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Risk-based Strategies for Population Screening and Disease Management 

 

Dissertation Abstract 

 

 The objective of this dissertation is to explore the tradeoffs of risk-based strategies to 

screen populations for disease and manage patients with abnormal test outcomes. Many 

guidelines on screening or management of a patient population are based on a “one-size-fits-all” 

approach. However, tailoring guidelines to sub-groups based on risk has the potential to improve 

efficiency in health care spending and can result in adoption of strategies which decrease health 

care costs and improve patient outcomes 

Chapter 1 introduces a risk-stratified approach to screening for cervical and colorectal 

cancer. Published literature indicates that early negative screens may predict decreased future 

risk of cancer incidence. This suggests that individuals with negative screens early on may not be 

harmed by extending their screening interval moving forward, potentially presenting a significant 

cost-savings to the health care system. In this chapter, we use simulation modeling to explore the 

cost-effectiveness of strategies to widen the screening interval for women with early single or 

serial negative screens for both cervical and colorectal cancer. For cervical cancer, we find that 

an adaptive strategy to extend the screening interval from five years up to 15 years after just 1 

negative screen is cost-effective compared to current guideline screening. On the other hand, 

guideline screening using fecal immunochemical testing (FIT) for colorectal cancer is cost-

effective compared to any adaptive strategy.  
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Chapter 2 evaluates the cost-effectiveness of updated guidelines by the American Society 

for Colposcopy and Cervical Pathology (ASCCP) on the management of abnormal cervical 

cancer screening results. While previous guidelines in 2012 were based on specific actions for 

specific test results, updated guidelines in 2019 have shifted to a risk-based approach with the 

goal of applying “equal management of equal risks.”  We modified a microsimulation model of 

cervical cancer to assess the cost-effectiveness and resource utilization associated with newer 

guidelines compared to previous guidelines. We find that, under current screening practices, the 

2019 guidelines are cost-effective and cost-saving relative to previous guidelines, indicating that 

a risk-based approach improves the efficiency of cervical cancer screening and management.  

Chapter 3 explores diagnosis and screening for post-transplantation diabetes mellitus 

(PTDM), a complication of solid organ transplantation. There is sparse and inconsistent literature 

on PTDM, leading to inconsistent estimates of incidence and no differentiating guidelines on 

how to manage transplantation patients who may be at risk for PTDM. We analyzed data sets 

from kidney, liver, and heart transplantation patients at the Mayo Clinic, and used data 

imputation and simulation modeling to evaluate the potential impact of a screening program to 

collect hemoglobin A1c (HbA1c) and fasting blood glucose (FBG) from all patients in the 

immediate post-transplantation setting.  We find that poor and inconsistent collection of HbA1c 

and FBG results in underestimating of PTDM incidence and that better screening of these 

measures may be a cost-effective intervention to improve long-term patient outcomes. 



 

v 
 

Table of Contents 

Title Page ................................................................................................................................................. i 

Copyright ............................................................................................................................................ ii 

Dissertation Abstract .......................................................................................................................... iii 

Acknowledgements ............................................................................................................................ vi 

Table of Contents ................................................................................................................................ v 

Chapter 1 .......................................................................................................................................... 1-21 

Cost-effectiveness of A Risk-stratified Approach to Improve Cancer Screening Efficiency 

Abstract ............................................................................................................................................... 2 

Background ......................................................................................................................................... 4 

Methods .............................................................................................................................................. 5 

Results............................................................................................................................................... 10 

Discussion ......................................................................................................................................... 17 

 

Chapter 2 ........................................................................................................................................ 22-39 

Cost-effectiveness Analysis of Updated ASCCP Guidelines for the Management of Women with 

Abnormal Cervical Cancer Screening Results 

Abstract ............................................................................................................................................. 23 

Background ....................................................................................................................................... 25 

Methods ............................................................................................................................................ 26 

Results............................................................................................................................................... 32 

Discussion ......................................................................................................................................... 37 

 

Chapter 3 ........................................................................................................................................ 40-62 

Imputation and Decision Modeling to Improve Diagnosis and Management of Patients at Risk for Post-

Transplant Diabetes Mellitus 

Abstract ............................................................................................................................................. 41 

Background ....................................................................................................................................... 43 

Methods ............................................................................................................................................ 45 

Results............................................................................................................................................... 50 

Discussion ......................................................................................................................................... 59 

 

Supplemental Material ........................................................................................................................ 63 

References ............................................................................................................................................ 65 



 

vi 
 

Acknowledgements 

This work would not have been possible without the teamwork of many terrific 

researchers. Thanks to the cervical cancer team at CHDS for letting me be a part of it, and to the 

team at the Mayo Clinic for all your hard work.  

 Thanks to my outstanding committee – Jane, Soroush, and Ankur – for your guidance, 

patience, and friendship. You have made me a better researcher, teacher, and mentor. 

 Thank you to my incredible family and friends for all of your support through the years – 

I couldn’t have done it without you. 

  

This dissertation is dedicated to my loving wife and son, Nisha and Liyan. WE did it! 

 

 

 

 

 

 

 

 

 



 

1 
 

CHAPTER 1CHAPTER 1 

 

 

Cost-effectiveness of A Risk-stratified Approach to Improve Cancer Screening Efficiency 
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ABSTRACT 

 

BACKGROUND 

US Preventive Services Task Force (USPSTF) guidelines for cervical and colorectal cancer 

screening do not consider changes in interval based on pervious screen results.  Recent literature 

suggests early negative screens may be predictive of reduced downstream risk. We explored a 

risk-stratified approach to cancer screening in which one or multiple negative screens extend the 

screening interval and improve efficiency of cancer screening.  

METHODS 

We utilized two microsimulation models which have been used in previous studies to inform 

USPSTF guidelines. We analyze multiple scenarios of negative screens needed to extend 

screening to various lengths on USPSTF guidelines for cytology-based and co-test screening for 

cervical cancer and fecal immunochemical test (FIT) screening for colorectal cancer. The 

number of screens, cancer cases, and deaths were estimated for each scenario and a cost-

effectiveness analysis was conducted to determine the optimal strategy. 

RESULTS 

An adaptive screening strategy that extended co-test screening to 15 years after 1 negative screen 

was the cost-effective strategy (ICER $62,700/QALY) for cervical cancer screening.  For 

colorectal cancer screening, guidelines annual FIT screening was cost-effective (ICER 

$70,300/QALY). Cervical cancer adaptive screening strategies significantly reduced the number 

of screens with minimal impact on life expectancy.  
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CONCLUSION 

A risk-based adaptive screening approach can improve efficiency in screening by accounting for 

patient heterogeneity in the screening population identified by prior screening results. 

Considering adaptive, personalized screening strategies in future guideline development for 

cancer screening may help to reduce screening costs and fund other cost-effective interventions 

without placing a burden on the health care system.   
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BACKGROUND 

 

The U.S. Preventive Services Task Force (USPSTF) currently recommends screening for 

two cancers with an “A” rating, indicating high certainty of substantial benefit (1, 2). Cervical 

cancer screening using cytology (Pap) testing is recommended every 3 years for women aged 21-

29 years. From ages 30-65 years, women have the option of either continuing cytology every 3 

years, switching to HPV testing alone every 5 years, or switching to cytology in combination 

with HPV testing (i.e., “co-testing”) every 5 years.  Additionally, colorectal cancer screening is 

recommended with the option of using several different tests, such as colonoscopy or fecal 

immunochemical tests (FITs) at different time intervals for adults aged 50-75 years.  One 

common theme across all recommended cancer screening protocols is that the re-screening 

interval between screens is constant across the duration of screening irrespective of screening 

history, which may stem from the clinical trials and modeling studies that informed these 

recommendations using a constant re-screening interval. 

 

As data have been gathered on implemented screening programs over the past decade, 

there is growing evidence that negative screen results can provide actionable information.  

Women who both have a normal cytology result and test negative for a high-risk HPV infection 

(i.e., co-test negative) have a substantially reduced risk of cervical cancer for at least five years 

compared to those with either a positive cytology or a positive HPV test result (3-5).  

Additionally, an observational cohort study found that lengthening the interval between screens 

to beyond five years may be “feasible and safe (6)” for those with a co-test negative result.  

Similarly, an analysis of patients who have undergone colonoscopy screening for colorectal 

cancer found that colorectal cancer risk is reduced for longer than 10 years following a negative 
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screen (7).  While a modeling study for the USPSTF found that colonoscopy screening could be 

extended from 10 to 15 years if screening began at age 45 (8), no study has evaluated the 

potential for reducing screening on the basis of one or multiple negative screens. Extending the 

interval between screening tests can drastically reduce the burden and the harms associated with 

screening, including risk and disutility associated with false-positive results, as well as monetary 

costs, which have been estimated to be in the billions of dollars for screening and follow-up (9). 

Whether early negative screen results are enough of an indicator of low risk to warrant screen 

interval extension and the potential loss of health benefits is uncertain.  

 

Decision models provide a useful tool in simulating data and projecting outcomes, 

particularly in cases where the time horizon of available data is limited, and clinical trials do not 

exist to test specific strategies. In recent years, decision models have been used to aid in clinical 

guideline-making, particularly for preventive services in cancer (10). In order to assess the 

tradeoffs in health benefits and costs associated with a shift towards risk-stratified screening 

strategies, we used simulation modeling to evaluate novel adaptive cervical and colorectal cancer 

screening strategies that extend the screening interval based on one or more negative screening 

results. We aim to identify cost-effective approaches for cervical and colorectal cancer screening 

in the United States and highlight potential opportunities to improve cancer screening efficiency.   

 

 

METHODS 

 

Overview of Models 

  

We utilized two previously developed microsimulation models, which have been the 

basis of several published cost-effectiveness analyses and screening evaluation studies in the 
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United States. Both models (Table 1) are part of the National Cancer Institute’s Cancer 

Intervention and Surveillance Modeling Network (CISNET) consortium and have been used to 

inform USPSTF guidelines in the respective cancers.  

 

For cervical cancer, we used an individual-based microsimulation model of HPV 

infections and cervical cancer natural history (11-14). The model simulates individual women 

from age 9 years until death through HPV, precancer (cervical intraepithelial neoplasia grades 2 

and 3 (CIN2, CIN3)) and invasive cancer health states. Preclinical cancers may progress in stage 

or may be detected by symptoms. Transitions are based on multiple factors, such as age, duration 

of infection or precancer, HPV genotype and history of HPV infection. Previous literature 

includes details on the model’s parameter estimation and calibration, as well as the data sources 

used in model development (13-15). Screening scenarios were adapted to allow for changes in 

screening interval based on screen results.   

 

For colorectal cancer, we used the Simulation Model of Colorectal Cancer (SimCRC).  

SimCRC (16-21)  simulates the development and growth of adenomas, some of which may 

progress to preclinical colorectal cancer. As with the cervical cancer model, SimCRC contains a 

screening component that simulates the detection of adenomas and preclinical cancers, which 

may progress in stage or be detected by symptoms. It also simulates removal of adenomas by 

polypectomy. The model was adapted for this analysis to allow screening intervals to be 

extended based on prior test results.  
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Table 1.1.  Cervical and Colorectal model details and characteristics 

Model Cervical Model Colorectal Model (SimCRC) 

Approach Microsimulation Microsimulation 

Time interval Discrete (monthly) Time-to-Event 

Data Sources for Parameter 

Estimation/Calibration/ 

Validation 

SEER, US Census, PROSPR, 
KPNC, NMHPVPR, CVT 

SEER, US Census, NHANES, 
NHS, HPFS, NHIS 

Natural History Healthy, HPV (by genotype), 
CIN2, CIN3, Pre-clinical cancer 

(by stage), Clinical cancer (by 

stage) 

Healthy, Low/Medium/High-risk 
Adenoma, Pre-clinical cancer (by 

stage), Clinical cancer (by stage) 

Screening characteristics Cytology† 
Sensitivity: 70 

Specificity: 91 

HPV Test (to detect HPV 
infection) ‡ 

Sensitivity: 91 

Specificity: 93 

FIT 
Sensitivity: 

 - for adenomas 5mm or less: 5 

 - for adenomas 6-9mm: 10.1 
 - for adenomas 10mm or more: 22 

 - for cancer: 70 

Specificity: 95 

 

Outputs Costs 

Cancer incidence 
Stage Distribution 

Test Results 

Mortality rate 

Quality-adjusted life 
expectancy 

 

Costs 

Cancer incidence 
Stage Distribution 

Test Results 

Mortality rate 

Quality-adjusted life expectancy 
 

 
† Cytology sensitivity and specificity values represent probabilities of ASCUS or worse/better given presence/absence of CIN 2 
or worse health status.   
‡ HPV DNA testing is assumed to be 100% sensitive and 100% specific in detecting the presence/absence of high-risk HPV 
types (pooled or by genotype). Under this assumption, the model generates an implied clinical sensitivity for detecting CIN 2 or 

worse of 91% and specificity of 93%. 
Note:  
* Test performance is assumed to be independent for multiple tests conditional on presence or absence of disease  
SEER = Surveillance, Epidemiology, and End Results 
PROSPR = Population-based Research to Optimize the Screening Process  
KPNC = Kaiser Permanente Northern California 
NMHPVPR = New Mexico HPV Pap Registry 
CVT = Costa Rica Vaccine Trial 

NHANES = National Health and Nutrition Examination Survey 
NHS = Nurses’ Health Study 
HPFS = Health Professionals’ Follow–up Study 
NHIS = National Health Interview Survey 

 

Screening Strategies 

We evaluated cervical cancer screening strategies that were modifications of both 

cytology and HPV co-testing guideline recommendations, allowing for extension of screening 
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intervals based on negative results (Table 1.1).  For cytology-only screening, we extended 

intervals to 5, 8, or 10 years after one or two consecutive negative screens.  For co-testing, we 

maintained a constant 3-year cytology testing interval between ages 21-29 years but evaluated 

extending the co-testing interval from 5 years to 8, 10, 12, 15, or 20 years after one or two 

consecutive negative co-tests beginning at age 30 years. We also included a strategy that 

involved reducing the original co-testing interval to 3 years in order to mitigate some of the 

health benefit tradeoff from extending screening. In total, we evaluated 31 cervical cancer 

strategies, including no screening and both current guideline options (Table 1.2).    

 

For colorectal cancer screening, we extended annual FIT screening to screening every 2 

or 3 years following a range of 1 to 15 consecutive negative screens. Including the no-screen 

scenario, we modeled 32 different colorectal screening strategies (Table 1.2). 

 

Table 1.2. Description of Adaptive Screening Strategies, Cervical and Colorectal Cancer 

 

Screening 

Type 

Initial 

interval 

Number of 

negatives needed to 

extend interval 

New interval 

Total 

strategies 

evaluated 

(including 

guidelines) 

Cervical Cancer 

Cytology Every 3 years 1, 2 5, 8, 10 years 7 

Cytology/HPV 

co-test 

Every 5 years 

(or 3 years) 

1, 2 5, 8, 10, 12, 

15, 20 years 

23 

Colorectal Cancer 

FIT Annual 1-15 2, or 3 years 31 
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Analysis 

 

Both models were used to evaluate the similar outcomes. Cancer cases, cancer deaths, 

and number of screening tests were estimated from the model to assess clinical and screening 

impact. In addition, health benefits and costs were estimated to evaluate cost-effectiveness. 

Health benefits were defined as quality-adjusted life years (QALYs) accrued over a lifetime 

horizon beginning at the age of screening initiation (21 years in the cervical cancer model and 50 

years in the colorectal cancer model).  Costs included the lifetime costs associated with cancer 

screening, diagnosis, and treatment of both precancer and invasive cancer. In adopting a societal 

perspective and keeping with recommended guidelines for cost-effectiveness analysis, we 

discounted both health benefits and costs annually at 3% and used a willingness-to-pay threshold 

of $100,000 per quality-adjusted life year (QALY) gained (22, 23).  Consistent with assumptions 

in previous model-based analyses used to inform USPSTF recommendations, we assumed 

perfect adherence to screening. 

 

To determine the optimal screening strategy for each cancer, we conducted an 

incremental cost-effectiveness analysis including all interventions. We first eliminated strategies 

that were more costly and less effective than a singular alternative strategy (strongly dominated) 

or a linear combination of two alternative strategies (weakly dominated). The remaining 

strategies created an efficiency frontier and allowed for the calculation of incremental cost-

effectiveness ratios (ICERs) defined as the difference in cost divided by the difference in 

effectiveness between a strategy and the adjacent less costly strategy on the frontier.  We 

compared these ICERs and considered the strategy with the highest ICER below a commonly-

used cost-effectiveness threshold of $100,000 per QALY gained as the cost-effective cancer 
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screening strategy (23).  We accounted for uncertainty in model parameters by conducting 

sensitivity analyses on each model in areas where uncertainty had been identified from prior 

analyses.  For the cervical cancer model, all scenarios were run using 50 different good-fitting 

natural history parameter sets. For colorectal cancer, we varied costs of screening, cancer care, 

and treatment. 

 

 

RESULTS 

 

Non-dominated strategies 

 

There were 12 efficient, or “non-dominated”, strategies on the cervical cancer efficiency 

frontier (Figure 1.1A), including the no-screening strategy and the guideline-based strategy 

which involves switching to co-testing every 5 years at age 30. Non-dominated strategies include 

all strategies for which no other strategy exists that is both cheaper and provides more QALYs. 

Therefore, moving along the efficiency frontier, there exists a tradeoff between cost and benefit 

(QALYs). The efficiency frontier for all non-dominated colorectal cancer screening strategies 

(Figure 1.1B) contains 6 strategies, including the guideline-based FIT strategy. 
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Figure 1.1A/1B. Efficiency Frontier of Cervical and Colorectal Cancer Screening Strategies 

 
 

Cervical Cancer: Primary outcomes 

Table 1.3 provides the primary outcomes of cancer cases, cancer deaths, screens, and 

diagnostic colposcopies across non-dominated adaptive strategies compared to guideline-based 

screening. The most effective strategy in minimizing cancer cases and deaths was to begin with a 

3-year co-testing interval and extend it to 5 years after 1 negative screen. This strategy resulted 

in the same number of cancer deaths (33 per 100,000 screened) with one additional cancer case 

averted compared to guideline-based 5-year co-testing.  Moving from guidelines to this strategy 

increased lifetime cytology screens by 41,000 (3.5%), lifetime HPV screens by 40,000 (4.7%) 

and lifetime diagnostic colposcopies by 4,000 (2.4%).   A strategy which extended 5-year co-
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testing to 8 years after 1 negative screen also resulted in 33 cancer deaths per 100,000 screened, 

but increased cancer cases to 99 per 100,000 screened compared to 97 per 100,000 screened in 5-

year guidelines-based co-testing. However, compared to guidelines, this strategy reduced the 

number of cytology screens by 200,000 (18%), HPV screens by 200,000 (24.8%), and diagnostic 

colposcopies by 27,000 (16.3%).   

 

Compared to 3-year cytology-only guidelines, which resulted in 223 cancer cases and 88 

cancer deaths per 100,000 women an adaptive strategy extending 5-year co-testing to 15 years 

after 1 negative screen reduced cancer cases by 32.7% (73 cases per 100,000 screened) and 

cancer deaths by 37.8% (31 deaths per 100,000 screened).  Additionally, the adaptive strategy 

reduced cytology screens by 642,000 (47.4%), while HPV screens increased by 258,000 (353%), 

and colposcopies increased by 37,000 (52%).  Generally, the number of cancers cases and cancer 

deaths increased as the screening interval was extended further away from guidelines-based 

screening after one negative screen. 
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Table 1.3.  Primary outcomes across selected non-dominated cervical screening strategies 

Strategy* 

 

Cancer 

Cases 

(per 

100,000 

screened) 

Cancer 

Deaths 

(per 

100,000 

screened) 

Lifetime 

Cytology 

Screens 

(per 

100,000 

screened) 

Lifetime 

HPV 

Screens 

(per 

100,000 

screened) 

Lifetime 

Colposcopies 

(per 100,000 

screened) 

Cervical Cancer      

Co-test – 3y – 5y – 2 neg 96 33 1,188,000 882,000 174,000 

Co-test – 3y – 5y – 1 neg 96 33 1,155,000 848,000 170,000 

Guideline 2 (Co-test 5y) 97 33 1,114,000 808,000 166,000 

Co-test – 5y – 8y – 1 neg 99 33 914,000 608,000 139,000 

Co-test – 5y – 10y – 2 neg 105 36 858,000 552,000 130,000 

Co-test – 5y – 10y – 1 neg 110 40 821,000 515,000 125,000 

Co-test – 5y – 15y – 1 neg 150 51 712,000 406,000 108,000 
Guideline 1 (Cytology 3y) 223 82 1,354,000 73,000 71,000 

Co-test – 5y – 20y – 1 neg 218 88 637,000 331,000 95,000 

Cytology – 3y – 5y – 1 neg 328 123 973,000 53,000 52,000 

Cytology- 3y – 8y – 1 neg 483 185 660,000 36,000 37,000 
Cytology – 3y – 10y – 1 neg 589 226 554,000 30,000 31,000 

No Screening 1,650 818 0 0 0 

* Strategies are presented in the form (Screen Type – Original Interval in years – New Interval in 

years – Number of consecutive negative screens criterion required to change interval) 

 

Colorectal Cancer: Primary outcomes 

Adaptive colorectal cancer strategies yielded increasing cancer cases and deaths as the 

criteria for extending FIT screening from annual to biennial screening became more lenient 

(Table 1.4). Guideline annual FIT screening was the most effective in minimizing cancer cases 

and cancer deaths with 2,117 cases and 430 deaths, while lifetime FIT screens totaled 1,630,000 

per 100,000 screened.  Colonoscopies done for follow-up, surveillance, and symptomatic work-

up totaled 179,000 per 100,000 screened under guideline annual screening. The closest adaptive 

strategy to guidelines was an adaptive strategy which extended the interval to 2 years after 14 

negative screens.  This strategy yielded 361 (2,478 vs 2,117) more cancer cases and 109 (539 vs 

430) more cancer deaths per 100,000 individuals (increases of 17.1% and 25.3%, respectively).  
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However, lifetime FIT screens decreased by 16% (1,630,000 vs 1,370,000) and colonoscopies 

decreased by 11.2% (179,000 vs 159,000) moving from guidelines to adaptive screening. 

 

Table 1.4.  Primary outcomes across selected non-dominated colorectal screening strategies 

Strategy* 

 

Cancer 

Cases (per 

100,000 

screened) 

Cancer 

Deaths (per 

100,000 

screened) 

Lifetime 

Screens (per 

100,000 

screened) 

Lifetime 

Colonoscopies 

(per 100,000 

screened) 

Colorectal Cancer     

Annual FIT (Guideline) 2,117 430 1,630,000 179,000 

FIT – 1y – 2y – 14 negs 2,478 539 1,370,000 159,000 

FIT – 1y – 2y – 10 negs 2,612 568 1,270,000 151,000 

FIT – 1y – 2y – 6 negs 2,772 603 1,160,000 142,000 

FIT – 1y – 2y – 4 negs 2,870 625 1,100,000 137,000 

FIT – 1y – 2y – 2 negs 2,990 646 1,030,000 131,000 

No screening 6,951 2,774 0 6,951 

Abbreviation: FIT, fecal immunochemical test 

* Strategies are presented in the form (Screen Type – Original Interval in years – New Interval in 

years – Number of consecutive negative screens criterion required to change interval) 

 

 

Cervical Cancer CEA 

 

Table 1.5 gives costs, health benefits (QALYs), and incremental cost-effectiveness ratios 

(ICERs), for the 12 non-dominated cervical screening strategies.  At a willingness-to-pay 

threshold of $100,000 per QALY gained, the strategy that extends the 5-year co-testing interval 

to 15 years after a single negative screen (including both normal cytology and HPV-negative 

results) at age 30 was cost-effective with an ICER of $62,700 This strategy strongly dominated 

the cytology-only guidelines, providing greater health benefits at a lower cost. Compared to co-

testing guidelines, the cost-effective adaptive strategy resulted in a cost-savings of $439,000 per 

1,000 women screened ($1,565,000 - $1,126,000), a savings of over 28%, with a decrease in 

health benefits of 0.68 QALYs per 1,000 women screened, a reduction of 0.002% (Table 5).  
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Table 1.5. Cost-effectiveness of Cervical Cancer Screening Strategies   

 

Strategy* 

 

Cost (per 

1,000 people 

screened) 

QALYs (per 

1,000 people 

screened) 

Incremental 

Cost-

Effectiveness 

Ratio (ICER), $ 

No Screening 184,000 28,208.66 - 

Cytology – 21 – 3y – 10y – 1 

neg 

587,000 

28,241.33 12,000 

Cytology – 21 – 3y – 8y – 1 

neg 

662,000 

28,244.28 25,400 

Cytology – 21 – 3y – 5y – 1 

neg 

888,000 

28,249.07 47,200 

Co-test – 5y – 20y – 1 neg 1,051,000 28,252.35 49,700 

Co-test – 5y – 15y – 1 neg 1,126,000 28,253.54 62,700 

Co-test – 5y – 10y – 1 neg 1,250,000 28,254.08 227,900 

Co-test – 5y – 10y – 2 neg 1,286,000 28,254.13 712,500 

Co-test – 5y – 8y – 1 neg 1,345,000 28,254.17 1,356,000 

Co-test – 5y (Guideline) 1,565,000 28,254.22 5,023,000 

Co-test – 3y – 5y – 1 neg 1,605,000 28,254.22 7,243,300 

Co-test – 3y – 5y – 2 neg 1,638,000 28,254.23 9,704,900 

Abbreviation: QALY, quality-adjusted life year 

* Strategies are presented in the form (Screen Type – Original Interval in years – New Interval in 

years – Number of consecutive negative screens criterion required to change interval) 

** Assuming a willingness-to-pay of $100,000/QALY gained 

*** Cost-effective strategy in bold 

 

 

Colorectal Cancer CEA 

 

Guideline-based annual FIT screening was the cost-effective (ICER of $70,300 screening 

strategy at the $100,000 threshold, providing 2 additional QALYs per 1,000 people screened 

compared to the next-best strategy at an additional cost of $188,000 (Table 1.6).  At a lower 

willingness-to-pay threshold, such as $50,000 per QALY, the strategy to extend FIT screening 

from annual to bi-annual after 10 consecutive negative screens was cost-effective. This strategy 

yielded 4 less QALYs per 1,000 screened (0.02% reduction) compared to annual guideline 

screening at a cost-savings of $269,000 (7.9%) per 1,000 screened. 
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Table 1.6. Cost-effectiveness of Colorectal Cancer Screening Strategies 

Strategy* 

 

Cost (per 

1,000 people 

screened) 

QALYs (per 

1,000 people 

screened) 

Incremental 

Cost-

Effectiveness 

Ratio (ICER) 

FIT – 1y – 2y – 2 negs 2,941,000 16,167 - 

FIT – 1y – 2y – 4 negs 2,998,000 16,169 $27,700 

FIT – 1y – 2y – 6 negs 3,056,000 16,170 $37,600 

FIT – 1y – 2y – 10 negs 3,152,000 16,172 $47,300 

FIT – 1y – 2y – 14 negs 3,233,000 16,174 $63,400 

Annual FIT (Guideline) 3,421,000 16,176 $70,300 

Abbreviation: QALY, quality-adjusted life year; FIT, fecal immunochemical test 

* Strategies are presented in the form (Screen Type – Original Interval in years – New Interval in 

years – Number of consecutive negative screens criterion required to change interval) 

** Assuming a willingness-to-pay of $100,000/QALY gained 

*** Cost-effective strategy in bold 

 

 

 

Sensitivity Analysis 

 

We conducted sensitivity analyses on uncertain model input parameters in both models.  

For cervical cancer, we ran all scenarios under 50 different good-fitting calibrated model input 

parameter sets as a form of probabilistic sensitivity analysis. Across all parameter sets, we found 

that the ranking ordering of strategies and the cost-effective strategy to be the same as in the base 

case analysis.    

 

For colorectal cancer, we varied costs associated with screening and annual costs of 

cancer care. We increased costs by up to 50% for the diagnosis stage of patients diagnosed with 

stage 3 and 4 cancers, as well as total costs for those who die of cancer beginning at any stage.  

For all increases in costs, the ranking of strategies and the cost-effective strategy remained the 

same as in the base case.  We also increased the cost of the FIT test, which had a base case cost 

of $39.48. We found that results were robust for increases in the FIT cost up to approximately 



 

17 
 

$61 (a 55% increase in cost), at which point the cost-effective strategy was an adaptive strategy 

in which annual FIT was changed to bi-annual after 14 negative screens (ICER $94,000 per 

QALY).  Secondly, we ran the scenarios with increased FIT sensitivity for adenomas and 

colorectal cancer.  For 10% and 20% increases in FIT sensitivity, we found no change in optimal 

strategy.  However, for a 30% increase, an adaptive strategy to switch from annual to bi-annual 

after 10 negative screens was cost-effective (ICER $90,000 per QALY).   

 

 

DISCUSSION 

 

The USPSTF has relied on evidence from decision models in forming recent cancer 

screening recommendations (10).  As data have become available on guidelines in practice, there 

exists an opportunity to further investigate the potential for efficiency gains through new risk-

based strategies that had not been considered before.  A major advantage of decision models is 

their ability to allow researchers to consider hypothetical scenarios and project the downstream 

costs and benefits once they are implemented.  In this study, we evaluated screening protocols 

based on a novel approach that adapts screening interval length based on evidence provided by 

previous screening results.  Furthermore, we show that in the case of cervical cancer, this 

adaptive approach would be cost-effective in the United States. 

 

Risk-stratified screening strategies can improve cancer screening efficiency by 

identifying individuals at particularly low risk of developing cancer based on one or more early 

negative screens.  By screening this population less often, we can significantly reduce screening 

costs and other potential harms associated with screening programs, with minimal effect on 

health outcomes.  Two factors played a major role in the cost-effectiveness of adaptive screening 
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strategies.  In cervical cancer screening, the high negative predictive value of the cytology/HPV 

co-test ensures that the loss in health benefits by lengthening the screening interval would be 

small. In colorectal cancer, on the other hand, the low sensitivity of the FIT makes it inefficient 

to lengthen the screening interval even after numerous consecutive negative tests. The second 

factor is test cost.  In colorectal cancer screening, the cost of FIT is extremely low and, even 

when administered annually, was found to be a cost-effective way of mitigating the risk of 

delaying screening after a false negative. 

 

The main drawback of the interval-extending screening strategies modeled in this study is 

the loss in health benefit due to decreased screening.  However, Table 3 shows that the strategy 

which extends the co-testing interval to 8 years after 1 negative screen gives us nearly identical 

health benefits to current 5-year co-testing guidelines at a large cost-savings, with a health loss of 

only 0.05 QALYs per 1,000 women at a cost-savings of $220,000 per 1,000 women.  Invested in 

other health interventions, these savings could be spent in other areas of health care to yield even 

more health improvements without any additional costs. For example, within cervical cancer 

prevention efforts, there may be an opportunity to re-invest these savings to more aggressively 

follow-up women with outcomes that classify them as higher risk or recruit women who are 

never screened or screened infrequently. 

 

There are multiple limitations to this study in terms of modeling the proposed screening 

strategies.  We assumed perfect adherence to screening for all scenarios. Though much evidence 

exists that screening adherence is not perfect (24, 25), we made this assumption following the 

base-case analyses used by the USPSTF in their recommendations. We did, however, conduct 
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sensitivity analyses on screening adherence to show that base-case results still hold under a 

change in our assumptions.  An aspect to adherence that we did not model is the possibility that 

changing the screening interval may harm patient adherence.  While there is evidence that longer 

screening intervals may not harm screening adherence (26, 27), it is possible that changing the 

interval for women at different times may impact adherence.   Furthermore, in considering the 

quality-adjustment of life years during the screening program, our models do not account for 

utility decrements associated with the screening procedures themselves and false-positive results. 

Including these utility values would likely benefit interval-extending strategies that screen less 

often.   

 

Other limitations involve aspects of cancer natural history that are unknown or 

unobservable and cannot be modeled precisely, which may impact the results of this analysis.  

For example, in cervical cancer, uncertainty around HPV re-infection in older women may 

impact the possibility of having additional infections which may be missed by extending 

screening intervals.  In colorectal cancer, research indicates that cancer is increasing in younger 

populations and may have distinct characteristics from typical cancers, which are still unknown 

and difficult to model (28, 29). Furthermore, there is evidence of an alternative pathway to 

colorectal cancer through serrated polyps which could account for 10-20% of colorectal cancers 

(30). While these cancers are distinct from those caused by typical adenomas, there is still 

limited information regarding their natural history or how to address them in clinical practice 

(31).  As a result, it is not clear how reducing the number of FIT tests, which do not detect these 

lesions well, may impact the effectiveness of screening in reducing these cancers (32).  It is 
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possible false-positives FIT results may result in colonoscopies that improve the chance of 

detecting cancers that develop from a serrated polyp. 

 

Given that risk-stratified screening strategies have the potential to improve cancer 

screening efficiency, an important next step will be to assess and address the challenges in 

adopting these strategies in clinical practice.  One difficulty is that physicians are likely to be 

wary of how these strategies may adversely impact individual patients. If neither the cost of 

screening nor the savings from adopting an adaptive strategy are felt by the decision-maker, the 

cost-savings may not be enough to justify a change in behavior. However, it should be noted that 

if the cost-effective adaptive strategy for cervical cancer had been the default recommendation, 

switching to current guidelines-based screening would come at a cost of over $600,000 per 

QALY, well over commonly-cited cost-effectiveness thresholds in the United States.  A second 

difficulty in implementation is that changing to an adaptive strategy creates additional protocol 

complexity and may result in low adherence from physicians, as well as patients who may have 

trouble keeping track of when they are supposed to complete their screening.  However, 

increased use of electronic medical records (EMRs) may aid in future tracking of patient 

screening history, adjustments to screening schedules, and patient notifications which may 

mitigate some of the logistical issues. 

 

In conclusion, a risk-based adaptive screening approach can improve efficiency in 

screening by accounting for patient heterogeneity in the screening population identified by prior 

screening results.  In cervical cancer, we identified adaptive strategies that produced nearly equal 

benefit in terms of QALYs compared to more intensive non-adaptive guideline strategies at a 
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significant cost-savings. In colorectal cancer, we confirmed that the existing guidelines were 

cost-effective and identified features (test characteristics and costs) that reduce the attractiveness 

of an interval-extending approach.  Considering adaptive, personalized screening strategies in 

future guideline development for cancer screening may help to reduce screening costs and fund 

other cost-effective interventions without placing a burden on the health care system.   
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CHAPTER 2CHAPTER 1 

 

 

Cost-effectiveness Analysis of Updated ASCCP Guidelines for the Management of Women with 

Abnormal Cervical Cancer Screening Results 
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ABSTRACT 

 

BACKGROUND 

Recently published 2019 guidelines by the American Society for Colposcopy and Cervical 

Pathology (ASCCP) changed the management of abnormal cervical cancer screening results 

from a result-based approach to a risk-based approach. We estimated the cost-effectiveness and 

changes in resource utilization of moving management of women screened for cervical cancer 

from 2012 to 2019 guidelines.   

METHODS 

We utilized a previously published model of cervical cancer costs and outcomes to estimate and 

compare the number of screens, colposcopies, treatments, cancer cases, and cancer deaths for the 

2012 and 2019 ASCCP guidelines. We explored these guidelines under the scenarios of observed 

screening adherence and perfect screening adherence moving from 3-year cytology to both 3-

year and 5-year cytology after age 30.  In addition, we estimated lifetime costs and life years to 

determine the cost-effectiveness of moving to the updated risk-based guidelines.   

RESULTS 

Under observed screening compliance and perfect screening moving from 3-year cytology to 3-

year co-testing at age 30, 2019 guidelines dominated 2012 guidelines by producing slightly 

greater life years at a cost-savings. For 3-year cytology screening moving to 5-year co-testing at 

age 30, 2019 guidelines were not cost-effective compared to 2012 guidelines at a willingness-to-

pay threshold of $100,000 per life year (ICER $180,700). Across all scenarios, 2019 guidelines 

reduced the number of colposcopies and cancer deaths. 
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CONCLUSION 

The 2019 ASCCP risk-based guidelines are likely to be a cost-effective and potentially cost-

saving option compared to 2012 guidelines. “Equal management of equal risks” allows decision-

makers to efficiently manage patients without having to work through complex algorithms that 

may reduce physician and patient adherence.     
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BACKGROUND 

 

Over the past 20 years, cervical cancer screening guidelines have evolved, from annual 

cytology-based (pap smear) screening in 2003 and biennial cytology-based screening in 2009 to 

triennial cytology-based screening in 2012 (1, 33, 34).   In addition, human papillomavirus 

(HPV) testing was included in the 2012 US Preventive Services Task Force (USPSTF) 

guidelines as part of “co-testing,” which involves both cytology and HPV testing every 5 years in 

women over the age of 30; in the most recent guidelines in 2018, the screening options were 

expanded to include 5-year primary HPV testing alone after age 30 years as well (35).  As the 

number of tests and, consequently, the number of possible test results has increased, the 

guidelines for management of women with unique screening results have also become more 

complex as decision-makers determine the best action for a particular combination of results.  

One simplifying principle is that of “equal management of equal risks” in which the strategy for 

follow-up of a particular woman depends on the risk that her past screen history implies (36, 37).   

 

The American Society for Colposcopy and Cervical Pathology (ASCCP) is a professional 

organization consisting of physicians, researchers, and other stakeholders representing numerous 

societies, health organizations, and federal agencies.  In 2002, the ASCCP published their first 

consensus guidelines on evidence-based management of abnormal cervical cancer screening 

results (38).  As follow-up data on women who undergo screening have become more available, 

studies have been published detailing downstream risk of cervical disease and cancer for 

combinations of test results (3, 6, 39). Furthermore, organizations such as the USPSTF have 

established updated guidelines on screening interval and modality (1, 40).  As a result, the 
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ASCCP updated their guidelines in 2006 and 2012, and recently published their 2019 guidelines 

(41-43). The goal of the newly revised update is to use the evidence base to increase the accuracy 

of risk estimates and actions for different test results and to simplify protocols that may have 

previously been too complex for both providers and patients (44-46).   

 

Simulation modeling is a useful tool to assess the impact of future policy changes. This 

chapter aims to modify and utilize an existing model of cervical cancer to project changes in 

outcomes and estimate the cost-effectiveness of the new ASCCP guidelines for management of 

women with abnormal screening results.  While the actions recommended by the 2012 guidelines 

were based on the specific test results, the new guidelines are risk-based and will allow decision-

makers to more easily consider applying the “equal management of equal risks” principle.  The 

results of this analysis will shed light on the efficiency of this new strategy and the potential 

impact it may have on health care resources and outcomes.  

 

METHODS 

Model 

We used a previously developed model of cervical cancer that has been used extensively 

to evaluate the impact and cost-effectiveness of cervical cancer prevention strategies in the 

United States, including to inform recent USPSTF guidelines (11-14).  Details of this model are 

included in Chapter 1 of this dissertation and in previous publications (13-15) but are briefly 

summarized here. States of the model are depicted in Figure 2.1.  Simulated women transition 

through states on the basis of factors such as age, duration of infection or precancer, or 
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genotype/history of HPV infection.  These states include a normal, healthy cevix which can be 

infected with HPV, as well as two precancerous states, CIN2 (cervical epithelial neoplasis grade 

2) and CIN3 (CIN grade 3). From these states, progression to cervical cancer is possible. 

Screening strategies and management protocols for women with abnormal screening results can 

be modified within the model, which then produces relevant outputs of cost, precancer incidence, 

cancer incidence, life years, and test counts. 

Figure 2.1.  Markov structure of cervical cancer model 

 

Note: Death state is not shown here, but mortality is possible from any of the states depicted  

 

Validation/Calibration 

Data from Kaiser Permanente Northern California (KPNC) used to inform the 2019 

ASCCP guidelines provided estimates of cumulative CIN3+ risk (the probability that a woman 

develops CIN grade 3 or cervical cancer)  for distinct sets of index screening results, including 

multiple rounds of screening (3, 6, 39).  Empirical risk data from KPNC are provided in Table 

2.1, with action thresholds determined by the ASCCP provided in the Supplemental Material. In 
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the model, we tracked 5-year CIN3+ risk for several combinations of co-testing results from 

primary screening to ensure that risks inferred by testing results in the model appropriately fit 

KPNC observed data.  Person-level outputs were manipulated to calculate 5-year CIN 3+ 

estimates.  To account for discrepancies in model fit, we adjusted input parameters that affected 

the distribution of test results until visual fit near or within the 95% confidence intervals of the 

data was achieved.   

 

Table 2.1. 5-year CIN3+ risk observed among women ages 21-65 years from Kaiser 

Permanente Northern California, stratified by preceding co-test result. 

Co-test Result 

(Cytology/HPV) N 

Proportion of co-

test results (%) 

CIN3+ 5 year 

risk (%) 95% CI 

NILM/Neg 1388153 89.76 0.12 (0.12, 0.13) 

ASCUS/Neg 25331 1.64 0.40 (0.31, 0.48) 

LSIL/Neg 3300 0.21 1.96 (1.40, 2.52) 

HSIL/Neg 183 0.01 27.37 (20.27, 34.46) 

NILM/Pos 63541 4.11 4.80 (4.58, 5.03) 

ASCUS/Pos 30506 1.97 7.27 (6.87, 7.67) 

LSIL/Pos 23659 1.53 6.94 (6.49, 7.40) 

HSIL/Pos 3980 0.26 53.16 (51.18, 55.13) 
Abbreviation: CIN, cervical intraepithelial neoplasia; NILM, negative for intraepithelial lesion or malignancy; 

ASCUS, atypical squamous cells of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; 

HSIL, high-grade squamous intraepithelial lesion; Neg, negative HPV test; Pos, positive HPV test 

 

Model Scenario 

New ASCCP guidelines contained several changes from the previous 2012 update, 

requiring development of a unique screening and management strategy in the model. Table 2.2 

summarizes key differences in management following first round of co-test screening results. 

The three primary differences are (1) for a “NILM/Negative” screen, an extension from a 3-year 
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routine follow-up to 5-years in updated guidelines, (2) for a “LSIL/Negative” result, a switch 

from colposcopy to 1-year follow-up, and (3) for a “HSIL/Positive” result, a decision to refer 

women to immediate precancer treatment.    

  

Table 2.2. Summary of 2012 and updated 2019 guidelines for management of women with 

normal and abnormal cervical cancer screening results 
 

Abbreviation: CIN, cervical intraepithelial neoplasia; NILM, negative for intraepithelial lesion or malignancy; 

ASCUS, atypical squamous cells of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; 

HSIL, high-grade squamous intraepithelial lesion; Colpo, Colposcopy; Neg, negative HPV test; Pos, positive HPV 

test 

 

In addition to results from the first round of screening, we utilized KPNC data on a 

second round of screening, as well as test results conditional on preceding colposcopy result 

and/or treatment (Table 2.3).  For example, Table 2 indicates that the interval between screens be 

reduced to 1 year for an LSIL/HPV-Negative result.  However, as seen in Table 2.3, if an 

LSIL/HPV-Negative result follows a NILM/HPV-negative result, 5-year CIN3+ risk indicates 

reducing screening to 3-year intervals instead of an annual interval.  In the model, once a third 

screening result is observed, the first result is no longer considered, and the action is based upon 

the two most recent screens. Similar to actions from a single round of screening, key changes in 

1
st
 Test 

Result  

(Cyto/HPV) 

NILM/ 

Neg 

ASCUS/ 

Neg 

LSIL/ 

Neg 

HSIL/ 

Neg 

NILM/ 
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LSIL/ 
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HSIL/ 
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New 

Guidelines 

5-year 3-year 1-year  Colpo 1-year  Colpo Colpo Treatment 
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3-year 3-year Colpo Colpo 1-year 

HPV 
Test 

Colpo Colpo Colpo 
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the new guidelines were primarily around added scenarios for sending women straight to 

treatment after a “HSIL/Positive” result, additional scenarios with 1-year follow-up rather than 

colposcopy, and reduced intensity for results following a “NILM/Negative” or 

“ASCUS/Negative” in the first round of screening.   
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Analysis 

There were two primary outcomes of this analysis.  First, we conducted a cost-

effectiveness analysis of the new guidelines compared to previous guidelines.  We simulated 

1,000,000 women under three different screening scenarios.  We mimicked current screening 

practice as observed in the KPNC population with respect to screening interval, compliance to 

diagnostic colposcopy/biopsy, and compliance to precancerous treatment (47-49). Second, we 

conducted analyses assuming perfect adherence to screening guidelines in which women 

undergo 3-year cytology-based screening until age 30 followed by 3-year co-testing until age 65, 

as practiced in the KPNC system. Finally, we included scenario analysis assuming 3-year 

cytology-based screening until age 30 followed by 5-year co-testing until age 65, consistent with 

USPSTF guidelines. We determined the cost-effective strategy in each screening scenario using 

standard willingness-to-pay thresholds of both $50,000 and $100,000 per life-year gained 

(LYG). For both costs and health benefits, we applied an annual discount rate of 3%, as is 

recommended for cost-effectiveness studies in the United States (22, 23).  Additionally, we 

compared resource utilization and outcomes across each scenario to determine the extent to 

which the new guidelines impact number of screens, colposcopies, treatments, and cancers.  

 

RESULTS 

Validation 

Figure 2.2 shows observed and modeled 5-year CIN3+ risk, ordered by how often each 

outcome occurs. The top graph shows screening outcomes that are observed in more than 1% of 

screens, with the NILM/HPV-Negative result occurring in 89.8% of cases. The bottom graph 
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shows outcomes which occurred in less than 0.5% of screens. These include HSIL/HPV-

Positive, LSIL/HPV-Negative, and HSIL/HPV-Negative. Model output slightly overestimates 

risk for women with ASCUS/HPV-positive results (2.0% of total results), and slightly 

underestimates LSIL/HPV-positive (1.0%) and HSIL/HPV-negative (0.01%) results.  Overall 

trends across testing results for model risk follow observed data.   

 

 

Figure 2.2. Comparison of 5-year CIN3+ risk between observed data and model estimates, 

stratified by first co-test result 

 
Abbreviation: CIN, cervical intraepithelial neoplasia; NILM, negative for intraepithelial lesion or malignancy; 

ASCUS, atypical squamous cells of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; 

HSIL, high-grade squamous intraepithelial lesion; Neg, negative HPV test; Pos, positive HPV test 

Note: Parentheses indicate percentage of total population 
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Resource utilization and cancer outcomes 

Table 2.4 displays utilization of screens, colposcopies and treatments, as well as total 

cancers detected and cancer deaths in each screening scenario.   Under observed screening, the 

revised guideline, which was the cost-effective strategy, resulted in 2.15 million fewer screens 

(including both HPV and cytology tests), 410,000 fewer colposcopies, 202 fewer cancers 

detected, and 114 fewer cancer deaths per million women.  However, the number of treatments 

under the new guidelines increased by nearly 3,000 per million women screened.  The scenario 

under which 3-year cytology switches to 3-year co-testing at age 30 followed the same trend, 

saving 650,000 screens, 390,000 colposcopies, 209 cancers, and 96 cancer deaths.  However, 

treatments in this scenario increased by 3,150.  Finally, under perfect screening switching from 

3-year cytology to 5-year co-testing at age 30, screens increased by 2.93 million, while 

colposcopies reduced by 200,000 and treatments reduced by nearly 6,000 when shifting from the 

previous guidelines to the new updated guidelines.  While the number of detected cancers under 

the new guidelines increased by 153, the number of cancer deaths reduced by 127.  
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Table 2.4. Model estimates for resource utilization and cancer outcomes between 2019 

(New) and 2012 (Old) ASCCP guidelines per million women 

Observed screening Screens 

(Cytology + 

HPV, millions) 

Colposcopies 

(millions) 

Treatments 

(thousands) 

Cancers 

Detected 

Cancer 

Deaths 

New Guidelines 31.44 1.12 163.09 1,410 423 

Old Guidelines 33.59 1.53 160.15 1,612 537 

Difference (New – Old) -2.15 -0.41 2.94 -202 -114 

Perfect 3y/3y screening     

New Guidelines 30.14 1.10 159.36 1,435 435 

Old Guidelines 30.79 1.49 156.21 1,644 531 

Difference (New – Old) -0.65 -0.39 3.15 -209 -96 

Perfect 3y/5y screening     

New Guidelines 25.47 1.00 150.98 1,486 433 

Old Guidelines 22.54 1.20 156.87 1,333 560 

Difference (New – Old) 2.93 -0.20 -5.89 153 -127 

 

Cost-effectiveness Analysis 

Table 2.5 gives results of the cost-effectiveness analysis between new and old guidelines 

under multiple screening scenarios.  Assuming screening adherence as observed in KPNC, the 

new 2019 ASCCP risk-based guidelines dominate 2012 guidelines, providing additional life 

years at a cost savings of nearly $134 per person. Under the perfect screening scenario in which 

women are screened with cytology-based screening every 3 years until age 30 before switching 

to 3-year co-testing, the 2012 guidelines are still dominated by 2019 guidelines with an 

additional cost of around $87 at a loss in life years.  However, assuming perfect screening in 

which women switch to 5-year co-testing at age 30, 2019 guidelines are no longer the cos-

effective management strategy at the $100,000 per life year threshold compared to 2012 
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guidelines.  New guidelines cost an additional $72 per person, while adding .0004 life years per 

person for an ICER of $180,700 per life year compared to old guideline management.  

 

Table 2.5. Cost-effectiveness analysis comparing new and old ASCCP guidelines under 

observed screening, perfect screening switching from 3-year cytology to 3-year co-testing at 

age 30, and perfect screening switching from 3-year cytology to 5-year co-testing at age 30  

Observed 

screening practice 

Cost per 

person ($, 

discounted) 

Difference Life Years per 

person (years, 

discounted) 

Difference ICER 

($/LY) 

New Guidelines 1900  28.2534   

Old Guidelines 2030 133.75 28.2532 -0.0002 Dominated 

Perfect 3y 

cytology/3y co-

testing screening 

     

New Guidelines 1780  28.2527   

Old Guidelines 1870 86.56 28.2525 -0.0001 Dominated 

Perfect 3y 

cytology/5y co-

testing screening 

     

Old Guidelines 1500  28.2523   

New Guidelines 1570 72.29 28.2526 0.0004 180,700 

Note: Within each group, scenarios are ordered by cost 

 

Sensitivity Analysis 

We conducted cost-effectiveness analysis across all three scenarios for 50 different good-

fitting natural history parameter sets. Across all 50 sets, 2019 guidelines were cost-effective for 

observed KPNC and perfect KPNC (3-year cytology followed by 3-year co-testing) screening 

scenarios. For observed KPNC, 2019 guidelines dominated 2012 guidelines under 49 of 50 

parameter sets, with 1 parameter set resulting in an ICER of over $1,000,000 per life year.  

Under perfect KPNC screening, 2019 guidelines dominated under all 50 parameter sets. 
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However, under perfect USPSTF screening (3-year cytology followed by 5-year co-testing), 

2019 guidelines were no longer cost-effective compared to 2012 guidelines, with ICERs ranging 

from $100,500 to $279,000 per life year across all parameter sets. Difference in resource 

utilization were also robust across all parameter sets.  

 

DISCUSSION 

Based on the risks calculated from the observed KPNC data and the thresholds for 

various actions determined by the ASCCP, it is evident that three main differences exist between 

previous and new guidelines. First, the new guidelines take a more conservative screening 

approach for those who test negative and may be at a significantly reduced risk for future 

cervical disease.  Second, the new guidelines also take a more conservative approach to some 

intermediate results to follow-up after one year instead of opting for colposcopy, particularly 

when the abnormal test immediately follows a negative co-test. While colposcopies are useful in 

identifying both cancer and precancer, they are invasive and a potentially unnecessary use of 

resources for patients under a certain risk threshold. Finally, the new guidelines take a more 

aggressive action against the worst screening outcome, HSIL/HPV-positive, to treat 

immediately.  

 

The results of this analysis indicate that the risk-based approach introduced by the 

ASCCP improves the efficiency of cervical cancer management. Under both scenarios of 

observed screening and perfect screening switching from 3-year cytology to 3-year co-testing at 

age 30, new guidelines are cost-effective at any willingness-to-pay threshold, dominating 2012 
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guidelines. Furthermore, the life years produced between the two strategies are nearly identical, 

but the newer guidelines are dramatically cost saving. This finding suggests that any health 

decrement from reducing the number of screens and colposcopies is balanced by the additional 

treatments resulting from the more aggressive approach.  On the other hand, under the scenario 

in which women switch from 3-year cytology to 5-year co-testing at age 30, 2019 guidelines are 

no longer cost-effective, likely due to the decreased number of routine screens compared to the 

increased number of 1-year surveillance screens in the new guidelines.  One benefit of the more 

aggressive approach to treatment is to benefit those who are not as compliant with screening, so 

it may not be surprising to see that this benefit is reduced when screening compliance is assumed 

to be perfect.  

 

There are a number of limitations to be considered in this analysis.   We validated risk 

estimates for results from an initial round of screening but did not consider test results 

conditional on prior colposcopy results and/or treatment.  While some observed data are 

available on these outcomes, for some combinations of results, the number of observations 

across each outcome may not be enough to confidently determine if the model estimates are 

accurate.  In addition, the KPNC data represent a population of well-screened women who may 

not be representative of the national population to generalize the results of this analysis.  Finally, 

we did not report outcomes considering quality of life associated with screening procedures or 

cancer as data on quality adjustment for increased cervical cancer testing and results are variable 

and difficult to integrate accurately in our model. Given that the number of cancer deaths 

associated with the 2012 guidelines is higher in the 3-year cytology switching to 5-year co-
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testing case, a severe decrement to quality of life for late stage cancer may make newer 

guidelines more appealing.   

 

The latest ASCCP guidelines are an important step in the management of women who 

screen positive for cervical disease. “Equal management of equal risks” allows decision-makers 

to efficiently manage patients based on risk as determined by testing history without having to 

work through complex algorithms that may reduce physician and patient adherence.  The results 

produced in this analysis support that the new ASCCP guidelines are likely to be a cost-effective 

and potentially cost-saving option, compared to prior guidelines that relied on algorithm-based 

management.  Moving forward, it will be important to present these new guidelines in a simple 

and easy-to-implement way that can facilitate greater compliance and benefit both the health care 

system and patient outcomes.   
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CHAPTER 3CHAPTER 1 

 
 

Imputation and Decision Modeling to Improve Diagnosis and Management of Patients at Risk for 

Post-Transplant Diabetes Mellitus 
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ABSTRACT 

 

BACKGROUND 

Post-transplantation diabetes mellitus (PTDM) is an important complication of solid organ 

transplantation with limited representation in the literature.  More studies are needed to explore 

solutions for better diagnosis and management of the population at risk for this disease. In this 

study, we determine the extent to which PTDM goes undiagnosed over the course of 1 year 

following transplantation, analyze missed or later-diagnosed cases of PTDM due to poor 

Hemoglobin A1c (HbA1c) and fasting blood glucose (FBG) collection, and estimate the impact a 

screening intervention to better collect glucose metrics may have on long-term outcomes. 

METHODS 

This was a retrospective study utilizing three datasets from a single center. The kidney 

transplantation dataset consisted of 407 patients who underwent transplant between 1999 and 

2006.  The liver dataset consisted of 346 patients who underwent transplant between 2007 and 

2012. Finally, the heart dataset contained 152 patients who underwent transplant between 2010 

and 2015.  Retrospective analysis was supplemented with an imputation procedure to account for 

missing data and project outcome under perfect information.  In addition, the data was used to 

inform a simulation model used to estimate life expectancy and cost-effectiveness of a 

hypothetical intervention.    

RESULTS 

The estimate of PTDM incidence increased from 27% to 31% in kidney transplantation patients, 

31% to 40% in liver transplantation patients, and 45% to 67% in heart transplantation patients, 
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when HbA1c and FBG were assumed to be collected perfectly at all time points. Simulated life 

expectancy for kidney transplantation patients was 18.97 under perfect screening at a cost 

savings compared to 18.84 years in current practice. For liver transplantation patients, perfect 

data collection increased life expectancy by 0.10 years (9.60 vs 9.50, ICER $37,000).  In heart 

transplantation patients, the benefit of perfect screening was 0.44 years (11.06 vs 10.62, ICER 

$30,800). 

CONCLUSION 

Improved collection of HbA1c and FBG is a cost-effective method for catching many additional 

cases of PTDM within the first year alone. Additional research into both improved glucometric 

monitoring as well as effective strategies for mitigating PTDM risk will become increasingly 

important to improve health in this population 
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BACKGROUND 

 

Post-transplantation diabetes mellitus (PTDM) is one of the potential unwelcome 

outcomes following solid organ transplantation affecting patients without a prior history of a 

diabetes mellitus (DM) diagnosis.  This newly-diagnosed DM can lead to decreased graft 

function, increased risk of cardiovascular disease, and lower survival, resulting in increased 

downstream healthcare costs (50, 51).  Reported estimates of PTDM incidence vary widely: 4-

25% in kidney transplantations, 2.5-25% in liver transplants, and 4-40% in hearts 

transplantations (52-56).  Over 35,000 solid organ transplantations occurred in the United States 

in 2018, marking the sixth consecutive year in which the number of transplantations increased 

from the previous year (57).    The extent to which PTDM burdens the healthcare system and 

solutions to improve diagnosis, management, and specialized treatment has not been well-

studied. 

 

A 2014 international expert panel released updated recommendations for the management 

of transplant patients at-risk for PTDM (58).  Among their recommendations was the expansion 

of screening tests for PTDM using hemoglobin A1c (HbA1c) and blood glucose monitoring.  

There is currently no standardized protocol for regular PTDM screening in the post-

transplantation period and the potential impact of this recommendation is unknown.  Studies of 

PTDM have utilized collection of HbA1c and blood glucose as determinants for diagnosis of 

PTDM. However, collection of HbA1c and fasting blood glucose (FBG) is inconsistent and 

unavailable for analysis in many patients across multiple follow-up time points (59-61).  In some 

cases, patients may have had their DM undiagnosed due to lack of data collection or diagnosed 



 

44 
 

months after an early screen would have been indicated. As a result, it is likely that PTDM 

incidence is largely underestimated, and that the time course of PTDM development may be 

different from what is understood in the current literature (61).  In addition, management 

specifically geared towards diagnosed PTDM remains vague. Most guidelines for decision-

making follow broad type-2 DM protocols and specify importance of graft survival over concern 

for PTDM risk (58).  However, the transplant patient population differs in many ways from the 

broad diabetes population (e.g., in the ability to modify exercise and diet in the immediate post-

transplantation period) and thus standard type 2 DM management methods may need 

modification for this population (62).  

 

In the face of uncertainty and lack of evidence to inform decision-making, quantitative 

methods such as data imputation and disease modeling can help to make use of available data 

and estimate potential for improved outcomes. Data imputation can allow observations from 

inadequate or incomplete data to be utilized in estimating missing data points and extending 

outcomes to a longer time horizon than currently available. Imputation in both clinical trial 

studies and observational studies, including those involving transplantation data and imputation 

of glycemic indicators, has become more commonplace (61, 63-67).  In addition, disease and 

decision models can simulate outcomes for a patient population and utilize data on intervention 

effectiveness from different sources to project outcomes, thereby providing a decision maker 

with additional evidence to inform decisions. Decision modeling has been previously used, 

particularly with respect to DM, to estimate life expectancy, costs, and disease progression (68-

71).   
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In this study, we explore a screening strategy for improvement of PTDM diagnosis and 

potential treatment.  First, we use data imputation to estimate the impact of a screening 

intervention that perfectly monitors HbA1c and FBG in the follow-up period post 

transplantation.  We analyze data on all major solid organ transplantations (kidney, liver, and 

heart) to determine (a) the extent to which PTDM goes undiagnosed over the course of 1 year 

following transplantation,  and (b) cases of PTDM that occur later than would have been 

predicted if HbA1c and FBG had been screened at all follow-ups.  Secondly, we develop a 

disease model of PTDM outcomes to project life expectancy and estimate the impact a screening 

intervention to better collect glucose metrics may have on long-term outcomes. This study 

represents the first modeling analysis of an intervention tailored to the transplantation population 

at risk of PTDM and should help decision makers in determining how effective we might expect 

such an intervention to be in improving health outcomes.  

 

METHODS 

Study Population 

We utilized 3 previously published data sets on kidney, liver, and heart transplantation 

patients (59-61, 72, 73). The datasets were compiled through a de-identified chart review with 

IRB approval. The kidney transplantation dataset consisted of 407 patients who underwent 

transplant between 1999 and 2006.  The liver dataset consisted of 346 patients who underwent 

transplant between 2007 and 2012. Finally, the heart dataset contained 152 patients who 

underwent transplant between 2010 and 2015.  The heart dataset included information on 

demographics and medical history, as well as HbA1c, FBG, and some lab values at 1-, 2-, 3-, 4-, 

6-, 8- and 12-months post-transplant. The kidney and liver patients were followed at 1-, 4-, and 
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12-months post-transplant and data were collected on the same variables as the heart patients, as 

well as hypoglycemic medication administered to patients at each time point post-transplant. 

Immunosuppression protocols differed by organ and are described in our previous studies on 

these patient populations (59, 60). 

 

PTDM definition and Imputation 

Patients were classified with PTDM using two standard definitions.  First, we defined 

PTDM patients as those who met at least one of the criteria of FBG > 126 mg/dL or HbA1c ≥ 

6.5% at one of the follow-up time points.  Because collection of HbA1c and blood glucose was 

not consistent across all patients and follow-ups, we also classified a patient as having PTDM if 

they were being treated with insulin at a given follow-up visit. While kidney and liver datasets 

contained 1-, 4-, and 12-month follow-ups, the heart data set contained many additional follow-

ups and inconsistent data collection across them.  Therefore, as in previous studies utilizing this 

datasets, we combined follow-up months 1-3, 4-6, and 8-12 into 3 follow-up “periods” for 

analysis (60). To proxy perfect collection of HbA1c and FBG, we used Multiple Imputation by 

Chained Equations (MICE) to estimate missing values for these variables at each follow-up 

point.  MICE has previously been used in the literature to replace missing data in the kidney 

dataset (61).  Because the heart data contained less variables than the kidney and liver datasets, 

the regression equation used to impute only contained available HbA1c and FBG at each time 

point and the use of insulin in the final 24 hours before discharge as the predictors for the missed 

HbA1c and FBG values.  For the kidney and liver datasets, the available HbA1c and FBG 

values, as well as the use of insulin at each of the follow-up time points, was used.  
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Simulation model overview and structure 

We developed a microsimulation model that simulated patients who had undergone 

transplantation in the United States to estimate aggregated costs and life expectancy post-

transplant. Patients were simulated on an annual cycle and could transition between one of six 

post-transplantation states: (1) a healthy state representing normal glycemic control; (2) an 

“Untreated PTDM” diabetes state defined as fasting blood glucose (FBG) greater than 125 

mg/dL or HbA1c greater than 6.4%; (3) a “Treated PTDM” diabetes state representing someone 

who has been diagnosed with PTDM, but whose glycemic indicators are under control through 

treatment; (4) a graft rejection state representing patients who had a graft rejection and were 

either re-transplanted or, in the case of some kidney transplantation patients, assumed to be on 

dialysis for the remainder of their lifetime; (5) A re-transplanted state representing patients who 

undergo an additional transplant after graft failure; and (6) death. The Markov chain model 

representation of these states is provided in Figure 3.1.  

 

Figure 3.1.  A Markov Chain Model of PTDM  

 

Note: Graft rejection state is possible for all 3 organs; Dialysis only represents kidney transplant recipients; Dead 

state can be reached from any of the other 5 states. 
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We used observed data on PTDM status in the immediate post-transplant setting to 

determine initial state probabilities, particularly the proportion of patients who enter the model in 

the “Healthy” or “Untreated PTDM” state.  The difference in this proportion between the 

observed and perfect screening scenarios represents the benefit of early hyperglycemia detection 

by HbA1c and FBG monitoring.   Transition probabilities were estimated by calculating 

probabilities of changing health states from the observed data.  To account for uncertainty, we 

calculated a 95% confidence interval assuming a binomial distribution for each point estimate 

and applied these probabilities in sensitivity analyses.  

 

As long-term outcomes were not available in the data, mortality rates or relative mortality 

risks for each health state were obtained from the published literature (50, 74-79).  A summary of 

model parameters utilized is given in Table 3.1. For the screening analysis, we ran 50 Monte 

Carlo simulation cohorts of 100,000 individuals aged 40, 50, and 60 years-old entering the model 

and aggregated life years accrued and costs under both the current and perfect screening 

scenarios. We conducted a cost-effectiveness analysis utilizing a commonly accepted 

willingness-to-pay threshold of $100,000 per life year (23).  We conducted a sensitivity analysis 

on the mortality and diabetes risk reduction due to earlier PTDM detection, a variable on which 

we currently have no data to inform the model.  The model was built and analyses conducted 

using TreeAge Pro 2019 software.  
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Table 3.1. PTDM Model parameters estimated from data and literature 

Parameter Kidney (Annual 

rates) 

Liver Heart Source 

Mortality rate  
(Healthy post-transplant) 

.00527 (age 20-39) 

.0193 (age 40-59) 

.0505 (age 60+) 

0.035 (18-49) 
0.050 (50-64) 

0.066 (65+) 

.051 (<35, >65)  

.042 (35-64) 
Morales et 
al.(80) 

Relative mortality risk  
(PTDM vs Healthy) 

1.87 (1.60, 2.18) 1.29 (1.21, 1.36) 1.3 (1.1, 1.5) Kasiske et al;  
Wong et al;  

Deo et al(50, 

81, 82) 

Relative mortality risk  
(Dialysis vs Healthy) 

.0026 (age 20-39) 

.0118 (age 40-59) 

.0193 (age 60+) 

N/A N/A Kaballo et 
al.(79)  

     

Transition Probabilities Annual 

Probability 
  

 

Healthy to PTDM 0.033 (.009, .082)  0.018 

(.0005,.096) 

Observed  

Mayo Data 

Healthy to Rejection 0.028 (.006, .079) N/A N/A Observed  
Mayo Data 

PTDM to Healthy 0.51 (.358, .663)  0.659 (.500, 

.795) 

Observed 

 Mayo Data 

PTDM to Rejection 0.045 (.001, .228) N/A N/A Observed  
Mayo Data 

Rejection to Re-

retransplant 

0.1 N/A N/A Observed  

Mayo Data 

     

Costs     

Post-transplant (Annual) $16,844    

Organ rejection (one-

time) 

$70,581    

Re-transplantation (one-

time) 

$106,373    

Additional cost of DM 

(annual) 

8,500 (Age 18-40) 

3,400 (Age >41) 

   

FBG screen $5.25    

HbA1c screeen $61    

 

 

Imputation Analysis 
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We first report means and confidence intervals for HbA1c, FBG, and insulin use at all 

time points/periods in both the observed and imputed (perfect collection) datasets for all three 

organs.  We restricted the datasets to just those patients who did not have hyperglycemia or a 

diagnosed DM prior to transplant.  Insulin use was not available for the heart dataset and 

therefore not included.  Logistic regression models were built for each organ’s dataset to 

determine the strength of association between available patient characteristics and risk factors 

with probability of missing HbA1c or FBG values at the 1-month follow-up. Each regression 

model was adjusted for age, sex, race, BMI, pre-transplant HbA1c, pre-transplant FBG, mean 

inpatient glucose, and transplant year.  Finally, we compared observed PTDM diagnosis at each 

follow-up with PTDM diagnosis assuming perfect screening and data collection in the imputed 

dataset and estimated life expectancy under observed and perfect screening conditions.  

 

RESULTS 

Kidney 

Table 3.2 gives descriptive statistics for kidney transplantation patients on HbA1c, FBG, 

and insulin use at 1-, 4-, and 12-months post-transplant for both the observed and imputed data 

sets. Means for the imputed dataset were identical to observed data.  Mean HbA1c across the 

three follow-ups rose, while FBG decreased over time. The percentage of patients on insulin 

increased from 11.9% at 1 month to 13.9% at 4 months before dropping to 9.9% at 12 months.   

The number of missing HbA1c values decreased over time from 106 at 1 month to 53 at 12 

months.  FBG collection was perfect at 1 month, but 14 and 29 patients had missing values at 4 

and 12 months, respectively.  
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Table 3.2. Observed and imputed HbA1c, FBG, and insulin use at 1-, 4-, and 12-months 

post-transplant for kidney transplantation patients who did not have pre-transplant DM  

  Observed Data  Imputed Perfect Collection 

Variable n Missing 

values 

Mean 95% CI n Missing 

values 

Mean 95% CI 

1-month HbA1c 197 106 5.6 (5.5, 5.6) 303 0 5.6 (5.5, 5.6) 

4-month HbA1c 203 100 5.6 (5.6, 5.7) 303 0 5.6 (5.6, 5.7) 

12-month HbA1c 250 53 5.8 (5.7, 5.9) 303 0 5.8 (5.7, 5.9) 

1-month FBG 303 0 112 (107, 117) 303 0 112 (107, 117) 

4-month FBG 289 14 103 (101, 106) 303 0 103 (101, 106) 

12-month FBG 274 29 103 (101, 106) 303 0 103 (101, 105) 

On insulin at 1 

month 

303 0 11.9% (8.2, 15.5) 303 0 11.9% (8.2, 15.5) 

On insulin at 4 

months 

303 0 13.9% (9.9, 17.8) 303 0 13.9% (9.9, 17.8) 

On insulin at 12 

months 

303 0 9.9% (6.5, 13.3) 303 0 9.9% (6.5, 13.3) 

 

 
 

Liver 

The 1-, 4-, and 12-month observed and imputed values for liver transplantation patients 

on HbA1c, FBG, and insulin use are found in Table 3.3. Similar to the data collected from 

kidney transplant patients, the number of missing HbA1c values drop from 204 at 1 month to 76 

at 4 months, before increasing slightly to 95 at 12 months.  In addition, missing FBG values 

increased from 11 to 14 to 29 going from 1 month to 4 months to 12 months, respectively.   

Insulin use was much higher in liver patients compared to kidney, and also decreased over time, 

moving from 51.5% at 1 month to 21.5% at 12 months.  
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Table 3.3. Observed and imputed HbA1c, FBG, and insulin use at 1-, 4-, and 12-months 

post-transplant for liver transplantation patients who did not have pre-transplant DM  
 

 Observed Data 
 

 Imputed Perfect Collection 

Variable n Missing 

values 

Mean 95% CI n Missing 

values 

Mean 95% CI 

1-month HbA1c 33 204 5.5 (5.3, 5.6) 237 0 5.4 (5.2, 5.5) 

4-month HbA1c 161 76 5.5 (5.4, 5.6) 237 0 5.5 (5.4, 5.5) 

12-month HbA1c 142 95 5.7 (5.6, 5.9) 237 0 5.6 (5.5, 5.8) 
1-month FBG 226 11 100 (97, 103) 237 0 100 (97, 102) 

4-month FBG 223 14 105 (102, 108) 237 0 105 (102, 108) 

12-month FBG 208 29 111 (106, 115) 237 0 111 (107, 115) 
On insulin at 1 

month 

237 0 51.1% (44.6, 

57.5) 

237 0 51.1% (44.6, 

57.5) 

On insulin at 4 

months 

237 0 33.8% (27.7, 

39.8) 

237 0 33.8% (27.7, 

39.8) 
On insulin at 12 

months 

237 0 21.5% (16.2, 

26.8) 

237 0 21.5% (16.2, 

26.8) 

 

Heart 

Table 3.4 gives descriptive statistics for heart transplantation patients on aggregated 

HbA1c and FBG across the 1-3 month, 4-6 month, and 8-12 month follow-up periods.  FBG data 

was nearly complete across all 3 time periods in this cohort.  However, 82 (81%) of HbA1c 

values were missing in the 1-3 month period.  Missingness improved to just 73 (72%) by 4-6 

months and 58 (57%) by 8-12 months.  Mean HbA1c and FBG both decreased over time. 

Compared to the observed data set, mean imputed HbA1c values were lower in both the 1-3 

month (6.6 vs 6.1) and 4-6 month (6.7 vs 5.8) periods.   
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Table 3.4. Observed and imputed HbA1c and FBG across 1-3month, 4-6month, and 8-

12month follow-up periods post-transplant for heart transplantation patients who did not 

have pre-transplant DM 
 

 Observed Data  Imputed Perfect Collection 

Variable n Missing 

values 

Mean 95% CI n Missing 

values 

Mean 95% CI 

1-3 month HbA1c 19 82 6.6 (6.0, 7.2) 101 0 6.1 (5.9, 6.3) 

4-6 month HbA1c 28 73 6.7 (6.1, 7.2) 101 0 5.8 (5.5, 6.1) 

8-12 month HbA1c 43 58 5.6 (5.3, 5.8) 101 0 5.6 (5.4, 5.8) 

1-3 month FBG 99 2 125 (118, 131) 101 0 125 (118, 131) 

4-6 month FBG 98 3 107 (103, 111) 101 0 107 (103, 111) 

8-12 month FBG 99 2 105 (101, 110) 101 0 105 (101, 110) 

 

 

Long-term outcomes 

Table 3.5 summarizes diagnosis of PTDM by each follow-up time point/period across all 

organs for both the observed and imputed datasets.  Perfect collection of HbA1c and FBG 

resulted in 12 (15%) more PTDM cases in the kidney cohort, 21 (28%) more cases in the liver 

cohort, and 23 (51%) more cases in the heart cohort.  In terms of time course of PTDM 

diagnosis, a majority (75%) of extra PTDM diagnoses in the kidney cohort occurred at the 12-

month time period.  In the liver cohort, however, 16/21 (76%) of extra cases were identified by 1 

month, while 16/23 (70%) of extra post-heart transplant cases were identified in the 1-3 month 

time period.  Overall, PTDM incidence using these cohorts increased from 27% to 31% in the 

kidney group, 31% to 40% in the liver group, and 45% to 68% in the heart group assuming 

imputation (using MICE) as a proxy for full screening and data collection. These findings 

suggest that previous studies in which imputation was not used to handle missing values might 

have underestimated PTDM incidence.  
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Table 3.5. PTDM diagnosis by follow-up time period across kidney, liver, and heart 

transplantation patients for both observed and imputed datasets  

 Kidney Liver Heart* 

 Observed Perfect 

Collection 

Observed Perfect 

Collection 

Observed Perfect 

Collection 

 n  DM n DM n DM n DM n DM n DM 

1 month 303 63 303 64 228 18 237 34 99 39 101 55 

4 months 233 11 239 14 210 32 203 26 59 5 46 9 

12 

months 
207 8 225 16 163 24 177 35 55 1 37 4 

TOTAL 

PTDM 

Diagnoses 
 82  94  74  95  45  68 

Estimated 

PTDM 

incidence 
 27%  31%  31%  40%  45%  67% 

Note: PTDM incidence may differ from previously published studies utilizing these datasets as patients were 

excluded who did not have available data or had defined hyperglycemia in the pre-transplant period (compared to 

previous studies which only excluded patients with a diagnosed DM) 

* Heart dataset contains 1-3, 4-6, and 8-12 month time periods 

 

 

Early Hyperglycemic Screening as a Potential Remedy 

We now make use of simulation to estimate the impact of early screening as a potential 

remedy that can improve patient outcomes by allowing for previously undiagnosed or late-

diagnosed cases to be treated earlier. Figure 3.2 represents simulated life expectancy outcomes 

using base case parameters and results of a sensitivity analysis on effectiveness of early 

hyperglycemia detection in bringing patients to a state of “Treated” PTDM for kidney, liver, and 

heart, respectively. For kidney transplantations (Figure 3.2A), assuming perfect identification 

and treatment of PTDM, life expectancy in the perfect screening case is approximately 18.97 

years compared to 18.84 years in the observed case, a difference of 0.13 years, or 1.6 months. 

This gain in life years occurs at a cost-savings, making perfect screening the dominant strategy. 

We also conducted a threshold analysis to determine, how effective our ability to identify DM 
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patients and treat would need to be in order for perfect screening to remain cost-effective at a 

$100,000 per life year threshold.  We find that, though the base case increase is 21.1% from 

7.3% in the observed group, only 8.5% of patients need to begin in the “Treated” state in order 

for the screening scenario to be cost-effective.   

 

In addition to base case parameters, we also conducted a sensitivity analysis in which 

data-derived parameter values were varied across their 95% confidence interval.  Due to the 

small sample size available, we chose to vary these parameters using a uniform distribution to 

obtain a wide range of outcomes.  We ran 50 cohorts of 100,000 patients and output life 

expectancy for current practice compared to perfect screening for each cohort.  Across all 50 

runs, the screening scenario resulted in longer life expectancy than current practice.  For 40-year-

olds, screening resulted in a life expectancy of 23.17 years (95% Credible interval (CI) 23.11-

23.23) compared to 23.03 years in current practice (22.96-23.12).  For 50-year-olds, life 

expectancy with screening was 19.04 years (18.96-19.10) compared to 18.89 years (18.78-18.94) 

in current practice. Finally, 60-year-olds had a screening life expectancy of 13.87 years (13.79-

13.95) compared to 13.64 years (13.57-13.72) in current practice.   
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Figure 3.2.  Life expectancy for post-transplant kidney, liver, and heart transplantation 

patients under observed and perfect screening scenarios for 50-year old patients 

 

 

Figure 3.2B displays impact of early PTDM detection and successful control for liver 

transplantation recipients.  Perfect screening would result in a 0.10 year (9.60 vs 9.50 years) 

increase in life expectancy per person at a cost difference of $3,700 resulting in an incremental 

cost-effectiveness ratio (ICER) of $37,000 per life-year gained.  Perfect identification and 

treatment of PTDM assumes 14% of patients being treated. However an increase from 7.6% in 

the current practice case to just 9% would make the perfect screening strategy cost-effective at 

the $100,000 threshold.  Across 40-year-olds, the perfect screening scenario gave an average life 

expectancy of 10.74 (10.69 – 10.81) years compared to 10.64 (10.57 – 10.70) years in current 

practice. 50-year-olds gained also gained 0.1 years per person screened from 9.75 (9.66 – 9.83) 

with current practice to 9.85 years (9.78 – 9.95) with perfect screening. Finally, 60 year-olds 
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with perfect screening gained 0.11 years from 9.05 years (8.97 – 9.13) in current practice to 9.16 

(9.10 – 9.23) with perfect screening.   

 

Incidence estimates for heart transplantation data were impacted the most from 

information gained through perfect screening, with an absolute increase of 22% in PTDM 

incidence (Table 3.5).  Much of this increase was seen in the first month, where the estimate of 

immediate PTDM rose from 38% to 54%.  Figure 3.2C shows the benefit obtained by the earlier 

detection of these extra PTDM cases in the base-case scenario, with a life expectancy of 11.06 

years in the perfect screening scenario compared to 10.62 in current practice at a cost of $13,500 

(ICER $30,800 per life-year gained).  Virtually any improvement in ability to identify and treat 

patients with PTDM in the perfect screening scenario was cost-effective. Discounted life 

expectancies for 40-year-old patients were 11.04 years (10.98 – 11.15) under current information 

compared to 11.48 years (11.39 – 11.56) under perfect information.  For 50-year-old patients, the 

difference was 0.45 years with a life expectancy of 10.75 years (10.65 -10.82) versus 11.2 years 

(11.10 – 11.28).  Finally, 60-year-old patients lived on average 10.12 years (10.07 – 10.19) under 

current practice compared to 10.59 years (10.51 – 10.65) under perfect screening.  
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Table 3.6. Logistic regression odds ratios for association between pre-transplant and 

inpatient patient characteristics and probability of missing variables  
 Kidney Liver Heart 

 1-month 

HbA1c 

1-month 

FBG 

1-month 

HbA1c 

1-month FBG 1-month 

HbA1c 

1-month 

FBG 

Age, per 5 years .91 (.76, 
1.08) 

N/A .94 (.73, 1.21) 1.17 (.78, 
1.75) 

1.06 (.84, 
1.33) 

N/A 

BMI 1.04 (.95, 

1.14) 

N/A 1.02 (.95, 

1.10) 

.96 (.86, 1.07) 1.00 (.88, 

1.12) 

N/A 

Race (White) .80 (.30, 

2.16) 

N/A .44 (.10, 2.03) 1.3 (.15, 11.4) 4.45 (1.43, 

13.86)* 

N/A 

Male (vs Female) .83 (.33, 
2.10) 

N/A .56 (.22, 1.38) .36 (.11, 1.25) .92 (.27, 
3.10) 

N/A 

Pre-transplant 

HbA1c 

1.58 (.28, 

8.90) 

N/A .69 (.31, 1.53) .47 (.13, 1.70) N/A N/A 

Pre-transplant 
FBG 

1.01 (.98, 
1.05) 

N/A N/A N/A 1.03 (.98, 
1.08) 

N/A 

Mean inpatient 

glucose 

.95 (.76, 

1.20) 

N/A 1.02 (.83, 

1.27) 

.97 (.68, 1.38) .74 (.42, 

1.31) 

N/A 

Transplant year 

(compared to 

year after) 

5.90 

(3.72, 

9.47)* 

N/A 1.39 (1.10, 

1.75)* 

.92 (.64, 1.33) 1.10 (.78, 

1.57) 

N/A 

Note: 95% confidence intervals given in parentheses; 1-month FBG values collected cully in Kidney and Heart 

cohorts; Pre-transplant FBG and HbA1c unavailable liver cohort 

* denotes significant values (all p<0.01) 

 

Predictors of missing values 

Odds ratios for the logistic regressions that are used to determine associations between 

pre-transplant patient characteristics and the probability of missing data values are given in Table 

3.6.  In both the kidney and liver datasets, transplant year was a significant predictor of missing 

HbA1c at 1 month.  For each additional year from 2006 to 1999, having a kidney transplant one 

year earlier was associated with a 590% (OR 5.90, 95% CI 3.72, 9.38, p<.01) increase in the 

odds of missing data collection of HbA1c at 1 month.  Among liver patients, moving from 2012 

to 2007, having transplant a year earlier was associated with a 139% (OR 1.39, 95% CI 1.10-

1.75, p<.01) increase in odds of missing 1-month HbA1c data. In addition, white heart transplant 

patients had a 445% (OR 4.45, 95% CI 1.43-13.86, p<.01) increased odds of missing 1-month 

HA1c. No other factors were significant. 
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 DISCUSSION 

 

Our data from kidney, liver, and heart transplantation patients demonstrate differences in 

HbA1c and FBG collection across organs as well as inconsistency in collection within a 

particular organ cohort at each follow-up time point.  Protocols do not currently exist for 

standardized collection of these data, but improved collection of these measures can benefit in 

multiple ways.  First, improved screening leads to earlier detection and better outcomes. The 

results of this analysis, at the very least, support design of a study to compare current practice to 

wide scale HbA1c and FBG monitoring in transplantation patients to monitor potential 

development of PTDM and study of patient characteristics that may determine who benefits 

greatest for a more targeted intervention.  On a larger scale, better collection of these data 

improves estimates of PTDM burden and understanding of the need to prioritize research in this 

area.  The 2014 Consensus Guidelines on PTDM and other literature describing research in 

PTDM treatment and management have expressed a need for more prevention strategies and 

interventions to treat newly diagnosed patients (56, 58).  This analysis contributes to this area by 

providing estimates for how improved collection of glycemic measures post-transplant may 

enhance our understanding, and consequently, our ability to best manage those at risk of PTDM.  

 

Across all three organs, FBG collection was relatively high for all time points, ranging 

from 88% to 100% of patients.  In contrast, HbA1c collection was very limited.  Around two-

thirds of patients had HbA1c collected at 1-month and 4-month in the kidney cohort, while 

collection in the liver cohort was only 14% at 1-month before rising to 68% at 4-months. Despite 
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combining heart transplant patient data into multi-follow up time periods, only 19% of patients’ 

HbA1c was collected in the 1-3 month period, rising to 28% in the 4-6 month period, and 43% in 

the 8-12 month period.   

 

The microsimulation model developed for this analysis allowed for an estimation of life 

years aggregated over the lifetime following transplantation.  This model allowed us to 

determine an estimate for the potential effectiveness of a screening-based intervention to collect 

HbA1c and FBG at all follow-up time points.  Estimates for life expectancy gained on average in 

the perfect screening base case ranged from 0.10 years (1.2 months) in liver patients to 0.44 

years (5.3 months) in heart transplant patients.  While some patients may not benefit at all from 

this intervention, this value applied to the full population of transplantation patients may 

represent a meaningful improvement in health.  Furthermore, we show that the low cost of both 

HbA1c and FBG screening make monitoring of these values at each follow-up very cost-

effective at a $100,000 per life year threshold.   

 

There are important limitations to note around this study, particularly regarding the use of 

an imputation as a proxy for data collection. The reliability and value of the MICE imputation is 

dependent on the different variables and data points available to inform the regression. All three 

data sets had many missing HbA1c data points.  While Tables 3.1-3.3 indicate that the 

imputation did not substantially affect means and standard deviations, the distribution of the 

imputed values may differ from the underlying unobserved data. The regression conducted and 

reported in Table 3.4 indicates that HbA1c collection was not missing in a systematic manner 

related to another available variable.  However, other unobserved or uncollected risk factors may 
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have played a role in explaining why some patients had HbA1c and FBG collected at a follow-up 

while others did not.  Additionally, the heart dataset did not contain information on insulin use at 

each time point. Therefore, we do not know if patients who had PTDM early on and missing 

values later on were not actually on continued insulin therapy.   

 

There are also a number of limitations with respect to the PTDM simulation model. First, 

the model itself makes a number of assumptions regarding the limited number of health states 

and the lack of intermediate levels of glucose tolerance (such as pre-diabetes) which may have 

impact on mortality and other co-morbidities. There may also be other risk factors or aspects of 

DM natural history which we are not including.  While one of the strengths of decision models, 

parameters were utilized from a number of different sources where data were collected from 

different types of populations that may be inherently different.  While this heterogeneity of data 

sources builds some uncertainty in model results, it still represents the best available information.  

In addition, data sources for validation of life expectancy outputs were difficult to gather as 

PTDM in this populatoin is under-represented in the literature and few studies exist detailing 

outcomes of a generalizable population.  Therefore, the purpose of this model was simply to use 

differential mortality rates between those without DM, those with DM, and those on dialysis, as 

well as transition probabilities between these states (all of which are observed), to gain an 

understanding of the potential order of magnitude change in life expectancy using perfectly 

collected (imputed) data and cost-effectiveness for screening in this population.  

 

There are two broad implications of this study.  First, we find that perfect collection of 

HbA1c and FBG results in catching many additional cases of PTDM within the first year alone.  
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This is significant because, as seen in Table 3.5, it indicates that estimates of PTDM incidence in 

the published literature may be significantly underestimating its burden and time-course.  Perfect 

monitoring and early detection of previously undiagnosed or late-diagnosed PTDM cases is 

likely to be a cost-effective intervention to improve life expectancy in this population.     

 

Second, this simulation model represents the first model of health outcomes for the post-

transplantation population with regards to PTDM, a disease that imposes a significant burden in 

the transplantation community.  There are important extensions to this modeling work that 

should be applied, including evaluation of new diagnostic, surveillance, and treatment strategies 

to mitigate PTDM risk while considering any tradeoffs to risk of organ rejection or other 

comorbidities.  Additional research into both improved glucometric monitoring as well as safe 

and effective strategies for mitigating PTDM risk will become increasingly important to 

understand the impact of potential interventions on our ability to detect and treat early DM cases 

and improve health in this patient population. 
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Supplemental Material 

Chapter 2 

Supplement Figure 2.1.  ASCCP risk threshold and recommended action for management 

of women with abnormal test results 

Cervical Cancer Risk Action 

<0.15% 5-year CIN3+ risk Return in 5 years 

0.15-0.54% 5-year CIN3+ risk Return in 3 years 

>0.55% 5-year CIN3+ risk Return in 1 year 

4-24% immediate CIN3+ risk Colposcopy recommended 

25-59% immediate CIN3+ risk Expedited treatment or colposcopy acceptable 

>60% immediate CIN3+ risk Expedited treatment preferred 

 

Supplemental Figure 2.2 Observed Kaiser Permanente Northern California (KPNC) 

screening adherence by interval length 

 

Screening Interval Proportion of population 

Age 21-30 (Cytology only) 
 

1 year 0.16 

2 years 0.362 

3 years 0.334 

4 years 0.091 

5+ years 0.053   

Age 30-65 (Co-testing) 
 

1 year 0.036 

2 years 0.144 

3 years 0.633 

4 years 0.133 

5+ years 0.054 
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Supplemental Table 3.1. Comparison of characteristics between renal, liver, and heart 

transplantation patients without pre-transplant diabetes. 

Characteristic Kidney 

(n = 291) 

95% 

CI 

Liver 

(n =250) 

95% 

CI 

Heart 

(n = 109) 

95% 

CI 

Age, y 49 (15) (47, 51) 54 (9) (53, 55) 51 (12.8) (49, 54) 

Male, % 56 (51, 62) 67 (61, 73) 69% (60, 78) 

White, % 71 (66, 76) 88 (84, 92) 69% (60, 78) 

Pre-transplant BMI, 

kg/m2 

26.8 (5.6) (26.1, 27.4) 28.2 (5.6) (27.5, 28.9) 25.9 (4.5) (25.1, 26.8) 

Live donor (%) 68 (62, 73) 22 (17, 27)   

Pre-transplant HbA1c, % 5.4 (0.3) (5.4, 5.5) 5.2 (0.5) (5.1, 5.3) 5.75 (.5) (5.64, 5.86) 

Steroid Use at 1 month, % 47 (42, 53) 98 (97, 100)   

Insulin Use at 1 month, % 6 (3, 9) 36 (30, 42)   

Inpatient mean glucose 

post-transplant, mg/dL 
132 (19) (129, 134) 148 (17) (145, 150) 134 (10) (132, 136) 

Mean glucose 24 hours 

before hospital discharge, 

mg/dL 

136 (39) (132, 141) 144 (28) (140, 148) 134 (23) (129, 139) 

Developed PTDM by 1 

year, % 
19  30  38  

Reported values are mean (SD) or percentages 

Note: Tables adapted from previously published literature (59, 60) 
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