Markov model, with corresponding states transition matrix for individuals at single 
year of age (i) and single calendar year (t) are reported in Supplementary Material Figure S2.1.   

 

Data sources 

We extracted nationally-representative cross-sectional data from the NHANES III (1988-1994) and 

Continuous NHANES (1999-2016), describing the prevalence of diagnosed and undiagnosed diabetes 

among the U.S. population ages 20 years and older. Conducted by the National Center for Health 

Statistics, NHANES is a national health and nutrition survey that uses a stratified, multistage cluster 

sample design to be representative of the U.S. civilian, noninstitutionalized population.19,20 NHANES is 

unique in that it combines personal interviews with standardized physical examinations and 

laboratory tests.19,20 For NHANES III, the overall responses rate was 86% in the interviewed sample 

and 78% in the examined sample. For Continuous NHANES 2015-2016 this decreased to 65% in the 

interviewed sample and 62% in the examined sample. Nonresponse bias analyses have suggested that 

the declining response rates did not produce substantial bias in the final survey estimates.21,22  

We used data from the interview questionnaire and laboratory examination to provide a full 

accounting of diagnosed, undiagnosed, and all diabetes. The interview questionnaire was 

standardized to collect information on age, sex, pregnancy, and fasting status. Women who were 

pregnant were excluded from our analysis because pregnancy affects glucose measurements.7 We 

excluded individuals who were randomly selected to participate in an afternoon or evening 

examination or had a total length of “food fast” hours less than 8 hours or longer than 24 hours. 
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Further details on the number of participants in the analytic sample can be found in Supplementary 

Material Table S2.1.  

Definition of Diabetes  

Consistent with previous studies, ‘diagnosed diabetes’ was defined as a self-reported previous 

diagnosis of diabetes.6,7,11 Participants were asked “other than during pregnancy for women, have you 

ever been told that you have diabetes or sugar diabetes” by a “doctor” (NHANES III) or “doctor or 

other health professionals” (Continuous NHANES). ‘Undiagnosed diabetes’ was defined as having a 

Fasting Plasma Glucose (FPG) level of 126mg/dL or higher without a self-reported previous diagnosis 

of diabetes. ‘All diabetes’ was defined as having either diagnosed or undiagnosed diabetes. Following 

the National Center for Health Statistics (NCHS) recommendations, FPG values in NHANES 2005-2016 

were adjusted to be comparable to earlier values using a published CDC regression-based adjustment 

equation.20,23–28 We did not use Hemoglobin A1c or 2-hour plasma glucose because they are not 

available in all NHANES rounds. In addition, previous analyses of NHANES data have indicated that, 

assuming universal screening of undiagnosed diabetes, the Hemoglobin A1c cut point of 6.5% identifies 

one-third fewer cases of undiagnosed diabetes than the FPG cut point of ш126mg/dL.29 Two-hour 

plasma glucose is used less frequently in clinical care because it is relatively costly and burdensome 

for patients. Our definition of diabetes included both type 1 and type 2 diabetes, since NHANES cannot 

distinguish between the type of diabetes.  

Statistical analysis  

We developed a Markov model to represent undiagnosed and diagnosed diabetes in the U.S. 

population ages 20 years and older between 1990-2016 (Figure 2.1). We stratified by sex, because 

observed patterns of diabetes incidence differ between men and women.6,30,31 We assumed that 

people may only progress from disease-free to undiagnosed diabetes to diagnosed diabetes (with 

progression to death possible from any of the other three states), as diabetes is generally considered 

a progressive condition without remission. In addition, we assumed that there is no possibility of 



 
 

16 
 

progression from disease-free to diagnosed diabetes directly, as immediate diagnosis upon disease 

onset is unlikely.32 The average duration between onset and clinical diagnosis for non-insulin-

dependent diabetes in the U.S. has been estimated previously as 4-6 years.33,34  

We modeled the transition probabilities between disease states by single year of age (i) and single 

calendar year (t) (Figure S2.1 in Supplementary Material). Yearly age- and sex-specific hazard rates 

from disease-free to death were estimated by subtracting diabetes-related mortality from all-cause 

mortality based on prevalence and risk ratios estimates (see Supplementary Material for details). 

Yearly age- and sex-specific all-cause mortality rates among the general populations were obtained 

from the annual United States Life Tables published by NCHS.15 Prevalence of undiagnosed and 

diagnosed diabetes were estimated directly from NHANES III and Continuous NHANES. Risk ratios for 

all-cause mortality comparing those with undiagnosed or diagnosed diabetes to those without 

diabetes were estimated by fitting Cox proportional hazards models by age, sex and survey year to 

prospective mortality follow-up data from SNHANES-MS.16 Details on distributions of risk ratios are 

reported in Supplementary Material Table S2.2.  

The incidence of diabetes was represented as the transition rate from disease-free to undiagnosed 

diabetes. The diagnosis rate of diabetes was represented as the transition rate from undiagnosed to 

diagnosed diabetes. For each of these transition rates, we constructed individual B-spline surfaces in 

the dimensions of calendar year and age, allowing rates to change smoothly as a function of age and 

year. For the age dimension we allowed 5 control points, with three internal knots at the boundaries 

between age groups 20-34 years, 35-49 years, 50-64 years, and 65 years and older, and two additional 

boundary knots at ages 20 years and 99 years. For the year dimension we allowed 7 control points, 

with internal knots located in the middle year of NHANES III, and every two survey years of Continuous 

NHANES. This resulted in 48 parameters defining each spline surface. We specified weakly-informative 

priors for these parameters. We used a second-degree difference penalty on the time dimension to 

avoid overfitting. We conducted seven-fold cross-validation to determine the optimal value of the 
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penalty.35,36 To implement the cross-validation, the NHANES data were divided into seven equal-sized 

folds for men and women separately. For each fold, we predicted the prevalence of undiagnosed and 

diagnosed diabetes from a model estimated using the data for the other six folds. This procedure was 

conducted for all seven folds. We selected the penalty value to maximize the log-likelihood of these 

out-of-sample predictions when compared to the original data.  

We estimated the model separately for men and women, using incremental mixture importance 

sampling (IMIS). IMIS implements a Bayesian approach to estimate the joint posterior distribution of 

the model parameters, allowing for correlation and multi-modality of this distribution. All analyses 

were conducted in R.17 

Outcome measures 

Primary model outcome measures included: the prevalence of undiagnosed, diagnosed, and all 

diabetes; rates of diabetes incidence and diagnosis (for disease-free and undiagnosed diabetes 

respectively); and incidence of diagnosed diabetes. These outcomes were estimated for each year 

during the period 2000-2016, stratified by sex and age group. Model outputs during the first ten-year 

period (1990-1999) were not reported due to lack of data from NHANES between 1995-1998, and 

were used to stabilize model conditions by the start of 2000. Results were summarized by age 

categories 20-34, 35-49, 50-64, and 65 years and older. To standardize results by age, we used the 

2000 U.S. population. To quantify trends in each quantity of interest, we calculated APCs over the 17-

year period by sex and age group. Uncertainty intervals were calculated as the 2.5th and 97.5th 

percentiles of the distribution of results for each outcome. 
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Results 

Model checking 

We used posterior predictive checks to evaluate model fit to the NHANES data.18 Supplementary 

Material Figures S2.2 and S2.3 provide a comparison of modelled estimates to the empirical values. 

These comparisons show that the model predicted the prevalence of diabetes well: the 95% prediction 

intervals cover 96.8% and 98.4% of NHANES mean prevalence estimates for men and women 

separately. Full results of these posterior predictive checks (comparing modelled and empirical 

estimates for the prevalence of undiagnosed, diagnosed, and all diabetes) are reported in 

Supplementary Material Figure S2.5. 

Prevalence of undiagnosed, diagnosed, and all diabetes in 2016 

In the overall population in 2016, the crude prevalence per 100 persons was 12.6 (95% Uncertainty 

Interval, 11.8 to 13.5) for all diabetes, 3.5 (2.9 to 4.1) for undiagnosed diabetes, and 9.1 (8.4 to 9.8) 

for diagnosed diabetes. The crude and age-standardized prevalence of all diabetes and diagnosed 

diabetes differed by sex and age groups (Table 2.1). The crude prevalence of all diabetes in 2016 was 

higher in men (14.0 per 100 persons [12.9 to 15.4]) than in women (11.2 per 100 persons [10.3 to 

12.4]); age-standardized prevalence was also higher among men. The prevalence of diagnosed 

diabetes and all diabetes were highest among those ages 65 years and older, followed by ages 50-64 

years, ages 35-49 years, and ages 20-34 years for both men and women. 
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Table 2.1. Prevalence per 100 persons of undiagnosed, diagnosed, and all diabetes in the U.S. 
general population ages 20 years and older in 2016, and annual percentage changes of the 
prevalence of undiagnosed, diagnosed, and all diabetes over 2000-2016, by age group and sex.  

Population Undiagnosed Diabetes Diagnosed Diabetes All Diabetes 

 Prevalence 
Per 100 
persons 
(95% UI) 

APC 
  % (95% UI) 

Prevalence 
Per 100 
persons 
(95% UI) 

APC 
 % (95% UI) 

Prevalence 
Per 100 
persons 
(95% UI) 

APC 
% (95% UI) 

Total       
Crude 3.5 

(2.9, 4.1) 
-0.4 

(-1.8, 1.0) 
9.1 

(8.4, 9.8) 
2.4 

(1.7, 3.1) 
12.6 

(11.8, 13.5) 
1.5 

(0.9, 2.1) 
Age-
standardized* 

3.2 
(2.0, 4.7) 

-0.8 
(-2.3, 0.6) 

8.9 
(7.5, 10.5) 

1.7 
(1.1, 2.4) 

12.0 
(10.3, 14.1) 

0.9 
(0.3, 1.5) 

Men       
Crude 3.9 

(3.1, 4.8) 
-0.9 

(-2.9, 1.4) 
10.1 

(8,2, 11.4) 
3.2 

(2.2, 4.3) 
14.0 

(12.9, 15.4) 
1.8 

(0.9, 2.7) 
Age-
standardized* 

3.6 
(2.2, 5.2) 

-1.0 
(-3.0, 1.4) 

9.4 
(8.0, 11.1) 

2.3 
(1.4, 3.3) 

13.0 
(11.1, 15.2) 

1.2 
(0.3, 2.1) 

Women       
Crude 3.2 

(2.5, 4.0) 
0.1 

(-1.8, 2.0) 
8.1 

(7.3, 9.0) 
1.6 

(0.7, 2.6) 
11.2 

(10.3, 12.4) 
1.1 

(0.3, 1.9) 
Age-
standardized* 

2.8  
(1.8, 4.1) 

-0.7 
(-2.7, 1.3) 

8.3 
(7.1, 9.8) 

1.1 
(0.3, 2.0) 

11.1 
(9.5, 13.1) 

0.6 
(-0.1, 1.4) 

Men,   
Age group 

      

20-34 2.3  
(1.4, 3.9) 

2.8 
(-1.4, 7.0) 

1.2 
(0.6, 1.9) 

-0.8 
(-5.8, 3.6) 

3.5 
(2.2, 5.2) 

1.3 
(-2.6, 4.6) 

35-49 3.9 
(2.5, 5.7) 

1.2 
(-2.6, 5.5) 

5.6 
(4.4, 7.0) 

1.5 
(-1.0, 3.9) 

9.4 
(7.6, 11.6) 

1.4 
(-0.9, 3.3) 

50-64 4.2 
(2.6, 5.7) 

-3.0 
   (-6.3, -3.2) 

15.4 
(13.2, 18.0) 

2.3 
(0.9, 3.7) 

19.6 
(17.0, 22.5) 

0.7 
(-0.5, 2.0) 

65+ 4.7 
(3.0, 6.4) 

-4.0 
(-6.0, -1.3) 

26.7  
(24.0, 29.6) 

3.2 
(2.1, 4.1) 

31.5 
(29.0, 34.0) 

1.6 
(0.7, 2.3) 

Women,  
Age group 

      

20-34 1.7  
(0.9, 2.8) 

1.5 
(-3.0, 5.9) 

1.3 
(0.8, 2.0) 

-0.1 
(-4.2, 4.3) 

3.0 
(2.0, 4.3) 

0.8 
(-2.3, 3.8) 

35-49 2.5 
(1.5, 3.8) 

0.06 
(-3.7, 3.9) 

5.7 
(4.6, 7.1) 

1.7 
(-2.8, 4.0) 

8.2 
(6.6, 9.8) 

1.1 
(-0.5, 3.0) 

50-64 3.3 
(2.1, 4.7) 

-1.3 
(-4.5, 1.7) 

11.6 
(10.1, 13.7) 

0.9 
(-0.7, 2.4) 

14.9 
(13.0, 17.4) 

0.4 
(-0.8, 1.7) 

65+ 4.4  
(3.1, 6.1) 

-1.8 
(-4.3, 1.1) 

19.0 
(16.9, 21.1) 

1.0 
(-0.1, 2.2) 

23.3 
(20.9, 26.1) 

0.4 
(-0.5, 1.3) 

Abbreviation: APC с Annual percentage change.  
*Age-standardized to the U.S. 2000 population based on age groups 20-34 years, 35-49 years, 50-64 years, and 
65 years and older.  
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Incidence of diabetes, diagnosed diabetes, and rates of diabetes diagnosis in 2016 

Among adults without diagnosed diabetes, the crude incidence of diagnosed diabetes per 1,000 

person-years was 6.2 (95% UI, 4.7 to 8.0) in 2016. For diabetes-free adults, the crude incidence of 

diabetes per 1,000 person-years was 7.1 (4.4 to 11.0) in 2016. For adults with undiagnosed diabetes, 

the crude rate of diabetes diagnosis per 1,000 person-years was 148 (101 to 213) in 2016. The crude 

incidence of diabetes and diagnosed diabetes were higher among men than women (Table 2.2). 

Among adults ages 50 years and older, the incidence of diabetes per 1,000 person-years was similar 

among men (7.7 [3.7 to 15.8] for ages 65 years and older) and women (7.7 [3.8 to 15.0] for ages 65 

years and older). With a similar incidence of diabetes, the rate of diabetes diagnosis was higher for 

men than women ages 50 years and older, leading to a higher incidence of diagnosed diabetes for 

men than women.   
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Table 2.2. Incidence per 1,000 person-years of diabetes, rates of diabetes diagnosis, and incidence 
of diagnosed diabetes for ages 20 years and older in the U.S. general population in 2016 and annual 
percentage changes of incidence of diabetes, rates of diabetes diagnosis, and incidence of diagnosed 
diabetes over 2000-2016, by age group and sex.  

Population Diabetes Diabetes Diagnosis
Diagnosed Diabetes ړ 

 ‡ 

 Incidence 
Per 1,000 

person-years 
(95% UI) 

APC 
% (95% UI) 

Rates 
Per 1,000 

person-years 
(95% UI) 

APC 
% (95% UI) 

Incidence 
Per 1,000 

person-years 
(95% UI) 

APC 
% (95% UI) 

Total       
Crude 7.1 

(4.4, 11.0) 
-0.7 

(-2.8, 1.6) 
148 

(101, 213) 
-0.5 

(-2.7, 1.9) 
6.2 

(4.7, 8.0) 
-0.1 

(-2.0, 1.9) 
Age-
standardized* 

6.9 
(4.3, 10.7) 

-0.8 
(-2.9, 1.4) 

144 
(98, 208) 

-0.6 
(-2.9, 1.8) 

5.7 
(4.4, 7.4) 

-0.6 
(-2.5, 1.3) 

Men       
Crude 7.2 

(4.8, 11.3) 
-1.2 

(-3.6, 1.9) 
160 

(107, 233) 
0.5 

(-2.5, 3.8) 
7.8 

(5.2, 11.0) 
0.9 

(-2.0, 3.6) 
Age-
standardized* 

7.1 
(4.7, 11.0) 

-1.3 
(-3.8, 1.9) 

152 
(104, 223) 

0.2 
(-3.1, 3.5) 

7.1 
(4.8, 9.8) 

0.3 
(-2.5, 2.8) 

Women       
  Crude 6.3 

(4.0, 9.7) 
-0.2 

(-3.5, 3.1) 
146 

(93, 226) 
-1.4 

(-4.7, 1.9) 
4.6 

(3.1, 6.9) 
-1.6 

(-4.2, 1.2) 
Age-
standardized* 

6.2 
(4.0, 9.3) 

-0.4 
(-3.6, 2.7) 

148 
(94, 231) 

-1.3 
(-4.6, 2.0) 

4.5 
(3.0, 6.6) 

-1.9 
(-4.5, 1.1) 

Men,  
Age group 

      

20-34 6.0 
(3.2, 10.0) 

3.3 
(-1.5, 8.2) 

135 
(66, 257) 

-0.9 
(-6.3, 5.2) 

2.6 
(1.2, 4.8) 

0.5 
(-5.0, 5.7) 

35-49 7.6 
(3.8, 13.4) 

-0.3 
(-4.3, 4.5) 

126 
(62, 226) 

-1.6 
(-6.1, 3.4) 

5.5 
(3.0, 9.8) 

-0.3 
(-4.6, 4.3) 

50-64 7.9 
(3.9, 15.9) 

-4.9 
(-9.2, -0.09) 

208 
(115, 347) 

1.8 
(-2.2, 6.4) 

12.0 
(7.2, 19.7) 

-0.3 
(-4.1, 3.5) 

65+ 7.7 
(3.7, 15.8) 

-2.3 
(-6.6, 2.2) 

172 
(90, 275) 

3.7 
(-0.3, 8.4) 

13.3 
(8.1, 19.3) 

1.5 
(-2.2, 5.2) 

Women,  
Age group 

      

20-34 4.8 
(2.6, 7.9) 

2.0 
(-2.5, 6.7) 

172 
(88, 313) 

-1.1 
(-6.3, 4.1) 

2.5 
(1.2, 4.7) 

-0.3 
(-5.4, 5.7) 

35-49 5.8 
(2.8, 10.2) 

-0.09 
(-5.0, 4.3) 

160 
(75, 317) 

-1.8 
(-7.7, 3.5) 

3.9 
(2.0, 7.1) 

-2.4 
(-7.1, 1.9) 

50-64 7.2 
(3.4, 13.5) 

-1.4 
(-6.2, 3.4) 

148 
(71, 263) 

-1.4 
(-6.6, 3.2) 

5.5 
(2.8, 9.5) 

-2.9 
(-6.6, 1.4) 

65+ 7.7 
(3.8, 15.0) 

-1.6 
(-6.1, 4.4) 

98 
(54, 158) 

-0.9 
(-4.9, 3.2) 

7.1 
(4.0, 11.4) 

-1.5 
(-5.7, 2.3) 

 Diabetes Diagnosis was defined as detection and diagnosis of diabetes for adults with undiagnosed diabetesړ
who having a Fasting Plasma Glucose (FPG) level of 126mg/dL or higher without a self-reported previous 
diagnosis of diabetes. 
‡Diagnosed Diabetes was defined as a self-reported previous diagnosis of diabetes.  
�ďďƌĞǀŝĂƚŝŽŶ͗��W��с��ŶŶƵĂů�ƉĞƌĐĞŶƚĂŐĞ�ĐŚĂŶŐĞ͘� 
*Age-standardized to the U.S. 2000 population based on age groups 20-34 years, 35-49 years, 50-64 years, and 
65 years and older.  
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Trends in the prevalence of undiagnosed, diagnosed, and all diabetes over 2000-2016 

During 2000-2016, the age-standardized prevalence of all diabetes and diagnosed diabetes increased. 

Estimates of APC were 0.9% (0.3% to 1.5%) for all diabetes and 1.7% (1.1% to 2.4%) for diagnosed 

diabetes in the overall population (Figure 2.2 and Table 2.1). Over the same period, the APC for the 

age-standardized prevalence of undiagnosed diabetes was -0.8% (-2.3% to 0.6%).  

Similar results of an increasing trend in the prevalence of all and diagnosed diabetes and a decreasing 

trend in the prevalence of undiagnosed diabetes were estimated in many age groups in men and 

women (Figure 2.3 and Figure 2.4). However, the prevalence of undiagnosed diabetes among ages 20-

34 years and ages 35-49 years men and women continued to increase during 2000-2016. For example, 

the prevalence of undiagnosed diabetes per 100 persons was 1.5 (0.9 to 2.1) in 2000 and 2.3 (1.4 to 

3.9) in 2016 for men ages 20-34 years, with an estimated APC of 2.8% (-1.4% to 7.0%). The prevalence 

of undiagnosed diabetes per 100 persons for women ages 20-34 years increased from 1.3 (0.8 to 1.9) 

in 2000 to 1.7 (0.9 to 2.8) in 2016, with an APC of 1.5% (-3.0% to 5.9%).  

The estimated increases in diagnosed and all diabetes prevalence and decrease in undiagnosed 

diabetes prevalence were driven primarily by the 50-64 years and 65 years and older populations, and 

among men in particular. For example, the prevalence of diagnosed diabetes per 100 men ages 65 

years and older was estimated to increase substantially from 16.3 (14.5 to 18.1) in 2000 to 26.7 (24.0 

to 29.6) in 2016, with an APC of 3.2% (2.1% to 4.1%). The APC of the prevalence of all diabetes for men 

ages 65 years and older was estimated to be 1.6% (0.7% to 2.3%) during 2000-2016.  
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Trends in incidence of diabetes, diagnosed diabetes, and rates of diabetes diagnosis 2000-

2016 

In the overall population, the age-standardized incidence of diagnosed diabetes per 1,000 person-

years was similar in 2000 (6.2 [5.5 to 6.9]) and 2016 (5.7 [4.4 to 7.4]), corresponding to an estimated 

APC of -0.6% (-2.5% to 1.3%) (Figure 2.2 and Table 2.2). Decreasing trends were also estimated in the 

overall incidence of diabetes (APC -0.8% [-2.9% to 1.4%]) and rates of diabetes diagnosis (APC -0.6% 

[-2.9% to 1.8%]) during the study period.  

Whereas the trend in incidence of diabetes was relatively flat among women (APC of -0.36% [-3.6% to 

2.7%]), incidence has decreased among men, with an estimated APC of -1.3% (-3.8% to 1.9%). Rates 

of diabetes diagnosis were estimated to have a minor increase in men and a substantial decrease in 

women with an APC of 0.2% (-3.1% to 3.5%) versus an APC of -1.3% (-4.6% to 2.0%) during the study 

period, but these changes were not statistically significant. Changes in the incidence of diagnosed 

diabetes were driven by both trends in incidence of diabetes and rates of diabetes diagnosis, leading 

to an increase in men but a decrease in women during 2000-2016. 

Inspection of age-stratified trends in diabetes incidence suggested differential changes among 

younger vs. older adults. For example, the incidence of diabetes was estimated to increase in the age 

group 20-34 years for both men (APC 3.3% [-1.5% to 8.2%]) and women (APC 2.0% [-2.5% to 6.7%], 

but decrease in the age group 65 and older years for men (APC -2.3% [-6.6% to 2.2%]) and women 

(APC -1.6% [-6.1% to 4.4%]). Rates of diabetes diagnosis were estimated to decline in all age groups 

for women and in ages below 50 years in men, but increased in men ages 50 years and older. Incidence 

of diagnosed diabetes were estimated to decrease in most age groups in men and women, except for 

men ages younger than 35 years or older than 65 years. The increase in diagnosed diabetes was mostly 

driven by the increasing trend in incidence of diabetes for men ages younger than 35 years, and by 

improving rates of diabetes diagnosis for men ages 65 years and older.  
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Figure 2.2. Trends in age-standardized prevalence of undiagnosed, diagnosed, and all diabetes, 
incidence of diabetes and diagnosed diabetes, and rates of diabetes diagnosis in the overall 
population, men and women ages 20 years and older, 2000-2016. 
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Figure 2.3. Trends in prevalence of undiagnosed, diagnosed, and all diabetes, incidence of diabetes 
and diagnosed diabetes, and rates of diabetes diagnosis in men ages 20 years and older, by four age 
groups, 2000-2016. 
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Figure 2.4. Trends in prevalence of undiagnosed, diagnosed, and all diabetes, incidence of diabetes 
and diagnosed diabetes, and rates of diabetes diagnosis in women ages 20 years and older, by four 
age groups, 2000-2016. 
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Discussion 

Overall, our analysis estimated a 17-year period of decreasing prevalence of undiagnosed diabetes 

and increasing prevalence of diagnosed and all diabetes during 2000-2016. The incidence of diabetes, 

rates of diabetes diagnosis, and incidence of diagnosed diabetes all decreased in the overall US 

population. In many age strata, trends in the prevalence and incidence of diabetes were similar to 

overall trends. However, the prevalence of undiagnosed diabetes and incidence of diabetes among 

young adults ages 20-34 years increased during 2000-2016. Incidence of diagnosed diabetes increased 

in men ages 65 years and older, driven by an improvement in rates of diabetes diagnosis.  

Most previous studies using data from national surveys among U.S. adults (NHANES, NHIS, BRFSS) 

have focused on the prevalence and incidence of diagnosed diabetes.2,6–8,37,38 Our estimated trends in 

the prevalence of undiagnosed, diagnosed and all diabetes, and trends in the incidence of diagnosed 

diabetes were comparable to these of previous studies.8,37 However, little is known about the trends 

in the incidence of diabetes directly from nationally representative surveys. The Surveillance, 

Prevention, and Management of Diabetes Mellitus (SUPREME-DM) study, using electronic health 

records of inpatient care, laboratory and pharmacy data to identify diabetes in a diverse open cohort 

of 7 million insured adults in US, reported stabilization in incidence of overall diabetes over 2006-

2010.39 Another analysis based on claims data from all 50 US states suggested the annual rate of 

diagnosed diabetes declined substantially over 2007-2012, from 11.0 to 6.5 per 1,000 person-years.40 

Similar stable or decreasing trends in incidence of total or type 2 diabetes were reported by several 

studies for populations from Europe and Canada since 2006.14  

Trends in the incidence of diabetes reported here are consistent with period changes in the four most 

important determinants of diabetes risk: age, overweight or obesity, smoking, and prediabetes. In our 

study, all outcome measures were age standardized, meaning that changes in age structure cannot 

explain the reported results. Regarding trends in prevalence of obesity, there were no significant 

changes during 2003-2010 among men and women adults, an increasing but not significant trend 
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during 2010-2016 among men adults, and a significant increasing trend during 2010-2016 among 

women adults in US.41,42 Smoking prevalence was reported having significant declines after 2010 

compared with 2003-2005, except for low socio-economic status (annual incomes of less than 

$10,000).43 Prediabetes, defined as FPG values of 100 to 126 mg/dL or Hemoglobin A1c values of 5.7% 

to 6.4%, was reported having stable prevalence among US adults during 2005-2016.37 Trends in 

sugared beverage purchases, total food calories intake, and physical inactivity either plateaued or 

decreased since mid-2000s.44–47 Taken together, current evidence on diabetes risk factors is consistent 

with the plateauing and slowing in diabetes incidence.  

Trends in the incidence of diagnosed diabetes were not only related to trends in diabetes incidence 

but also to trends in the diagnosis rate, which has been affected by changes in diabetes diagnostic 

criteria and changes in testing and screening practices. In 1997 the American Diabetes Association 

(ADA) lowered the threshold for a diagnosis of diabetes from an FPG of 140 mg/dL to 126 mg/dL.48 A 

subsequent increase in the diabetes diagnosis rates from 2000 to late-2000s was estimated in the 

overall and most population subgroups in our study. In 2010 the ADA added a Hemoglobin A1c of 6.5% 

or higher to the diagnostic criteria for diabetes.48 Rates of diabetes diagnosis could increase if this 

change leads to increased awareness and detection of diabetes, as suggested by the SUPREME-DM 

study.39 Alternatively, this change could lead to a lower rate of diabetes diagnosis because Hemoglobin 

A1c threshold is a less sensitive indicator than the FPG threshold.29,49 In addition, it has been reported 

that Hemoglobin A1c is still used less frequently than glucose for screening during the first five years of 

this added recommendation in US.50 As such, the balance of whether Hemoglobin A1c contributed to 

an increase or decrease in diabetes diagnosis rates remains uncertain. As suggested by our model 

results, estimated increases in the rates of diabetes diagnosis for men ages 65 years and older or 

decreases for women were not statistically significant. Practices around screening, testing, and 

diagnosis of diabetes were not monitored well by national surveillance systems, leaving limited 

information on diabetes screening changes associated with health reforms in the past few years.  
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The overall modest decrease in diabetes incidence and increase in diabetes prevalence in this study 

are consistent with substantial reductions in all-cause and cardiovascular disease specific mortality 

among individuals with diagnosed diabetes over the last three decades.51 Extended life expectancies 

of individuals with diabetes after diagnosis would increase the number of people with diagnosed 

diabetes, leading to increased prevalence of diagnosed and all diabetes. Our results do not support 

the hypothesis of saturation of diagnosed diabetes, which postulates that recent declines in the 

incidence of diagnosed diabetes are due to depletion of the susceptible population through increased 

screening and diagnostic practices.52 In our results, the prevalence of undiagnosed diabetes increased 

for adults ages 20-34 and 35-49 years, indicating that saturation has not been reached. The substantial 

decrease in undiagnosed diabetes prevalence for men aged 50 years and older was driven by both a 

decrease in diabetes incidence and an increase in diagnosis rates during 2000-2016.  

To our knowledge, this study provides the first estimates of the incidence of diabetes, and rates of 

diabetes diagnosis among the US adult population from nationally representative surveys. Previous 

studies using national survey data only estimated the incidence of diagnosed diabetes from self-

reports and were not verified by medical records, which underestimate disease incidence. However, 

there are several limitations. First, there were a substantial number of model parameters governing 

spline surfaces that described the annual age-specific incidence of diabetes and rates of diabetes 

diagnosis. Computational complexity would have increased substantially if we had further stratified 

by race/ethnicity, levels of income and education, or other social economic factors, so we did not 

extend the analysis to this level of detail. Second, the overall response rates for the Continuous 

NHANES has decreased over recent survey years. Although not introducing bias in the final survey 

estimates, the declining response rates do increase sampling error, especially in populations with 

relatively low prevalence such as young adults ages 20-34 years. Third, our analysis combined type 1 

and type 2 diabetes because national surveys NHANES, NHIS, BRFSS do not distinguish the subtypes 

of diabetes. Prevalence of diagnosed type 1 diabetes was approximately estimated using data from 

NHANES by defining type 1 diabetes with self-report age of diabetes diagnosis and self-report 
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treatment with insulin.53 Prevalence of undiagnosed type 1 diabetes cannot be estimated from 

NHANES due to lack of laboratory confirmation on cases of type 1 diabetes. Since type 2 diabetes is 

understood to account for around 95% of all diabetes for adults, the results from our estimates are 

most likely to be representative of trends in type 2 diabetes.  

We estimated an overall decrease in diabetes incidence and an increase in diabetes prevalence for US 

adults ages 20 years and older during 2000-2016. Rates of diabetes diagnosis did not increase over 

the same interval. The findings in our study have important implications for monitoring the diabetes 

epidemic and guiding prevention efforts in the future. Although the incidence of diabetes decreased, 

declining mortality among diagnosed diabetic populations, and high and increasing prevalence of all 

diabetes have resulted in continued high total burden of diabetes. Diabetes prevention efforts, and 

improved screening and diagnosis, are needed to reduce the burden of both diabetes and diabetes 

complications.  
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Supplementary Material  

1. Analytic sample 

Table S2.1 shows numbers of participants and participant characteristics in the analytic samples for 

the interview and laboratory examination, by survey cycle years for NHANES III (1988-1994) and 

Continuous NHANES (1999-2016).  

Table S2.1. Description of participants in the analytic sample of interview questionnaire and 
laboratory examination for NHANES III (1988-1994) and Continuous NHANES (1999-2016). 

 NHANES III Continuous NHANES 
Survey 
years 

1988-
1991 

1992-
1994 

1999-
2000 

2001-
2002 

2003-
2004 

2005-
2006 

2007-
2008 

2009-
2010 

2011-
2012 

2013-
2014 

2015-
2016 

 Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Mean 
(95% 
CI) 

Interview 
sample (n) 

9488 9337 2168 2479 2299 2191 2901 3118 2781 2897 2814 

Laboratory 
sample (n) 

3227 3399 2168 2479 2299 2191 2901 3118 2781 2897 2814 

Women 
(%) 
 

52.4 
(50.1, 
54.7) 

53.8 
(50.8, 
55.3) 

50.6 
(48.1, 
53.2) 

51.4 
(49.9, 
53.0) 

51.3 
(49.6, 
53.1) 

50.8 
(48.5, 
53.1) 

51.3 
(48.9, 
53.7) 

51.2 
(49.2, 
53.1) 

51.7 
(49.0, 
54.3) 

51.3 
(49.2, 
53.4) 

51.3 
(49.7, 
52.9) 

Age 
(mean, 
years) 

44.6 
(43.8, 
45.4) 

44.9 
(43.7, 
46.1) 

45.6 
(44.3, 
46.9) 

45.7 
(44.0, 
47.4) 

46.5 
(45.2, 
47.7) 

47.0 
(45.4, 
48.7) 

46.9 
(45.8, 
48.0) 

47.2 
(46.1, 
48.3) 

47.6 
(46.3, 
48.9) 

47.6 
(46.4, 
48.9) 

47.9 
(46.7, 
49.1) 

Ages 20-34 
(%) 

35.6 
(33.5, 
37.8) 

33.7 
(31.0, 
36.5) 

29.7 
(26.1, 
33.7) 

28.7 
(24.2, 
33.7) 

27.9 
(25.0, 
31.1) 

26.3 
(23.1, 
29.9) 

27.0 
(23.8, 
30.5) 

27.8 
(24.9, 
30.9) 

26.1 
(22.4, 
30.3) 

27.2 
(24.5, 
30.1) 

27.2 
(23.8, 
30.8) 

Ages 35-49 
(%) 

29.2 
(27.2, 
31.4) 

31.3 
(29.0, 
33.6) 

33.1 
(29.1, 
37.2) 

33.2 
(29.6, 
37.0) 

32.0 
(28.6, 
35.7) 

32.5 
(27.6, 
37.8) 

30.7 
(26.7, 
35.1) 

28.7 
(26.8, 
30.1) 

28.7 
(25.4, 
32.2) 

27.2 
(23.8, 
30.9) 

26.3 
(23.3, 
29.7) 

Ages 50-64 
(%) 

18.3 
(17.6, 
19.1) 

17.9 
(16.2, 
19.8) 

21.3 
(19.0, 
23.8) 

23.2 
(19.4, 
27.6) 

23.6 
(20.3, 
27.2) 

23.8 
(20.8, 
27.1) 

25.4 
(22.3, 
28.8) 

25.5 
(22.6, 
28.7) 

27.8 
(24.7, 
31.1) 

26.8 
(24.2, 
29.7) 

25.9 
(23.1, 
28.8) 

�ŐĞƐ�ш�ϲϱ�
(%) 

16.8 
(15.1, 
18.7) 

17.1 
(14.7, 
19.7) 

15.9 
(14.0, 
18.0) 

14.8 
(13.0, 
16.8) 

16.5 
(14.2, 
19.1) 

17.4 
(14.0, 
21.3) 

16.8 
(14.9, 
19.0) 

18.3 
(16.8, 
19.8) 

17.4 
(15.8, 
19.1) 

18.7 
(16.3, 
21.4) 

20.6 
(18.1, 
23.4) 
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2. Markov model 

We developed a Markov model to represent undiagnosed and diagnosed diabetes in the U.S. 

population ages 20 year and older between 2000-2016. Four disease states were distinguished: 

disease-free (state 0), undiagnosed diabetes (state1), diagnosed diabetes (state 2), and death (state 

3) (Figure S2.1 Panel A).  

We modeled the transition probabilities between the four states by single year of age (i) and single 

calendar year (t) with the transition matrix presented in Figure S2.1 Panel B. The transition 

probabilities include mortality rates (noted as ʅ) and incidence rates (noted as ʄ). We estimated 

mortality rates by from national life tables.1 We estimated incidence rates by constructing individual 

B-spline surfaces with weakly-informative priors for parameters of the surfaces (see main manuscript).  

Age- and sex-specific yearly mortality rates for each of the three diabetes states (µdf, µud, µdd) were 

estimated using 1) all-cause mortality rates (M) among the general population, 2) prevalence of 

undiagnosed and diagnosed diabetes (prud, prdd), 3) and risk ratios (rrud, rrdd) of all-cause mortality for 

undiagnosed and diagnosed diabetes compared to those without diabetes.  

The mortality rates for disease-free (µdf) were estimated based on subtracting diabetes-related 

mortality from all-cause mortality based on prevalence and risk ratios estimates, using equation (1). 

ʅdf с�Dͬ;ϭн; rrud – 1)*prud н�;ƌƌdd – 1)*prdd)                                                                           (1) 

where 

M is the all-cause mortality rates among the general population, which was obtained from the annual 

United States Life Tables by NCHS.1 

rrud is the risk ratio of all-cause mortality of undiagnosed diabetes to all-cause mortality of disease free, 

which was estimated from the SNHANES-MS2 and reported in Table S2.2.  
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prud is the prevalence of undiagnosed diabetes, which was estimated from the NHANES III and 

Continuous NHANES.  

rrdd is the risk ratio of all-cause mortality of diagnosed diabetes to all-cause mortality of disease free, 

which was estimated from the SNHANES-MS2 and reported in Table S2.2. 

prdd is the prevalence of diagnosed diabetes, which was estimated from the NHANES III and 

Continuous NHANES.  

Mortality rates for undiagnosed diabetes (µud) and diagnosed diabetes (µdd) were estimated based on 

the mortality rates for disease-free (µdf) and corresponding risk ratios (rrud, rrdd), using equation (2) 

and equation (3).  

ʅud с�ƌƌud*ʅdf                                                                                                                                    (2) 

ʅdd с�ƌƌdd*ʅdf                                                                                                                                    (3) 

The total number of parameters in our model was 324. In each sex, there were 48 parameters defining 

the B-spline surface for incidence of diabetes (ʄud), 48 parameters defining the B-spline surface for 

diagnosis rate of diabetes (ʄdd), 33 parameters for the risk ratios of undiagnosed diabetes to disease-

free (rrud), 33 parameters for the risk ratios of diagnosed diabetes to disease-free (rrdd).  

To avoid overfitting and computational complexity, it is usually not necessary to place a knot at every 

interval (calendar year) in a spline function. A penalized spline that uses a reduced set of equidistant 

knots based on the B-spline basis is suggested as a general class of spline regression to approximate 

smoothing.3-5 Penalty level, denoted as ș, controls the trade-off between smoothness and model fit. 

șсϬ�ŝŵƉůŝĞƐ�ƚŚĂƚ�Ă�ƐŵŽŽƚŚŝŶŐ�ƐƉůŝŶĞ�ŝŶƚĞƌƉŽůĂƚĞƐ�ƚŚĞ�ĚĂƚĂ͕�ǁŚŝůĞ�ș сь implies a linear function.3 Figure 

S2.2. shows the B-splines basis when applying different levels of penalty: ș с 0, ș с 1, ș с 55 to the B-

spline surface of incidence of diabetes at year dimension.  
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Each B-spline surface had 5 knots with 2 degrees of freedom in the age dimension and 7 knots with 2 

ĚĞŐƌĞĞƐ�ŽĨ�ĨƌĞĞĚŽŵ�ŝŶ�ƚŚĞ�ĐĂůĞŶĚĂƌ�ǇĞĂƌ�ĚŝŵĞŶƐŝŽŶ͕�ƌĞƐƵůƚŝŶŐ�ŝŶ�Ă�ƚŽƚĂů�ŽĨ�;ϱнϮ-1)Ύ;ϳнϮ-ϭͿсϰϴ�ŶƵŵďĞƌ�

of parameters. For the risk ratios (rrud), each had 33 parameters as independent means of the 

estimated risk ratios for 11 survey cycle years (2 for NHANES III and 9 for Continuous NHANES) by 3 

age groups (20-49, 50-64, and ш65 years). We specified weakly informative priors for 96 parameters 

of B-spline surfaces. We specified log-normal distributions for the risk ratios, with priors of means 

estimated by fitting Cox proportional hazards models on data from the Second National Health and 

Nutrition Examination Survey Mortality Study (SNHANES-MS)2 and reported in Table S2.2. The most 

recent available data of SNHANES-MS was survey cycle year of 2009-2010. We set the means of risk 

ratios after 2010 equal to the estimates in 2009-2010 and allowed broad standard deviations.  
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Figure S2.1. A four-state Markov model of undiagnosed and diagnosed diabetes (Panel A) and states 
transition matrix for individuals at single year of age (i) and single calendar year (t). 

 
ĚĨсĚŝƐĞĂƐĞ�ĨƌĞĞ͖�ƵĚсƵŶĚŝĂŐŶŽƐĞĚ�ĚŝĂďĞƚĞƐ͖�ĚĚсĚŝĂďĞƚĞƐ�ĚŝĂŐŶŽƐŝƐ͘ 
ʄud: diabetes incidence rate, representing the transition rate from disease-free to undiagnosed diabetes. 
ʄdd: diagnosis rate of diabetes, representing the transition rate from undiagnosed to diagnosed diabetes. 
ʅdf: all-cause mortality rate for disease-free individuals. 
ʅud: all-cause mortality rate for undiagnosed diabetic individuals, representing the transition rate from 
undiagnosed diabetes to death, ʅud с�ƌƌud* ʅdf.  
ʅdd: all-cause mortality rate for diagnosed diabetic individuals, representing the transition rate from diagnosed 
diabetes to death, ʅdd с�ƌƌdd* ʅdf.  
rrud: Risk ratio of all-cause mortality of undiagnosed diabetes to all-cause mortality of disease-free. 
rrdd: Risk ratio of all-cause mortality of diagnosed diabetes to all-cause mortality of disease-free. 
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Figure S2.2. Example of B-spline basis with three different levels of penalty ɽ�с�Ϭ͕�ɽ�с�ϭ͕�ɽ�с�ϱϱ. 

 

 

 

Table S2.2. The risk ratios for all-cause mortality of undiagnosed and diagnosed diabetes compared 
to the general population without diabetes, by age groups and sex.  

 NHANES III Continuous NHANES 
Sex and 
age group 

1988-
1990 

1991-
1994 

1999-
2000 

2001-
2002 

2003-
2004 

2005-
2006 

2007-
2008 

2009-
2010 

Risk ratios for all-cause mortality comparing undiagnosed diabetes to those without diabetes (rrud) 
Men         

Ages 20-
49  

5.06  4.65 3.98 5.60 4.50 6.35 6.55 3.91 

Ages 50-
64 

1.19 1.16 1.12 1.32 1.21 1.49 1.54 1.15 

Ages шϲϱ 1.09 1.05 1.06 1.20 1.08 1.37 1.41 1.07 
Women         
Ages 20-

49  
3.73 3.19 3.13 2.16 2.53 2.57 2.60 3.32 

Ages 50-
64 

2.19 1.87 1.84 1.27 1.48 1.51 1.53 2.29 

Ages шϲϱ 1.66 1.42 1.39 1.02 1.12 1.14 1.16 1.25 
Risk ratios for all-cause mortality comparing diagnosed diabetes to those without diabetes (rrdd) 

Men         
Age 20-49  7.59 7.21 6.42 8.34 8.42 8.13 6.39 7.09 
Age 50-64 2.70 2.57 2.29 2.97 3.00 2.90 2.28 2.53 
Age шϲϱ 1.37 1.30 1.16 1.50 1.52 1.47 1.15 1.28 
Women         
Age 20-49  4.38 5.09 4.28 3.36 4.11 4.27 4.68 3.28 
Age 50-64 3.15 3.66 3.08 2.41 2.95 3.07 3.36 2.35 
Age шϲϱ 1.99 2.31 1.94 1.52 1.86 1.93 2.12 1.49 
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3. Evaluation of model fits with posterior predictive checks  

We used posterior predictive checks to evaluate the model fits to prevalence trends implied by 

NHANES data.6 Visual comparison of modelled estimates (mean and 95% predictive intervals [95% PI]) 

to empirical values (mean and confidence intervals) for prevalence of undiagnosed, diagnosed, and all 

diabetes are presented in Figure S2.3 and Figure S2.4, by sex and age groups.  

Model fits with posterior predictive checks were evaluated based on the proportion of empirical 

values observed from NHANES data being covered by the percentage of predictive intervals of 

modelled estimates. The proportion of observed NHANES data covered by the percentage of PI of 

modelled estimates for undiagnosed, diagnosed, and all diabetes, from 0% PI to 100% PI by 0.05 

increment of the sequence, were plotted in Figure S2.5 for men and women separately. In details, in 

each panel of Figure S2.5, the x-axis represented the percentage from 0% to 100% PI of modelled 

estimates for each of the prevalence quantity by 5% increment of the sequence. The y-axis 

represented the proportion of observed data for each of the prevalence quantity from NHANES 

covered by the PI of modelled estimates. For example, the 95% PI covered 96.8% of observed 

prevalence of diagnosed diabetes for men and 98.4% of diagnosed diabetes for women, respectively. 

Most of the points were slightly higher or close to the 45-degree line, indicating that nearly all of the 

model estimated PIs covered slightly more or equal to the corresponding proportion of empirical 

values from the observed data. In summary, the posterior predictive checks showed that our model 

predicted the prevalence of diabetes well. 
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Figure S2.3. Model fits of observed NHANES estimates (mean and confidence intervals) versus 
model predictions (mean and predictive intervals) of prevalence of undiagnosed, diagnosed and all 
diabetes, by age group in men during 2000-2016. 
 

 
 
Figure S2.4. Model fits of observed NHANES estimates (mean and confidence intervals) versus 
model predictions (mean and predictive intervals) of prevalence of undiagnosed, diagnosed and all 
diabetes, by age group in women during 2000-2016. 
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Figure S2.5. Model fits evaluation: proportion of observed NHANES data covered by percentage of 
model posterior predictive intervals by outcomes and sex. 

 

4. Wide uncertainty intervals (UIs) of incidence estimates  

In these analyses, the uncertainty intervals (UIs) were wider for estimates of incidence than estimates 

of prevalence (Figure 2.3 and Figure 2.4). This is due to our model being calibrated to prevalence of 

undiagnosed, diagnosed, and all diabetes using data from NHANES. NHANES doesn’t have measures 

for incidence of diabetes, and incidence of diabetes diagnosis among undiagnosed adults. In addition, 

our analysis did not consider claims data or other cohort studies with measures of incidence of 

diabetes. Therefore, our model was not fit to to incidence estimates but only prevalence estimates 

from empirical data, leading to wider UIs of model estimated incidence than model estimated 

prevalence, across all age groups. 
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Second, when only examining UIs of incidence, absolute width of UIs was not larger among old age 

groups than young age groups. For example, absolute width of UIs of incidence of diabetes diagnosis 

for women adults ages 50-64 years, and ages 65 years and older were smaller than that for women 

ages 20-49 years. Moreover, the relative width of UIs was also not larger among old age group than 

young age groups. For example, the UIs of incidence of diabetes were similar twice of the mean 

estimates for women ages 20-34 years and women ages 50-64 years.  
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Abstract  

Background   

Previous research has shown that most cardiovascular disease (CVD) prediction models developed for 

the general population tend to underestimate CVD risk for diabetic patients. Current prediction 

equations specifically designed for patients with type 2 diabetes mellitus (T2DM) were developed 

using data from randomized clinical trials, and may lack generalizability to diabetic populations 

without intensive treatment and routine management. We developed a model to predict CVD risk 

(defined as fatal-plus-non-fatal coronary heart disease and stroke) among diabetic patients in the 

United States.  

 
Methods  

We used data from diabetic patients with no history of CVD enrolled in five prospective cohort studies 

in the United States. With these data, we estimated the coefficients of a risk equation for fatal-plus-

non-fatal CVD, using a sex-and-cohort stratified Cox proportional-hazards model. The risk prediction 

equation included age, body mass index (BMI), current smoking, systolic blood pressure (SBP), total 

cholesterol (TC), high-density lipoproteins cholesterol (HDL-C), fasting plasma glucose (FPG), 

treatment with hypertension medications, and treatment with diabetes medications. We conducted 

internal validation and out-of-sample cross-validation to evaluate model discrimination and 

calibration.  

Findings  

We included data from 3,723 participants with diabetes. The mean age at baseline was 60 years 

(standard deviation 9.6), and 48.6% of eligible participants were women. During 15 years of follow-up, 

659 (34.5%) men and 451 (24.9%) women developed a first CVD event. The risk score demonstrated 

good discrimination (Harrell’s C statistic, 70% [95% confidence interval, 68% to 72%]) and calibration 

(regression slope, 0.99 [0.98 to 1.00]). In the cross-validation, the median C statistic was 70%, with a 
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range of 68% to 71%. The median slope of the calibration regression was 0.99, with a range of 0.96 to 

1.05. 

Conclusions 

We developed a novel CVD risk prediction model specifically for populations with T2DM in the United 

States. Our risk equation demonstrated improved performance relative to current models, which 

underestimate the total CVD risk among diabetic patients.   
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Background  

Patients with type 2 diabetes mellitus (T2DM) have a two-to-three-fold increased risk of 

cardiovascular disease (CVD) and death compared to people without diabetes.1–6 T2DM patients also 

have substantially greater health resource use and economic costs from CVD than people without 

T2DM.7,8 Multifactorial interventions through the management of high blood pressure, 

hypercholesterolaemia and hyperglycaemia have been effective in reducing the risk of fatal-plus-non-

fatal CVD among diabetic populations.9–12 Most guidelines for CVD prevention considered diabetes as 

a “coronary risk equivalent” that assigns patients with T2DM without prior myocardial infarction (MI) 

a high risk of coronary heart disease (CHD) similar to non-diabetic individuals who have had a MI.13–19 

The potential benefits of such treatment is often estimated using models obtained from the general 

population including diabetes as a predictor.1,2,4,20–23 These risk prediction models usually do not 

perform well in diabetic populations, with moderate to poor discrimination or calibration.24,25 Previous 

research showed that most CVD prediction models developed in the general population tend to 

underestimate CVD risk for diabetic populations, due to differences in CVD incidence between the 

diabetic and general populations.25–29 Several studies in recent years have suggested that this problem 

could be overcome by developing diabetes-specific prediction models using data from exclusively 

diabetic populations.25,28  

However, current diabetes-specific CVD prediction models have their own limitations. First, most data 

for model formation and validation have been derived from a limited set of populations, mostly from 

developed countries or Caucasian diabetic populations outside of the US.30–36 There is growing 

evidence that the risk equations developed in one population cannot be applicable to other 

populations or between subgroups of population within a country.37,38,38,39 This is because the mean 

risk factor levels and other determinants of CVD and death, such as genetics, societal factors, health 

care system for diagnostic, treatment, and follow-up among diabetic populations are different, 

resulting in differences in the risk of CVD and death between different diabetic populations and over 
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time. Second, current available diabetes-specific models developed among US populations predict 

only an individual CVD component such as CHD, rather than the combination of major CVD events, 

which is of interest to patients and care providers.40,41 Recently, two diabetes-specific models have 

been developed based on multi-center data of clinical trials from multiple countries.39,42,43 These 

models were developed and validated in clinical trial populations, and may lack generalizability to 

diabetic populations without intensive treatment regimens. Compared to other CVD risk equations,1,36 

these models used data with fewer years of follow-up39,42 or had inferior internal validation.43  

Therefore, we developed a novel CVD risk prediction model specifically for populations with T2DM in 

the US. Our model can be used to quantify the CVD disease burden over the next decade, simulate 

treatment guidelines and evaluate effectiveness and cost-effectiveness of interventions strategies, 

and guide primary care prevention policies for US diabetic populations. Although there are only a few 

countries with diabetes registries that have CVD and death rates among diabetic populations at this 

moment, our approach allows for recalibration of the model for use in different countries when the 

data become available.  

Methods  

Data sources 

We collated individual-level data from 10 prospective cohorts: the Atherosclerosis Risk in 

Communities (ARIC), the Cardiovascular Health Study (CHS), the Framingham Heart Study original 

cohort (FHS-original), the Framingham Heart Study offspring cohort (FHS-offspring), the Honolulu 

Heart Program (HHP), the Puerto Rico Heart Health Program (PRHHP), the Jackson Heart Study (JHS), 

the Multi-Ethnic Study of Atherosclerosis (MESA), the Multiple Risk Factor Intervention Trial (MRFIT), 

and the Women’s Health Initiative Clinical Trial and Observational Study (WHICTOS). We excluded the 

FHS-original and FHS-offspring cohorts because the total number of individuals with diabetes was low 

(less than 200 in each cohort). HHP, PRHHP and JHS were excluded due having to few CVD events (less 
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than 50 in each cohort) among eligible participants with diabetes who met our study inclusion criteria. 

We pooled individual-level data from the remaining 5 cohorts (ARIC, CHS, MESA, MRFIT, and 

WHICTOS). Pooling data from multiple cohorts enhanced statistical prediction power, which in turn 

allowed inclusion of interaction terms between age or sex and risk factors. Pooling data from multiple 

cohorts also reduced the effect of between-cohort variation on the coefficients.  

Participants with diabetes were defined as individuals who had any one of (i) self-reported diabetes, 

(ii) ŵĞĚŝĐĂƚŝŽŶ�ǁŝƚŚ�ŝŶƐƵůŝŶ�Žƌ�ŽƌĂů�ŚǇƉŽŐůǇĐĂĞŵŝĐ�ĂŐĞŶƚƐ͕�;ŝŝŝͿ�ĨĂƐƚŝŶŐ�ƉůĂƐŵĂ�ŐůƵĐŽƐĞ�шϭϮϲ�ŵŐͬĚ>�Žƌ�

ϳŵŵŽůͬ>͕�;ŝǀͿ�ƌĂŶĚŽŵ�ƉůĂƐŵĂ�ŐůƵĐŽƐĞ�шϮϬϬ�ŵŐͬĚ>�Žƌ�ϭϭ͘ϭ�ŵŵŽůͬ>͕�Žƌ (v) postprandial plasma glucose 

шϮϮϱ�ŵŐͬĚ>�Žƌ�ϭϮ͘ϱ�ŵŵŽůͬ>�Ăƚ�ďĂƐĞůŝŶĞ͕�ĚĞƉĞŶĚŝŶŐ�ŽŶ�ƚŚĞ�ĂǀĂŝůĂďůĞ�ĚĂƚĂ�ŝŶ�ĞĂĐŚ�ĐŽŚŽƌƚ͘�Our definition 

of diabetes did not distinguish between type 1 and type 2 diabetes, as most of the cohort studies did 

not distinguish the subtypes of diabetes. Since T2DM is generally considered as accounting for almost 

95% of all diabetes for adults, risk prediction equation developed in this study will be more applicable 

to patients with T2DM. We included participants who were aged older than 40 years and younger than 

80 years at baseline, due to the small number of events in younger participants and the heterogeneity 

and complexity of age-covariate interactions in the elderly population.1,44 Participants were included 

if they did not have a history of CHD or stroke. The number of female participants with a history of 

CHD or stroke at baseline was 3,223, which was much larger than the number in male participants 

(225). This can be explained by that the substantial sex/gender differences in the prevalence and 

burden of CVDs among diabetic populations.45 This was also consistent with findings from the previous 

Globorisk study that the association of CVD risk and diabetes was stronger in women than in men.2 In 

addition, this can be explained by the inclusion of male participants from the MRFIT cohorts. Male 

participants from MRFIT were aged between 40-57 years at baseline, compared with female 

participants from the four perspectives were aged from 45-79 years. Female participants accounted 

for a larger proportion of the elderly population in which the prevalence of baseline CVD is greatest.46 

A total of 669 participants were excluded if they had missing data for the risk factors used in the risk 



 
 

52 
 

prediction equation. After exclusion, 3,723 participants with diabetes (mean age, 60 years; 1,813 

women) were included in the analysis (Figure 3.1).  

 

Figure 3.1. Flowchart of inclusion and exclusion of cohort participants. 

‡Diabetic participants were defined as individuals who had any one of (i) self-reported diabetes, (ii)  
ŵĞĚŝĐĂƚŝŽŶ�ǁŝƚŚ�ŝŶƐƵůŝŶ�Žƌ�ŽƌĂů�ŚǇƉŽŐůǇĐĂĞŵŝĐ�ĂŐĞŶƚƐ͕�;ŝŝŝͿ�ĨĂƐƚŝŶŐ�ƉůĂƐŵĂ�ŐůƵĐŽƐĞ�шϭϮϲ�ŵŐͬĚ>�Žƌ�ϳŵŵŽůͬ>͕�;ŝǀͿ�
ƌĂŶĚŽŵ�ƉůĂƐŵĂ�ŐůƵĐŽƐĞ�шϮϬϬ�ŵŐͬĚ>�Žƌ�ϭϭ͘ϭ�ŵŵŽůͬ>͕�Žƌ�;ǀͿ�ƉŽƐƚƉƌĂŶĚŝĂů�ƉůĂƐŵĂ�ŐůƵĐŽƐĞ�шϮϮϱ�ŵŐͬĚ>�Žƌ�ϭϮ͘ϱ�
mmol/L at baseline, depending on the available data in each cohort. 
*The Multiple Risk Factor Intervention Trial include only men, and the Women’s Health Initiative Clinical Trial 
includes only women.  
�ďďƌĞǀŝĂƚŝŽŶƐ͗��D/�с�ďŽĚǇ�ŵĂƐƐ�ŝŶĚĞǆ͕�^�W�с�ƐǇƐƚŽůŝĐ�ďůŽŽĚ�ƉƌĞƐƐƵƌĞ͕�d��с�ƚŽƚĂů�ĐŚŽůĞƐƚĞƌŽů͕�,�>-��с�ŚŝŐŚ�
density lipoprotein-ĐŚŽůĞƐƚĞƌŽů͕�&W'�с�ĨĂƐƚŝŶŐ�ƉůĂƐŵĂ�ŐůƵĐŽƐĞ 
 

Statistical analysis  

Cox proportional hazards regression was used to estimate the coefficients of the risk equation to 

predict 10-year risk of a first CVD event for patients with T2DM in the United States.47 Similar to 

previous cohort pooling studies, the baseline CVD hazard was allowed to vary by sex and cohort. 

Importantly, this formulation of the risk prediction equation also facilitates recalibration of the risk 

equation in other countries where CVD incidence and mortality data among diabetic populations 

becomes available, e.g. through linked data from diabetes registries.  
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The primary outcome for our model was fatal-plus-non-fatal CVD, which was defined any one of non-

fatal myocardial infarction (MI, ICD10 codes I21-I22) or stroke (ICD10 codes I60-I69), death from 

ischaemic heart disease (IHD), sudden cardiac death (ICD10 codes I20-I25), or death from stroke. 

Outcomes were assessed over a 10-year period. Events data defined by ICD10 codes were not in use 

during the follow-up period for most these cohorts. We defined model outcome events using ICD10 

codes and mapped them to clinical endpoints defined by each cohort’s event ascertainment and 

adjudication committee. Heart failure was not included in the outcome events because the 

adjudication of heart failure varied substantially between study cohorts. We truncated participants 

with follow-up longer than 15 years, because baseline risk factors might have little value in the 

prediction of CVD events after a long period of time.  

Covariates included in our model were age, current smoking, body mass index (BMI), systolic blood 

pressure (SBP), total cholesterol (TC), high-density lipoproteins cholesterol (HDL-C), fasting plasma 

glucose (FPG), treatment with hypertension medications, and treatment with diabetes medications. 

These covariates were chosen according to their causal effects on CVD and relevance to diabetes 

history or intensity.48–58 We considered but did not select other variables such as low-density 

lipoprotein cholesterol, hemoglobin A1c, duration of diabetes or age at onset of diabetes because 

they were not measured in the baseline examination cycle of one or more of the cohorts. Baseline 

participant characteristics included in the risk prediction model are summarized in Table 3.1. We 

tested and confirmed that the assumption of proportionality of hazards of included covariates was 

met (Table S3.1 in the Supplementary Material). We included interaction terms between sex and SBP, 

and age and SBP, due to significant sex differences in CVD risk and gradient of CVD risk associated with 

increasing SBP.59,60 We included an interaction term between sex and age because evidence suggests 

the existence of sex differences in the proportional changes in CVD risk with age.61–63 We included an 

interaction term between age and BMI because prospective studies have shown that the CVD hazard 

ratio of BMI often decreases with age.52 
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Table 3.1. Information about cohorts used in estimating the coefficients of the risk score. 

Cohort ARIC CHS MESA MRFIT WHICTOS Pooled 

Baseline date 1986-1990 1989-1993 2001 1973-1976 1993 1986-2001 

Median follow-up years 14.9 8.8 8.4 6.8 8.0 8.3 

Number of participants 1242 662 830 647 342 3723 

Percent female 58.6 51.9 47.8 0 100 48.6 

Age range at baseline 45-66 65-79 45-79 40-57 50-79 40-79 

Mean (SD) age at 
baseline 

55.9 (5.7) 71.4 (3.9) 63.9 (8.8) 49.0 (4.7) 63.7 (6.7) 59.9 (9.6) 

Number of fatal-plus-
non-fatal CVD 

423 315 112 206 54 1110 

Percent current smoker 22.9 11.2 13.7 53.6 8.2 22.7 

Mean (SD) systolic 
blood pressure (mm Hg) 

129.8 
(20.6) 

140.3 
(21.3) 

132.7 
(21.8) 

141.7 
(15.9) 

134.4 
(17.7) 

134.8 
(20.6) 

Mean (SD) body mass 
index  

31.0 (5.8) 28.7 (4.2) 30.7 (5.8) 28.7 (3.5) 32.1 (6.2) 30.2 (5.4) 

Mean (SD) total 
cholesterol (mmol/L) 

5.7 (1.2) 5.4 (1.1) 4.9 (1.0) 6.0 (1.1) 5.8 (1.1) 5.5 (1.2) 

Mean (SD) high-density 
lipoproteins cholesterol 
(mmol/L) 

1.2 (0.4) 1.2 (0.3) 1.2 (0.3) 1.0 (0.3) 1.3 (0.3) 1.2 (0.4) 

Mean (SD) fasting 
plasma glucose 
(mmol/L) 

9.7 (3.9) 9.4 (3.4) 8.3 (3.1) 7.2 (2.0) 9.2 (3.2) 8.8 (3.4) 

Percent treated with 
hypertension 
medications*  

51.0 62.4 62.7 58.4 48.2 56.7 

Percent treated with 
diabetes medications  

40.8 53.0 81.0 20.9 55.8 49.9 

*Treatment with hypertension medication was a binary covariate. The reference group included individuals 
who had blood pressure levels not being diagnosed as hypertension, and/or who had hypertension but were 
not taking hypotension lowering medications at baseline.  
‡Abbreviation: ARIC с�atherosclerosis risk in communities; CHS с�cardiovascular health study; MESA с�multi-
ethnic study of atherosclerosis; MRFIT с�multiple risk factor intervention trial; WHICTOS с�women’s health 
initiative clinical trial and observational study. Detailed information on these cohorts are provided elsewhere. 
^��с�ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƚŝŽŶ͘� 

 

We fitted several alternative models and evaluated if they have improvement in model fit. We fitted 

a sex-specific multivariable risk factor algorithm by adding interaction terms between sex and risk 

factors due to the findings of prospective studies that said sex differences in CVD risk with risk 
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factors.64–66 We included a covariate indicating firstly, whether a diabetic patient was under treatment 

with hypertension medications, and secondly, whether his/her SBP level match the target set by the 

recent Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure 

in Adults.67,68 This covariate was defined in two ways with different SBP cutoff points: elevated blood 

ƉƌĞƐƐƵƌĞ�ǁŝƚŚ�^�W�шϭϮϬ�ŵŵ�,Ő͖�Žƌ�ŚǇƉĞƌƚĞŶƐŝŽŶ�ǁŝƚŚ�^�W�шϭϰϬ�ŵŵ�,Ő͘�&Žƌ�ĞǆĂŵƉůĞ͕�ƚŚĞ�ĐŽǀĂƌŝĂƚĞ�

with a cutoff point of 140 mm Hg of SBP was defined as a four-level categorical variable: “hypertension 

;^�W� шϭϰϬ� ŵŵ� ,ŐͿ� ǁŝƚŚŽƵƚ� ĂŶƚŝŚǇƉĞƌƚĞŶƐŝǀĞ� ĚƌƵŐƐ͕͟� ͞ŚǇƉĞƌƚĞŶƐŝŽŶ� ;^�W� шϭϰϬ� ŵŵ� ,ŐͿ� ǁŝƚŚ�

antihypertensive drugs”, “SBP controlled (<140 mm Hg) with antihypertensive drugs”, using “SBP 

controlled (<140 mm Hg) without antihypertensive drugs” as the reference group. According to the 

work from the Prospective Study Collaboration that TC/HDL-C ratio is more informative than HDL or 

TC in predicting cardiovascular risk, we fitted another alternative model by replacing HDL-C and TC as 

separate covariates to TC/HDL-C ratio as one covariate.64 We used improvement in model fit, which 

was defined as a relative discrimination improvement on Harrell’s C statistic of 2% or more, as the 

criteria for model selection.  

We conducted internal validation to examine the discrimination and calibration of the fitted model. 

Discrimination, which compares the predicted survival time between cases and non-cases and 

examines whether the cases have shorter survival time, was evaluated using Harrell’s C statistic.69–71 

Calibration, which measures the ability of the risk equation to correctly quantify the absolute 10-year 

CVD risk, was evaluated by comparing the predicted number of events during 10 years of follow-up 

with the observed number of events (corrected for censoring with the Kaplan-Meier estimator), 

stratified by sex and decile of risk.  

We also examined out-of-sample predictive performance via cross-validation, as a more rigorous test 

of model fit. To do so, we first randomly split the data into five folds. We then iteratively withheld 

each two of the five folds as a testing set and used the other three folds to estimate the risk factor 



 
 

56 
 

coefficients; we then recalibrated the model to the testing set by replacing the mean risk factor levels 

and the baseline hazard and estimated discrimination and calibration statistics for each comparison.  

We compared out fitted model to other recent risk models developed in the general population in the 

US, the atherosclerotic cardiovascular disease (ASCVD) risk equations published in the 2013 ACC/AHA 

Guidelines,1 with a validation analysis in our study population. To examine whether CVD risk prediction 

models developed in the general population underestimate the real CVD risk in patients with T2DM, 

we compared the actual observed 10-year risk with the predicted 10-year risk of ASCVD by the 2013 

ACC/AHA Pooled Cohort Risk Equation in our study population.  

All analyses were performed with R (R-3.5.2). The study protocol was approved by the institutional 

review board at the Harvard T.H. Chan School of Public Health (Boston, MA, USA).  

Results 

We included 3,723 participants with T2DM in the estimation of the proportional hazards model (Figure 

3.1, Table 3.1). The mean age at baseline was 60 years (standard deviation 9.6) and 48.6% of eligible 

participants were women. During 15 years of follow-up, 659 (34.5%) men and 451 (24.9%) women had 

a first CVD event. Without controlling for differences in covariates, women had a lower risk of fatal-

plus-non-fatal CVD (the 10-year risk was 21.3% in women versus 38.4% in men, p<0.0001).  

The coefficients and hazard ratios (HRs) of the multivariable-adjusted regression for prediction of the 

10-year risk of a first CVD event are presented in Table 2. Current smoking (HR: 1.36 [95% CI, 1.17 to 

1.58]), increased TC (HR: 1.14 [1.08 to 1.21]), increased FPG with diabetes medications (HR: 1.04 [1.02 

to 1.05]) had positive and statistically significant associations with CVD risk (p<0.0001). Increased HDL-

C was associated with decreased fatal-plus-non-fatal CVD risk (HR: 0.60 [0.49 to 0.73]). HRs of risk 

factors that were not statistically significant at the 5% level ranged from 1.00 to 1.17. The magnitude 

of the association of SBP with an increased CVD risk was stronger in women than in men (HR: 1.07 

[1.00 to 1.31]) (Table 3.2).  
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The Harrell’s C statistic for the final model was 70% (68% to 72%) in the total study population, 66% 

(62% to 69%) in men and 75% (95% CI, 72% to 78%) in women (Table 3.3). The calibration regression 

slopes were 0.99 (95% CI, 0.98 to 1.00) in the total study population, 0.98 (95% CI, 0.95 to 1.01) in 

men, and 1.00 (95% CI, 0.99 to 1.02) in women (Figure 3.2). In the cross-validation, the median C 

statistic was 70%, with a range of 68% to 71% and the median slope of calibration regression was 0.99, 

with a range of 0.96 to 1.05 (Table 3.3).   

Table 3.2. Coefficients and hazard ratios from the Cox proportional hazard model used to predict 
the 10-year risk of fatal-plus-non-fatal CVD for patients with T2DM.  

Risk Factors Coefficient (95% CI) Hazard Ratio (95% CI)  
Age (year) 0.0249  

(-0.0788 to 0.1286) 
1.03 (0.92 to 1.14) 

Age squared  0.0003  
(-0.0004 to 0.0011) 

1.00 (0.99 to 1.01) 

Current smoking 0.3065  
(0.1557 to 0.4572) 

1.36 (1.17 to 1.58) 

Body mass index (per 1 unit)  0.0194  
(-0.0637 to 0.1025) 

1.02 (0.94 to 1.11) 

Systolic blood pressure (per 10 mm Hg) 0.1602 
(0.0356 to 0.3561) 

1.17 (0.97 to 1.43) 

Total cholesterol (per 1mmol/L) 0.1334  
(0.0801 to 0.1868) 

1.14 (1.08 to 1.21) 

High-density lipoproteins cholesterol (per 
1mmol/L) 

-0.5180  
(-0.7221 to -0.3139) 

0.60 (0.49 to 0.73) 

Fasting plasma glucose (per 1mmol/L) 0.0034 
(-0.0183 to 0.0251) 

1.00 (0.98 to 1.03) 

Treatment with hypertension medications* 0.0686  
(-0.0580 to 0.1951) 

1.07 (0.94 to 1.22) 

Treatment with diabetes medications and fasting 
plasma glucose (per 1mmol/L) 

0.0348 
(0.0213 to 0.0483) 

1.04 (1.02 to 1.05) 

Age and female 0.0028  
(-0.0207 to 0.0264) 

1.00 (0.98 to 1.03) 

Systolic blood pressure (per 10 mm Hg) and 
female  

0.0633 
(0.0047 to 0.1220) 

1.07 (1.00 to 1.13) 

Age and systolic blood pressure (per 10 mm Hg) -0.0017 
(-0.0048 to 0.0013) 

1.00 (0.99 to 1.00) 

Age and body mass index (per 1 unit) -0.0004 
(-0.0018 to 0.0010) 

1.00 (0.99 to 1.00) 

*Treatment with hypertension medication was a binary covariate. The reference group included individuals 
who had blood pressure being diagnosed as not having hypertension, and/or who had hypertension but were 
not taking hypotension lowering medication at baseline.  
Abbreviation: CVD с�ĐĂƌĚŝŽǀĂƐĐƵůĂƌ�ĚŝƐĞĂƐĞ͖�&W' с fasting plasma glucose͖�dϮ�D�с�ƚǇƉĞ�Ϯ�ĚŝĂďĞƚĞƐ�ŵĞůůŝƚƵƐ͘� 
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Figure 3.2. Observed and predicted 10-year risk of a cardiovascular disease event in risk score 
internal validation, by deciles of risk and sex. 
 

Table 3.3. Validation results of the CVD risk model for patients with T2DM.  

CVD Risk Model  Discrimination Calibration regression slope  
 Cohort name Harrell’s C statistic (95% CI) Mean (95% CI) 
Internal validation Total  70 (68 to 72) 0.99 (0.98 to 1.00)  

Men 66 (62 to 69) 0.98 (0.95 to 1.01) 
Women 75 (72 to 78) 1.00 (0.99 to 1.02) 

Cross-validation in each 
of the ten sets of 
testing data*  

1st testing set 69 (66 to 73) 0.99 (0.95 to 1.03) 
2nd testing set 68 (65 to 72) 1.03 (0.99 to 1.07) 
3rd testing set 70 (66 to 73) 1.01 (0.99 to 1.03) 
4th testing set 70 (66 to 73) 0.96 (0.92 to 0.99) 
5th testing set 68 (64 to 72) 1.05 (1.01 to 1.08) 
6th testing set 71 (68 to 74) 0.97 (0.93 to 1.01) 
7th testing set  70 (67 to 73) 0.96 (0.92 to 1.00) 
8th testing set 71 (68 to 74) 1.01 (0.99 to 1.04) 
9th testing set 70 (67 to 73) 0.96 (0.93 to 0.98) 
10th testing set  70 (67 to 74) 0.98 (0.95 to 1.01) 
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*The pooled cohorts were randomly split into five folds. We iteratively withheld every two of the five folds as 
the testing set from the Cox model and used the other three folds to estimate the coefficients; we then 
validated the obtained model against the withheld testing set data.  
Abbreviation: CVD с�ĐĂƌĚŝŽǀĂƐĐƵůĂƌ�ĚŝƐĞĂƐĞ͖�dϮ�D�с�ƚǇƉĞ�Ϯ�ĚŝĂďĞƚĞƐ�ŵĞůůŝƚƵƐ͘� 

Alternative model specifications 

Fitting separate models for each sex produced a similar C statistics (69% [67% to 71%]) to the main 

model but lower calibration regression slopes (0.90 [0.89 to 0.91]). In addition, all the sex and risk 

factors interaction variables (except for SBP and female) were not statistically significant (p>0.05; 

Supplementary Material Table S3.2). Model with the covariate replacing the binary hypertension 

treatment variable with a four-ůĞǀĞů�ĐĂƚĞŐŽƌŝĐĂů�ǀĂƌŝĂďůĞ�ĚĞĨŝŶĞĚ�ĂƐ�^�W�ůĞǀĞůƐ�;шϭϰϬ�ŵŵ�,Ő�Žƌ�ŶŽƚͿ�

and hypertension treatment (with antihypertensive drugs or not) performed worse than the selected 

final model, with a C statistic of 68% (66% to 70%) and calibration regression slope of 0.96 (0.95 to 

0.97) (Supplementary Material Table S3.3). Model with the covariate replacing the binary 

hypertension treatment variable with a four-ůĞǀĞů�ĐĂƚĞŐŽƌŝĐĂů�ǀĂƌŝĂďůĞ�ĚĞĨŝŶĞĚ�ĂƐ�^�W�ůĞǀĞůƐ�;шϭϮϬ�ŵŵ�

Hg or not) and hypertension treatment (with antihypertensive drugs or not) had even worse validation, 

with a C statistic of 66% (64% to 68%) and calibration regression slope of 1.05 (1.04 to 1.06) 

(Supplementary Material Table S3.4). Model with the covariate replacing TC and HDL-C with the 

TC/HDL-C ratio as one covariate had good discrimination with a C statistic of 70% (68% to 72%) but 

worse calibration with a regression slope of 0.94 (0.93 to 0.95) (Supplementary Material Table S3.5). 

Comparison to other risk equations 

We evaluated the performance of the 2013 ACC/AHA Pooled Cohort Risk Equation1 in our study 

population. The predicted 10-year risk of ASCVD by the 2013 ACC/AHA Pooled Cohort Risk Equation 

underestimated the observed risk for all race-sex groups of participants with T2DM, with the 

percentage point differences ranging from 4.5% in White men to 11.7% in White women 

(Supplementary Material Table S3.6). Since ASCVD events accounted for 94.7% of CVD events in our 

study population, these results demonstrate consistent underestimation when applying the 2013 

ACC/AHA Pooled Cohort Risk Equation in populations with T2DM. Both the 2013 ACC/AHA Pooled 
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Cohort Risk Equation and our risk prediction models were developed based on (partial) available 

prospective cohorts with pre-date baseline recruitment years from the National Heart, Lung, and 

Blood Institute (NHLBI). The difference between these two models is that the 2013 ACC/AHA Pooled 

Cohort Risk Equation used both diabetics and non-diabetics versus in our model we restricted the 

population to diabetes patients. Therefore, the comparison with model performance of their risk 

equations with ours by applying their risk equation in our study population is reasonable. When 

applying the two sets of risk models to current US diabetic population, it is necessary to recalibrate 

the baseline CVD incidence and mortality to current rates.  

Discussion 

We developed a CVD risk prediction model for patients with T2DM in the United States, using pooled 

individual-level data from five prospective cohort studies. The risk prediction equation demonstrated 

good discrimination and calibration in internal validation, with Harrell’s C statistics generally 70% or 

more and calibration regression slopes close to 1.   

The discrimination for the risk prediction equation in men was not as good as it was in women. A 

potential cause of this was the use of data from the MRFIT cohort, which enrolled participants over 

an earlier period than the other cohorts with male participants. The risk factor characteristics were 

substantially different among men from the MRFIT and men from other prospective cohorts in our 

sample (Table 3.1). For example, the participants from MRFIT had a much lower level of FPG with a 

smaller proportion treated with diabetes medications than men from other cohorts (mean FPG: 7.2 

mmol/L versus 9.1 mmol/L, p<0.0001; percent receiving diabetes medications: 20.9% versus 62.6%, 

p<0.0001). When excluding participants from MRFIT, the discrimination of risk prediction in men was 

substantially improved to 70% (95% CI, 67% to 73%) (Supplementary Material Table S3.7). We did not 

select the model excluding MRFIT as the main model, because the number of male participants would 

be smaller than current, resulting in poor model performance in cross-validation.  
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We compared our risk prediction equation with the 2013 ACC/AHA Pooled Cohort Risk Equation,1 the 

United Kingdom Prospective Diabetes Study Outcomes Model 2 (UKPDS OM2),36 and the Risk 

Equations for Complications Of type 2 Diabetes (RECODe).43 The ACC/AHA risk model underestimated 

10-year ASCVD risk for all race-sex groups in participants with T2DM. With calibration regression 

slopes all close to 1, our model predicted an accurate 10-year fatal-plus-non-fatal CVD risk that was 

highly comparable to the observed 10-year total CVD risk for participants with T2DM. We were unable 

to quantitatively compared our risk prediction equation with the UKPDS OM2 and the RECODe in our 

study population, because many parameters (e.g. age at diagnosis of diabetes, HbA1c, estimated 

glomerular filtration rate, albuminuria) of UKPDS OM2 equations and RECODe equations were not 

measured in the baseline examination of most of our study cohorts. UKPDS OM2 is one of the most 

commonly used risk equations presently for evaluating microvascular and cardiovascular risk among 

individuals with T2DM in many policy simulation studies.72–76 UKPDS OM2 was developed in patients 

with T2DM from both clinical trials and observational data. UKPDS OM2 covariates included not only 

time invariant factors (e.g. sex, ethnicity, age at diagnosis of diabetes) but also time varying clinical 

risk factors (e.g. SBP, HDL-C, LDL-C) and time varying comorbidities (e.g. history of stroke, history of 

amputation). UKPDS OM2 can be used to assess the risk of individual components of cardiovascular 

events (e.g. IHD, MI, stroke) and death. By considering a wide range of covariates and health outcomes, 

the UKPDS OM2 is able to provide evidence for personalized treatment strategies during clinical 

practice and risk distributions by patient subgroups. UKPDS OM2 can also be appropriately applied to 

secondary prevention for diabetic patients with clinical manifest CVD. Our model does not include 

covariates of time varying risk factors or comorbidities, due to absence of relevant data or lack of 

inclusion in the appropriate examination cycle of one or more of the study cohorts. Our risk prediction 

equation predicts a general risk of a first fatal-or-non-fatal CVD. The application of our risk prediction 

equation is targeted to the adult diabetic population without clinical signs or symptoms of CVD, who 

merit evaluation for the primary prevention of CVD. UKPDS OM2 has fixed baseline CVD hazards that 

cannot be recalibrated when applied to diabetic populations in other countries. When applied to the 
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US diabetic populations, UKPDS OM2 may not have good discrimination with limited calibration.43 For 

example, one previous study evaluated that the mortality predicted by the UKPDS OM was 

comparable to the observed mortality in US adults with T2DM using the National Health and Nutrition 

Examination Surveys (NHANES) 1988-1994.77 However, their results were limited to a small sample 

size of 156 adults with diabetes who had characteristics similar to the UKPDS cohorts of newly-

diagnosed diabetes. The RECODe equations were developed and validated in patients with T2DM in 

clinical trials, limiting their generalizability to diabetic populations without intensive treatment 

regimens. The RECODe equations also had inferior interval validation for CVD compared with the 

ACC/AHA risk equations and our model.1,43  

Our study pooled multiple high-quality prospective cohorts, demonstrated good performance in both 

internal validation and cross-validation. The inclusion of multiethnic community-based cohorts (ARIC 

and MESA) offers a racially and geographically diverse population with T2DM in our model.78,79 We 

conducted harmonization of data regarding to the different measures of glucose and risk factors 

across cohorts. The definition and adjudication of outcome events also varied across cohorts. We used 

the ICD10 codes to define the model outcome, which were mapped to clinical endpoints ascertained 

and adjudicated by each cohort. We developed the model stratified by sex and cohort and calibrated 

the sex- and cohort-specific baseline hazards during validation, allowing the sex-specific CVD incidence 

and mortality to vary across cohorts. Our study also has some limitations. First, although pooling data 

from multiple cohorts provides enhanced statistical power compared with using a single cohort, our 

cohorts were all from United States and territories. Validity of the risk prediction equation needs to 

be assessed for other diabetic populations, which may have different cardiovascular complications 

profiles.80,81 Second, we developed a single general CVD risk score for any initial fatal-or-non-fatal CVD 

events as opposed to modeling CHD and stroke separately. Stratified by cohort and sex, the number 

of outcomes events defined as CHD and stroke separately was smaller than the number of outcomes 

events defined as total CVD, resulting in a poorer model performance. Lastly, the number of 

participants, duration of follow-up years, and candidate covariates were much smaller in this study 
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than used for other studies such as UKPDS OM2, which limited our ability to develop an enhanced 

model including additional risk factors. 

In summary, we developed a novel CVD risk prediction model specifically for populations with T2DM 

in the US. Our risk equation can be utilized to simulate outcomes of intervention policies targeted on 

patients with T2DM in comparative effectiveness and cost-effectiveness research. As a more accurate 

risk assessment tool than the ACC/AHA risk equations, our model allows recalibration of baseline CVD 

incidence and mortality to target diabetic populations. With our risk model, the estimated 

effectiveness for high-risk diabetic patients would be even larger from intervention strategies such as 

“benefit-based tailored treatment”, medication adherence and lifestyle interventions, or adding 

pharmacists to health care management, compared with benefits quantified by other risk 

equations.73,74,76 This novel risk equation may be useful for future studies that evaluate the 

effectiveness and cost-effectiveness of primary prevention options for diabetic patients.  
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Table S3.1. Test of proportional-hazards assumptions for risk factors in CVD risk model for patients 
with T2DM.  

Covariates Slope Chi2 df Prob>chi2 
Age (year) -0.02 0.30 1 0.58 
Age squared  -0.01 0.09 1 0.76 
Current smoking 0.03 1.27 1 0.26 
Body mass index (per 1 unit)  -0.04 1.68 1 0.20 
Systolic blood pressure (per 10 mm Hg) -0.01 0.07 1 0.78 
Total cholesterol (per 1 mmol/L) -0.04 1.98 1 0.16 
High-density lipoproteins cholesterol (per 1mmol/L) 0.01 0.12 1 0.73 
Fasting plasma glucose (per 1 mmol/L) 0.01 0.05 1 0.82 
Treatment with hypertension medications* 0.04 1.93 1 0.17 
Treatment with diabetes medications and fasting 
plasma glucose (per 1 mmol/L) 

-0.03 1.08 1 0.30 

Age and female -0.04 1.41 1 0.58 
Systolic blood pressure (per 10 mm Hg) and female  -0.02 0.30 1 0.24 
Age and systolic blood pressure (per 10 mm Hg) 0.02 0.00 1 0.96 
Age and body mass index (per 1 unit) 0.04 1.98 1 0.16 
Global test  10.87 15 0.91 

* Treatment with hypertension medication was a binary covariate. The reference group included individuals 
who had blood pressure being diagnosed as not having hypertension, and/or who had hypertension but were 
not taking hypotension lowering medications at baseline.  
Abbreviation: dϮ�D�с�ƚǇƉĞ�Ϯ�ĚŝĂďĞƚĞƐ�ŵĞůůŝƚƵƐ͘� 
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Table S3.2. Coefficients and hazard ratios from the Cox proportional hazard model used to predict 
the 10-year risk of CVD for our study populations, with all sex and risk factors interactions.  

 Harrell’s C statistic 
 (95% CI) 

69% (67% to 71%) 

Calibration slope  
(95% CI) 

 0.90 (0.89 to 0.91) 
Risk Factors  Coefficient (95% CI) Hazard Ratio (95% CI)  
Age (year) 0.0103  

(-0.0939 to 0.1146) 
1.01 (0.91 to 1.12) 

Age squared  0.0004  
(-0.0004 to 0.0011) 

1.00 (0.99 to 1.00) 

Current smoking 0.2474  
(0.0609 to 0.4339) 

1.28 (1.06 to 1.54) 

Body mass index (per 1 unit)  0.0156  
(-0.0672 to 0.0985) 

1.02 (0.94 to 1.10) 

Systolic blood pressure (per 10 mm Hg) 0.1594 
(-0.0372 to 0.3559) 

1.17 (0.96 to 1.43) 

Total cholesterol (per 1 mmol/L) 0.1103  
(0.03751 to 0.1831) 

1.12 (1.04 to 1.20) 

High-density lipoproteins cholesterol (per 1 
mmol/L) 

-0.6269  
(-0.9167 to -0.3372) 

0.53 (0.40 to 0.71) 

Fasting plasma glucose (per 1 mmol/L) 0.0127 
(-0.0177 to 0.0430) 

1.01 (0.98 to 1.04) 

Treatment with hypertension medications* 0.0155  
(-0.1482 to 0.1793) 

1.02 (0.86 to 1.20) 

Treatment with diabetes medications and fasting 
plasma glucose (per 1mmol/L) 

0.0356 
(0.0173 to 0.0540) 

1.04 (1.02 to 1.06) 

Age and female -0.0014 
(-0.0254 to 0.0226) 

1.00 (0.97 to 1.02) 

Current smoking and female 0.1694 
(-0.1459 to 0.4846) 

1.18 (0.86 to 1.62) 

Body mass index (per 1 unit) and female  -0.0192  
(-0.0456 to 0.0073) 

0.98 (0.96 to 1.01) 

Systolic blood pressure (per 10 mm Hg) and 
female  

0.0628 
(0.0026 to 0.1230) 

1.06 (1.00 to 1.13)  

Total cholesterol (per 1 mmol/L) and female  0.0522 
(-0.0548 to 0.1592) 

1.05 (0.95 to 1.17) 

High-density lipoprotein cholesterol (per 1 
mmol/L) and female  

0.2566 
(-0.1528 to 0.6660) 

1.29 (0.86 to 1.95) 

Fasting plasma glucose (per 1 mmol/L) and 
female  

-0.0176 
(-0.0613 to 0.0261) 

0.98 (0.94 to 1.03) 

Treatment with hypertension medications* and 
female 

0.1327 
(-0.1254 to 0.3909) 

1.14 (0.88 to 1.48) 

Fasting plasma glucose (per 1 mmol/L) and 
treatment with diabetes medications and female  

-0.0002 
(-0.0273 to 0.0270) 

1.00 (0.97 to 1.03) 

Age and systolic blood pressure (per 10 mm Hg) -0.0017 
(-0.0048 to 0.0013) 

1.00 (0.99 to 1.00) 

Age and body mass index (per 1 unit) -0.0001 
(-0.0015 to 0.0012) 

1.00 (0.99 to 1.00) 

*Treatment with hypertension medication was a binary covariate. The reference group included individuals 
who had blood pressure being diagnosed as not having hypertension, and/or who had hypertension but were 
not taking hypotension lowering medication at baseline.  
Abbreviation: CVD с�ĐĂƌĚŝŽǀĂƐĐƵůĂƌ�ĚŝƐĞĂƐĞ.  
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Table S3.3. Coefficients and hazard ratios from the Cox proportional hazard model used to predict 
the 10-year risk of CVD for our study populations, when hypertension and treatment with 
hypertension medications were included as a four categorical variable.  

 Harrell’s C statistic 
 (95% CI) 

68% (66% to 70%) 

Calibration slope  
(95% CI) 

 0.96 (0.95 to 0.97) 
Risk Factors  Coefficient (95% CI) Hazard Ratio (95% CI)  
Age (year) 0.0250  

(-0.0791 to 0.1290) 
1.03 (0.92 to 1.14) 

Age squared  0.0003  
(-0.0004 to 0.0011) 

1.00 (0.99 to 1.00) 

Current smoking 0.3066  
(0.1559 to 0.4574) 

1.36 (1.17 to 1.58) 

Body mass index (per 1 unit)  0.0168  
(-0.0665 to 0.1002) 

1.02 (0.94 to 1.11) 

Systolic blood pressure (per 10 mm Hg) 0.1822 
(-0.0207 to 0.3851) 

1.20 (0.98 to 1.47) 

Total cholesterol (per 1mmol/L) 0.1335 
(0.0799 to 0.1867) 

1.14 (1.08 to 1.21) 

High-density lipoproteins cholesterol (per 
1mmol/L) 

-0.5185 
(-0.7226 to -0.3143) 

0.60 (0.49 to 0.73) 

Fasting plasma glucose (per 1mmol/L) 0.0031 
(-0.0186 to 0.0248) 

1.00 (0.98 to 1.03) 

Systolic blood pressure controlled with 
treatment ‡ 

-0.0225 
(-0.2582 to 0.2132) 

0.98 (0.77 to 1.24) 

Hypertension without treatment* 0.0844  
(-0.0750 to 0.2437) 

1.09 (0.93 to 1.28) 

Hypertension with treatment 0.0653- ړ 
(-0.3176 to 0.1869) 

0.94 (0.73 to 1.21) 

Treatment with diabetes medications and fasting 
plasma glucose (per 1mmol/L) 

0.0350 
(0.0214 to 0.0485) 

1.04 (1.02 to 1.05) 

Age and female 0.0028 
(-0.0208 to 0.0263) 

1.00 (0.98 to 1.03) 

Systolic blood pressure (per 10 mm Hg) and 
female  

0.0623 
(0.0038 to 0.1207) 

1.06 (1.00 to 1.13) 

Age and systolic blood pressure (per 10 mm Hg) -0.0018 
(-0.0049 to 0.0013) 

1.00 (0.99 to 1.00) 

Age and body mass index (per 1 unit) -0.0003 
(-0.0017 to 0.0010) 

1.00 (0.99 to 1.00) 

* Hypertension without treatment were diabetic individuals who had ^�W�ш140 mm Hg and were not taking 
any hypertension medications at baseline. The reference group was individuals who had SBP <140 mm Hg and 
were not taking any hypertension medications at baseline.  
 Hypertension with treatment were diabetic individuals who had ^�W�ш140 mm Hg and were taking any ړ
hypertension medications at baseline. The reference group was individuals who had SBP <140 mm Hg and 
were not taking any hypertension medications at baseline. 
‡ Systolic blood pressure controlled with treatment were diabetic individuals who had SBP <140 mm Hg and 
were taking any hypertension medications at baseline. The reference group was individuals who had SBP <140 
mm Hg and were not taking any hypertension medications at baseline. 
Abbreviation: CVD с�ĐĂƌĚŝŽǀĂƐĐƵůĂƌ�ĚŝƐĞĂƐĞ. 
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Table S3.4. Coefficients and hazard ratios from the Cox proportional hazard model used to predict 
the 10-year risk of CVD for our study populations, when elevated systolic blood pressure and 
treatment with hypertension medications were included as a four categorical variable.  

 Harrell’s C statistic 
 (95% CI) 

66% (64% to 68%) 

Calibration slope  
(95% CI) 

 1.05 (1.04 to 1.06) 
Risk Factors  Coefficient (95% CI) Hazard Ratio (95% CI)  
Age (year) 0.0190  

(-0.0852 to 0.1232) 
1.02 (0.92 to 1.13) 

Age squared  0.0003  
(-0.0004 to 0.0011) 

1.00 (0.99 to 1.01) 

Current smoking 0.3074  
(0.1566 to 0.4583) 

1.36 (1.17 to 1.58) 

Body mass index (per 1 unit)  0.0202  
(-0.0630 to 0.1035) 

1.02 (0.94 to 1.11) 

Systolic blood pressure (per 10 mm Hg) 0.1077 
(-0.0985 to 0.3139) 

1.11 (0.91 to 1.37) 

Total cholesterol (per 1mmol/L) 0.1335 
(0.0802 to 0.1868) 

1.14 (1.08 to 1.21) 

High-density lipoproteins cholesterol (per 
1mmol/L) 

-0.5182  
(-0.7220 to -0.3143) 

0.60 (0.49 to 0.73) 

Fasting plasma glucose (per 1mmol/L) 0.0030 
(-0.0187 to 0.0248) 

1.00 (0.98 to 1.03) 

Systolic blood pressure controlled with 
treatment ‡ 

0.3054 
(0.0530 to 0.5579) 

1.36 (1.05 to 1.75) 

Elevated systolic blood pressure without 
treatment* 

0.1131  
(-0.1725 to 0.3986) 

1.12 (0.84 to 1.49) 

Elevated systolic blood pressure with treatment 0.2472 ړ 
(0.0002 to 0.4941) 

1.28 (1.00 to 1.64) 

Treatment with diabetes medications and fasting 
plasma glucose (per 1mmol/L) 

0.0350 
(0.0215 to 0.0486) 

1.04 (1.02 to 1.05) 

Age and female 0.0017 
(-0.0219 to 0.0252) 

1.00 (0.98 to 1.03) 

Systolic blood pressure (per 10 mm Hg) and 
female  

0.0674 
(0.0069 to 0.1279) 

1.07 (1.01 to 1.14) 

Age and systolic blood pressure (per 10 mm Hg) -0.0013 
(-0.0045 to 0.0018) 

1.00 (0.99 to 1.00) 

Age and body mass index (per 1 unit) -0.0004 
(-0.0018 to 0.0010) 

1.00 (0.99 to 1.00) 

*Elevated systolic blood pressure without treatment were diabetic individuals who had ^�W�ш120 mm Hg and 
were not taking any hypertension medications at baseline. The reference group was individuals who had SBP 
<120 mm Hg and were not taking any hypertension medications at baseline.  
 Elevated systolic blood pressure with treatment were diabetic individuals who had ^�W�ш120 mm Hg and ړ
were taking any hypertension medications at baseline. The reference group was individuals who had SBP <120 
mm Hg and were not taking any hypertension medications at baseline. 
‡ Systolic blood pressure controlled with treatment were diabetic individuals who had SBP <120 mm Hg and 
were taking any hypertension medications at baseline. The reference group was individuals who had SBP <120 
mm Hg and were not taking any hypertension medications at baseline. 
Abbreviation: CVD с�ĐĂƌĚŝŽǀĂƐĐƵůĂƌ�ĚŝƐĞĂƐĞ.  
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Table S3.5. Coefficients and hazard ratios from the Cox proportional hazard model used to predict 
the 10-year risk of CVD for our study populations, with TC/HDL-C ratio covariate.  

 Harrell’s C statistic 
 (95% CI) 

70% (68% to 72%) 

Calibration slope  
(95% CI) 

 0.94 (0.93 to 0.95) 
Risk Factors  Coefficient (95% CI) Hazard Ratio (95% CI)  
Age (year) 0.0347  

(-0.0689 to 0.1383) 
1.04 (0.93 to 1.15) 

Age squared  0.0003  
(-0.0005 to 0.0010) 

1.00 (0.99 to 1.00) 

Current smoking 0.2912  
(0.1409 to 0.4416) 

1.34 (1.16 to 1.56) 

Body mass index (per 1 unit)  0.0179  
(-0.0648 to 0.1007) 

1.02 (0.94 to 1.11) 

Systolic blood pressure (per 10 mm Hg) 0.1768 
(-0.0196 to 0.3731) 

1.19 (0.98 to 1.45) 

Total cholesterol/high-density lipoproteins 
cholesterol 

0.1157  
(0.0939 to 0.1475) 

1.12 (1.09 to 1.16) 

Fasting plasma glucose (per 1 mmol/L) 0.0015 
(-0.0202 to 0.0232) 

1.00 (0.98 to 1.02) 

Treatment with hypertension medications* 0.0630  
(-0.0636 to 0.1895) 

1.07 (0.84 to 1.21) 

Treatment with diabetes medications and fasting 
plasma glucose (per 1mmol/L) 

0.0352 
(0.0217 to 0.0486) 

1.04 (1.02 to 1.05) 

Age and female 0.0032 
(-0.0204 to 0.0268) 

1.00 (0.98 to 1.03) 

Systolic blood pressure (per 10 mm Hg) and 
female  

0.0634 
(0.0049 to 0.1220) 

1.07 (1.00 to 1.13)  

Age and systolic blood pressure (per 10 mm Hg) -0.0020 
(-0.0050 to 0.0011) 

1.00 (0.99 to 1.00) 

Age and body mass index (per 1 unit) -0.0003 
(-0.0017 to 0.0010) 

1.00 (0.99 to 1.00) 

*Treatment with hypertension medication was a binary covariate. The reference group included individuals 
who had blood pressure being diagnosed as not having hypertension, and/or who had hypertension but were 
not taking hypotension lowering medication at baseline.  
Abbreviation: CVD с�ĐĂƌĚŝŽǀĂƐĐƵůĂƌ�ĚŝƐĞĂƐĞ.  
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Table S3.6. Comparison of 10-year CVD observed risk with 10-year ASCVD predicted risk by the 2013 
ACC/AHA Pooled Cohort Risk Equation1 in our study population from the five prospective cohorts, 
by race and sex. 

Diabetic Populations 10-Year risk of 
ASCVD predicted by 
ACC/AHA model (%) 

10-Year risk of CVD† 
observed  

Underestimates 
(percentage point 

difference) 
Women African American  13.92 18.97 5.05 
Women White 11.58 23.23 11.65 
Men African American  23.10 30.93 7.83 
Men White 33.47 37.99 4.52 
Total 25.11 29.13 4.02 

Abbreviations: CVD с cardiovascular disease; ASCVD с atherosclerotic cardiovascular disease; ACC/AHA model 
с American College of Cardiology/American Heart Association. 
†94.7% of CVD events were ASCVD event in our study population.  

 
 

Table S3.7. Validation results of the 10-year CVD risk model for participants with T2DM in the pooled 
four prospective cohorts (MRFIT excluded).  

CVD Risk Model 
(MRFIT excluded) 

 Discrimination 
 

Calibration regression 
slope  

 Study Population Harrell’s C statistic (%) 
(95% CI) 

Mean (95% CI) 

Internal validation Total  73 (71-75) 1.01 (1.00-1.03) 
 Men 70 (67-73) 1.01 (0.98-1.04) 
 Women 75 (72-77) 1.00 (0.98-1.02) 

Abbreviation: CVD с cardiovascular disease; MRFIT: multiple risk factor intervention ƚƌŝĂů͖�dϮ�D�с�ƚǇƉĞ�Ϯ�
diabetes mellitus.  
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Abstract 

Background   

Disparities in the health and economic burden of gonorrhea have not been systematically quantified. 

We estimated population-level health losses and costs associated with gonococcal infection and 

sequelae in the United States.  

Methods  

We used probability tree models to capture gonorrhea sequelae and to estimate attributable disease 

burden in terms of the discounted lifetime costs and quality-adjusted life-years (QALYs) lost due to 

incident infections acquired during 2015. Numbers of infections in 2015 were estimated using a 

gonorrhea transmission model. We evaluated population-level disease burden, disaggregated by sex, 

age, race/ethnicity, and for men who have sex with men (MSM). We conducted a multivariate 

sensitivity analysis for key parameters.  

Findings  

Discounted lifetime QALYs lost per incident gonococcal infection were estimated as 0.093 (95% 

uncertainty interval [UI] 0.022-0.22) for women, 0.0020 (95% UI 0.0015-0.0024) for heterosexual men, 

and 0.0017 (95% UI 0.0013-0.0022) for MSM. Discounted lifetime costs per incident infection were 

USD 254 (95% UI 109-460), 306 (95% UI 157-479), and 281 (95% UI 145-443), respectively. Total 

discounted lifetime QALYs lost due to infections acquired during 2015 were 53,293 (95% UI 12,326-

125,366) for women, 623 (95% UI 431-876) for heterosexual men, and 1,286 (632-2,074) for MSM. 

Total discounted lifetime costs were USD 145 million (63 to 266 million), 97 million (46-168 million), 

and 206 million (82-410 million), respectively. The highest absolute burden of both QALYs and costs 

was observed in Non-Hispanic Black women, and highest relative burden was identified in MSM and 

American Indian/Alaska Native women. 
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Interpretation   

Gonorrhea causes significant health losses and costs in the United States. The results can inform 

planning and prioritizing prevention policies.  

Funding 

Centers for Disease Control and Prevention, Charles A. King Trust 
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Background  

In the United States, there were 583,405 gonorrhea diagnoses reported in 2018, making Neisseria 

gonorrhoeae the second most common notifiable infection.1 Along with chlamydia, gonorrhea is an 

important cause of pelvic inflammatory disease (PID), chronic pelvic pain (CPP), ectopic pregnancy 

(EP), and tubal infertility (TI) in women and epididymitis in men.2–4 Gonococcal infection may also 

increase the risk of human immunodeficiency virus (HIV) acquisition and transmission.5,6 

In the United States, reported gonorrhea rates have increased since 2009,1,7–9 with a pronounced 

increase among men who have sex with men (MSM).1,10–12 Although disparities in gonorrhea and other 

STIs are often measured using diagnosis rates,2,7,8,10 diagnosed infections represent only a subset of all 

infections. Moreover, a comprehensive assessment of gonorrhea-associated burden requires 

evaluation of downstream health consequences secondary to infection.   

To date, the population-level disparities in costs and sequelae associated with gonococcal infection 

have not been systematically quantified, reflecting a knowledge gap in our understanding of 

gonorrhea burden in the United States. This study estimated lifetime quality-adjusted life-years 

(QALYs) lost and costs associated with gonococcal infections acquired in 2015 by age, sex, 

race/ethnicity, and for MSM in the United States. We developed probability tree models to quantify 

long-term health and economic consequences associated with gonorrhea. We combined these 

estimates with estimates of gonococcal infection incidence derived from a gonorrhea transmission 

model.13 The aim of this study was to present a comprehensive analysis of gonorrhea burden and 

disparities in the context of current prevention efforts.  
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Methods 

Analytic overview 

We used probability tree models to represent clinical outcomes following gonococcal infection among 

women, men who have sex with women (MSW), and MSM. Next, we estimated costs and health losses 

associated with the clinical endpoints of each distinct path along the probability tree and aggregated 

these into the total numbers of expected discounted lifetime QALYs lost and expected total discounted 

lifetime costs per each incident gonococcal infection. We combined these estimates with the total 

numbers of estimated incident infections acquired in 2015 by age, sex and race/ethnicity to estimate 

overall population-level health and economic disease burden and disparities. Model inputs and 

parameter values were derived from a variety of sources, including: (1) estimates of gonorrhea 

incidence, and probabilities of symptomatic infection, testing and treatment from a gonorrhea 

transmission modeling study13; and (2) probabilities of gonorrhea sequelae, durations, disutilities and 

costs from synthesis of published literature. Analyses were undertaken in R (R-3.5.2).  

Model structure and probabilities of key clinical outcomes  

We developed probability trees to model clinical outcomes following gonococcal infection, adapted 

from prior decision analysis studies.14–16 Separate trees were specified for women, MSW and MSM 

(Figure 4.1, Figure 4.2). 

For women, gonococcal infections were categorized as symptomatic or asymptomatic with different 

durations of infections, leading to distinct probabilities of developing PID and subsequent 

complications (Figure 4.1).14 Although treatment for gonorrhea is not explicitly distinguished as a 

separate branch in Figure 4.1, the estimated durations of infections accounted for the fraction of cases 

treated. The possible complications following PID were CPP, EP, and TI (Figure 4.1B). Although we 

included disseminated gonococcal infection (DGI) as a sequela for men (see below), we excluded this 

sequela for women in the interest of parsimony, given that it occurs with lower probability than the 
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other included sequelae. The probability of symptomatic infection and durations of either 

symptomatic or asymptomatic infection were derived from a prior transmission modelling study. 

Duration of asymptomatic infection differed across age groups due to differences in screening rates.13 

For the probability of developing PID, we synthesized data from previously published studies17–22 on 

rates of developing PID secondary to chlamydial infection,23 and translated the rated into associated 

probabilities of PID given durations of symptomatic or asymptomatic gonococcal infection. The 

conditional probabilities of CPP, EP, and TI given PID were derived by pooling estimates from previous 

longitudinal studies on sequelae among women infected with chlamydia.24–30  

For MSW, infections were categorized as symptomatic or asymptomatic urethral gonococcal 

infections (Figure 4.2A), followed by possible sequelae of epididymitis and DGI (Figure 4.2C). We 

assumed that all symptomatic infections are diagnosed and successfully treated, and that treatment 

prevents any further complications in men; this simplifying assumption implies that epididymitis and 

DGI occur only among untreated asymptomatic cases. There is sparse evidence on the relationship 

between duration of infection and sequelae development for men, and epididymitis and DGI were 

modeled as probabilities that were independent of duration. We assumed that urethritis was present 

in all symptomatic infections for the duration of the infection, and that urethritis was not present in 

asymptomatic infections.31 The probabilities of symptomatic and asymptomatic infections were 

obtained from the gonorrhea transmission model.13 We estimated the probability of epididymitis 

among untreated asymptomatic infections based on pooled estimates from longitudinal studies on 

sequelae among men infected with chlamydia.32,33 The probability of DGI was derived from a previous 

Institute of Medicine (IOM) study.16  

For MSM, the model treated urethral infections as described for MSW (Figure 4.2B and Figure 4.2C). 

In addition, rectal and pharyngeal infections, which are typically asymptomatic, were assumed to incur 

no direct health utility losses, consistent with assumptions made in a study on rectal chlamydia.34 This 

was a simplifying assumption that also implied that only urethral infections lead to epididymitis and 
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DGI. The probability of symptomatic urethral infection for both MSW and MSM was obtained from 

the gonorrhea transmission model.13 We estimated the probability of asymptomatic urethral infection 

among MSM by assuming that the odds of symptoms given urethral infection were the same for MSM 

as for MSW. Further details can be found in Supplementary Material.  

Diverging from the approach taken in prior related studies using probability trees, we have explicitly 

modeled both independent sequelae and combinations of sequelae following PID for women and 

following urethral infections for MSW and MSM, whereas prior studies have assumed that all 

complications were independent and additive.13,15,16 Further details on the values, ranges, 

distributions, and sources of probabilities for key clinical outcomes can be found in Table 4.1 and in 

Supplementary Material. In addition to the pathways of clinical outcomes shown in Figure 4.1 and 

Figure 4.2, we further stratified some health states by treatment status for the purpose of computing 

costs and utility losses. For gonococcal infections, we distinguished treated and untreated infections; 

for sequelae following infection, we assumed that all cases are treated and distinguished inpatient 

from outpatient treatment for PID, EP, epididymitis and DGI. Yearly probabilities of testing and 

treatment for gonococcal infections for women, MSW and MSM were obtained from the gonorrhea 

transmission model,13 and were stratified by age and race/ethnicity (Table S4.5-(a) and Table S4.5-(b) 

in Supplementary Material). We estimated the probabilities of inpatient (vs. outpatient) treatment for 

PID, EP, epididymitis and DGI as 0.10, 0.15, 0.0054 and 0.29, respectively.16,35–37  

 

 

 



 
 

84 
 

 

Figure 4.1. Probability tree for sequelae following gonococcal infection among women. 
�ďďƌĞǀŝĂƚŝŽŶƐ͗�W/��с�ƉĞůǀŝĐ�ŝŶĨůĂŵŵĂƚŽƌǇ�ĚŝƐĞĂƐĞ͕��WW�с�ĐŚƌŽŶŝĐ�ƉĞůǀŝĐ�ƉĂŝŶ͕��W�с�ĞĐƚŽƉŝĐ�ƉƌĞŐŶĂŶĐǇ͕�
d/�с�tubal infertility. 

 

 

Figure 4.2. Probability tree for sequelae following gonococcal infection among MSW (Panel A) and 
MSM (Panel B), with complications of untreated urethral infections shown in Panel C. Abbreviations: 
�'/�с�disseminated gonococcal infection. 
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Lifetime QALYs lost and costs per incident infection  

Utilities and durations for clinical outcomes related to gonorrhea and sequelae were derived from the 

prior IOM study, which used an expert panel to estimate durations of sequelae and health-state 

weights measured via the Health Utilities Index (HUI).16 The utility weights for gonorrhea and sequelae 

were multiplied by background utilities reflecting chronic comorbidities by age, based on nationally 

representative EQ-5D index scores.38 CPP and TI were treated as chronic sequelae, and durations were 

estimated using a life table approach. Age-specific mortality rates for women were derived from 

National Center for Health Statistics (NCHS) data.39 Costs were estimated from the healthcare 

perspective and included all direct medical costs regardless of payer. All costs were inflated to 2018 

U.S. dollars using the medical care component of the consumer price index.40 Costs and QALYs 

incurred in years after the incidence of infection were discounted to the year of infection, using a 

discount rate of 3% per year.41 Further details can be found in Table 4.1 and Supplementary Material.  

Based on the probability tree models in Figure 4.1 and Figure 4.2, discounted lifetime QALYs lost per 

incident infection were estimated by summing the expected losses for each unique sequela or 

sequelae combination (the product of the probability, duration, and disutility). Lifetime costs per 

incident infection were estimated analogously for diagnosis and treatment of symptomatic cases and 

asymptomatic cases. For symptomatic infection, all cases were assumed to be diagnosed and treated. 

For asymptomatic infection, the proportion of diagnosis and treatment can be found in Table 4.1 and 

Supplementary Material Table S4.5. Details on the discounted costs of diagnosis and treatment for 

gonorrhea and sequelae can be found in Table 4.1. 

Disease burden and disparities at population level 

Estimates for the incidence of gonococcal infection were obtained from a transmission modelling 

study.13 The study used a model that was calibrated using a Bayesian approach to synthesize 

information from several large national datasets over the period 2000-2015, including reported 

gonorrhea diagnoses, prevalence estimates from the National Health and Nutrition Examination 
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Survey, and other sources.13 This national-level gonorrhea meta-population model described a 

population aged 15-24 and 25-39 years, with the heterosexual population of men and women 

stratified into the following race/ethnicity groups: Non-Hispanic Black, Hispanic, and “White and 

Other.” The population of MSM was stratified by age, but not by race/ethnicity due to limited data 

available at the national level. 

In our model, the population was stratified by age and sex, and men were further stratified into MSW 

and MSM. Among the heterosexual population (women and MSW), the population in the present 

study was additionally divided into five race/ethnicity categories following the classification of the 

NCHS bridged-race categories: Non-Hispanic Black (NHB), Hispanic, American Indian or Alaska Native 

(AI/AN), Asian, Native Hawaiian or Other Pacific Islander (A/NH/OPI), and Non-Hispanic White 

(NHW).42,43 To compute incidence of gonococcal infection among heterosexual AI/AN, A/NH/OPI and 

NHW as sub-populations of incidence estimated among “White and Other,” we assumed that 

incidence rates for the three subgroups followed the same relative rates as those observed in reported 

case rates in these subgroups, which were obtained from the NCHHSTP AtlasPlus data.44 

To estimate the population size in the United States by sex, age, and race/ethnicity, we used Bridged-

Race Population Estimates from CDC WONDER.45  

Outcome measures 

The health and economic burden of disease associated with gonorrhea was measured as the numbers 

of discounted lifetime QALYs lost and costs due to gonococcal infections that occurred in 2015, by age 

and race/ethnicity for women, MSW, and MSM. These aggregate costs and QALYs were computed as 

the product of population size, incidence rates per population, and QALYs lost and costs per incident 

infection. Results are summarized in terms of aggregate population-level counts, as well as measures 

per 1,000 person-years. 
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Multivariate sensitivity analysis 

We performed multivariate sensitivity analyses including uncertainty in (i) incidence of gonorrhea in 

each sub-population, (ii) proportion of each sub-population tested for gonorrhea yearly, (iii) 

proportion of infected persons within each sub-population receiving treatment; (iv) sequelae 

probabilities, and (v) utilities, durations and costs. 1,000 samples were used in the sensitivity analyses. 

The five groups of input parameters were drawn from the posterior distributions estimated by the 

previously published calibrated transmission model13 (for input categories i-iii above) or from specified 

distributions describing uncertainty in sequelae probabilities (Table 4.1). We report all outcomes using 

the mean and 95% uncertainty intervals (95% UI).  

The reporting in this study follows Consolidated Health Economic Evaluation Reporting Standards 

(CHEERS)46 and Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER)47 as 

applicable. 

 

 

Table 4.1. Model input parameters describing gonorrhea and sequelae probabilities, proportions of 
testing and treatment for gonorrhea in women, MSW and MSM.  

Parameter Mean 
estimate 

Uncertainty interval* References 

 
Testing and treatment probabilities  

   

Probability of diagnosis and treatment  Table S4.5 (a) and (b) 13 
Probability of adverse reactions to 
ceftriaxone and azithromycin  

  

Mild to moderate 0.15 0.076 to 0.25 48–51 
Severe 0.0016 0.00017 to 0.0047 48–51 
Probability of inpatient treatment for PID 0.10 0.098 to 0.11 35 
Probability of inpatient treatment for EP 0.15 0.13 to 0.18 35 
Probability of inpatient treatment for 
epididymitis 

0.0054 0.0028 to 0.0092 36 

Probability of inpatient treatment for DGI 0.29 0.17 to 0.43 37 
 
Outcome probabilities (women) 

   

Proportion of infections that are 
symptomatic  

0.37 0.27 to 0.47 13 

Probability of PID given symptomatic 
infection 

0.0025 0.00092 to 0.0055 13,17–23 
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Table 4.1. Model input parameters describing gonorrhea and sequelae probabilities, proportions of 
testing and treatment for gonorrhea in women, MSW and MSM (Continued) 

Probability of PID given asymptomatic 
infection (age 15-24y) 

0.075 0.031 to 0.13 13,17–23 

Probability of PID given asymptomatic 
infection (age 25-39y) 

0.091 0.037 to 0.16 13,17–23 

Probability of CPP given PID 0.26 0.23 to 0.29 24,25 
Probability of EP given PID 0.071 0.049 to 0.098 25–27,29 
Probability of TI given PID 0.17 0.12 to 0.23 25,26,28–30 
 
Outcome probabilities (men) 

   

Probability of symptomatic urethral 
infection (MSW) 

0.72 0.60 to 0.84 13 

Probability of symptomatic urethral 
infection (MSM) 

0.62 0.43 to 0.76 13 

Probability of asymptomatic urethral 
infection (MSM) 

0.22 0.12 to 0.34 Supplementary 

Material  

Probability of urethral infection (MSW) 1 Fixed  

Probability of symptoms given urethral 
infection (MSW) 

0.72 0.60 to 0.84 13 

Probability of urethral infection (MSM) 0.83 0.62 to 0.96 Supplementary 

Material 

Probability of symptoms given urethral 
infection (MSM) 

0.74 0.61 to 0.85 13, 

Supplementary 

Material 

Probability of epididymitis given untreated 
urethral infection 

0.042 0.0012 to 0.14 32,33 

Probability of DGI given untreated urethral 
infection 

0.010 0.0075 to 0.013 16,52 

 
Durations (years) 

   

Gonococcal infection (women, 
symptomatic)ړ 

0.017 0.0099 to 0.031 10 

Gonococcal infection (women, 
asymptomatic, ages 15-24y)ړ 

0.53 0.39 to 0.66 10 

Gonococcal infection (women, 
asymptomatic, ages 25-39y)ړ 

0.65 0.47 to 0.83 10 

PID (inpatient treatment) 0.036 0.019 to 0.054 16 
PID (outpatient treatment)  0.027 0.014 to 0.041 16 
CPP  † 5 to lifetime 16,39,53 
EP (inpatient treatment) 0.085 0.044 to 0.13 16 
EP (outpatient treatment) 0.076 0.040 to 0.11 16 
TI † 5 to lifetime 16,39,53 
Urethritis 0.019 0.0010 to 0.028 16 
Epididymitis (inpatient treatment) 0.0082 0.0043 to 0.012 16 
Epididymitis (outpatient treatment) 0.019 0.0010 to 0.028 16 
DGI (inpatient treatment) 0.030 0.016 to 0.044 16 
DGI (outpatient treatment) 0.022 0.011 to 0.032 16 
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Table 4.1. Model input parameters describing gonorrhea and sequelae probabilities, proportions of 
testing and treatment for gonorrhea in women, MSW and MSM (Continued) 

 
State-specific utilities 

    

Symptomatic gonococcal infection 
(women) 

0.85 0.78 to 0.92 16 

PID (inpatient treatment)‡ 0.76 0.64 to 0.87 16 
PID (outpatient treatment)‡  0.63 0.45 to 0.81 16 
CPP  0.60 0.41 to 0.79 16 
EP (inpatient treatment)‡ 0.62 0.44 to 0.80 16 
EP (outpatient treatment)‡ 0.58 0.38 to 0.78 16 
TI 0.82 0.73 to 0.91 16 
Urethritis 0.84 0.76 to 0.92 16 
Epididymitis (inpatient treatment) 0.30 0.012 to 0.59 16 
Epididymitis (outpatient treatment) 0.46 0.20 to 0.72 16 
DGI (inpatient treatment)‡ 0.68 0.53 to 0.84 16 
DGI (outpatient treatment)‡ 0.60 0.41 to 0.79 16 
 
Costs (in 2018 US$) 

   

Testing costs    
Urine nucleic acid amplification and 
diagnosis procedure  

60 31 to 89 15,16,54–56 

Treatment of gonorrhea    
Azithromycin 1 g 28 15 to 41 15,48,55,57 
Ceftriaxone 250 mg 22 11 to 32 48,55,56 
Short clinic visit 37 19 to 54 15,55,56 
Side effect    
Adverse reactions to ceftriaxone and 
azithromycin 

   

Mild to moderate 77 40 to 115 16,48 
Severe 8,007 4,174 to 11,898 48,58–61 
Treatment of sequelae    
PID (inpatient treatment) 10,637 5,544 to 15,805 15,16,35,48,57,62

–65 
PID (outpatient treatment)  582 303 to 864 15,16,35,48,57,62

–65 
CPP  1,191 622 to 1,769 16,35,48 
EP (inpatient treatment) 11,978 6,243 to 17,798 16,35,48     
EP (outpatient treatment) 3,229 1,683 to 4,798 16,35,48 
TI 6,245 3,255 to 9,280 16,35,48,57,63–

65 
Urethritis 235 123 to 349 16,48,62–65 
Epididymitis (inpatient treatment) 7,364 3,838 to 10,942 16,36,48,57,62–

64 
Epididymitis (outpatient treatment) 422 220 to 627 16,36,48,57,62–

64 
DGI (inpatient treatment) 6,849 3,570 to 10,176 16 
DGI (outpatient treatment) 563 293 to 836 16 

*Uncertainty intervals given as 95% uncertainty intervals for probabilities and durations of gonococcal 
infections based on results from the previous transmission model,13 for probabilities of sequelae based on beta 



 
 

90 
 

distributions, and for all other parameters based on uniform distributions (see Supplementary Material for 
details). 

 The previous transmission model was used to estimate duration of asymptomatic infection, which varies in ړ
relation to the fraction of infections that are diagnosed. Differences over years and between different 
race/ethnicity groups were relatively small, while differences between age groups were larger. For parsimony, 
we therefore allowed durations to vary by age but not by year and race/ethnicity group. Symptomatic 
infection was assumed to be 100% diagnosed and treated, with a much shorter duration of infection.  

†Mean duration taken from uniform distribution between 5 years and lifetime duration. While expert opinion 
suggests lifetime duration of these conditions,16 previous analyses have assumed much shorter durations 
based on unspecified evidence.53 Details on life table calculations used to compute discounted QALY losses for 
lifetime duration are provided in Supplementary Material. 

‡The utility values were higher for inpatient treatment than outpatient treatment for sequelae of PID and EP 
for women and DGI for men. The utility values shown for inpatient and outpatient treatment reflect the 
average values over the duration of the condition, which is longer for inpatient treatment than outpatient 
treatment for most outcomes.16 Inpatient treatment is associated with a greater total utility loss than 
outpatient treatment for most outcomes. For example, for PID, the 0.63 utility value for outpatient treatment 
is applied for 10 days. For inpatient treatment, the 0.76 value is applied for an average of about 13.3 days and 
reflects a utility value of about 0.55 applied for 3.3 days of inpatient care plus a utility value of about 0.82 
applied for 10 days of follow-up outpatient care after the inpatient visit. Details of calculations are described in 
Supplementary Material table S4.3.  

W/��с�ƉĞůǀŝĐ�ŝŶĨůĂŵŵĂƚŽƌǇ�ĚŝƐĞĂƐĞ͖��WW�с�ĐŚƌŽŶŝĐ�ƉĞůǀŝĐ�ƉĂŝŶ͖��W�с�ĞĐƚŽƉŝĐ�ƉƌĞŐŶĂŶĐǇ͖�d/�с�ƚƵďĂů�ŝŶĨĞƌƚŝůŝƚǇ͖��'/�с�
disseminated gonococcal infectioŶ͖�D^D�с�ŵĞŶ�ǁŚŽ�ŚĂǀĞ�ƐĞǆ�ǁŝƚŚ�ŵĞŶ͖�D^tс�ŵĞŶ�ǁŚŽ�ŚĂǀĞ�ƐĞǆ�ǁŝƚŚ�
women. 

 

Results 

Lifetime QALYs lost and costs per gonococcal Infection 

The discounted lifetime QALYs lost per incident gonococcal infection in 2015 were estimated as 0.093 

(95% UI 0.022-0.22) for women, 0.0020 (0.0015-0.0024) for MSW, and 0.0017 (0.0013-0.0022) for 

MSM in (Table 4.2). The QALYs lost per incident infection were highest for women aged 25-39 years 

and were higher for women than for MSW and MSM. QALYs lost from gonococcal infection in women 

were predominantly from chronic sequelae such as CPP and TI, both of which are long-term 

complications with duration from years to lifetime. QALYs lost in men were from short-term 

complications with durations of several days to weeks. QALYs lost per incident gonococcal infection 

were higher in MSW than in MSM, since the estimates only measured the QALYs lost per incident 

urethral gonococcal infection, and we assumed all infections in MSW were urethral.  
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Table 4.2. Estimated number of discounted lifetime QALYs lost associated with gonorrhea, per 
incident gonococcal infection in 2015, by sex and age-group. 

Sex and age-group QALYs lost per infection 95% uncertainty interval (UI) 
Women   

Ages 15-24 years 0.089 (0.021 to 0.21) 
Ages 25-39 years 0.11 (0.026 to 0.25) 
Ages 15-39 years 0.093 (0.022 to 0.22) 

MSW   
Ages 15-24 years 0.0020 (0.0015 to 0.0024) 
Ages 25-39 years 0.0019 (0.0015 to 0.0024) 
Ages 15-39 years 0.0020 (0.0015 to 0.0024) 

MSM   
Ages 15-24 years 0.0018 (0.0013 to 0.0023) 
Ages 25-39 years 0.0017 (0.0012 to 0.0022) 
Ages 15-39 years 0.0017 (0.0013 to 0.0022) 

 

Estimated discounted lifetime costs per incident infection in 2015 were $254 (95% UI 109-460) for 

women, $306 (157-479) for MSW, and $281 (145-443) for MSM (Table 4.3). The costs per incident 

infection in the 15-24 year population were lower than for the 25-39 year population, for women, 

which can be attribute to a lower probability of PID and sequelae given asymptomatic infection among 

young than old age groups. Costs of treatment per incident infection by race/ethnicity groups are 

reported in Supplementary Material Table S4.6. 

Table 4.3. Estimated discounted lifetime costs associated with gonorrhea, per incident gonococcal 
infection in 2015 (in 2018 US dollars), by sex and age-group. 

Sex and age-group Costs (2018 US dollars) 95% uncertainty interval (UI) 
Women   

Ages 15-24 years 248 (108 to 446) 
Ages 25-39 years 278 (115 to 511) 
Ages 15-39 years 254 (109 to 460) 

MSW   
Ages 15-24 years 307 (157 to 480) 
Ages 25-39 years 306 (157 to 479) 
Ages 15-39 years 306 (157 to 479) 

MSM   
Ages 15-24 years 282 (145 to 444) 
Ages 25-39 years 281 (144 to 444) 
Ages 15-39 years 281 (145 to 443) 
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Population-level QALYs lost and costs due to gonococcal infections 

The population-level discounted lifetime QALYs lost associated with gonococcal infections in 2015 

were 53,293 (95% UI 12,326-125,366) for women, 623 (431-876) for MSW, and 1,286 (632-2,074) for 

MSM (Table S4.7). The total population-level discounted lifetime costs associated with gonococcal 

infections in 2015 were $145 million (63-266 million) for women, $97 million (46-168 million) for MSW, 

and $206 million (82-410 million) for MSM (Table S4.8). The total QALYs lost were highest for women 

aged 15-24 years and were higher for women than for MSW and MSM, which can be attributed to a 

higher number of QALYs lost per gonococcal infection for women than for men (Table 4.2, Figure 4.3, 

Figure 4.4, Figure 4.5). The total QALYs lost were higher for MSM than MSW, as a result of higher 

gonorrhea incidence among MSM than MSW (0.34, 95%UI 0.21-0.50 versus 0.0060, 0.0045-0.0080) in 

2015.13 With similar costs per gonococcal infection (Table 4.3), the total costs were highest for MSM 

than for women and MSW (Figure 4.3, Figure 4.4, Figure 4.5), primarily due to a much higher incidence 

for MSM (0.34, 95% UI 0.21-0.50) than women (0.011, 0.0087-0.013) and MSW (0.0060, 0.0045-

0.0080) in 2015.13  

Disparities in the total lifetime QALYs lost and costs reflect variation in the incidence of gonococcal 

infection across different populations, as well as different population sizes across groups. The total 

QALYs lost in 2015 were highest among NHB and NHW, followed by Hispanic, AI/AN, and A/NH/OPI, 

for both women and heterosexual men. For example, the total QALYs lost in 2015 were 18,694 (95% 

UI 4,437-44,119) for NHB, 15,583 (3,447-37,711) for NHW, 4,074 (962-9,504) for Hispanic, 1,090 (241-

2,638) for AI/AN, and 632 (140-1,529) for A/NH/OPI among women aged 15-24 (Figure 4.3, Table S4.7). 

The total costs in 2015 were highest among NHB and NHW for women. For men, the highest total 

costs were among MSM, NHW, and NHB (Figure 4.4, Figure 4.5 and Table S4.8).   

Disparities in lifetime QALYs lost and costs per 1,000 person-years reflect variation in incidence across 

different populations. QALYs lost per 1,000 person-years were highest among AI/AN and NHB, 

followed by NHW, Hispanic and A/NH/OPI among women. For men, the highest QALYs lost per 1,000 
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person-years were among MSM and NHB (Figure 4.4, Figure 4.5 and Table S4.7). Costs per 1,000 

person-years in 2015 were higher among MSM, at $96,352 (95% UI 38,412 -191,179) than MSW, at 

$1,836 (879-3,182) (Table S4.8). 

 

 

Figure 4.3. Population-level numbers of QALYs lost, QALYs lost per 1,000 population, total costs 
(US$), total costs per 1,000 population, for women, by age and race/ethnicity, in 2015.  

*NH White (Non-Hispanic White), A/NH/OPI (Asian or Native Hawaiian or Other Pacific Islander), AI/AN 
(American Indian or Alaska Native), NH Black (Non-Hispanic Black). Note that x-axis differs between the plots 
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Figure 4.4. Population-level numbers of QALYs lost, QALYs lost per 1,000 population, total costs 
(US$), total costs per 1,000 population, for heterosexual men, by age and race/ethnicity, in 2015.  

* NH White (Non-Hispanic White), A/NH/OPI (Asian or Native Hawaiian or Other Pacific Islander), AI/AN 
(American Indian or Alaska Native), NH Black (Non-Hispanic Black). Note that x-axis differs between the plots. 

 

 

Figure 4.5. Population-level numbers of QALYs lost, QALYs lost per 1,000 population, total costs 
(US$), total costs per 1,000 population, for men who have sex with men (MSM), by age, in 2015. 

*Note that x-axis differs between the plots. 

 

Composition of lifetime QALYs lost and costs  

QALYs lost were higher in women than in MSW for all race/ethnicity groups. The duration of chronic 

sequelae in women was estimated to be longer than the duration of sequelae in men. Among women, 

the composition of total QALYs lost was estimated to be 76% (95% UI 70%-82%) due to CPP and 22% 
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(16%-28%) from TI (Figure 4.6), with negligible contributions from other outcomes. Although chronic 

complications of CPP and TI were the main source of total QALYs lost in women with gonococcal 

infection due to their long and lifetime durations, the direct costs from these two complications were 

smaller. TI was estimated to contribute 20% (13%-28%) of the total direct medical costs among women, 

with a further contribution of 6% (4%-8%) from CPP. The major contributor to the total costs were 

treatment of PID (32%, 95% UI 22%-39%) and treatment of gonorrhea (23%, 14%-35%). Among men, 

the major contributor to the total QALYs lost was urethritis (92%, 78%-98%). Urethritis also was the 

largest component of costs for treating complications (53%, 48%-57%). The cost of test and diagnosis 

for gonorrhea was the smallest component, contributing 13% (8%-19%) of the total costs for women, 

and 15% (13%-15%) for men. The main costs were from treatment for gonorrhea sequelae, which 

contributed 64% (46%-78%) of the total costs for women, and 58% (55%-62%) for men.  
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Figure 4.6. Decomposition of total lifetime QALYs lost and costs, by main complications and by broad 
cost categories. 

*Note GC represented the costs of treatment for gonococcal infections, not including the costs of treatment 
for gonorrhea sequelae. Sql represented the costs of treatment gonorrhea sequelae.  
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Discussion  

In this study we quantified the burden of gonococcal infection in the United States using discounted 

lifetime QALYs lost and costs, and examined disparities in the population. Women were estimated to 

have higher QALYs lost and costs per incident gonococcal infection than men, and NHB women had 

the largest burden of disease of all subpopulations examined. QALYs lost and costs per 1,000 person-

years were the highest among MSM and NHB women, reflecting the significant burden of gonococcal 

infection in these populations. QALYs lost per 1,000 person-years for NHB women were over 4 times 

those of NHW women, and for AI/AN over 3 times as high as for NHW women. QALYs lost per 1,000 

person-years for MSM were over 80 times those of NHW MSW.  

Gonococcal infection has relatively short duration, but its longer-term consequences are captured in 

our estimates of QALYs lost. These estimates point to unmet sexual and reproductive health needs 

and wider inequities within the population, which place people at differential risk of infection 

acquisition and sequelae. NHB and MSM have been noted as key populations for gonorrhea 

prevention also by analyses of surveillance data.2,8 The high relative burden of gonorrhea among AI/AN 

has received less attention. Reports of a multi-state syphilis outbreak,66 and high burden of chlamydia 

among young AI/AN,67 signal that there are systemic disparities that need to be addressed. 

Discrimination, socio-economic status, segregation, institutional racism, and access to and utilization 

of health care are among the factors contributing to racial/ethnic disparities.68–70 

We estimated the discounted lifetime costs per incident infection to be $254 (95% UI 109-460) for 

women infected in 2015. This is lower than a previous estimate of 354 (95% UI 177-531) per incident 

infection in women.56 The difference compared to estimate used in previous study71 is primarily 

attributed to a lower probability of PID used in our model, which was estimated based on the duration 

of gonococcal infection from the previous transmission modeling study13 and an estimated yearly 

probability of PID for chlamydial infections synthesized from previous studies.17–23 It is also attributed 

to a lower rate of inpatient care of PID and sequelae used in our model, which was estimated from 
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claims data35 on the costs of treatment for PID, compared estimates reported in previous 

studies.16,48,57,62,63,65 Evidence of a lower rate of inpatient treatment for complications of urethral 

infection among men from recent studies36,37 was also applied in our model.  

Our study has a number of limitations. First, as with previous studies,56,62,72 we have assumed that 

chlamydia and gonorrhea are associated with similar probabilities of developing sequelae. However, 

gonococcal infection may result in more severe PID than chlamydia.4 In that case, the assumption that 

sequelae probabilities are transferrable from studies of outcomes secondary to chlamydial infections 

may underestimate the QALYs lost due to gonorrhea. Second, costs in our study reflect average costs. 

There are undoubtedly variations between states, and some costs may have changed over time. Third, 

as an economic analysis of national disease burden, it would be more consistent with standard 

methodological recommendations to use community-based rather than expert-based utility measures; 

however, we were not able to identify any existing studies that report community-based utilities for 

the range of outcomes associated with gonococcal infection among men. Finally, we did not include 

the potential increase for HIV acquisition or transmission in people with gonococcal infection. If 

bacterial STIs increase HIV acquisition and transmission, 10.2% of HIV infections could be attributable 

to gonorrhea and chlamydia among MSM.73 This would result in larger total burden associated with 

gonococcal infection than our current model estimates.     

The findings in our study have important implications for resource prioritization and planning, and for 

informing control policies. They underscore the longer-term burden of a short-term infection, and the 

continued disparities by race/ethnicity and for MSM within the United States. The QALYs lost and costs 

associated with gonococcal infection are likely to increase in the future with rising antibiotic resistance. 

Decreasing disparities by reducing the risk of gonorrhea within disproportionately affected 

populations would improve the overall health of the population. Measuring both short- and long-term 

consequences and costs of gonococcal infection provides a comprehensive framework for measuring 

and evaluating gonorrhea associated health outcomes.  
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Supplementary Material  

Supplementary Methods 

1. Sequelae probabilities 

The probability of symptomatic urethral infection (given a gonococcal infection) for both heterosexual 

men (MSW) and men who have sex with men (MSM) was obtained from a gonorrhea transmission 

modeling study.1 The model did not stratify gonococcal infection by site of infection, and it estimated 

the overall probability of symptomatic infection in MSM and in MSW. The probability of asymptomatic 

urethral infection among MSM was estimated by assuming that the odds of symptoms given urethral 

infection were the same for MSM as for MSW (equation 1):  

ProbMSW(SympUreth) / ProbMSW;�ƐǇŵƉhƌĞƚŚͿ�с�WƌŽďMSM(SympUreth) / ProbMSM(AsympUreth)   (1) 

For MSW, we used equation 2, assuming they only have urethral infections (see also Figure 4.2A in 

main manuscript):  

ProbMSW;^ǇŵƉhƌĞƚŚͿ�н�WƌŽďMSW;�ƐǇŵƉhƌĞƚŚͿ�с�ϭ      (2) 

We used equation 3 for MSM to allow for some infections not being urethral (see also Figure 4.2B in 

main manuscript): 

ProbMSM;^ǇŵƉhƌĞƚŚͿ�н�WƌŽďMSM;�ƐǇŵƉhƌĞƚŚͿ�н ProbMSM;KƚŚĞƌƐŝƚĞƐͿ�с�ϭ    (3) 

Combining equations 1-3, we have equation 4: 

ProbMSM(SympUreth) / ProbMSW(SympUreth ) н ProbMSM;KƚŚĞƌƐŝƚĞƐͿ�с�ϭ    (4) 

where: 

ProbMSW(SympUreth) is the probability of symptomatic urethral infection given gonococcal infection 

among MSW; 
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ProbMSW(AsympUreth) is the probability of asymptomatic urethral infection given gonococcal infection 

among MSW; 

ProbMSM(SympUreth) is the probability of symptomatic urethral infection given gonococcal infection 

among MSM; 

ProbMSM(AsympUreth) is the probability of asymptomatic urethral infection given gonococcal infection 

among MSM; 

ProbMSM(Othersites) is the probability of other site infections given gonococcal infection among MSM.  

Equation 4 implies a restriction that the ratio of the probability of symptomatic urethral infection 

among MSM to the probability of symptomatic urethral infection among MSW should be greater than 

0 but equal to or less than 1. A beta distribution (mean 0.87, 95% UI 0.50-Ϭ͘ϵϵ͕� ĂůƉŚĂсϰ͘ϳϳ͕� ĂŶĚ�

ďĞƚĂсϬ͘ϳϱͿ�ǁĂƐ�fitted to this ratio estimated in the previous modeling study.1 Then we calibrated the 

probability of symptomatic urethral infection among MSM with the fitted beta distribution.  

Finally, rearranging equation 1, the probability of asymptomatic urethral infection among MSM was 

estimated as:  

ProbMSM(AsymphƌĞƚŚͿ��с�WƌŽďMSM(SympUreth) * ProbMSW(AsympUreth) / ProbMSW(SympUreth)  

The probabilities of developing pelvic inflammatory disease (PID), chronic pelvic pain (CPP), ectopic 

pregnancy (EP), tubal factor infertility (TI), and epididymitis were estimated by synthesizing evidence 

from primary studies identified through scoping literature reviews. Most relevant studies on these 

outcomes identified sequelae due to chlamydia, with a lack of direct evidence on sequelae secondary 

to gonococcal infection. Therefore, as in previous modeling analyses,2–8 we assumed that probabilities 

of developing sequelae after gonococcal infection were the same as probabilities after chlamydial 

infection.  



 
 

108 
 

For PID, we used an evidence synthesis model, described elsewhere,8 to estimate the annual 

probability that a Chlamydia trachomatis infection leads to PID, using information from prospective 

or retrospective population or clinic-based cohorts, or from RCTs of chlamydia screening. Four trials 

and one case cohort were included in the analysis.2–7 Eligible studies ascertained the exposure 

(infection status) with a range of laboratory investigations (cultures, NAAT assays) and the outcome 

(PID) with clinical criteria.  

We synthesized information using a continuous-time Markov model with four health states: 

"chlamydia positive symptomatic", "chlamydia positive asymptomatic", “chlamydia negative", and 

“PID". In each cohort, we modeled the number of patients with PID at the end of follow-up based on 

the vector of probabilities of being in each health state at the end of the follow-up (i.e., the Markov 

trace) and the initial conditions (the trace at time 0, known from the design of each cohort). In turn, 

the time-constant hazard rates for the transitions between states were implicit functions of the trace 

of the Markov process. The hazard rates for all transitions were allowed to vary by cohort, with the 

exception of the causal hazard rate for PID attributed to a chlamydial infection, which was assumed 

to be the same across all cohorts. The causal rate of PID secondary to chlamydial infection was not 

identifiable using only the available data, namely, from the number of patients in each state at 

baseline and the number of patients with PID at the end of follow-up. We specified informative priors 

for the clearance rate of chlamydia with and without treatment. We used external data to inform the 

clearance rates of chlamydia under treatment. We estimated the clearance rate of chlamydia without 

treatment assuming that the prevalence of chlamydial infections at baseline for a large population-

based RCT corresponded to the stationary distribution (long-term equilibrium) of the Markov model, 

and solving for it. Estimation was done using Markov Chain Monte Carlo (MCMC), implemented in the 

JAGS modeling language. We used the multi-state modeling module in JAGS to obtain solutions to the 

implicit functions between the Markov trace and the hazard rates. Further details on the methodology 

are available in a technical report.8   
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There were relatively few studies on the probabilities of CPP, EP, TI, epididymitis, and DGI, which led 

to a simpler modeling framework for each of these outcomes. We modeled probabilities of CPP, EP 

and TI conditional on having PID, based on pooled studies on each sequela,11–17 and using log-link 

functions. The probabilities of epididymitis were estimated among those with nongonococcal 

urethritis18 or Chlamydia trachomatis infection.19 We adopted a previous estimate of the probability 

of DGI among men with symptomatic Neisseria gonorrhea, developed in an Institute of Medicine study 

(IOM).9 That study did not report uncertainty around the estimate, so we defined a beta distribution 

with mean equal to the estimated probability of DGI among men from the IOM study, with the upper 

limit of the 95% UI equal to the estimate reported in the most recent study.10  

Table S4.1 summarizes the estimated probabilities resulting from our review and synthesis of the 

evidence. In our probability trees, we allowed for all possible combinations of sequelae based on a 

simplifying assumption that the probabilities are independent, which leads to a multiplicative 

formulation for the joint probabilities. 

Table S4.1. Estimated probabilities of sequelae.  

Sequelae Mean Standard 
deviation  

Uncertainty 
Interval 

Distribution for 
uncertainty 
analysis 

Chronic pelvic pain 0.261 0.0156 (0.231, 0.292) Beta 
;ĂůƉŚĂсϮϬϯ͘ϲϬϴ͕�
ďĞƚĂсϱϳϳ͘ϬϵϲͿ 

Ectopic pregnancy 0.0708 0.0124 (0.0488, 0.0979) Beta 
;ĂůƉŚĂсϮϵ͘Ϭϰϴ͕�
ďĞƚĂсϯϴϭ͘ϮϳϳͿ 

Tubal infertility  0.169 0.0286 (0.117, 0.230) Beta 
;ĂůƉŚĂсϮϴ͘ϭϴϲ͕�
ďĞƚĂсϭϯϴ͘ϵϱͿ 

Epididymitis  0.0422 0.0381 (0.00116, 0.137) Beta 
;ĂůƉŚĂсϭ͘Ϭϴϳ͕�
ďĞƚĂсϮϰ͘ϲϭϰͿ 

Disseminated gonococcal 
infection 

0.0100 0.0014 (0.0075, 0.013) Beta 
;ĂůƉŚĂсϰϴ͘Ϭϴ͕�
ďĞƚĂсϰ͕ϳϱϵͿ 
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2. Utilities 

We used estimates of health state utilities (weights) derived from prior studies among experts, since 

we did not identify any estimates from the societal or patient perspective for men. Our method follows 

the same approach used in earlier studies, for example Tuite et al. (2012)20 and Hu et al. (2004).21  

Table S4.2 presents the utility estimates for women aged 15-24 years from expert and patient 

perspectives identified in the literature review. Estimates from the patient perspective result in higher 

utility values than those based on expert perspective.  

Table S4.2. Quality weight and duration of PID and its sequelae  

Health state Utility 
(expert 

perspective)9 

Utility (patient 
perspective)22 

Duration (years)9,23–25 

PID (inpatient treatment) 0.76 0.78 13 days (0.036) 
 

PID (outpatient 
treatment) 

0.63 0.82 10 days (0.027) 

Chronic pelvic pain 0.60 0.76 5 years, to remaining 
lifetime (23.55) 

Ectopic pregnancy 
(inpatient) 

0.62 0.82 31 days (0.085) 

Ectopic pregnancy 
(outpatient) 

0.58 0.82 28 days (0.076) 

Tubal infertility 0.82 0.84 5 years, to remaining 
lifetime (23.55) 

*Duration of remaining lifetime was estimated based on lifetable for females aged 15-24 years in 2015.25  

 

3. Weighted utilities and durations of sequelae inpatient and outpatient care  

There are multiple scenarios for inpatient and outpatient treatment for gonorrhea sequelae of PID, EP 

and DGI in women and men, according to the IOM framework. For example, there were PID (salpingitis, 

perihepatitis) outpatient only, PID (salpingitis, perihepatitis) inpatient no surgery, PID (salpingitis, 

perihepatitis) inpatient with surgery, PID (salpingitis, perihepatitis) outpatient after inpatient, PID 

(bilateral salpingo-oophorectomy) inpatient, and PID (bilateral salpingo-oophorectomy) outpatient 

after inpatient. For simplification and matching evidence from other studies, we included inpatient 

treatment and outpatient treatment in our probability tree as weighted combination of the inpatient 
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and outpatient care scenarios. We illustrate the calculations for the example of inpatient treatment 

of PID in women, with information in Table S4.3. Table S4.3 column 1, 2, 3, and 4 are derived from the 

Table A17-2 disease scenarios for gonorrhea infection in women and men in the IOM framework.9  

Table S4.3. Weighted utilities and durations of inpatient treatment for PID. 

Scenarios % cases 
among all 
scenarios9 

Utilities9 Durations 
(years)9 

% cases 
among PID 
inpatient 
only 

(weights) 

Weighted 
durations 

Weighted 
QALYs 
lost 

PID (salpingitis, 
perihepatitis) inpatient no 
surgery 

0.075 0.57 0.011 0.69 0.0076 0.0033 

PID (salpingitis, 
perihepatitis) inpatient with 
surgery 

0.025 0.46 0.0054 0.23 0.0012 0.00067 

PID (salpingitis, 
perihepatitis) outpatient 
after inpatient 

0.100 0.83 0.027 0.92 0.025 0.0042 

PID (bilateral salpingo-
oophorectomy) inpatient 

0.008 0.40 0.0027 0.074 0.00020 0.00012 

PID (bilateral salpingo-
oophorectomy) outpatient 
after inpatient 

0.008 0.76 0.027 0.074 0.0020 0.00048 

Total 0.1008   1.00 0.036 0.0088 

 

We first calculated the proportion of cases under each scenario among PID inpatient treatment only 

and reported in the fifth column in Table S4.3, as the second column represented the proportion of 

cases among all scenarios of gonorrhea and sequelae in the original IOM study. For example, 

ƉƌŽƉŽƌƚŝŽŶ�ŽĨ�W/��;ƐĂůƉŝŶŐŝƚŝƐ͕�ƉĞƌŝŚĞƉĂƚŝƚŝƐͿ�ŝŶƉĂƚŝĞŶƚ�ŶŽ�ƐƵƌŐĞƌǇ�с�Ϭ͘Ϭϳϱ�ͬ�;Ϭ͘Ϭϳϱ�н�Ϭ͘ϬϮϱ�н�Ϭ͘ϬϬϴͿ�с�

0.69. The total duration of PID inpatient care was calculated as a weighted duration of all these 

scenarios (column 6)͘�dŚĂƚ�ŝƐ͕�Ϭ͘ϬϭϭΎϬ͘ϲϵ�н�Ϭ͘ϬϬϱϰΎϬ͘Ϯϯ�н�Ϭ͘ϬϮϳΎϬ͘ϵϮ�н�Ϭ͘ϬϬϮϳΎϬ͘Ϭϳϰ�н�Ϭ͘ϬϮϳΎϬ͘Ϭϳϰ�

с�Ϭ͘Ϭϯϲ�;^ĞĞ�ĂůƐŽ�dĂďůĞ�4.1). Then weighted QALYs lost from each scenario were calculated in column 

7, leading to a total QALYs lost from inpatient PID as 0.0088. The weighted utility of total inpatient PID 

treatment is 1 - Ϭ͘ϬϬϴϴ�ͬ�Ϭ͘Ϭϯϲ�с�Ϭ͘ϳϲ�;ĂůƐŽ�ƌĞƉŽƌƚĞĚ�ŝŶ�dĂďůĞ�4.1).  
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4. Durations and discounting for long-term sequelae 

Following conventions in an earlier study commissioned by the Institute of Medicine,9 and in other 

similar studies, such as Regnier et al. (2014),26 we applied time discounting to the durations of the two 

long-term sequelae (CPP and TI). Estimated durations for these two sequelae varied widely in the 

published literature. We therefore assumed a wide uncertainty range, between 5 years and remaining 

lifetime.9,23 We also assumed that there was a five-year lag between infection and the occurrence of 

these sequelae.9 When duration of CPP and TI were assumed to be remaining lifetime, we used a life 

table approach with age-specific mortalities to estimate discounted life expectancy for females in 

2015, using a 3% annual discount rate. In a preliminary analysis, we compared results across 

race/ethnicity groups and over time, but given that differences in discounted life expectancy were 

relatively small in these comparisons, for parsimony we pooled across all race/ethnicity groups and 

used data from 2015 to apply to all years.25  

In Table S4.4 we illustrate the calculations for the example of an infection among a woman aged 20 

years in 2015. For each five-year age interval (beginning after the five-year lag from incidence), we 

computed the present value of the loss of quality-adjusted life-years during that interval. We first 

obtained the age-group-specific conditional probability of all-cause mortality (and its complement, 

survival) for women in 2015 from the National Center for Health Statistics.25 We assumed that deaths 

occurred at the midpoint of each age interval up to 95-99 years and older. For the final, open interval 

(ages 100 years and more), we used estimated life expectancy at 100 years to define the average years 

lived in that open interval (2.284 years for females in 2015). The undiscounted total years lived by 

those who were alive at the start of an interval was calculated using the standard life table approach, 

accounting for years lived by those surviving the entire interval and years lived by those who died 

during the interval. For example, the undiscounted total years lived by those who survived and those 

who died between age 20-24 years was computed as (0.00232ΎϮ͘ϱн;ϭ-0.00232)ΎϱͿΎϭсϰ͘ϵϵ4 years. 

The undiscounted total years lived by those who survived or died between age 25-29 years was 
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computed as (0.003ϬϰΎϮ͘ϱн;ϭ-0.00304)*5)*0.998сϰ͘ϵϴ1 years, and so on. We accounted for both 

condition-specific QALY adjustments as well as age-specific QALY adjustments (reflecting 

comorbidities) using a multiplicative model.  

Table S4.4. Discounted life years lived and QALYs lost due to CPP with lifetime duration, for a woman 
who acquires gonorrhea age at 20 years in 2015 and experiences CPP beginning at age 25 years.  

Age (x) at 
start of 
interval 
(years) 

Conditional 
probability 
of dying 
between 
ages x and 
x+n 

Probability 
of surviving 
from age 
20 to exact 
age x 

Years lived 
within each 
interval by 
each 
person 
alive at age 
20 

Discounted 
years lived 
within each 
interval by 
each 
person 
alive at age 
20 

Back-
ground 
health-
state 
weight27   

Health 
state 
weight for 
CPP 

Discounted 
QALYs lost 
due to CPP 
between 
ages x and 
x+n 

20 0.00232 1.000 4.994 4.704 0.922 NA NA 
25 0.00304 0.998 4.981 4.030 0.922 0.600 1.486 
30 0.00417 0.995 4.963 3.451 0.901 0.600 1.244 
35 0.00549 0.990 4.939 2.954 0.901 0.600 1.065 
40 0.00791 0.985 4.906 2.525 0.871 0.600 0.880 
45 0.0120 0.977 4.857 2.155 0.871 0.600 0.751 
50 0.0189 0.965 4.782 1.832 0.842 0.600 0.617 
55 0.0275 0.947 4.671 1.549 0.842 0.600 0.522 
60 0.0385 0.921 4.517 1.303 0.823 0.600 0.429 
65 0.0566 0.886 4.304 1.085 0.823 0.600 0.357 
70 0.0904 0.836 3.989 0.886 0.790 0.600 0.280 
75 0.145 0.760 3.525 0.698 0.790 0.600 0.221 
80 0.240 0.650 2.859 0.514 0.736 0.600 0.151 
85 0.392 0.494 1.985 0.331 0.736 0.600 0.0976 
90 0.590 0.300 1.059 0.169 0.736 0.600 0.0497 
95 0.777 0.123 0.377 0.0587 0.736 0.600 0.0173 
100 1.000 0.027 0.0628 0.0097 0.736 0.600 0.00286 
Total NA NA 56.776 23.551 NA NA 8.169 

 

5. Probabilities of diagnosis and treatment 

We derived year-, race/ethnicity-, and age-specific probabilities of diagnosis and treatment for 

asymptomatic gonococcal infections from a calibrated gonorrhea metapopulation-model.1 In the 

study, heterosexual women and men were categorized as Non-Hispanic black, Hispanic, or “white and 

other,” whereas MSM were not stratified by race/ethnicity. Each population was stratified as two age 

groups (15-24 years and 25-39 years). As in the previous modeling study,1 all symptomatic gonococcal 
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infections were assumed to be reported and have received treatment. That is, the probabilities of 

treatment for symptomatic gonococcal infections were assumed to be 100%.  

Table S4.5 report model-estimated probabilities of diagnosis and treatment for asymptomatic 

gonococcal infections along the same strata. 

Table S4.5-(a). Estimated probabilities of diagnosis and treatment for asymptomatic gonococcal 
infections for heterosexual women by age and race/ethnicity over 2000-2015. 

Year Non-Hispanic Black Hispanic White and Other 
 Mean UI Mean UI Mean UI 
Age 15-24 years 
2000 0.178 0.108, 0.260 0.166 0.084, 0.296 0.187 0.115, 0.278 
2001 0.178 0.108, 0.260 0.166 0.084, 0.296 0.187 0.115, 0.278 
2002 0.191 0.122, 0.276 0.180 0.098, 0.302 0.202 0.138, 0.290 
2003 0.202 0.132, 0.286 0.190 0.109, 0.311 0.214 0.152, 0.302 
2004 0.212 0.141, 0.297 0.198 0.116, 0.316 0.222 0.162, 0.308 
2005 0.221 0.150, 0.305 0.204 0.120, 0.320 0.229 0.166, 0.313 
2006 0.229 0.157, 0.314 0.208 0.121, 0.325 0.233 0.169, 0.318 
2007 0.236 0.163, 0.319 0.211 0.123, 0.329 0.236 0.170, 0.323 
2008 0.242 0.169, 0.328 0.212 0.124, 0.332 0.238 0.171, 0.325 
2009 0.247 0.173, 0.337 0.213 0.125, 0.333 0.239 0.171, 0.325 
2010 0.251 0.177, 0.343 0.213 0.125, 0.334 0.239 0.171, 0.325 
2011 0.254 0.179, 0.345 0.213 0.125, 0.333 0.238 0.171, 0.325 
2012 0.256 0.180, 0.349 0.212 0.124, 0.331 0.237 0.170, 0.324 
2013 0.257 0.181, 0.351 0.211 0.124, 0.330 0.237 0.170, 0.321 
2014 0.258 0.182, 0.351 0.210 0.123, 0.329 0.236 0.169, 0.320 
2015 0.257 0.181, 0.349 0.210 0.123, 0.328 0.235 0.169, 0.319 
Age 25-39 years 
2000 0.161 0.083, 0.278 0.123 0.056, 0.229 0.142 0.080, 0.225 
2001 0.161 0.083, 0.278 0.123 0.056, 0.229 0.142 0.080, 0.225 
2002 0.166 0.094, 0.276 0.146 0.069, 0.258 0.168 0.103, 0.247 
2003 0.171 0.098, 0.278 0.163 0.080, 0.282 0.187 0.113, 0.269 
2004 0.174 0.104, 0.279 0.175 0.087, 0.307 0.202 0.121, 0.291 
2005 0.177 0.106, 0.279 0.185 0.091, 0.326 0.212 0.127, 0.307 
2006 0.179 0.104, 0.281 0.191 0.094, 0.340 0.219 0.129, 0.321 
2007 0.181 0.102, 0.286 0.196 0.096, 0.348 0.224 0.130, 0.327 
2008 0.182 0.102, 0.289 0.198 0.097, 0.353 0.227 0.131, 0.330 
2009 0.183 0.100, 0.293 0.199 0.097, 0.353 0.228 0.131, 0.333 
2010 0.183 0.099, 0.294 0.199 0.097, 0.353 0.228 0.131, 0.334 
2011 0.183 0.096, 0.293 0.199 0.097, 0.351 0.227 0.130, 0.333 
2012 0.183 0.091, 0.292 0.197 0.097, 0.349 0.226 0.129, 0.331 
2013 0.183 0.088, 0.292 0.196 0.097, 0.347 0.225 0.129, 0.330 
2014 0.182 0.087, 0.291 0.195 0.096, 0.345 0.224 0.128, 0.329 
2015 0.182 0.087, 0.290 0.195 0.096, 0.345 0.223 0.128, 0.329 
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Table S4.5-(b). Estimated probabilities of diagnosis and treatment for asymptomatic gonococcal 
infections for heterosexual men by age and race/ethnicity, and for MSM by age, over 2000-2015. 

Year Non-Hispanic Black Hispanic White and Other MSM 
 Mean UI Mean UI Mean UI Mean UI 
Age 15-24 years 
2000 0.015 0.004, 0.032 0.039 0.016, 0.078 0.038 0.015, 0.076 0.138 0.070, 0.229 
2001 0.015 0.004, 0.032 0.039 0.016, 0.078 0.038 0.015, 0.076 0.138 0.070, 0.229 
2002 0.015 0.001, 0.034 0.045 0.021, 0.086 0.043 0.022, 0.079 0.136 0.067, 0.227 
2003 0.017 0.001, 0.037 0.049 0.022, 0.100 0.047 0.023, 0.085 0.139 0.069, 0.230 
2004 0.020 0.004, 0.042 0.052 0.021, 0.114 0.050 0.023, 0.091 0.145 0.072, 0.233 
2005 0.024 0.008, 0.046 0.055 0.020, 0.122 0.052 0.022, 0.097 0.152 0.082, 0.239 
2006 0.029 0.010, 0.052 0.057 0.019, 0.129 0.054 0.022, 0.103 0.162 0.093, 0.247 
2007 0.034 0.013, 0.060 0.058 0.019, 0.133 0.055 0.022, 0.105 0.172 0.102, 0.262 
2008 0.040 0.015, 0.070 0.058 0.019, 0.135 0.056 0.022, 0.106 0.182 0.110, 0.275 
2009 0.046 0.017, 0.080 0.059 0.018, 0.136 0.056 0.022, 0.107 0.193 0.119, 0.289 
2010 0.051 0.019, 0.090 0.058 0.018, 0.137 0.056 0.021, 0.106 0.202 0.123, 0.303 
2011 0.056 0.021, 0.100 0.058 0.018, 0.136 0.056 0.021, 0.105 0.211 0.127, 0.314 
2012 0.060 0.022, 0.108 0.058 0.018, 0.134 0.055 0.021, 0.104 0.218 0.131, 0.324 
2013 0.062 0.022, 0.113 0.058 0.018, 0.133 0.055 0.021, 0.103 0.224 0.133, 0.333 
2014 0.064 0.023, 0.116 0.057 0.018, 0.131 0.055 0.021, 0.101 0.228 0.134, 0.340 
2015 0.064 0.023, 0.115 0.057 0.018, 0.131 0.055 0.021, 0.101 0.229 0.134, 0.342 
Age 25-39 years 
2000 0.048 0.018, 0.121 0.055 0.016, 0.119 0.052 0.019, 0.101 0.222 0.121, 0.326 
2001 0.048 0.018, 0.121 0.055 0.016, 0.119 0.052 0.019, 0.101 0.222 0.121, 0.326 
2002 0.048 0.019, 0.115 0.054 0.017, 0.117 0.051 0.020, 0.095 0.220 0.122, 0.321 
2003 0.048 0.020, 0.111 0.053 0.017, 0.113 0.051 0.020, 0.093 0.219 0.122, 0.326 
2004 0.048 0.021, 0.104 0.053 0.018, 0.108 0.050 0.020, 0.090 0.218 0.117, 0.337 
2005 0.047 0.021, 0.100 0.052 0.018, 0.101 0.049 0.020, 0.088 0.217 0.114, 0.342 
2006 0.047 0.021, 0.099 0.051 0.018, 0.098 0.049 0.020, 0.083 0.216 0.110, 0.345 
2007 0.047 0.020, 0.095 0.050 0.018, 0.094 0.048 0.020, 0.083 0.215 0.106, 0.351 
2008 0.047 0.020, 0.095 0.049 0.018, 0.092 0.047 0.020, 0.086 0.214 0.105, 0.352 
2009 0.046 0.018, 0.094 0.048 0.017, 0.091 0.047 0.020, 0.089 0.213 0.104, 0.352 
2010 0.046 0.017, 0.095 0.048 0.017, 0.093 0.046 0.020, 0.095 0.213 0.104, 0.352 
2011 0.046 0.017, 0.095 0.047 0.016, 0.095 0.045 0.020, 0.101 0.213 0.102, 0.351 
2012 0.046 0.016, 0.094 0.047 0.016, 0.098 0.045 0.019, 0.105 0.212 0.102, 0.350 
2013 0.045 0.016, 0.094 0.046 0.015, 0.099 0.045 0.018, 0.107 0.212 0.103, 0.348 
2014 0.045 0.016, 0.094 0.046 0.015, 0.099 0.044 0.018, 0.108 0.212 0.104, 0.347 
2015 0.045 0.015, 0.094 0.046 0.015, 0.099 0.044 0.018, 0.109 0.212 0.105, 0.347 

 

6. Defining probabilities and costs of side effects from gonorrhea treatment  

There are mild to moderate events and severe events as adverse reactions to gonorrhea treatment 

using Azithromycin (1g) and Ceftriaxone (250mg). Mild to moderate reactions usually include one or 

more of the following events: vomiting, reduction in hearing, dizziness or unsteadiness, skin rash, 
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injection pain, diarrhea and abdominal pain, fatigue, etc. Severe reactions usually include anaphylaxis, 

cholestatic jaundice, and interstitial nephritis. In our model, the probabilities of side effects were 

generated from beta distributions fitted in probabilities observed or estimated from a cost-

effectiveness analysis and several meta-analyses of randomized controlled trials.28–31The costs of side 

effects were also driven from these studies,28–31 with mean as average of costs estimated by each 

study, and 95% UI as symmetrically to the mean.  

Supplementary Results 

1. Lifetime QALYs, costs per incident gonococcal infection by race/ethnicity 

Table S4.6. Estimated number of discounted lifetime QALYs lost and costs associated with 
gonorrhea, per incident infection in 2015 by race/ethnicity groups.  

 NHB Hispanic AI/AN A/NH/OPI NHW MSM 

A. QALYs per incident infection in 2015, women 
Mean 0.0921 0.0933 0.0935 0.0928 0.0931 NA 
95% UI (0.0221 to 

0.217) 
(0.0225 to 

0.221) 
(0.0226 to 

0.222) 
(0.0224 to 

0.220) 
(0.0224 to 

0.221) 
NA 

B. QALYs per incident infection in 2015, MSW and MSM 
Mean 0.00200 0.00200 0.00200 0.00200 0.00200 0.00175 
95% UI (0.00153 to 

0.00239) 
(0.00153 to 

0.00239) 
(0.00153 to 

0.00240) 
(0.00153 to 

0.00240) 
(0.00153 to 

0.00240) 
(0.00125 to 

0.00224) 

C. Costs per incident infection in 2015 (in 2018 USD), women 
Mean 254 252 255 254 255 NA 
95% UI (109 to 459) (109 to 460) (109 to 462) (109 to 459) (109 to 460) NA 

D. Costs per incident infection in 2015 (in 2018 USD), MSW and MSM 
Mean 307 306 306 306 306 281 
95% UI (157 to 480) (157 to 480) (157 to 479) (157 to 479) (157 to 479) (145 to 443) 

*NH White (Non-Hispanic White), A/NH/OPI (Asian or Native Hawaiian or Other Pacific Islander), AI/AN 
(American Indian or Alaska Native), NH Black (Non-Hispanic Black) 
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2. Population-level QALYs lost due to gonococcal infections 

 
 
 

Table S4.7. Total number of discounted lifetime QALYs lost, and discounted lifetime QALYs lost per 
1,000 person-years associated with gonococcal infections that occurred in 2015, by sex, age-groups 
and race/ethnicity.  

Sex and age-group  Total 
number of 
QALYs lost 

95% uncertainty 
interval 

QALYs 
lost per 
1000 

person-
years 

95% uncertainty 
interval 

Women     
Ages 15-24 y, all 40,073 (9,425 to 94,124) 1.87 (0.44 to 4.40) 
Ages 25-39 y, all 13,221 (3,118 to 31,971) 0.41 (0.097 to 1.00) 
Ages 15-39 y, all 53,293 (12,326 to 125,366) 1.00 (0.23 to 2.35) 
Ages 15-24 y, NHB 18,694 (4,437 to 44,119) 5.59 (1.33 to 13.20) 
Ages 15-24 y, Hispanic  4,074 (962 to 9,504) 0.88 (0.21 to 2.06) 
Ages 15-24 y, AI/AN 1,090 (241 to 2,638) 5.05 (1.12 to 12.22) 
Ages 15-24 y, A/NH/OPI 632 (140 to 1,529) 0.50 (0.11 to 1.20) 
Ages 15-24 y, NHW 15,583 (3,447 to 37,711) 1.31 (0.29 to 3.16) 
Ages 25-39 y, NHB 5,073 (1,185 to 12,009) 1.12 (0.26 to 2.64) 
Ages 25-39 y, Hispanic  1,625 (387 to 3,890) 0.26 (0.061 to 0.61) 
Ages 25-39 y, AI/AN 456 (103 to 1,120) 1.63 (0.37 to 4.01) 
Ages 25-39 y, A/NH/OPI 215 (49 to 527) 0.086 (0.019 to 0.21) 
Ages 25-39 y, NHW 5,852 (1,323 to 14,367) 0.32 (0.072 to 0.78) 

MSW     
Ages 15-24 y, all 440 (302 to 623) 0.020 (0.014 to 0.029) 
Ages 25-39 y, all 183 (124 to 261) 0.0059 (0.0040 to 0.0084) 
Ages 15-39 y, all 623 (431 to 876) 0.012 (0.0082 to 0.017) 
Ages 15-24 y, NHB 245 (173 to 343) 0.071 (0.050 to 0.099) 
Ages 15-24 y, Hispanic  27.48 (14.86 to 45.24) 0.0056 (0.0030 to 0.0092) 
Ages 15-24 y, AI/AN 7.26 (4.11 to 11.98) 0.032 (0.018 to 0.054) 
Ages 15-24 y, A/NH/OPI 11.11 (6.29 to 18.34) 0.0085 (0.0048 to 0.014) 
Ages 15-24 y, NHW 149 (84.41 to 246) 0.012 (0.0067 to 0.020) 
Ages 25-39 y, NHB 100 (71.52 to 139) 0.024 (0.017 to 0.033) 
Ages 25-39 y, Hispanic  15.29 (8.61 to 25.13) 0.0022 (0.0012 to 0.0036) 
Ages 25-39 y, AI/AN 2.27 (1.20 to 3.76) 0.0082 (0.0043 to 0.014) 
Ages 25-39 y, A/NH/OPI 4.65 (2.45 to 7.70) 0.0020 (0.0011 to 0.0034) 
Ages 25-39 y, NHW 60.36 (31.84 to 99.99) 0.0032 (0.0017 to 0.0053) 

MSM     
Ages 15-24 y, all 772 (363 to 1,286) 0.88 (0.41 to 1.47) 
Ages 25-39 y, all 514 (224 to 860) 0.41 (0.18 to 0.68) 
Ages 15-39 y, all 1,286 (632 to 2,074) 0.60 (0.29 to 0.97) 

*NH White (Non-Hispanic White), A/NH/OPI (Asian or Native Hawaiian or Other Pacific Islander), AI/AN 
(American Indian or Alaska Native), NH Black (Non-Hispanic Black), all is the total population of these five 
race/ethnicity groups. 
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3. Population-level costs due to gonococcal infections 

 
 
 
Table S4.8. Total discounted lifetime costs, and lifetime costs per 1,000 person-years associated with 
gonococcal infections that occurred in 2015 (in 2018 US dollars), by sex, age-groups and 
race/ethnicity.  

Sex and age-group  Total costs 
(2018 US 
dollars, 
millions) 

95% uncertainty 
interval 

Costs per 
1000 

person-
years (2018 
US dollars, 
thousands) 

95% uncertainty 
interval 

Women     
Ages 15-24 y 111.31 (48.44 to 202.84) 5.21  (2.27 to 9.49) 
Ages 25-39 y 34.04 (13.90 to 64.65) 1.06 (0.43 to 2.02) 
Ages 15-39 y 145.34 (62.79 to 265.92) 2.72 (1.18 to 4.98) 
Ages 15-24 y, NHB 52.31 (22.18 to 97.46) 15.65 (6.64 to 29.16) 
Ages 15-24 y, Hispanic  11.16 (4.69 to 20.86) 2.42 (1.02 to 4.52) 
Ages 15-24 y, AI/AN 3.01 (1.28 to 5.63) 13.96 (5.94 to 26.07) 
Ages 15-24 y, A/NH/OPI 1.75 (0.74 to 3.26) 1.37 (0.58 to 2.56) 
Ages 15-24 y, NHW 43.08 (18.32 to 80.47) 3.61 (1.54 to 6.74) 
Ages 25-39 y, NHB 12.94 (5.34 to 25.42) 2.85 (1.18 to 5.60) 
Ages 25-39 y, Hispanic  4.17 (1.67 to 8.21) 0.66 (0.26 to 1.30) 
Ages 25-39 y, AI/AN 1.18 (0.48 to 2.31) 4.24 (1.71 to 8.26) 
Ages 25-39 y, A/NH/OPI 0.56 (0.22 to 1.09) 0.22 (0.090 to 0.43) 
Ages 25-39 y, NHW 15.19 (6.12 to 29.60) 0.83 (0.33 to 1.61) 

MSW     
Ages 15-24 y 68.06 (32.76 to 118.43) 3.15 (1.52 to 5.49) 
Ages 25-39 y 28.89  (13.58 to 50.61) 0.93 (0.44 to 1.62) 
Ages 15-39 y 96.94 (46.39 to 167.97) 1.84  (0.88 to 3.18) 
Ages 15-24 y, NHB 38.02 (18.06 to 66.41) 11.04 (5.24 to 19.27) 
Ages 15-24 y, Hispanic  4.24 (1.73 to 8.51) 0.86 (0.35 to 1.73) 
Ages 15-24 y, AI/AN 1.12 (0.47 to 2.11) 5.00 (2.10 to 9.43) 
Ages 15-24 y, A/NH/OPI 1.71 (0.72 to 3.23) 1.31 (0.55 to 2.47) 
Ages 15-24 y, NHW 22.96 (9.65 to 43.29) 1.83 (0.77 to 3.44) 
Ages 25-39 y, NHB 15.87 (7.61 to 26.98) 3.74 (1.79 to 6.36) 
Ages 25-39 y, Hispanic  2.41 (0.97 to 4.81) 0.35 (0.14 to 0.70) 
Ages 25-39 y, AI/AN 0.36 (0.14 to 0.71) 1.29 (0.50 to 2.56) 
Ages 25-39 y, A/NH/OPI 0.73 (0.28 to 1.45) 0.32 (0.12 to 0.64) 
Ages 25-39 y, NHW 9.51 (3.64 to 18.86) 0.51 (0.19 to 1.00) 

MSM     
Ages 15-24 y 122.98 (48.85 to 244.58) 140.37 (55.75 to 279.14) 
Ages 25-39 y 83.46 (31.68 to 167.38) 65.90 (25.02 to 132.17) 
Ages 15-39 y 206.44 (82.30 to 409.62) 95.35 (38.41 to 191.18) 

*NH White (Non-Hispanic White), A/NH/OPI (Asian or Native Hawaiian or Other Pacific Islander), AI/AN 
(American Indian or Alaska Native), NH Black (Non-Hispanic Black), all is the total population of these five 
race/ethnicity groups. 
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Chapter 5. Conclusion 

Summary of dissertation papers  

This dissertation uses mathematical modelling to synthesize empirical evidence and evaluate the 

epidemiological and economic burden of specific chronic and infectious diseases in the United States. 

In the second chapter of this dissertation, “Dynamic Modeling of Prevalence and Incidence Trends for 

Diabetes and Diabetes Diagnosis among Adults Aged 20 Years or Older, United States, 2000-2016”, I 

develop an age-stratified Markov model of undiagnosed and diagnosed diabetes and examine how 

the epidemiological burden of diabetes in the United States has changed over recent decades. The 

model estimates a 17-year period of decreasing prevalence of undiagnosed diabetes, increasing 

prevalence of diagnosed and all diabetes, and decreasing incidence of diabetes, rates of diabetes 

diagnosis, and incidence of diagnosed diabetes in the US adult population. This work provides the first 

estimates of the incidence of diabetes, and rates of diabetes diagnosis among the US adult population 

from nationally representative surveys. 

In the third chapter, “Risk score to predict cardiovascular disease (CVD) risk for patients with type 2 

diabetes mellitus (T2DM) in the United States: a pooled analysis of prospective cohorts”, I develop a 

novel CVD risk prediction model specifically for populations with T2DM in the United States. The 

model is constructed as a multivariable risk factor model estimated using pooled data on fatal-plus-

non-fatal CVD outcomes from 5 prospective cohorts. The model predicts a 10-year fatal-plus-non-fatal 

CVD risk for patients with T2DM in the US, with good discrimination and calibration performance. This 

performance is superior to the 2013 ACC/AHA Pooled Cohort Risk Equation, which underestimates 10-

year atherosclerotic CVD risk in diabetic populations. 

In the fourth chapter, “Disparities in health and economic outcomes associated with N. gonorrhoeae 

infection in the United States: costs and quality-adjusted life-years lost in 2015”, I develop probability 

tree models that capture clinical outcomes of gonorrhea and sequelae, and use these models to 
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evaluate the health and economic burden of gonorrhea and disparities across race/ethnicity groups. I 

report population-level disease burden in terms of the discounted lifetime costs and quality-adjusted 

life-years (QALYs) lost due to incident infections acquired during 2015, disaggregated by sex, age, 

race/ethnicity, and for men who have sex with men (MSM). The findings suggest that the highest 

absolute burden of both QALYs and costs occurs in Non-Hispanic Black women, and the highest per-

capita burden occurs in MSM and American Indian/Alaska Native women. 

Policy implications and future research  

The results of this dissertation illustrate the use of mathematical modelling to synthesize observed 

data to infer epidemiological trends that are not always directly observable, to quantify the short-

term and long-term health outcomes associated with disease and complications, and to measure 

disparities of health and economic burden of disease across population subgroups. The findings from 

our estimation of incidence trends for diabetes and diabetes diagnosis in the US adult population 

highlight the importance of continuing surveillance of trends in diabetes screening and testing and 

interventions to reduce diabetes incidence. Although the incidence of diabetes decreased, declining 

mortality among diagnosed diabetic populations, and high and increasing prevalence of all diabetes 

have resulted in continued high total number of diabetic individuals in the United States. In addition, 

according to our diabetes-specific CVD risk model, the estimated cardiovascular disease incidence and 

death rates among patients with type 2 diabetes in the United States may be higher than the estimates 

predicted and reported in the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. 

With decreasing all-cause and CVD-specific mortality but increasing long-term morbidity, the overall 

burden of diabetes and cardiovascular complications in the United States will remain high at least over 

the next decade. For these reasons, continued efforts to implement effective primary and secondary 

prevention for diabetes remain important public health priorities. 

The third paper in this dissertation, while focusing on a different clinical condition, shares several key 

methodological themes with the first two papers. Our analysis of the health consequences and 
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economic costs related to gonococcal infection synthesizes evidence from various sources to answer 

broad questions on resource prioritization and planning, relevant to public health policies. Across all 

three studies, the findings have identified or can be used to identify subpopulations with high or 

increasing disease and complications that may have been under-appreciated in previous research. 

more specifically, findings from the first paper indicate an increasing trend in prevalence of 

undiagnosed diabetes in adults ages 20-49 years, with continuing increases likely. Patients with high 

CVD incidence and mortality over the next decade can be quantified when applying the CVD risk 

prediction model in the second paper to risk factor profiles of diabetic populations in the United States. 

Results from the third paper not only quantify the large total disease burden associated with 

gonorrhea among non-Hispanic Black populations and among men who have sex with men, but also 

highlight the substantial relative burden among American Indian/Alaska Native populations. 

Identifying subpopulations with disproportionately large disease burden can provide evidence to 

enable decision making to target groups with the highest need.  

In addition to informing decision-making and health policy, the mathematical models developed in 

this dissertation highlight gaps in information availability, such as limited surveillance data on changes 

in diabetes detection and screening, CVD incidence and mortality for high-risk diabetic populations, 

and disparities in gonorrhea and sequelae diagnosis and treatment. By illuminating these limitations, 

modeling results can indicate directions for collecting new data to enable disease burden assessment. 

By presenting a comprehensive analysis framework of disease burden associated with gonococcal 

infection in the third study, we also provide guidance on how to collect and synthesize information 

that is most relevant to population disease burden and disparities evaluation. 

In summary, this dissertation describes three evaluations of disease burden in the United States, in 

the areas of chronic and infectious disease, and considering both economic and epidemiological 

outcomes. In each study, modelling is used to synthesize a range of empirical data, describe the 
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relationship between these data and subsequent outcomes, and report results directly relevant to 

policy or clinical decision-making. 
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