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Essays in EconomicTheory

Abstract

This dissertation consists of three independent essays in microeconomic

theory, focusing on aspects of learning in varied economic settings, both single

and multi-agent.

In chapter 1, I study a discrete-time dynamic bargaining game in which a buyer

can choose to learn privately about her value of the good. I assume information

generation takes time and is endogenous, and that verifiable disclosure of

evidence is possible. These assumptions result in a folk-theorem type of result

about the delay. Moreover, near the high-frequency limit, all stationary equilibria

feature non-extreme prices and non-extreme payoffs.

In chapter 2 (co-authored with Kevin He), we study how a benevolent sender

communicates non-instrumental information over time to a Bayesian receiver

who experiences news utility and exhibits diminishing sensitivity. We show that

one-shot resolution of uncertainty is strictly suboptimal under many commonly

used functional forms. We identify additional conditions that imply the sender

optimally releases good news in small pieces but bad news in one clump and show

how diminishing sensitivity may lead to commitment problems for the sender.

In chapter 3 (co-authored with Yi-Hsuan Lin), we consider an agent who

privately learns information about a payoff-relevant uncertain state of the world
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through a sequential experiment. Suppose the analyst observes the joint

distribution over chosen action and decision time. We show that such data

uniquely identify costs of information in two popular canonical cases. Moreover,

we show how an outside observer with access to such data can conduct welfare

analysis despite being oblivious of the sequential experiment of the agent.
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0
Introduction

This dissertation presents three independent essays in microeconomic
theory, focusing on aspects and implications of learning, both in strategic as well
as in single-agent settings. The three chapters deal with learning in different
economic settings, ranging from bargaining to optimal disclosure of
non-instrumental information. They also vary in the methodology used, from
dynamic game theory to axiomatic decision theory, thus validating the title of the
thesis.

In chapter 1, I study a discrete-time dynamic bargaining game in which a buyer
can choose to learn privately about her value of the good. Learning is about
information generation, rather than related to information processing costs. I
assume that information sources take time to arrive and that the amount of their
exploitation is endogenous. After learning, the buyer can disclose verifiable
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evidence of her valuation to the seller. The seller has the bargaining power, i.e. he
is the only party making price offers. These features make for a more realistic
model of negotiations. Examples include venture capital negotiations or
procurement of new technologies, which sometimes feature significant delay due
to endogenous costly learning. They also include certain M&A activities,
negotiations at the book stage between a buyer and a seller, or negotiations
between a real estate developer and a property owner looking to sell. I look for
Perfect Bayesian Equilibria (PBEs) in this dynamic game. I study both the case
where exploitation of information sources and search for information sources is
costless (a benchmark), as well as the case where both of these components of
information generation are costly.¹

The model analysis delivers two sets of results. The first set are general results
about PBEs. For any set of fixed parameters of the game, the buyer receives
informational rents for any period-length only if learning is costly. In particular,
the mere possibility of learning new information does not always ensure
informational rents for the buyer, unless information generation is costly.
Moreover, the disclosure choice of the buyer is ‘uniform’ across all model
versions: the buyer who receives good news is indifferent between disclosing or
not good news; the buyer with good news never discloses, thus pooling with the
buyer who has not learned yet. This strategic option value derived from learning
is the mechanism with which the buyer ensures positive payoff in equilibria.
Another implication of the disclosure choice is that in equilibria in which the
buyer with bad news discloses immediately, there is no scope for Coasian
dynamics: the positive selection effect (buyers with good news don’t disclose)
from non-disclosure is strong enough to (at least) neutralize the negative
selection effect from the rejection of prices.

The second set of results are derived under stationarity equilibrium
refinements and require the qualification that the frequency of interaction is large
enough. This is a popular technical approach in dynamic bargaining games.

¹Learning is still associated with economic costs in the ‘costless’ model, because information
sources take time to arrive and agents are impatient.
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Additionally, I focus the analysis on equilibria in which the buyer with bad news
discloses immediately. The rationale behind this requirement is that equilibria in
which a buyer stays in the game despite a zero continuation payoff, are not robust
to the introduction of minimal bargaining frictions like overhead costs or storage
costs for the good.

The high-frequency limits of stationary equilibria result in a folk-theorem type
of result about the delay until agreement. Maximal delay is achieved in equilibria
with mixed pricing. Near the high-frequency limit, all stationary equilibria
feature non-extreme prices and non-extreme payoffs. This is in stark contrast
with respect to two more ‘extreme’ situations: the case in which the buyer cannot
learn (ultimatum game), and the case in which the buyer does not need to learn
about her value of the good (the classical seller-offer game with initial private
information of the buyer, see e.g. Fudenberg et al. [1985] and Gul et al. [1986]).
The intuition for the result is simple: in my model the buyer can ensure positive
payoff because she can learn, but learning is costly and takes time and this is
common knowledge. The latter fact allows the seller to extract a non-trivial
amount of rent. The main technical innovation in the analysis is that the model
set up allows for closed-form solutions and for comparative statics results in
stationary equilibria with respect to the information choice of the buyer. This is
despite the overall complexity of the dynamic game.

Chapter 2 is devoted to a model of dynamic information design. In our model,
a benevolent sender communicates non-instrumental information over time to a
Bayesian receiver who experiences gain-loss utility over changes in beliefs (“news
utility”). News utility is characterized by two features: loss aversion and
diminishing sensitivity over the magnitude of news. It is well-known in the
literature that in the same set up, with loss aversion but without diminishing
sensitivity, one-shot resolution of uncertainty is the optimal disclosure
mechanism.

We show how to compute the optimal dynamic information structure for
arbitrary news-utility functions. With diminishing sensitivity over the magnitude
of news, one-shot resolution of uncertainty is strictly suboptimal under
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commonly used functional forms. Information structures that deliver bad news
gradually are strictly dominated by one-shot resolution of uncertainty. We
identify additional conditions that imply the sender optimally releases good news
in small pieces but bad news in one clump. We give results and numerical
examples in the same spirit, both for a mean-based version of news utility with
various popular parametric specifications, as well as for the more ‘traditional’
version of news utility from Kőszegi and Rabin [2009]. In a quadratic
specification of news utility and for a horizon of two periods, we can verify
analytically the conditions for the optimality of the one-shot-bad-partial-good
news information structure. These analytic conditions say that diminishing
sensitivity is strong enough when compared to loss aversion near zero.

When the sender lacks commitment power, diminishing sensitivity leads to a
credibility problem for good-news messages. Due to diminishing sensitivity there
are utility gains from false hope and the costs associated to the revelation of the
true state of the world at the end of the horizon are low, whenever loss aversion is
not high enough. This intuition delivers the result that without loss aversion, the
babbling equilibrium is essentially unique. Higher loss aversion enables
equilibria with higher utility, so that more loss-averse receivers may enjoy higher
equilibrium news-utility. This is in stark contrast to the case with commitment,
and shows explicitly that in the presence of diminishing sensitivity, the ability to
commit has value for the sender.

We discuss applications of our results. News utility and diminishing sensitivity
lead to endogenous informational preferences. We show how this may explain
the co-existence of different editorial policies in the media industry and justify
the prevalence of the sudden-death format for game shows.

Chapter 3 (co-authored with Yi-Hsuan Lin) is devoted to the study of random
choice induced by learning through a sequential experiment. Motivated by a
sizable empirical and experimental literature about choice data and response
times, we postulate that an analyst has access to random choice data showing the
joint frequencies of choice and also decision time (RCDT). We assume the
analyst lacks knowledge of the sequential experiment that the agent is using to
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learn about a payoff-relevant state of the world. Our aim is to show what can be
identified through this type of data without making any parametric assumptions
about the form of the sequential experiment.² We focus on two distinct cases of
costly experimentation. In the first case, the agent discounts future payoffs
geometrically (impatience). In the second, they pay a constant flow cost of time
(price per unit of time). We show that such random choice data uniquely identify
the discount factor in the first case and the cost of time in the second case,
besides identifying the agent’s prior and taste. The method works for essentially
arbitrary sequential experiment.

As a first step towards identification, we show how an outside observer with
access to this random choice data can conduct welfare analysis despite being
oblivious of the technology of sequential experiments the agents are using.
Technically, the results use an envelope theorem argument (Milgrom and Segal
[2002]) and adaptations of insights from Lu [2016]. The output are welfare
identities which express the welfare of an agent as a function of the observable
RCDT. We leverage this approach to prove several typical welfare comparative
statics in our setting, e.g. how can RCDT be used to estimate welfare change due
to a lump-sum transfer or due to a subsidy towards the duration of the
experimentation.

Once the welfare identities are proven, we can use these to identify parameters
of the agent. The identification of her taste uses canonical procedures. We take
variations of decision problems, the associated welfare identities and combine
them to identities which only depend on the RCDT of the agent. From these
identities we can solve for the prior of the agent and for the learning costs in both
cases, discount factor in the case of impatience and flow costs of time in the
remaining case. Our results illustrate the power of decision time data for
identification in learning models.

All three chapters revolve around learning, albeit in different micro-theoretic
models and setups. The first chapter characterizes optimal learning and its

²In particular, we allow for arbitrary correlation between experimental outcomes at different
points in time.
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consequences in a novel bargaining model with several realistic features, the
second shows how to design a learning protocol for non-instrumental
information for a behavioral agent who experiences news utility, whereas the
third focuses on what can be identified from random choice and decision time
data originating from an agent who is learning through an unknown sequential
experiment.
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1
Bargaining with endogenous learning

This chapter is based on my job market paper with the same title as the chapter. I
am indebted to EricMaskin, Jerry Green, Drew Fudenberg and Tomasz Strzalecki
for their continuous support and encouragement. I thank Arjada Bardhi, Daniel
Barron, Daniel Clark, Krishna Dasaratha, Oliver Giesecke, Ed Glaeser, Brett
Green, Kevin He, Giacomo Lanzani, Robin Lee, Shengwu Li, Jonathan Libgober,
Niccolò Lomys, Anh Nguyen, Indira Puri, Matthew Rabin, Sarah Ridout, Marco
Schwarz, Kremena Valkanova and Alex Wolitzky for helpful comments in
different stages of this project, as well as seminar audiences at Harvard and MIT
for their feedback during presentations. I also thank Artur Ananin, Anna Avdulaj,
Krishna Dasaratha, Tomasz Grzelak, Minella Kalluci, Rinald Murataj and Pauline
Rueckerl for helpful conversations on business situations in which costly
endogenous learning leads to delay in agreement. Any errors are mine.
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1.1 Introduction

In bargaining situations often one party can learn privately during the
negotiations. For instance, before investing in a start-up, an institutional investor
typically conducts market surveys or seeks expert advice about proprietary
technology. Learning takes time and resources, but creates an informational
advantage. The newly-informed party gains strategic option value, because she
can influence the negotiations by disclosing the information.

Appraising the market potential of innovative products is in fact of prime
importance in negotiations in the venture capital (VC) industry. To quote the
legendary Silicon Valley engineer and venture capitalist Eugene Kleiner: No
matter how ground-breaking a new technology, how large a potential market, make
certain customers actually want it.¹ This investigative process is typically arduous
and may lead to significant delays in negotiations. In this spirit, the recent survey
study Gompers et al. [2019] finds that closing a deal in the VC industry in the
U.S. takes on average 83 days.² They also document significant variance in delay
until agreement depending on industry, firm characteristics and location; e.g.
average delay in California is 65 days, for late-stage firms it is 106 days.

Considerations of market appraisal also afflict venture capital negotiations in
emerging markets where initial uncertainty may be related to regulatory trends or
the evolution of cultural tastes (see e.g. the case study ‘Sula Vineyards’ in
Zeisberger et al. [2017a] about private equity investment in the nascent wine
industry in India).

Endogenous learning pervades negotiations beyond those in the VC industry.
A publisher usually prospects the market while bargaining with a new author for
the copyrights on her book. A real-estate developer hires lawyers to perform title

¹See Kleiner’s laws in http://entrepreneurhalloffame.com/eugene-kleiner/ or
www.economist.com/obituary/2003/12/04/eugene-kleiner.

²Deal selection and closing can take even longer in private equity situations not involving in-
novative products. See Zeisberger et al. [2017b] and Gompers et al. [2019] for case studies that
exemplify this.
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exams and employs market analysts to forecast the value of a property in a year’s
time. In government procurement situations, private companies often conduct
studies on the benefits of a particular federal contract while at the same time
negotiating the terms of agreement.

Motivated by the examples above, this paper studies an abstract dynamic
bargaining game in which a buyer can endogenously generate information over
time about her valuation of a unit good offered for sale by a seller.

The analysis sheds light on the following questions.

i. When may it be without loss to assume exogenous information, rather than
endogenous acquisition of information?

ii. What is the buyer’s optimal information acquisition strategy? How can one
compare information acquisition across different bargaining environments
(comparative statics)?

iii. How can one quantify the efficiency loss and delay in agreement when
information takes time to arrive, is costly and endogenously acquired?

The model I study is a modified version of the standard one-buyer/one-seller
dynamic bargaining game as introduced in Fudenberg et al. [1985] and Gul et al.
[1986].³ Henceforth the buyer is called Buyer (female pronouns) and the seller is
called Seller (male pronouns). Seller has zero value for the good he initially owns
(a normalization). The goodmay be of high or low (non-negative) value to Buyer.
Initially the two parties share the same prior belief about Buyer’s value.

An informational asymmetry arises over time as Buyer learns endogenously
and privately about her valuation. Buyer’s learning is stochastic and occurs over
time: I consider both the case in which she is able to influence the rate of learning
and the one in which she is not. Once the opportunity to learn arrives, Buyer
chooses the extent to which she wants to exploit this opportunity, i.e. how
accurate a signal to acquire. I assume new information is verifiable and hence

³In bargaining theory parlance I consider a seller-offer, (weak) gap case game. SeeAusubel et al.
[2002] for a survey of the classical dynamic bargaining literature with incomplete information.
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cannot be misrepresented. Once new information is acquired, Buyer decides
whether and when to disclose it to Seller.

This model departs from traditional bargaining models in two crucial ways.
First, players are initially symmetrically informed and one party (Buyer) may
become more informed over time. Second, disclosure of new information is
feasible and any information disclosed is verifiable. Therefore, Seller learns from
two different channels about the current valuation of Buyer: from the
information disclosure decision, as well as from the rejection of past prices. The
latter is the traditional learning channel in the standard dynamic bargaining game,
whereas the former is a new channel.

There are two main takeaways from the analysis. First, learning creates option
value for Buyer which is strategic in nature. The possibility to learn typically
ensures Buyer a surplus. Second, because learning takes time and is costly, Seller
also receives some surplus from the negotiations. This contrasts with the
outcomes in the standard game of Fudenberg et al. [1985] and Gul et al. [1986]
in which prices and Seller equilibrium payoff are generically extreme because
Buyer possesses initial private information for free: Seller typically receives
minimal rent in the traditional seller-offer game.

Without the possibility to learn, Seller extracts all surplus immediately. With
the possibility to learn, Buyer can wait until she learns about her valuation,
disclose if her valuation is low and otherwise keep silent to profit from the private
information by pretending she has not learned yet. Thus, the fact that learning is
possible, but associated with costs, typically implies non-extreme equilibrium
payoffs. Non-extreme payoffs imply trade at non-extreme prices.

One can draw an analogy of the strategic option value from learning with the
actions of an investor in a capital market. Without the possibility to learn the
payoff structure of Buyer at the moment of trade is akin to the investor acquiring
a stock at the fair price. She receives zero profit from the trade. The possibility to
learn is akin to the investor owning a call option on the stock at the beginning of
time: if there is good news the option is exercised at a profit at the moment of
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trade, if there is bad news there is no downside at the moment of trade.⁴
Acquiring and exercising the strategic option in my model is inefficient because
learning leads to delay, as well as other costs associated to it. Nevertheless,
learning happens in all equilibria and typically results in positive Buyer payoff.

I focus first on the case in which the exploitation of an information source is
costless, a useful benchmark for comparison to the often more realistic case of
costly information.⁵ The costless learning benchmark may also have independent
merit in some applications, e.g. when information may arrive through a social
network, say of friends or colleagues, rather than through employing internal or
external resources in an advisory capacity.

Next, I consider extensively the more realistic case of costly learning. Some of
the results change when compared to the case of costless learning; for example,
Buyer may receive zero surplus in the costless learning case, so costly learning is
needed to guarantee non-extreme outcomes. Learning costs can arise in two
distinct dimensions in my model: exploration/search costs for sources of
information and exploitation costs of a newly found learning source. For instance,
the manager of a pharmaceutical lab may hire additional scientists to search for
new test ideas on the effectiveness of a new drug compared to more traditional
ones (exploration/search phase), or once a new test idea is available, she may
decide on the scale of the study that implements it (exploitation phase). I
endogenize both of these aspects of Buyer learning and show that they behave
differently from each other.

The next subsection explains the results of the paper in more detail.

⁴The analogy to a perfect capital market is not complete, because Buyer receives a positive pay-
off overall from exercising the strategic option value. This is because she is the only party who can
learn in my model, which corresponds to a capital market imperfection in the investor analogy.

⁵Strictly speaking, whenever Buyer has to wait for information to arrive there are opportunity
costs from waiting, which are reflected in the fact that future utility is discounted. With costless
learning Imean that there arenodirect, physical costs related to acquiring andexploiting information
sources.
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1.1.1 Preview of results

I focus on perfect Bayesian equilibria (PBE): both players follow optimal
contingent plans given their beliefs about Buyer’s value, and their beliefs are
derived from equilibrium strategies and Bayes’ rule whenever possible.⁶
Discrete-time dynamic bargaining games are notoriously difficult to study.
Therefore, many (but not all) results hold under the qualification that the
period-length is small enough (near the high-frequency limit, henceforth near the
HFL), and some hold in the limit as period-length shrinks to zero and time
becomes continuous (henceforth in the HFL).⁷ When period-length shrinks I
assume the players discount payoffs within that period less and that the
probability that Buyer receives an opportunity to learn diminishes. In particular,
the probability of learning within a period vanishes as period-length goes to zero.

The efficient outcome in the game is for trade to happen immediately so that
learning does not start.⁸ This is because learning always leads to delay, apart from
any additional costs that may be associated with it. All equilibria with/without
costs feature positive delay and thus are inefficient. This is because Buyer accepts
the delay in order to capture the strategic option value from learning new
information: if she learns bad news about her valuation, she may disclose this to
get a lower price, whereas if she learns good news she can keep silent and pretend
no new information has arrived to buy the good at a price below its actual value.
Nevertheless, approximate efficiency is a feasible equilibrium outcome near the
HFL, even if learning is costly. A detailed explanation of the results follows.

Exogenous intensity, costless accuracy. I first consider the case where
the opportunity to learn new information arrives privately to Buyer at a positive
Poisson rate of λ and Buyer can freely choose how much information to acquire.
In this case, it is a weakly dominant strategy for Buyer to learn perfectly whenever

⁶See part IV of Fudenberg and Tirole [1991] for a formal definition.
⁷Period-length is inversely proportional to the frequency of interaction. Thus, near the HFL

equivalently means for a high enough frequency of interaction.
⁸I consider the case of negative good values as an extension (see below). With negative values

learning can be welfare-enhancing.
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she gets the chance. In fact, acquiring full information whenever possible is
strictly optimal in a PBE in which Buyer receives a positive equilibrium payoff.
Inuitively, free information never hurts, and so is always consumed by an agent
without commitment. Thus, whenever information is costless but arrives at a
random date, the assumption of endogenous choice of informativeness is
equivalent to the assumption that information is exogenous, one-shot and
delivers conclusive evidence to Buyer about her value.

Second, near the HFL there are generically no PBEs in which Buyer with bad
news discloses immediately and Seller screens sequentially the Buyer for the
other valuations, as long as there is no disclosure. Thus, the usual logic of Seller
‘screening down the demand curve’ that appears in many standard dynamic
bargaining models fails in this setup.⁹ The reason is that the disclosure decision
leads to an interim update of Seller about the private information of Buyer. If
Buyer with bad news always discloses, no disclosure is interpreted as indication
of higher valuations. This counteracts the belief update after a price rejection,
which is interpreted by Seller as an indication of lower values. Overall, the first
effect is strong enough to overpower the second.

I also show that for high enough λ, but fixed period-length, there are equilibria
in which Buyer gets zero payoff, because she cannot succesfully pretend to be
Buyer who has not received any news. Therefore the possibility of private
endogenous learning per se does not necessarily ensure informational rents for
Buyer. In these equilibria, Seller always charges the highest price that may be
accepted by some Buyer type he deems feasible, given the information he has
about Buyer’s valuation (high-price equilibria). High-price equilibria do not
survive costly learning. Moreover, there cannot be any equilibria with zero Buyer
payoff whenever period-length is small enough. This is because of Seller’s lack of
commitment: the arrival of information in the first period is very unlikely so that
asking for a high price is suboptimal already in the first period. This results in

⁹See e.g. Fudenberg et al. [1985], Gul et al. [1986] for classical and many recent papers, e.g.
Fuchs and Skrzypacz [2010] or Hwang and Li [2017] for results featuring equilibrium dynamics
in which seller screens down the demand curve.
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informational rents for Buyer.
I focus then the analysis on stationary equilibria in which Seller mixes between

at most two prices after non-disclosure, Buyer who has learned good news trades
without delay, whereas Buyer who has learned bad news discloses immediately
and accepts the revised price of Seller. Henceforth these are called strongly
stationary equilibria. These always exist near the HFL and besides strongly
stationary equilibria with pure pricing by Seller, there are also strongly stationary
equilibria near the HFL that feature mixed pricing upon non-disclosure. In
particular, there is equilibrium multiplicity.

In the HFL, any mixing by Seller upon non-disclosure disappears and prices
converge to a single number. Thus, Seller asks for a flat price in the HFL, unless
he sees evidence of bad news at which point he revises the price down and the
game ends. In the HFL of strongly stationary equilibria, both players have
positive payoffs. The amount of expected real time delay is indeterminate and
varies from zero to 1

λ : for each value strictly between zero and 1/λ, there is a
corresponding equilibrium with expected real time delay equal to said value. In
particular, near the HFL there are strongly stationary equilibria with pure pricing
whose outcome is arbitrarily close to efficiency. In these equilibria, Buyer who
has not learned yet is made indifferent on path between buying now and
continuing and chooses to buy now with high probability. This leads to vanishing
delay near the HFL and to low probability of learning on path. Overall, this
results in payoffs close to efficiency.

The indeterminacy in expected delay and payoffs occurs because the price
charged in the HFL makes Buyer who has not learned yet indifferent between
waiting to capture the strategic option value and stopping immediately. It is this
possibility to wait that in turn creates the strategic option value from learning.
This is because it allows Buyer who has learned good news to ‘pool’ with Buyer
who has not learned yet and thus possibly get the high-value good at a bargain.
On the other hand, because information is not readily available to Buyer at the
start of time, Buyer never captures all surplus in any strongly stationary equilibria.

Overall, the combination of endogenous learning and disclosure of bad news
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ensures the existence of equilibria which feature neither extreme prices, nor
extreme payoffs.

Exogenous intensity, costly accuracy. I consider two distinct costs of
exploiting an information source, conditional on its arrival. In the first case, costs
are deterministic and variable and more accurate information costs more. In the
second case, costs are stochastic but lump-sum: whenever the opportunity to
learn arrives, a cost is drawn from a distribution. If Buyer pays the cost she can
exploit the learning source at no additional marginal cost; otherwise, she may
wait for future opportunities to learn and more favorable draws of the lump-sum
exploitation cost.

Surprisingly, the same set of results can be proven for both models of accuracy
costs. First, for any period-length, all PBEs feature a positive payoff for Buyer. This
is in contrast to the costless case. Common knowledge of Buyer’s costs of
information acts as an insurance device for Buyer’s payoff. The intuition is the
following. Because of the strategic option value of learning, all PBEs feature some
non-trivial amount of learning from Buyer. Because learning is private, Seller has
to compensate Buyer for the costs of learning on average. This results in positive
ex-ante surplus for Buyer because of the discretionary nature of her disclosure
decision. Recall that in the case of costless accuracy there exist PBEs with zero
Buyer payoff.

Second, just as in the case of costless accuracy, there are generically no PBEs
near the HFL in which Buyer with bad news discloses and which feature
deterministically falling prices on path (Seller does not ‘screen down a demand
curve’). The intuition is the same as before.

Subsequently, I focus again on strongly stationary equilibria. Near the HFL
there exist such equilibria featuring pure pricing on path from Seller, for any
parameter values of intensity and accuracy costs. Under a condition postulating
that the arrival rate of the opportunity to learn λ is not too high compared to the
players’ impatience level, there are additional strongly stationary equilibria with
mixed Seller pricing near the HFL.
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In all strongly stationary equilibria with pure pricing Seller incentivizes the
information acquisition of Buyer by offering her the opportunity to buy the good
at a low price in case of good news. In contrast to the case of costless learning, the
price spread does not disappear in the HFL of mixed pricing equilibria. Near the
HFL of equilibria with mixed pricing Seller charges most of the time the
reservation price of Buyer with good news as long as there is no disclosure. To
incentivize learning in such equilibria Seller occasionally charges a low price so
that Buyer has incentives to learn, whenever the opportunity arrives. But since
the probability to learn in a single period is very low when period-length is very
small, Seller promises the low price within a period with probability declining to
zero, as period-length goes to zero. This leads to maximal delay in real time for
such equilibria, because Buyer has no choice but to wait for the opportunity to
learn to realize the strategic option value.

In the HFL of strongly stationary equilibria with pure pricing expected delay is
again indeterminate. Moreover, near the HFL there are strongly stationary
equilibria that are almost efficient, and all such equilibria exhibit pure pricing.
This is despite costly learning. The reasoning for these results is the same as in the
costless case.

In the HFL, the payoffs of Buyer and Seller give insight into the inefficiency
sources: the deviation from full efficiency is a weighted sum of the ex-ante
surplus and the learning costs incurred on path. The inefficiency becomes larger
the more impatient the players are or the lower the arrival rate λ.

Extension: endogenous intensity. I extend the model to allow for
endogenous costly choice of the learning intensity λ. In this most general version
of the model, both aspects of learning, intensity and accuracy, are endogenous.¹⁰
Costs of intensity are deterministic and variable and they are incurred at the
beginning of every period, as long as bargaining continues. All general results
from the model with costly accuracy but exogenous intensity carry over in this
more general framework. In particular, there are again strongly stationary

¹⁰Results about costless choice of λ are contained in section A.4 of the appendix.
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equilibria near the HFL, which are uniquely parametrized by the average price
quoted by Seller upon non-disclosure. Compared to the case of exogenous
intensity, there is now an additional potential source of inefficiency coming from
the intensity costs. This is quantified in the HFL, just as the previous sources of
inefficiency.

Once the rate of opportunities to learn is a choice variable for Buyer,
comparative statics for information choice are possible. Across all strongly
stationary equilibria and in the HFL, the endogenous and stationary level of
intensity increases in the ex-ante level of optimism and decreases in the patience
level of the players. In contrast, accuracy choice is broadly speaking
‘reverse-U-shaped’ in the level of ex-ante optimism and independent of the
impatience level.

Extension: pre-learning negotiations. The reasons why learning is
inefficient in my main model are two-fold. First, trade is ex-ante efficient and
therefore learning does not add to the social welfare. Second, I assume that Buyer
starts to learn before Seller can make the first price offer. This is a natural feature
of many real-world negotiations: the party who becomes first interested in the
trade may naturally start to gather information privately before she actually
shows her interest to the other side of the market.

If Buyer could commit to not start learning before she approaches Seller and
instead allows him to make a first, pre-learning offer, then the inefficiency would
disappear. This is true independently of period-length. I show this by adding an
ex-ante stage to the bargaining game. In this stage, Seller can make a first price
offer before the learning from Buyer’s side can start. In equilibrium, Buyer
accepts the price offer immediately and learning does not happen on path. This
extension suggests, that there is scope for a more systematic study of the design of
bargaining institutions for markets in which parties typically engage in costly
private learning before and during negotiations.
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Extension: possible negative Buyer value. Suppose that the lowest value
of Buyer is negative but that in expectation trade is efficient ex-ante (i.e. positive
Buyer value occurs with high enough probability to compensate for the
possibility of negative value). Assume in addition that Buyer is free to walk away
from the bargaining at any moment. In this situation learning can strictly improve
welfare, despite being costly. This is because Buyer can always walk away when
she learns bad news that lead to a negative valuation for the good.

In this set up Buyer’s information acquisition choice is very similar to the case
of non-negative values and in strongly stationary equilibria bargaining ends
whenever Buyer receives news about the good. When she receives good news she
trades without delay. When she receives bad news, she either discloses
immediately whenever it leads to a positive valuation or she walks away
immediately whenever it leads to a negative valuation.

If learning were impossible, the efficient outcome under imperfect information
about the value of the good would again be to trade immediately. This would
require trade in both states of the world, i.e. Buyer would incur a loss from trade
ex-post, whenever value of good is negative. I illustrate that learning limits this
downside by lowering the probability of trade in the case of a negative valuation.

Outline of the rest of the paper. The next subsection discusses related
literature. Section 1.2 introduces the basic model, states auxiliary results which
are valid for all model versions and studies the case of costless learning. Section
1.3 introduces costs for accuracy and studies their implications. Section 1.4.1
discusses endogenous intensity and contains some comparative statics results.
Section 1.4.2 shows how efficiency can be restored through pre-learning
negotiations. Section 1.4.3 discusses negative values. Section 1.5 concludes.
Formal proofs are contained in the appendix. Results that are not central to the
main takeaways of this paper are contained in section A.4 of the appendix.
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1.1.2 Related literature

The study of bargaining games with informational asymmetries has a long
tradition in economic theory. This literature begins with the seminal papers
Fudenberg and Tirole [1983], Sobel and Takahashi [1983], Cramton [1984],
Fudenberg et al. [1985], Fudenberg et al. [1985] and Gul et al. [1986]. These
papers focus on the case in which one or both bargaining parties have initial
private information about their valuations and study how bargaining parties learn
about the private information of their strategic opponent from price offers and
rejections. A focal point of the analysis is the validity of the Coase conjecture.
This conjecture prescribes that, as bargaining parties interact more and more
frequently, delay until agreement vanishes and the informed party’s rent is
maximal.

Almost since its beginning, the literature with asymmetric information has
focused on understanding the economic forces behind inefficient delay and
whether the Coase conjecture survives, in one form or another, more
complicated economic environments. To mention a few seminal contributions,
Cramton [1984] and Chaterjee and Samuelson [1987] find that two-sided
private initial information may lead to costly delay, Rubinstein [1985] that delay
is possible whenever a player is uncertain about the time preferences of her
bargaining counterpart, whereas Deneckere and Liang [2006] find that the same
may happen if the parties have interdependent values.¹¹

Starting from Fudenberg et al. [1987], the literature has studied bargaining
under the existence of other potential trading partners, or more generally outside
options. Board and Pycia [2014] shows that Seller may get significant surplus
(and thus the Coase conjecture fails), even though agreement is immediate,
whenever Buyer has an outside option at the beginning of the game. Fuchs and
Skrzypacz [2010] as well as Hwang and Li [2017], Hwang [2018a] and Lomys
[2017] focus on the effects of stochastic arrivals of outside options. Hwang and

¹¹This list is by far incomplete. Other models of delay include: Abreu and Gul [2000] due to
irrational players and reputation building, Feinberg and Skrzypacz [2005] due to higher-order be-
liefs and Yildiz [2004] due to ex-ante optimism (non-common priors).
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Li [2017] and Hwang [2018a] in particular look at the case where the exogenous
arrival of the outside option leads to a FOSD-shift upwards of the valuation of
Buyer.¹² They consider private arrival of the outside option and find similar
equilibrium dynamics as the strongly stationary equilibria in this paper, in
addition to verifying the Coasian conjecture under some parameter restrictions.

While the existence or arrival of an outside option might also be interpreted as
additional private information, none of the above mentioned papers models
information acquisition explicitly. Learning new information leads to a
mean-preserving-spread (MPS) in the distribution of Buyer valuations and in this
paper, this MPS turns into a FOSD-shift upwards in the equilibrium dynamics of
strongly stationary equilibria through the equilibrium disclosure choice of Buyer
who receives bad news. Thus, the resulting FOSD-shift in valuations is an
equilibrium property, rather than assumed in the model primitives. Additionally,
results here show that the existence of sequential screening dynamics near the
HFL hinges upon the assumption of private initial information, which is absent
in the model of this paper. Finally, in the set up considered in this paper Coase
conjecture fails and equilibria typically exhibit non-extreme prices and payoffs
for all parameter values of the game considered.

This paper also connects to the literature on evolving valuations/roles in
dynamic situations. Ortner [2017] and Ortner [2019] consider bargaining
situations in which the change is exogenous, whereas Bergemann and Välimaki
[2019] offer a review of the recent related literature on dynamic mechanism
design, in which the standing assumption is commitment from the part of one of
the players. More related to this work, Ravid [2019] studies a seller-offer game, in
which Seller has the private initial information about the quality of the good and
Buyer is rationally inattentive to past prices and the product’s quality. Similarly to
this work, Buyer’s valuation changes endogenously, there may be delay until
agreement and Buyer obtains positive surplus in the equilibria characterized. In
contrast to this work, there is no disclosure decision for information, because the
costs of information are not due to information generation/production but rather to

¹²FOSD stands for First-order stochastic dominance.

20



information-processing. Maximal delay in my model is achieved by equilibria
with mixed pricing, whereas Ravid [2019] focuses on equilibria with pure
pricing. Moreover, positive costs of information are not necessary to ensure
positive Buyer payoff in the model of this paper, whereas they are in Ravid
[2019]. Finally, in the setting of this paper sequential screening dynamics do not
play a role, whereas they play an important one in Ravid [2019].

Daley and Green [2019] considers a model of bargaining in which Seller has
initial private information about the value of the good and public, exogenous
news delivers garbled information about the value of the good. In their setting
interdependence of values is necessary but not sufficient for delay. Esö and
Wallace [2019] considers a game with interdependent values in which both
Buyer and Seller can learn their value of the good exogenously at a random date,
privately and independently of each other. They assume each player can disclose
verifiably their updated valuation to the other party. The interplay between
interdependent values and two-sided exogenous learning implies there is no
scope for equilibria with mixed prices and that with infinite horizon there is no
delay near the high-frequency limit.

In this paper only Buyer learns endogenously and privately and I model
explicitly the costly generation process of new information. In terms of results, I
characterize equilibria which feature delay in real time, even though values of
Buyer and Seller are independent and trade is efficient in every state of the world.
Moreover, I show that equilibria with price mixing on path, which are absent
from the above mentioned papers, are not knife-edge cases but a robust
prediction of endogenous private learning.

Crémer and Khalil [1992] and Crémer et al. [1998] are classical works on
information acquisition before the signing of a contract. More recently, Shi
[2012] and Li [2019] consider auction settings in which Buyer types can acquire
costly signals about their valuation before bidding in the auction.¹³ Kirpalani and

¹³Shi [2012], Hwang [2018b] and Esö andWallace [2019] are to the best of my knowledge the
only other papers which consider an incomplete information game between a set of buyers and a
seller without the assumption of initial private information.
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Madsen [2019] studies how private information acquisition and social learning
through public investments affect investment timing in settings in which
investments are non-rival.

In contrast, this paper studies a bilateral dynamic bargaining model and
focuses on the delay caused by endogenous learning, besides studying the
optimal information acquisition of Buyer in both of its dimensions: intensity and
accuracy.

Finally, this paper relates to the classic literature on strategic information
transmission of verifiable information without commitment, beginning with
Grossman [1981] and Milgrom [1981].¹⁴ In particular, the strongly stationary
equilibria of this paper feature partial unravelling analogous to Dye [1985]:
Buyer with bad news presents evidence if she has it, while Buyer with good news
pools with Buyer without evidence. Esö and Wallace [2014] consider a static
bargaining model with verifiable disclosure and two-sided private information
and focus on the value of verifiability of private information. Most of the work in
the literature on verifiable disclosure has been on static disclosure; notable
exceptions are Acharya et al. [2011] and Guttman et al. [2014], which focus on
dynamic verifiable disclosure to a market rather than a strategic audience. Most
recently, DeMarzo et al. [2019] studies a model in which a seller designs tests she
can use to certify product quality to a market. Similar to this paper, it considers
the case of costly design and shows the existence of equilibria with partial
revelation. However, the audience of the disclosure is non-strategic and the
model is static; thus any study of potential inefficient delay due to costly test
design is moot.

1.2 The model

There are two players: Buyer and Seller. Seller owns an indivisible good whose
value for Seller is zero (a normalization). Buyer has potential value θ ∈ {v̄, v} for
the good with v̄ > v ≥ 0.

¹⁴See Milgrom [2008] and Dranove and Jin [2010] for surveys.
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Time is discrete, denoted by t = Δ, 2Δ, . . . with period-length given by
Δ > 0. I use the expression near the HFL to mean for all Δ > 0 small enough and
in the HFL to mean in the limit as Δ→0.

At the beginning of the game Buyer does not know her value for the good and
both Buyer and Seller share a common prior of high value π0, which is strictly
between zero and one. Denote by v̂ = π0v̄+ (1 − π0)v the ex-ante common
knowledge valuation of Buyer. Players are impatient with common discount
factor δ = e−rΔ, for some r > 0.

Learning. Every period starting from t = 1 with probability
μ = 1 − e−λΔ, λ > 0 opportunities to learn about θ arrives for the Buyer. For
tractability, I make the major simplifying assumption that Buyer can exploit only
one opportunity to learn, i.e. she can learn additional information only once. Its
arrival is private information of Buyer. Whenever the opportunity to learn
arrives, Buyer can pick an experiment of the form¹⁵

Ea : {v, v̄}→P({H, L})with Ea(v̄)(H) = Ea(v)(L) = a ∈
[ 1
2
, 1
]
.

The accuracy chosen by Buyer is also private. a is the accuracy and it is a choice
variable of Buyer. H stands for a signal which gives (possibly partial) evidence of
high value and L for a signal which gives (possibly partial) evidence of low value.
The informativeness of the experiment Ea is denoted by I(a) and is given by
I(a) = a

1−a .
Results would go through with other parametric forms of experiments, as long

as they lead to concave value of information. If one allows for general
experiments, this requires introducing two informativeness parameters, since
there are two states of the world. It turns out that value of information can be
non-concave in this model, when general two-parametric experiments are
allowed.¹⁶

¹⁵HenceforthP(X) for a metric space X denotes the set of Borel probability measures over X.
¹⁶See section A.4 of the appendix for this. The possibility of non-concavity of the value of infor-

mation in information acquisitionmodels is a well-known phenomenon since the seminal work of
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The parameter λ is called intensity throughout, whereas a is called accuracy.
Intensity is exogenously given and time-invariant until section 1.4.1. In analogy
to the terminology of the experimentation literature, intensity describes the
exploration/search rate of the learning process, whereas accuracy choice is akin to
the choice of how much to exploit an already available learning source.

Observing signal L orH after performing experiment Ea with accuracy
a ∈ [ 12 , 1] leads to an updated valuation for Buyer (expected value given the signal
and the accuracy a chosen). The possible valuations in [v, v̄] that Buyer may have
at each moment in time are called the Buyer’s type. These consist of v̂, the
valuation of Buyer before she learns, as well as the updated valuations after
learning. For all purposes of the analysis, Seller’s belief after a public history
about the private information of Buyer may be summarized through a probability
distribution over possible valuations in [v, v̄].

Disclosure choice. In every period, after opportunity to learn and learning,
Buyer can choose to disclose verifiably her updated valuation, or choose to not
disclose her updated valuation. Buyer can delay disclosure.

Under this assumption, non-disclosure can be due to two reasons only: Buyer
has not learned yet or she has learned and chosen not to disclose until that point
in time. The timeline of the game within a period is as in Figure 1.2.1.

tΔ (t+1)Δ

Opportunity to learn 
arrives or not

If opportunity arrives, 
buyer decides 

how much to learn

If buyer learns,
decides whether

to disclose
new valuation

Seller quotes
 a price

Buyer accepts or
rejects price

Figure 1.2.1: Timeline within a period.

Radner and Stiglitz [1984]. See Chade and Schlee [2002] for a modern treatment of this issue.
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Histories, strategies and equilibrium. This game has two types of
histories: private and public. A public history consists of a sequence of disclosure
or non-disclosure events, as well as of rejected prices. Only Buyer has access to
private histories, which include, in addition to publicly available information,
both the occurrence of the arrival of the opportunity to learn as well as the
learning outcome. A strategy for Buyer after a private history prescribes her
choice of a, if that history ends with the arrival of the opportunity to learn, her
choice of a probability of disclosure, if that history prescribes probability of
disclosure at the end and there has been an opportunity to learn in the past.
Finally, it prescribes an acceptance probability for a price quoted by Seller, if the
history ends with that price quoted by Seller. A strategy for Seller prescribes a
(possibly mixed) price offer after every public history ending with a
disclosure/non-disclosure by Buyer.

Throughout, an equilibrium is a perfect Bayesian equilibrium (PBE).¹⁷ Buyer’s
strategy prescribes an optimal move after every private history, given Seller’s
strategy and Bayes updating about her value of the good. Seller’s strategy
prescribes an optimal mixing over prices after every public history in which he is
called upon to quote a price, given Buyer strategy and Bayes’ updating about the
evolution of Buyer’s valuation (whenever possible using Buyer’s strategy).

Introduction of the assumptions on costly learning is deferred to sections 1.3
and 1.4.1.

Before delving into the analysis of the main results, I state two auxiliary results,
which are very helpful in simplifying the analysis of PBEs throughout.¹⁸ The first
one mirrors similar results in the classical works Fudenberg et al. [1985] and Gul
et al. [1986] on the seller-offer game with initial private information. It is valid
for all model versions considered in this work. Before stating it, I define the
concept of reservation prices.

Definition 1. Fix a PBE, a Buyer type w and a private history hwhich ends just

¹⁷See part IV of Fudenberg and Tirole [1991] for a formal definition.
¹⁸Both Lemma 1 and Lemma 2 here are also valid word-for-word for the models with costs.

Thus, I do not restate them in sections 1.3 and 1.4.1.
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before Seller has the possibility to quote a price. The reservation price of type w
after h is the highest price that type w is willing to pay after h given continuation
play in the PBE.

Lemma 1 describes general properties of PBEs of dynamic bargaining games
in which Seller is the only player who makes price offers.

Lemma 1. In any PBE the following hold true.
1) Fix a public history h after which Seller is asked to quote a price and let w be the

lowest possible Buyer valuation according to Seller’s belief distribution over Buyer-types
after h. Seller asks for at least w after h.

2) In any PBE, after every public history in which it is Seller’s turn to move, Seller
asks for prices among all reservation prices (given continuation play) of Buyer types
she thinks are feasible right after that history.

3) After every private history, the Buyer type with the highest reservation price that
has positive probability after that history, accepts an offer equal to that reservation
price with positive probability.

4) After any disclosure event, Seller quotes a price equal to the disclosed valuation
with probability one.

The strategies of a player in a PBE may be history-dependent and look back at
more than just the preceding periods. Therefore, there is the theoretical chance
that Buyer can reward Seller for prices lower than v by using history-dependent
continuation play. Part 1) shows that this can never happen in a PBE.

The proof of part 1) also establishes the skimming property. It says that, after
every public history, if Buyer of type w accepts a price p then so does every type
with a strictly higher valuation w′ > w.

Part 2) follows immediately from part 1) and the skimming property: if Seller
wouldn’t charge reservation prices, he would be leaving surplus on the table at no
future benefit. Part 3) holds necessarily in every PBE to ensure that best
responses of Seller are well-defined. Finally, part 4) is a direct implication of the
assumption that learning is one-shot, disclosure is verifiable and that this is
common knowledge: if Buyer discloses, Seller knows her valuation will not
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change in the future and so asks for the full surplus. Parts 1) and 4) imply that
Buyer with bad news has zero surplus in any PBE.

Lemma 1 has several important economic implications whose proofs are
contained in the appendix. First, it implies that in every PBE the reservation
prices are strictly increasing in the type of Buyer. Second, it implies that there are
no quiet periods in any PBE, i.e. after any history in which Seller is called upon to
play, the probability of agreement is positive.

The second auxiliary result concerns the disclosure decision.

Lemma 2. It holds true in all PBEs:
- Buyer has strict incentives not to disclose good news on path, whenever the PBE

features a positive Buyer payoff
- Buyer is indifferent between disclosing or not disclosing bad news on path,
- there are no strict incentives to delay disclosure of bad news.

Intuitively, if Buyer has received good news she cannot have strict incentives to
disclose because she hopes to get a price lower than her reservation price. If she
receives bad news, she knows her continuation payoff is zero and thus is
indifferent between disclosing and not disclosing.

Equilibrium refinements

I close this subsection by introducing several equilibrium refinements which are
used in the rest of the paper.

Refinement with respect to the disclosure decision. Equilibria in
which Buyer with bad news does not disclose with positive probability are not
‘robust’ to the introduction of some slightly more realistic features into the
model. For instance, Seller may have very small inventory costs for the good.
Alternatively, he or Buyer may have small but positive overhead costs for
continuing the bargaining, e.g. paperwork costs or costs for intermediaries for the
communication or other meeting costs. In all of these cases the game ends once
Buyer receives bad news. If Seller has small overhead costs for bargaining or
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inventory costs for the good, she ‘bribes’ Buyer with bad news into disclosing
immediately by offering her a negligible surplus. If Buyer has small overhead
costs for continuing the bargaining, she discloses bad news immediately to avoid
future overhead costs.

In the following, I call an equilibrium a disclosure equilibrium, if it prescribes
that Buyer who receives bad news on path discloses immediately and accepts
with probability one the price offered subsequently by Seller.

Stationarity. As is usual for many dynamic bargaining games, I often focus
the analysis on stationary equilibria.

Stationary equilibria satisfy the following properties.

i. Buyer’s on-path actions depend only on her current type and Seller’s current
belief over Buyer types,

ii. Seller’s on-path actions depend only on his belief distribution over Buyer
types,

iii. If off-path play leads to a Seller-belief that happens with positive probability
on path, ensuing play of Seller follows his on-path strategies.

Under a very mild technical requirement, section A.4 of the appendix shows
that for every sequence of disclosure equilibria as Δ→0 the beliefs at the start of
each period converge to the degenerate distribution on v̂, as long as bargaining
goes on. This motivates requiring this property near the HFL as well.

A stationary equilibrium is called strongly stationary, if as long as bargaining
goes on, Seller starts each period on path with belief concentrated on Buyer type
v̂.¹⁹ Strongly stationary equilibria are analytically tractable and have intuitive
closed-form solutions.

¹⁹Proposition 3 from subsection 1.2.1 below shows that there exist stationary equilibria which
are not strongly stationary. Theorem 1, Propositions 6 and 7 show that strongly stationary equilib-
ria exist near the HFL for both costless and costly learning.
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Note that Buyer with good news in a strongly stationary equilibrium never
rejects her reservation price on path. In particular, under strong stationarity the
game never continues past the period of the arrival of information. This bounds
the delay across all strongly stationary equilibria with disclosure because it takes
in expectation 1

λ in real time for the opportunity to learn new information to
arrive.

Finally, in the rest of the paper I call an equilibrium a strongly stationary
equilibriumwithmixed pricing if it satisfies

i. Seller mixes after on-path histories,

ii. it is a disclosure equilibrium,

iii. it is strongly stationary.

I call an equilibrium a strongly stationary equilibriumwith pure pricing it it
satisfies ii. and iii. above and i. is replaced with

i’. Seller does not mix after on-path histories.

Themain economic property of the strongly stationary equilibria characterized
in the rest of the paper is the strategic option value of Buyer from learning. This
results in non-extreme payoffs for both Buyer and Seller and non-extreme prices.

1.2.1 A benchmark: costless learning

I now consider the benchmark case of costless learning. Thus, intensity is fixed
λ > 0 throughout and Buyer can acquire any level of accuracy a for free,
whenever the opportunity arises. The first major implication of costless choice of
accuracy is that in every PBE it is a (weakly) best response for Buyer to learn
conclusively, whenever the opportunity to learn arises. Learning conclusively is
necessarily a strict best response in any PBE in which Buyer payoff is positive.
The proof of the following Proposition is in section A.4 of the appendix.

Proposition 1. There does not exist any PBE with a private history h (either on- or
off-path), such that all of the following conditions are fulfilled
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i. Buyer is uncertain of the value of good,

ii. at the end of h Buyer has an opportunity to learn,

iii. with positive probability after h and after opportunity to learn, Buyer picks a < 1,

iv. Buyer has positive continuation payoff after picking a < 1.

This result gives a micro-foundation for the assumption of

exogenous arrival of a one-shot and conclusive learning opportunity,

thus answering Question 1 in the introduction. If the learning is costless, then
this assumption is without loss of generality for any PBE in which Buyer has a
positive payoff. Moreover, this result simplifies the analysis of the costless case in
that, there are only two possibilities: either Buyer receives zero equilibrium
payoff or her information acquisition decision on the equilibrium path is trivial,
because she chooses to learn perfectly whenever she can.

The next result formalizes the idea, that the usual logic of sequential screening
and the related intuition of the optimality of ‘screening down the demand curve’
(so-called Coasian dynamics) fail in this model. First, I define the concept of
sequential screening of valuations in this set up.

Definition 2. Say that a PBE features sequential screening of valuations if and
only if on path

• as long as there is no disclosure, Seller quotes a decreasing sequence of
deterministic prices {rl, l ≤ K} (K ≤ ∞) with r1 a reservation price of
Buyer with good news

• the sequence of Seller-beliefs γ l ∈ P([v, v̄]), 2 ≤ l ≤ K that Seller
entertains at the beginning of every period starting from the second, is
strictly decreasing over time in the FOSD-sense.²⁰

²⁰At the start of the game there is no initial private information, i.e. γ1(v̂) = 1.
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I first show that the logic of Seller pricing is enough to exclude disclosure PBEs
when v > 0 if the period-length is small enough. The case v = 0 is more difficult
to treat and I introduce additional assumptions.²¹ It is treated in detail in the
appendix.²²

Proposition 2. Suppose accuracy is costless and that v > 0. Then there are no
disclosure equilibria near the HFL in which Seller screens the valuations sequentially.

Recall that the economic rationale for equilibria in which Seller ‘screens down
the demand curve’ is that of screening for the initial private information that
Buyer might possess at the start of the game. When there is common knowledge
of an initial distribution of valuations and Buyer cannot learn, the fact that
bargaining continues can only be interpreted as indication of lower valuations.²³
When the demand curve is endogenous and there is a disclosure decision, under
the assumption that Buyer with bad news discloses immediately, Seller updates
twice within a period as long as bargaining continues. He updates once from
non-disclosure (an indication of higher valuations) and once from the rejection
of a price (an indication of lower valuations). The first movement in beliefs is
large enough as to neutralize the effect of the second, so that overall the classical
sequential screening result fails.

Positive Buyer payoff only near the HFL

This subsection shows that when accuracy is costly, the mere possibility to learn
does not ensure informational rents for Buyer, unless the frequency of interaction
with Seller is high enough.

I first look for stationary equilibria in which Seller quotes pH = v̄with
probability one every period on path, as long as there is no disclosure. Let this

²¹In particular, I restrict to PBEs which are stationary and satisfy an equilibrium refinement
called ‘divinity in bargaining’. See the appendix for more.

²²In section A.4 of the appendix Proposition 2 is generalized to its ‘real-time’ counterpart: the
sequential screening dynamics are allowed to start at some date T(Δ) ≥ 1 and so that T(Δ)Δ→0
as Δ→0.

²³This belief updating logic underlies the traditional ‘Coasian dynamics’ result. See chapter 10
of Fudenberg and Tirole [1991] for more on Coasian dynamics.
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type of equilibrium be called a stationary high-price equilibrium. Buyer of type v̄
accepts pt = v̄with some probability q1 ∈ (0, 1) at t = 1. This results upon
rejection of pH in positive probability of type v̄ at the beginning of period t = 2.
Let this probability be γ and let q(γ) be the probability with which the type v̄
rejects pH in t ≥ 2.

Upon non-disclosure of vwithin a period, Seller updates her belief of Buyer
with good news from γ to

U(γ) =
γ + (1 − γ)μπ0

1 − (1 − γ)μ(1 − π0)
. (1.1)

This interim update is higher than γ: there is a positive selection effect, because
no disclosure is stronger indication that Buyer may have learned good news.

If Buyer of type θ = v̄ accepts pH with probability q, Seller updates the belief
of v̄ fromU(γ) to

B(U(γ), q) =
U(γ)(1 − q)

U(γ)(1 − q) + 1 − U(γ)
. (1.2)

This is also the belief with which Seller starts the new period. It is strictly lower
than the interim updateU(γ), because of a negative selection effect: rejection of a
price is indication of lower valuations.

The condition for stationary beliefs on path from t = 2 on is given by

B(U(γ), q(γ)) = γ. (1.3)

Thus, the positive and negative selection effects balance out at γ, whenever the
type v̄ rejects the price pH = v̄with probability 1 − q(γ).

In the following letW(γ) denote the stationary payoff of Seller from t = 2
onwards in the stationary high-price equilibrium. This aggregates over time the
profit Seller makes from the arrival of the type v̄, conditional on her accepting the
price and the profit she makes from the type vwho discloses immediately.

Given that type v discloses, the only possibly viable deviation for Seller is to
ask for the reservation price of Buyer who has not learned yet. The following
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necessary conditions need to be satisfied for the stationary equilibrium.

U(0) · q1 · v̄+ (1 − U(0)q1) δW(γ) ≥ v̂, Seller-optimality at t = 1, (1.4)

and

U(γ)q(γ) · v̄+(1−U(γ)q(γ))δW(γ) ≥ v̂, Seller-optimality at, t ≥ 2 (1.5)

with
γ = B(U(0), q1).

γ here gives the stationary belief at the beginning of periods t ≥ 2. In the
appendix I show the following result.

Proposition 3. Let U(0) = μπ0
1−μ+μπ0

with μ = 1 − e−λΔ, be the probability on the
type v̄ in the first period after no disclosure andW = μ

1−δ+δμ(U(0)v̄+ (1 − U(0))v̂).
Then whenever the parameters satisfy

(C− high) U(0)v̄+ (1 − U(0))δW > v̂,

there exists a stationary high-price equilibrium. In this equilibrium Buyer payoff is
zero and Seller asks with probability one for v̄ as long as the bargaining continues and
there is no disclosure.

For fixed other parameters of the game, (C− high) is always satisfied when λ is
high enough.

The intuition for the existence of the stationary high-price equilibria is simple.
When λ is large Seller knows that with high probability Buyer will know the value
of the good very soon after bargaining starts. Non-disclosure is a strong indicator
of good news whenever λ is large. Thus, Buyer with good news cannot
successfully pool with Buyer who has not learned yet. But the strategic option
value from learning comes precisely from being able to pool with type v̂!
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Stationary high-price equilibria from Proposition 3 do not survive near the
HFL. The intuition is that as Δ→0 the probability that Buyer has learned before
any fixed period K goes to zero as well, at a speed of Δ. Thus, Seller cannot ask for
the highest price already at t = 1. The price should be lower than v̄with positive
probability in the first period, whenever Δ is small enough. But this implies that
Buyer receives a positive information rent with positive probability already in the
first period. This intuition does not depend on the assumption of stationarity.
Therefore, more generally Buyer always ensures a positive payoff near the HFL.

Proposition 4. Fix all parameters of the game except for the period-length Δ. There
are no equilibria with zero Buyer payoff if Δ is small enough.

If an equilibrium has zero Buyer payoff it is necessarily a high-price
equilibrium (albeit maybe not stationary): Seller quotes v̄ as long as there is no
disclosure and bargaining goes on. Otherwise Buyer waits until the first period
that Seller quotes with positive probability a price lower than v̄ to realize
informational rents with positive probability. The same argument as above for
stationary equilibria shows that Seller would do better by offering some positive
information rent already in the first period, as period-length shrinks to zero.

Intuitively, Seller would like to commit to quoting prices less often as
period-length shrinks, so that he can become relatively certain that Buyer has
learned in the meanwhile and her willingness to pay has increased. When there is
no commitment across periods Seller quotes a price every period and thus allows
Buyer to achieve positive information rent already in the first period with positive
probability.²⁴

Strongly stationary equilibria.

Next, I focus on strongly stationary equilibria in which Seller may or may not mix
between prices on path upon non-disclosure. If he mixes on path, then he puts

²⁴Incidentally, Proposition 4 also shows that costs of information are not necessary for Buyer
to ensure a positive equilibrium payoff, unless there are rational-inattention costs of processing
information, as Ravid [2019] shows.
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positive probability on two prices pH > pL. pH is the reservation price of Buyer
who has learned good news, whereas pL of Buyer who has not learned yet. If
Seller does not mix on path after non-disclosure, he necessarily quotes the price
pL. This follows from the requirements of strong stationarity and the refinement
with respect to the disclosure decision.

Let p ∈ [0, 1) be the probability with which pH is quoted upon non-disclosure.
Suppose in the following, that in equilibrium Buyer of type v̂, who has the option
value, accepts her reservation price pL with some stationary probability q ∈ [0, 1].

I look extensively at the HFL of sequences of strongly stationary equilibria.

Definition 3. Say that a sequence of strongly stationary equilibria indexed by
period-length Δ > 0 with Δ→0 converges in the HFL, if as Δ→0

i. the average price quoted by Seller upon non-disclosure p̂(Δ) converges,

ii. the sequence q(Δ) of acceptance probabilities of Buyer type v̂ satisfies

q(Δ)
Δ

→ϰ,

for some ϰ ∈ [0,∞].

Say that a HFL corresponds to some ϰ if there exists a sequence of strongly
stationary equilibria such that q(Δ)

Δ converges to ϰ as Δ→0.

LetU(0) = μπ0
1−μ+μπ0

. This is the (stationary) on-path probability that Seller
puts on the type v̄ after non-disclosure. Denote by VΔ(q, p) the stationary
Seller-payoff in the equilibrium, if the period-length is Δ.

Seller optimality upon non-disclosure in strongly stationary equilibria with
pure pricing is ensured if

(U(0)+(1−U(0))q)pL+(1−U(0))(1−q)δVΔ(q, 0) ≥ U(0)pH+(1−U(0))δVΔ(q, 0).
(1.6)

(1.6) ensures that deviating to pH is not profitable for Seller. Lemma 1 ensures
that these are the only ‘relevant’ deviations for Seller on path.
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Seller indifference upon non-disclosure in strongly stationary equilibria with
mixed pricing is equivalent to

U(0)pH + (1 − U(0))δVΔ(q, p) = pL(U(0) + (1 − U(0))q) + (1 − U(0))(1 − q)δVΔ(q, p).
(1.7)

The left-hand side is the payoff from charging pH upon non-disclosure,
whereas the right-hand side is the payoff from charging pL upon non-disclosure.

Part 2) of Lemma 1 implies the following relations for the reservation pricing
of types v̄, v̂ in strongly stationary equilibria with mixing probability of Seller
given by p ∈ [0, 1).

v̄− pH = δ(p(v̄− pH) + (1 − p)(v̄− pL)), (1.8)

and
v̂− pL =

μπ0(v̄− pH) + δ(1 − μ)(1 − p)(v̂− pL)
1 − δp(1 − μ)

. (1.9)

On the left-hand side of (1.8) and (1.9) is the payoff of the respective type if
she decides to buy now when facing her reservation price, and on the right-hand
side is the payoff if she decides to continue. Denote p̂ = ppH + (1 − p)pL the
average price quoted on path upon non-disclosure. (1.9) can be re-written with
use of (1.8) as

v̂− pL =
δμ

1 − δ + δμ
π0(v̄− p̂).

This depicts the option value of the type v̂. Buyer has the option to wait for the
opportunity to learn at which case she gets a payoff of v̄− p̂, if she learns good
news and of zero, if she learns bad news. The payoff from exercising the option
value is discounted by δμ

1−δ+δμ . This is the ‘effective discount rate’ for the option
value, because the type v̂ sometimes stops at price pL (payoff has weight 1 − δ)
and otherwise continues next period in the hopes of getting the chance to
exercise the option value (payoff has weight δμ).

The next result characterizes strongly stationary equilibria near the HFL and
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gives a complete characterization of their convergence in HFL.

Theorem 1. 1) [Existence near the HFL] Strongly stationary equilibria with both
pure and mixed pricing exist near the HFL.

2) [Uniqueness near the HFL] Near the HFL, every strongly stationary equilibrium
with mixed pricing is unique up to the mixing probability p ∈ (0, 1) of Seller.
Near the HFL, every strongly stationary equilibrium with pure pricing is unique up

to the acceptance probability q of Buyer of type v̂.

3) [Delay in the HFL]There exists HFL of strongly stationary equilibria
corresponding to any ϰ ∈ [0,∞].

In any HFL of strongly stationary equilibria with mixed pricing ϰ is 0 and positive
expected delay is 1

λ .
In any HFL of strongly stationary equilibria with pure pricing ϰ is in (0,∞] and

expected delay is given by  1
λ+ϰ , if ϰ ∈ (0,∞),

0, if ϰ = ∞.

4) [Pricing in the HFL] In any HFL of strongly stationary equilibria prices
converge to

ψ =
rv̂+ λ(1 − π0)v
r+ λ(1 − π0)

.

In particular, there is no price spread in the HFL of equilibria with mixed pricing.

5) [Payoff and efficiency properties in the HFL] Buyer and Seller payoffs in any
converging sequence of strongly stationary equilibria with q(Δ)

Δ →ϰ are unique. Buyer
and Seller payoffs lie in (v, v̂) for all ϰ ∈ [0,∞].

The efficiency loss in the HFL of equilibrium sequences with ϰ ∈ [0,∞) is given by

r
r+ λ + ϰ

v̂.

There is no efficiency loss in the HFL of sequences with ϰ = ∞.
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Near the HFL, the mixing probability p of Seller upon non-disclosure is a
sufficient statistic for the construction of the equilibria with mixed pricing:
whenever two strongly stationary equilibria with mixed pricing share the same
mixing probability of Seller, they prescribe identical play on path.²⁵ The Seller
indifference condition pins down a unique q. Strongly stationary equilibria with
pure pricing allow for a unique Seller mixing probability p = 0, but the
acceptance probability for the reservation price of type v̂ is determined only up to
a lower bound.

The pricing in the HFL has a simple structure: Seller asks for a flat price ψ,
unless he sees evidence that θ = v and subsequently revises price down to v.
Buyer waits with some probability until she gets the information to end the game
with either of the two prices. This is optimal due to two reasons. First, because ψ
is lower than v̂, but not too low as to compensate for the option value from
learning. Second, as Δ→0 the loss due to impatience from waiting an additional
period is small, whereas the option value from learning remains strictly positive
as Δ→0.

The price spread pH − pL in equilibria with mixed pricing, which is due to
Seller attempting to screen the types {v̂, v̄}, disappears as Δ becomes smaller and
smaller. This shows that the inefficient delay near the HFL of such equilibria
originates mostly from Buyer of type v̂waiting to realize her option value from
learning, rather than Seller trying to screen the types {v̂, v̄} upon non-disclosure.

ψ corresponds to the HFL of the reservation pricing of type v̂. This leads to the
indeterminacy in expected delay in the HFL and implies that equilibrium
multiplicity survives HFL. Depending on the acceptance probability, expected
delay in the HFL can be any number in [0, 1

λ ]. The degree of inefficiency in the
HFL of a strongly stationary equilibrium is characterized by the difference
between the ex-ante surplus v̂ and the sum of Buyer and Seller payoff in the HFL.
The last part of Theorem 1 shows that near the HFL there are strongly stationary

²⁵Whenever discussing strongly stationary equilibria, I use the words a collection of variables are
a sufficient statistic for the equilibrium in the sense they are used here, i.e. the equilibrium is unique
within the class of strongly stationary equilibria, once the value of the variables in consideration is
fixed.
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equilibria with (necessarily) pure pricing that are arbitrarily close to efficiency.
These correspond to cases in which ϰ is ‘very large’, i.e. the sequence of
acceptance probabilities q(Δ) falls relatively slowly on the scale of Δ.

In the HFL Seller pricing, and Buyer and Seller payoffs are non-extreme. In
particular, even after accounting for losses from delay due to learning, Seller’s
payoff is not minimized as in the classical seller-offer game of Fudenberg et al.
[1985] and Gul et al. [1986].

Finally, the potential inefficiency from learning is ceteris paribus decreasing in
the patience level of the players. This is because delay hurts more, the more
impatient players are.

1.2.2 Discussion of alternative assumptions

To get a better sense of the economic factors driving the results in the costless
case and beyond, it is instructive to consider variations in the model assumptions
with the classical game from Fudenberg et al. [1985] and Gul et al. [1986] in
mind.

Suppose for a moment that Buyer knows her true valuation before she
approaches Seller and that this would be common knowledge. Thus, Buyer has
initial private information. Suppose that Buyer can disclose her valuation
verifiably. Similar to the results in the model of this paper, type v is indifferent in
her disclosure decision. In equilibria in which she discloses immediately, the
average prices will be approximately v̄ near the HFL unless there is disclosure. In
equilibria in which she never discloses, the average prices are near v near the
HFL. In either case, one bargaining party receives all the surplus and prices are
extreme near the HFL, just as in the traditional game. Therefore, in mymodel it is
the assumption of private arrival of information that ensures non-extreme
equilibrium payoffs and prices, whenever the assumption of verifiable disclosure
is maintained.

Suppose alternatively, that types are endogenous as in the model of this paper,
but that communication between Buyer and Seller is impossible. I conjecture
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that in this case the equilibria are again extreme near the HFL, in that they either
have extreme payoffs or equilibrium play ultimately exhibits extreme prices. In
contrast, the combination of verifiable disclosure and stochastic evolution of
types in my model enables equilibria near the HFL which exhibit neither
extremeness of payoffs nor extremeness of prices.

1.3 Costly learning

This section introduces costs for accuracy. I consider two distinct models of
accuracy costs and always assume that parametric forms on costs are common
knowledge. In the first case, costs are deterministic and marginal costs of picking
a higher accuracy are positive. I assume that acquiring an experiment of very low
accuracy costs very little. In the second case, the costs are stochastic and
independent of accuracy. Thus, the second model is one of fixed costs of learning.
I assume in this second case, that arbitrarily low costs have positive probability.
Formally, the assumptions are as follows.

Deterministic variable costs of accuracy. The experiment Ea with
informativeness I(a) = a

1−a costs c(I(a))with c : [1,∞)→R+ satisfying

• c(1) = 0 and c′(1) = 0

• c is strictly convex and increasing

• limI→∞ c′(I) = +∞.

It is easy to see that in the case of deterministic variable costs, in any PBE,
Buyer always learns whenever she gets the chance, be it even by a bit, provided
the option value from learning is strictly positive. This follows from the
assumption that c′(1) = 0, i.e. an experiment close to uninformative costs almost
nothing. It follows that the learning rate and the intensity λ are the same for
deterministic variable costs of accuracy, in any equilibrium in which Buyer has
positive option value from learning.
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Stochastic fixed costs of accuracy. Conditional on an opportunity to
learn having arrived and independent of everything else, a fixed cost c ∈ (0,∞)

is drawn, which is distributed according to a distribution F. If Buyer pays c, she
can verify the state (equivalently: can pick a = 1) at no additional cost.
Otherwise she can wait for future draws. F satisfies the following requirements.

• F is continuous and has finite first moment²⁶

• (Possibility of arbitrarily low costs) F puts positive probability to a
neighborhood of zero.

Because of the lump-sum nature of the stochastic costs, and the fact that Buyer
can always wait for lower cost draws, whenever the current cost draw is too high,
the rate at which the agent learns becomes endogenous and distinct from the rate
of arrival of opportunities to learn, given by the intensity parameter λ.²⁷ To avoid
confusion in notation, I use the definition μ0 = 1− e−λΔ for the case of stochastic
fixed costs only, for the probability of the arrival of the opportunity to learn
within a period (intensity) and keep the notation μ for the probability with which
Buyer actually learns within a period in a stationary equilibrium.²⁸ The latter is
now endogenous.

Despite their significant differences, broadly speaking the same set of results
turns out to be true for both of the models of costly learning. The first result
establishes that costs ensure a positive Buyer payoff in every PBE. This is true for
any Δ, in contrast to the case of costless learning, in which, for every Δ > 0 one
can construct PBEs with zero Buyer payoff.

Theorem 2. Pick any Δ > 0. If learning is costly, every PBE has a positive Buyer
payoff.

Proof-sketch. Fix a Δ > 0.

²⁶An alternative and for-all-purposes-equivalent assumption is that F is continuous, has
bounded support contained in [0,+∞).

²⁷Recall that in the case of deterministic variable costs these are the same.
²⁸It is easily established that this object is time-stationary in a stationary equilibrium.

41



A PBE with zero Buyer payoff can only happen if on path Seller erases the
option value from learning. He can only do this by quoting, after every public
history when it is his turn to move, a price equal to the reservation price of the
highest Buyer type she deems feasible at that moment in the game. But if there is
no option value from learning Buyer strictly prefers not learn on path, because
learning is costly. If Buyer does not to learn on path, then the best response of
Seller is to ask for v̂, after every public history, as long as there is no agreement.

Suppose this is the case and consider first the model with deterministic
variable costs. After every private history which ends with the arrival of an
opportunity to learn, Buyer does want to learn. This is because learning very little
costs very little (recall c′(1) = 0), whereas the benefit from learning is an order of
magnitude larger than the increase in marginal costs. Since it can happen with
positive probability that Buyer receives the opportunity to learn in every period
that the game goes on and she has not learned before (in particular, also in the
first period), such a strategy would give Buyer positive payoff with positive
probability. This is a contradiction.

Consider next the model with stochastic fixed costs. In this case, the option
value from learning is strictly positive (at least as large as π0(v̄− v̂)). Again, since
the opportunity to learn arrives with positive probability every period that the
bargaining goes on, and the probability that the cost draw is below π0(v̄− v̂) is
strictly positive (due to the assumption of the possibility of arbitrarily low costs),
the same argument as in the case of deterministic variable costs leads to a
contradiction. □

The intuition for this result is surprisingly simple. The surplus may change
only through Buyer-learning. Because the learning is private information, Seller
can only gives incentives to Buyer to learn on average, and not conditional on
every realized learning outcome. Because of the discretionary nature of the
information disclosure decision, this creates informational rents for Buyer. That
the proof works for any Δ > 0, depends crucially on the assumption of zero
marginal costs for experiments close to uninformative for the case of
deterministic variable costs and the assumption of the possibility of arbitrarily
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low costs in the case of stochastic fixed costs.
Theorem 2 complements Proposition 4 in Ravid [2019], because it exhibits

another situation in which costs of information (in this case of production, rather
than information processing costs) ensure a positive payoff across PBEs. In both
models learning creates surplus because it creates private information for Buyer.
Positive Buyer payoff does not come from initial private information as in the
classical setting of Fudenberg et al. [1985] and Gul et al. [1986], because Coasian
forces are absent. The positive buyer payoff comes instead from the fact that
learning is private and costly.

Finally, another implication of the proof of Theorem 2 is that there are no
PBEs with costly learning in which Buyer chooses not to learn with probability
one, whenever the opportunity to learn comes.²⁹ This implies that the
no-sequential-screening-of-valuations result from the costless case extends to the
case of deterministic variable costs. This is true without additional assumptions
even when v = 0, because any learning event in the case of deterministic variable
costs leads to an updated valuation w > 0 (bad news is never conclusive).
Moreover, by adapting the proof of Proposition 2 the same result can be shown to
hold for the case of stochastic fixed costs with v > 0. Summarizing, one has the
following extension of Proposition 2.

Proposition 5. There are no disclosure equilibria near the HFL in which Seller
screens the valuations sequentially, in the case of

- deterministic variable costs on accuracy
- stochastic fixed costs of accuracy with v > 0.

This extension is not surprising, because the proof of Proposition 2 only relies
on the logic of Seller-pricing: as the period-length shrinks, the probability that
Buyer has learned before a fixed finite date vanishes. Thus, as the length of the
period shrinks, there is no common knowledge of a date in which the private
information of Buyer is present and Seller can start the sequential screening.

²⁹See Corollary 9 in the appendix.
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1.3.1 Strongly stationary equilibria with accuracy costs

I construct the same type of strongly stationary equilibria as in the costless case.
For strongly stationary equilibria with mixed pricing and costly learning, the
sufficient statistic for the construction of the equilibria is the average price upon
non-disclosure p̂ = ppH + (1 − p)pL.

The case of deterministic variable costs of accuracy. Suppose the
stationary valuation of Buyer with good news is given by w̄, whereas the
stationary valuation of Buyer with bad news is given by w. It holds

v < w < v̂ < w̄ < v̄.

The option value from information acquisition is a function of the pair (a, p̂):

VA(a, p̂) = π0av̄+ (1 − π0)(1 − a)v− (π0a+ (1 − π0)(1 − a))p̂

= (π0a+ (1 − π0)(1 − a)) (w̄− p̂) .

When the opportunity to learn arrives, Buyer learns and ends the bargaining in
the same period. She discloses bad news to get the lower price w, and does not
disclose good news in which case she pays in expectation p̂ to Seller.

Let the accuracy chosen on path be a. The valuations w̄,w are given by

w̄(a) =
aπ0v̄+ (1 − a)(1 − π0)v
aπ0 + (1 − a)(1 − π0)

, w(a) =
(1 − a)π0v̄+ a(1 − π0)v
(1 − a)π0 + a(1 − π0)

.

Whenever the opportunity to learn arrives, optimal learning results in the
following two incentive constraints.

(OL− intensive) a ∈ argmax
ā

{VA(ā, p̂)− c(I(ā))}, (1.10)

and
(OL− extensive) VA(a, p̂)− c(I(a)) ≥ v̂− pL. (1.11)
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OL stands for ‘optimal learning’. Incentive constraint (1.10) refers to the intensive
margin of the learning decision (i.e. how accurate a signal to acquire), whereas
(1.11) to the extensive margin of the learning decision (i.e. whether to acquire a
costly signal).

The reservation prices of Buyer with good news w̄ and of Buyer who has not
learned yet are given by

w̄(a)− pH = δ(w̄(a)− p̂),

and
v̂− pL =

δμ
1 − δ + δμ

(VA(a, p̂)− c(I(a))) .³⁰

I denote by
BL(p̂) = VA(a(p̂), p̂)− c(I(a(p̂))), (1.13)

the endogenous benefit from learning in the stationary equilibrium with sufficient
statistic p̂.

Seller indifference condition remains the same as in (1.7). Note that because
v̂ ≥ pL,OL-intensive and the reservation pricing for Buyer of type v̂ imply
immediately thatOL-extensive is satisfied. Therefore, this constraint can be
dropped in the following w.l.o.g.³¹ OL-intensive leads to the first-order condition

π0(v̄− p̂) + (1 − π0)(p̂− v) = c′
(

a
1 − a

)
1

(1 − a)2
.

This determines uniquely the optimal accuracy a(p̂) and with it, also the rest of
the variables of the equilibrium, except for the acceptance probability q of the
type v̂ for the price pL. q is determined uniquely by Seller’s indifference condition

³⁰This follows from some algebra, starting with the reservation price relation for type v̂:

v̂− pL = δ (μ(π0a+ (1 − π0)(1 − a))(w̄− ppH − (1 − p)pL)− μc(I(a)) + (1 − μ)pδVL + (1 − μ)(1 − p)(v̂− pL)) ,

where VL is the continuation payoff of the type v̂ when she starts a new period in the stationary
equilibrium. Due to reservation pricing it holds δVL = v̂− pL.

³¹Anotherway to see thatOL-extensive is redundant is to combineCorollary 9 from the appendix
and use the assumed stationarity of the PBE.
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in equilibria with mixed pricing and is determined only up to a lower bound in
equilibria with pure pricing.

The case of stochastic fixed costs of accuracy. When costs of
accuracy are lump-sum but stochastic, there is no intensive margin for the
learning decision: Buyer learns perfectly whenever she pays the costs. The
extensive margin decision is explained as follows.

Let VN be the continuation utility for Buyer of type v̂. Upon non-disclosure,
with probability p she faces a price of pH which she rejects with probability one
and gets the continuation payoff δV̂, where V̂ is the continuation payoff of
starting a period in the stationary equilibrium as type v̂. Due to reservation
pricing and Seller’s belief dynamics on path, it holds

δV̂ = v̂− pL.

On the other hand, with probability 1 − p type v̂ faces price pL and has
continuation payoff v̂− pL. Overall, it follows VN = v̂− pL. Let VA be the
continuation utility if Buyer learns, with the learning costs not yet subtracted.
With probability π0 Buyer becomes the high type v̄ and so receives continuation
utility p(v̄− pH) + (1 − p)(v̄− pL) = v̄− p̂. With probability 1 − π0 Buyer
becomes type v, discloses immediately, receives a payoff of zero and the game
ends. It follows VA = π0(v̄− p̂).

The costs c are worth paying if and only if

c ≤ VA − VN,

that is, if and only if they are low enough. In particular, the stationary probability
μ that Buyer of type v̂ learns within a period is given by

μ = μ0F (π0(v̄− p̂)− v̂+ pL) . (1.14)

In the following let μ̄(p̂,Δ) = F(π0(v̄− p̂)− (v̂− pL(p̂,Δ))) be the probability
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of incurring the costs, conditional on the opportunity to learn having arrived.
Denote also μ̄(p̂) = F(π0(v̄− p̂)− (v̂− p̄L(p̂))) for any HFL of μ̄(p̂,Δ) as
Δ→0. In difference to the case of deterministic variable costs, μ̄ is
equilibrium-dependent and different from the probability of learning μ.

Seller indifference condition and the reservation price relation for type v̄ are
the same as in the case of costless learning (namely, formally the same as in (1.7)
and (1.8)), with the major difference that now μ is endogenously determined in
equilibrium. Reservation pricing for the type v̂ leads to

v̂− pL =
δμ

1 − δ + δμ
BL(p̂),

with the endogenous benefit of learning BL(p̂) given by

BL(p̂) = π0(v̄− p̂)− E[c|c ≤ VA − VN]. (1.15)

The option value from the costless case, given by π0(v̄− p̂) is reduced in (1.15)
by the expected costs of learning, conditional on the event that learning occurs.

The following Proposition establishes existence of strongly stationary
equilibria near the HFL.

Proposition 6. Pick any π0, v, v̄ and λ, r. In both cases of accuracy costs the
following holds.

1) [Existence near the HFL] Strongly stationary equilibria with pure pricing
always exist near the HFL.

There exists an open neighborhoodN of v̂ such that strongly stationary equilibria
with mixed pricing and average price upon non-disclosure p̂ ∈ N exist near the HFL,
whenever the following condition is satisfied.

(P) r > λ if π0 ≤
1
2
or r >

√
2λ if π0 >

1
2
.

2) [Uniqueness near the HFL] For any fixed average price p̂ ∈ N the quantities
pL(p̂,Δ), pH(p̂,Δ), p(p̂,Δ), q(Δ, p̂) are uniquely determined in every strongly
stationary equilibrium with mixed pricing.
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Pure pricing equilibria are unique up to the acceptance probability q of Buyer of
type v̂.

In the case of deterministic variable costs, a(p̂) is unique and decreasing in p̂ if
π0 >

1
2 , increasing in p̂ if π0 <

1
2 and independent of p̂ if π0 =

1
2 .

In the case of mixed pricing the acceptance probability q(Δ, p̂) is unique.

The condition (P) r > λ if π0 ≤ 1
2 or

√
2 < r

λ if π0 >
1
2 for the existence of

mixed pricing equilibria are used in the proof to show existence of the mixing
probability q(p̂,Δ) of the type v̂, whenever Δ is small enough. (P) is not minimal
(see the proof of Proposition 6 in the appendix for more on this), but it does not
depend on the precise parametric specification of costs. Namely, it ensures
existence of mixed pricing equilibria for any cost function c in the deterministic
variable case and for any F in the stochastic fixed case, as long as these satisfy the
original assumptions at the beginning of this section. (P) requires that the
intensity is not too high compared to the impatience level of the players.³²

The sufficient statistic for the construction of strongly stationary equilibria
with mixed pricing is the average price p̂. In the case of pure pricing there is one
additional degree of freedom: the acceptance probability q for type v̂.

The next result gives the HFL characterization of the strongly stationary
equilibria with accuracy costs.

Theorem 3. Pick any π0, v, v̄ and r, λ.
1) [Existence in the HFL]There exists HFL of strongly stationary equilibria with

pure pricing corresponding to any ϰ ∈ [0,∞].
Let condition (P) from Proposition 6 be satisfied andN as in Proposition 6. For

every p̂ ∈ N withN as in Proposition 6 there exists a sequence of strongly stationary
equilibria with mixed pricing such that the sequence of average prices p̂(Δ) along the
sequence converges to p̂.
2) [Delay in the HFL] In any HFL of strongly stationary equilibria expected delay

³²In section 1.4.1 the choice of λ is endogenous and costly, so that these parametric assumptions
can be transferred to corresponding assumptions on the cost of choosing the intensity λ.
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is given by
1

λ+ϰ , if ϰ ∈ [0,∞) and accuracy costs are deterministic and variable,
1

λμ̄(p̂)+ϰ , if ϰ ∈ [0,∞) and accuracy costs are stochastic and fixed,

0, if ϰ = ∞.

3) [Pricing in the HFL] In both cases of accuracy costs the price spread in the HFL
of a sequence of strongly stationary equilibria with mixed pricing is bounded away
from zero, and the low price is charged with vanishingly small probability.

4) [Payoff and efficiency properties in the HFL] Buyer and Seller payoffs in any
converging sequence of strongly stationary equilibria with q(Δ)

Δ →ϰ are unique. Buyer
and Seller payoffs lie in (v, v̂) for all ϰ ∈ [0,∞].

The efficiency loss in the HFL of equilibrium sequences with ϰ ∈ [0,∞) is given by

r
r+ λ + ϰ

v̂+
λ

r+ λ + ϰ
c(I(a(p̂))), (1.16)

in the case of deterministic variable costs of accuracy. It is given by

r
r+ λμ̄(p̂) + ϰ

v̂+
λμ̄(p̂)

r+ λμ̄(p̂) + ϰ
EF[c|c ≤ π0(v̄− p̂)− (v̂− p̄L(p̂))], (1.17)

in the case of stochastic fixed costs of accuracy.
There is no efficiency loss in the HFL of sequences with ϰ = ∞.

Theorem 3 showcases the differences as well as the commonalities between
the cases of costless and costly learning.

First, the expected delay in the HFL of all ϰ but ϰ = ∞ is positive in both
cases. It equals that of the case of costless information in the case of deterministic
variable accuracy costs. It becomes equilibrium-dependent in the case of
stochastic fixed accuracy costs, because the rate of learning diverges from the rate
of arrival of opportunities to learn.

Second, in the case of costly learning the price spread does not disappear for
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equilibria with mixed pricing. The reason for this is that it is necessary even in the
limit to subsidize the information costs incurred with positive probability for any
Δ > 0. For Δ positive but small, Seller promises to occasionally charge a low
price so that Buyer has incentives to learn whenever the opportunity arrives (gets
the high value good at a bargain). Since the probability to learn in a single period
is very low when Δ is very small, Seller promises the low price within a period
less and less often as Δ vanishes. Overall, in the HFL of mixed pricing equilibria
the reason for the delay is the same as in the costless case: Buyer waits to realize
the option value associated with learning new information.³³

Third, the price distribution of Seller in mixed pricing equilibria converges in
the HFL to the reservation price of Buyer with good news, so that in the HFL of
mixed pricing equilibria Buyer who has not learned yet waits until she can acquire
new information. This leads to maximal expected delay in the HFL. In the HFL
of pure pricing equilibria Seller incentivizes learning by offering the reservation
price of Buyer who has not learned yet. Just as in the case of costless learning this
this allows for multiplicity in expected delay in the HFL. In particular, near the
HFL there are strongly stationary equilibria with (necessarily) pure pricing that
are arbitrarily close to efficiency. This holds true despite the fact that in every
PBE with costly learning Buyer learns with positive probability on path! The
reason is that along a sequence of strongly stationary equilibria which converge
to efficiency as Δ shrinks to zero, learning happens less and less often and Buyer
of type v̂ accepts her reservation price with higher and higher probability.

Fourth, the first part of both (1.16) and (1.17) quantifies how much of the
ex-ante surplus is wasted whenever there is delay in the HFL. The second term of
the sum in (1.16) and (1.17) quantifies the loss due to costly learning. The share
of the ‘pie’ lost due to delay does not depend on Seller pricing in the model with
deterministic variable costs, but it does so in the model with stochastic fixed
costs. In the costless case, less patient players waste more of the overall gains from

³³The proof shows that in general, the HFL of mixed pricing equilibria cannot correspond to
HFL of pure pricing equilibria. Therefore, the two cases must be treated separately also in the
HFL.
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trade because waiting hurts more. If learning is costly, there are two effects
whenever players become more impatient and equilibrium features inefficient
delay. First, delay until agreement hurts more and so leads to higher inefficiency.
This is the same effect as in the costless case. Second, a more impatient Buyer
discounts learning costs more, which ceteris paribus should lower inefficiency.
Since the costs of learning incurred in any equilibrium are less than the ex-ante
surplus v̂, the first effect dominates, so that inefficiency falls with the patience
level even when learning is costly.³⁴

Fifth, the inefficiency in the HFL is always decreasing in ϰ > 0. This is
intuitive: a larger and positive ϰmeans that Buyer of type v̂waits longer in real
time to realize her strategic option, even though she may not be worse off by
accepting the current price offer of Seller. In the case of mixed pricing it holds
ϰ = 0, because Seller quotes the reservation price of Buyer with good news as
long as there is no disclosure.

Overall, just as in the costless case in the HFL Seller pricing, and Buyer and
Seller payoffs are non-extreme.

1.4 Extensions

1.4.1 Costly choice of intensity

I now introduce costly choice of intensity and thus endogenize the intensity
choice of Buyer. Exploration/search and exploitation are very different aspects of
endogenous learning. Typically, an agent decides first how actively she is going to
search for new information sources and only after, how extensively she is going to
exploit the ones she has found. This distinction bears out in the results of this
section because these two aspects of learning behave differently in the HFL of
strongly stationary equilibria. Here I focus on the case of costly choice of

³⁴To see that costs of learning on path are necessarily lower than v̂, note that they are lower
than the option value from learning, which in turn is always less than the ex-ante surplus v̂. This is
straightforward to see in (1.15) for the case of stochastic fixed costs and follows from proof argu-
ments of Proposition 6 in the case of deterministic variable costs.
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intensity. In section A.4 of the appendix I also consider the case of costless choice
of intensity.³⁵ Formally, costs on intensity are modeled as follows.

Costs on intensity. At the beginning of every period t ≥ 1 Buyer picks the
probability μ that a learning opportunity arrives within that period at the cost
C(Δ, μ). The following is satisfied for C:

• the function C : (0,∞)× [0, 1)→R+ is differentiable

• it satisfies

lim
Δ→0

C(Δ, λΔ)
Δ

= f(λ), lim
Δ→0

∂

∂μ
C(Δ,Δλ) = f′(λ) (1.18)

uniformly on λ > 0, with f : [0,∞)→R+ differentiable, strictly increasing
and convex with

– f(0) = f′(0) = 0 and

– limλ→∞ f′(λ) = +∞.

The second requirement states that C scales appropriately with time: as
period-length goes to zero, both absolute and marginal costs of picking intensity
go to zero on the same scale as the period-length. f is therefore the cost of
intensity in real time. An example that satisfies the conditions is
C(Δ, μ) = Δ · f(μ) for f satisfying the properties above.

All general insights from section 1.3 apply to the set up with costs on intensity.
In particular, all equilibria feature positive Buyer payoff for every Δ > 0 and
there exist strongly stationary equilibria near the HFL. In the HFL of strongly
stationary equilibria with mixed pricing the price spread does not disappear, but
the low price quoted upon non-disclosure is quoted only with vanishing

³⁵The results on costless choice of intensity have some implications for the classical result of
generic uniqueness of sequential equilibria in the traditional seller-offer, weak gap game from Fu-
denberg et al. [1985] and Gul et al. [1986]. Namely, the generic uniqueness result for Coasian
dynamics established in Fudenberg et al. [1985] andGul et al. [1986] depends crucially on the as-
sumption that Buyer can commit to having private initial information, before she approaches Seller.
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probability. Moreover, despite costly learning, there are near the HFL strongly
stationary equilibria (necessarily with pure pricing) that are arbitrarily close to
efficiency. The intuitions are the same as in the case of exogenous intensity.

The condition (P) for the existence of strongly stationary equilibria with
mixed pricing in the statement of Proposition 6 can now be transferred to
assumptions that involve the real-time cost of intensity f. The new existence
conditions look as follows.

(P′) if π0 ≤
1
2
, then f′(r) >

1
2
π0v̄, if π0 >

1
2
, then f′

(
1√
2
r
)

>

√
2√

2 + 1
π0v̄.

(1.19)
(P′) assumes that acquiring intensity is not too cheap.³⁶ Just as in the case of
exogenous intensity, the average price upon non-disclosure p̂ is a sufficient
statistic for the construction of the equilibria. Analogously, in the case of pure
pricing, equilibria are are unique up to the price quoted by seller upon
non-disclosure and the acceptance probability of Buyer of type v̂.

At the beginning of every period in a strongly stationary equilibrium, Buyer
picks the intensity λ. She trades off the physical costs with the benefit from
learning. Because the benefit of learning is stationary and not influenced by the
acceptance probability q of type v̂, so is the intensity choice in any strongly
stationary equilibrium. This implies that the average price upon non-disclosure is
a sufficient statistic for the information acquisition choice of Buyer in strongly
stationary equilibria.

The first-order condition for the choice of intensity in the HFL of
deterministic variable costs is given by

f′(λ)
r+ λ
r

= BL(p̂), (1.20)

where BL(p̂) is the stationary benefit from learning defined in (1.13). For the

³⁶The proof of existence is contained in section (A.3) of the appendix. Here I focus only on the
analysis in the HFL.
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case of stochastic fixed costs the respective intensity choice is characterized by
the first-order condition

f′(λ)
r+ λμ̄(p̂)
rμ̄(p̂)

= BL(p̂), (1.21)

where BL(p̂) is the stationary benefit from learning defined in (1.15) and
μ̄(p̂) = F(π0(v̄− p̂)− (v̂− p̄L(p̂))) is the HFL of the stationary probability that
the state is verified by Buyer, conditional on the opportunity to learn having
arrived. Here, p̄L(p̂) = limΔ→0 pL(p̂,Δ) is the HFL of the reservation price of the
type v̂.

In both cases of costs on accuracy the endogenous intensity λ(p̂) is strictly
decreasing in p̂. In the HFL of the case of deterministic variable costs, the
marginal costs of picking the intensity f′(λ) r+λ

λ do not depend on the pricing of
Seller, whereas in the model with stochastic fixed costs the marginal costs of
picking the intensity f′(λ) r+λμ̄(p̂)

rμ̄(p̂) depend on the average price p̂. This is because
the rate of arrival of opportunities to learn and the rate of learning coincide in the
model with deterministic variable costs, but they diverge in the model with
stochastic fixed costs. Recall that in the latter case, the probability of learning
conditional on having the opportunity to learn is an endogenous object.

The following Proposition summarizes some of the interesting results from the
analysis in the HFL. I focus only on delay and payoff properties in the HFL for
brevity’s sake.

Proposition 7. Let λ(p̂) satisfy (1.20) in the case of deterministic variable costs and
(1.21) in the case of stochastic fixed costs.

1) [Delay in the HFL] In any HFL of strongly stationary equilibria expected delay
is given by

1
λ(p̂)+ϰ , if ϰ ∈ [0,∞), p̂ ∈ N and accuracy costs are deterministic and variable,

1
λ(p̂)μ̄(p̂)+ϰ , if ϰ ∈ [0,∞), p̂ ∈ N and accuracy costs are stochastic and fixed,

0, if ϰ = ∞.
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2) [Payoff and efficiency properties in the HFL] Buyer and Seller payoffs lie in
(v, v̂) for all ϰ ∈ [0,∞].

The efficiency loss in the HFL of equilibrium sequences with ϰ ∈ [0,∞) is given by

r
r+ λ(p̂) + ϰ

v̂+
λ(p̂)

r+ λ(p̂) + ϰ
c(I(a(p̂))) +

f(λ(p̂))
r+ λ(p̂) + ϰ

, (1.22)

in the case of deterministic variable costs of accuracy. It is given by

r
r+ λ(p̂)μ̄(p̂) + ϰ

v̂+
λ(p̂)μ̄(p̂)

r+ λ(p̂)μ̄(p̂) + ϰ
EF[c|c ≤ π0(v̄−p̂)−(v̂−p̄L(p̂))]+

f(λ(p̂))
r+ λ(p̂) + ϰ

,

(1.23)
in the case of stochastic fixed costs of accuracy.

There is no efficiency loss in the HFL of sequences with ϰ = ∞.

There are two main differences between (1.22) and (1.16), as well as (1.23)
and (1.17). First, for fixed ϰ < ∞ the share of the ex-ante surplus that is lost due
to the delay until agreement is endogenous in the case of deterministic variable
accuracy costs. It also depends on Seller-pricing. This is because the rate of
learning is now a strategic variable for Buyer in the case of deterministic variable
costs. Second, there is a third term in the sum of inefficiencies that quantifies the
additional welfare loss due to the fact that intensity is costly for Buyer. In the
HFL, the decision on accuracy a in the case of deterministic variable costs and
the decision whether to verify the state in the case of stochastic fixed costs do not
depend directly on the arrival rate λ. Therefore, for fixed deterministic variable
cost c or distribution of stochastic lump-sum cost F, as costs of intensity f
converge to zero uniformly the inefficiency due to delay and due to costly choice
of intensity disappears, because λ(p̂) becomes arbitrarily large. But the
inefficiency due to costly accuracy persists.

55



Comparative statics for information acquisition

In a learning model in which intensity and accuracy are endogenous it is natural
to ask the question of how these two distinct aspects of learning behave across
ex-ante different environments. The Proposition in this subsection delivers an
answer to this question for the quantities a, λ in the HFL. Despite the
equilibrium multiplicity the comparative static comparisons are clean, if one
compares stationary equilibria with the same average price p̂ upon
non-disclosure. Comparing equilibria with the same average price upon
non-disclosure is natural. p̂ is potentially empirically observable and at the same
time it is a sufficient statistic for the information acquisition choice of Buyer in
strongly stationary equilibria.³⁷

The result of this subsection is as follows.³⁸

Proposition 8. [Comparative statics in the HFL.]
1) Suppose there are two strongly stationary equilibria in the HFL with the same

average price p̂ and all parameters the same, except for the discount rates r1 > r2. Then
the equilibrium intensity is higher for r1 than r2.

2) Suppose there are two strongly stationary equilibria with the same average price
p̂ and all parameters the same, except for prior of high value π1

0 > π2
0. Then the

equilibrium intensity is higher for π1
0.

3) (deterministic variable accuracy costs). Equilibrium accuracy is independent
of the discount rate. Suppose there are two strongly stationary equilibria with the same
average price p̂ and all parameters the same except for π1

0 > π2
0. Equilibrium accuracy

is higher for π1
0 if

v̄+v
2 > p̂, and it is higher for π2

0 if
v̄+v
2 < p̂.

4) (stochastic fixed accuracy costs). Suppose in the case of stochastic fixed costs
there are two strongly stationary equilibria with the same average price p̂ and all

³⁷For small changes of parameters like ex-ante prior of high value π0 and discount rate r the exis-
tence neighborhoodsN in Proposition 7 for mixed pricing equilibria overlap and so comparative
statics for stationary equilibria with the same p̂ are possible even if they are of the mixed pricing
sort, at least for marginal changes in π0, r or of the cost distribution F.

³⁸More complete results can be found in subsection A.3.2 of the appendix. I focus here on a, λ
for brevity’s sake.
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parameters the same, except for distribution of lump-sum costs F1 >FOSD F2.³⁹ Then λ1
is lower than λ2.

The comparative statics of λ are all intuitive: the more impatient Buyer and/or
the more optimistic at the outset of the bargaining she is, the higher the
incentives to explore for information sources. The higher the accuracy costs, the
lower the incentives to explore in the first place.

Equilibrium accuracy in the case of deterministic variable costs is independent
of the impatience level. Whenever Buyer has the chance to exploit an
opportunity to learn, the option value from learning is independent of the
discount rate and so are the incurred accuracy costs. This is because, as long as
there is no agreement, Seller uses the same stationary pricing strategy upon
non-disclosure. To get an intuition for the rest of the result about accuracy,
suppose v̄+v

2 > p̂ and p̂ is close to v̂. Then Buyer is relatively pessimistic ex-ante
about the value of the good. As long as she becomes more optimistic
( 1
2 > π1

0 > π2
0), she also becomes more uncertain about the value of the good

and as a consequence has stronger incentives to exploit the learning opportunity.
If instead v̄+v

2 < p̂ and p̂ is close to v̂, then Buyer is relatively optimistic ex-ante
about the value of the good. The marginal benefit of additional learning when she
becomes even more optimistic (π1

0 > π2
0 >

1
2) is low in this case, so that the

equilibrium accuracy a(p̂) is lower for the higher prior π1
0.

Other comparative results can be proven, and their proofs are skipped here for
the sake of length. E.g. for the case of deterministic variable costs, one can easily
show that, whenever accuracy costs fall pointwise (c1(a) ≤ c2(a) for all
a ∈ [ 12 , 1)) equilibrium intensity λ(p̂)weakly increases. A slightly more
convoluted argument is needed to show that the probability of learning
conditional on an opportunity to learn μ̄(p̂) = F(π0(v̄− p̂)− (v̂− p̄L(p̂))) falls,
if F increases in the FOSD-sense.⁴⁰

³⁹This means that F1 dominates F2 in the sense of first-order stochastic dominance. Formally,
F1(x) ≤ F2(x) for all x > 0 with the inequality strict for some x > 0.

⁴⁰There is a direct effect, as can be seen from the definition of μ̄(p̂), but also an indirect one
counteracting it, because theHFLofpL(p̂)givenby p̄L(p̂), increaseswhenF increases in theFOSD-
sense. The direct effect is stronger.
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1.4.2 Pre-learning negotiations

In the game introduced in section 1.2 learning is a socially wasteful activity for
every Δ > 0, because it does not raise the ex-ante surplus, nor does it eliminate
any pre-game informational asymmetry. Therefore, a third party who has social
welfare in mind would prohibit learning altogether, if that were feasible. Another
way to avoid the inefficiency from learning is to give Buyer the opportunity to
commit to pre-learning negotiations. In fact, such commitment would lead to
efficient outcomes.

To see this formally, consider an extensive-form expansion of the basic game
from section 1.2 in which there is a first stage at a period t = 0 in which Seller can
make an offer to Buyer, before learning can start. If the offer at t = 0 is accepted
the game ends with agreement, whereas if the offer is rejected by Buyer the
bargaining game from section 1.2 is played.

Play bargaining game
from t=1 on

rejectaccept

Buyer

Seller

(p, v ̂- p)

p

Figure 1.4.1: Game with pre-learning negotiations.

The following Proposition is straightforward.

Proposition 9. Pick any Δ > 0. All perfect Bayesian equilibria of the game with
pre-learning negotiations are efficient. In particular, all perfect Bayesian equilibria
feature agreement at time t = 0.
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Note that Buyer’s payoff in the game with pre-learning negotiations quantifies
the value of learning from an ex-ante perspective. Suppose that the PBE has a
price p accepted with probability one in t = 0. Then it holds v̂− p = δVB(p)
with VB(p) the payoff of Buyer in the continuation bargaining game, if she rejects
p. Then the opportunity to learn is worth precisely v̂− p. Proposition 3 implies
that the value of learning can be zero whenever learning is costless but not
immediate, so that Buyer may not get an informational rent from the opportunity
to learn. In contrast, Theorem 2 shows that Buyer always receives an
informational rent whenever learning is costly.

Proposition 9 gives a rationale for the intervention of a third party with social
welfare in mind or for the introduction of commitment devices that allow Buyer
to commit to pre-learning negotiations. This intervention is the more valuable,
the larger the period-length Δ > 0 is, or equivalently the lower the frequency of
interaction between the bargaining parties.

The crucial assumption that allows efficiency to be restored for any Δ > 0 is
that trade is ex-ante efficient. In other situations, e.g. Buyer may also experience
disutility from acquiring the good, learning is not necessarily wasteful and delay
might be efficiency-enhancing. This is illustrated in the next subsection.

1.4.3 Negative lowest Buyer value

Consider a variation of the game introduced in section 1.2 with two differences.
First, assume that v < 0 < v̂ = π0v̄+ (1 − π0)v. Thus, trade is not efficient in
every state of the world, even though it is efficient to trade immediately, if
learning is impossible. Second, assume that Buyer can walk away from
negotiations whenever she chooses. Many negotiation settings share these
features. E.g. a significant share of VC, or more generally, private equity
negotiations break down after the investors learn new information and conclude
that the transaction is not worthwhile.

The analysis of behavior for this variation of the model follows closely the
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results of the main model.⁴¹ This holds throughout except for payoff and
efficiency considerations.

For brevity’s sake, here I illustrate only that learning can be welfare-enhancing,
even in strongly stationary equilibria with ϰ = 0 (recall that these are the
strongly stationary equilibria with the largest expected delay in the baseline
model). I look at the case of costly learning to give inefficiency its ‘best shot’. For
simplicity of exposition I assume intensity λ > 0 is exogenously given and focus
on the mixed pricing equilibria.

Proposition 10. Suppose that v < 0 < v̂.
1) If learning is impossible the efficient outcome with respect to the available

information is to trade with probability one.
2) [Deterministic variable costs of accuracy] Consider the HFL of strongly

stationary equilibria with mixed pricing and p̂ = v̂ and the following parameter
restrictions:

π0 >
1
2 ,
√

2λ + 2ε > r >
√

2λ + ε with some ε > 0 and

√
2√

2 + 1
π0

1 − π0
< −v

v̄
<

π0

1 − π0
.

Then learning is welfare enhancing whenever the accuracy costs c are near enough to
zero with respect to the topology of uniform convergence on compact sets and ε is small
enough.

3) [Stochastic variable costs of accuracy] Consider the HFL of strongly stationary
equilibria with mixed pricing and p̂ = v̂ and the following parameter restrictions:

r
r+ λ

π0

1 − π0
< −v

v̄
<

π0

1 − π0
.

Then learning is welfare enhancing whenever the distribution of fixed accuracy costs F
is near enough to zero with respect to the topology of weak convergence of probability
distributions.

⁴¹The changes are minor. Details are available upon request.
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Learning is not always welfare enhancing when v < 0. Intuitively, this holds
true in case the costs F or c are ‘high enough’ with respect to the other parameters
of the game.

1.5 ConcludingDiscussion

In most real-life bargaining situations a bargaining party has the chance to learn
privately about the terms of trade during the negotiation process. She will
typically take up this opportunity, even if it is costly and leads to delay, because
additional information may give her a strategic advantage in negotiations. This
paper considers such a situation explicitly and shows that this may lead to delay,
even in situations in which ex-ante trade is efficient.

Moreover, this paper models the learning process explicitly in a bargaining
environment. Endogenous information acquisition and disclosure of new
information with the aim of influencing bargaining positions is a realistic feature
of many real-world market interactions, frommerger and acquisition negotiations
to government leases of natural resources. This paper is a first attempt to
introduce this realistic feature into the dynamic bargaining theory literature.

Many extensions and variations to this work are natural topics for future
research. First, many real-world bargaining situations feature initial information
asymmetries in addition to the possibility of endogenous learning as negotiations
progress. Examples include mergers and acquisitions involving industry leaders
or management buyouts. It is natural to expect that sequential screening
dynamics reappear in situations in which, besides the possibility of endogenous
learning and selective disclosure of information, initial private information is a
prominent feature.

Second, in my model learning is wasteful because, besides being costly, it
creates information asymmetry between the two bargaining parties. In situations
in which there is initial private information and the values of Buyer and Seller are
interdependent, learning and the possibility to communicate learning outcomes
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may lead to improvements in efficiency.⁴² A careful study of the effects of
endogenous learning in settings with interdependent values is left for future
research.

Third, a serious study of the interaction of competitive pressure and
endogenous learning is missing from this paper, even though competitive
pressure is a significant factor for negotiations in many business situations, e.g. in
private equity or procurement of investment goods.⁴³ A better understanding of
the interaction between initial information asymmetries, competitive pressure
and endogenous information acquisition in dynamic bargaining environments is
an exciting topic left for future research.

Finally, my model implies that one-sided endogenous private learning in
bargaining situations is compatible with a wide variety of welfare outcomes, from
approximate efficiency to significant inefficiency. This suggests studying the role
of limited commitment and other institutional forms with the aim of designing
bargaining outcomes. One hopes that deepening our understanding of
endogenous costly learning in bargaining situations will lead to valuable insights
on how to better devise institutions that facilitate negotiations in the real world.

⁴²These are typically situations in which the lemons problem is prevalent (Akerlof [1970]).
⁴³One ad hocway to incorporate ideas of competition into the model of this paper is to assume

that the discount factor of the players reflects, besides impatience, the possibility that negotiations
break down due to exogenous reasons, one of them being the arrival of a superior bargaining part-
ner who ‘steals away’ the chance for a deal between the original players. A more realistic model
could have discount factors of the players depend on their respective estimate of the current Buyer
valuation.
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2
Dynamic InformationDesign with
Diminishing Sensitivity OverNews

This chapter is coauthored with Kevin He. We thank Drew Fudenberg, Jerry
Green, Jonathan Libgober, Erik Madsen, Pietro Ortoleva, Matthew Rabin, Collin
Raymond, the MIT information design reading group, and our seminar
participants for insightful comments. We also benefited from conversations with
Krishna Dasaratha, Ben Enke, Simone Galperti, David Hagmann, Marina Halac,
Johannes Hörner, David Laibson, Shengwu Li, Elliot Lipnowski, Gautam Rao,
and Tomasz Strzalecki at an early stage of the project. Any errors are ours.
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2.1 Introduction

When people give others news, they are often mindful of the information’s
psychological impact. For example, this consideration affects the way CEOs
announce earnings forecasts to shareholders and organization leaders update
their teams about recent developments. While the instrumental value of
information also plays a significant role, we analyze the under-studied problem of
how the audience’s psychological reaction to good and bad news shapes the
dynamic communication of information. This problem is even more relevant in
situations like designing game shows and other entertainment content, where the
audience experiences positive and negative reactions over time to news and
developments that have no bearing on their personal decision-making.

We consider an informed, benevolent sender communicating
non-instrumental information to a receiver who experiences gain-loss utility over
changes in beliefs (“news utility”). The state of the world, privately known to the
sender, determines the receiver’s consumption at some future date. The sender
communicates this state over multiple periods as to maximize the receiver’s
expected welfare, knowing that the receiver derives utility based on the nature
and the magnitude of news each period — good news elates and bad news
disappoints. The receiver will exogenously learn the true state just before future
consumption.

We focus on how the receiver’s diminishing sensitivity over news affects the
optimal design of information structures. Kahneman and Tversky [1979]’s
original formulation of prospect theory envisioned a gain-loss utility component
based on deviations from a reference point, where larger deviations carry smaller
marginal effects. This idea of diminishing sensitivity is referenced in virtually all
subsequent work on reference-dependent preferences, including Kőszegi and
Rabin [2009], who first introduced a model of news utility. In almost all cases,
however, researchers then specialize for simplicity to a two-part linear gain-loss
utility function that allows for loss aversion but not diminishing sensitivity. Four
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decades since Kahneman and Tversky [1979]’s publication, O’Donoghue and
Sprenger [2018]’s review of the ensuing literature summarizes the situation as
follows:

“Most applications of reference-dependent preferences focus
entirely on loss aversion, and ignore the possibility of diminishing
sensitivity [...] The literature still needs to develop a better sense of
when diminishing sensitivity is important.”

We argue that diminishing sensitivity over the magnitude of news generates novel
predictions for information design. As Kőszegi and Rabin [2009] point out, the
two-part linear news-utility model makes the stark prediction that people prefer
resolving all uncertainty in one period (“one-shot resolution”) over any other
dynamic information structure. We show that diminishing sensitivity over news
complicates the sender’s problem and leads to a more nuanced optimal
information structure. In particular, one-shot resolution is strictly suboptimal for
a class of news-utility functions exhibiting diminishing sensitivity. This class
includes the commonly used power-function specification. It also includes a
tractable quadratic specification, whenever diminishing sensitivity is sufficiently
strong relative to the degree of loss aversion. We further identify conditions that
imply the optimal information structure treats good news and bad news
asymmetrically, disclosing good news gradually but bad news all at once. The
direction of this optimal skewness is a central implication of diminishing
sensitivity: the “opposite” kind of information structure that divulges all good
news at once but doles out bad news in small portions is never optimal. In fact,
this kind of information structure is even worse than one-shot resolution.

In our model, the receiver knows the sender’s strategy and formulates Bayesian
beliefs. This framework leads to cross-state constraints on the sender’s problem. In
view of diminishing sensitivity, one might conjecture that the sender should
concentrate all bad news in period 1 if the state is bad, and deliver equally-sized
pieces of good news in periods 1, 2, 3, ... if the state is good. But these belief paths
are infeasible, since a Bayesian audience who knows this strategy and does not
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receive bad news in period 1 will conclusively infer that the state is good. The
receiver should not judge subsequent communication from the sender as further
good news or derive positive news utility from them.¹ We show that the sender
can nevertheless implement a “gradual good news, one-shot bad news”
information structure for a Bayesian receiver by sending a conclusive bad-news
signal in a random period when the state is bad. In the optimal information
structure, conditional on the good state, the receiver may get different amounts of
good news in different periods, even though his news-utility function is
time-invariant and the sender knows the state from the start.

Another implication of diminishing sensitivity is that people with opposite
consumption rankings over states may exhibit opposite informational
preferences. In a world with two possible states, A and B, suppose state A realizes
if and only if a series of intermediate events all occur successfully. We show that
agents who prefer the consumption they get in state Awill choose to observe the
intermediate events resolve in real-time (gradual information), while agents who
prefer the consumption they get in state Bwill choose to only learn the final state
(one-shot information). This prediction distinguishes the news-utility model
with diminishing sensitivity from other models of non-instrumental information
preference. The result also rationalizes a “sudden death” format often found in
game shows, where the contestant must overcome every challenge in a sequence
to win the grand prize (as opposed to the grand prize being contingent on beating
at least one of several challenges.)

When the sender lacks commitment power, information structures featuring
gradual good news encounter a credibility problem. In the bad state, the sender
may strictly prefer to lie and convey a positive message intended for the good
state. This temptation exists despite the fact that the sender is far-sighted and
maximizes the receiver’s total news utility over time. The intuition is that the
receiver will inevitably feel disappointed upon learning the truth in the future, so
his marginal utility of (unwarranted) good news today is larger than his marginal

¹In the language of information design, these conjectured belief paths violate Bayesian plausi-
bility, as they cannot arise from the Bayesian updating of a given prior.
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disutility of heightened disappointment in the future, thanks to diminishing
sensitivity. This perverse incentive to provide false hope in the bad state may
preclude all meaningful communication in all states. We show that if the receiver
has diminishing sensitivity but not loss aversion (or has low loss aversion), then
every equilibrium is payoff-equivalent to the babbling equilibrium. High enough
loss aversion, however, can restore the equilibrium credibility of good-news
messages by increasing the future disappointment costs associated with inducing
false hope today. As a consequence, receivers with higher loss aversion may enjoy
higher equilibrium payoffs, which would never happen if the sender had
commitment power.

Finally, we characterize the entire family of equilibria featuring gradual good
news and study how quickly the receiver learns the state. For a class of
news-utility functions that include the square-root and quadratic specifications
mentioned before, the sender conveys progressively larger pieces of good news
over time, so the receiver’s equilibrium belief grows at an increasing rate in the
good state. This puts a uniform bound on the number of periods of informative
communication across all time horizons and all equilibria.

The rest of the paper is organized as follows. The remainder of Section 2.1
reviews related literature. Section 2.2 defines the sender’s problem under the
commitment assumption and introduces our model of news utility. Section 2.3
studies the optimal information structure and the relationship between
consumption preferences and informational preferences. Section 2.4 focuses on
the cheap-talk model when the sender lacks commitment power. Section 2.5
looks at a variant of the model without a deterministic horizon. Section 2.6
discusses other models of preference over non-instrumental information. Section
2.7 concludes.

2.1.1 Related Literature

Since Kőszegi and Rabin [2009], several other authors have analyzed the
implications of news utility in such varied settings as asset pricing [Pagel, 2016],
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life-cycle consumption [Pagel, 2017], portfolio choice [Pagel, 2018], and
mechanism design [Duraj, 2018b]. These papers focus on Bayesian agents with
two-part linear gain-loss utilities and do not study the role of diminishing
sensitivity to news.

Interpreting monetary gains and losses as news about future consumption,
experiments that show risk-seeking behavior when choosing between loss
lotteries and risk-averse behavior when choosing between gain lotteries provide
evidence for diminishing sensitivity over consumption news (see, for example,
Rabin and Weizsäcker [2009]). In the same vein, papers in the finance literature
that use diminishing sensitivity over monetary gains and losses to explain the
disposition effect [Barberis and Xiong, 2012, Henderson, 2012, Kyle, Ou-Yang,
and Xiong, 2006, Shefrin and Statman, 1985] also provide indirect evidence for
diminishing sensitivity over consumption news.

We are not aware of other work that focuses on how diminishing sensitivity
matters for information design with news utility. In fact, except for the work on
disposition effect in finance, very few papers deal with diminishing sensitivity in
any kind of reference-dependent preference. One exception is Bowman,
Minehart, and Rabin [1999], who study a consumption-based
reference-dependent model with diminishing sensitivity. A critical difference is
that their reference points are based on past habits, not rational expectations. In
their environment, a consumer who knows their future income optimally
concentrates all consumption losses in the first period if income will be low, but
spreads out consumption gains across multiple periods if income will be high. As
discussed before, the analog of this strategy cannot be implemented in our setting
since the receiver derives news utility from changes in rational Bayesian beliefs.

Our model of diminishing sensitivity over the magnitude of news shares the
same psychological motivation as Kahneman and Tversky [1979], who base their
theory of human responses to monetary gains and losses on human responses to
changes in physical attributes like temperature or brightness:

“Many sensory and perceptual dimensions share the property
that the psychological response is a concave function of the
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magnitude of physical change. For example, it is easier to
discriminate between a change of 3◦ and a change of 6◦ in room
temperature, than it is to discriminate between a change of 13◦ and a
change of 16◦.”

We are not aware of any empirical work designed to measure diminishing
sensitivity over news, but will highlight some testable predictions of the model
later on.

While some of our results apply to Kőszegi and Rabin [2009]’s model of news
utility or to a more general class of such models (e.g., Proposition 11, Proposition
12, Proposition 13, Corollary 11), we mostly focus on the simplest model of
news utility where the agent derives gain-loss utility from changes in expected
future consumption utility. This mean-based model lets us concentrate on the
implications of diminishing sensitivity, but differs from Kőszegi and Rabin
[2009]’s model where agents make a percentile-by-percentile comparison between
old and new beliefs. Fully characterizing the optimal information structure using
this percentile-based model is out of reach for us, but our numerical simulations
in Appendix B.2.2 suggest the answers would be very similar.

Parallel to the recent literature on the applications of news utility discussed
above, Dillenberger and Raymond [2018] axiomatize a general class of additive
belief-based preferences in the domain of two-stage lotteries by suitably
weakening the independence axiom of expected utility. In the case of T = 2, our
news-utility model belongs to the class they characterize. Under this
specialization, our work may be thought of as studying the information design
problem, with and without commitment, using some of Dillenberger and
Raymond [2018]’s additive belief-based preferences. Dillenberger and Raymond
[2018] also provide high-level conditions for additive belief-based preferences to
exhibit preference for one-shot resolution. We are able to find more interpretable
and easy-to-verify conditions for the sub-optimality of one-shot resolution,
working with a specific sub-class of their preferences.

In general, papers on belief-based utility have highlighted two sources of
felicity: levels of belief about future consumption utility (“anticipatory utility,”

69



e.g., Eliaz and Spiegler [2006], Kőszegi [2006], Schweizer and Szech [2018]) and
changes in belief about future consumption utility (“news utility”). News utility is
a function of both the prior belief and the posterior belief, while a given posterior
belief brings the same anticipatory utility for all priors [Eliaz and Spiegler, 2006].
As we discuss in Section 2.6, the rich dynamics of the optimal information
structure are a unique feature of the news-utility model (with diminishing
sensitivity).

Brunnermeier and Parker [2005] and Macera [2014] study the optimal design
of beliefs for agents with belief-based utilities that differ from the news-utility
setup we consider. Another important distinction is that we focus on the design
of information: changes in the receiver’s belief derive from Bayesian updating an
exogenous prior, using the information conveyed by the sender. Macera [2014]
considers a non-Bayesian agent who freely chooses a path of beliefs, while
knowing the actual state of the world. Brunnermeier and Parker [2005] study the
“opposite” problem to ours, where the agent freely chooses a prior belief (over
the sequence of state realizations) at the start of the game, then updates belief
about future states through an exogenously given information structure.

Our emphasis on information is shared by Ely, Frankel, and Kamenica [2015],
who study dynamic information design with a Bayesian receiver who derives
utility from suspense or surprise. In contrast to these authors who propose and
study an original utility function over belief paths where larger belief movements
always bring greater felicity, we consider a gain-loss utility function over changes
in beliefs. Because our states are associated with different consumption
consequences, changes in beliefs may increase or decrease the receiver’s utility
depending on whether the news is good or bad. While one-shot resolution is
suboptimal in both Ely, Frankel, and Kamenica [2015]’s problem and our
problem (under some conditions), the optimal information structure differs. The
optimal information structure in our problem is asymmetric, a key implication of
diminishing sensitivity. Another difference is that information structures
featuring gradual bad news, one-shot good news are worse than one-shot
resolution in our problem, while one-shot resolution is the worst possible
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information structure in Ely, Frankel, and Kamenica [2015]’s problem.
Also within the dynamic information design literature but without behavioral

preferences, Li and Norman [2018] and Wu [2018] consider a group of senders
moving sequentially to persuade a single receiver. The receiver takes an action
after observing all signals. This action, together with the true state of the world,
determines the payoffs of every player. While these authors study a dynamic
environment, only the final belief of the receiver at the end of the last period
matters for the players’ payoffs. Indeed, every equilibrium in their setting can be
converted into a payoff-equivalent “one-step” equilibrium where the first sender
sends the joint signal implied by the old equilibrium, while all subsequent
senders babble uninformatively. In our setting, the distribution of the receiver’s
final belief at the end of the last period is already pinned down by the prior belief
at the start of the first period. Yet, different sequences of interim beliefs cause the
receiver to experience different amounts of total news utility. The stochastic
process of these interim beliefs constitutes the object of design. We provide a
general procedure for computing the optimal dynamic information structure in
this new setting.

Lipnowski and Mathevet [2018] study a static model of information design
with a psychological receiver whose welfare depends directly on posterior belief.
They discuss an application to a mean-based news-utility model without
diminishing sensitivity in their Appendix A, finding that either one-shot
resolution or no information is optimal. We focus on the implications of
diminishing sensitivity and derive specific characterizations of the optimal
information structure. Our work also differs in that we study a dynamic problem,
examine equilibria without commitment, and discuss how the rate of releasing
good news changes over time.
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2.2 Model

2.2.1 Timing of Events

We consider a discrete-time model with periods 0, 1, 2, ...,T, where T ≥ 2. There
are two players, the sender (“she”) and the receiver (“he”). There is a finite state
space Θ with |Θ| = K ≥ 2. In state θ, the receiver will consume cθ in period T,
deriving from it consumption utility v(cθ)where v is strictly increasing. Assume
that cθ′ 6= cθ′′ when θ

′ 6= θ
′′
.We may normalize without loss minθ∈Θ[v(cθ)] = 0,

maxθ∈Θ[v(cθ)] = 1.There is no consumption in other periods and neither player
can affect period T’s consumption.

The players share a common prior belief π0 ∈ Δ(Θ) about the state, where
π0(θ) > 0 for all θ ∈ Θ. In period 0, the sender commits to a finite message
spaceM and a strategy σ = (σ t)T−1

t=1 , where σ t(· | ht−1, θ) ∈ Δ(M) is a
distribution over messages in period t that depends on the public history
ht−1 ∈ Ht−1 := (M)t−1 of messages sent so far, as well as the true state θ. The
sender can commit to any information structure (M, σ), which becomes common
knowledge between the players. At the start of period 1, the sender privately
observes the state’s realization, then sends a message in each of the periods
1, 2, ...,T− 1 according to the strategy σ. (Section 2.4 studies a cheap talk model
where the sender lacks commitment power.) Information about θ is
non-instrumental in that it does not help the receiver make better decisions, but it
can change his belief about future welfare.

At the end of period t for 1 ≤ t ≤ T− 1, the receiver forms the Bayesian
posterior belief πt about the state after the on-path history ht ∈ Ht of tmessages.
This belief is rational and calculated with the knowledge of the information
structure (M, σ). In period T, the receiver exogenously and perfectly learns the
true state θ, consumes cθ, and the game ends. (Section 2.5 considers a
random-horizon model where the termination date is random and unknown to
both parties.)

Since the receiver is Bayesian, the sender faces cross-state constraints in
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choosing paths of beliefs. For example, if the sender wishes to use some message
m ∈ M to convey positive but inconclusive news in the first period when the
state is good, then the same message must also be sent with positive probability
when the state is bad – otherwise, receiving this information in the first period
would amount to conclusive evidence of the good state. As we later show, these
cross-state constraints imply distortions from perfect “consumption smoothing”
of good news.

When K = 2, we label two states asGood and Bad, Θ = {G,B}, so that
v(cG) = 1, v(cB) = 0. We also abuse the notation πt to mean πt(G) in the case of
binary states.

In this model, the sender has perfect information about the receiver’s future
consumption level once she observes the state. Appendix B.2 discusses an
extension where the sender’s information is imperfect, so that there is residual
uncertainty about the receiver’s consumption even conditional on the state (i.e.,
conditional on the sender’s private information).

2.2.2 News Utility

The receiver derives utility based on changes in his belief about the final period’s
consumption. Specifically, he has a continuous news-utility function
N : Δ(Θ)× Δ(Θ) → R, mapping his pair of new and old beliefs about the state
into a real-valued felicity.² He receives utilityN(πt | πt−1) at the end of period
1 ≤ t ≤ T.Utility flow is undiscounted and the receiver has the sameN in all
periods. The sender maximizes the total expected welfare of the receiver, which is
the sum of the news utilities in different periods and the final consumption
utility,

∑T
t=1 N(πt | πt−1) + v(c).We assume for every π ∈ Δ(Θ), bothN(· | π)

andN(π | ·) are continuously differentiable except possibly at π.
For many of our results, we study amean-based news-utility model. Kőszegi

and Rabin [2009] mention this model, but mostly consider a decision-maker
who makes a percentile-by-percentile comparison between his old and new

²Since different states lead to different levels of consumption, beliefs over states induce beliefs
over consumption.
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beliefs. We use the mean-based model to focus on the implications of
diminishing sensitivity in the simplest setup. The agent applies a gain-loss utility
function, μ : [−1, 1] → R, to changes in expected consumption utility for period
T. That is,N(πt | πt−1) = μ

(∑
θ∈Θ(πt(θ)− πt−1(θ)) · v(cθ)

)
. Throughout we

assume μ is continuous, strictly increasing, twice differentiable except possibly at
0, and μ(0) = 0.We impose further assumptions on μ to reflect diminishing
sensitivity and loss aversion.

Definition 4. Say μ satisfies diminishing sensitivity if μ′′
(x) < 0 and μ′′

(−x) > 0
for all x > 0. Say μ satisfies (weak) loss aversion if−μ(−x) ≥ μ(x) for all x > 0.
There is strict loss aversion if−μ(−x) > μ(x) for all x > 0.

We now discuss two important functional forms of μ. In Appendix B.2.2, we
compare the optimal information structures for this model and for Kőszegi and
Rabin [2009]’s percentile-based model, a class of news-utility functions that do
not admit a mean-based representation.

Quadratic News Utility

The quadratic news-utility function μ : [−1, 1] → R is given by

μ(x) =

αpx− βpx
2 x ≥ 0

αnx+ βnx
2 x < 0

with αp, βp, αn, βn > 0. So we have

μ
′
(x) =

αp − 2βpx x ≥ 0

αn + 2βnx x < 0
, μ

′′
(x) =

−2βp x ≥ 0

2βn x < 0
.

The parameters αp, αn control the extent of loss aversion near 0, while βp, βn
determine the amount of curvature — i.e., the second derivative of μ. We only
consider quadratic news-utility functions that satisfy the following parametric
restrictions.
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A. Monotonicity: αp ≥ 2βp and αn ≥ 2βn. Monotonicity condition holds if
and only if μ′

(x) ≥ 0 for all x ∈ [−1, 1].

B. Loss aversion: αn − αp ≥ (βn − βp)z for all z ∈ [0, 1]. This condition is
equivalent to loss aversion from Definition 4 for this class of news-utility
functions.

A family of quadratic news-utility functions that satisfy these two restrictions can
be constructed by choosing any α ≥ 2β > 0 and λ ≥ 1, then set αp = α, αn = λα,
βp = β, βn = λβ. Figure 2.2.1 plots some of these news-utility functions for
different values of α, β, and λ.
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Figure 2.2.1: Examples of quadratic news-utility.
Functions in the family αp = α, αn = λα, βp = β, βn = λβ. Grey curve: α = 2, β = 1,
λ = 1. Red curve: α = 2, β = 1, λ = 2. Blue curve: α = 2, β = 0.8, λ = 1.

Power-Function News Utility

The power-function news-utility μ : [−1, 1] → R is given by
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μ(x) =

xα x ≥ 0

−λ|x|β x < 0

with 0 < α, β < 1 and λ ≥ 1. Parameters α, β determine the degree of
diminishing sensitivity to good news and bad news, while λ controls the extent of
loss aversion. This class of functions nests the square-root case when
α = β = 0.5 and is the only class of gain-loss functions to appear in Tversky and
Kahneman [1992].

2.3 Optimal Information Structure

In this section, we characterize the optimal information structure that solves the
sender’s problem. We provide a general inductive procedure to maximize total
expected news utility and find an information structure with Kmessages that
achieves this maximum. We show that information structures featuring gradual
bad news, one-shot good news are strictly worse than one-shot resolution, then
identify sufficient conditions that imply the optimal information structure
features gradual good news, one-shot bad news. We illustrate these conditions
with the quadratic news-utility specification, finding that the conditions hold
whenever diminishing sensitivity is sufficiently strong relative to loss aversion.

We conclude this section by highlighting that agents with opposite
consumption preferences over two states of the world can exhibit opposite
informational preferences when choosing between one-shot resolution and
gradual resolution of uncertainty. This endogenous diversity of information
preferences distinguishes news utility with diminishing sensitivity from other
models of preference over non-instrumental information in the literature.

2.3.1 A General Backwards-Induction Procedure

For f : Δ(Θ) → R, let cavf be the concavification of f— that is, the smallest
concave function that dominates f pointwise. Concavification plays a key role in
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solving this information design problem, just as in Kamenica and Gentzkow
[2011] and Aumann and Maschler [1995].

For πT−2, πT−1 ∈ Δ(Θ) two beliefs about the state, letUT−1(πT−1 | πT−2) be
the sum of the receiver’s expected news utilities in periods T− 1 and T, if he
enters period T− 1 with belief πT−2 and updates it to πT−1. More precisely,

UT−1(πT−1 | πT−2) := N(πT−1 | πT−2) +
∑
θ∈Θ

πT−1(θ) · N(1θ | πT−1),

where 1θ is the degenerate belief putting probability 1 on the state θ. Note that by
the martingale property of beliefs, if the receiver holds belief πT−1 at the end of
period T− 1, then state θmust then realize in period Twith probability πT−1(θ).

LetU∗
T−1(πT−2) := (cavUT−1(· | πT−2)) (πT−2). As we will show in the proof

of Proposition 11,U∗
T−1(πT−2) is the value function of the sender when the

receiver enters period T− 1 with belief πT−2. It is calculated by evaluating the
concavified version of x 7→ UT−1(x | πT−2) at the point x = πT−2. By
Carathéodory’s theorem, there exist weights w1, ...,wK ≥ 0, beliefs
q1, ..., qK ∈ Δ(Θ),with

∑K
k=1 w

k = 1,
∑K

k=1 w
kqk = πT−2, such that

U∗
T−1(x) =

∑K
k=1 w

kUT−1(qk | x). When the receiver enters period T− 1 with
belief πT−2, the sender maximizes his expected payoff using a signaling strategy
σT−1 that generates a distribution of posteriors supported on (q1, ..., qK)with
probabilities (w1, ...,wK).

Continuing inductively, using the value functionU∗
t+1(x) for t ≥ 1, we may

define:
Ut(πt | πt−1) := N(πt | πt−1) + U∗

t+1(πt),

which leads to the period t value functionU∗
t (x) := (cavUt(· | x)) (x).The

maximum expected news utility across all information structures isU∗
1 (π0).

Proposition 11 formalizes this discussion. It shows there exists an information
structure with Kmessages that achieves optimality, and the said information
structure can be constructed using the sequence of concavifications.

Proposition 11. Themaximum expected news utility across all information
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structures is U∗
1 (π0).There is an information structure (M, σ) with |M| = K

attaining this maximum, with the property that after each on-path public history ht−1

associated with belief πt−1, the sender’s strategy σ t(· | ht−1, θ) induces posterior qk at
the end of period t with probability wk, for some q1, ..., qK ∈ Δ(Θ), w1, ...,wK ≥ 0,
satisfying

∑K
k=1 w

k = 1,
∑K

k=1 w
kqk = πt−1, and

U∗
t (πt−1) =

∑K
k=1 w

kUt(qk | πt−1).

A perhaps surprising implication is that the receiver only needs a binary
message space if there are two states of the world, regardless of the shape or
curvature of the news-utility functionN. Figure 2.3.1 illustrates the
concavification procedure in an environment with two equally likely states,
T = 5, and the mean-based news-utility function μ(x) =

√
x for x ≥ 0,

μ(x) = −1.5
√
−x for x < 0.The sender optimally discloses a conclusive

bad-news signal in a random period when θ = B, so each period of silence
amounts to a small piece of good news. (In Appendix B.2.2, we consider Kőszegi
and Rabin [2009]’s percentile-based news utility model in a similar environment
with Gaussian distributions of residual consumption uncertainty in the two
states. We find a very similar optimal information structure under the same
square-root gain-loss function.)

The information-design problem imposes additional constraints relative to a
habit-formation model. To see this, consider a “relaxed” version of the sender’s
problem in the binary-states case where she simply chooses some xt ∈ [0, 1] each
period for 1 ≤ t ≤ T− 1, depending on the realization of θ.The receiver gets
μt(xt − xt−1) in period 1 ≤ t ≤ T, with the initial condition x0 = π0 and the
terminal condition xT = 1 if θ = G, xT = 0 if θ = B. One interpretation of the
relaxed problem is that the sender chooses the receiver’s sequence of beliefs only
subject to the constraint that the initial belief in period 0 is π0 and the final belief
in period T puts probability 1 on the true state. The belief paths do not have to be
Bayesian. Another interpretation is that xt is not a belief, but a consumption level
for period t. The receiver’s welfare in period t only depends on a gain-loss utility
based on how current period’s consumption differs from that of period t− 1.
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Figure 2.3.1: The concavifications giving the optimal information structure.

HorizonT = 5,mean-basednews-utility function μ(x) =

{√
x for x ≥ 0

−1.5
√
−x for x < 0

, prior

π0 = 0.5. The dashed vertical line in the t-th graph marks the receiver’s belief in θ = G
conditional on not having heard any bad news by the start of period t.The y-axis shows the
sumof news utility this period and the value functionof entering next periodwith a certain
belief. In the good state of theworld, the receiver’s belief in θ = G grows at increasing rates
across the periods, 0.5 → 0.556 → 0.626 → 0.715 → 0.834 → 1. In the bad state of the
world, the receiver’s belief follows the same path as in the good state up until the random
period when conclusive bad news arrives.

Provided μ has diminishing sensitivity and exhibits enough loss aversion, the
sender maximizes the receiver’s utility by choosing xt = π0 +

t
T(1 − π0) in
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period twhen θ = G, and by choosing xt = 0 in every period t ≥ 1 when θ = B.
The belief paths in Figure 2.3.1 differ from these “relaxed” solutions in two ways.
First, the receiver gets different amounts of good news (in terms of πt − πt−1) in
different periods when θ = G. Second, the sender sometimes provides false hope
in the bad state. These differences come from the Bayesian constraints on beliefs.

2.3.2 Sub-Optimality of One-Shot Resolution

We begin with a sufficient condition on the news-utility function for one-shot
resolution to be strictly suboptimal for any T and Θ. Let θH, θL ∈ Θ be the states
with the highest and lowest consumption utilities. Let 1H, 1L ∈ Δ(Θ) represent
degenerate beliefs in states θH and θL and let v0 := Eθ∼π0 (v(cθ)) be the ex-ante
expected future consumption utility. The symbol⊕ denotes the mixture between
two beliefs in Δ(Θ).

Proposition 12. For any T andΘ, one-shot resolution is strictly suboptimal if

lim
ε→0+

N(1H | (1 − ε)1H ⊕ ε1L)
ε

+ N(1H | π0)− N(1L | π0)

> lim
ε→0+

N(1H | π0)− N((1 − ε)1H ⊕ ε1L | π0)

ε
− N(1L | 1H).

For the mean-based news-utility model, this condition is equivalent to

μ
′
(0+) + μ(1 − v0)− μ(−v0) > μ

′
(1 − v0)− μ(−1).

In fact, the proof of Proposition 12 shows that whenever its condition is
satisfied, some information structure featuring gradual good news and one-shot
bad news (to be defined precisely in the next subsection) is strictly better than
one-shot resolution.

We can interpret Proposition 12’s sufficient condition as “strong enough
diminishing sensitivity relative to loss aversion.” Evidently,
μ(1 − v0)− μ(−v0) > 0, so the condition is satisfied whenever
μ′
(0+)− μ′

(1 − v0) ≥ −μ(−1). The LHS increases when μ becomes more
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concave in the positive region, and the RHS decreases when μ is more convex in
the negative region. On the other hand, holding fixed the curvature μ′′

(x) for
x 6= 0 and μ′

(0+), increasing the amount of loss aversion near 0 (i.e.,
μ′
(0−)− μ′

(0+)) increases RHS.
The quadratic news utility provides a clear illustration of this interpretation, as

the condition of Proposition 12 holds whenever there is enough curvature
relative to the extent of loss aversion.

Corollary 1. If the receiver has quadratic news utility with αn − αp ≤ βn + βp, then
one-shot resolution is strictly suboptimal for any T.

The difference αn − αp ≥ 0 is the size of the “kink” at 0, that is
μ′
(0−)− μ′

(0+).On the other side, βp and βn control the amounts of curvature
in the positive and negative regions, respectively.

The sufficient condition in Proposition 12 is also satisfied by the most
commonly used model of diminishing sensitivity, the power function (see, for
example, Tversky and Kahneman [1992]). One could think of the power
function specification as having “infinite” diminishing sensitivity near 0, as
μ′′
(0+) = −∞ and μ′′

(0−) = ∞.

Corollary 2. Suppose μ(x) =

xα if x ≥ 0

−λ · |x|β if x < 0
for some 0 < α, β < 1 and

λ ≥ 1.Then one-shot resolution is strictly suboptimal for any T.

While Proposition 12 holds generally, we can find sharper results on the
sub-optimality of one-shot resolution for specific news-utility models and
environments. Kőszegi and Rabin [2009]’s percentile-based news-utility model
stipulates

N(πt | πt−1) =

∫ 1

0
μ
(
v(Fπt(p))− v(Fπt−1(p))

)
dp,

where Fπt(p) and Fπt−1(p) are the p-th percentile consumption levels according to
beliefs πt and πt−1, respectively. Whenever μ exhibits diminishing sensitivity to
gains and there are at least 3 states, one-shot resolution is suboptimal. This result
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does not require any assumption about loss aversion or diminishing sensitivity in
losses.

Proposition 13. In Kőszegi and Rabin [2009]’s percentile-based news-utility model,
provided the gain-loss utility function satisfies μ′′

(x) < 0 for all x > 0, one-shot
resolution is strictly suboptimal for any T and any K ≥ 3.

Similar to the idea behind Proposition 12, the proof of Proposition 13
constructs an information structure to gradually deliver the good news that the
state is the best one possible. By contrast, if μ is two-part linear with μ(x) = bx
for x ≥ 0, μ(x) = λbx for some b > 0, λ > 1 (so that μ′′

(x) = 0 for x > 0), then
one-shot resolution is the uniquely optimal information structure [Kőszegi and
Rabin, 2009].

Proposition 13 requires at least three distinct consumption levels, K ≥ 3. In a
binary-states world, the percentile-based news-utility functionN only depends
on the value of μ at two non-zero points. Thus every increasing μ is behaviorally
indistinguishable from a two-part linear one, meaning the percentile-based
model cannot capture diminishing sensitivity in a setting with K = 2.

As an analog to Corollary 2, we study a setting with percentile-based news
utility and residual consumption uncertainty in Appendix B.2, finding that
one-shot resolution is strictly suboptimal with any number of states for a
power-function μ (Corollary 11).

2.3.3 Gradual Good News and Gradual Bad News

For the remainder of the paper, we focus on mean-based news-utility functions to
study additional implications of diminishing sensitivity. Two classes of
information structures will play important roles in the sequel. To define them, we
write vt := Eθ∼πt [v(cθ)] for the expected future consumption utility based on the
receiver’s (random) belief at the end of period t. Partition states into two subsets,
Θ = ΘB ∪ ΘG,where v(cθ) < v0 for θ ∈ ΘB and v(cθ) ≥ v0 for θ ∈ ΘG.
Interpret ΘB as the “bad” states and ΘG as the “good” ones.
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Definition 5. An information structure (M, σ) features gradual good news,
one-shot bad news if

• P(M,σ)[vt ≥ vt−1 for all 1 ≤ t ≤ T | θ ∈ ΘG] = 1 and

• P(M,σ)[vt < vt−1 for no more than one 1 ≤ t ≤ T | θ ∈ ΘB] = 1.

An information structure (M, σ) features gradual bad news, one-shot good news if

• P(M,σ)[vt ≤ vt−1 for all 1 ≤ t ≤ T | θ ∈ ΘB] = 1 and

• P(M,σ)[vt > vt−1 for no more than one 1 ≤ t ≤ T | θ ∈ ΘG] = 1.

In the first class of information structures (“gradual good news, one-shot bad
news”), the sender relays good news over time and gradually increases the
receiver’s expectation of future consumption. When the state is bad, the sender
concentrates all the bad news in one period. The “one-shot bad news”
terminology comes from noting that when θ ∈ ΘB, the single period twhere
vt < vt−1 must satisfy vt = v(cθ) and vt′ = vt for all t

′
> t. The receiver gets

negative information about his future consumption level for the first time in
period t, and his expectation stays constant thereafter. On the other hand, we use
the phrase “gradual bad news, one-shot good news” to refer to the “opposite” kind
of information structure.

One-shot resolution falls into both of these classes. To rule out this triviality,
we say that an information structure features strictly gradual good news if

P(M,σ)[vt > vt−1 and vt′ > vt′−1 for two distinct 1 ≤ t, t
′ ≤ T | θ ∈ ΘG] > 0.

That is, there is positive probability that the receiver’s expectation strictly
increases at least twice in periods 1 through T. Similarly define strictly gradual bad
news.

We now prove that whenever μ satisfies diminishing sensitivity and (weak)
loss aversion, information structures featuring strictly gradual bad news, one-shot
good news are strictly worse than one-shot resolution. By contrast, under some
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additional restrictions, the optimal information structure falls into the strictly
gradual good news, one-shot bad news class.

Proposition 14. Suppose μ satisfies diminishing sensitivity and loss aversion. Any
information structure featuring strictly gradual bad news, one-shot good news is strictly
worse than one-shot resolution in expectation, and almost surely weakly worse ex-post.

This result holds for arbitrary state space Θ, horizon T, and prior π0.
For the rest of the paper, we specialize to the case of K = 2. The next result

presents a necessary and sufficient condition for inconclusive bad news to be
suboptimal when T = 2.We then verify the condition for quadratic news utility.

Proposition 15. For T = 2, information structures with
P(M,σ)[π1 < π0 and π1 6= 0] > 0 are strictly suboptimal if and only if there exists
some q ≥ π0 so that the chord connecting (0,U1(0 | π0)) and (q,U1(q | π0)) lies
strictly above U1(p | π0) for all p ∈ (0, π0).

Corollary 3. Quadratic news utility satisfies the condition of Proposition 15.

In particular, combining Corollaries 1 and 3, we infer that any optimal
information structure for a receiver with quadratic news utility with
αn − αp ≤ βn + βp with T = 2 must feature strictly gradual good news, one-shot
bad news. Furthermore, since there exists an optimal information structure with
binary messages by Proposition 11, in this environment there is an optimal
information structure where the sender induces either belief 0 or belief pH > π0

in the only period of communication. The next subsection characterizes pH as a
function of the model parameters.

In summary, we have established a ranking between three kinds of information
structures. For any time horizon and any state space, provided the condition in
Proposition 12 holds and μ satisfies diminishing sensitivity and weak loss
aversion, some information structure featuring gradual good news, one-shot bad
news gives more news utility than one-shot resolution, which in turn gives more
news utility than any information structure featuring strictly gradual bad news,
one-shot good news. Further, under the additional restrictions in Proposition 15,
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a gradual good news, one-shot bad news information structure is optimal among
all information structures.

2.3.4 Illustrative Example: Quadratic News Utility

We illustrate Proposition 11’s concavification procedure by finding in
closed-form the optimal information structure when the receiver has a quadratic
news-utility function.

Suppose the parameters of μ satisfy αn − αp ≤ βn + βp in a T = 2
environment. From the arguments in Section 2.3.3, the optimal information
structure induces either π1 = 0 or π1 = pH for some pH > π0. Proposition 11
implies (cavU1(· | π0)) (x) > U1(x | π0) for all x ∈ (0, pH).The geometry of
concavification shows the derivative of the value function at pH,
∂
∂xU1(x | π0)(pH), equals the slope of the chord from 0 to pH on the function
U1(· | π0). We use this equality to derive pH as the solution to a cubic polynomial.

Proposition 16. For T = 2 and quadratic news utility satisfying
αn − αp ≤ βn + βp, the optimal partial good news pH > π0 satisfies

π0(αn − αp)− (βp + βn)π
2
0 = p2

H(αn − αp + βn + βp)− p3
H(2βp + 2βn).

We have dpH
dπ0

> 0 for π0 <
1
2
αn−αp
βn+βp

and dpH
dπ0

< 0 for π0 >
1
2
αn−αp
βn+βp

.

In other words, the optimal partial good news is in general non-monotonic in
the prior belief. For low prior beliefs, pH increases with prior. But for high prior
beliefs, pH decreases with prior. Figure 2.3.2 illustrates. In the case of αn = αp,
and in particular when μ is symmetric around 0, dpHdπ0

> 0 for any π0 ∈ (0, 1).

2.3.5 Endogenous Diversity of Information Preferences

Leaving aside the setting where the sender knows the state upfront and can
choose any information structure, consider an environment where a sequence of
exogenous signal realizations determine the state. We show that agents with
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Figure 2.3.2: Optimal partial good news with quadratic news utility.
T = 2, fixing parameters αp = 2, αn = 2.1, βp = 1, βn = 0.2 and considering different

prior beliefs. The dashed blue line is at π0 = 1
2
αn−αp
βn+βp

≈ 0.042. The optimal partial good
news is decreasing in the prior before this threshold, and increasing afterwards.

opposite consumption preferences over the two states can exhibit opposite
preferences when choosing between observing the signals as they arrive (gradual
resolution) or only learning the final state (one-shot resolution).

There are two states of the world, Alternative (A) and Baseline (B). In each
period t = 1, 2, ...,T, a binary random variable Xt realizes, where P[Xt = 1] = qt
with 0 < qt < 1. If Xt = 1 for all t, then the state is A. Else, if Xt = 0 for at least
one t, then the state is B. The agent’s consumption utility in period T depends on
the state, and is normalized without loss to be either 0 or 1.

At time 0, the agent chooses between observing the realizations of the random
variables (Xt)

T
t=1 in real time, or only learning the state of the world at the end of

period T. As an example, imagine a televised debate between two political
candidates A and Bwhere A loses as soon as she makes a “gaffe” during the
debate.³ If A does not make any gaffes, then Awins. An individual who strongly
prefers one of the candidates to win must choose between watching the debate

³Augenblick and Rabin [2018] use a similar example of political gaffes to illustrate Bayesian
belief movements.
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live in the evening or only reading the outcome of the debate the following
morning.

The agent forms Bayesian belief πt ∈ [0, 1] about the probability of state A at
the end of each period t, starting with the correct Bayesian prior π0. For
notational convenience, we also write ρt = 1 − πt as the belief in state B at the
end of t, with the prior ρ0 = 1 − π0. If the agent prefers state A, he gets news
utility μ(πt − πt−1) at the end of period t. If the agent prefers state B, then he gets
news utility μ(ρt − ρt−1). The function μ exhibits diminishing sensitivity, that is
μ′′
(x) < 0 and μ′′

(−x) > 0 for x > 0. Also, to quantify the amount of loss
aversion, we consider the parametric class of λ-scaled news-utility functions. We fix
some μ̃pos : [0, 1] → R+, strictly increasing and strictly concave with μ̃pos(0) = 0,
and consider the family of μ’s given by μ(x) = μ̃pos(x), μ(−x) = −λμ̃pos(x) for
x > 0 as we vary λ ≥ 1.

Under diminishing sensitivity, someone rooting for state Awants to watch the
events unfold in real time to celebrate the small victories, while someone hoping
for state B prefers to only learn the final state to avoid piecemeal bad news. The
next proposition formalizes this intuition.

Proposition 17. Consider the class of λ-scaled news-utility functions. For any λ ≥ 1,
an agent who prefers state B will choose one-shot resolution of uncertainty over gradual
resolution of uncertainty. There exists some λ̄ > 1 so that for any 1 ≤ λ ≤ λ̄, an agent
who prefers state A will choose gradual resolution of uncertainty over one-shot
resolution of uncertainty.

This result suggests a possible mechanism for media competition: if the
realization of some state A depends on a series of smaller events, then some news
sources may cover these small events in detail as they happen, while other sources
may choose to only report the final outcome. Viewers sort between these two
kinds of news sources based on how they rank states A and B in terms of
consumption. Opposite consumption preferences induce opposite informational
preferences.

By contrast, other behavioral models do not predict a diversity of
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informational preferences in this environment.

Proposition 18. The following models do not predict different informational
preferences for agents with the opposite consumption rankings for the two states.

A. Two-part linear news-utility function μ.

B. Anticipatory utility where the agent gets either u(πt) or u(ρt) in period t
depending on his preference over states A and B, with u an increasing, weakly
concave function.

C. Ely, Frankel, and Kamenica [2015]’s suspense and surprise utilities.

Another application of Proposition 17 concerns the design of game shows.
Consider a game show featuring a single contestant who will win either $100,000
or nothing depending on her performance across five rounds.⁴ The audience,
empathizing with the contestant, derives news utility μ(πt − πt−1) at the end of
round t,where πt is the contestant’s probability of winning the prize based on the
first t rounds. One possible format (“sudden death”) features five easy rounds
each with w = 0.51/5 ≈ 87%winning probability, where the contestant wins
$100,000 if she wins all five rounds. Another possible format (“repêchage”)
involves five hard rounds each with 1 − wwinning probability, but the contestant
wins $100,000 as soon as she wins any round. Both formats lead to the same
distribution over final outcomes and generate the same amount of suspense and
surprise utilities à la Ely, Frankel, and Kamenica [2015]. Proposition 17 shows
the first format induces more news utility than one-shot resolution for audience
members who are not too loss averse, while the second format is worse than
one-shot resolution for all audience members. Consistent with our model, the
vast majority of game shows resemble the first format more than the second
format.

⁴This can be thought of as a stylized payout structure for game shows likeAmerican NinjaWar-
rior andWhoWants to Be a Millionaire.
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2.4 The Credibility Problem ofGradual GoodNews

Section 2.3 studied the optimal disclosure of news when the sender has
commitment power. We provided conditions for the optimal information
structure to feature gradual good news, one-shot bad news. Information
structures of this kind encounter a credibility problem when the commitment
assumption is dropped. If the sender wishes to gradually reveal the good state to
a Bayesian receiver over multiple periods, then she must also sometimes provide
false hope in the bad state due to the cross-state constraints on beliefs. But
without commitment, the benevolent sender may strictly prefer giving false hope
over telling the truth in the bad state. This deviation improves the total news
utility of a receiver with diminishing sensitivity, if the positive utility from today’s
good news outweighs the additional future disappointment from higher
expectations. In fact, when news utility is symmetric and exhibits diminishing
sensitivity, the above credibility problem is so severe that every equilibrium is
payoff-equivalent to the babbling equilibrium. The same result also applies to
asymmetric news-utility functions with μ(−x) = −λμ(x) for all x > 0, provided
loss aversion λ > 1 is weak enough relative to μ’s diminishing sensitivity in a way
we formalize.

Sufficiently strong loss aversion can restore the equilibrium credibility of
good-news messages. We show that the highest equilibrium payoff when the
sender lacks commitment may be non-monotonic in the extent of loss aversion,
in contrast to the conclusion that more loss-averse receivers are always strictly
worse off when the sender has commitment power. We also completely
characterize the class of equilibria that feature (a deterministic sequence of)
gradual good news in the good state and study the equilibrium rate of learning.
With the quadratic or the square-root news-utility function, equilibria within this
class always release progressively larger pieces of good news over time, so the
receiver’s belief in the good state grows at an increasing rate.

89



2.4.1 Equilibrium Analysis When the Sender Lacks Commitment

We continue to maintain that state space Θ = {G,B} is binary. To study the case
where the sender lacks commitment, we analyze the perfect-Bayesian equilibria
of the cheap talk game between the two parties. Formally, the equilibrium
concept is as follows.

Definition 6. Let a finite set of messagesM be fixed. A perfect-Bayesian
equilibrium consists of sender’s strategy σ∗ = (σ∗t )T−1

t=1 together with receiver’s
beliefs p∗ : ∪T−1

t=0Ht → [0, 1], where:

• For every 1 ≤ t ≤ T− 1, ht−1 ∈ Ht−1 and θ ∈ {G,B}, σ∗ maximizes the
receiver’s total expected news utility in periods t, ...,T− 1,T conditional
on having reached the public history ht−1 in state θ at the start of period t.

• p∗ is derived by applying the Bayes’ rule to σ∗ whenever possible.

We make two belief-refinement restrictions:

• If t ≤ T− 1, ht is a continuation history of ht, and p∗(ht) ∈ {0, 1}, then
p∗(ht) = p∗(ht).

• The receiver’s belief in period Twhen state is θ satisfies πT = 1θ, regardless
of the preceding history hT−1 ∈ HT−1.

We will abbreviate a perfect-Bayesian equilibrium satisfying our belief
refinements as an “equilibrium.” Our definition requires that once the receiver
updates his belief to 0 or 1, it stays constant through the end of period T− 1. In
period T, the receiver updates his belief to reflect full confidence in the true state
of the world, regardless of his (possibly dogmatic) belief at the end of period
T− 1.. The receiver derives news utility in periods 1 ≤ t ≤ T based on changes
in his belief, as in the model with commitment.

Let Vμ,M,T(π0) ⊆ R denote the set of equilibrium payoffs with news-utility
function μ,message spaceM, time horizon T, and prior π0. Clearly, Vμ,M,T(π0) is
non-empty. There is always the babbling equilibrium, where the sender mixes over
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all messages uniformly in both states and the receiver’s belief never updates from
the prior belief until period T. Denote the babbling equilibrium payoff by

VBab
μ (π0) := π0μ(1 − π0) + (1 − π0)μ(−π0)

and note it is independent ofM or T.
We state two preliminary properties of the equilibrium payoffs set Vμ,M,T(π0).

Lemma 3. We have:

A. For any finite M, Vμ,M,T(π0) ⊆ Vμ,{g,b},T(π0)

B. If T ≤ T′
, then Vμ,M,T(π0) ⊆ Vμ,M,T′ (π0).

The first statement says any equilibrium payoff achievable with an arbitrary
finite message space is also achievable with a binary message space. The second
statement says the set of equilibrium payoffs weakly expands with the time
horizon.

2.4.2 The Credibility Problem and Babbling

To understand the source of the credibility problem, let
NB(x; π) := μ(x− π) + μ(−x) denote the total amount of news utility across
two periods when the receiver updates his belief from π to x > π today and
updates it from p to 0 tomorrow. Suppose there exists a period T− 2 public
history hT−2 ∈ HT−2 with p∗(hT−2) = π and some x > π satisfying
NB(x; π) > NB(0; π). Then, the sender strictly prefers to induce belief x rather
than belief 0 after arriving at the history hT−2 in the bad state. A good-news
messagemx inducing belief x and a bad-news messagem0 inducing belief 0
cannot both be on-path following hT−2, else the sender would strictly prefer to
sendmx with probability 1 in the bad state.

Yet, the inequalityNB(0; π) < NB(x; π) automatically holds for any x > π,
provided μ is strictly concave in the positive region and symmetric around 0.
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Lemma 4. If μ is symmetric around 0 and μ′′
(x) < 0 for all x > 0, then for any

0 < π < x < 1 it holds NB(0; π) < NB(x; π).

The intuition is that when the state is bad, the sender knows the receiver will
inevitably get conclusive bad news in period T.Giving false hope in period T− 1
(i.e., inducing belief x > π instead of 0) provides positive news utility at the cost
of greater disappointment in the final period. Diminishing sensitivity limits the
incremental cost of this additional disappointment.

The credibility problem implies that the babbling payoff is the unique
equilibrium payoff.

Proposition 19. Suppose μ is symmetric around 0 and μ′′
(x) < 0 for all x > 0. For

any M,T, π0, Vμ,M,T(π0) = {VBab
μ (π0)}.

We now explore what happens when μ is asymmetric around 0 due to loss
aversion. Say μ exhibits greater sensitivity to losses if μ′

(x) ≤ μ′
(−x) for all x > 0.

We first establish a robustness check on Proposition 19 within this class of
news-utility functions: when loss aversion is sufficiently weak relative to
diminishing sensitivity in a T = 2 model, the babbling equilibrium remains
unique up to payoffs.

Proposition 20. Suppose μ exhibits greater sensitivity to losses. If
minz∈[0,1−π0]

μ
′
(z)

μ′ (−(π0+z))
> 1, then Vμ,M,2(π0) = {VBab

μ (π0)} for any M.

When μ is symmetric and does not exhibit strict loss aversion, diminishing
sensitivity implies μ′

(−(π0 + z)) = μ′
(π0 + z) < μ′

(z) for every
z ∈ [0, 1 − π0], so the inequality condition in Proposition 20 is always satisfied.
This condition continues to hold if μ is slightly asymmetric due to a “small
enough” amount of loss aversion relative to the size of the sensitivity gap
μ′
(z)− μ′

(π0 + z). This interpretation is clearest for the λ-scaled news-utility
functions, as formalized in the following corollary.

Corollary 4. Suppose for some μ̃pos : [0, 1] → R+ and λ ≥ 1, the news-utility
function μ satisfies μ(x) = μ̃pos(x), μ(−x) = −λμ̃pos(x) for all x ≥ 0. Provided

λ < minz∈[0,1−π0]
μ̃
′
pos(z)

μ̃′pos(π0+z)
, Vμ,M,2(π0) = {VBab

μ (π0)} for any M.
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When μ is strictly concave in the positive region, Corollary 4 gives a
non-degenerate interval of loss-aversion parameters for which the conclusion of
Proposition 19 extends in a T = 2 setting. If μ̃pos contains more curvature, then
μ̃′

pos(z)/μ̃
′

pos(π0 + z) becomes larger and the interval of permissible λ’s expands.
What happens when loss aversion is high? The next proposition says a new

equilibrium that payoff-dominates the babbling one exists for large λ, provided
the marginal utility of an infinitesimally small piece of good news is infinite — as
in the power-function specification.

Proposition 21. Fix μ̃pos : [0, 1] → R+ strictly increasing and concave,
continuously differentiable at x > 0, μ̃pos(0) = 0, and limx→0 μ̃

′

pos(x) = ∞.

Consider the family λ-indexed news-utility functions μ(x) = μ̃pos(x),
μ(−x) = −λμ̃pos(x) for x ≥ 0. For each π0 ∈ (0, 1), there exists λ̄ ≥ 1 so that
whenever λ ≥ λ̄ and for any T ≥ 2, |M| ≥ 2, there exists V ∈ Vμ,M,T(π0) with
V > VBab

μ (π0).

To help illustrate these results, suppose μ(x) =
√
x for x ≥ 0,

μ(x) = −λ
√
−x for x < 0, T = 2, and π0 =

1
2 . Corollary 4 implies whenever

λ <
√

2, the babbling equilibrium is unique up to payoffs. On the other hand,
Proposition 21 says when λ is sufficiently high, there is another equilibrium with
strictly higher payoffs. In fact, a non-babbling equilibrium first appears when
λ = 2.414.

Figure 2.4.1 plots the highest equilibrium payoff for different values of λ.
Receivers with higher λmay enjoy higher equilibrium payoffs. The reason for this
non-monotonicity is that for low values of λ, the babbling equilibrium is unique
and increasing λ decreases expected news utility linearly. When the new,
non-babbling equilibrium emerges for large enough λ, the sender’s behavior in
the new equilibrium depends on λ. Higher loss aversion carries two
countervailing effects: first, a non-strategic effect of hurting welfare when θ = B, as
the receiver must eventually hear the bad news; second, an equilibrium effect of
changing the relative amounts of good news in different periods conditional on
θ = G. Receivers with an intermediate amount of loss aversion enjoy higher
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expected news utility than receivers with low loss aversion, as the equilibrium
effect leads to better “consumption smoothing” of good news across time. But,
the non-strategic effect eventually dominates and receivers with high loss
aversion experience worse payoffs than receivers with low loss aversion.
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Figure 2.4.1: Highest equilibrium payoff with square roots and loss aversion.
Thebabbling equilibrium is essentially unique for low values of λ, but there exists an equi-
libriumwithgradual goodnews for λ ≥ 2.414. Due to the roleof loss aversion in sustaining
credible partial news, a receiver with higher loss aversion may experience higher or lower
expected news utility in equilibrium than a receiver with lower loss aversion.

2.4.3 Deterministic Gradual Good News Equilibria

An equilibrium (M, σ∗, p∗) features deterministic⁵gradual good news (GGN
equilibrium) if there exist a sequence of constants p0 ≤ p1 ≤ ... ≤ pT−1 ≤ pT
with p0 = π0, pT = 1, and the receiver always has belief pt in period twhen the
state is good. By Bayesian beliefs, in the bad state of any GGN equilibrium the

⁵This class of equilibria is slightly more restrictive than the gradual good news, one-shot bad
news information structures from Definition 5, because the sender may not randomize between
several increasing paths of beliefs in the good state.
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sender must induce a belief of either 0 or pt in period t, as any message not
inducing belief pt is a conclusive signal of the bad state.

The class of GGN equilibria is non-empty, for it contains the babbling
equilibrium where π0 = p0 = p1 = ... = pT−1 < pT. The number of intermediate
beliefs in a GGN equilibrium is the number of distinct beliefs in the open interval
(π0, 1) along the sequence p0, p1, ..., pT−1. The babbling equilibrium has zero
intermediate beliefs.

The next proposition characterizes the set of all GGN equilibria with at least
one intermediate belief.

Proposition 22. Let P∗(π) ⊆ (π, 1] be those beliefs x satisfying
NB(x; π) = NB(0; π). Suppose μ exhibits diminishing sensitivity and loss aversion.
For 1 ≤ J ≤ T− 1, there exists a gradual good news equilibrium with the J
intermediate beliefs q(1) < ... < q(J) if and only if q(j) ∈ P∗(q(j−1)) for every
j = 1, ..., J, where q(0) := π0.

To interpret, P∗(π) contains the set of beliefs x > π such that the sender is
indifferent between inducing the two belief paths π → x → 0 and π → 0. Recall
that when μ is symmetric, Lemma 4 implies this indifference condition is never
satisfied, which is the source of the credibility problem for good-news messages.
The same indifference condition pins down the relationship between successive
intermediate beliefs in GGN equilibria.

We illustrate this result with the quadratic news utility.

Corollary 5. 1) With quadratic news utility,
P∗(π) =

{
π · βp+βn

βp−βn
− αn−αp

βp−βn

}
∩ (π, 1).

2a) If βn > βp, there cannot exist any gradual good news equilibrium with more
than one intermediate belief.
2b) If βn < βp, there can exist gradual good news equilibria with more than one

intermediate belief. For a given set of parameters of the quadratic news-utility function
and prior π0, there exists a uniform bound on the number of intermediate beliefs that
can be sustained in equilibrium across all T.

95



3) In any GGN equilibrium with quadratic news utility, intermediate beliefs in the
good state grow at an increasing rate.

Combined with Proposition 22, part 1) of this corollary says that in every
GGN equilibrium, the successive intermediate beliefs are related by the linear
map x 7→ x · βp+βn

βp−βn
− αn−αp

βp−βn
. When βn > βp, this map has a negative slope, so

there cannot exist any GGN equilibrium with more than one intermediate belief.
When βp > βn, this map has a slope strictly larger than 1. As a result, after
eliminating periods where no informative signal is released, every GGN
equilibrium releases progressively larger pieces of good news in the good state,
q(j+1) − q(j) > q(j) − q(j−1). Since equilibrium beliefs in the good state grow at an
increasing rate, there exists some uniform bound J̄ on the number of intermediate
beliefs depending only on the prior belief π0 and parameters of the news-utility
function.

As an illustration, consider the quadratic news utility with αp = 2, αn = 2.1,
βp = 1, and βn = 0.2. Starting at the prior belief of π0 =

1
3 , Figure 2.4.2 shows

the longest possible sequence of intermediate beliefs in any GGN equilibrium for
arbitrarily large T. Since the P∗ sets are either empty sets or singleton sets for the
quadratic news utility, Figure 2.4.2 also contains all the possible beliefs in any
state of any GGN equilibrium with these parameters.

The result that GGN equilibria release increasingly larger pieces of good news
generalizes to other news-utility functions with diminishing sensitivity. The basic
intuition is that if the sender is indifferent between providing d amount of false
hope and truth-telling in the bad state when the receiver has prior belief πL (i.e.,
πL + d ∈ P∗(πL)), then she strictly prefers providing the same amount of false
hope over truth-telling at any higher prior belief πH > πL. The false hope
generates the same positive news utility in both cases, but an extra d units of
disappointment matters less when added a baseline disappointment level of πH
rather than πL, thanks to diminishing sensitivity.

The next proposition formalizes this idea. It shows that when diminishing
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Figure 2.4.2: The longest possible sequence of GGN intermediate beliefs
starting with prior π0 =

1
3 .

For quadratic news utility, equilibrium GGN beliefs always increase at an increasing rate
in the good state.

sensitivity is combined with a pair of regularity conditions, intermediate beliefs
grow at an increasing rate in any GGN equilibrium.

Proposition 23. Suppose μ exhibits diminishing sensitivity, |P∗(π)| ≤ 1 and
∂
∂xNB(x; π)|x=π > 0 for all π ∈ (0, 1). Then, in any GGN equilibrium with
intermediate beliefs q(1) < ... < q(J), we get q(j) − q(j−1) < q(j+1) − q(j) for all
1 ≤ j ≤ J− 1.

The first regularity condition requires that the sender is indifferent between the
belief paths π → x → 0 and π → 0 for at most one x > π. It is a technical
assumption that lets us prove our result, but we suspect the conclusion also holds
under some relaxed conditions. The second regularity condition says in the bad
state, the total news utility associated with an ε amount of false hope is higher
than truth-telling for small ε. These conditions are satisfied by the
power-function news utility with α = β, for example.

Corollary 6. In any GGN equilibrium with power-function news utility with α = β
and any λ ≥ 1, intermediate beliefs in the good state grow at an increasing rate.
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2.5 A Random-HorizonModel

In this section, we study a version of our information design problem without a
deterministic horizon. Each period, with probability 1 − δ ∈ (0, 1], the true state
of the world is exogenously revealed to the receiver and the game ends. Until
then, the informed sender communicates with the receiver each period as in the
model from Section 2.2. We verify that our results from the finite-horizon setting
extend analogously into this random-horizon environment.

2.5.1 The Random-Horizon Model

Consider an environment where the consumption event takes place far in the
future, but the sender is no longer the receiver’s only source of information in the
interim. Instead, a third party perfectly discloses the state to the receiver with
some probability each period. For instance, the sender may be the chair of a
central bank who has decided on the bank’s monetary policy for next year and
wishes to communicate this information over time, while the third party is an
employee of the bank who also knows the planned policy. With some probability
each period, the employee goes to the press and leaks the future policy decision.

Time is discrete with t = 0, 1, 2, ...The sender commits to an information
structure (M, σ) at time 0. The information structure consists of a finite message
spaceM and a sequence of message strategies (σ t)∞t=1 where each
σ t(· | ht−1, θ) ∈ Δ(M) specifies how the sender will mix over messages in period
t as a function of the public history ht−1 so far and the true state θ.

The sender learns the state at the beginning of period 1 and sends a message
according to σ1. At the start of each period t = 2, 3, 4, ..., there is probability
(1 − δ) ∈ (0, 1] that the receiver exogenously and perfectly learns the state θ. If
so, the game effectively ends because no further communication from the sender
can change the receiver’s belief. If not, then the sender sends the next message
according to σ t. The randomization over exogenous learning is i.i.d. across
periods, so the time of state revelation (i.e., the horizon of the game) is a
geometric random variable.
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2.5.2 The Value Function with Commitment

Let Vδ : [0, 1] → R be the value function of the problem with continuation
probability δ — that is, Vδ(p) is the highest possible total expected news utility
up to the period of state revelation, when the receiver holds belief p in the current
period and state revelation does not happen this period. The value function
satisfies the recursion Vδ(p) = Ṽδ(p | p), where

Ṽδ(· | p) := cavq[μ(q− p) + δVδ(q) + (1− δ)(q · μ(1− q) + (1− q) · μ(−q))].

Ely [2017] studies an infinite-horizon information design problem whose value
function also involves concavification. Unlike in Ely [2017], the current belief
enters the objective function for our news-utility problem.

Our first result shows this recursion has a unique solution which increases in δ
for any fixed p ∈ [0, 1].

Proposition 24. For every δ ∈ [0, 1), the value function Vδ exists and is unique.
Furthermore, Vδ(p) is increasing in δ for every p ∈ [0, 1].

Figure 2.5.1 illustrates this result by plotting Vδ(p) for the quadratic news
utility with αp = 2, αn = 2.1, βp = 1, and βn = 0.2 for three different values of δ :
0, 0.8, and 0.95. (In fact, the monotonicity of the value function in δ also holds
when there are more than two states.)

The monotonicity of Vδ in δ says that when the sender is benevolent and has
commitment power, third-party leaks are harmful for the receiver’s expected
welfare. This result can be explained intuitively as follows. Just as with increasing
T in the finite-horizon model, increasing δ expands the set of implementable
belief paths. The idea behind implementing a payoff from a shorter horizon /
lower δ is that the sender switches to babbling forever after certain histories. This
switching happens at a deterministic calendar time in the finite-horizon setting
but at a random time in the random-horizon setup, mimicking the random arrival
of the state revelation period.
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Figure 2.5.1: The value function for the random horizon model.
δ = 0, 0.8, 0.95. Consistent with Proposition 24, the value function is pointwise higher
for higher δ.

2.5.3 Gradual Good News Equilibria Without Commitment

Now we turn to equilibria of the random-horizon cheap talk game when the
sender lacks commitment power. Analogously to the case of finite horizon, a
strict gradual good news equilibrium (strict GGN) features a deterministic
sequence of increasing posteriors q(0) < q(1) < . . . such that q(0) = π0 is the
receiver’s prior before the game starts and q(t) is his belief in period t, provided
state revelation has not occurred. An analog of Proposition 22 continues to hold.

Proposition 25. Let P∗(π) ⊆ (π, 1] be those beliefs p satisfying
NB(p; π) = NB(0; π). Suppose μ exhibits diminishing sensitivity and loss aversion.
There exists a gradual good news equilibrium with a (possibly infinite) sequence of
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intermediate beliefs q(1) < q(2) < ... if and only if q(j) ∈ P∗(q(j−1)) for every
j = 1, 2, ..., where q(0) := π0.

The P∗ set is the same in the finite- and random-horizon environments.
Corollary 6 then implies that even in the random-horizon environment where
the game could continue for arbitrarily many periods, intermediate beliefs grow
at an increasing rate in GGN equilibria for quadratic and square-roots μ, and
there exists a finite bound on the number of periods of informative
communication that applies for all δ ∈ [0, 1).

2.6 OtherModelsofPreferenceoverNon-Instrumental In-

formation

2.6.1 Diminishing Sensitivity over News

The literature on reference-dependent preferences and news utility has focused
on two-part linear gain-loss utility functions, which violate diminishing
sensitivity. If μ is two-part linear with loss aversion, then it follows from the
martingale property of Bayesian beliefs that one-shot resolution is weakly
optimal for the sender among all information structures. If there is strict loss
aversion, then one-shot resolution does strictly better than any information
structure that resolves uncertainty gradually. As our results have shown, more
nuanced information structures emerge as optimal when the receiver exhibits
diminishing sensitivity.

2.6.2 Anticipatory Utility

In our setup, a receiver who experiences anticipatory utility gets
A (
∑

πt(θ) · v(cθ)) if she ends period twith posterior belief πt ∈ Δ(Θ),where
A : R → R is a strictly increasing anticipatory-utility function. When A is the
identity function (as in Kőszegi [2006]), the solution to the sender’s problem
would be unchanged if we modified our model and let the receiver experience
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both anticipatory utility and news utility. This is because by the martingale
property, the receiver’s ex-ante expected anticipatory utility in a given period is
the same across all information structures. So, the ranking of information
structures entirely depends on the news utility they generate. For a general A, if
the receiver only experiences anticipatory utility, not news utility, then the sender
has an optimal information structure that only releases information in t = 1,
followed by uninformative babbling in all subsequent periods. For instance,
Schweizer and Szech [2018] show that the best non-instrumental medical test for
a patient with a concave anticipatory-utility function A is fully uninformative.
The above argument establishes that even if the doctor can give the patient a
series of tests on different days and even if A is not concave, the optimal test
design involves a possibly informative test on the first day, followed by
uninformative tests on all subsequent days. The rich dynamics of the optimal
information structure in our news-utility model are thus absent in an
anticipatory-utility model.

2.6.3 State-Dependent Suspense or Surprise Utility

A key distinction of our model from Ely, Frankel, and Kamenica [2015] is that
changes in beliefs may bring utility or disutility to the receiver, depending on the
nature of the news. By contrast, agents with suspense or surprise utilities always
derive greater utility from larger movements in beliefs, regardless of the
directions of these movements.

Ely, Frankel, and Kamenica [2015] also discuss state-dependent versions of
suspense and surprise utilities, but this extension does not embed our model
either. Suppose there are two states, Θ = {G,B}, and the agent has the suspense
objective

∑T−1
t=0 u (Et(

∑
θ αθ · (πt+1(θ)− πt(θ))2) or the surprise objective∑T

t=1 u (
∑

θ αθ · (πt(θ)− πt−1(θ))2), where αG, αB > 0 are state-dependent
scaling weights. We must have πt+1(G)− πt(G) = −(πt+1(B)− πt(B)), so
pathwise (πt+1(G)− πt(G))2 = (πt+1(B)− πt(B))2. This shows that the new
objectives obtained by applying two possibly different scaling weights αG 6= αB to
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statesG and B are identical to the ones that would be obtained by applying the
same scaling weight α = αG+αB

2 to both states. Due to this symmetry in preference,
the optimal information structure for entertaining an agent with state-dependent
suspense or surprise utility does not treat the two states asymmetrically, in
contrast to a central prediction of diminishing sensitivity in our model.

2.7 ConcludingDiscussion

In this work, we have studied how an informed sender optimally communicates
with a receiver who derives diminishing gain-loss utility from changes in beliefs.
If we think that diminishing sensitivity to the magnitude of news is
psychologically realistic in this domain, then the stark predictions of the
ubiquitous two-part linear models may be misleading. In the presence of
diminishing sensitivity, richer information structures emerge as optimal for the
committed sender. For example, the optimal information structure can feature
asymmetric treatments of good and bad news. If the sender lacks commitment
power, diminishing sensitivity leads to novel credibility problems that inhibit any
meaningful communication when the receiver has no loss aversion.

Some of our predictions can empirically distinguish news utility with
diminishing sensitivity from other models of belief-based preference over
non-instrumental information, including the two-part linear news-utility model.
Proposition 17, for example, suggests a laboratory experiment where a sequence
of binary events determines whether a baseline state or an alternative state
realizes, with the alternative state happening only if all of the binary events are
“successful.” Consider two treatments that have the same success probabilities for
the binary events, but differ in terms of whether subjects get a higher
consumption or a lower consumption in the alternative state compared with the
baseline state. Diminishing sensitivity over news predicts that more subjects
should prefer one-shot resolution when consumption is lower in the alternative
state than when it is higher in the alternative state, a hypothesis we plan to test in
future work.
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3
Identification andWelfare Analysis in

Sequential SamplingModels

This chapter is coauthored with Yi-Hsuan Lin. We are thankful to Larry Epstein,
Drew Fudenberg and Tomasz Strzalecki for their continuous encouragement and
support in this project. We also thank Jerry Green and Kevin He for insightful
comments on this project. Any errors are ours.

3.1 Introduction

Many economic situations involve an agent conducting sequential learning
about an unobservable state of the world before taking a decision. This paper
shows how an outside analyst, who observes for choice menus the joint
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frequencies of choice out of the menu and of the decision time, can identify the
agent’s parameters, namely her taste, her prior as well as the costs of the
information. We focus on two dynamic learning environments with costly
information. In both environments information is only revealed gradually. In the
first one the agent is impatient whereas in the second one the agent is repeatedly
conducting the same experiment at a fixed cost unobservable to the analyst. We
also show how, based only on random choice data about choice from menus and
decision times, the analyst can conduct welfare analysis for agents in either of the
two situations.

We have two illustrative examples in mind. First, consider a pharmaceutical
company which is in the process of evaluating a new medical procedure before
applying for a licence. Based on a verified procedure of experiments, she
performs a first experiment on the viability of the medical procedure and
depending on its outcome it may perform another experiment and so on, till
enough information about the viability of the procedure is gathered to take a final
decision on whether to apply for a licence. The sequence of experiments may
exhibit history-dependence, in the sense that, what experiment becomes
available and is appropriate at each stage depends on outcomes of previous
experiments. This process takes time and the firm, which is impatient, is trading
off the value of more information for decision making with the resulting delay in
the realization of the benefits of the decision making. In fact, such trade-off
considerations are not constrained to pharmaceutical research and are important
for most R&D activities.

As a second example, consider a firm in the automotive industry which doesn’t
face impatience considerations and which is considering the introduction of a
new production technology. She may seek the advice of an expert who can
perform verifiable technical analysis of the new technology at a fee. The firm may
seek the advice of the expert repeatedly so that information accumulates, before
taking an informed decision on whether to introduce the new technology.

Both examples are unified by the fact that learning is costly, the technology for
learning is inflexible and sequential. We say the agent is a sequential sampler. They
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differ in the type of costs the agent incurs. Whereas the costs in the case of a
pharmaceutical firm come from impatience, the costs for the automotive firm
come from acquiring advice repeatedly in the market. For ease in exposition we
call in the following the case of the pharmaceutical firm the case of costs from
impatience and the case of the automotive firm the case ofmarket costs but,
especially in the second case, different interpretations are possible.¹

More precisely, in this paper we assume the analyst has access to random
choice data over choice from a menu and decision time for the choice from same
menu and allow variation in the menu of options the agent faces. We call this
observable Random Choice with Decision Times (RCDT). This observable allows
for two interpretations. In the first one, the analyst is obtaining data from a single
agent facing the same decision problem repeatedly, and randomness in choice
and decision time comes from different learning outcomes. In the second one,
the analyst faces a population of homogeneous agents who learn with the same
technology and the randomness in choice and decision time comes from the
heterogeneity in the experimental outcomes.²

The analyst in this paper is primarily interested in welfare analysis of different
interventions but also in the identification of the information costs of the agent.
For example, in the case of the pharmaceutical company the analyst might want
to identify the welfare costs and the impact on learning of a lump sum income tax
on the firm whereas in the case of the automotive firm the intervention to be
evaluated could be subsidizing the market price for technical expertise. We show
how both identification and welfare analysis are possible with RCDTwithout any
knowledge of the sequential experiment the agent can access.

Our approach to the two problems of the analyst shows analogies to the
classical consumer theory.³ Just as in the classical theory, welfare analysis is

¹One could also interpret the second case of costs as pertaining to a patient agentwho performs
a fixed experiment she herself has designed in a prior stage. The interpretation of market costs for
the automotive firm is motivated by recent research on markets for information; see Bergemann
and Bonatti [2018] for a survey.

²We note here that in the case of market costs ‘decision time’ is maybe best interpreted as the
number of experiments the agent chooses to perform.

³See chapter 3 in Mas-Collel et al. [1995] and references therein.
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closely tied to the identification of the parameters of the agent from the
observables. As a first step in the welfare analysis we show how for each menu of
options the analyst can recover the ex-ante valuation of the agent through
random choice data augmented with decision time data. This is based on the
analogue for our model of Roy’s identity from classical consumer theory.⁴ The
formula in our set-up is ‘simpler’ than the classical one because our set up has the
advantage that, since the agent follows subjective expected utility (SEU), random
choice data contain cardinal information about agent’s preferences. We establish
several such ‘Roy’s identities’ for different parameter changes in the decision
environment of the agents. On a technical level, they all rely on the abstract
envelope theorem arguments developed in Milgrom and Segal [2002].

The envelope theorem arguments lead to explicit formulas for the welfare of
the agents in terms of their RCDT. One insight worthy of emphasis from the
formulas is that in the case of market costs to recover the welfare of a single menu
the analyst does not need decision time data. When the costs are from
impatience the optimal decision time directly affects the value of a menu even for
fixed decision time. As a consequence, to recover the welfare of a single menu for
an agent who is impatient decision time data are indispensable. That decision
time data may not be needed for the case of market costs remains overall a special
case; e.g. they are indispensable in that same set up when evaluating welfare
changes of a price change for experiments.

Another insight from the welfare calculations is, that subsidizing the duration
of the experimentation by the agent, has different welfare implications based on
whether the costs of learning are from impatience or are instead market costs. In
the case of impatience, the subsidy needed to induce longer experimentation
always costs more in expected discounted terms than the increase in welfare to
the agent. This is because the optimal stopping decision of the agent already
internalizes the impatience costs and the related trade-off between time and
information. In the case of market costs, the supplier of experiments is a separate
entity who does not internalize the negative effect that quoting a positive price

⁴See Proposition 3.G.4 in Mas-Collel et al. [1995] for the classical Roy’s identity.

107



for experiments has on the optimal number of repetitions of experiments for the
agent. Therefore, lowering the price of experiments and compensating the
supplier of the experiments for the lost profits costs overall less than the resulting
welfare increase for the agent.

We use the insights from welfare analysis to identify the costs of information.
Before that step, the analyst identifies the prior and the (Bernoulli) taste of the
agent by looking at choices from menus for which the agent decides not to learn
and also at small perturbations thereof. For menus where the sequential
experiment at the disposal of the agent has no additional decision value, the agent
behaves as a SEU agent with a fixed taste and fixed information in the form of a
prior. Therefore classical results of identification from ex-post choice apply. Once
taste and prior are identified, we show how one can use the results from the
welfare analysis to uniquely identify the costs of information from RCDT.

Identification of information costs is possible whenever there exists genuine
learning in the data. This means that there exists a menu of options such that the
agent has strict incentives to employ the sequential experiment when choosing
from that menu. For the case of impatience costs, the analyst may identify the
discount factor of the agent by looking at choices from two different
perturbations of such a menu: 1) adding a safe option to the menu and 2)
subsidizing choice from that menu in a lump-sum fashion unconditional on the
ultimate choice of the agent. The two types of perturbations combined through
one of the welfare results give an equation for the discount factor which has a
unique solution, if the model of impatience costs is underlying the data.

In the case of market costs we use a two-step procedure for identification.
First, we recover through perturbations of a menu for which the agent has strict
incentives to learn, the ex-post random choice from arbitrarymenus under the
condition that the agent uses for anymenu the optimal information acquisition
strategy as for the original menu with strict incentives to learn. This ‘fictional’
random choice can be used to calculate the valuation of the original
(unperturbed) menu with strict information incentives under the assumption
that the agent is compensated ex-post for the incurred information costs. The
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difference between this fictional valuation for the original menu and the true one
given by the RCDT as calculated through the welfare results, yields the average
information costs. The average information costs are proportional to the
expected decision time for the original menu. Because the decision time is also
revealed from the RCDT, this leads to the identification of the constant marginal
costs of experiments. In both cases of information costs, only perturbations of a
single menu are needed to identify the costs of information. We calculate
numerical examples for both cases of information costs. These illustrate that the
identification procedure is numerically simple. We also give numerical examples
related to welfare calculations illustrating the same degree of computational
simplicity.⁵

A related question to identification is uncovering the set of conditions on
RCDT data which ensure rationalizability through either of the sequential
sampling models addressed in this paper. The analogue of this question in
classical consumer theory is the integrability question: what conditions on a
demand function imply that it arises from utility maximization.⁶ In the last part
of the paper we try to give a complete characterization of RCDT data coming
from a sequential sampler. We first identify four axioms on RCDT which ensure
that the identification procedures described above work. They have intuitive
explanations. The first two axioms, Sampling is costly and SEU behavior upon not
sampling ensure that taste and prior of the agent can be identified. The third
axiom called Taste stationarity ensures that the taste of the agent does not change
with time. On a technical level, once we pick a Bernoulli utility as identified from
the first two axioms we can use the cardinality feature of these time-zero
preferences to measure the exploration-exploitation trade-off the agent faces
when deciding whether to continue or stop the sequential experiment. The
quantification of this trade-off reveals the costs of information and is only
meaningful if Taste stationarity is satisfied. Finally, the fourth axiom ensures that

⁵Nothingmore than taking integrals of monotonic functions and simple algebraic calculations
are needed from a computational perspective.

⁶See section 3.H in Mas-Collel et al. [1995].
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the process of identifying the costs of information is well-defined in either case of
impatience costs or market costs.

All of the first four axioms neither use nor try to identify the information flow
of the sequential experiment. This implies that identification of the flow of
information of the agent is unnecessary for the identification of the costs of
information, or for welfare analysis in the two sequential sampling models we
consider. Ultimately, rationalizability through the two sequential sampling
models requires more conditions than the ones sufficient for identification. To
deliver a full characterization we impose the additional assumption that the
analyst knows the sequential experiment of the agent. This assumption is not
unrealistic in some environments. Returning to the illustrative examples, testing
of medical procedures may follow agreed-upon standards which are public
knowledge. The same can be said for the technical analysis of new production
technologies performed for a fee by an outside expert. Under this (admittedly in
some cases strong) informational assumption, we introduce a final fifth axiom for
the characterization, calledData matching. It implies consistency of the RCDT
with an agent whose parameters are identified through the first four axioms. Data
matching can be interpreted as a statistical test on the level of the sophistication
of the agent with respect to her future behavior and the decision environment she
is in.

Organization of the rest of the paper. In the next subsection we cover
some decision theoretic literature related to this paper. The set up of the model is
in section 3.2, the welfare results in section 3.3 and identification results in
section 3.4. Section 3.5 offers numerical examples illustrating the identification
and welfare results. Section 3.6 offers a behavioral characterization in terms of
axioms. The last section concludes.

3.1.1 Related literature

There are by now many fields in economics in which sequential sampling models
is used as a tool to describe agents in dynamic learning environments. We avoid
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here the insurmountable task of reviewing the applied theory literature related to
sequential sampling models and instead focus on the theoretical one.

The agent’s problem in a sequential sampling model is both when and what to
choose (Wald [1947]; Arrow et al. [1949]; Fudenberg et al. [2018]). In more
general models the agent is allowed to choose between experiments at each point
in time (Che and Mierendorff [2018]; Hebert and Woodford [2018a]; Hebert
and Woodford [2018b]; Zhong [2019]). All of these works assume parametric
forms of the sequential experiment and focus on the resulting choices. In this
paper, we take behavior of an agent or of a population of identical agents as given,
and ask what we can learn from data about the parameters of the agent or of the
population.

Our results highlight the usefulness of decision time data. In particular, we
show that they are useful for identifying the discount factor/linear costs of an
agent who performs sequential experiments and also for computing her welfare
given a decision problem. Echenique and Saito [2017] also conduct a revealed
preference analysis given data on choice and decision time. However, there is no
uncertainty in their model and decision time is used to infer the difference
between utilities of two alternatives.

If the agent faces the task of acquiring the same experiment repeatedly at a cost
without delay and/or is patient, the cost of learning information is
menu-independent. In that case, the model can be viewed as a special case of
rational inattention models (De Oliveira et al. [2017]; Lin [2018]). As shown by
Lin [2018], data in the form of random choice from menus are already sufficient
to recover welfare and to identify the smallest information cost function
consistent with the data in the case of rational inattention models. However, the
identification strategy in Lin [2018] results in a complicated formula when
applied to our set-up. Here we show how additional information about decision
time allows for a simple procedure to identify the information costs.⁷ The related
papers Caplin and Dean [2011] and Denti [2018] show how information costs
can be identified in the static rational inattention model when the analyst has

⁷AppendixC.5 contains the identification strategywithout decision timesbasedonLin [2018].
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access to state-dependent stochastic choice data and in addition knows the prior of
the agent. Their approach allows to identify (a minimal version of) the
information the agent acquires for each menu. This is then used to identify the
cost function through duality arguments from convex analysis. In contrast, here
we show in two dynamic settings of costly information how an analyst can
identify from random choice data containing information about decision time,
the costs of information without making the assumption that the analyst knows
the prior of the agent. Our approach works without first identifying the
information flow of the agent and analogous to classical works of consumer
theory follows instead the route of envelope theorem arguments.

Time preferences and discounting of future payoffs have been studied in the
literature under various frameworks, such as choice over consumption streams
(Koopmans [1960]; Epstein [1983]), choice over dated rewards (Fishburn and
Rubinstein [1982]), discrete choice models (Magnac and Thesmar [2002]). The
novelty in our paper is that we consider characterizations of dynamic stochastic
choice in the framework of sequential sampling. Here the agent does not face a
decision problem of the type ‘either take act f at time t or take act g at time s’ as in
the old literature but rather a decision of the type ‘when and what to choose from
a given, time-independent menu of options’.

In comparison to other recent work in dynamic stochastic choice (see Frick
et al. [2018] or Duraj [2018a]) our data is limited in the sense that, the analyst
does not observe data with recursive structure as those induced by temporal
lotteries. Our agent does not face a dynamic decision problem with recursive
structure as is the case in Frick et al. [2018] or Duraj [2018a].

Finally, in Duraj and Lin [2019] we cover the related case where the agent can
only make use of a single experiment. This corresponds to switching off the
optimal-stopping decision of the agent, which is central in this paper. We assume
that the analyst observes random choice from menus, as well as whether the
agent employs the experiment. We give a full axiomatic characterization result for
the cases where the experiment is only available with a fixed amount of delay and
the agent is impatient, or she acquires the experiment at a fixed,
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menu-independent cost. We show how this data is sufficient for the analyst to
uncover not only the experiment the agent can employ, but also her information
costs. Here we look at a set up which is genuinely dynamic so that the results
from Duraj and Lin [2019] are not applicable (the experiment is sequential) and
focus on the value of random choice and decision time data in welfare analysis.
Moreover, our identification procedure for the learning costs of the agent works
without identifying her information flow.

3.2 Set up

3.2.1 Notation and preliminaries.

Let Z = R+ be the prize space equipped with the topology of the Euclidean
norm.⁸

Let S be a finite set of objective states, where the wording objectivemeans that
neither the analyst nor the agent can influence the realization of the state s. Let F
be the set of Anscombe-Aumann actswith a typical element given by f : S→Δ(Z)
where Δ(Z) denotes the space of simple lotteries over prizes in Z.⁹ Note that F
has a cone structure, defined by scaling acts through multiplication of the prizes
that can occur. Finally, denote byA the collection of finite, nonempty subsets of
F. A typical element inA is called amenu and denoted by a capital letter, e.g.
A,B ∈ A. A is a metric space equipped with the Hausdorff topology. In the
following we identify constant acts with the state-independent lottery they offer.
We also identify degenerate lotteries from Δ(Z)with the prize they offer with
certainty. A menu A is called constant if it contains only constant acts. It is a
singletonmenu if it contains only one element.

Given a belief of the agent over S, i.e. an element π from Δ(S) and an Expected
Utility function u : Δ(Z)→R to evaluate simple lotteries, we say the agent

⁸We take this prize space for ease in exposition. Results can be proven for general metric space
Z.

⁹A lottery is called simple if only finitelymanyprizes canhappenwith positive probability. Δ(Z)
is equipped with the topology of weak convergence of probability measures. The set of acts F is
equipped with the product-topology over Δ(Z)S.
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satisfies Subjective Expected Utility (SEU) with beliefs q and Bernoulli taste u if the
utility of an act f is given by π · (u ◦ f) :=

∑
s∈S π(s)u(f(s)).¹⁰

In the following we denote the value of an instantaneous decision
problem/menu A for a SEU agent with taste u and belief π as

V(A, π) = max
f∈A

π · (u ◦ f).

Define also

M(A; u, π) = {f ∈ A : π · (u ◦ f) ≥ π · (u ◦ g), ∀g ∈ A}.

This is the set of maximizers from Awhen the agent’s belief about objective state
of the world is π and her Bernoulli utility is u.

We equip the setAwith a sum and multiplication operation based on the
Minkowski sum. Thus in general, a scaled sum of menus A,B ∈ A with
parameters λ1, λ2 ∈ R+ is given by

λ1A+ λ2B = {λ1f+ λ2g : f ∈ A, g ∈ B}.

In the case of Minkowski mixtures, λ2 = 1 − λ1 and λ1 ∈ (0, 1), one possible
interpretation of λ1A+ (1 − λ2)B is that the agent makes contingent plans: the
uncertainty about the choice from the menu is resolved before the uncertainty
about the state s and so she decides on what to pick from each of the two
menus/contingencies that can happen. In detail, if the agent faces
λ1A+ (1 − λ1)Bwe are assuming under the contingencies interpretation that the
analyst observes the contingent plan of choosing f if A gets realized and g if B, i.e.
she observes that agent picks λ1f+ (1 − λ1)g. In terms of random choice this
interpretation would presume the analyst observes the likelihood with which the
agent picks λ1f+ (1 − λ1)g from λ1A+ (1 − λ1)B.

¹⁰In the following we abuse notation for simplicity of exposition and often identify the EU-
functional u : Δ(Z)→Rwith its Bernoulli utility fromRZ.

114



3.2.2 The agent

Henceforth we denote T the set of possible decision times {0, . . . ,T} for the
agent with some finite T ≥ 2. By time T the agent has to make a choice from the
menu she faces.

Information. The agent possesses a prior π0 ∈ Δ(S)with π0(s) > 0 for
every s ∈ S and a (menu-independent) sequential experiment.

A sequential experiment is a random variable

E : S→Δ(E1 × · · · × ET), (3.1)

where the sets Ei, i = 0, . . . ,T are finite sets of experimental outcomes. We
denote by et := (e1, . . . , et) a history of length t of experimental outcomes. Every
state of the world induces a probability distribution over outcomes in the
sequential experiment. Denote by Es(e1, . . . , et) the probability that the sequence
of outcomes et = (e1, . . . , et) is realized under the sequential experiment E if the
state is s. For an element eT = (e1, . . . , eT) ∈ E1 × · · · × ET we write Es(eT) for
its probability when the true state of the world is s. (3.1) allows for arbitrary
correlation between the sequential outcomes of the experiment. In particular, it
allows for the case that the experiment available to the agent at time t ≥ 3
depends on the history of outcomes (e1, . . . , et−1) realized till that moment in
time.

Given the outcomes of the experiments (e1, . . . , et) till period t, if the Bayesian
agent has prior π0 ∈ Δ(S) over the hidden objective state s her posterior is given
by

π(s|e1, . . . , et) =
Es(e1, . . . , et)π0(s)∑
s′ Es′(e1, . . . , et)π0(s′)

. (3.2)

Suppose we have two sequences of experimental outcomes which under some
(strictly positive) prior lead to the same sequence of posteriors. Formally, we
have eT = (e1, . . . , eT) and e′T = (e′1, . . . , e′T)with eT 6= e′T such that for some
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prior π0 as above it holds

π(s|et) = π(s|e′t), 1 ≤ t ≤ T, s ∈ S. (3.3)

Now this implies the following condition

Es1(et)
Es2(et)

=
Es1(e′t)
Es2(e′t)

, ∀s1, s2, 1 ≤ t ≤ T (ratio).

In fact, one can show that these are equivalent, namely, that for every distinct
eT, e′T that satisfies (ratio), (3.3) also holds true.¹¹ Thus, it follows that whenever
(3.3) holds true for two distinct eT, e′T and some prior π0 it will hold true for
every prior. To avoid this redundancy we impose the following condition on E
throughout the paper.

Non-redundant experiment. E is such that whenever eT 6= e′T there exists
s, s′ ∈ S and 1 ≤ t ≤ T such that

Es(et)
Es′(et)

6= Es(e′t)
Es′(e′t)

.

Given prior π0 ∈ Δ(S) Bayes rule implies a unique induced probability
measure on sequential experimental outcomes. Denote this measure on
E1 × · · · × ET by μ(π0) and for a history et = (e1, . . . , et) ∈ E1 × · · · × Et

denote π(et) the belief from Bayes rule under μ(π0) after history et of
experimental outcomes. By standard results, μ(π0) corresponds to a martingale
belief process on Δ(S)T+1.

Information costs. We consider two special cases of information costs for
the agent.

A. Information costs due to impatience. The agent determines through
backwards induction the amount of information she gathers for a menu A using

¹¹Pick s2 = s̄ and plug (ratio) into (3.2).

116



the sequential experiment E at her disposal.¹²
If the agent is in next-to-last period t = T− 1 then with the definition

WT(A, eT−1) = EeT∼μ(π0)(·|eT−1)[V(A, π(eT))],

for the option value of continuing the sequential experiment till the last period
the value function of the agent at time T− 1 is given by

W̃T−1(A, eT−1) = max{V(A, π(eT−1)), δ ·WT(A, eT−1)}.

By backwards induction similar calculations hold for 1 ≤ t ≤ T− 1. Define
Wt+1(A, et) = Eet+1∼μ(π0)(·|et)[W̃t+1(A, et+1)] so that value function at time t is

W̃t(A, et) = max{V(A, π(et)), δWt+1(A, et)}.

Finally, at t = 0 we arrive at

W̃0(A, π0) = max{V(A, π0), δW1(A)},

for the value function of the agent at time t = 0 where
W1(A) = Ee1∼μ(π0)(e1∈·)[W̃2(A, e1)].

The value function at time 0 can also be written with help of optimal stopping
strategies. Because the agent is dynamically consistent, she can be thought of as
choosing a (randomized) optimal stopping time τ : E1 × · · · × ET→Δ(T ). This
is a random variable satisfying the condition that the event {τ = t} depends only
on E1 × · · · × Et, i.e. only on experimental outcomes till time t.

For a stopping time τ, denote byFτ the induced sub-sigma algebra of the
power set of E1 × . . . ET. Then we can write

W̃0(A, π0) = sup
τ stopping time

Eeτ∼μ(π0)(·|Fτ)[δ
τV(A, π(eτ))]. (3.4)

¹²In the followingEx∼F[G(x)]will generically denote the expectation of random variableG(x)
when x is distributed according to the probability measure F.
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B. Additive costs of information This is similar to A. except for two
important changes. We assume that E describes an i.i.d. sequence of
experiments. That is, Et = E for all t = 1, . . . ,T and the distribution Es(et+1|et) is
independent of t or history et. Our results hold for general sequential experiment
as in (3.1) but the assumption of a constant flow cost of time is more sensible in
the i.i.d. case. The calculation of the value functions proceeds as in A. with the
substitution of the terms δWt+1(A, et) byWt+1(A, et)− c everywhere. The value
function at time 0 now becomes

W̃0(A, π0) = sup
τ stopping time

Eeτ∼μ(π0)(·|Fτ)[V(A, π(e
τ))− cτ]. (3.5)

Overall, an agent is prescribed by a tupleA = (u, δ, E , π0) in case A. or
A = (u, c, E , π0) in case B. Here, u, π0 and E are respectively the Bernoulli taste,
prior and the sequential experiment of the agent, whereas δ ∈ (0, 1) is the
discount factor in case A. and c > 0 are the costs for the i.i.d. experiment in case
B. In the following we call an agentA = (u, δ, E , π0) as prescribed above a
SeSa-GD and an agentA = (u, c, E , π0) as above a SeSa-LC.¹³

3.2.3 The analyst

Consider an analyst who observes data as we just described from an agent who
can learn about a payoff-relevant objective state before picking from a menu by
making use of a sequential experiment. An optimal stopping strategy for the
agent induces a random decision time because different realizations of histories
of experimental outcomes lead to different realizations of the stopping decision.
Conditional on stopping at time t, the choice of act appears random to an outside
analyst because the belief of the agent at that moment is random and
unobservable. We assume that for every menu of acts A the analyst observes the
joint probability of the choice of act from the menu as well as of the decision time
τ ∈ T . We assume the analyst knows that the agent is Bayesian and that he

¹³GD stands for geometric discounting and LC for linear costs.
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understands that if the additional information available to the agent were free, the
agent would always use it. The analyst has in mind two possible cases of costly
information described in the previous subsection: SeSa-GD, where the
experimentation costs come from impatience and SeSa-LCwhere the agent can
repeat an experiment for a fixed price. We assume w.l.o.g. that the analyst knows
that |T | = T+ 1.¹⁴

Finally, we assume the analyst doesn’t have information about the taste
u : Δ(Z)→R, discount factor δ/linear costs c.

For the welfare results we assume the analyst knows precisely which of the
cases SeSa-GD or SeSa-LC is true as well as the discount factor of the agent/the
additive costs. We justify this assumption in section 3.4.

The observable - formal definition. Formally we assume that for every
menu A ∈ A the analyst possesses random choice data in the form
PA ∈ Δ(A× T ). We call the collection {PA : A ∈ A} of such data Random
Choice with Decision Time, in short RCDT.

Random choice as an observable may be interpreted in two distinct ways. In
the single-agent interpretation the analyst observes the limiting frequency of
choices as well as of decision times of a single agent coming from many, many
repetitions of the same decision problem. In the population interpretation the
analyst observes choices from menus as well as of decision times from a
population of homogeneous individuals with the same taste, prior and costs of
information having access to the same sequential experiment. Our results hold
for both interpretations but we pick in the following the single-agent
interpretation for ease of exposition.

When compared to other random choice data from other dynamic stochastic
choice models (e.g. Frick et al. [2018], Duraj [2018a]) RCDT data are relatively

¹⁴This is w.l.o.g. because T is revealed from the data that we assume is available to the analyst.
In the SeSa-GD case T is the last time the agent observes choices from anymenu. In the SeSa-LC
case, T is the overall maximal observed number of repetitions of the i.i.d. experiment. In the latter
case this may be related to a time dimension or not. If it is, the implicit assumption in SeSa-LC is
that the agent is patient.
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scarce: for every menu A the analyst only observes when the agent makes a
choice and what choice she makes. In particular, for every observation of the
choices of a single agent from a menu A, the menu A does not change across time
so that the recursivity of the observable as it appears in Frick et al. [2018] and
Duraj [2018a] is lost. The main implication of this fact is that identifying the
information flow of the agent (the sequential experiment E) becomes a very
difficult task, especially in the case of impatience costs.

Given an RCDT the analyst can determine the collection of menus where the
agent has strict incentives not to learn and those where she has strict incentives to
learn till period twith positive probability. Formally we define

A0 = {A ∈ A : lim
n→∞

PAn(τ = 0) = 1 for every sequence An→A},

as well as for t ≥ 1

At = {A ∈ A : lim inf
n→∞

PAn(τ = t) > 0 for every sequence An→A}.

A0 is the collection of menus for which the agent has strict incentives not to
start the learning process. If either of the models A. or B. are correct then this set
is non-empty and contains all menus of constant acts as well as singleton menus.

We assume in the following that any RCDT satisfies the following degeneracy
condition to varying degrees.

Condition N: Non-degenerate dynamic choice.

• N1. There exists A ∈ A such that A ∈ At for some t ≥ 1,

• N2. There exists A ∈ At for some t ≥ 1 and a prize kwith A+ {k} ∈ A0.

Condition N1. states that there exists a menu Awhere learning is strictly
profitable. We always require this condition on any RCDT. Condition N2. is a
strengthening of N1. and requires that if in addition a sufficiently high prize k is
given for certain to the agent, unconditional on her choice from A, she has no
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incentives to acquire any information. N2. is only needed in the case of SeSa-GD
and is a very weak requirement on the data. This is because, whenever SeSa-GD
is true and non-trivial dynamic behavior is observed, N2. is automatically
satisfied. Intuitively it says that, because of discounting, when k is large enough
payoffs from A+ {k} are relatively insensitive to the realization of the objective
state so that learning is not worthwhile.

N1. imposes joint restrictions on the taste of the agent, her sequential
information as well as the discount factor or the additive costs of information.
Namely, it is easy to construct examples where if the sequential experiment is
overall very uninformative about the state of the world, the agent would never
start any menu A.¹⁵

In section 3.4 we show that Condition N suffices for full identification of
respectively discount factor of the agent (Case A.) or additive costs of
information (Case B.).

One can show that Condition N is unnecessary, if the model includes prizes of
arbitrarily negative utility.¹⁶ Here we insist on limited liability of the agent, i.e.
there is a lower bound for the utility of prizes and the ‘stakes’ the agent faces are
limited from below. Lack of limited liability is especially untenable in
experimental as well as most empirical settings the model of this paper aims to
approximate.

In general there will be menus where the agent will have to break ties in either
of the choices: when to stop and upon stopping, what to pick from the menu.
This tie-breaking behavior will be incorporated in the observable PA whenever A
is such that ties occur with positive probability. We show in the appendix that
data explained by either of SeSa-GD or SeSa-LC have the property that the set of
menus where the agent needs to break ties ismeager in the sense that any such
menu can be approximated arbitrarily closely by a menu where there are no ties.
Moreover, observing PA for menus without ties is sufficient for the set of

¹⁵Examples are available upon request or the reader may try to construct them easily from the
calculated examples presented in section 3.5.

¹⁶Proof is available upon request.
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identification and characterization results we offer. Therefore we decide to
remain agnostic about the precise tie-breaking behavior of the agent and focus
only on menus without ties in the remainder of the main body of the paper. The
appendix establishes the denseness result for menus without ties as well as
describes its technical ramifications.

Formally, we show in the appendix that menus without ties are those that
satisfy the following definition.

Definition 7. Say that a menu A ∈ A is without ties if there exists a
neighborhoodNA of A inA such that for every sequence An ∈ NA with An→A
and |An| = |A| for all n it holds uniformly for t ∈ {0, . . . ,T} that
PAn(fn, t)→PA(f, t) if fn ∈ An and fn→f ∈ A.

For a menu without ties, the optimal stopping strategy of the agent in either
(3.4) or (3.5) is unique and deterministic. Denote it in either case τA; whether
we are in the case of impatience or market costs will be clear from context. Thus,
for a menu without ties τA : E1 × · · · × ET→T is a T -valued random variable
which is adapted to the natural filtration of the space of experimental outcomes.

The following definition gives the rationalizability concept we use in this paper.

Definition 8. 1) A RCDT {PA : A ∈ A} corresponds to a SeSa-GD agent
A = (u, δ, E , π0) if for all menus A ∈ A without ties it holds

PA(f, τ = t) = μ(π0)
(
eT ∈ E1 × · · · × ET : τA(eT) = t,M(A; u, π(eτA(e

T)) = {f}
)
,

where τA is the unique optimal stopping time in (3.4).
2) A RCDT {PA : A ∈ A} corresponds to a SeSa-LC agentA = (u, c, E , π0)

if for all menus A ∈ A without ties it holds

PA(f, τ = t) = μ(π0)
(
eT ∈ E1 × · · · × ET : τA(eT) = t,M(A; u, π(eτA(e

T)) = {f}
)
,

where τA is the unique optimal stopping time in (3.5).

This definition says that data explained by a SeSa agent, be it in the case A. or
B., need to fulfill the consistency condition that the probability of observing the
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agent pick f from A at time t corresponds to the probability that under the
sequential experiment E the agent with prior π0 and taste u observes histories of
outcomes which rationalize stopping at time t for menu A and picking f upon
stopping at that time t.

3.3 Welfare Analysis

In this section we show how welfare considerations are feasible in either
SeSa-GD or SeSa-LC for an analyst who is oblivious of the agent’s information.
We assume that the analyst besides having access to a RCDT, also knows the
discount factor δ ∈ (0, 1) in case of impatience costs as well as the flow costs of
time c > 0 in case of market costs.¹⁷ For ease of exposition only, we also assume
the analyst knows the Bernoulli taste of the agent u : Z→R+.

We show how such an analyst can gauge welfare by use of the RCDT data
without any knowledge of the prior of the agent π0 or the sequential experiment
E in the possession of the agent.

In the next section we show how all of c or δ as well as u can be identified from
RCDT alone. So that the main insight of our welfare analysis in this section,
when coupled with the analysis in section 3.4, is that data in the form of RCDT
are enough to conduct welfare analysis.

In the following we state the results for efficiency of exposition in terms of
utility acts and menus of utility acts, which we now introduce.

We can use u to go over to utility acts by considering the prize space
u(Z) = {u0(z) : z ∈ Z} instead of Z and defining acts to give lotteries over
utilities as consequences. Thus, to an act f ∈ F corresponds the utility act f̃
defined as f̃(s) = u ◦ f(s), s ∈ S. Note then that constant utility acts a ∈ u(Z) are
ranked in terms of the utility they provide: a > b if and only if a corresponds to
the utility of a prize z′ ∈ Z and b corresponds to z ∈ Z and so that z′ is strictly
better than z for the agent. The same construction can be done for menus: one
can consider menus of utility acts Ã = {u ◦ f : f ∈ A} corresponding to A ∈ A.

¹⁷In particular, the analyst knows which case he is facing.
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We also impose in the following the assumption that there is a worst prize and
use the convention u(w) = 0 for the worst prize w of the agent.

Denote by Vδ(A) the welfare of the SeSa-GD agent when her discount factor is
δ and she faces menu A. Similarly, let Vc(A) the welfare of the SeSa-LC agent
when her cost of repetition of the i.i.d. experiment is c > 0 and she faces menu A.

Theorem 4. It holds for every menu A

Vδ(A) =
∫ ∞

0

(
1 −

T∑
t=0

δtPA∪{a}(a, t)

)
da,

and
Vc(A) =

∫ ∞

0
PA∪{a}(A)da.

Sketch of Proof. The proof is based on the envelope theorem in Milgrom and
Segal [2002, Theorem 1 and 2]. Here, we provide a sketch of the proof for
SeSa-GD model. The proof is then completed in the appendix. Recall from (3.4)
that

Vδ(A) = sup
τ stopping time

Eeτ∼μ(π0)(·|Fτ)[δ
τV(A, π(eτ))], (3.6)

for all menus A ∈ A if the agent corresponds toA = (u, δ, E , π0). One can
show easily that the sup is actually amax, i.e. the supremum is attained for every
menu A.

Fixing a menu A, we look at the menus of the type A ∪ {r}where r is a
constant (utility) act. View Vδ(A ∪ {r}) as a function of r. Since A is finite, there
exists R > 0 such that R dominates every act f in A. Note that r→Vδ(A ∪ {r}) is
weakly increasing, continuous and becomes Vδ(A ∪ {r}) = rwhenever r is
higher than the highest utility prize an agent can get from A.¹⁸

First, one argues that Vδ(A ∪ {R}) can be expressed as the integral of its
derivative:

¹⁸Continuity follows from the classical Berge maximum theorem.
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Vδ(A ∪ {R}) = Vδ(A ∪ {0}) +
∫ R

0

d
dr
Vδ(A ∪ {r})dr.

One establishes then that the derivative of the value of menu A ∪ {r}with
respect to r for an instantaneous decision from menu A ∪ {r}when the agent’s
belief π about the state of the world is distributed according to some
π̄ ∈ Δ(Δ(S)) is given by

d
dr
Eq∼π̄ [V(A ∪ {r}, q)] = π̄ (q ∈ Δ(S) : M(A ∪ {r}; id, q) = {r}) . (3.7)

Here, id : u(Z)→u(Z), id(z̃) = z̃ is the identity function on the utility space
u(Z). Thus this derivative is equal to the probability under π̄ that a posterior
belief results which rationalizes the choice of r from A ∪ {r}.

Now note that we can decompose the value of using a specific stopping time τ
for the agent as follows.

Eeτ∼μ(π0)(·|Fτ)[δ
τV(A, π(eτ))] = (3.8)∑

t∈T

μ(π0)(τ = t)δtEeτ∼μ(π0)(·|τ=t)[V(A, π(eτ))]. (3.9)

Pick an optimal stopping time τA∪{r} for menu A. The general envelope
theorems from Milgrom and Segal [2002] are applicable and deliver, together
with an interchange of derivatives and sums, that the derivative of Vδ(A ∪ {r})
with respect to r is given by

d
dr
EeτA∪{r}∼μ(π0)(·|FτA∪{r} )

[δτA∪{r}V(A ∪ {r}, π(eτA∪{r}))] (3.10)

=
∑
t∈T

μ(π0)(τA∪{r} = t)δt
d
dr
EeτA∪{r}∼μ(π0)(·|τA∪{r}=t) [V(A ∪ {r}, π(eτA∪{r}))] .

That is, it is given by the derivative of the objective of the agent as described in
(3.8), evaluated at the optimal stopping strategy τA∪{r}.
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Now we can combine (3.10) and (3.7). We use for each t ∈ T as π̄ the
distribution of the posteriors of the agent under the optimal strategy τA∪{r} under
the condition that τA∪{r} = t, to arrive at

Vδ(A ∪ {R}) = Vδ(A ∪ {0}) +
∫ R

0

∑
t∈T

δtPA∪{r}(r, t)dr.

Pick R such that it dominates every utility act in A. It follows,
Vδ(A∪ {R}) = R. Since 0 is the worst utility act, Vδ(A∪ {0}) = Vδ(A). Hence,

Vδ(A) = R−
∫ R

0

∑
t∈T

δtPA∪{r}(r, t)dr =
∫ R

0

(
1 −
∑
t∈T

δtPA∪{r}(r, t)

)
dr.

We can take the upper bound of the integral to be infinity because the
integrand becomes 0 for all r > R. □The approach of recovering the indirect
utility of the agent for a menu A or synonymously her ex-ante valuation for A
through ex-post random choice first appears in Lu [2016]. In his model, private
information is exogenous and menu-independent. Then the probability of r
being chosen from A ∪ {r} turns out to be the probability of deriving utility at
most r from A. Hence, by varying r, one obtains the distribution function for the
utility from A. The integral is therefore the subjective expected utility from
choosing from A. Thus, in the case of static, exogenous information the
recoverability result can be proven without invoking technical envelope theorem
arguments. However, this proof intuition fails in general when private
information is menu-dependent as it is in our set up since it is the optimal
stopping strategy of the agent for the menu Awhich determines the information
she uses to pick from A.¹⁹

¹⁹When private information is optimally acquired as in a static rational inattention model
(De Oliveira et al. [2017]), Lin [2018] shows that a similar envelope theorem argument applies
and ex-ante valuation of a menu can be recovered in a similar way. That recoverability result in a
static setting may be used to prove recoverability of welfare in SeSa-LC model, because the latter
is equivalent to a static rational inattention model as in De Oliveira et al. [2017]. Here we apply a
similar proof technique in the dynamic setting of SeSa-GD.
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Theorem 4 shows that decision time data is not needed to recover welfare in
the SeSa-LC model, but they are crucial in the SeSa-GD model. Intuitively, when
changing the decision problem by increasing slightly a safe option the
distribution of the optimal decision time does not change on the margin. In the
SeSa-LC model decision time does not affect the value of the menu conditional
on stopping at a fixed period with a fixed amount of information, but it does so in
the SeSa-GD model. Therefore the envelope theorem argument gives in the
SeSa-LC case a derivative w.r.t. the safe option which is independent of decision
time, whereas the decision time still appears in the derivative in the case of
SeSa-GD.²⁰

In the following we consider several interesting cases of welfare analysis which
illustrate the power of RCDT for an outside analyst interested in welfare analysis
of agents who are performing sequential experiments.

We start with the case of a SeSa-GD who faces a menu of options A and of an
outside party who has the option of offering the agent a one-time lump sum
utility transfer k > 0, or of imposing a one-time lump sum tax−k. The tax or the
subsidy occurs at the moment the agent picks from the menu, i.e. it occurs with
delay if the agent decides to learn. Effectively, the outside party is changing the
menu of the agent from A to A± k.²¹ In the pharmaceutical R&D example this
outside party may be thought of as a government or regulatory body.

Proposition 26. Let k > 0 be a constant utility act. Then it holds

Vδ(A+ k) = Vδ(A) +
T∑
t=0

δt
∫ k

0
PA+λ(τ = t)dλ. (3.11)

Moreover, if k is weakly lower than the worst utility prize achievable in A it holds

Vδ(A− k) = Vδ(A) +
T∑
t=0

δt
∫ −k

0
PA−λ(τ = t)dλ.

²⁰Henceforth, w.r.t. denotes with respect to.
²¹We use the shortcut A± k for A± {k} in the following when A is a menu of utility acts.
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To see the implications of Proposition 26 we first show the following Claim.

Claim 1. The function λ 7→ E[δτA+λ ] =
∑T

t=0 δ
tPA+λ(τ = t) is weakly

increasing in λ > 0 almost everywhere.²²

Proof of Claim 1. Recall the valuation for an instantaneous decision from A
under belief π given by V(A, π) = maxf∈A π · f. It satisfies the property

V(A+ λ, π) = λ + V(A, π), for every λ ≥ 0.

In the following denote for simplicity of exposition μτ the random posterior
induced by a stopping strategy τ for the sequential experiment the agent
possesses. Then we have

Vδ(A+ λ) = E[δτA+λV(A, μτA+λ
)] + λE[δτA+λ ].

Here τA+λ is an optimal stopping strategy for the menu A+ λ and expectations
are w.r.t. the random realizations of τA+λ and μτA+λ

. It holds by revealed
preference

E[δτA+λV(A, μτA+λ
)] + λE[δτA+λ ] ≥ E[δτA+λ′V(A, μτA+λ′

)] + λE[δτA+λ′ ]. (3.12)

By combining the inequality (3.12) for the optimality in A+ λ with its analogue
for the optimality in A+ λ′ we get

²²Note that in general there is no uniform monotonicity of the optimal stopping time τA+λ in
λ. This is because stopping earlier after every history can lead to less information on average, even
though the decision utility is discounted less. Therefore any of the Topkis’s theorems (see subsec-
tion 2.8.1 in Topkis [1998]) is not applicable.
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1
λ

(
E[δτA+λV(A, μτA+λ

)]− E[δτA+λ′V(A, μτA+λ′
)]
)

≥ E[δτA+λ′ ]− E[δτA+λ ]

≥ 1
λ′
(
E[δτA+λV(A, μτA+λ

)]− E[δτA+λ′V(A, μτA+λ′
)]
)
.

From here Claim 1 easily follows. □
One can use Proposition 26 and Claim 1. to gauge welfare change coming

from a lump-sum subsidy of k utils. For example, one easily gets the bounds

kE[δτA ] ≤ Vδ(A+ k)− Vδ(A) ≤ kE[δτA+k ].

In particular, if k is such that PA+k(τ = 0) < 1 and PA(τ ≥ 1) > 0 we have that
ex-ante welfare increases by strictly less than k. The intuition for this is that
because the agent chooses to learn when facing A+ k, she gets the benefit from
A+ k only with delay. This discounts also k for which learning has actually no
benefit.

Alternatively, we can look at a lump-sum tax. Let’s take a specific A so that
every prize in it is strictly positive. In this case, we get for a tax k > 0 such that
every utility lottery in A− k is non-negative the following relation.

kE[δτA−k ] ≤ Vδ(A)− Vδ(A− k) ≤ kE[δτA ]. (3.13)

If A is such that PA(τ = 0) < 1 the fall in welfare is less than k. Intuitively, the
agent can postpone the payment of the tax by starting to learn. This lowers
revenues for the tax authority and mitigates some of the welfare effects of the tax.

Another intuition delivered by (3.13) is the following. Suppose the tax is paid
at the moment of the transaction and that both agent and analyst have the same
discount factor as well as same taste u. Then it holds per above that

Vδ(A− k) + kE[δτA−k ] ≤ Vδ(A).
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The term kE[δτA−k ] are the expected tax-revenues which can be thought of as
the welfare of the tax authority. The difference

Vδ(A)− Vδ(A− k) + kE[δτA−k ] ≥ 0

is then the dead-weight loss from the lump-sum taxation. It is strictly positive
whenever the function s 7→ E[δτA−s ] is strictly monotone for a range of s. This
dead-weight loss comes from the effect of the taxation on learning. Namely the
lump-sum taxation increases the sensitivity of the agent to the realization of the
state of the world and therefore the agent starts to learn more often and for longer
periods of time. Therefore the agent gets the benefit from the menu A ceteris
paribus later. Random choice data in the form of RCDT give a way for the tax
authority to calculate this welfare loss.

Finally, one may wonder about comparative statics of scaling the prizes up or
down by a factor, i.e. changing the menu the agent faces from A to λA. As one can
easily see, optimal learning behavior is unaffected by this type of change in the
case of SeSa-GD so that the welfare analysis is trivial. It holds Vδ(λA) = λVδ(A).

We now turn to another type of intervention in the case of SeSa-GD:
subsidizing the duration of the experimentation. In this case the analyst transfers
an amount of k > 0 utils for every period that the agent continues with the
sequential experiment. If the agent faces menu A and uses optimal stopping time
τA,k the subsidy costs kE[1 + δ + · · ·+ δτA,k ] = kE

[
1−δτA,k+1

1−δ

]
. Denote by Vk

δ(A)
the value function for the SeSa-GD agent when duration of the experimentation
is subsidized by k utils per unit of time. Envelope theorem arguments lead to the
following Proposition.

Proposition 27. Let k > 0 be a constant utility act. Then it holds

Vk
δ(A) = Vδ(A) +

1
1 − δ

∫ k

0
E
[
1 − δτA,λ+1] dλ.

Just as for the case of a lump-sum subsidy, the following claim comes from the
usual revealed preference logic.
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Claim 2. The function λ 7→ E[1 − δτA,λ ] is weakly increasing in λ > 0.

This Claim and Proposition 27 then imply that subsidizing the duration of the
experimentation in the SeSa-GD case is not welfare-enhancing from an ex-ante
perspective. Formally, it holds that

Vk
δ(A)− Vδ(A)− kE

[
1 − δτA,k+1

1 − δ

]
≤ 0, (3.14)

with strict inequality whenever λ 7→ E[1 − δτA,λ ] is strictly increasing for a range
of λ.

We now turn to the SeSa-LC model. Another envelope theorem argument
yields the following result.

Proposition 28. Let {PcA : A ∈ A} be the stochastic choice rule of the agent when
she has linear costs of experimenting equal to c > 0. Then it holds for the welfare of the
agent

d
dc
Vc(A) = −

T∑
t=0

tPcA(τ = t).

In particular, for c > c′ we have

Vc′(A) = Vc(A) +
∫ c

c′

T∑
t=0

tPsA(τ = t)ds. (3.15)

Using the classical Theorem 2.8.2 in Topkis [1998] one can prove the
following easy claim for the SeSa-LC. It also implies that the integrand in (3.15)
is weakly decreasing in the costs s.

Claim 3. For c > c′ it follows τcA ≤ τc′A where τcA is an optimal stopping time
for the menu Awhen linear costs are c. In particular,∑T

t=0 tP
c
A(τ = t) ≤

∑T
t=0 tP

c′
A(τ = t).
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From Claim 2 and (3.15) it follows that

Vc′(A)− Vc(A)− c
T∑
t=0

tPcA(τ = t) + c′
T∑
t=0

tPc
′

A(τ = t) ≥ 0. (3.16)

Here we have strict inequality whenever s 7→
∑T

t=0 tP
s
A(τ = t) is strictly

decreasing in some range of (c′, c). Consider again an outside party whose
Bernoulli taste is the same as for the agent and assume he is interested in partly
subsidizing the costs of the i.i.d. experiment for the SeSa-LC agent. If she lowers
them from c to c′ the expected cost of the intervention to the supplier of
experiments is c

∑T
t=0 tP

c
A(τ = t)− c′

∑T
t=0 tP

c′
A(τ = t). It follows that the cost

subsidy is overall welfare-enhancing and Proposition 28 can be used to quantify
the welfare gain.

Note that the conclusion above is different from the case of SeSa-GD where
subsidizing the duration of the experimentation is not overall welfare-enhancing.
This is because in the SeSa-GD case the costs of experimentation come from
impatience and thus are a feature of the preferences: the agent is trading off time
with more information and she cares about both dimensions. In the case of
SeSa-LC the costs of the experimentation aremarket costs and the seller of the
experiments does not internalize the negative effect of a positive price of the
experiments on the optimal experimentation duration. Therefore in the case of
SeSa-LC there is scope for an overall welfare-enhancing intervention in the
market.

Finally, one may wonder about the comparative statics of the type of
Proposition 26 in the case of SeSa-LC. As one can easily see, optimal learning
behavior is unaffected by this type of change in the case of SeSa-LC so that the
result is trivial: a lump-sum payment doesn’t change optimal stopping behavior
and just constitutes a lump-sum transfer from the analyst to the agent.
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3.4 Identification

In this section we show how an analyst who possesses data in the form of RCDT
can identify all the parameters of the agent, except her information, namely we
show how she can identify the taste, the prior as well as the discount factor in the
case of SeSa-GD and the additive costs of the i.i.d. experiment in the case of
SeSa-LC. The identification techniques use extensively the insights from section
3.3 on welfare analysis but ultimately the only data used is RCDT.

We gather together all the identification results presented in this section in the
following Theorem. This result formally justifies the statement made in section
3.3 that the welfare analysis in both of the SeSa models presented in that section
does not need more than the observable assumed, the RCDT data. Note that the
identification result does not need any information about the sequential
experiment of the agent.

Theorem 5. (i) Suppose that the RCDT P is rationalized by SeSa-GDs (u, δ, π0)

and (u′, δ′, π′0). Suppose that Condition N holds. Then u is an affine
transformation of u′, π0 = π′0 and δ = δ′.

(ii) Suppose that the RCDT P is rationalized by SeSa-LCs (u, c, π0) and
(u′, c′, π′0). Suppose that Condition N1. holds. Then u is an affine
transformation of u′, π0 = π′0 and c = c′.

In the following subsections the identification result will be proved in text by
explaining also the identification procedure of the analyst. The analyst will first
identify the Bernoulli taste and the prior of the agent and use this information to
identify the rest of the parameters (except for the sequential experiment).

3.4.1 Identification of prior and taste

The identification of prior and taste follows standard procedures modified to take
into account the dynamic incentives of the agent. The analyst focuses on menus
where the agent doesn’t have incentives to learn to extract the taste and the prior.
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Examples of these are singleton menus and menus of constant acts where
learning about the state of the world does not have decision value and so agent
chooses not to learn given that learning is costly. The taste can be uniquely
determined by looking at menus of constant acts. In fact, looking only at binary
menus suffices to identify the Bernoulli utility u. Given the knowledge of the
taste uwe focus in the following on utility acts w.r.t. u for the exposition.

Once the Bernoulli taste has been identified the analyst can extract the prior as
follows.²³

The analyst can perturb a menu with a single constant act with a bet on a
particular state s ∈ S. The perturbation needs to be small enough so that the
agent, given the costs of learning, still decides not to learn for the perturbed
menu. Formally, we define as follows.

Consider the utility bet act on state s: fs := (0, . . . , 1
s−th place

, . . . , 0), i.e. 1 util

is awarded in state s; otherwise agent gets worst prize which has utility zero. a
denotes the constant act giving a utils in every state. Then for all λ ∈ (0, 1) near
enough to 1 the probability of state s under the prior is given as follows.

π0(s) =
1

1 − λ

(∫ ∞

0
P{(1−λ)fs+λ1,a}((1 − λ)fs + λ1|τ = 0)da− λ

)
. (3.17)

This is just a reformulation of the identity
Vδ/c({(1 − λ)fs + λ1}) = (1 − λ)π0(s) + λ for all λ near enough to 1.

The qualification ‘near enough to 1’ for the perturbation factor λ ∈ (0, 1) is
needed to make sure the agent doesn’t decide to learn for the menu
{(1 − λ)fs + λ1, a} for all a ≥ 0 and thus only uses her prior as information for
the choice from {(1 − λ)fs + λ1, a}. This qualification is possible because the
learning is costly in both SeSa models: λ > δ in SeSa-GD or λ > 1 − c in
SeSa-LC is sufficient.

Because the data needed to identify the taste and the prior of the agent use
information which is costless for the agent, the techniques for their identification

²³This is by no means the only procedure, but the one we found most elegant for exposition.
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are formally based on results from Lu [2016].

3.4.2 Identification of discount factor.

Now we come to the identification of the discount factor for the SeSa-GD. We
assume the analyst has already identified the prior and the taste as in subsection
3.4.1.

Take a menu A ∈ At for some t ≥ 1. Denote by b(A) > 0 the highest prize
that can happen under any act from A. Note that if we take
k+ V(π0,A) ≥ δ(k+ b(A)), which is equivalent to k ≥ δ

1−δ (b(A)− V(π0,A)),
the agent will not start for the menu A+ k. This is because an upper bound for
the benefit of learning for the menu A+ k is δ(k+ b(A)) and so when k is large
enough this benefit is smaller than V(A+ k, π0), the value of picking from A+ k
without learning. Thus, we have a menu A ∈ At for some t ≥ 1 and some k > 0
so that k+ A ∈ A0. But the existence of such a menu is already postulated by
Condition N.

One could think that from a practical perspective k as above may be too large,
especially for patient agents where δ is near 1. But recall that the whole model is
homogeneous of degree one in the space of utility acts.²⁴ So by scaling A down,
we can also make the needed k small.

Now we use Theorem 4 and Proposition 26 to write the welfare result (3.11)
for A and k as above as follows.

k+max
f∈A

π0·(u◦f) =
∫ ∞

0

(
1 −

T∑
t=0

δtPA∪{a}(a, t)

)
da+

T∑
t=0

δt
∫ k

0
PA+a(τ = t)da.

The left hand side is the value of A+ k as calculated by the data, whereas the
right hand side is just the right hand side of (3.11) where we have replaced the
valuation for A through its formula from Theorem 4.

²⁴In particular, μb(A) = b(μA), V(μA, π0) = μV(A, π0) for every μ > 0 and this property
propagates to all value functions after every history of experimental outcomes.
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The right-hand side is strictly increasing and continuous as a function of
δ ∈ [0, 1]whenever there exists some range of a-s and a t > 0 s.t.

PA∪{a}(τ = t) + PA+a(τ = t) > 0.

But this is always the case for very small a since menu Awas chosen to be inAt

for some t ≥ 1, i.e. it offers strict incentives for learning.²⁵ By the mean value
theorem for continuous functions there exists then a unique δ ∈ (0, 1) satisfying
the equation.

The identification strategy above is the most general in the sense that it just
needs a menu satisfying Condition N in section 3.2 and the latter condition in
the SeSa-GD model is equivalent to observing some non-trivial dynamic choice
in the respective RCDT. Other identification strategies based on Theorem 4 are
possible when menu A has a specific form. The following (sufficient) condition
describes such a case.

Condition 1. There exists a state s ∈ S, a > 0, and t ≥ 1 such that
P{fs,a}(a, t) > 0.

Thus the agent decides to learn some of the time when faced with the choice
between a bet on a state and a sure option. Under Condition 1 one can use the
following identity for identification.

∑
s∈S

(∫ 1

0

(
1 −

T∑
t=0

δtP{fs,r}(r, t)

)
dr

)
=
∑
s∈S

π0(s) = 1. (3.18)

To immediately see the relation is true note that every element of the sum on
the left hand side of (3.18) is just the value of the bet fs, which is equal to πs.
Condition 1 together with the mean value theorem for continuous functions
then implies the uniqueness of the discount factor.

²⁵That Vδ(A), which corresponds to the first integral on the right hand side, is increasing in δ
follows fromthemodel assumption. Formally, this follows immediately from(3.4)becauseutilities
are assumed non-negative.
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3.4.3 Identification of additive costs.

We now turn to the identification of additive costs in SeSa-LC.
Fix A ∈ At for some t ≥ 1. Intuitively, the costs of learning for A are given as

the difference between the valuation of A under the optimal learning strategy for
A, if using that particular strategy would be costless for the agent, and the actual
value of A for the agent as revealed through RCDT data in Theorem 4. We first
describe how to tease out from RCDT the value of A under the assumption that
its optimal learning strategy is costless.

For each menu B ∈ A, define

ρB(f) = lim
α↑1

PαA+(1−α)B(αA+ (1 − α){f}, T ) , ∀ f ∈ B. (3.19)

Intuitively, when α approaches 1, the private information used to make choices
from αA+ (1 − α)B converges to the information acquired for A. Thus, ρB is
interpreted as the random choice from B if the agent uses the information she
optimally acquires for A. Note that the sequence PαA+(1−α)B(αA+ (1− α){f}, T )

becomes constant for all α near enough to 1. This is because A is assumed to be
without ties (see subsection 3.2.3) and it is common knowledge between analyst
and agent that the experimentation technology has finite experimental outcomes.

Following Lu [2016], the expected utility gain from a menu Bwhen the agent
uses the fixed information structure induced by the optimal stopping strategy for
A can be recovered from ρ and is equal to∫ ∞

0
ρB∪r(A)dr.

The learning cost for A is the product of the flow cost c and the expected
decision time. Then, by Theorem 4, the following relation holds:

∫ ∞

0

∑
t∈T

PA∪{r}(A, τ = t)dr =
∫ ∞

0
ρA∪{r}(A)dr− c

∑
t∈T

tPA(τ = t).
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We conclude that the flow cost is uniquely pinned down by the formula

c =

∫∞
0

(
ρA∪{r}(A)− PA∪{r}(A)

)
dr∑T

t=1 tPA(τ = t)
. (3.20)

Finally, we mention as an aside that there is a way to identify the additive costs
in SeSa-LC without using decision time data. This is because as mentioned in the
literature review, SeSa-LC corresponds to a rational inattention model as
considered in De Oliveira et al. [2017] and Lin [2018] and so identification
results from ex-post random choice from menus from Lin [2018] are applicable.
The details are in the appendix. The formula without decision time data is much
more demanding than (3.20) though, because it requires making use of the full
RCDT data, not just of the RCDT in the vicinity of a single menu A as (3.20)
does.

3.5 Examples

In this section we offer examples which illustrate the power of RCDT for the
identification of the agent’s parameters and welfare analysis.

3.5.1 Example for SeSa-GD

Identification. Suppose that S = {s1, s2, s3, s4} and T = 2. The sequential
experiment consists of the following: At t=1, it is revealed whether event {s1, s2}
occurs or not. At t = 2, the true state is disclosed. The agent possesses a uniform
prior belief over S. We assume the analyst only has access to a RCDT as
prescribed in subsection 3.2.3. The analyst discovers through choices from
menus of constant acts that the Bernoulli utility of the agent is the identity:
u : R+→R+, u(x) = x.²⁶ Moreover, through menus of the type
{λ1+ (1 − λ)fsi , a} for i ∈ {1, 2, 3, 4} and λ near to one as well as sure prizes a,

²⁶This is w.l.o.g. since we are passing to utility acts in any case.
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the analyst uncovers the uniform prior of the agent through the formula (3.17).²⁷
The stochastic choice observed by the analyst for the menu {fs, r} as a function

of r is summarized in Table 1.²⁸ In Table 1 and all the following tables a pair (g, t)
in the upper row with g an act and t ∈ T is the argument of the RCDT under
consideration. Intuitively, information is valuable only when r is not too high or
too low. Moreover, as the safe option r is increased the agent decides earlier and
picks the safe option rmore often.

P{fs,r} (fs, 0) (r, 0) (fs, 1) (r, 1) (fs, 2) (r, 2)

r ∈ [0, 1
8) 1 0 0 0 0 0

r ∈ ( 1
8 ,

1
4) 0 0 1

2
1
2 0 0

r ∈ ( 1
4 ,

4
11) 0 0 0 1

2
1
4

1
4

r ∈ ( 4
11 , 1] 0 1 0 0 0 0

Table 3.5.1: P{fs,r} for different r-s.

Condition 1 is fulfilled for the data in Table 1 and it follows from (3.18):

∑
s∈S

(∫ 1

0

(
1 −
∑
t∈T

δtP{fs,r}(r, t)

)
dr

)
= 4

(
1
8
+

1
8
× (1 − 1

2
δ) +

5
44

(1 − 1
2
δ − 1

4
δ2)

)
= 1.

Solving this equation, the analyst identifies a unique discount factor δ = 4
5 .

Thus, the analyst identifies the agent’s parameter
(u = id, π0 = uniform, δ = 4

5 ) through RCDT data without having access to the
sequential experiment of the agent.

Welfare example. Suppose that the agent whose parameters were just
identified faces the menu A = {f1, 1

3}. An outside party which has the same taste
and the same discount factor as the agent is contemplating to subsidize the menu

²⁷This is obviously not the only way to identify the prior from RCDT data. One could look at
choices from menus {λ1+ (1 − λ)fsi , λ1+ (1 − λ)fsj} for i, j ∈ {1, 2, 3, 4} and λ near to one.

²⁸Due to symmetry, the Table 1 is the same for all s ∈ S.
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to A+ 1 by adding a lump-sum payment which is independent of the realization
of the state of the world and of the choice of the agent. Note that the subsidy is
paid when the agent actually chooses from the menu. Thus the actual subsidy
costs to the outside party may be less than one in present value. The analyst
observes the data below and wants to calculate whether there is any dead-weight
welfare loss associated with the subsidy and if yes, its magnitude.

P(A+1)∪{r} (A+ 1, 0) (r, 0) (A+ 1, 1) (r, 1) (A+ 1, 2) (r, 2)

r ∈ [0, 4
3 ) 1 0 0 0 0 0

r ∈ ( 4
3 ,∞) 0 1 0 0 0 0

Table 3.5.2: P(A+1)∪{r} for different r-s.

PA∪{r} (A, 0) (r, 0) (A, 1) (r, 1) (A, 2) (r, 2)

r ∈ [0, 1
3) 0 0 1

2 0 1
2 0

r ∈ ( 1
3 ,

4
11) 0 0 0 1

2
1
4

1
4

r ∈ ( 4
11 , 1] 0 1 0 0 0 0

Table 3.5.3: PA∪{r} for different r-s.

Using Theorem 4 the analyst calculates

V 4
5
(A) =

26
75

and V 4
5
(A+ 1) =

4
3
.

Finally, we see from the data that PA+1(τ = 0) = 1, i.e. the agent ceases to learn
after the subsidy is awarded. Thus, the subsidy costs 1. Overall, the deadweight
loss from the subsidy is calculated to be 4

3 −
26
75 − 1 = − 1

75 . Intuitively, even
though the subsidy directly makes the agent better off, it also decreases her
incentives to learn and this leads to a large subsidy which has to be paid already at
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time t = 0 (and is thus undiscounted), besides erasing any added decision value
from learning.

3.5.2 Example for SeSa-LC

Identification. We assume two states of nature: S = {s1, s2}. Just as in the
SeSa-GD example we assume the Bernoulli utility is the identity and the prior
belief is uniform, that is, π0 = ( 1

2 ,
1
2). We assume an agent who has access to the

same experiment which can be repeated two times. The signal space is
E = {s1, s2} so that the outcome of the experiment is a point estimate of the
unobserved state. When the true state is si, the distribution of the signal is

Pr(sj|si) =

{
a if j = i,
1 − a if j 6= i.

Assume that a > 1
2 . Thus, the realization si favors the state si. a is the accuracy of

the i.i.d. signal. The prior belief is uniform; that is, π0 = ( 1
2 ,

1
2). The analyst first

uncovers the taste and the prior of the agent just as for the SeSa-GD case through
choices from constant menus and small perturbations thereof.

Consider menu A = {f1, 7
12}. The constant act is better under the prior belief.

The bet becomes better only if the agent accumulates enough positive signals.
Consider the following observed choice from menus of the type A ∪ {r} for
different r-s.

PA∪{r} (A, 0) (r, 0) (A, 1) (r, 1) (A, 2) (r, 2)

r ∈ [0, 7
12) 0 0 1

2 0 1
2 0

r ∈ ( 7
12 ,

13
20) 0 0 0 1

2
5
18

4
18

r ∈ ( 13
20 ,∞) 0 1 0 0 0 0

Table 3.5.4: PA∪{r} for different r-s.

Then consider menu αA+ (1− α)(A ∪ {r}). When α is close to 1 enough, the
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agent’s choice from this mixed menu reveals how she would choose from A ∪ {r}
if she follows the same stopping strategy as facing A. An analyst observes the
following table.

ρA∪{r} (A, 0) (r, 0) (A, 1) (r, 1) (A, 2) (r, 2)

r ∈ [0, 7
12) 0 0 1

2 0 1
2 0

r ∈ ( 7
12 ,

4
5 ) 0 0 0 1

2
5
18

4
18

r ∈ ( 4
5 ,∞) 0 0 0 1

2 0 1
2

Table 3.5.5: ρA∪{r} for different r-s.

An analyst given above two tables can compute the ex-ante value of A:∫ 1

0

∑
t∈T

PA∪{r}(A, t)dr =
7
12

× 1 + (
13
20

− 7
12
)× 5

18
=

65
108

,

compute the expected utility gain from menu A:∫ 1

0
ρA∪{r}(A)dr =

7
12

× 1 + (
4
5
− 7

12
)× 5

18
=

139
216

,

and compute the average decision time when facing A:

∑
t∈T

t× PA(A, t) =
1
2
× 1 +

1
2
× 2 =

3
2
.

Consequently, this analyst recovers the market price of an experiment:

c =
139
216 −

65
108

3
2

=
9

216
× 2

3
=

1
36
.

Welfare. Consider an agent who faces menu A and would like to learn
information about the state of the world. A researcher can run an experiment
repeatedly at a fixed fee. The price (in utils) of the experiment is c. That is, if the
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agent wants to run the experiment k ≤ 2 times, she has to pay k× c to the
researcher.

Suppose that c = 1
36 . As the data above show the agent asks for the experiment

to be run once with probability 1
2 and to be run twice with probability 1

2 .
Now suppose that the government intends to tax the experiment for revenue

purposes. Specifically, if the agent runs the experiment k times, she has to pay the
government k× ( 1

25 −
1
36). Thus, the effective cost of learning becomes 1

25 . The
analyst observes that under the new conditions the agent samples the experiment
only once.

Before tax, the welfare of the government is 0. The welfare of the researcher
who performs the experiments is 1

36 ×
3
2 . The welfare of the agent (calculated

through Theorem 4) is V 1
36
(A) = 65

108 . Total welfare in the economy is the sum of
all individual welfares and thus it’s 139

216 .
After tax, the welfare of the government is 1

25 −
1
36 . The welfare of the scientist

is 1
36 . The welfare of the agent is V 1

25
(A) = 5

8 −
1
25 =

117
200 . The total welfare is 5

8 .
After tax, the agent is worse off, and the total welfare also decreases. Note that

V 1
36
(A)− V 1

25
(A) =

91
5400

>
1
36

× 3
2
− 1

25
=

1
600

.

Therefore we have a dead-weight loss from taxation of

91
5400

− 1
600

=
41

2700
.

Intuitively, this results because the tax is detrimental to the learning incentives of
the agent, thus forcing her to take a decision earlier with less information in
expectation than before.

3.6 Behavioral characterization

In this part of the paper we offer an axiomatic characterization result of RCDT
data coming from an agent in either case of SeSa-GD or case of SeSa-LC. Our
result is valid under the assumption that the analyst knows the sequential
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experiment E of the agent. This is not far-fetched in many practical situations. In
many cases the licensing process, say for a new medical procedure, or financial
due diligence procedures before entering a long-term financial partnership are
public. In other situations, e.g. when a financial regulatory body is trying to
detect insider trading, identifying the information of the agent becomes
important and so our characterization result does not apply.

We split the axioms in two parts. The first four axioms don’t make use of the
knowledge of E and ensure that the taste, prior and the costs of the information
of the agent are identified from a RCDT. The last axiom is a condition ensuring
that the information and the parameters of the agent identified from the first four
axioms match the RCDT for menus where the agent decides to learn.

Finally, a technical axiom of continuity ensures that the restriction to menus
without ties which we stated in section 3.2 is without loss of generality. It says
that menus where the agent needs to break ties can be approximated arbitrarily
closely with menus where tie-breaking is not necessary because the agent faces
strict incentives in both stopping decision and choice from menu decision. Since
the discussion for that axiom is technical, it is relegated to the appendix. The
crucial point is that menus without ties can be identified from data and that
identification and welfare analysis rely only on them. This allows us to remain
agnostic about the precise tie-breaking process of the agent.

3.6.1 Axioms that ensure identification.

The first two axioms are related to menus for which the agent does not have
incentives to learn.

Axiom 1: Sampling is costly Let C be a constant menu or a singleton menu.
Then for all menus A ∈ A it holds

PλA+(1−λ)C(τ = 0) = 1,

whenever λ ∈ (0, 1) is small enough.
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In words this says that if one perturbs slightly a menu where there is no need to
learn the state, the agent still doesn’t want to learn about the state. This reflects
the fact that costs of learning are not zero. This axiom ensures thatA0 defined in
section 3.2 is non-empty.

To give the second axiom we first define a preference relation.
Fix a constant menu C. Define a preference over acts f, g : S→Δ(R+) by

f�Cg ⇐⇒ PλC+(1−λ){f,g}(λC+ (1 − λ){f}|τ = 0) ≥ 1
2

for all λ ∈ (0, 1) near enough to 1.

Axiom 2: No-sampling is SEU with worst prize �C is independent of the
constant menu C and satisfies axioms of subjective expected utility with a worst
prize w ∈ R+.

This axiom ensures the existence of the prior π0 and taste u used at time zero.

Axiom 3: Taste Stationarity For every menu A and time t > 0 such that
PA(τ = t) > 0 as well as constant acts c, c′ 6= w it holds

PλA+(1−λ){c,c′}(λA+ (1 − λ){c}|τ = t) = P{c,c′}({c}|τ = 0),

for all λ ∈ (0, 1) near enough to 1.

This axiom says that whenever perturbing a decision problem through
constant acts, conditional on stopping, the marginal choice over the constant acts
doesn’t depend on the decision problem being perturbed or the respective
decision times. It ensures that the risk preferences of the agent identified from
Axiom 2 are time-independent. In particular, by classical results the agent may be
assumed to use the same Bernoulli taste for all time periods t ∈ T . This axiom
ensures that the passage to utility acts in the following is meaningful and that we
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can use utility acts based on a Bernoulli taste identified in Axiom 2 to measure
the exploitation-exploration trade-off of the agent. This in turn reveals the
information costs of the agent as we showed in section 3.4.

In the following fix a taste uwith u(worst prize) = 0 and go over to utility acts
as introduced in section 3.3.

Axiom 4-δ: Wedge between the values of full information and no
information. For any A ∈ At, t ≥ 1 and k ≥ 0 s.t. A+ k ∈ A0 we have

k+ max
f∈A

π0 · (u ◦ f) >
∫ ∞

0
PA∪{a}(A, 0)da+

∫ k

0
PA+a(τ = 0)da

and

k+ max
f∈A

π0 · (u ◦ f) <
∫ ∞

0
1 −

T∑
t=0

PA∪{a}(a, t)da+
T∑
t=0

∫ k

0
PA+a(τ = t)da.

This axiom ensures existence and uniqueness of a discount factor in the
SeSa-GD model.

In both inequalities, the left-hand side is the value of choosing from A+ k. In
the first inequality, the right-hand side is the value of the menu A+ kwhen the
agent is myopic (δ = 0). Thus the first inequality says that the decision of the
agent to not learn for the menu A+ k doesn’t come from her being myopic and
any tie-breaking considerations (given that A ∈ At). On the other hand, the
right-hand side of the second inequality is the value of A+ k if the agent receives
all of the information potentially available to him within the first period, i.e. if the
whole sequential experiment could be performed within the first period so that
no costs due to impatience are incurred. The second inequality then says that the
agent values getting all the information at once for menu A+ kmore than
choosing from A+ kwithout information. In particular, since her revealed
choice is no information for A+ k this implies that information must be costly.²⁹

²⁹Nevertheless, this Axiom is clearly not implied by Axiom 1 and it uses the taste u identified
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We now turn to the SeSa-LC model and the respective fourth axiom for the
additive costs. Recall the definition in (3.19) of the random choice when fixing
the information to the optimal one from a menu A.

Axiom 4-c: Additive, expected costs of time For every pair of menus
A,A′ such that PA(τ ≥ 1), PA′(τ ≥ 1) > 0 as well as every k > 0:

∫ ∞

0
ρA∪{a}(A)da− k

T∑
t=1

tPA(τ = t) ≤
∫ ∞

0
PA∪{a}(A)da,

if and only if

∫ ∞

0
ρ′A′∪{a}(A

′)da− k
T∑
t=1

tPA′(τ = t) ≤
∫ ∞

0
PA′∪{a}(A′)da,

where ρ, respectively ρ′, are the induced random choice when agent uses the
optimal information for A, respectively A′.

In words this says that the difference in value of a decision problem before and
after information acquisition, which determines information costs, is
proportionally dependent only on the first moment of the decision time.
Moreover, it also ensures that the marginal costs of an additional experiment are
not menu-dependent.

3.6.2 Data-matching and characterization result

Even though they ensure identification of Bernoulli taste, prior and costs of
information Axioms 1-4 only use part of the information contained in a RCDT.
E.g. they do not contain information about choices from menus of the type A so
that:

i. A doesn’t contain constant acts and nor can it be written as a mixture of two
menus where one consists only of constant acts;

from Axioms 1 and 2.
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ii. the agent strictly wants to learn for A.

In particular, Axioms 1-4 don’t say anything related to optimality of choosing
from Awith respect to the taste u identified from Axioms 1 and 2 upon stopping
at a particular time t. Nor do they imply that the agent’s stopping behavior is
optimal given E .

Here we present a natural Data-matching condition which ensures that the
parameters identified from Axioms 1-4 together with the sequential experiment
E rationalize the choice data in the form of RCDT.³⁰

Recall that an agent is a tupleA = (u, δ, E , π0) orA = (u, c, E , π0). The prior
identified as

π0(s) =
1

1 − λ

(∫ ∞

0
P{(1−λ)fs+λ1,a}((1 − λ)fs + λ1|τ = 0)da− λ

)
, (3.21)

for all λ ∈ (0, 1) near enough to 1.
Recall the measure on histories of experimental outcomes induced by E and

π0 through Bayes rule.

μ(π0)measure on E1 × · · · × ET.

Bayes rule implies the belief process π(et), et ∈ E1 × · · · × Et, t ≥ 1 constitutes a
Martingale.

Finally, recall the discount factor identified from the identity

k+max
f∈A′

π0·(u◦f) =
∫ ∞

0

(
1 −

T∑
t=0

δtPA′∪{a}(a, t)

)
da+

T∑
t=0

δt
∫ k

0
PA′+a(τ = t)da,

(3.22)

³⁰Recall that E is assumed known in this section of the paper.
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for the case of SeSa-GD and the additive costs identified through

c =

∫∞
0

(
ρA′∪{r}(A

′)− PA′∪{r}(A′)
)
dr∑T

t=1 tPA′(τ = t)
, (3.23)

for the case of SeSa-LC. Here A′ is a menu satisfying Condition N from section
3.2.

Consider either of the SeSa-GD and SeSa-LC. For a menu Awithout ties the
backwards induction procedure dictated by sophistication of the agent results in
the recursive partition of the histories of experimental outcomes
E1 × · · · × Et, 1 ≤ t ≤ T as follows:

St(A) = {et ∈ E1 × · · · × Et : V(A, π(et)) > δWt+1(A, et)},

C<t+1(A) = {et ∈ E1 × · · · × Et : V(A, π(et)) < δWt+1(A, et)}.

St(A) is the collection of histories of length twhere the agent decides to stop
experimenting, whereas C<t+1(A) the set of histories of depth twhich give strict
incentives for the agent to continue experimenting. Naturally, backwards
induction results in the recursion

C<t(A) = St(A) ∪ C<t+1(A), 1 ≤ t ≤ T− 1,

with a ‘boundary’ condition ST(A) = E1 × · · · × ET, which is dictated from the
finite horizon assumption. Finally, we can refine the sets St(A) by defining
St(A, f) for the subset of histories of St(A)where it is optimal to pick f ∈ A. For
an agentA = (u, δ, E , π0) orA = (u, c, E , π0)we add then superscripts

SAt (A), CA
<t(A), SAt (A, f),

to denote that the sets SAt (A),CA
<t(A), SAt (A, f) originate from an agent with

parameters as in the tupleA. Given the ‘identification’ Axioms 1-4, the following
Axiom ensures rationalizability in the case of SeSa-GD.
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Axiom 5-c: Data-matching For the u from Axioms 1-2, the π0 in (3.21) and
δ in (3.22) it holds

PA(f, τ = t) = μ(π0)(Su,δ,E,π0
t (A, f)), (3.24)

whenever A has no ties and satisfiesA ∈ At for some t ≥ 1.

For the case of SeSa-LC Data-matching looks as follows.

Axiom 5-c: Data-matching For the u from Axioms 1-2, the π0 in (3.21) and c
in (3.23) it holds

PA(f, τ = t) = μ(π0)(Su,c,E,π0
t (A, f)), (3.25)

whenever A has no ties and satisfiesA ∈ At for some t ≥ 1.

Note that the Data-matching axioms are the first time we use the observability
of the sequential experiment E in this paper. Our characterization Theorem then
reads as follows.

Theorem 6. Suppose that an analyst knows E at the disposal of the agent.

1) A RCDT {PA ∈ Δ(A× T ) : A ∈ A} which satisfies Condition N can be
rationalized by a SeSa-GD if and only if it satisfies Axioms 1-3, 4-δ and 5-δ.

2) A RCDT {PA ∈ Δ(A× T ) : A ∈ A} which satisfies Condition N can be
rationalized by a SeSa-LC if and only if it satisfies Axioms 1-3, 4-c and 5-c.

This characterization result shows that the question of whether RCDT data for
an agent with sequential experiment E is rationalized by a SeSa can be answered
in two steps. In the first step, the analyst can identify the agent’s preference and
initial information as well as the costs of information without knowledge of the
informational technology (sequential experiment) of the agent. That this step is
meaningful is ensured by Axioms 1-4. The first step uses only a very limited
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collection of menus A ∈ A and is not sufficient to test rationalizability.
Therefore, in the second step the analyst builds upon the identification result of
the first step to test rationalizability for the rest of the menus.

In this sense, the Data-matching relations (3.24) and (3.25) can be understood
as a statistical test the analyst can build to test the joint hypothesis that the agent
A = (u, δ, E , π0) orA = (u, c, E , π0) understands the environment she is in (i.e.
is using indeed E to acquire information and, say, has additive costs of c in the
case of SeSa-LC) and is sophisticated about her future behavior.

3.7 ConcludingDiscussion

We have shown how random choice data from menus augmented with stochastic
decision time data allow the identification of the taste, prior and costs of
information of the agent without any knowledge of the technology of sequential
experiments. We consider in this paper two versions of costs of information.
First, the agent may be impatient and discount future payoffs geometrically.
Second, she may need to pay for every repetition of an i.i.d. experiment. We have
also shown how random choice data on choice from menus and decision times
enable welfare analysis of the agent, without any knowledge of the sequential
experiment at her disposal.

Moreover, when the sequential experiment at her disposal is known to an
outside analyst, we show how this analyst may test the joint hypothesis that the
agent understands the choice environment she is in and is sophisticated about
her future behavior.

In ongoing work we consider how the outside analyst can uncover the
sequential experiment of the agent from her random ex-post choice from menus
and decision times. This is a challenging problem due to the lack of recursivity in
the observable.
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A
Appendix to Chapter 1

A remark on notation in the appendix and online appendix:
For limit statements with respect to Δ→0, I often use the Landau notation

o(Δ),O(Δ).¹

A.1 Proofs for section 1.2

A.1.1 Proofs of general properties of PBEs

Proof of Lemma 1 and its corollaries.

The proof of Lemma 1 relies heavily on similar arguments in the proofs of the
Lemmas 1 and 2 in Fudenberg et al. [1985]. The arguments need to be adapted
to account for Buyer valuation changing over time due to learning.

¹See e.g. chapter 5, section 4 of Lang [1997] for formal definitions.
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Before giving the proof of Lemma 1, I remark an important fact used in the
proof of the Lemma.

Remark 1. Suppose a Bayesian learner has a prior F overR for the variable θ and
uses an unbiased experiment E : supp(F)→Δ(S), with S finite, to learn about θ
where S is a signal space. LetEF[θ|s] be the posterior mean after signal s when prior for
θ is F. If F′ is another prior so that F′ FOSD-dominates F then for every s ∈ S it holds

EF′ [θ|s] ≥ EF[θ|s],

i.e. the estimates increase pointwise when the prior increases in the FOSD sense.²

Proof of Remark 1. One can realize all random variables needed in one large
enough probability space where θ, θ′ are such that θ ∼ F, θ′ ∼ F′ and θ′ = θ + y
in distribution with y ≥ 0 a random variable. This larger probability space has as
sample space the collection of pairs (θ, y). Note here the signal space S as well as
the experiment E , which is a random variable from Θ ⊇ supp(F) ∪ supp(F′) to
Δ(S) is being kept fixed. In this larger probability space it holds conditional on
the realization of a signal s

E[θ′|s] = E[θ + y|s] = E[θ|s] + E[y|s] ≥ E[θ|s]. (A.1)

BecauseEF′ [θ|s],EF[θ|s] depend only on the joint distributions of (θ, s) (in
the case of F given by F(θ) · E(θ)(s) and in the case of F′ given by
F′(θ) · E(θ)(s)), the conclusion follows from (A.1).

□

Proof of Lemma 1. First, I show some auxiliary claims. These imply that in any
PBE any price p < v is accepted immediately by all Buyer types w. For the
auxiliary claims let h be a public history which ends with a period t and the
rejection of the price quoted at the end of history h by Seller. Let V(w, h) be the
expected equilibrium payoff of Buyer type w after public history h (starting from
period t+ 1).

²Note, it is in general not true that the distribution of posteriors increases in the FOSD-sense.
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Claim 1. w 7→ V(w, h) is strictly increasing and Lipschitz with constant one.
Proof of Claim 1. Define τ(h,w) to be the stopping time that gives the

agreement date in an equilibrium for Buyer of type w after history h.
The equilibrium payoff of type w after history h can be written as

V(w, h) =
∑
u≥0

δtαt+1+u(w, h)(Ew[vτ(h,w)|τ(h,w) = t+1+u]−Ew[pt+1+u(w, h)]),

where αt+1+u(w, h) is the probability of agreement at time t+ 1 + u on path if w
follows her strategy,Ew[vτ(h,w)|τ(h,w) = t+ 1 + u] is the expected value for
Buyer of type w conditional on agreement at time t+ 1 + u andEw[pt+1+u] is the
expected price Buyer pays conditional on agreement at time t+ 1 + u.³ Given an
(adapted) learning strategy for Buyer, the expected valuation of the good for
Buyer is a Martingale. Thus, it holds

Ew[vτ(h,w)] = w. (A.2)

Let w′ > w be another possible type after history h. If Buyer of type w instead
uses the optimal stopping strategy of the higher type w′, τ(h,w′), it holds again
by Martingale property.

Ew[vτ(h,w′)] = w. (A.3)

Similar to the classical proof, I use a no-imitation argument. From the
equilibrium property it follows

V(w, h) ≥
∑
u≥0

δtαt+1+u(w′, h)(Ew[vτ(h,w′)|τ(h,w′) = t+1+u]−Ew[pt+1+u(w′, h)]).

Replacing the formula for V(w′, h) from above yields

V(w′, h)− V(w, h) ≤ Ew′ [δτ(h,w)vτ(h,w)]− Ew[δτ(h,w)vτ(h,w)].

³Note that time has been shifted accordingly.
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Next, I show the following relation.

Ew′ [δτ(h,w)vτ(h,w)]− Ew[δτ(h,w)vτ(h,w)] ≤ w′ − w. (A.4)

Proof of (A.4). Fix a stopping time τ and consider two bounded, non-negative
stochastic processes (vt)t and (v′t)t such that for all t it holds vt ≤ v′t. Then it
follows

E[vτ(1−δτ)] ≥ E[v′τ(1−δτ)] ⇐⇒ E[vτ]−E[δτvτ] ≥ E[v′τ]−E[δτv′τ]. (A.5)

When Buyer starts with type w′ > w and follows the same strategy as if she
started from w, after every learning opportunity she receives a pointwise weakly
higher estimate of the value of the good than under w (see Remark 1). Since this
holds pointwise, one can use the inequality (A.5) together with (A.2) and (A.3)
to show (A.4).

End of proof of (A.4).
This establishes the Lipschitz continuity of w 7→ V(w, h). One writes

V(w, h) = max
learning,τ,h-measurable

E[δτvτ − pτ].

For every fixed learning and stopping strategy, it holds that vτ increases pointwise
with w. Therefore monotonicity of w 7→ V(w, h) follows from a simple
optimization/envelope theorem argument.

End of proof of Claim 1.
As a next step, one establishes the following skimming property.

Skimming: w−p ≥ δV(w, h) =⇒ w′−p > δV(w′, h), whenever w′ > w.

To see this, one uses Lipschitz continuity of w 7→ V(w, h) as follows.

w− p ≥δ(V(w′, h) + w− w′) ⇐⇒ w+ δ(w′ − w)− p ≥ δV(w′, h)

=⇒ w′ − p > δV(w′, h),
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where the last step used the fact that w′ > 0.
Proof of part 1) of the Lemma. Suppose that after history h the highest

possible on-path Buyer valuation is w̄ and the lowest possible is w. Note that any
Buyer type can always ensure 0 by always rejecting after any history. Same holds
for Seller; she can always ensure zero after any history by always offering prices
which are too high (say prices above v̄). This implies that after any history, the
expected valuation of any Buyer type whenever there is agreement is below the
highest valuation w̄. Because the continuation payoff V(w, h) is increasing in w it
holds then that V(w, h) ≤ w̄.

It follows through Lipschitz continuity that

V(w, h) ≤ w+ w̄− w.

In particular, it follows that all Buyer types accept any subsidy larger than
−w+ w̄ immediately. Given this, it is never optimal for Seller to charge prices
below w− w̄. Knowing this, Buyer of type w accepts any p satisfying
w− p ≥ δ(w− (w− w̄))⇐⇒p ≤ w− δw̄. Iterating this argument just as in the
classical proof, one finds that Seller requires prices strictly below w− δnw̄. Send
n→∞ to finish the proof.

Proof of part 2) of the Lemma. Suppose Seller after some public history h
asks with positive probability for a price p smaller than the reservation price of a
Buyer of type w. Denote the reservation price of this type by r(w, h) in the PBE
in question. It satisfies w− r(w, h) = δV(w, h). It holds for any w′ > w that
w′ − r(w, h) > δV(w′, h). Because of the skimming property, increasing p to
p+ ε with p+ ε < r(w, h) and keeping the same probability on it as previously
on p leads to higher profits.

Next, assume towards a contradiction that Seller asks for a price above the
highest reservation price that is accepted with positive probability after the
history h is optimal. Let Fh be the distribution of types conditional on history h
and set w̄ for the highest type in the support of Fh. Denote by VS(h) the
continuation payoff of Seller from the equilibrium strategy. Charging more than
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the highest reservation price r(w̄, h) results in a payoff δVS(h). Suppose that
instead Seller charges with positive probability p also w̄− ε with some ε > 0
small. The payoff from this deviation is at least

p · Fh(w̄)(w̄− ε) + (1 − p) · δVS(h) > δVS(h),

for all ε > 0 small enough. The inequality above follows from the fact that in
the assumed strategy, game slides into next period with starting distribution Fh
(Seller does not learn anything by charging a price which no Buyer type can
afford). In particular it holds

VS(h) ≤ sup{r(w, h′) : w ∈ supp(Fh′), h′ a continuation history of h} ≤ w̄.

Here, the second inequality uses the fact r(w, h) ≤ w for all w and all h.

Proof of part 3) of the Lemma. If this probability were zero, then no
equilibrium would exist where this price is quoted with positive probability
because Seller, whenever the equilibrium would prescribe quoting that price with
positive probability, would want to deviate to arbitrarily smaller price offers. In
particular, there would not be a well-defined best response of Seller after such a
history. This contradicts the existence of the equilibrium.

Proof of part 4) of the Lemma. Upon disclosure of current valuation Seller
can calculate the valuation of Buyer and knows that this valuation will not change
going forward. The proof of part 4) is finished by an argument that follows the
logic of the uniqueness of payoffs for the usual Rubinstein-Stahl bargaining
model. See Example 9.A.A.2 in Mas-Collel et al. [1995].⁴

⁴Thedetails are as follows. Suppose for simplicity and normalization that valuation toBuyer af-
ter this history of disclosure isw. Because this is common knowledge after the verifiable disclosure,
the subgame turns into a classical share-the-pie game. Let vS be the lowest PBE payoff in the con-
tinuation game of Seller, v̄S the highest PBE payoff in the continuation game of Seller and define
in addition accordingly vB, v̄B to be respectively the lowest and the highest PBE payoffs for Buyer.
Note that, because of learning once, the subgame after a rejection is isomorphic to the game started
after the history of disclosure. Suppose Seller offers more than δv̄B. Then this is accepted and so
vS ≥ w − δv̄B. Now note that v̄B ≤ w − PBE payoff of Seller ≤ w − vS. Combining with the
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□
The next Remark shows that Lemma 1 remains valid in the environment with

costs.

Remark 2 (Lemma 1 in the case of costs). All the statements of Lemma 1 remain
valid in the environments with costs from sections 1.3 and 1.4.1.

Proof. To see this, note first that all arguments in the Claim 1 of the proof of
part 1) of the Lemma remain true if one interprets the price pu(w, h) in the proof
arguments as the expected costs incurred if agreement is reached at period u for
Buyer of type w at history h. These costs contain the price costs of the purchase at
time u as well as the information acquisition costs incurred in the period between
u and history h.⁵ Note also that the probability of agreement αu(w, h) used in the
proof is history-dependent and thus does not depend on whether the arrival rate
of information μ is history-independent. This, and the fact that the proof of part
1) of Lemma 1 involves only Buyer payoffs, yield that part 1) remains true in the
case of costs.

It is trivial to see that the proof of parts 2) and 4) of Lemma 1 do not depend
on whether information is costly or not, because they involve the pricing decision
of Seller.

To see that part 3) of the Lemma remains true in the environment with costs
just note that any information costs incurred in the past are sunk at the moment
of Buyer’s decision of whether to accept an offered price. □

Corollary 7. After every private history h the reservation prices of Buyer types
r(w, h) are strictly increasing in w.

Proof. From the definition of reservation prices w− r(w, h) = δV(w, h) and
the skimming property it holds that w′ > w implies w′ − r(w, h) > δV(w′, h). It
follows r(w′, h) > r(w, h). □

previous inequality, delivers overall that vS ≥ w. This implies Seller leaves zero surplus to Buyer.
⁵The crucial assumption that allows this interpretation is the fact that information acquisition

costs enter the overall payoff of Buyer linearly.
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Corollary 8 (No quiet periods). There is no PBE where after a history in which
Seller is called upon to play, the probability of trade is zero.

Proof. This is very similar to the second part of the proof of part 2) of Lemma 1.
□

Proof of Lemma 2. Disclosure never happens when learning good news and
Buyer receives positive payoff in the PBE after receiving good news, since
learning is only once and disclosure would lead to zero continuation payoff.

Delaying disclosure of bad news never increases payoffs. Since the learning
happens only once, Buyer with bad news knows that she receives zero payoff in
equilibrium, no matter disclosure decision. This is true after every private history.
□

A.1.2 No sequential screening of valuations near the HFL

First, I define a refinement for a PBE.

Refinement for off-path beliefs: ‘divinity in bargaining’. After an
off-path history resulting from the rejection of a price, if the pool of Buyer types
contains only one type who was indifferent between accepting and rejecting and
all other types, for which Seller’s belief had positive probability, had a strict
incentive to accept the quoted price, then Seller starts new period with a belief
that puts probability one on the type who was indifferent between accepting and
rejecting in the last period.

This equilibrium selection is motivated by the ‘divinity’ criterion for signalling
games, see Banks and Sobel [1987]. The strongly stationary equilibria
constructed in this paper satisfy divinity in bargaining.

Proposition 29. For all Δ small enough, there are no equilibria which satisfy the
following properties.

A. v > 0 and Buyer of type v discloses immediately,
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B. sequential screening of valuations.

or

A. v = 0 and Buyer of type v discloses immediately

B. stationarity,

C. sequential screening of valuations,

D. ‘divinity in bargaining’.

Proof. I show that for all Δ small enough, generically, all PBEs do not satisfy all
of the properties in the statement of the Proposition. The proof is split into
several claims. First, focus on the case v > 0.
Claim 1. a) Fix Δ > 0. There is no PBE which satisfies A and has sequential

screening dynamics of arbitrary length (i.e. K = ∞ is impossible for any Δ).
b) Under the requirement A the number of periods needed in any PBE with

sequential screening dynamics does not grow faster than 1
Δ , i.e. K(Δ)Δ = O(1).

To see a), suppose there is such a PBE. Then the price dynamics, given by the
reservation price relation of type v̄, satisfies

rk = (1 − δ)v̄+ δrk+1, k ≥ 1, (A.6)

with r2 < v̄. Then one can solve for the dynamics to get

rk+1 =
1

δk−1 r2 + (1 − 1
δk−1 )v̄.

This dynamics leads to rk→−∞ due to δ < 1 and this is a contradiction to
results of Lemma 1.

To see b) consider a sequence of equilibria which satisfy A. and have
sequential screening dynamics. The reservation price relation for the high type v̄
given by v̄− ri = δ(v̄− ri+1) delivers ri − ri+1 = (1 − δ)(v̄− ri+1). A telescopic
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sum argument gives

r1 − rK =

K(Δ)−1∑
j=1

(ri − ri+1) ≥ (1 − δ)(K(Δ)− 1)(v̄− r1),

where the last step uses that prices ri, i ≤ K(Δ) are decreasing. Recall that
1 − δ = 1 − e−rΔ and from iterating the reservation price relation for the type v̄
one arrives at v̄− r1 = δK(Δ)−1(v̄− rK(Δ)). Overall it follows

1 ≥
r1 − rK(Δ)
v̄− rK(Δ)

≥ (1 − δ)δK(Δ)−1(K(Δ)− 1).

This delivers through simple estimates

K(Δ)Δ ≤ Ce−rK(Δ)Δ,

for some C > 0 which is independent of Δ. From here it is easy to see that
K(Δ)Δ remains bounded away from infinity.⁶
Claim 2. In the last period K on path, a price 0 < rK ≤ v̂ is quoted.
By the skimming property the sequence of decreasing prices rl corresponds, up

to the last period K(Δ) < ∞, to the reservation prices of the high-type v̄. In
periodK(Δ) rK(Δ) corresponds to the reservation price of type v̂. If it corresponds
to the reservation price of type v̄, then this implies that type v̂ is never screened
before period K(Δ) and thus, with positive probability, bargaining goes on into
period K(Δ). This is a contradiction to the definition of K(Δ) and to Claim 1.

If rK > v̂, with positive probability the game does not end at or before K
because Buyer type v̂who is present in period K(Δ) after non-disclosure with
positive probability rejects rK(Δ). Given that rK(Δ) is the reservation price of v̂,
Lemma 1 delivers rK(Δ) > 0 (recall that type v discloses immediately and has zero
payoff after every on-path history).

⁶The function x 7→ xe−rx, x ≥ 0 is strictly increasing, continuous and convex.
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For ease of notation, in the following I sometimes suppress the dependence on
Δ in K(Δ), whenever the argument does not rely on the precise magnitude of Δ.

Claim 3. If v > 0 then K ≤ 2. In particular, the game never continues past
third period, whenever Δ is small enough.

To see this, assume that K ≥ 4 in the equilibrium and look for a contradiction.
The price at time t = K− 1, rK−1 necessarily satisfies

rK ≤ U(γK−1)(rK−1 − δrK) + δrK,

which can be rewritten with the help of (A.6) from the proof of Claim 1 as
U(γK−1) ≥

rK
v̄ . But if K ≥ 4 then it holds γK−1(v̄) ≤ U(0) if there are sequential

screening dynamics, because it holds γ2(v̄) ≤ U(0) by virtue of the assumed
updating of Seller in Definition 2. γ→U(γ) is strictly increasing and one
calculates

U−1
( rK
v̄

)
=

rK
v̄ (1 − μ(1 − π0))− μπ0

1 − μπ0 − rK
v̄ μ(1 − π0)

.

The following string of inequalities results.

v
v̄
<

rK
v̄
≤ π0μ(2 − μ)

1 − (1 − π0)μ(1 − μ)
. (A.7)

Here the last inequality on the right follows fromU−1
( rK

v̄

)
≤ U(0). The

right-hand side of (A.7) converges to zero as Δ→0 and this establishes a
contradiction if v > 0.

Claim 4. There is no sequential screening of valuations with v > 0, whenever
Δ is small enough.

The case K = 1 is easy to exclude, because it would require that price be v in
the first period and this is suboptimal as Δ vanishes, because with very high
probability Buyer has not learned yet. Suppose therefore in the following that
v > 0 and focus on the case K = 2.
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Optimality at t = 1 leads to

U(0)((1 − δ)v̄+ δr2) + (1 − U(0))δr2 ≥ r2.

This gives r2 ≤ U(0)v̄. SinceU(0)→0 as Δ→0, a contradiction to the
inequalities r2 > v > 0 results.

I now turn to the case v = 0.

Claim 5. There is no PBE with sequential screening of valuations, whenever Δ
is small if v = 0, if in addition one requires stationarity and ‘divinity in
bargaining’.

Assume there exists such a PBE, of maximal length on path of K ≥ 1 for a
sequence of Δ small and show that for any such PBE and Δ > 0 small enough,
the price quoted in the last period K(Δ) converges to a unique positive number,
uniformly and independently of the ‘length’ K(Δ),Δ→0 of the equilibrium.
Once this is established, it suffices to essentially repeat the argument in Claims 3
and 4 of the case v > 0 to conclude the proof.

First note that due to ‘divinity in bargaining’ and stationarity, if the price rK is
rejected, then in the period K+ 1 Seller begins with belief of high type equal to
zero and updates upon non-disclosure to the interim beliefU(0). Because rK is
the reservation of type v̂ after a history of rejection of r1, . . . , rK−1 it holds
v̂− rK = δVcont

B (v̂)where Vcont
B (v̂) is the continuation payoff according to the PBE

in question. This subgame is isomorphic to the whole game and so because of the
stationarity assumption it holds v̂− rK ≥ δVB. To ease notation, define for use in
the following pk = rK−k, k ≤ K. The reservation price relation for type v̄ from
the price dynamic leads to v̄− pk−l = δk−l(v̄− p0). The goal is to try to
characterize p0 explicitly.

Let Vcont
k be the payoff of Buyer at the beginning of period K− k on path, if she

has not learned yet. It holds

VB = μπ0(v̄− pK) + 0 + (1 − μ)δVcont
K−1. (A.8)
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Moreover, the following recursion holds

Vcont
k = μπ0(v̄− pk) + (1 − μ)δVcont

k−1.

Using the recursion repeatedly leads to

Vcont
K−1 = μπ0

M∑
l=1

(v̄− pK−l)((1 − μ)δ)l−1 + ((1 − μ)δ)MVcont
K−M−1.

Specialize toM = K− 1 to arrive at

Vcont
K−1 = μπ0δK−1(v̄− p0)

K−1∑
l=1

(1 − μ)l−1 + ((1 − μ)δ)K−1Vcont
0 . (A.9)

Here it holds Vcont
0 = μπ0(v̄− p0) + (1− μ)(v̂− p0). Using this together with

(A.8) and (A.9) leads after algebra to

VB = δKπ0(v̄− p0)(1 − (1 − μ)K+1) + δK(1 − μ)K+1(v̂− p0).

Combining this with the definition of the reservation price p0 leads to the
following equation for p0.

v̂− p0 = δK+1π0(v̄− p0)(1 − (1 − μ)K+1) + δK+1(1 − μ)K+1(v̂− p0).

Here one has used the stationarity requirement. This can be solved for p0

uniquely to give

p0 =
π0 − σ
1 − σ

v̄,

where σ is given by

σ(Δ,K, π0) =
δK+1(1 − (1 − μ)K+1)π0

1 − δK+1(1 − μ)K+1
.
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Note in particular that σ ∈ (0, π0) for all Δ. p0 remains bounded away from 0 as
Δ→0 as long as in the HFL σ remains bounded away from π0, as Δ→0.

It is easy to see that σ(Δ,K,π0)
π0

remains bounded away from one, as Δ→0.
Namely, this follows from

σ(Δ,K, π0)

π0
=

e−rΔ(K(Δ)+1)(1 − e−λΔ(K(Δ)+1))

1 − e−(r+λ)Δ(K(Δ)+1) ,

and the fact that K(Δ)Δ remains bounded as Δ→0. If K(Δ)Δ remains bounded
away from zero along a subsequence, then this is clear. Otherwise, one uses the
elementary limit statement: 1−e−rt

1−e−(r+λ)t→ r
r+λ as t→0.

□

Proof of Proposition 5. Note that the proof of Claims 1,2,3 in the proof of
Proposition 29 only uses the definition of sequential screening of valuations as
well as the fact that 0 < v < v̄. Therefore it can easily be adapted to give
non-existence of sequential screening dynamics for the case of deterministic
variable costs. This follows because with deterministic variable costs Buyer is
never able to learn perfectly, because perfect learning is prohibitively costly. This
results in Buyer types strictly above zero after every Seller-history, even in the
case v = 0.

By an analogous logic to the proof of the first part of Proposition 29, the result
remains true for the case of stochastic fixed costs, provided that v > 0. □

A.1.3 High-price stationary equilibria and Buyer payoff near HFL

First, I give a formal definition of a high-price equilibrium.

Definition 9. Say that a PBE is a high-price equilibrium if, on path, whenever it
is Seller’s turn to quote a price, he asks with probability one for the highest buyer
type that has positive probability using public information at that moment in
time.

Next I show that an equilibrium features zero Buyer payoff if and only if it is a
high-price equilibrium.
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Lemma 5. An equilibrium with zero Buyer payoff must be a high-price equilibrium.

Proof. To see this, suppose that Seller after an on-path history of some length t,
asks with positive probability for a price lower than the highest valuation she
deems feasible with positive probability after that history. Buyer with the highest
valuation can then achieve, with positive probability, a strictly positive payoff in
the continuation game after that history. Namely, she can wait until period t and
accept any price strictly below her reservation price. Since in an equilibrium of
the game Buyer can always ensure a non-negative payoff after each non-terminal
history which is on path, an overall positive surplus would result for Buyer,
whenever the equilibrium is not a high-price equilibrium. □

Proof of Proposition 3. The proof is constructive. I find parameter restrictions
which ensure that the Seller-optimality conditions (1.4) and (1.5) are satisfied.
The last part of the proof specifies off-path beliefs.

Note thatU(γ) > γ and it is strictly increasing in γ. Denote also
U(0) = μπ0

1−μ(1−π0)
. Note also that the map γ→B(γ, q) = γ(1−q)

γ(1−q)+1−γ has
B(γ, q) < γ and that it is decreasing in q (equivalently increasing in (1 − q)) as
well as increasing in γ. In particular, limγ→0 B(γ, q) = 0 uniformly in q ∈ [0, 1].⁷

One can solve for the q in (1.3) to get

q(γ) =
μπ0 + γμ(1 − π0)

γ + (1 − γ)μπ0
∈ (0, 1]. (A.10)

It holds q(0) = 1 and q(1) = μ and q is strictly decreasing in γ.
For future use, let us also note

U(γ)q(γ) =
μπ0 + γμ(1 − π0)

1 − (1 − γ)μ(1 − π0)
. (A.11)

U(γ)q(γ) is increasing in μ and it is increasing in γ.⁸ One has

⁷Just note that B(γ, q) ≤ γ
1−γ , for all q ∈ [0, 1].

⁸Namely it holds

d
dγ

U(γ)q(γ) =
μ(1 − π0)(1 − μ)

(1 − (1 − γ)μ(1 − π0))2
.
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U(γ)q(γ)|γ=0 = U(0) as well asU(γ)q(γ)→0 as μ→0, uniformly in γ.
Moreover it holds

lim
μ→1−

U(γ)q(γ) =
π0 + γ(1 − π0)

1 − (1 − γ)(1 − π0)
= 1.

The payoff functionW(γ) of Seller from t = 2 on satisfies the recursion

W(γ) = (γ + (1 − γ)π0μ)v̄ · q(γ)

+ (1 − γ)μ(1 − π0)v

+ δ((γ + (1 − γ)μπ0)(1 − q(γ)) + (1 − γ)(1 − μ))W(γ).

After algebra this results in

W(γ) =
(γ + (1 − γ)π0μ)v̄ · q(γ) + (1 − γ)μ(1 − π0)v

1 − δ((γ + (1 − γ)μπ0)(1 − q(γ)) + (1 − γ)(1 − μ))
.

Because of the formula for q(γ) this simplifies to

W(γ) =
μ

1 − δ(1 − μ)
((π0+γ(1−π0))v̄+(1−γ)(1−π0)v) =

μ
1 − δ + δμ

(γv̄+(1−γ)v̂).

W is strictly increasing in γ with derivative

dW(γ)
dγ

=
μ(1 − π0)(v̄− v)

1 − δ(1 − μ)
.⁹

Now I show that the binding constraint for Seller-optimality is that from t = 1.

⁹In particular, it is also Lipschitz continuous in (μ, γ). We haveW(0) = μ̂v
1−δ(1−μ) andW(1) =

μ̄v
1−δ(1−μ) .

But because γ is bounded above, we know that the highest value ofW is actually

W(U(0)) =
μ

1 − δ + δμ
(U(0)v̄+ (1 − U(0))v̂).
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Claim. Whenever q1 is such that Seller-optimality condition for p = v̄ at t = 1
holds, seller optimality holds also for t ≥ 2.

Proof of the Claim. Note that, becauseU(γ)q(γ) is increasing, it holds
U(0)q1 ≤ U(0) ≤ U(γ)q(γ). Moreover, it holds that δW(γ) < v̄, uniformly for
all γ. Namely,

δW(γ) ≤ δW(1) =
δμv̄

1 − δ + δμ
< v̄.

Given that γ 7→ U(γ)q(γ) is strictly monotonic, the result in the claim follows.
End of the proof of the Claim.
Note that for q1 = 0 Seller-optimality condition at t = 1 is never satisfied,

whereas for q1 = 1 it is satisfied whenever

(C− high) U(0)v̄+ (1 − U(0))δW(U(0)) > v̂.

By use of continuity this gives a sufficient condition for existence of the
full-extraction PBE.

One can write (C− high) as

U(0)(1 − δ + δμ + δμ(1 − U(0)))v̄ > (1 − δμ(1 − U(0))2)v̂.

As λ→∞ (equivalently μ→1) it holdsU(0)→1 and so (C− high) in the limit
μ→1, and fixed other parameters, becomes the condition v̄ > v̂. This is always
true, by assumptions on the primitives.

It remains to specify off-path play. I focus on specifying play only after single
deviations.¹⁰ For any more complicated deviations of the players, general
existence theorems show existence of some continuation PBE after such histories.

Seller off-path. Suppose that at the beginning of a period the current belief
of Seller is γ̂ 6= 0, γ (in particular play is at a period t ≥ 2). Given belief about

¹⁰I specify off-path play only in this Proposition. For the sake of length, in other proofs in the
following where stationary equilibria are constructed, I skip specifying off-path play whenever it
follows an analogous logic to the one given here.
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continuation play, and the fact that parameters are such that for given
continuation play, Seller chooses optimally p = v̄ at γ = 0, it holds that:
incentives to charge p = v̄ are even stricter when γ̂ > γ and t ≥ 2 as well as for
all γ̂ > 0 when t = 1.

Let us consider now the other case: γ̂ ∈ [0, γ) and t ≥ 2. Because the beliefs
need to be derived by equilibrium strategies of Buyer whenever possible, there
are two cases to consider:

- Case 1: γ̂ came about after a past rejection of a price above v̄. In this case, in
the very next period after the rejection the belief, from the specification of
strategies, would beU(γ). Given continuation play, this would mean that γ̂ > γ,
a case already considered above.

- Case 2: γ̂ came about after a past rejection of a price p ∈ (v̂, v̄). In this case,
in the next period Seller should have started with belief 0 and in any future period
the starting belief of Seller should be the stationary γ. Thus this case is covered by
the specification of strategies on path.

Buyer off-path. - If Seller deviates to some price p 6= v̄ every Buyer type
responds according to her reservation price strategy: if the price is strictly lower
than the reservation price of her type Buyer accepts immediately, if it is strictly
higher she rejects.

- If Buyer of type v has not disclosed in the past, she still remains indifferent
between disclosing and not disclosing. Prescribe disclosure in the current period
after such a history.

- If Buyer has disclosed good news and Seller has not asked yet for all the
surplus, Buyer accepts any price weakly lower than v̄ and rejects any price strictly
higher. This is optimal given the anticipation that the continuation payoff of
Buyer is zero in the continuation game. □

Proof of Proposition 4. First I prove a couple of auxiliary claims.
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Claim 1. An equilibrium with zero Buyer payoff necessarily has Seller quote a
price p = v̄ as long as bargaining goes on and there is no disclosure.

Proof of Claim 1. Suppose this is not the case and denote by t the first period
in which, after no disclosure, the price quoted by Seller is lower than v̄with
positive probability. W.l.o.g. assume that the prices up to and including period t
upon non-disclosure are in (v̂, v̄].¹¹ Suppose that Buyer uses the following
strategy: unless there is informational arrival and θ = v, wait until period t and in
period t accept the current price if and only if it is weakly above Buyer’s period-t
estimate of the value of the good. If information arrives before or at date t and
θ = v, disclose immediately. For periods after t, disclose only if θ = v (and
immediately) and otherwise accept only if price is strictly below current estimate
of value. Under this strategy Buyer has a strictly positive payoff with positive
probability in period t, and otherwise non-negative payoff in all other histories.
Overall, this leads to a contradiction to the assumption that the equilibrium
payoff of Buyer is zero.

End of proof of Claim 1.

Claim 2. Under any disclosure equilibrium in which Seller quotes p = v̄ on
path, the overall payoff of Seller in the HFL is less than λ

λ+r v̂.
Proof of Claim 2. Fix such an equilibrium as in the statement of the claim for

a Δ > 0. Denote by A(Δ) the random variable giving the agreement time and by
L(Δ) the random variable giving the time at which Buyer learns. Note that L(Δ)
is geometrically distributed. Because on path the price quoted upon
non-disclosure is always v̄ it holds for both of θ = v, v̄ that A(Δ) ≥ L(Δ) almost
surely. Moreover, Seller receives a payoff of either v̄ or v at time A(Δ) under these
strategies. One calculates

¹¹Otherwise it is easy to showBuyer receives positive payoffwith positive probability already in
period one.
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Seller-payoff = v̄E[δA(Δ), θ = v̄] + vE[δA(Δ), θ = v]

≤ v̄E[δL(Δ), θ = v̄] + vE[δL(Δ), θ = v]

= v̄π0E[δL(Δ)|θ = v̄] + v(1 − π0)E[δL(Δ)|θ = v]

= v̂E[δL(Δ)].

Here, the first inequality follows from A(Δ) ≥ L(Δ)which holds almost surely
under the assumptions made, whereas the last equality follows from the fact that
the arrival of the opportunity to learn is independent of θ. Now I show that in the
HFLE[δL(Δ)] converges to λ

λ+r . Recall that δ = δ(Δ) = e−rΔ and that L(Δ) is
geometrically distributed over 1, 2, . . . with probability of success given by
μ = 1 − e−λΔ. It follows

E[δL(Δ)] =
μ

1 − μ

∞∑
t=1

e−(r+λ)t =
μ

1 − μ
e−(r+λ)Δ

1 − e−(r+λ)Δ .

One uses that 1−e−xΔ

Δ →x as Δ→0 for all x > 0 to finish the proof of the claim.
End of proof of Claim 2.
Now I finish the proof of the Proposition. The condition of optimality of p = v̄

in the first period under the assumption of a disclosure equilibrium is given by

U(0)(v̄)q1v̄+ (1 − U(0)(v̄)q1)δW ≥ U(0)({v̂})v̂, (A.12)

where q1 is the probability with which Buyer of type v̄ accepts the price v̄ in
period 1 andW is the continuation payoff of Seller upon non-disclosure and
rejection of price v̄ in period 1. HereU(0) ∈ P({v, v̄, v̂}) is the belief of Seller in
t = 1 over Buyer types after non-disclosure. It is given explicitly by
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U(0)(v̄) =
μπ0

1 − qdμ(1 − π0)
,

U(0)(v̂) =
1 − μ

1 − qdμ(1 − π0)
,

U(0)(v) =
(1 − qd)μ(1 − π0)

1 − qdμ(1 − π0)
,

where qd ∈ [0, 1] is the probability with which type v discloses if Buyer learns in
t = 1 that θ = v.

In particular, it holdsU(0)({v, v̄}),U(0)({v̄})q1→0 as Δ→0 uniformly in
q1, qd. It holds

δW =

(
Seller-payoff − qdμ(1 − π0)v

1 − qdμ(1 − π0)
− U(0)(v̄)q1

)
1

1 − U(0)(v̄)q1
.

It follows that
lim sup

Δ→0
δW ≤ λ

r+ λ
v̂ < v̂.

Since the left-hand side of (A.12) in the limit converges to v̂ this shows that the
condition of optimality of p = v̄ upon non-disclosure at t = 1 cannot be satisfied
for Δ→0 (deviating to v̂− ε for small and positive ε is strictly better for Seller
near the HFL).

This finishes the proof of the Proposition. □

A.1.4 Proof of Theorem 1

I prove Theorem 1 through a series of Lemmas and Propositions. I focus first on
the case of strongly stationary equilibria with mixed pricing before analysing pure
pricing. This is because their analysis is more involved and several proof steps for
the case of pure pricing are similar to the case of mixed pricing. The same
organizational principle holds true for all results characterizing HFL of strongly
stationary equilibria in the paper.
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The following Lemma is helpful for all existence results of strongly stationary
equilibria in the paper.

Lemma 6. Themap [0, 1] 3 q 7→ q
1−δ(1−μ)(1−(1−p)q) is strictly increasing and strictly

concave for any p ∈ [0, 1).

Proof. One calculates that

∂

∂q

(
q

1 − δ(1 − μ)(1 − (1 − p)q)

)
=

1 − δ(1 − μ)
(1 − δ(1 − μ)(1 − (1 − p)q))2

,

which shows that this function is strictly increasing and strictly concave for
q ∈ [0, 1]. □

The case of mixed pricing

An auxiliary remark follows which is helpful in the proof of Theorem 1.

Remark 3. The function g : (0, 1)→[0, 1], p→ δ(1−p)
1−δp is decreasing in p and

converges uniformly to 1, as Δ→0.

Proof. It suffices to note that 0 ≤ 1 − δ(1−p)
1−δp ≤ 1 − δ. □

The prices pH, pL are required to satisfy

v < pL < pH < v̄, and pL < v̂. (A.13)

Suppose Seller mixes among the prices pH, pL with probability (p, 1 − p). The
triple (pH, pL, p) necessarily satisfies

v̂− pL = δ(μπ0(p(v̄− pH) + (1 − p)(v̄− pL))

+ (1 − μ)(1 − p)(v̂− pL) + (1 − μ)pδVL),

where VL is the continuation payoff from starting a period in the stationary
phase with type v̂.
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It holds due to the reservation pricing feature of PBEs (part 2 of Lemma 1)
that δVL = v̂− pL. This leads to

v̂− pL =
μπ0(v̄− pH) + δ(1 − μ)(1 − p)(v̂− pL)

1 − δp(1 − μ)
.

Some algebra leads to

v̂− pL =
μπ0(v̄− pH)
1 − δ(1 − μ)

,

so that in total the two reservation-pricing relations about the prices pH, pL are
given by

v̂− pL
v̄− pH

=
μπ0

1 − δ(1 − μ)
,

v̄− pL
v̄− pH

=
1 − δp
δ(1 − p)

.

Lemma 7. 1) In any strongly stationary equilibrium with mixed pricing, pH, pL as a
function of p are given by

pL(p) = v̂−
μπ0

δ(1−p)
1−δp

1 − δ(1 − μ)− μπ0
δ(1−p)
1−δp

(v̄− v̂), (A.14)

pH(p) = v̄−
(1 − δ(1 − μ)) δ(1−p)

1−δp

1 − δ(1 − μ)− μπ0
δ(1−p)
1−δp

(v̄− v̂). (A.15)

2) pH, pL are strictly increasing in p ∈ [0, 1].
3)The price spread ps(p) = pH(p)− pL(p) is given by

ps(p) =

[
1 −

(1 − δ(1 − μ)) δ(1−p)
1−δp − μπ0

δ(1−p)
1−δp

1 − δ(1 − μ)− μπ0
δ(1−p)
1−δp

]
(v̄− v̂). (A.16)

Proof. This is straightforward algebra. Solving the two reservation price
relations of the two Buyer types as a function of the mixing probability p leads to
(A.14) and (A.15). The rest is also straightforward calculations. □

One checks easily by taking first derivatives, that the price spread
pH(p)− pL(p) is strictly increasing in p. Moreover, one checks easily that for
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every p ∈ (0, 1) it holds

v < pL(p) < v̂ < pH(p) < v̄.

The boundary values of pH, pL are given by (pH, pL are continuous in p ∈ [0, 1]).

pL(p = 0) = v̂− μπ0δ
1 − δ(1 − μ)− μπ0δ

(v̄− v̂)

pH(p = 0) = v̄− δ(1 − δ(1 − μ))
1 − δ(1 − μ)− μπ0δ

(v̄− v̂)

pL(p = 1) = v̂, pH(p = 1) = v̄. (A.17)

As a final boundary value I note down the price spread at p = 0.

pH(0)− pL(0) = (v̄− v)(1 − π0)
(1 − δ(1 − μ))(1 − δ)
1 − δ(1 − μ)− μπ0δ

.

Rewriting Seller’s reservation price relation (1.7) leads to the definition of a
function f(p, q)which satisfies

f(p, q)
μ(1 − U(0))

=
π0

1 − μ
ps(p)− q

1 − δ(1 − μ)(1 − (1 − p)q)
δ
(

1 − δ(1 − μ)
μ

pL(p)− π0p̂− (1 − π0)v
)
.

Existence of a two-price equilibrium with mixing probability p for Seller is
tantamount to finding a root in q of f(p,q)

μ(1−U(0)) .
First let us show the following auxiliary lemma.

Lemma 8. It holds as Δ→0 uniformly in p ∈ [0, 1] that

A.
pL(p) → ψ :=

rπ0v̄+ (r+ λ)(1 − π0)v
r+ (1 − π0)λ

,

B.
pH(p)− pL(p)→0.
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Proof. A. Note that

pL(p) = v̂−
μπ0

δ(1−p)
1−δp

1 − δ(1 − μ)− μπ0
δ(1−p)
1−δp

(v̄− v̂) = v̂−
μ
Δπ0(1 + O(Δ))

1−δ(1−μ)
Δ − μ

Δπ0(1 + O(Δ))
(v̄− v̂)

→v̂− λπ0

r+ (1 − π0)λ
(v̄− v̂) = ψ.

Here the last step follows from algebra and the uniformity in p comes from
Remark 3.

B. Use (A.16) from Lemma 7 to estimate that

(1 − δ(1 − μ)) δ(1−p)
1−δp − μπ0

δ(1−p)
1−δp

1 − δ(1 − μ)− μπ0
δ(1−p)
1−δp

= (1 + O(Δ))
1−δ(1−μ))

Δ − μ
Δπ0

1−δ(1−μ)
Δ − μ

Δπ0(1 + O(Δ))

→1.

Here the uniformity of the convergence of δ(1−p)
1−δp as well as the fact that

1−δ
Δ →r, μ

Δ→λ as Δ→0 have been used. This and (A.16) establishes the result. □
I note a sharper result for B. which is also used later. In particular, this Remark

also proves that the price spread disappears in the HFL.

Remark 4. It holds ps(Δ)
Δ → r+λ

r+(1−π0)λ
r

1−pπ0(1 − π0)(v̄− v).

Proof of Remark 4. Note that after some algebra

ps(p,Δ)
Δ

= π0(v̄− v̂)
1

1 − δp
1 − δ
Δ

1−δ(1−μ)
Δ

1−δ(1−μ)
Δ − μ

Δπ0
,

from which the result follows immediately, because v̄− v̂ = (1 − π0)(v̄− v). □
Now I establish existence of mixed stationary equilibria for any p ∈ (0, 1),

whenever Δ small enough.

Proposition 30. For any p ∈ (0, 1) there exist strongly stationary equilibria for all
Δ small enough. Moreover, for fixed Δ and fixed p such that existence is ensured, the
prices pL, pH and the mixing probability q of the type v̂ when she faces pL are unique.
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Proof. Fix p ∈ (0, 1).

Existence. Note that f(p,0)
μ(1−U(0)) =

π0
1−μ(pH(p)− pL(p)) > 0 by construction.

Thus, it suffices to show that f(p,1)
μ(1−U(0)) < 0 for all Δ small enough. First note that

1 − δ(1 − μ)
δμ

pL(p,Δ)−π0p̂−(1−π0)v →
(
r+ λ
λ

− π0

)
ψ−(1−π0)v > 0.

(A.18)
The last inequality follows from the fact that ψ > v, as one can easily check by
looking at the statement in part A. of Lemma 8. (A.18) and Lemma 6 show that
[0, 1] 3 q 7→ f(p,q)

μ(1−U(0)) is strictly decreasing and strictly convex in q. From the
results in Lemma 8 (namely part B. there) one arrives at

lim
Δ→0

f(p, q)
μ(1 − U(0))

= − 1
1 − p

( r
λ
ψ + (1 − π0)(ψ − v)

)
< 0. (A.19)

Here, one uses that δ(1− μ) = 1+O(Δ). Fixing some Δ̄(p)where f(p,1)
μ(1−U(0)) < 0

with Δ < Δ̄(p) it follows that there exists a unique zero for f(p,q)
μ(1−U(0)) whenever

Δ < Δ̄(p), denoted q(Δ, p). Moreover, q(Δ, p) is in (0, 1).

Uniqueness. The arguments above show uniqueness of q(Δ, p). Uniqueness
of the prices pL(Δ, p) and pH(Δ, p) follows from (A.15) and (A.14) in Lemma 7.
□

Next I characterize the HFL of mixed pricing equilibria. This involves several
steps. First, one calculates explicitly q(Δ, p) for fixed p and all Δ small enough.
From the condition f(p,q)

μ(1−U(0)) = 0 it follows that q(Δ, p) satisfies the relation

π0

1 − μ
ps(p) =

q(Δ, p)
1 − δ(1 − μ)(1 − (1 − p)q(Δ, p))

h(p,Δ, π0, v),

The function h(p,Δ, π0, v) here is strictly positively valued and it becomes the
constant function h∗ := r

λψ + (1 − π0)(ψ − v) in the HFL. This follows from
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straightforward algebra. Solving explicitly for q(Δ, p) one arrives at

q(Δ, p) =
(1 − δ(1 − μ))G(p,Δ))

1 − δ(1 − μ)(1 − p)G(p,Δ)
,

where
G(Δ, p) =

π0

1 − μ
ps(p)

h(p,Δ, π0, v)
.

Using Remark 4 one calculates that

G(Δ, p)
Δ

→G∗(p) :=
r

1 − p
π0

h∗
r+ λ

r+ (1 − π0)λ
π0(1 − π0)(v̄− v).

It follows that

q(Δ, p)
Δ2 =

1−δ(1−μ)
Δ

G(Δ,p)
Δ

1 − δ(1 − μ)(1 − p)G(p,Δ)
,

which leads to the HFL statement

q(Δ, p)
Δ2 →(r+ λ)G∗(p), Δ→0. (A.20)

The date of agreement is a geometric random variable with success probability
1 − (1 − μ)(1 − (1 − p)q(Δ, p)). One calculates using (A.20)

1 − (1 − μ)(1 − (1 − p)q(Δ, p))
Δ

=
μ
Δ
+ (1 − p)

q(Δ, p)
Δ2 · Δ→λ.

In all, the expected delay in real time converges to 1
λ , irrespective of p.

Finally, one calculates the stationary payoffs of Buyer and Seller. Recall the
relation

VΔ(q, p) =
μπ0(pHp+ pL(1 − p)) + (1 − μ)(1 − p)qpL + μ(1 − π0)v

1 − δ(1 − μ)(1 − (1 − p)q)
,

for Seller’s stationary payoff. Using Lemma 8 and (A.20) one arrives easily at
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the limit
VS =

λ
r+ λ

(π0ψ + (1 − π0)v), (A.21)

for the payoff of Seller in the HFL. The payoff of Buyer in any two-price
stationary equilibria satisfies

VΔ,B(q, p) =
μπ0(v̄− p̂) + (1 − μ)(1 − p)q(v̂− pL)

1 − δ(1 − μ)(1 − (1 − p)q)
.

By similar steps as the case of Seller’s payoff this converges in the HFL to

VB =
λ

r+ λ
π0(v̄− ψ). (A.22)

Note that VB,VS are independent of p ∈ (0, 1). Straightforward algebra leads
to the measure of inefficiency in the HFL given by

v̂− (VB + VS) =
r

r+ λ
v̂.

The case of pure pricing

For simplicity of exposition define in the following the function
ζ : [0, 1]× (0∞)→R+ by

ζ(q,Δ) =
q

1 − δ(1 − μ)(1 − q)
.

After algebra one can rewrite the Seller optimality condition in (1.6) as

1 − U(0)
U(0)

ζ(q,Δ)
pL − δVΔ(q, 0)

1 − δ
(1 − δ(1 − μ)(1 − q)) ≥ v̄− pL. (A.23)

Lemma 9. 1) Fix any Δ > 0. The reservation price relation of type v̂ is solvable for a
unique pL(Δ). It holds pL(Δ)→ψ, as Δ→0.
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2) Let q(Δ) satisfy q(Δ)
Δ →ϰ for some ϰ ∈ [0,∞]. It holds

ζ(q(Δ),Δ)→ ϰ
ϰ + r+ λ

, Δ→0,

where ϰ
ϰ+r+λ is to be understood as equal to 1, if ϰ = ∞.

3) For any sequence q(Δ),Δ→0 it holds

pL(Δ)− δVΔ(q(Δ), 0)
1 − δ

(1−δ(1−μ)(1−q(Δ)))→ψ+
λ
r
(1−π0)(ψ−v) > 0, Δ→0.

Proof. 1) One solves explicitly the reservation pricing relation

v̂− pL =
δμ

1 − δ + δμ
π0(v̄− pL),

to get

pL(Δ) =
v̂− δμ

1−δ+δμπ0v̄

1 − δμ
δμ+(1−δ)π0

.

Limit algebra leads to the conclusion that pL(Δ)→ψ.
2) It holds for every Δ > 0 that

ζ(q(Δ),Δ) =
q(Δ)
Δ

1−δ(1−μ)
Δ + q(Δ)

Δ δ(1 − μ)
.

The rest is simple limit algebra.
3) Simple algebra leads to

pL(Δ)− δVΔ(q(Δ), 0)
1 − δ

(1 − δ(1 − μ)(1 − q(Δ)))

= pL
1 − δ(1 − μ)

1 − δ
− (1 − μ)q(Δ)pL −

μ
1 − δ

(π0pL + (1 − π0)v).

The rest is simple limit algebra. □
Lemma 9 leads to the following result about solvability of (A.23).
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Lemma 10. Fix any v, v̄, π0, r, λ as in the setup of the model in section 1.2.
Furthermore, fix any q ∈ (0, 1).
Then (1.6) is solvable whenever Δ is small enough.

Proof. This is an easy consequence of the fact that 1−U(0)
U(0) = 1−μ

μπ0
→∞ as Δ→0

and of results in Lemma 9. □
Lemma 10 and the preceding calculations show existence of strongly

stationary equilibria with pure pricing for any baseline game parameters in
section 1.2. In particular, because 1−U(0)

U(0) →∞, one can always pick a sequence of
positive probabilities q(Δ) > 0,Δ→0 such that q(Δ)

Δ →ϰ as Δ→0, for any
ϰ ∈ [0,∞]. This shows that for any ϰ ∈ [0,∞] there exists HFL of strongly
stationary equilibria with pure pricing corresponding to ϰ.¹²

Uniqueness up to the acceptance probability q near the HFL for strongly
stationary equilibria with mixed pricing is immediate from the arguments above.

Next I characterize HFL payoffs depending on ϰ. It holds for Seller payoff in
strongly stationary equilibrium with pure pricing

VΔ(q(Δ), 0) =
(μπ0 + (1 − μ)q(Δ))pL + μ(1 − π0)v

1 − δ(1 − μ)(1 − q(Δ))
.

Limit algebra shows that in the HFL this converges to

VS(ϰ) =

ψ, if ϰ = ∞,

(λπ0+ϰ)ψ+λ(1−π0)v
r+λ+ϰ , if ϰ ∈ [0,∞).

For Buyer payoff one calculates

VB,Δ(q(Δ), 0) =
μπ0(v̄− pL) + (1 − μ)q(Δ)(v̂− pL)

1 − δ(1 − μ)(1 − q(Δ))
.

¹²For ϰ = 0 one can also use the strongly stationary equilibria with mixed pricing of the previ-
ous subsection, whereas for ϰ = ∞ one can pick q(Δ) = q0 ∈ (0, 1] with the understanding that
if q0 = 1 the equilibrium satisfies ‘divinity in bargaining’.
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Limit algebra shows that in the HFL this converges to

VB(ϰ) =

v̂− ψ, if ϰ = ∞,

λπ0 v̄+ϰv̂−(λπ0+ϰ)ψ
r+λ+ϰ , if ϰ ∈ [0,∞).

The sum of Buyer and Seller payoffs in the HFL isv̂, if ϰ = ∞,

ϰ+λ
ϰ+λ+r v̂, if ϰ ∈ [0,∞).

Note that the sum of Buyer and Seller payoffs in the HFL is an increasing
function of ψ and converges to its corresponding value v̂ as ϰmoves along a finite
sequence which converges to∞.

Finally, it remains to calculate the expected delay in the HFL for a sequence of
strongly stationary equilibria with pure pricing corresponding to some
ϰ ∈ (0,∞]. Equilibrium construction shows that the agreement date is a
geometric random variable with success probability 1 − (1 − μ)(1 − q(Δ)). One
calculates thus for the expected delay

Δ
1 − (1 − μ)(1 − q(Δ))

=
1

μ
Δ + q(Δ)

Δ (1 − μ)
→ 1

λ + ϰ
, Δ→0,

where the limit value is to be understood as zero if ϰ = ∞.
This finishes the proof of Theorem 1.

A.2 Proofs for section 1.3

A.2.1 ‘PositiveBuyerpayoff ineveryequilibriumwithcosts’anditscorol-
laries

I show a slightly more general statement than that of Theorem 2. The
generalization consists in

- I also look at the case of endogenous choice of intensity (see section 1.4.1)
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- I assume that Buyer can pick any two-dimensional experiments.

The two-parametric experiments are modeled as follows.

Remark 5. A general experiment is given by E : {v, v̄}→Δ({H, L}). s ∈ {H, L} is
the signal Buyer sees after performing the experiment. An experiment E is fully
identified with the two accuracy parameters aH = P(s = H|θ = v̄) and
aL = P(s = L|θ = v). The experiment is uninformative if and only if
aH

1−aL
= 1⇐⇒ aL

1−aH
= 1.

Because otherwise one can always relabel signals, one can assume w.l.o.g. that the
region of possible accuracy parameters is given by

∇ = {(aH, aL) : aH, aL ∈ [0, 1], aH + aL ≥ 1}.

I restrict in the rest of this subsection of the appendix to experiments parametrized
by pairs (aH, aL) in∇.

Define the function L : int(∇)→{(l1, l2) ∈ (1,∞)2, l1 + l2 < l1l2 + 1} given by
L(aH, aL) =

(
aH

1−aL
, aL

1−aH

)
. This map is a diffeomorphism.¹³ Note that the two

variables (l1, l2) are in (1,∞) and independent of each other, as long as they are
different from 1 and satisfy the condition l1 + l2 > l1l2 + 1.
They correspond to the informativeness of the two signals H, L w.r.t. the two states.

To see this, note e.g. that

l1 =
aH

1 − aL
=

P(s = H|θ = v̄)
P(s = H|θ = v)

.

Let v(H) be the valuation of the good, starting from prior π0, if s = H and
analogously v(L) the valuation if s = L. It holds

v(H) =
aHπ0v̄+ (1 − aL)(1 − π0)v
aHπ0 + (1 − aL)(1 − π0)

, v(L) =
(1 − aH)π0v̄+ aL(1 − π0)v
(1 − aH)π0 + aL(1 − π0)

,

for the Bayesian estimates of the value of good, upon observing a high (H) or low (L)

¹³See section on (non-)concavity of value of information in the online appendix for a proof.
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signal.
One calculates

v(H)− v̂ = π0(1 − π0)(v̄− v)
1

π0 +
1

aH
1−aL

−1

and
v̂− v(L) = π0(1 − π0)(v̄− v)

1
1

1− 1−aH
aL

− π0
.

As straightforward algebra shows, it holds that v(H)− v̂ is increasing and concave in
aH

1−aL
and v̂− v(L) is increasing and concave in aL

1−aH
.

It is therefore economically meaningful to put the costs on the pair ( aH
1−aL

, aL
1−aH

).
Namely, one can interpret the differences v(H)− v̂ and v̂− v(L) as ‘outputs’ from a
production process of information in which the ‘inputs’ are precisely l1, l2.
Say c : [1,∞)2→R is a cost function on informativeness if it satisfies

A. c(1, 1) = 0,

B. c is strictly convex and increasing in each argument,

C. limt→∞ c′(t, b) = limt→∞ c′(a, t) = +∞ for every a, b ∈ [1,∞).

Finally, say that C : [ 12 , 1)
2→R+ is a cost function if it holds

C(aH, aL) = c(L(aH, aL)) for all pairs (aH, aL) ∈ [ 12 , 1)
2 and a c which is a cost

function on informativeness.

In the model with deterministic variable costs assume for this section of the
appendix only, that Buyer possesses a cost function as defined in Remark 5.

Proposition 31. There is no high-price equilibrium in either of the following cases:
- deterministic variable accuracy costs with ∂aC( 1

2 ,
1
2) = 0 for a = aH or a = aL

- stochastic fixed accuracy costs.

Proof. The proof is by contradiction. Pick a Seller-history h on path. Because it
is an on-path history and because of part 4) of Lemma 1 (learning is possible only
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once), one can focus on h such that there has not been any disclosure until that
point in time and in which Buyer has rejected all prices up to that point in time.

Assume first, h is the shortest on-path history that has Seller put positive
probability on Buyer having received some news.

Let w̄(h) be the highest type feasible from the perspective of Seller after
history h. Thus, it corresponds to an agent who has learned. According to the
conjecture, the reservation price p̄(h) of Buyer who has received good news, is
quoted with probability one. This is because reservation prices move
co-monotonically with the type of Buyer (see Corollary 7), and because learning
happens once. Because of learning once, the type of Buyer won’t change over
time so going forward p̄(h) is the only price being quoted as long as no
agreement is reached. Thus, equilibrium payoff for this Buyer type going forward
is also w̄(h)− p̄(h). From the reservation pricing relation of Buyer with good
news, w̄(h)− p̄(h) = δ(w̄(h)− p̄(h)), one sees that this type has zero
continuation payoff, i.e. w̄(h) = p̄(h).

Now look at the history h′ which precedes h by one period and has Buyer get a
chance to learn with positive probability. Assume that h′ exists.

Seller after no-disclosure at h′ thinks that Buyer has not learned yet (this is
because of the definition of h). Thus, Seller charges at the end of that period the
reservation price of v̂, which is based on the specified continuation play in the
equilibrium.

Consider first the model with stochastic fixed costs of accuracy. I show that
Buyer has incentives to learn some of the time. This is because with positive
probability the opportunity to learn will arrive and the costs will be small enough
to justify learning θ conclusively. In the case of good news, Buyer makes a profit
of at least v̄− v̂, whereas in the case of bad news the payoff is zero.¹⁴ Thus, when c
is so low that

π0(v̄− v̂)− c > 0, (A.24)

Buyer has strict incentives to learn. Note that (A.12) happens with positive

¹⁴Here, one uses that reservation prices of a type are weakly below their valuation.
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probability under the assumptions on F in section 1.3.
Consider next the model with deterministic variable costs on accuracy, with

two-parametric experiments and so that the assumption in the statement is
satisfied.

I show that for some pair (aH, aL) it holds
π0aH(v̄− v̂) + (1 − π0)(1 − aL)(v− v̂)− C(aH, aL) > 0.

To see this, suppose the costs satisfy ∂aC( 1
2 ,

1
2) = 0 for either a = aH, aL.

Assume it for a = aH, the other case being analogous. Then for aH, aL near 1
2

given by aH = 1
2 + ε, aL = 1

2 with some small ε > 0¹⁵, one has

π0aH(v̄− v̂) + (1 − π0)(1 − aL)(v− v̂)− C(aH, aL) = επ0(1 − π0)(v̄− v)− C(
1
2
+ ε,

1
2
)

(A.25)

= επ0(1 − π0)(v̄− v)− O(ε2).

Here the last equality uses Taylor formula. Thus, there are incentives to learn
at least just very little, just before the last period in h.

Thus, it has to be that h corresponds to a history started in period one (i.e. h′

does not exist). In particular, the equilibrium must prescribe that Buyer chooses
to learn with positive probability in period one, if she gets the chance to learn
already in that period.

Take first the model where intensity is exogenous. Then Buyer has zero benefit
from learning because of the conjectured high-price structure of Seller’s
continuation strategy. Since learning is costly, Buyer does not learn so the
conjecture of Seller about Buyer learning with positive probability already in the
first period is wrong. This is a contradiction.

Consider next the model in which intensity is endogenously chosen at a cost
(see assumptions in section 1.4.1). The same argument leads to a contradiction,
because, given that the benefit of learning is zero in the continuation play, and
picking a positive intensity is costly, Buyer does not pick a positive intensity at all.

¹⁵I.e. signal structure is informative only in the case of good news but by very little.
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Overall, the assumption of a high-price equilibrium leads to a contradiction
under the assumptions on costs made in the statement of the Proposition.

□

Proof ofTheorem 2. Recall Lemma 5. It suffices to show the following claim.
Claim. For any Δ > 0 there are no high-price equilibria, if in the case of

deterministic variable costs the set of available experiments to Buyer is
constrained to the one-parametric one in section 1.3.

To see this, one adapts the proof of Proposition 31 to show that there are no
high-equilibria with costly learning in the set up of restricted experiments from
section 1.3. The only change necessary is in the case of deterministic variable
costs. Assume that instead of general experiments, Buyer only has access to the
one-parametric ones from section 1.3. One looks at a deviation to a = 1

2 + ε and
one replaces (A.25) with

π0(
1
2
+ ε)(v̄− v̂) + (1 − π0)(

1
2
− ε)(v− v̂)− c

( 1
2 + ε
1
2 − ε

)
= επ0(1 − π0)(v̄− v)− O(ε2).

Here one uses that
1
2+ε
1
2−ε = 1 + 4ε

1−2ε = 1 + O(ε), as ε→0. The remaining formal
arguments to conclude the proof of the Claim are verbatim the same as in the
proof of Proposition 31. The combination of Lemma 5 and of the Claim finishes
the proof of Theorem 2. □

Theorem 2 and Proposition 31 have several important implications. Call an
equilibrium a no-learning equilibrium if on path, Buyer learns with probability
zero.

Corollary 9. There is no no-learning equilibrium under the conditions of Proposition
31.

Proof. This follows from the arguments in the proof of Proposition 31. In an
equilibrium in which Buyer never learns, the price quoted by Seller in every
period, as long as the barganing goes on, is given by v̂. But under this
requirement, it occurs with positive probability that Buyer has strict incentives to
learn whenever she gets the chance. □
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Corollary 10. In the presence of costs there is no stationary high-price equilibrium.

Proof. This follows immediately from Proposition 31 when specializing to
stationary equilibria. □ In particular, none of the stationary high-price equilibria
from Proposition 3 survives the introduction of learning costs.

A.2.2 Proof of Proposition 6

The proof is split according to the assumptions on learning costs (deterministic
variable or stochastic fixed) and makes use of a series of auxiliary results stated in
the following in the form of Lemmas.

As in the case of costless learning I exhibit first the proof for the case of mixed
pricing and then add details for the case of pure pricing.

The case of mixed pricing

The case of deterministic variable costs. To save on notation introduce
the shortcut C(a) = c(I(a)) for a ∈ [ 12 , 1).

Lemma 11. There exists ε = ε(c, π0, v̂) > 0 such that for all p̂ and Δ with
|̂v− p̂| < ε,Δ < ε the reservation pricing relations of Buyer with good news and
Buyer of type v̂ are uniquely solvable.

Proof. Corollary 9 implies that any PBE with the parametric assumptions made
on costs in section 1.3 involves some amount of learning by Buyer.

Focus in the following only on p̂ such that
BL(p̂) := VA(a(p̂), p̂)− C(a(p̂)) > 0. Because BL(v̂) > 0 and continuity, the
requirement BL(p̂) > 0 is fulfilled in a small enough open neighborhood of v̂.

Fix an average price p̂ such that v < p̂ < v̄. With the assumption on costs it
follows that a(p̂) > 1

2 . Therefore, the possible Buyer valuations w̄,w are also
functions of p̂, i.e. one writes w̄(p̂),w(p̂). From the reservation price relation for
type w̄ one can write pH(p̂) = (1 − δ)w̄(p̂) + δp̂, whereas from the reservation
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price relation of type v̂ one can write

pL(p̂) = v̂− δμ
1 − δ + δμ

(V(a(p̂), p̂)− C(a(p̂))) .

Note that the reservation price relation for v̂ does not deliver pL < p̂. It only
delivers pL < v̂. To ensure that for given p̂ it holds for pL(p̂) that pL(p̂) < p̂, ask
for p̂ near enough to v̂. It holds that
VA(a(v̂), v̂)− C(a(v̂)) > VA(

1
2 , v̂)− C( 1

2) =
1
2(v̂− v̂) = 0.¹⁶ Therefore in the

following restrict to a neighborhoodN of v̂ such that

v̂− p̂ <
1
2

λ
λ + r

(VA(a(p̂), p̂)− C(a(p̂))). (A.26)

In additionN is required to satisfy BL(p̂) > 0 for all p̂ ∈ N .
Fulfillment of (A.26) for all p̂ near v̂ is ensured because the inequality is true

for p̂ = v̂ and the involved functions are continuous.¹⁷
Now let Δ̄ > 0 be small enough and pickN1, a compact non-empty

subinterval ofN such that for all p̂ ∈ N1 and Δ ≤ Δ̄ it holds

v̂− p̂ <
δμ

1 − δ + δμ
(VA(a(p̂), p̂)− C(a(p̂))).

This is again possible due to continuity and the fact that δμ
1−δ+δμ→

λ
λ+r , as Δ→0.

This, together with the trivial bound δμ
1−δ+δμ ≤ 1, leads to pL(v̂) < min{p̂, v̂},

as solved from the reservation price relation v̂. This finishes the proof of the
Lemma.

□
Focus in the following on Δ small and p̂with |̂v− p̂| < ε, as needed in

statement of Lemma 11.
Once pL(p̂) is determined with the property pL(p̂) < p̂, the stationary mixing

probability of Seller upon non-disclosure is uniquely determined the formula

¹⁶The inequality is strict because of the fact that C is strictly convex and Corollary 9.
¹⁷Continuity of [v, v̄) 3 p̂ 7→ V(a(p̂), p̂)− C(a(v̂)) follows from Berge’s maximum theorem.
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p(p̂) = p̂−pL(p̂)
pH(p̂)−pL(p̂)

. This proves that the sufficient statistic for the construction of
the strongly stationary equilibria is p̂.

Lemma 12. It holds w(p̂) < p̂ in a suitable open neighborhood of v̂.

Proof. To see this, note that w(p̂) is a continuous function of p̂ and that
w(v̂) < v̂, because valuation w is induced by bad news. □

In the following takeN , an open neighborhood around v̂ and Δ ≤ Δ̄ with
Δ̄ > 0 such that

– BL(p̂) > 0, p̂ ∈ N ,
– Lemmas 11 and 12 are true for the neighborhoodN of v̂ and Δ ≤ Δ̄.

It holds automatically that V(a, p̂) < v̂whenever p̂ > 0. To see this, use the
definition to get VA(a, p̂) < π0v̄+ (1 − π0)v− (π0a+ (1 − π0)(1 − a))p̂ < v̂.
This is a uniform bound which does not use the parametric form of the costs nor
the value of λ,Δ. One sharpens this estimate by noticing that
π0a+(1− π0)(1− a) ≥ c(π0) := min{π0, 1− π0}.¹⁸ This leads to the inequality

VA(a, p̂) ≤ v̂− c(π0)p̂. (A.27)

This inequality is uniform in the specification of costs, λ,Δ. It also does not
depend on the reservation price relation for type v̂. Therefore, by using the
reservation pricing relation for the type v̂ one arrives at the uniform estimate

pL(p̂) ≥
1 − δ

1 − δ + δμ
v̂+

δμ
1 − δ + δμ

c(π0)p̂, (A.28)

whenever p̂ ∈ N .
From (A.28) and the reservation pricing relation for Buyer with good news w̄

one arrives at the estimate

pH(p̂)− pL(p̂) ≤ (1 − δ)w̄(p̂) + δ
(

1 − μ
1 − δ + δμ

c(π0)

)
p̂− 1 − δ

1 − δ + δμ
v̂.

(A.29)
Seller’s indifference condition reduces to the study of zeros of the function

¹⁸Note that c(π0) > 0.
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f(p̂, q) = U(0)(pH(p̂)− pL(p̂)) + (1 − U(0))q(δVΔ(q, p̂)− pL(p̂)).

Here VΔ(q, p̂) is Seller’s payoff which is given in equilibrium by

VΔ(q, p̂) =
μGN(a(p̂))p̂+ (1 − μ)(1 − p)qpL(p̂) + μ(1 − GN(a(p̂))w(p̂)

1 − δ(1 − μ)(1 − (1 − p)q)
,

(A.30)
where the shortcutGN(a) denotes the stationary probability of good news

given byGN(a) = aπ0 + (1 − a)(1 − π0). To see (A.30), note that VΔ(q, p̂)
satisfies the recursion

VΔ(q, p̂) = μGN(a(p̂))p̂+(1−μ)(1−p)qpL+μ(1−GN(a(p̂)))w(p̂)+δ(1−μ)(1−(1−p)q)VΔ(q, p̂).

One calculates

δVΔ(q, p̂)− pL(p̂) =
δμGN(a(p̂)p̂+ (δ(1 − μ)− 1)pL(p̂) + δμ(1 − GN(a(p̂)))w(p̂)

1 − δ(1 − μ)(1 − (1 − p(p̂))q)
(A.31)

≤ δμp̂+ (δ(1 − μ)− 1)pL(p̂)
1 − δ(1 − μ)(1 − (1 − p(p̂))q)

≤ δμ(1 − c(π0))p̂− (1 − δ)v̂
1 − δ(1 − μ)(1 − (1 − p(p̂))q)

.

Here the first inequality uses that w(v̂) < v̂ and that p̂ is close to v̂ (recall the
restrictions onN ). The second inequality in (A.31) uses (A.28). Impose now
the following assumption on δ, μ:

agents are not too patient:
δμ

1 − δ
(1 − c(π0)) < 1. (A.32)

Note that in the high-frequency limit this assumption corresponds to
λ(1 − c(π0)) < r. A sufficient condition for satisfying (A.32) irrespective of the
prior is r > λ, i.e. the discount rate is higher than the arrival rate of opportunities

191



to learn.
Combine (A.32) with (A.31) to get that uniformly for all p̂ ∈ N , Δ ≤ Δ̄ and

all δ, μ satisfying (A.32) that

q(δV(q, p̂)− pL(p̂)) ≤
q

1 − δ(1 − μ)(1 − (1 − p(p̂))q)
(δμ(1 − c(π0))p̂− (1 − δ)v̂)

≤ q(δμ(1 − c(π0))p̂− (1 − δ)v̂).

Look now at f(p̂,q)
μ(1−U(0)) =

π0
1−μ(pH(p̂)− pL(p̂)) +

q
μ(δV(q, p̂)− pL(p̂)). Overall

the following estimate results for all p̂ ∈ N , Δ ≤ Δ̄ and all δ, μ satisfying (A.32)

f(p̂, q)
μ(1 − U(0))

≤ π0

1 − μ

(
(1 − δ)w̄(p̂) + δ

(
1 − μ

1 − δ + δμ
c(π0)

)
p̂− 1 − δ

1 − δ + δμ
v̂
)

(A.33)

+ q
(
δ(1 − c(π0))p̂−

(1 − δ)
μ

v̂
)
.

I make further assumptions on r, λ and redefineN , Δ̄ appropriately so that the
right-hand side of (A.33) becomes negative in near the HFL. For this, one sets
first q = 1 and looks at Δ→0. In the HFL the right-hand side of (A.33) becomes

π0(1 −
λ

r+ λ
c(π0))p̂−

r
r+ λ

π0v̂+ (1 − c(π0))p̂−
r
λ
v̂. (A.34)

The coefficient in front of p̂ is positive so that if one replaces p̂ = v̂ it is sufficient
in the limit to require the restriction

π0(1 −
λ

r+ λ
c(π0)) + (1 − c(π0)) <

r
r+ λ

π0 +
r
λ
, (A.35)

and in addition, that p̂ is near enough to v̂ so that (A.34) remains valid for these p̂
close to v̂. This additional restriction is on top of the other previous restrictions
set above onN .

Suppose first that c(π0) = π0 which is equivalent to π0 ≤ 1
2 . Then the

left-hand side of (A.35) is strictly lower than the right-hand side due to (A.32).
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To see this, replace c(π0) in (A.35) to arrive at the sufficient condition
1 − r

λ <
r

r+λ π0 +
λ

r+λ π
2
0. To get the result uniformly on π0 ≤ 1

2 require r ≥ λ for
the case π0 ≤ 1

2 .
Consider now c(π0) = 1 − π0 which is equivalent to π0 ≥ 1

2 . Plugging in
c(π0) = 1 − π0 in (A.35), this inequality becomes λ

λ+rπ
2
0 + π0 <

r
λ . Here the

left-hand side λ
λ+rπ

2
0 + π0 is decreasing in r

λ , whereas the right-hand side is
increasing in r

λ (it being the identity map on r
λ). To get a condition which is

uniform for all π0 >
1
2 one needs the condition λ

r+λ + 1 < r
λ . Algebraic

manipulation shows that this is equivalent to r
λ >

√
2.

Require thus overall, that Δ ≤ Δ̂ ≤ Δ̄ for some Δ̂ > 0 appropriate such that

δμ
1 − δ

< 1 if π0 ≤
1
2
,

δμ
1 − δ

<
1√
2
if π0 >

1
2
. (A.36)

The corresponding HFL assumption for (A.36) is the one required in the
statement of Proposition 6.¹⁹

With regards to the continuous function f : (0, 1)× (v, v̄)→R the above
analysis has shown the following two facts.

• A. There exists an open neighborhood of v̂ such that for all p̂ in that
neighborhood it holds

lim sup
Δ→0

f(1, p̂) < 0.

• B. Fix any p̂ ∈ (v, v̄) such that solvability of pL, pH is guaranteed (Lemma
11). Then for any μ ∈ (0, 1) and δ < 1 it holds

lim
q→0

f(q, p̂) = U(0)(pH(p̂)− pL(p̂)) > 0.

Pick first some neighborhoodN of v̂, Δ̄ so that Lemmas 11 and 12 are ensured
for p̂ ∈ N , Δ̄ > Δ > 0. Redefine Δ̄ > 0 small such that for all Δ < Δ̄ (A.36)

¹⁹To see this for the case π0 >
1
2 , note that the function g : (0,∞)→R+ givenby g(t) = t

1+t+t
has derivative g′(t) = 1 + 1

(1+t)2 and so is strictly decreasing and that g(
√

2) = 2.
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holds true. This implies then that f(1, p̂) < 0 for all p̂ ∈ N .²⁰ Using B. and the
intermediate-value theorem for continuous functions, one finds the required zero
q(Δ, p̂) ∈ (0, 1). This establishes that equilibria exist for the sufficient statistic
p̂ ∈ N and Δ ≤ Δ̄.

Lemma 6 can be used to show easily that for all Δ > 0 small, the function
f(p̂,q)

μ(1−U(0)) is strictly decreasing and convex in q. This shows uniqueness of q(Δ, p̂)
for fixed p̂,Δ as above. This finishes the proof of 1) and 2) from Proposition 6 for
the case of deterministic variable costs.

The case of stochastic fixed costs. Note that the two reservation pricing
relations for Buyer imply

v̂− pL ≤
δμ

1 − δ + δμ
(π0(v̄− p̂)) < π0(v̄− p̂).

In particular, μ > 0 for any pair of prices (pH, pL) satisfying the reservation
pricing relations of types v̄, v̂.

Remark 6. The function x→E[c|c ≤ x] is weakly increasing in x for all F that are
‘well-behaved’, i.e. are limits in total variation norm of distributions having a positive
and smooth density w.r.t. Lebesgue measure overR+.²¹

Proof of Remark 6. Step 1. First, verify the claim for an F that has a smooth
density f over (0,∞). It holds

d
dx

E[c|c ≤ x] =
d
dx

(∫ x
0 cf(c)dc
F(x)

)
=

xf(x)F(x)− f(x)
∫ x
0 cf(c)dc

F(x)2
=

f(x)
F(x)

(x− E[c|c ≤ x]) .

This derivative is strictly positive for all x > 0 because of the assumption that F
puts positive probability on arbitrarily low costs (from section 1.3).

²⁰This is because the function f(1, p̂) is continuous also in Δ (via its continuity on μ and r)which
are in turn continuous functions of Δ.

²¹‘smooth’ in the following means infinitely often continuously differentiable.
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Step 2. Let F be continuous with finite first moment and support on [0,∞)

and assume that F(0) = 0.

Claim. There exists a sequence of distributions Fn which have smooth
densities over (0,∞) as in Step 1 and so that Fn converges to F uniformly.

To see the Claim, note the following facts.

A. the set of distribution functions with finite support is dense in the
topology of weak convergence of probability measures,²²

B. if Fn overR converges weakly to a continuous distribution F, then the
convergence is uniform,²³

C. if Fn converges weakly to F and F is continuous then Fn(·|· ≤ x) converges
weakly to F(·|· ≤ x), for any x > 0 (the convergence is even uniform),

[Proof. To see this, recall that F(x) > 0 for any x > 0 by the assumptions
in section 1.3. In particular, (0,∞) 3 c 7→ F(c|c ≤ x) is a continuous
distribution function. Pick any y < x. Then obviously Fn(x)→F(x) and
Fn(y)→F(y) as n→∞. This leads to the result stated in C.]

D. any distributionGwhich is a step function can be approximated from
above and below pointwise by a sequence of distribution functions which
are infinitely differentiable functions;

[Proof. To see this, first approximate the step function through a
continuous function by interpolating ‘near’ the (finitely many)
discontinuities ofG, to get two continuous distribution functionsG′,G′′

which differ fromG only in intervals of size less than ε around the
discontinuities, are continuous and satisfyG′′(x) ≤ G(x) ≤ G′(x) for all
x ≥ 0. Then one performs a ‘mollification’ procedure onG′,G′′ around

²²This is easy to see and uses the generally known fact of undergraduate analysis: any bounded,
measurable function can be approximated from below by step functions with finitelymany discon-
tinuities.

²³See e.g. exercise 3.2.9. in Durrett [2010].
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the finitely many points of their non-differentiabilities to get smooth
distribution functionsH′′,H′ which satisfy
H′′(x) ≤ G′′(x) ≤ G(x) ≤ G′(x) ≤ H′(x) for all x ≥ 0. See chapter 5
and in particular section 5.3 in Evans [2010] for more on mollification
arguments.]

Now I finish the proof of Step 2. above and thus also of the Remark.
From Step 1 one knows thatEH[c|c ≤ x] are increasing in x (even strictly) for

H of the typeH′,H′′ as given in the proof of D above. One can use the argument
in D. above to show that monotonicity of x 7→ EF[c|c ≤ x] holds true for F a step
function. To see this, suppose there is y > x > 0 and F a step distribution
function so thatEF[c|c ≤ y] < EF[c|c ≤ x]. It holds in general with the Fubini
Theorem that

EF[c, c ≤ y] = EF

[∫ c

0
dt, c ≤ y

]
=

∫ y

0
F(y)− F(t)dt. (A.37)

Because of monotonicity of the approximation in point D. above and (A.37)
one sees easily that:

for z = x, y and step function F, EF[c, |c ≤ z] = lim
n→∞

EHn [c|c ≤ z], (A.38)

for a sequence {Hn : n ≥ 1} of distribution functions which are smooth.
Ultimately, (A.38) and the assumptionEF[c|c ≤ y] < EF[c|c ≤ x] lead to

contradiction of the monotonicity in Step 1.
It follows that x 7→ EF[c|c ≤ x] is increasing for F a step distribution function.
Finally, by points A., B. and C. above, one establishes monotonicity of

EF[c|c ≤ x] for general F by an approximation argument.
□

Denote in the following
BL(p̂, pL) = π0(v̄− p̂)− E[c|c ≤ π0(v̄− p̂)− (v̂− pL)]. Note that this
definition is independent of Δ.
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Because F puts positive probability on arbitrarily small costs, BL(p̂, pL) is
strictly positive for any pL < v̂, p̂ < v̄. Note that BL(p̂, pL) is decreasing in pL and
the direction of the monotonicity in p̂ is ambiguous. Finally, note that

BL(p̂, pL) ≤ π0(v̄− p̂) ≤ v̂− c(π0)p̂. (A.39)

This helps in proving again an estimate precisely as in (A.28), whenever one
has solvability of the reservation price relation for type v̂.

Moreover, because of the assumption that F puts positive probability on a
neighborhood of zero it follows that

BL(p̂, pL)− (v̂− pL) > 0, for every p̂ < v̄, pL < v̂.²⁴ (A.40)

The two reservation pricing relations give a system of equations to be solved
for the pair (pH, pL).

For p̂ ∈ (v, v̄) and pL ∈ (v, p̂) define for ease in notation
μ̄(p̂, pL) = F(π0(v̄− p̂)− (v̂− pL)). Denote
pminL (p̂) = v̂− π0(v̄− p̂) = (1 − π0)v+ π0p̂ < p̂.

It holds μ̄(p̂, pminL (p̂)) = 0 and μ̄(p̂, p̂) = F((1 − π0)(p̂− v)) > 0. Note that
μ̄(p̂, pL) is falling in p̂ and increasing in pL.

Lemma 13. 1) Suppose μ0(Δ) = 1 − e−Δλ . The reservation pricing equation for v̂ is
solvable for pL whenever p̂ is in a suitable open neighborhoodN of v̂ and Δ is smaller
than some Δ̄ > 0.

Moreover, whenever solvable, the solution pL(p̂) is unique for each pair (Δ, p̂) and
weakly increasing in p̂ for fixed Δ.

2) Let p̂ ∈ N , whereN comes from 1). As Δ→0, pL(p̂) converges to a p̄L(p̂) that
satisfies

v̂− p̄L(p̂) =
λμ̄(p̂, p̄L(p̂))

r+ λμ̄(p̂, p̄L(p̂))
BL(p̂, p̄L(p̂)). (A.41)

²⁴Formally, this follows because E[c|c ≤ x] < x for x > 0 under the assumption that F puts a
positive weight on a neighborhood of zero (recall assumptions in section 1.3).
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Proof. 1) Existence.
One needs to solve for pL in

v̂− pL =
δμ

1 − δ + δμ
BL(p̂, pL), (A.42)

for given p̂ and Δ > 0. Moreover pL ≤ v̂. I relax this second requirement in the
first part of the proof of existence and make sure it is satisfied in the end.

Recall pminL (p̂) = v̂− π0(v̄− p̂) = (1 − π0)v+ π0p̂ < p̂. Note that
automatically from the definition of pminL (p̂) it follows pminL (p̂) < v̂, because p̂ < v̄.
It follows that the right-hand side of the reservation price relation for type v̂ is
zero if one plugs pL = pminL (p̂), whereas the left-hand side is positive. On the
other hand, when setting pL = p̂ the left hand side becomes v̂− p̂ and the right
hand side becomes δμ0 μ̄(p̂,p̂)

1−δ+δμ0 μ̄(p̂,p̂)
BL(p̂, p̂). Note that both v̂− p̂ and

δμ0 μ̄(p̂,p̂)
1−δ+δμ0 μ̄(p̂,p̂)

BL(p̂, p̂) are continuous in the parameters p̂ ∈ (v, v̄),Δ ∈ [0,∞).
Evaluated at p̂ = v̂ and Δ = 0 the expression v̂− p̂ is zero, whereas

δμ0 μ̄(p̂,p̂)
1−δ+δμ0 μ̄(p̂,p̂)

BL(p̂, p̂) is λμ̄(̂v,̂v)
r+λμ̄(̂v,̂v) > 0. Thus, there exists an open neighborhood of

v̂, denoted byN and a Δ̄ > 0 such that for all p̂ ∈ N and 0 < Δ < Δ̄ it holds
true that v̂− p̂ < λμ̄(p̂,p̂)

r+λμ̄(p̂,p̂)BL(p̂, p̂). Overall the intermediate-value theorem for
continuous functions gives existence of pL(Δ, p̂) ∈ (pminL (p̂), p̂) that satisfies
(A.42) for p̂ ∈ N , Δ ≤ Δ̄.

Finally, for existence one needs to ensure that pL(p̂) < v̂ for the p̂ from a small,
suitable neighborhood of v̂. Note that BL(p̂, pL) is decreasing in pL and that
BL(v̂, v̂) = π0(v̄− v̂)− E[c|c ≤ π0(v̄− v̂)] > 0. Therefore, there exists a small
neighborhood of v̂ such that BL(p̂, pL) > BL(p̂, p̂) > 0 for the p̂ in this
neighborhood. Note that this argument is independent of Δ > 0 because the
function (p̂, pL) 7→ BL(p̂, pL) does not depend on Δ. Restrict in the followingN
to a strict, non-empty subset of itself so that in addition it is satisfied:
BL(p̂, p̂) > 0 for all p̂ ∈ N . It follows from the reservation price relation for type
v̂ that pL(Δ, p̂) < v̂ for such p̂, independently of Δ.

To see uniqueness, note that the reservation price relation for type v̂ can be
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written as

1 − δ + δμ0μ̄(p̂, pL)
δμ0μ̄(p̂, pL)

(v̂− pL) + E[c|c ≤ π0(v̄− p̂)− (v̂− pL)] = π0(v̄− p̂).

This can be transformed into

(1− δ)(v̂− pL) = δμ0E[(π0(v̄− p̂)− (v̂− pL)− c), c ≤ π0(v̄− p̂)− (v̂− pL)].
(A.43)

Note that the right-hand side is strictly increasing in pL, whereas the left-hand
side is strictly decreasing in pL. This gives uniqueness of pL(p̂).²⁵

Monotonicity of pL(p̂) is shown in two steps. First, rewrite the reservation
price relation of type v̂ as

1 − δ
δμ0

(v̂−pL) = EF[pL−π0p̂−(1−π0)v−c, c ≤ pL−π0p̂−(1−π0)v]. (A.44)

Step 1. Suppose first that F has smooth density. The left-hand side of (A.44) is
not directly dependent of p̂ and is strictly increasing in pL, for any fixed p̂. One
can use the implicit function theorem locally, because of the differentiability of
the functions involved. The right-hand side is strictly increasing in pL − π0p̂ and
the derivative of pL(p̂)− π0p̂with respect to p̂ is given locally by dpL

dp̂ (p̂)− π0.
Thus, the implicit function theorem together with the chain rule for
differentiation delivers a relation of the type d(LHS)

dpL
dpL
dp̂ = d(RHS)

dpL

(
dpL
dp̂ (p̂)− π0

)
.²⁶

Because d(RHS)
dpL

> 0, d(LHS)dpL
< 0, this delivers a positive derivative dpL

dp̂ (p̂).
Step 2. Suppose now that F does not have a smooth density.

Claim. Let Fn converge weakly to F, with Fn, n ≥ 0, F satisfying the
conditions about stochastic fixed costs in the main body of the paper. Then
Gn := Fn(c ∈ ·, c ≤ xn) converges to F(c ∈ ·, c ≤ x), whenever xn→x, n→∞,
x > 0.

²⁵Here, for ease of notation, I suppress the dependence on Δ without loss of meaning.
²⁶Here, LHS and RHS denote respectively the left-hand side and right-hand side of (A.44).

199



Proof of Claim. Recall from the proof of Remark 6 that for any distribution F it
holds

EF[c, c ≤ y] = EF

[∫ c

0
dt, c ≤ y

]
=

∫
R+

(F(y)− F(t))1{t≤y}dt. (A.45)

Now, since xn→x, the sequence of functions t 7→ (F(xn)− F(t))1{t≤xn} is
bounded and has support contained on a compact set K ofR+. Moreover, due to
weak convergence, it follows that (F(xn)− F(t))1{t≤xn}→(F(x)− F(t))1{t≤x} for
all t ∈ K. One applies finally Lebesgue dominated convergence to get the result.

□
The Claim shows that the reservation price relation of type v̂ is ‘stable’ with

respect to weak limits of F. Recall the proof of Remark 6. Arguments there imply,
that for any F satisfying the conditions for stochastic fixed costs in section 1.3,
one can pick a sequence Fn with the same properties, converging weakly to F, and
satisfying the additional requirement that Fn have smooth densities w.r.t.
Lebesgue measure.²⁷

Take then such a sequence Fn and apply Step 1 to each Fn. The uniqueness of
the solution pL(Δ, p̂) for fixed Δ and any F, delivers that
pnL(Δ, p̂)→pL(Δ, p̂), n→∞. It follows that p̂ 7→ pL(Δ, p̂) is weakly increasing.

2) To see that all the limit points of pL(Δ, p̂) are the same, divide (A.43) by Δ
and take Δ→0 to arrive at

r(v̂− pL) = λE[(π0(v̄− p̂)− (v̂− pL)− c), c ≤ π0(v̄− p̂)− (v̂− pL)].

This is a relation that has to be satisfied for all limit points of pL(Δ, p̂) and thus
the limit p̄L(p̂) exists, because the right-hand side is strictly increasing in pL,

²⁷To see this, recall that from A. and B. in that proof, F can be approximated uniformly by dis-
tribution functions that are step functions, and then use C. there to get a pointwise approximation
of F through a sequence of Fn which are smooth. This uses the fact that the approximation of step
functions through step functions is donemonotonically and the differences between the step func-
tion and the approximands are in ‘small’ sets around a finite number of discontinuities.
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whereas the left-hand side is strictly decreasing in pL.
□

Let VΔ(q, p̂) be stationary payoff of Seller.²⁸ By the same logic as in the case of
determinstic costs it satisfies the recursion

δVΔ(q, p̂) = μπ0p̂+(1−μ)(1−p)qpL+μ(1−π0)v+δ(1−μ)(1−(1−p)q)VΔ(q, p̂),

which leads to

δVΔ(q, p̂)− pL(p̂) =
δμπ0p̂+ (δ(1 − μ)− 1))pL(p̂) + δμ(1 − π0)v

1 − δ(1 − μ)(1 − (1 − p(p̂)q))
.

Analogous to the cases of costless information and the case of deterministic
variable costs, one considers the function
g(q, p̂) = f(q,p̂)

δμ(1−U(0)) =
π0

δ(1−μ)(pH(p̂)− pL(p̂)) + q δV(q,p̂)−pL(p̂)
δμ . It holds that

g(0, p̂) > 0 for all Δ > 0 and p̂ from a neighborhoodN as required in Lemma
13.

In order to find sufficient conditions for g(1, p̂) < 0 one uses (A.42) from the
proof of Lemma 13 to get through the use of (A.39) an analogous estimate as
(A.29) from the case of deterministic variable costs. This leads to the estimate for
the price spread

pH(p̂)−pL(p̂) ≤ (1−δ)v̄+δ
(

1 − μ
1 − δ + δμ

c(π0)

)
p̂− 1 − δ

1 − δ + δμ
v̂. (A.46)

All ingredients are present to apply the same procedure for existence of
strongly stationary equilibria as for the case of deterministic variable costs. One
uses a similar chain of estimates as for the case of deterministic variable costs to
show that g(1, p̂) < 0, whenever p̂ is near enough to v̂ and Δ is small enough. The

²⁸The recursion leading to Seller’s payoff, is exactly the same as for the case of no costs, or deter-
ministic variable costs.
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replacements needed are w(p̂)⇝ v, w̄(p̂)⇝ v̄. Moreover, one has to replace
μ(Δ)
Δ from the deterministic variable model with μ0 μ̄(p̂,pL(p̂,Δ))

Δ throughout. Near
the HFL one gets sufficient conditions ensuring existence just as for the case of
deterministic variable costs of the type ‘ r

λμ̄(p̂,pL(p̂))
is high enough’. These are

implied by the same conditions of the type ‘ rλ is high enough’ that appear in the
case of deterministic variable costs.

This finishes the proof of Proposition 6 for the case of stochastic fixed costs of
accuracy.

A.2.3 Proof of Theorem 3

The case of deterministic variable costs. In the following whenever it is
said uniformly in p̂, it is meant that the statement holds uniformly for all p̂ ∈ N
where the neighborhoodN comes from Proposition 6.

Note first the following easy-to- prove facts:

• pH(p̂) converges in HFL uniformly to the identity function id(p̂) = p̂. The
difference pH(p̂)− p̂ isO(Δ), uniformly in p̂.

• Because information choice does not depend on μ, δ and
V(a(p̂), p̂)− C(a(p̂)) is bounded uniformly in p̂, it holds

pL(p̂)→p̄L(p̂) := v̂− λ
λ + r

(V(a(p̂), p̂)−C(a(p̂))), in HFL uniformly in p̂.

Note that p̄L(p̂) is decreasing in p̂. For future use I express the HFL of
pL(p̂) in a more helpful form. Recall that
V(a(p̂), p̂) = GN(a(p̂))(w̄(p̂)− p̂). One can use this to express the HFL
of pL(p̂) as

p̄L(p̂) = v̂− λ
λ + r

(GN(a(p̂))(w̄(p̂)− p̂)− C(a(p̂))).
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• It follows from the first two claims that

pH(p̂)−pL(p̂)→
λ

λ + r
(VA(a(p̂), p̂)−C(a(p̂)))−(v̂−p̂), in HFL uniformly in p̂.

(A.47)

Denote this limit by ps(p̂)where ‘ps’ stands for price spread.

Note that in HFL, uniformly in p̂ it holds
v̂− p̂ < v̂− p̄L(p̂) = λ

λ+r(VA(a(p̂), p̂)− C(a(p̂))), where the equality
follows from the reservation pricing relation for type v̂. This, and the proof
of Proposition 6 (especially the proof of Lemma 11) for the case of
deterministic variable costs ensures that the price spread remains bounded
away from zero for all p̂ from the neighborhoodN .

Another simple, but important implication of (A.47) is that it shows that
the HFL of a sequence of mixed pricing equilibria cannot correspond to a
pure pricing equilibrium, whenever the limit average price p̂ satisfies
p̂ ≥ v̂.

• From the formula p(p̂) = p̂−pL(p̂)
pH(p̂)−pL(p̂)

for the mixing probability of Seller
one sees convergence to 1 of p(p̂). This convergence is uniform in p̂, as one
can see from the calculation

1 − p(p̂) =
pH(p̂)− p̂

pH(p̂)− pL(p̂)
= (1 − δ)

w̄(p̂)− p̂
pH(p̂)− pL(p̂)

.

Now I calculate explicitly q(Δ, p̂), the probability with which the v̂-type ends
the game when facing price pL(p̂). Recall that q is determined through the
equation f(p̂,q)

μ(1−U(0)) = 0. Define the quantities
A(Δ, p̂) = π0

1−μ(pH(Δ, p̂)− pL(Δ, p̂)) and

B(Δ, p̂) = δGN(a(p̂))p̂− 1−δ(1−μ)
μ pL(p̂,Δ) + δ(1 − GN(a(p̂)))w(p̂). By using

the HFL of pL one calculates the HFL of B(Δ, p̂) to be

B(p̂) := − r
λ
v̂− C(a(p̂)),
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where the fact thatGN(a(p̂))w̄(p̂) + (1 − GN(a(p̂)))w(p̂) = v̂ (Martingale
property of beliefs) has been used.

Note that B(p̂) is uniformly bounded away from zero and negative. One easily
calculates the HFL of A to be

A(p̂) := π0ps(p̂).

It follows that

f(p̂, q)
μ(1 − U(0))

= A(Δ, p̂) +
q

1 − δ(1 − μ) + δ(1 − μ)(1 − p(Δ, p̂))q
B(Δ, p̂).

One can define C(Δ, p̂) = −A(Δ,p̂)
B(Δ,p̂) and see that q(Δ, p̂) can be solved in close

form as

q(Δ, p̂) =
(1 − δ(1 − μ))C(Δ, p̂)

1 − δ(1 − μ)(1 − p(Δ, p̂)C(Δ, p̂)
.

The HFL of C is easily calculated to be

C(p̂) =
π0λ · ps(p̂)

rv̂+ λC(a(p̂))
.

In particular, C(p̂) is bounded away from zero for all p̂ ∈ N . Now recall that
1 − p(Δ, p̂) = O(Δ) and that 1−δ(1−μ)

Δ →r+ λ to get that in the HFL

q(Δ)
Δ

→(r+ λ)C(p̂).

Next, I calculate Seller’s payoff in the HFL. Recalling (A.30) one looks first at
the denominator and concludes that

1 − δ(1 − μ)(1 − (1 − p(Δ, p̂))q(Δ, p̂))
Δ

=
1 − δ(1 − μ)

Δ
+ δ(1 − μ)

q(Δ)
Δ

(1 − p(Δ, p̂))→r+ λ.
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Looking at the numerator of Seller’s payoff one notes that

μGN(a(p̂))p̂+ (1 − μ)(1 − p(Δ, p̂))q(Δ, p̂)pL(p̂,Δ) + μ(1 − GN(a(p̂)))w(p̂)
Δ

→λGN(a(p̂))p̂+ λ(1 − GN(a(p̂)))w(p̂).

Overall this delivers for Seller’s payoff in the HFL

VS(p̂) =
λ

r+ λ
(GN(a(p̂))p̂+ (1 − GN(a(p̂)))w(p̂)) . (A.48)

Turning to Buyer’s payoff in the HFL: VB(Δ, p̂) satisfies the recursion

VB(Δ, p̂) = μ(VA(a(p̂), p̂)− C(a(p̂))) + (1 − μ)(1 − p(Δ, p̂))q(Δ, p̂)(v̂− pL(Δ, p̂))

+ δ(1 − μ)(1 − (1 − p(Δ, p̂))q(Δ, p̂))VB(Δ, p̂),

which can be solved for

VB(Δ, p̂) =
μ(VA(a(p̂), p̂)− C(a(p̂))) + (1 − μ)(1 − p(Δ, p̂))q(Δ, p̂)(v̂− pL(Δ, p̂))

1 − δ(1 − μ)(1 − (1 − p(Δ, p̂))q(Δ, p̂))
.

The same (limit-)algebra as in the case of Seller delivers the HFL

VB(p̂) =
λ

r+ λ
(GN(a(p̂))(w̄(p̂)− p̂)− C(a(p̂))) . (A.49)

The sum of the payoffs in the HFL is

VB(p̂) + VS(p̂) =
λ

λ + r
(v̂− C(a(p̂))) , (A.50)

where again the Martingale property of beliefs has been used. Finally, I turn to
the expected delay in the HFL.

Note that the date of agreement is a geometric random variable with success
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probability 1 − (1 − μ)(1 − (1 − p(Δ, p̂))q(Δ, p̂)). One calculates

1 − (1 − μ)(1 − (1 − p(Δ, p̂))q(Δ, p̂))
Δ

=
μ
Δ
+ (1 − μ)(1 − p(Δ, p̂))

q(Δ, p̂)
Δ

→λ,

given the HFL behavior of q(Δ, p̂) and p(Δ, p̂).
This finishes the proof ofTheorem 3 for the case of deterministic variable costs.

The case of stochastic fixed costs. Pick a p̂ as needed in Proposition 6
for existence near the HFL. By exactly the same steps as for the case of
deterministic variable costs one arrives at similar results, but for the only changes
that w(p̂)⇝ v, λ ⇝ λμ̄ andGN(a(p̂))⇝ π0.

One arrives at

VB(p̂) =
λμ̄(p̂)

r+ λμ̄(p̂)
(π0(v̄− p̂)− EF[c|c ≤ π0(v̄− p̂)− (v̂− p̄L(p̂))) ,

and
VS(p̂) =

λμ̄(p̂)
r+ λμ̄(p̂)

(π0p̂+ (1 − π0)v) .

Onmultiplicity of equilibriawithmixed pricing in theHFLof costly
learning

In contrast to the case of costless learning the equilibrium multiplicity of strongly
stationary equilibria with mixed pricing survives the HFL. This multiplicity
remains when accuracy costs become vanishingly small. To see this, fix π0, r, λ
satisfying the conditions in the statement of Proposition 6 and of Theorem 3.
Suppose that the respective costs c become arbitrarily small or F approaches the
zero-cost distribution. The proof of Proposition 6 shows that in this situation,
one can pick the respective existence neighborhoodsN of v̂ independently of the
information costs.

The intuition for the multiplicity in the HFL is as follows. If Seller decides to
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quote a lower p̂, this leads ceteris paribus to a higher option value from learning
for Buyer of type v̂. Because learning is costly, this lowers the reservation price of
the type v̂. In addition, the lower p̂makes Buyer who has received good news
more willing to accept. Moreover, due to higher incentives for learning, a lower
price spread is needed to incentivize learning in the limit. Given lower
reservation prices for Buyer who has not learned or Buyer who has learned good
news, Seller is then indeed only able to extract a lower average price p̂.²⁹

The following Lemma contains a formal result that underlies the intuition of
this equilibrium multiplicity.

Lemma 14. Look a the HLF of the strongly stationary equilibria for p̂ ∈ N , the
existence neighborhood of v̂ from Proposition 6.
In both the case of deterministic variable and stochastic fixed costs the limit as

Δ→0 of pL(p̂) given by p̄L(p̂) is strictly increasing in p̂. The same holds for the limit of
the spread ps(p̂). Clearly, the limit of pH(p̂) is increasing, being equal to p̂.

Proof. I give only the proof for the case of deteriministic costs. The proof of
monotonicity of p̄L(p̂) in the case of stochastic fixed costs follows from Lemma
13, whereas the proof of the monotonicity of the price spread for the case of
stochastic fixed costs is analogous to the proof of the case of deterministic
variable costs.

Recall that the price spread in the HLF is given by

λ
λ + r

(VA(a(p̂), p̂)− C(a(p̂)))− (v̂− p̂).

Taking a derivative of this expression w.r.t. p̂ and using the envelope theorem
results in the expression

∂

∂p̂
ps(p̂) = 1 − λ

λ + r
GN(a(p̂)) > 0.

²⁹In the case of costless information there is no reason for Seller to keep a price spread in the
limit. Buyer always waits for the arrival of costless information and thus there is no gain in theHFL
from screening between Buyer who has not learned and the one who has learned good news.
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Moreover, taking a derivative of the formula for p̄L(p̂), given by
pL(p̂) = v̂− λ

λ+r(V(a(p̂), p̂)− C(a(p̂))) delivers that p̄L(p̂) increasing in p̂. □
Thus, a higher p̂ co-moveswith a higher p̄L(p̂), higher limit of pH(p̂) as well as a

higher price spread.
Finally, I give the arguments showing that multiplicity persists as accuracy

costs become vanishingly small.

Remark 7. Deterministic variable costs.
Note that Lemmas 11 and 12 require the neighborhoodN to be dependent on the

costs c. It is easy to see from the proofs, that whenever passing from some costs c1 to
some c2 with c1 > c2 (for a 6= 1

2), the neighborhoodN can be chosen to be strictly
smaller (in the sense of set-inclusion) for the costs c2 than c1.
Stochastic fixed costs. This is similar to the case of deterministic variable costs,

except that one replaces the inequality c1 ≥ c2 with F1 >FOSD F2.

Proof of Proposition 6 and Theorem 3 in the case of pure pricing

Given the analysis of the case of mixed pricing and because of the analogy in the
proof between the two cases accuracy costs, I shorten exposition of the case of
pure pricing by only spelling out the proof for the case of deterministic variable
costs. In the case of stochastic fixed costs, the only changes are the replacements
w̄(p̂)⇝ v̄, w(p̂)⇝ v,GN(a(p̂))⇝ π0, μ⇝ μ0μ̄(p̂,Δ), λ ⇝ λμ̄(p̂) and
c(I(a(p̂)))⇝ E[c|c ≤ (1 − π0)(p̂− v)].

As a first step, one writes after algebra the Seller optimality condition as
follows.

1 − U(0)
U(0)

ζ(q,Δ)
pL − δVΔ(q, 0)

1 − δ
(1− δ(1− μ)(1−q)) ≥ w̄(p̂,Δ)−pL. (A.51)

Lemma 15. 1) Fix any Δ > 0. The reservation price relation of type v̂ is solvable for
some pL(Δ) = p̂(Δ).
2) It holds for any limit point p̄ of pL(Δ) as Δ→0 that p̄ > w(p̄).
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3) For any sequence q(Δ),Δ→0 with limit point q̄ ∈ [0, 1] and any limit point p̄
of pL(Δ) from part 1) and 2) it holds

pL(Δ)− δVΔ(q(Δ), 0)
1 − δ

(1 − δ(1 − μ)(1 − q(Δ)))

→
(

1 +
λ
r
− q̄
)
p̄− λ

r
(GN(a(p̄))p̄+ (1 − GN(a(p̄))w(p̄))) > 0, Δ→0.

Proof. 1) One needs to show existence of pL ∈ (v, v̂) that satisfies

v̂− pL =
δμ

1 − δ + δμ
(GN(a(pL))(w̄(pL)− pL)− c(I(a(pL)))). (A.52)

If pL = v̂ then the left-hand side of (A.52) is zero, whereas the right-hand side
is strictly positive, as shown in the proof of Proposition 6 for the case of mixed
pricing. If pL > 0 but very close to 0, then the inequality is reversed because of
the inequality (A.27) shown in the case of mixed pricing.³⁰

This, and the intermediate-value theorem for continuous functions shows
existence.

2) The HFL of (A.52) is given by

v̂− p̄ =
λ

λ + r
(GN(a(p̄))(w̄(p̄)− p̄)− c(I(a(p̄)))).

This can be transformed through simple algebra into

p̄ =
rv̂+ λ(1 − GN(a(p̄)))w(p̄) + λc(I(a(p̄)))

r+ λ(1 − GN(a(p̄)))
. (A.53)

The right-hand side of (A.53) can be estimated from below as follows.

³⁰Note that (A.27) only depends on the average price quoted upon non-disclosure and not the
price distribution.
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rv̂+ λ(1 − GN(a(p̄)))w(p̄) + λc(I(a(p̄)))
r+ λ(1 − GN(a(p̄)))

>
rv̂+ λ(1 − GN(a(p̄)))w(p̄)

r+ λ(1 − GN(a(p̄)))
> w(p̄).

3) Simple algebra delivers

pL(Δ)− δVΔ(q(Δ), 0)
1 − δ

(1 − δ(1 − μ)(1 − q(Δ)))

= pL(Δ)
1 − δ(1 − μ)

1 − δ
− (1 − μ)q(Δ)pL(Δ)

− μ
1 − δ

(GN(a(pL(Δ)))pL(Δ) + (1 − GN(a(pL(Δ))))w(pL(Δ))).

The limit statement follows from simple limit algebra. The limit is strictly positive
because it can be rewritten as

(
1 +

λ
r
− q̄
)
p̄− λ

r
(GN(a(p̄))p̄+ (1 − GN(a(p̄))w(p̄)))

= (1 − q̄)p̄+
λ
r
(1 − GN(a(p̄))(p̄− w(p̄)).

This finishes the proof of the Lemma. □
From here, the proof of existence and HFL characterization of strongly

stationary equilibria with pure pricing follows the same steps as the
corresponding case for costless learning (see proof arguments in subsection
A.1.4). I note here down Buyer and Seller payoffs in the HFL with price upon
non-disclosure p̄ as well as their sum.

VB(p̄, ϰ) =
λ (GN(a(p̄)))(w̄(p̄)− p̄)− c(I(a(p̄)))) + ϰ(v̄− p̄)

r+ λ + ϰ
,

for Buyer payoff in any HFL with ϰ and price upon non-disclosure equal to p̄.
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VS(p̄, ϰ) =
(λGN(a(p̄)) + ϰ) p̄+ λ(1 − GN(a(p̄)))w(p̄)

r+ λ + ϰ
,

for Seller payoff in any HFL with ϰ and price upon non-disclosure equal to p̄. The
sum of payoffs in a HFL with ϰ and price upon non-disclosure equal to p̄ is
calculated to be

v̂− λc(I(a(p̄))) + rv̂
r+ λ + ϰ

.

A.3 Proofs for sections 1.4.1 and 1.4.2

A.3.1 Results with costly choice of intensity

The case of mixed pricing

Proposition 7 contains only some of the results included in the Propositions of
this section of the appendix. The results presented here have the same structure
as the results for the case of exogenous intensity: first existence results near the
HFL and then the analysis in the HFL.

Throughout the proofs of this section I focus first on the special case
C(Δ, μ) = Δ · f(μ) for ease of exposition and then comment on the changes
needed for the general case of costs C(Δ, μ)which satisfy the conditions stated in
section 1.4.1.

Deterministicvariablecostsonaccuracywithendogenous intensity

To save on notation, in the following I suppress the dependence of C on Δ and I
recall it only when looking at arguments near the HFL or in cases where the
dependence on Δ is important for the argument. Thus, with some abuse of
notation, when I write C ′(μ) I actually mean ∂

∂μC(Δ, μ).
At the beginning of the period of a strongly stationary equilibrium Buyer who

has not learned yet solves the following maximization problem
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max
μ

μ(VA(a(p̂), p̂)− C(a(p̂))) + (1 − μ)(v̂− pL)− C(μ).

On the equilibrium path, after the information acquisition, it is true that
V(a(p̂))− C(a(p̂)) > v̂− pL. Therefore, the FOC condition delivers a unique μ
characterized implicitly by the FOC condition

(VA(a(p̂), p̂)− C(a(p̂)))− (v̂− pL) = C ′(μ). (A.54)

This gives a unique μ(p̂, pL) ∈ (0, 1) and therefore defines a map
(p̂, pL) 7→ μ(p̂, pL) as an intensity-reaction function of Buyer. One solves
explicitly μ(p̂, pL) = C ′−1((VA(a(p̂))− C(a(p̂)))− (v̂− pL)) and it is trivial to
see that the reaction function of Buyer is smooth in (p̂, pL).

Envelope theorem for the stage of accuracy choice in a strongly stationary
equilibrium with deterministic variable costs delivers
∂
∂p̂{VA(a(p̂))− C(a(p̂))} < 0. (A.54) implies for the partial derivatives of μ:

∂

∂p̂
μ(p̂, pL) < 0,

∂

∂pL
μ(p̂, pL) > 0.

The reservation pricing relations for w̄, v̂ remain the same as in the model with
exogenous intensity, except for the fact that μ is determined at the preceding stage
of intensity choice and is therefore a function of p̂, besides of Δ.

Just as in the case of deterministic variable costs with exogenous λ, I restrict in
the following the analysis to p̂ ∈ (v, v̄) such that
BL(p̂) = VA(a(p̂), p̂)− C(a(p̂)) > 0.

Denote pminL (p̂) = v̂− BL(p̂), where a(p̂), as always, is the accuracy-reaction
function of Buyer once she gets an opportunity to learn. Recall the estimate
BL(p̂) < v̂− c(π0)p̂ shown in the case of exogenous λ. This estimate remains
true in this more general set up as well. This is a consequence of stationary play
on path.

Note that μ(p̂, pminL (p̂)) = 0 for all p̂. Therefore, μ(p̂, pL) > 0 if and only if
pL > pminL .
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Lemma 16. Let Γ = {p̂ ∈ (v, v̂) : v̂− p̂ < BL(p̂)}.³¹ For every compact and
non-empty interval I contained in Γ, there exists a constant ϰ(I) > 0 such that for all
p̂ ∈ (v, v̂] it holds μΔ(p̂, p̂) ≥ ϰ(I)Δ for all 0 < Δ < Δ̄, where Δ̄ > 0 is uniformly
on p̂ ∈ I.

Proof. Recall that μΔ(p̂, pL) satisfies

1
1 − μ

f′
(
− log(1 − μ)

Δ

)
= BL(p̂)− (v̂− pL).

Because the right-hand side of the FOC condition is uniformly bounded across
all p̂ ≤ v̄ and pL ≤ v̂ it holds for the unique solution μΔ(p̂, pL) (for any
p̂ ∈ (v, v̄), pL ≤ v̂) that all limit points of μΔ(p̂, pL)with respect to Δ are zero,
and so overall μΔ(p̂, pL)→0, as Δ→0. Now pick a Δ̄ such that μΔ(v, v̂) ≤

1
2 for all

Δ < Δ̄. One uses the uniform upper bound μΔ(p̂, pL) ≤ μΔ(v, v̂), so that the
convergence of μΔ(p̂, pL) to zero is uniform. This delivers the uniform estimates

f′
(

2
μΔ(p̂, p̂)

Δ

)
≥ f′

(
−
log(1 − μΔ(p̂, p̂))

Δ

)
≥ (1− μΔ(v, v̂))(BL(p̂)− (v̂− p̂)).

Here the first estimate uses the elementary inequality
− log(1 − μΔ(p̂, p̂)) ≤ 2μΔ(p̂, p̂) for all p̂, which holds whenever Δ < Δ̄ because
of the uniform estimate μΔ(p̂, pL) ≤ μΔ(v, v̂) and the Taylor series of the
logarithm.

The function p̂ 7→ BL(p̂)− (v̂− p̂) is continuous and strictly positive on Γ
and so has a positive minimumm on I. It thus follows

f′
(

2
μΔ(p̂, p̂)

Δ

)
≥ (1 − μΔ(v, v̂))m ≥ 1

2
m, for all p̂ ∈ I,Δ < Δ̄.

This delivers the result, recalling that f′ is strictly positive for positive arguments
and also strictly increasing. □

³¹Note that the interior of Γ is non-empty as it contains v̂.
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Remark 8. In the more general case of intensity costs satisfying (1.18) one uses
instead that relation to prove the same statement as in Lemma 16. The only fact used
in the new proof is the uniformity of the limit in (1.18). This is used twice. Once to
prove that μΔ(p̂,pL)

Δ remains bounded as Δ→0, for any p̂, pL and the second time to
show that the same expression is also bounded from below. The details are very similar
to the ones in the proof of Lemma 16 and so are skipped.

Lemma 17. 1-a) Fix any Δ > 0. The reservation pricing relation for type v̂ is
solvable for pL for any p̂ ≥ v̂.

1-b) Let I as in Lemma 16 and let ϰ(I) be the corresponding positive constant
delivered by Lemma 16. Then there is a Δ̄(I) > 0 such that when 0 < Δ < Δ̄(I), the
reservation pricing relation for type v̂ is solvable for all p̂ in I that satisfy

v̂− p̂ <
1
2

ϰ(I)
r+ ϰ(I)

BL(p̂).³² (A.55)

Moreover, whenever the reservation pricing relation for type v̂ is solvable for some p̂,
the solution is unique for fixed Δ and p̂. pL(Δ, p̂) is increasing in p̂ for fixed Δ.
2)There exists an open neighborhood of the form (p, v̄) of v̂ and a Δ̄ > 0 such that

the reservation pricing relation for type v̂ is solvable for pL as long as v̂ ≥ p̂ > p,
whenever Δ < Δ̄ and for all Δ > 0 as long as p̂ ≥ v̂. Moreover, the solution pL(Δ, p̂)
is unique and continuous in the parameters Δ, p̂ as long as Δ < Δ̄ and p̂ ∈ (p, v̄).

Proof. Fix a p̂ ∈ (v, v̄). One needs to solve for pL in

v̂− pL =
δμ(p̂, pL)

1 − δ + δμ(p̂, pL)
BL(p̂). (A.56)

Here necessarily pL ≤ min{p̂, v̂}. Suppose v̂ ≤ p̂. Then, if one sets pL = v̂ on the
left hand side it follows that the right-hand side of (A.56) is strictly larger

³²There is nothing special about the constant 1
2 . The proof would go through when replacing

(A.55) with an estimate of the type

v̂− p̂ < ã
ϰ(I)

r+ ϰ(I)
BL(p̂),

as long as ã ∈ (0, 1).
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because it is positive. If one sets pL = pminL (p̂) then right-hand side becomes zero,
whereas left-hand side is strictly positive.³³ It follows that there exists a
pL ∈ (pminL , v̂) such that (A.56) is satisfied.

Suppose now that p̂ < v̂. The condition (A.55) implies that v̂− p̂ < BL(p̂),
which in turn implies that pminL (p̂) < p̂. It holds again that if one sets pL = pminL

the right-hand side in (A.56) is zero, and the left-hand side is strictly positive.
Now note that the function δ 7→ δμ(p̂,p̂)

1−δ+δμ(p̂,p̂) is increasing in μ(p̂, p̂). Pick a
compact interval I in the interior of Γ where Γ is defined in the statement of
Lemma 16. Using Lemma 16 one picks a Δ̄(I) such that for all μΔ(p̂, p̂) ≥ ϰ(I)Δ,
whenever p̂ ∈ I, 0 < Δ < Δ̄(I). The condition (A.55) together with the fact that
B(p̂) is bounded away from zero and from above for p̂ ∈ I, imply immediately

v̂− p̂ <
δΔϰ(I)

1 − δ + δΔϰ(I)
BL(p̂), (A.57)

if one picks 0 < Δ̄1(I) ≤ Δ̄(I) small enough. Δ1(I) has to ensure that one can go
over from (A.55) to (A.57) for all p̂ ∈ I. (A.57) together with the estimate
μΔ(p̂, p̂) ≥ ϰ(I)Δ delivers that for p̂ ∈ I and Δ < Δ̄1(I) it holds

v̂− p̂ <
δμΔ(p̂, p̂)

1 − δ + δμΔ(p̂, p̂)
BL(p̂).

Now the intermediate-value theorem for continuous functions delivers existence.
To see uniqueness for fixed Δ, p̂ note that one can easily rewrite (A.56) as

1 − δ + δμΔ(p̂, pL)
δμΔ(p̂, pL)

(v̂− pL) = BL(p̂). (A.58)

The left-hand side of (A.58) is strictly decreasing in pL and so uniqueness
follows immediately. Since both sides of (A.58) are strictly decreasing in
respectively p̂ and pL it follows that pL(p̂) is strictly increasing in p̂.

2) This is an easy consequence of 1) and its proof arguments. For the case
p̂ < v̂, pick an I as in Lemma 16 and for the corresponding ϰ(I) delivered from

³³Note also that pminL (p̂) < p̂ automatically in this case.
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that Lemma, pick p such that (A.55) in the proof of 1-b) above is ensured for any
p̂ ∈ (p, v̂). □

To continue with the proof of existence near HFL I establish first the following
auxiliary result.

Lemma 18. For any fixed p̂ such that BL(p̂) > 0 and pL < min{p̂, v̂} such that
μΔ(p̂, pL) satisfies (A.54) and pL solves the reservation price relation for the type v̂ for
p̂ and Δ, the sequence μΔ(p̂,pL)

Δ converges to a strictly positive limit which is a function of
p̂.

Proof. For ease of notation I drop the arguments in this proof μ depends on.
Replacing the reservation price relation of type v̂ into (A.54) leads to the

equation

BL(p̂)
1 − δ

1 − δ + δμ
=

1
1 − μ

f′
(
− log(1 − μ)

Δ

)
. (A.59)

From the estimate f′
(
− log(1−μ)

Δ

)
≤ BL(p̂) and μ ≤ − log(1− μ) one sees that μ

Δ

remains bounded from above. On the other hand, μ
Δ is clearly bounded from

below so that overall one has that the sequence is bounded. Let now λ(p̂) be a
limit point of μ

Δ as Δ→0. It follows from (A.59) that λ(p̂) satisfies

f′(λ)
r+ λ
r

= BL(p̂). (A.60)

Here one sees that λ only depends on p̂ and it is unique because the left-hand side
of (A.60) is strictly increasing in λ. It easily follows, that λ(p̂) is strictly decreasing
in p̂. Positivity of the limit is straightforward from the assumptions on f. □

Remark 9. In the case of general costs of intensity satisfying (1.18), the proof of
Lemma 18 follows the same steps, except that one replaces in (A.59) the right-hand
side with ∂

∂μC(Δ,Δ · μ
Δ).

In the following, for a neighborhoodN around v̂ so that the reservation
pricing of type v̂ is solvable for pL < min{p̂, v̂} for all small Δ, I write λ(p̂) for the
unique solution λ to the equation (A.60).
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A careful analysis of the proof of existence near HFL of the strongly stationary
equilibria shows that the steps of the proof carry through by just replacing
λ ⇝ λ(p̂)when the following conditions for p̂ from a suitable open
neighborhood of v̂ are required.

λ(p̂)p̂(1 − c(π0)) < rv̂, (A.61)

and in addition, depending on whether π0 ≤ 1
2 or π0 >

1
2 require³⁴

if π0 ≤
1
2
, then r > λ(p̂), if π0 >

1
2
, then r >

√
2λ(p̂). (A.62)

If p̂ is chosen close enough to v̂, the conditions in (A.62) are sufficient to
ensure (A.61). Another sufficient condition can be given by requiring (A.62) for
p̂ = v̂ and then requiring p̂ in a neighborhood of v̂ such that (A.61) and (A.62)
are then satisfied in that neighborhood. In this way, using (A.60) and the
properties of f one arrives at the following sufficient conditions for (A.62)
evaluated at p̂ = v̂.

if π0 ≤
1
2
, then f′(r) >

1
2
BL(v̂), if π0 >

1
2
, then f′

(
1√
2
r
)

>

√
2√

2 + 1
BL(v̂).

(A.63)
Recalling the uniform estimate BL(p̂) < π0v̄ one can strengthen these even

more by requiring a sufficient condition on f′ alone.

if π0 ≤
1
2
, then f′(r) >

1
2
π0v̄, if π0 >

1
2
, then f′

(
1√
2
r
)

>

√
2√

2 + 1
π0v̄.

(A.64)

Remark 10. One can always ensure that (A.64) and other weaker variants of it are
satisfied for some f, because the class of functions f yielding C through the requirement

³⁴Note that (A.62) canbeweakenedevenmoreby steps similar to theones in theproofofPropo-
sition 6. I skip these for the sake of length.
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(1.18) is a cone within the space of convex, strictly increasing, differentiable functions
with a zero at zero and derivative zero at zero. Thus, if a f as needed in (1.18) does not
work for (A.64), one can always go over to some rescaling of f by a factor α ∈ (0, 1).

The following Propositions result.

Proposition 32. [Existence of mixed SSE with deterministic variable accuracy costs
and endogenous intensity of learning] Pick any r, π0, v, v̄. Assume that (A.64) holds
true.

Then there is a neighborhoodN of v̂ and an ε > 0 such that for all Δ < ε and
p̂ ∈ N there exist stationary two-price disclosure equilibria with average price p̂.
Moreover, for any fixed average price p̂ the quantities
μ(Δ, p̂), a(p̂), q(p̂,Δ), pL(p̂,Δ), pH(p̂,Δ), p(p̂,Δ) are uniquely determined.

Next follows the analysis in the HFL.

Proposition 33. For any p̂ in the neighborhoodN of v̂ coming from Proposition 32
the following hold true in HFL.

A. Expected delay in real time is equal to 1
λ(p̂) and is increasing in p̂.

B. The price spread ps(p̂) is bounded away from zero but the low price is charged
with vanishingly small probability.

C. Denoting by a(p̂) the reaction function of Buyer and GN(a(p̂)) the resulting
probability of good news, Buyer’s and Seller’s payoffs are given by

VB(p̂) =
λ(p̂)

r+ λ(p̂)
(GN(a(p̂))(w̄(p̂)− p̂)− C(a(p̂)))− f(λ(p̂))

r+ λ(p̂)
.

(A.65)

and

VS(p̂) =
λ(p̂)

r+ λ(p̂)
(GN(a(p̂))p̂+ (1 − GN(a(p̂)))w(p̂)) . (A.66)
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D. The shortfall in efficiency (i.e. the difference between v̂ and sum of payoffs) is
given by

r
r+ λ(p̂)

v̂+
λ(p̂)

r+ λ(p̂)
C(a(p̂)) +

f(λ(p̂))
r+ λ(p̂)

,

and is always strictly positive.

Details on proofs of Proposition 32 and 33. One finds first a neighborhood
N of v̂ and Δ̄ > 0 such that w(p̂) < p̂ for p̂ ∈ N and so that the reservation
pricing for type v̂ is solvable for pL as a function of p̂ ∈ N whenever Δ < Δ̄. The
estimates (A.28) and (A.29) remain true in this setting, when one also allows the
additional dependence of μ on p̂. The estimate (A.31) remains the same with the
added dependency on p̂ for μ. From here the proof follows the same steps as for
the case of exogenous intensity.

One has to ensure that in the HFL the equivalent of (A.32) in the proof of the
case of exogenous λ remains true. One also has to ensure that the relation (A.34)
for the p̂ near enough to v̂ is valid. The arguments are the same as in the case of
exogenous λ, except that now λ ⇝ λ(p̂) and λ(p̂) satisfies (A.60).

Once one picks a neighborhood of v̂N and Δ̄ > 0 (where Δ̄ > 0 is small
enough to work for all p̂ ∈ N ) so that the corresponding p̂-dependent version of
(A.32) and the near-HFL version of the corresponding p̂-dependent version of
(A.34) is ensured for p̂ ∈ N and Δ < Δ̄, the proof of existence follows precisely
the same steps as in Proposition 6 (case of deterministic variable costs).

For the HFL limit, one just follows the same steps as in the proof of Theorem 3
(case of deterministic variable costs) and uses the fact that μΔ(p̂,pL(p̂))

Δ →λ(p̂), as
Δ→0 instead of its exogenous version μ(Δ)

Δ →λ, as Δ→0. □

A.3.2 Stochasticfixedcostsof informationwithendogenous inten-
sity

First note, that μ̄(p̂, pL)(BL(p̂, pL)− (v̂− pL)) for p̂ ∈ (v, v̄) and pL < min{p̂, v̂}
is again increasing in pL and decreasing in p̂. To see this, just note that

μ̄(p̂, pL)(BL(p̂, pL)−(v̂−pL)) = E [π0(v̄− p̂)− (v̂− pL)− c, c ≤ π0(v̄− p̂)− (v̂− pL)] .
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The FOC for the optimal choice of intensity μ0(Δ, p̂) at the beginning of a period
satisfies

μ̄(p̂, pL)(BL(p̂, pL)− (v̂− pL)) =
∂

∂μ0
C(Δ, μ0).³⁵ (A.67)

To ease on notation in the following, I suppress again the dependence of C on Δ
when this is not explicitly needed for the argument.

Throughout I use the fact that the function

Ec∼F[x− c, c ≤ x], is strictly increasing in x ∈ supp(F),

where supp(F) denotes the support of F. This implies that in terms of the best
response of Buyer, it holds μ0(Δ, p̂, pL) = ρ(Δ, pL − π0p̂) for some function ρ
which is strictly increasing in both of its arguments. In particular, for fixed p̂, pL
the sequence μ0(Δ,p̂,pL)

Δ has a limit since it is bounded. Thus, (A.67) delivers a
unique μ0(Δ, p̂, pL) ∈ (0, 1) for every
Δ > 0, p̂ ∈ (v, v̄), pminL (p̂) < pL ≤ min{v̂, p̂}. μ0(Δ, p̂, pL) ∈ (0, 1) is strictly
decreasing in p̂ and strictly increasing in pL.

Moreover, note that for fixed p̂, pL the sequence ρ(Δ,pL−π0p̂)
Δ converges to some

ρ̄(pL − π0p̂)with ρ̄(·) increasing.
In all, this delivers a function μΔ(p̂, pL) = μ0(Δ, p̂, pL)μ̄(p̂, pL)which is

continuous in its arguments and strictly increasing in pL as well as strictly
decreasing in p̂. Furthermore it holds again μΔ(p̂, p

min
L (p̂)) = 0 with

pminL (p̂) = v̂− π0(v̄− p̂).
Finally, note that the left-hand side of (A.67) is independent of Δ and

therefore, with the same arguments as in the case of deterministic variable costs,
the sequence μ0(Δ,p̂,pL)

Δ is bounded away from zero, and converges to a function
which is denoted henceforth by λ(p̂, pL).

Lemma 19. 1-a) Fix any Δ > 0. The reservation pricing relation for type v̂ is always
solvable for pL for any p̂ ≥ v̂.

³⁵Note here that π0(v̄ − p̂) − (v̂ − pL) = pL − π0p̂ − (1 − π0)v which is strictly positive
whenever pL > pminL = (1 − π0)v+ π0p̂.
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1-b)There exists a p such that the reservation pricing relation for type v̂ is always
solvable for p̂ ∈ (p, v̂).

Moreover, whenever the reservation pricing relation for type v̂ is solvable for some p̂,
the solution is unique for fixed Δ and p̂. The solution pL(Δ, p̂) is increasing in p̂ for
fixed Δ.
2)There exists an open neighborhood of the form (p, v̄) of v̂ and a Δ̄ > 0 such that

the reservation pricing relation for type v̂ is solvable for pL as long as v̂ ≥ p̂ > p,
whenever Δ < Δ̄ and for all Δ > 0 as long as p̂ ≥ v̂. Moreover, the solution pL(Δ, p̂)
is unique and continuous in the parameters Δ, p̂ as long as Δ < Δ̄ and p̂ ∈ (p, v̄).
Finally, pL(p̂,Δ) is strictly increasing in p̂.
3) As Δ→0 the solution pL(Δ, p̂) converges to p̄L(p̂) which satisfies the relation

v̂− p̄L(p̂) =
λ(p̂)μ̄(p̂, p̄L(p̂))

r+ λ(p̂)μ̄(p̂, p̄L(p̂))
BL(p̂, p̄L(p̂)).

Proof. 1-a) is proven just as in Lemma 17.
1-b). Look at the case p̂ < v̂. I just need to establish one direction of the

inequality to justify the use of the intermediate-value theorem. Note that
BL(p̂, p̂) = π0(v̄− p̂)− E[c|c ≤ (1 − π0)(p̂− v)],
μ(Δ, p̂, p̂) = μ0(Δ, p̂, p̂)F((1 − π0)(p̂− v)), where μ0 satisfies

E[(1 − π0)(p̂− v)− c, c ≤ (1 − π0)(p̂− v)] = C ′(μ0(p̂, p̂)).

In particular, μ(Δ, p̂, p̂) > 0 for all p̂ ∈ (v, v̂). Clearly μ̄(p̂, p̂) and μ0(Δ, p̂, p̂)
are increasing and continuous in p̂. Take some p < v̂. Then λ(p̂, p̂) ≥ λ(p, p),
μ̄(p̂, p̂) ≥ μ̄(p, p) for all p̂ ∈ (p, v̂). First pick p0 ∈ (p, v̂) such that

v̂− p̂ <
1
2

λ(p, p)μ̄(p, p)
r+ λ(p, p)μ̄(p, p)

BL(p, p),

for v̂ > p̂ > p0. Now pick Δ̄ > 0 such that for Δ < Δ̄ it holds true

1
2

λ(p, p)μ̄(p, p)
r+ λ(p, p)μ̄(p, p)

<
δμ0(Δ, p, p)μ̄(p, p)

1 − δ + δμ0(Δ, p, p)μ̄(p, p)
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Combining and using monotonicity delivers for p̂ ∈ (p0, v̂),Δ < Δ̄

v̂− p̂ <
δμ0(Δ, p̂, p̂)μ̄(p̂, p̂)

1 − δ + δμ0(Δ, p̂, p̂)μ̄(p̂, p̂)
BL(p̂, p̂).

Thus, for all p̂ ∈ (p0, v̂),Δ < Δ̄ solvability follows for some
pL(Δ, p̂) ∈ (pminL (p̂), p̂).

Uniqueness and part 2), except for monotonicity, follow exactly as in Lemma
17. Monotonicity follows the same steps as in the proof of Lemma 13 and is thus
skipped.

3) is an easy consequence of the continuity of the functions involved and of the
fact that μ0(Δ,p̂,pL)

Δ is continuous in all of the arguments and converges as Δ→0. □
Combining (A.67) and the solvability of the reservation price relation of type

v̂ from Lemma 19 one proves again that there exists a neighborhood of v̂ such
that μ0(p̂,pL(p̂))

Δ →λ(p̂) (proof is analogous to the one of Lemma 18).
Define

B̄L(p̂) = E [π0(v̄− p̂)− (v̂− pL(p̂))− c, c ≤ π0(v̄− p̂)− (v̂− pL(p̂))] .
(A.68)

One combines (A.67) with solvability of the reservation price relation of the
type v̂ to write the relation

B̄L(p̂) = f′(λ(p̂)),

as

r(v̂− pL(p̂)) = f′(λ(p̂))λ(p̂). (A.69)

Lemma 19 delivers that p̂ 7→ λ(p̂) is strictly decreasing in p̂when the
reservation price relation of the type v̂ is satisfied. Thus, a higher average price
has a detrimental effect on the intensity chosen to learn. I note also for future use
that it follows pL(p̂)− π0p̂ is decreasing in p̂. Since this is a sufficient statistic for
all of μ̄, μ, B̄L, it also follows that all of these are decreasing in p̂.
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From here on the proof remains very similar to the case of deterministic
variable costs. One does the replacements λ(p̂)⇝ λ(p̂)μ̄(p̂), where the shortcut
μ̄(p̂) := μ̄(p̂, pL(p̂)) has been used. To find conditions which are not minimal,
but are not directly dependent on the distribution of costs F one can just estimate
μ̄(p̂) ≤ 1 to get, depending on whether π0 ≤ 1

2 or π0 >
1
2 , a condition just as

(A.36) in the proof of Proposition 6 for the case of deterministic variable costs.
Finally, one uses (A.69) to estimate
r(v̂− pL(p̂)) < v̂− pmin

L (p̂) = π0(v̄− p̂) < π0v̄. This delivers the following
sufficient condition for existence in the neighborhood of v̂.

if π0 ≤
1
2
, then f′(r) > π0v̄, if π0 >

1
2
, then f′

(
r√
2

)
>

√
2π0v̄. (A.70)

Note that (A.70) is independent of the specification of F.³⁶
The analysis delivers the following Propositions.

Proposition 34. [Existence with stochastic fixed accuracy costs and endogenous
intensity of learning] Pick any r, π0, v, v̄. Assume that (A.70) holds.
Then there is a neighborhoodN of v̂ and an ε > 0 such that for all Δ < ε and

p̂ ∈ N there exist strongly stationary equilibria with average price p̂. Moreover, for
any fixed average price p̂ the quantities
μ(Δ, p̂), μ0(Δ, p̂), q(p̂,Δ), pL(p̂,Δ), pH(p̂,Δ), p(p̂,Δ) are uniquely determined.

And now to the HFL of this case. The proof of the following Proposition is a
simple adaptation of the proof from the case of exogenous intensity, with the
added dependence of λ on p̂.

Proposition 35. Pick any r, π0, v, v̄. Assume that (A.70) holds. Denote
μ̄(p̂) = F(π0(v̄− p̂)− (v̂− pL(p̂))).
For any p̂ as in Proposition it holds in the HFL

A. Expected delay in real time is equal to 1
λ(p̂)μ̄(p̂) and it is increasing in p̂.

³⁶Again, the stated conditions arenotminimal conditions on theparameters and their relaxation
follows in a similar way to the relaxation of the existence conditions in the case of deterministic
variable costs on accuracy.
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B. The price spread ps(p̂) is bounded away from zero but the low price is charged
with vanishingly small probability

C. Buyer’s and Seller’s payoffs are given by

VB(p̂) =
λ(p̂)μ̄(p̂)

r+ λ(p̂)μ̄(p̂)
[π0(v̄− p̂− E[c|c ≤ (v̄− p̂)− (v̂− pL(p̂))])]−

f(λ(p̂))
r+ λ(p̂)

.

(A.71)
and

VS(p̂) =
λ(p̂)μ̄(p̂)

r+ λ(p̂)μ̄(p̂)
(π0p̂+ (1 − π0)v) . (A.72)

D. The shortfall in efficiency (i.e. the difference between v̂ and sum of payoffs) is
given by

r
r+ λ(p̂)μ̄(p̂)

v̂+
λ(p̂)μ̄(p̄)

r+ λ(p̂)μ̄(p̄)
π0E[c|c ≤ π0(v̄−p̂)−(v̂−p̄L(p̂))]+

f(λ(p̂))
r+ λ(p̂)

,

and is positive.

The case of pure pricing

The case of strongly stationary equilibria with pure pricing is a straightforward
combination of arguments from the case of mixed pricing and of the case of
costless intensity. For brevity’s sake I only give a sketch of the arguments for the
solvability of the v̂−indifference condition.

In the case of deterministic variable costs intensity choice satisfies (recall that
μ = 1 − e−λΔ)

BL(p̂)− (v̂− p̂) = C ′(μ).

In the case of stochastic fixed costs it satisfies

μ̄(p̂, p̂) (BL(p̂, p̂)− (v̂− p̂)) = C ′(μ).

In both cases this results in an equilibrium value for μ which I denote by μ(p̂, p̂)
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using the notation of subsection A.3.1.
The v̂-indifference relation in the case of pure pricing is given by

v̂− p̂ =
δμ(p̂, p̂)

1 − δ + δμ(p̂, p̂)
BL(p̂). (A.73)

Solvability of the indifference relation for the case of deterministic variable
costs for some p̂ ∈ (v, v̂) follows very closely that of subsection A.2.3. Therefore I
skip it. In the case of stochastic fixed costs, note that the right-hand side of
(A.73) is strictly positive if p̂ = v̂, while the left-hand side is zero. In case p̂ = v
the left-hand side is strictly positive, whereas the right-hand side is zero, because
μ̄(v, v) = F ((1 − π0)(v− v)) = 0. From here, the proof follows very closely a
combination of the cases of pure pricing for exogenous intensity and the case of
mixed pricing with endogenous intensity.

Comparative statics for information acquisition

In this subsection I don’t comment separately on the cases of pure and mixed
pricing, because the proofs are verbatim the same for both cases.

The results stated in Proposition 8 are part of the statements in the following
two Propositions.

Proposition 36. 1) Suppose there are two strongly stationary equilibria in the HFL
with the same average price p̂ and all parameters the same except for r1 > r2. Then the
equilibrium intensity is higher for r1 than r2. Equilibrium accuracy is the same in both
cases.

2) Suppose there are two strongly stationary equilibria with the same average price
p̂ and all parameters the same except for π1

0 > π2
0. Equilibrium accuracy is higher for

π1
0 if

v̄+v
2 > p̂, whereas it is higher for π2

0 if
v̄+v
2 < p̂. Equilibrium intensity is always

higher for π1
0.

Proof. Recall that in this case, the benefit of learning in the HFL, BL(p̂) is
dependent only on v, v̄, π0. It follows from the relation determining λ(p̂), given in
(A.60), that for fixed p̂, λ is increasing in r and also in π0. Next, look at accuracy
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a(p̂). Recall that it does not depend on any other parameters, except p̂, π0, v, v̄.
Using the first order condition related to the incentive constraint (OL-intensive)
one arrives easily at the required result. □

Next the comparative statics for the case of stochastic fixed costs of accuracy.

Proposition 37. 1) Suppose there are two strongly stationary equilibria in the HFL
with the same average price p̂ and all parameters the same, except for r1 > r2. Then
the equilibrium intensity is higher for r1 than r2.

2) Suppose there are two strongly stationary equilibria with the same average price
p̂ and all parameters the same, except for π1

0 > π2
0. Then the equilibrium intensity is

higher for π1
0.

3) Suppose in the case of stochastic fixed costs there are two strongly stationary
equilibria with the same average price p̂ and all parameters the same, except for
F1 >FOSD F2. Then λ1 is lower than λ2.

Proof. By using the definition (A.68) one writes the relation in part 3) of the
statement of Lemma 19 as follows.

r
λ
(v̂− pL) = B̄L(p̂, pL). (A.74)

Recall that the choice of λ at the beginning of a period satisfies the FOC
condition in the HFL.

B̄L(p̂, pL) = f′(λ) (A.75)

1) Suppose that the environment changes so that there is a higher r, but the
other parameters stay the same. There are two choice variables that can adjust to
keep the reservation pricing relation for type v̂ satisfied, i.e. relation (A.74) intact.
Either λ can increase to reinstate the balance in (A.74), or if λ weakly falls, then
pL necessarily goes up. But, other else equal, this leads to a higher level of
B̄L(p̂, pL), which, via (A.75) also leads to an increase of λ. Overall it follows the
equilibrium intensity λ must increase with r in the HFL.
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2) Suppose that π0 increases but other parameters are kept the same. Because
B̄L(p̂, pL) is strictly increasing in π0, all else kept equal, λ and/or pL necessarily
change to reinstate (A.74). Suppose pL falls enough so that B̄L remains the same
in both situations. Then λ necessarily increases. Suppose next, that pL falls but by
little enough so that B̄L increases overall in the situation with the higher prior.
Via (A.75) the equilibrium value of λ necessarily increases in this case. Suppose
for the remaining case, that pL remains the same after the change in π0, so that the
(A.74) is reinstated through a fall in λ. But in this case, B̄L necessarily increases as
well, so that via (A.75), λ has to increase as well. Thus, this last case cannot arise
because it leads to a contradiction.

Overall, it follows that the equilibrium intensity λ in the HFL necessarily
increases with the prior.

3) Suppose that F increases in the FOSD-sense. Then for fixed p̂, pL, B̄L
decreases. If pL adjusts upwards so that B̄L overall does not change, (A.74)
implies that the equilibrium value λ necessarily decreases. If pL adjusts upwards
so that overall B̄L still decreases, then equilibrium λ falls because of (A.75).
Suppose instead that pL adjusts downwards to a shift of F in the FOSD-sense.
Then overall, B̄L decreases. This implies via (A.74) that λ necessarily increases,
because v̂− pL increases in this case. But (A.75) implies that λ has to decrease.
This is a contradiction.

Overall, the equilibrium intensity λ in the HFL necessarily decreases
whenever F increases in the FOSD-sense. □

A.3.3 Proofs for subsections 1.4.2 and 1.4.3

Proofs for the extension to pre-learning negotations

Proof of Proposition 9. I show first that there is no PBE in which game
continues past t = 0. Suppose for the sake of contradiction there is such a PBE.
In particular, it has to prescribe an offer p on path by Seller with positive
probability, which is subsequently rejected with positive probability by Buyer.
Let VB(p) be the payoff of Buyer in the continuation bargaining game after she
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has rejected p. It holds v̂− p ≤ δVB(p). Moreover, the payoff from offering p of
Seller is then at most δVS(p)where VS(p) is Seller-payoff in the continuation
bargaining game played after Buyer has rejected p. It holds
δVS(p) ≤ δ(v̂− VB(p)) ≤ δv̂+ p− v̂ = p− (1 − δ)v̂. Suppose Seller deviates
instead to p′ = v̂− δVB(p)− ε for some ε > 0 very small. Then if Buyer acccepts
she receives more than δVB(p) and Seller receives p′ > δ(v̂− VB(p)), i.e. strictly
more than δVS(p). To arrive at the desired contradiction, assume now in addition
that p is so that

– it is the price on path offered with positive probability and rejected with positive
probability, with the highest VB(p) upon rejection.

Whenever the set of prices offered on path and rejected with positive
probability is compact, this assumption is w.l.o.g. in that, a price p can always be
chosen to satisfy it. Otherwise, one can use an approximation of the supremum
and pick ε(pn) > 0 very small, for pn, n ≥ 1 a sequence of prices such that they
are offered and rejected on path with positive probability and so that
VB(pn), n ≥ 1 converge to the supremum in question. In that case one arrives at a
contradiction similarly.

Efficiency of equilibria results trivially from the fact that agreement is always at
t = 0.

□

Discussion of the case of negative values

First, I discuss any necessary adaptations of the proof arguments for existence
and characterization of strongly stationary equilibria from the case v ≥ 0 to the
case v < 0.³⁷

When both disclosure and walking away are possible, then Buyer has zero
continuation payoff whenever bad news arrives. To see this, suppose that in
equilibrium the accuracy chosen leads to a bad-news valuation which is

³⁷The general results for all PBE for any Δ > 0 hold true verbatim in this variation of themodel.
Details are available upon request.
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non-negative. Then Buyer can disclose bad news immediately and receive a zero
continuation payoff. If Buyer instead picks an accuracy such that it leads to a
negative valuation after bad news then Buyer can walk away. This again results in
zero continuation payoff.

Overall, Buyer’s information acquisition decision is analogous to the case of
v ≥ 0, because payoff upon exercising the strategic outside option has the same
structure as in the baseline model. Seller’s payoff in equilibria is different,
depending on whether Buyer’s type can become negative or not. To include both
cases, one needs to just do the following replacement w⇝ max{w, 0} in Seller’s
payoffs in this case.³⁸ Otherwise the analysis remains the same.

Note that one does not need to put additional restrictions on parameters to
ensure existence, besides the one that BL(p̂) > 0, i.e. option value from learning
in the HFL is positive. This is always possible for p̂ > 0 near v̂, because any
amount of learning leads to a valuation after good news w̄which is strictly
positive.³⁹

Proof of Proposition 10. 1) is trivial so I focus on parts 2) and 3).
2) The sum of Buyer and Seller payoffs in the HFL is given by

VS(p̂)+VB(p̂) =
λ

λ + r
(
GN(a(p̂))w̄(p̂) + (1 − GN(a(p̂)))w+(p̂)− C(a(p̂))

)
.

The change in welfare due to the possibility to learn is given by

λ
r+ λ

C(a(p̂)) + v̂− λ
r+ λ

max{v̂,GN(a(p̂))w̄(p̂)}.

To show that learning can be beneficial from a welfare point of view, assume
π0 >

1
2 , choose r ≈

√
2λ and let the exploitation costs c be very small where

needed, i.e. c ≈ 0 in the topology of pointwise convergence. The welfare change

³⁸Here w stands for w(p̂) or v depending on type of accuracy costs.
³⁹In the case of pure pricing equilibria p̂ is positive and of course strictly below v̂.
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with respect to the case that learning is impossible is bounded from above by

λ
r+ λ

o(1) + v̂− 1√
2 + 1

π0v̄.

Note that the condition v̂ < 1√
2+1π0v̄ is equivalent to

√
2√

2 + 1
π0

1 − π0
< −v

v̄
,

whereas the condition that v̂ > 0 is equivalent to

π0

1 − π0
> −v

v̄
.

Overall, it follows that under the condition that

√
2√

2 + 1
π0

1 − π0
< −v

v̄
<

π0

1 − π0
,

whenever exploitation costs are small enough and r ≈
√

2λ, learning is beneficial
from a welfare perspective.

3) The sum of Buyer and Seller payoffs in the HFL is given by

VS(p̂) + VB(p̂) =
λμ̄(p̂)

r+ λμ̄(p̂)
(π0v̄− E[c|c ≤ π0(v̄− p̂)− (v̂− p̄L(p̂))]) .

The efficiency loss with respect to the case where learning is impossible (i.e.
v̂− (VS + VB)) is given by

r
r+ λμ̄(p̂)

π0v̄+
λμ̄(p̂)

r+ λμ̄(p̂)
E[c|c ≤ π0(v̄− p̂)− (v̂− pL(p̂))] + (1 − π0)v

=
r

r+ λμ̄(p̂)
v̂+

λμ̄(p̂)
r+ λμ̄(p̂)

(E[c|c ≤ π0(v̄− p̂)− (v̂− pL(p̂))] + (1 − π0)v) .
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Fix p̂ = v̂ and consider a sequence of Fn that are smooth and converge
uniformly to the distribution of the Dirac measure on zero, i.e. I let the accuracy
costs converge to zero approach zero uniformly. Then μ̄(v̂) has a limit point
which is strictly above zero. In fact, it is 1, because there should not be any
divergence between the learning and exploration rate in the limit n→∞ as costs
of accuracy become vanishingly small. So that near the limit one gets
approximately an inefficiency given by

r
r+ λ

π0v̄+ (1 − π0)v.

Note that this is strictly negative whenever

r
r+ λ

π0v̄ < −(1 − π0)v < π0v̄,

which is exactly the condition given in the statement of Proposition 10.
This finishes the proof of the Proposition.

□

A.4 Other results

This last subsection of Appendix A contains results from the online appendix of
my job market paper Bargaining with endogenous learning.

This section is organized as follows. The first subsection gives the proof of
Proposition 1. The second subsection generalizes the result about no sequential
screening of valuations near the HFL to its real-time counterpart. Subsection 3
comments on strongly stationary equilibria, whereas subsection 4 comments on
the multiplicity of equilibria in the costless case. Subsection 5 analyzes the case
of costless choice of learning intensity. Finally, subsection 6 comments on the
non-concavity of the value of information in the model in which Buyer can pick
general, two-parametric experiments.
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A.5 Proof of Proposition 1

Because of the requirement that payoff of Buyer after choice a < 1 is positive, it
follows that Buyer never decides to disclose irrespective of the signal she receives.
Distinguish therefore two cases.

Case 1: Suppose Buyer discloses good news on path with positive probability.
Suppose the history is such that after a < 1 she learns good news. If she reveals it
she gets zero continuation payoff. On-path Seller puts positive probability on all
three types {w, v̂, w̄} upon non-disclosure (with w < v̂ < w̄). Therefore, upon
non-disclosure she (potentially) mixes between the reservation price of either of
the three types. Suppose she asks with positive probability for the reservation
price of the types {w, v̂}. Then, for Buyer who has just learned after a < 1 that
s = H it is strictly better to not disclose, defeating the assumption at the start.
Therefore, it must be the case that Seller asks after any history of non-disclosure
with probability one for the reservation price of the type w̄ in this PBE. But then
all types would have zero payoff in this PBE after history h. This contradicts one
of the requirements in the statement of the Proposition.

Case 2: Suppose Buyer discloses (if at all) only bad news with positive
probability. Consider the case of a PBE where Buyer learns less than perfectly, i.e.
with a ∈ [ 12 , 1). Then, just as in Case 1, after seeing signal s = L she has implied
valuation w and after seeing signal s = H she has implied valuation w̄ and it holds

v < w ≤ v̂ ≤ w̄ < v̄.

For this purported PBE let βa(w, t) be the probability of the game ending at
time t (restart the time at zero after h to save on notation) if Buyer valuation after
learning is w ∈ {w, w̄}. Let similarly βa(w, t, v), βa(w, t, v̄) be the probability
that type w (after learning with accuracy a < 1), learns ex-post that the value of
the good is respectively v and v̄ (after the game ends and payoffs are realized). It
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holds for either w = w, w̄:

βa(w, t, v)v+ βa(w, t, v̄)v̄ = βa(w, t)w. (A.76)

The payoff of Buyer after h in the PBE is given by

∑
t≥0

δt
∑

w∈{w,w̄}

βa(w, t)(w− p(t,w)),

where p(t,w) is the expected payment to Seller upon stopping at time t. Note
that because Buyer payoff from the strategy is positive (requirement from
statement of Proposition) it cannot be that βa(w, t)w = 0 for all t and all w.
Using (A.76) one writes the payoff at any fixed period t and any w ∈ {w, w̄} as

βa(w, t)(w−p(t,w)) = βa(w, t, v)(v−p(t,w))+βa(w, t, v̄)(v̄−p(t,w)). (A.77)

Part 1) of Lemma 1 in the main paper implies that
v− p(t,w) < w− p(t,w) ≤ 0. Thus, under the condition that a < 1 Buyer
makes ex-post a loss whenever she learns that the good has low value. Look at the
following deviation for Buyer.

• Deviate to a = 1

• If learn θ = v̄ never disclose and imitate strategy as if using a < 1 from
PBE and having valuation w̄

• If learn θ = v immediately disclose.

The deviation leads to higher payoff for Buyer because it leads to payoff from
any fixed period t (leaving out discounting) and any w ∈ {w, w̄} given by

βa(w, t, v̄)(v̄−p(t,w)) > βa(w, t)(w−p(t,w)), whenever βa(w, t) > 0 and zero otherwise.
(A.78)
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(A.78) holds for all t ≥ 0 and all w. Therefore, integrating and summing up the
payoffs across w and time t establishes a contradiction to the equilibrium
property. This finishes the proof.

A.5.1 A result about ‘No sequential screening of valuations near
the HFL’ in real-time

I look again at the case of disclosure equilibria, i.e. Buyer with bad news discloses
immediately.

Moreover, the same definition of ‘divinity in bargaining’ as in the appendix of
the main paper is used here as well. I also use extensively the notation from the
subsection A.2 in the appendix of the main paper. Introduce the following
modification of the definition of sequential screening of valuations.

Definition 10 (Sequential screening of valuations.). Say that a PBE features
sequential screening of valuations (SSV) if on-path

• Seller quotes a strictly decreasing sequence of deterministic prices
{rl, l ≤ K} (K ≤ ∞) upon non-disclosure,

• the sequence of beliefs of the high type γ l(v̄) at the beginning of every
period 2 ≤ l ≤ T+ 1 is strictly decreasing over time

Say that a sequence of equilibria with SSV with respective final period on-path
T(Δ), exhibits SSV in the high-frequency limit ifT(Δ)Δ→0 as Δ goes to zero along
the respective subsequence.

For future use note the uniform inequality

U(γ)− γ =
(1 − γ)μ

1 − (1 − γ)μ(1 − π0)
≤ 2μ, ∀γ ∈ [0, 1], whenever μ <

1
2
.

(A.79)
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(A.79) implies that if on-path the belief at the start of period T is γT then the
following estimate is valid⁴⁰

γT =
T∑
t=1

γt − γt−1 ≤
T∑
t=1

U(γt−1)− γt−1 ≤ 2Tμ, whenever μ <
1
2
. (A.80)

Here the last inequality uses (A.79) and the first inequality follows from the
skimming property and the fact that the game goes on into a new period only
after a rejection of the price quoted in the last period.⁴¹

Proposition 38. In both the costless case as well as the case of stochastic fixed costs
on accuracy the following holds true. For all Δ small enough, there are no PBE which
satisfy the following properties.

A. The type v discloses immediately and v > 0,

B. SSV in the HFL.

The same is true for the case of deterministic variable costs on accuracy for all v ≥ 0.

Proof. The proof is a modification of the proof of the ‘no SSV near the HFL’
from the appendix of the main paper. I focus on the costless case and comment
on the extension needed for the other cases near the end of the proof. Claims 1.
and 2. remain the same, including their proofs. In Claims 3. and 4. one replaces
everywhereU(0)withU(γT), where T = T(Δ) is the history-length of the
pre-SSV part of the on-path play. The calculations otherwise follow the same
steps. To give a few more details for Claim 3.: the string of inequalities in its
proof is now replaced by

v
v̄
<

rK
v̄
≤ μπ0 + (1 − μπ0)U(γT)

1 − (1 − π0)μ(1 − U(γT))
. (A.81)

⁴⁰Recall that γ0 = 0 as there is no initial private information.
⁴¹In particular, the negative selection effect lowers belief of type v̄ after the rejection of a price.
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To establish the equivalent of Claim 3. for this setting, it is enough to show that
U(γT)→0 as Δ→0. Using (A.79) it is enough to show that γT→0 and this is true
due to the definition of SSV in the HFL and (A.80).

It is easy to adapt the proof for the costless case to the case of deterministic
variable costs or stochastic fixed costs with v > 0. Just as in the proof of the ‘no
SSV near the HFL’ for these two cases in the main body of the paper, this is
because the proof above is based only on arguments of Seller-pricing. □

A.5.2 On strongly stationary equilibria

The results of this section hold for stationary equilibria of all model versions in
the paper, but for ease of exposition I only use the notation from the costless case.

Recall the definition of strongly stationary equilibria in section 2 of the main
paper: A stationary equilibrium is called strongly stationary, if as long as
bargaining goes on Seller starts each period with belief concentrated on Buyer
type v̂.

Let for a sequence of period-lengths {Δ,Δ→0} be E = {E(Δ),Δ} a
sequence of equilibria.

Proposition 39. Suppose that E = {E(Δ),Δ} is a sequence of disclosure
equilibria. Let T (Δ) be the random variable of the terminal date of on-path play for
E(Δ) valued on {Δ, 2Δ, . . . }. Suppose that the sequence of random variables T (Δ)
converges weakly as Δ→0. Then the beliefs at the beginning of every period on-path
converge to the degenerate distribution on v̂.

Proof. Let γt(v̄,Δ), t ≥ 2 be the sequence of beliefs at the beginning of period t
in E(Δ)when in the previous period the reservation price of Buyer with good
news was rejected. Here it is assumed that tΔ is in the support of T (Δ) for all Δ
small enough.

Because of the non-disclosure property, one can repeat the arguments in
(A.79) and (A.80) to show that whenever Δ is small enough so that
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μ(Δ) = 1 − e−λΔ < 1
2 , it holds

γt(v̄,Δ)(v̄) ≤ 2tμ(Δ). (A.82)

Moreover, let γt(v̂,Δ), t ≥ 2 be the sequence of beliefs on-path at the beginning
of period t in E(Δ)when in the previous period the reservation price of Buyer of
type v̂was rejected. The assumption of disclosure equilibrium implies
γt(v̂,Δ)(v̂) = 1. This is because Lemma 1 from the main paper implies that after
rejection of the reservation price of type v̂ Seller puts zero probability on type v̄,
whereas the assumption on the disclosure choice of type v implies that type v has
zero probability after non-disclosure. (A.82) together with the fact that
μ(Δ) = 1 − e−λΔ→0,Δ→0 and the assumption of disclosure equilibria
establishes the result.

□
Note that a sequence of strongly stationary equilibria which are also disclosure

equilibria automatically satisfies γt(v̄,Δ)(v̄) = 0. In particular, Buyer with good
news never rejects on-path her reservation price.

A.5.3 On multiplicity of equilibria in the costless case

As a preliminary step in the analysis I note down a remark related to the
condition (C− high) from Proposition 3 in the main paper.

Remark 11. For δ→1, (C− high) in the limit becomes

v̄
v̂
>

1 − (1 − U(0))2μ
U(0)(1 − μU(0))

.

This can be expressed equivalently as

v̄− v̂
v̂

>
1 − μ + 2μU(0)− U(0)

U(0)(1 − μU(0))
.

I now look for stationary mixed equilibria in which μ can be intermediate or
high. Specifically, look for stationary mixed equilibria in which in the stationary
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phase Seller mixes between a high price pH and a low price pL and so that θ = v̄
accepts with probability one, both pH and pL whereas θ = v̂ accepts pL with
probability q ∈ (0, 1) and rejects pH. In case there is a PBE with q = 1 one can
use the refinement “divinity in bargaining”: after a rejection of pL in any period,
next period’s belief is again γ = 0.

Proposition 40. Suppose that the following condition on the parameters is satisfied.

(C− general)
μπ0(1 − π0)

1 − μ + μπ0
(v̄− v) <

1 − δ
1 − δ + δμ

v̂.

Then there exists a stationary mixed equilibrium with stationary belief γ = 0 such
that, upon non-disclosure, the low price is accepted with probability q ∈ (0, 1] from
the low type and with probability one from the high type, whereas the high price is
accepted only by the θ = v̄ buyer (with probability one).

The condition C− general is always satisfied for fixed parameters v̂, δ, μ whenever
the spread v̄− v is small enough.

Proof. Given that the triple (pH, pL, p)will be chosen to make both buyer types
{v̄, v̂} indifferent between accepting and rejecting in the stationary phase the
formulas pH(p) and pL(p) from the proof of Theorem 1 from the main paper
apply in this setting as well. Just as in the main paper, the payoff function of Seller
is calculated to be

VS(q, p) =
μπ0(pHp+ pL(1 − p)) + (1 − μ)(1 − p)qpL + μ(1 − π0)v

1 − δ(1 − μ)(1 − (1 − p)q)
.

Define the continuous function f : [0, 1]× [0, 1]→R

f(p, q) = U(0)(pH(p)− pL(p)) + q(1 − U(0))(δVS(q, p)− pL(p)).

238



For every p ∈ [0, 1] it holds f(p, 0) > 0. One calculates that

f(1, 1) = U(0)(v̄− v)(1 − π0)−
1 − δ

1 − δ + δμ
v̂.

Condition C− general implies that f(1, 1) < 0 and the intermediate-value
theorem for continuous functions delivers existence.

Seller and buyer off-path. This is virtually the same, with the obvious
replacements, as in Proposition 3 in the main paper. In the case of an equilibrium
with q = 1 the “divinity in bargaining” refinement delivers a unique off-path
belief compatible with equilibrium play.

□

Remark 12. Propositions 3 in the main paper and Proposition 40 here, together with
Remark 11 establish, that there is multiplicity of equilibria, when μ is high enough. To
see this formally, note that passing in the limit μ→1 and fixing the other parameters of
the game, the condition C− high becomes

v̄ > v̂, (A.83)

whereas the condition C− general becomes

v̄− v̂
v̂

< 1 − δ. (A.84)

(A.83) and (A.84) are satisfied whenever δ is small enough or v̄− v̂ is very small, e.g.
when v = 0 and π0 is near enough to one. Thus, there is multiplicity of equilibria for
all μ near enough to 1, for a range of other parameters of the game form which has
‘positive measure’.

In contrast to the classical uniqueness results Gul et al. [1986] and Fudenberg et al.
[1985], one sees that the multiplicity of equilibria arises due to the two channels of
seller-learning: from disclosure and from rejection of offers.

239



A.5.4 Costless choice of the learning intensity

I assume for this section that both μ, a are costless choice parameters of Buyer in
every period.

Proposition 41. Suppose that in the model with costless information one expands
the action set of Buyer in one of the following ways.
1) Buyer can choose in the first period once and for all the intensity of learning μ

privately,
or
2) Buyer can choose in every period the intensity of learning.

Then picking μ = 1 at every feasible choice moment is a weakly optimal action for
Buyer, irrespective of her type.

Proof. Suppose that there is a PBE where after some history in which Buyer can
choose intensity, she choses an intensity λ less than infinite. One knows from
Proposition 1 in the main body of the paper that Buyer learns conclusively,
whenever there is a chance to learn, unless the PBE features zero payoff for Buyer.
Suppose it is the case that Buyer has positive payoff in the PBE. Consider the
(undetected) deviation of picking infinite intensity to learn and otherwise
following the PBE strategy as prescribed in the original equilibrium. There are
two cases to consider.

Case 1. Suppose the original PBE is such that Buyer never agrees to a price
when still uncertain about the value of the good.

In this case, the imitation of the strategy of the original PBE, except for the
choice of intensity, leads to weakly higher payoffs.

Case 2. Suppose the original PBE is such that after some private history h,
Buyer agrees with positive probability to a quoted price when still uncertain
about the value of the good. Because of learning once, the current valuation can
only be v̂ ∈ (v, v̄).

Let h̃ be the same history as h for Buyer, but with choice of λ = ∞ at the
beginning of the game. Suppose the previous equilibrium had specified
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agreement with positive probability for a price of p = p(h) ≤ v̂. Let also β(h, p)
be the probability that history h occurs and Seller quotes p right after h. By
imitating play in h except for the choice of λ = ∞ in the first period as well as
disclosing immediately the value v at t = 1, if that happens to be the case, Buyer
ensures a payoff of at least π0β(h, p)(v̄− p) > β(h, p)(v̂− p) by agreeing to p
after h, if the game has still not ended at t = 1 and zero otherwise. She would
have received a negative payoff under the previous strategy if she had continued
with θ = v at t = 1. Thus, in the Case 2, the deviation to λ = ∞ at t = 1 leads to
a strict improvement for Buyer.

Suppose for the remaining case that Buyer has zero payoff in the PBE and
picks an intensity less than∞. She has zero payoff in the PBE if and only if Seller
quotes with probability one the highest valuation of Buyer she deems feasible
after every public history. Suppose this buyer valuation is w̄(h) after every public
history h on-path. If w̄(h) < v̄, Buyer can ensure positive payoff by picking
λ = ∞ in the first period, disclosing immediately if value is v and otherwise
waiting for the history h to arrive (by rejecting prices and not disclosing till h).
This contradicts the assumption of zero payoff for Buyer in the purported PBE. It
remains to look at the case that w̄(h) = v̄ after every public history in which there
has been no disclosure. But then, picking λ = ∞, a = 1 and disclosing the value
immediately is also optimal, given Seller strategy. □

The next result shows that the generic uniqueness result from the classical
works Fudenberg et al. [1985] and Gul et al. [1986] depends crucially on the
assumption of commitment from Buyer’s side to have private initial information before
she approaches Seller. Namely, when this assumption is relaxed, the
positive-buyer-payoff PBEs which feature Coasian dynamics, co-exist with
high-price equilibria in which Buyer receives zero payoff.

Proposition 42. If both accuracy and intensity of learning are endogenous there is a
Coasian equilibrium where Buyer has positive payoff. This equilibrium is not unique as
it co-exists with the stationary high equilibria from Proposition 3 in the main paper.

Proof. In the first step, suppose that Buyer picks λ = ∞ in the first period. Then
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the game turns into a classical bargaining game as in Fudenberg et al. [1985] and
Gul et al. [1986], with initial private information described by a two-point
support distribution. Thus, results from Fudenberg et al. [1985] and Gul et al.
[1986] apply.⁴²

In the second step, look at the following equilibrium. In each period (or at the
start of the game), Buyer picks some λ < ∞ so that (C− high) from Proposition
3 in the main paper is satisfied. Morever, whenever she gets the opportunity to
learn she picks a = 1 and discloses v immediately. Otherwise, she follows the
same price acceptance strategy as in the construction of stationary high-price
equilibria from Proposition 3 in the main paper. Seller asks for v̄ on-path, just as
in the construction for Proposition 3 in the main paper. This constitutes again an
equilibrium in the expanded game defined in the statement of this Proposition
and Buyer has zero payoff in this equilibrium. □

A.5.5 On (non-)concavity of the value of information

Recall from the main paper the two-parameter experiments. A general
experiment is given by E : {v, v̄}→Δ({H, L}) and is fully identified with the two
accuracy parameters aH = P(s = H|θ = v̄) and aL = P(s = L|θ = v). Because
one can always relabel signals, I focus in the following w.l.o.g. only on the case:

∇ = {(aH, aL) : aH, aL ∈ [0, 1], aH + aL ≥ 1}.

I show that generally the value of information, given by the option value from
learning, is not concave in this model if one allows for general experiments. This
warrants the restriction to one-dimensional experiments in the main body of the
paper. The possibility that the value of information may be non-concave near
uninformative experiments is a well-known phenomenon since the work Radner
and Stiglitz [1984]. Chade and Schlee [2002] deliver a generalisation and careful
analysis of this phenomenon. In these works the set of experiments that the agent

⁴²Note also the similar isomorphism to the classical model in Fudenberg et al. [1985] in the
public outside option model of Hwang and Li [2017] (see Appendix A. there).
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can choose is parametrized through a one-dimensional variable. In the main
paper I consider a class of one-parameter experiments which deliver concave
value of information. This section shows that in the model of the main paper the
non-concavity of the value of information reappears for two-dimensional
experiments.

Define the function L : int(∇)→{(l1, l2) ∈ (1,∞)2, l1 + l2 < l1l2 + 1} given
by L(aH, aL) =

(
aH

1−aL
, aL

1−aH

)
.

Lemma 20. Themap L defined above is a C∞−diffeomorphism.

Proof. I give explicitly the diffeomorphism. Given (l1, l2) ∈ (1,∞)2 one needs
to solve for aH, aL ∈ ∇ s.t.

l1 =
aH

1 − aL
, l2 =

aL
1 − aH

.

Algebra shows that necessarily

aH =
l1l2 − l1
l1l2 − 1

, aL =
l1l2 − l2
l1l2 − 1

.

The condition that aH + aL > 1 is equivalent to l1 + l2 < l1l2 + 1 which is
precisely the condition that appears in the definition of L. This shows surjectivity.
Now I show the map is also injective.

Suppose there are two pairs (a, b), (a′, b′) ∈ ∇ such that L(a, b) = L(a′, b′).
Thus it holds that

a
1 − b

=
a′

1 − b′
,

b
1 − a

=
b′

1 − a′
.

Algebra manipulations lead to the identities

b′ =
1 − a′

1 − a
b, b′ = 1 − a′

a
(1 − b).

Equating and manipulating one arrives at the conclusion b = 1 − a, which
contradicts the definition of L. Thus, L is injective. Now it is easy to see that L−1
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is continuously differentiable because each component of it is a rational function
which is well-defined for every pair in (1,∞)2. □

While it is not a problem to make the costs convex in l1, l2 by just defining
them to be so, the benefit of information in this model is not globally concave.
This can be illustrated by showing that in general the function

f(l1, l2) = A
l1l2 − l1
l1l2 − 1

+ B
1 − l2
l1l2 − 1

, A,B ≥ 0.

In the model with deterministic variable costs on accuracy, the values of A,B
correspond respectively to A = π0v̄ and B = (1 − π0)v.

It is enough to show that the functions f(l1, l2) = l1l2−l1
l1l2−1 and g(l1, l2) = 1−l2

l1l2−1 are
not concave. One calculates

∂2

∂2l1
f(l1, l2) =

(l2 − 1)l2
(l1l2 − 1)4

> 0,
∂2

∂2l2
g(l1, l2) = −2

(l1 − 1)l1
(l1l2 − 1)3

< 0,

∂2

∂2l1
g(l1, l2) = −2

(l2 − 1)l22
(l1l2 − 1)3

,
∂2

∂l1∂l2
g(l1, l2) =

2l2 − 1 − l1l2
(l1l2 − 1)3

.

One sees immediately that f cannot be concave in (l1, l2) because the second
derivative of fw.r.t. l1 is strictly positive, whereas the determinant of the Hessian
of g is calculated to be

|Hessg(l1, l2)| = 4
(l1 − 1)l22l1(l2 − 1)

(l1l2 − 1)6
− (l1l2 − 2l2 + 1)2

(l1l2 − 1)6
.

It is easily seen that for l1 near 1 and l2 large, the determinant of the Hessian
becomes negative, so that g cannot be globally concave.
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B
Appendix to Chapter 2

B.1 Proofs

In the proofs, we will often use the following fact about news-utility functions
with diminishing sensitivity. We omit its simple proof.

Fact. Let d1, d2 > 0 and suppose μ(0) = 0.

• (sub-additivity in gains) If μ′′
(x) < 0 for all x > 0, then

μ(d1 + d2) < μ(d1) + μ(d2).

• (super-additivity in losses) If μ′′
(x) > 0 for all x < 0, then

μ(−d1 − d2) > μ(−d1) + μ(−d2)
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B.1.1 Proof of Proposition 11

Proof. We first justify by backwards induction that the value function is indeed
given by

U∗
t (x) = (cavUt(· | x)) (x),

for all x ∈ Δ(Θ) and all t ≤ T− 1, and that it is continuous in x.
If the receiver enters period t = T− 1 with the belief x ∈ Δ(Θ), the sender

faces the following maximization problem.

(PT−1) max
μ∈Δ(Δ(Θ)),E[μ]=x

∫
Δ(Θ)

UT−1(p | x)dμ(p).

This is because any sender strategy σT−1 induces a Bayes plausible distribution of
posterior beliefs, μ withE[μ] = x, and conversely every such distribution can be
generated by some sender strategy, as in Kamenica and Gentzkow [2011]. It is
well-known that the value of problem PT−1 is (cavUT−1(· | x)) (x), justifying
U∗

T−1(x) as the value function for any x ∈ Δ(Θ). The objective in PT−1 is
continuous in p (by assumption onN) and hence in μ, and furthermore the
constraint set {μ ∈ Δ(Δ(Θ)) : E[μ] = x} is continuous in x. Therefore,
x 7→ U∗

T−1(x) is continuous by Berge’s Maximum Theorem.
Assume that we have shown that value function is continuous and given by

U∗
t (x) for all t ≥ S. If the receiver enters period t = S− 1 with belief x, then the

sender’s value must be:

(Pt) max
μ∈Δ(Δ(Θ)),E[μ]=x

∫
Δ(Θ)

N(p | x) + U∗
t+1(p)dμ(p)

using the inductive hypothesis thatU∗
t+1(p) is the period t+ 1 value function. But

N(p | x) + U∗
t+1(p) = Ut(p | x) by definition, and it is continuous by the

inductive hypothesis. So by the same arguments as in the base case,U∗
S−1(x) is the

time-(S− 1) value function and it is continuous, completing the inductive step.
In the first period, by Carathéodory’s theorem, there exist weights

w1, ...,wK ≥ 0, beliefs q1, ..., qK ∈ Δ(Θ),with
∑K

k=1 w
k = 1,

∑K
k=1 w

kqk = x,
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such thatU∗
1 (π0) =

∑K
k=1 w

kU1(qk | π0). Having now shownU∗
2 is the period-2

value function, there must exist an optimal information structure where σ1(· | θ)
induces beliefs qk with probability wk. This information structure induces one of
the beliefs q1, ..., qK in the second period. Repeating the same procedure for
subsequent periods establishes the proposition. □

B.1.2 Proof of Proposition 12

Proof. Suppose T = 2.Consider the following family of information structures,
indexed by ε > 0.Order the states based onEc∼Fθ [v(c)] and label them
θL, θ2, ..., θK−1, θH. LetM = {mL,m2, ...,mK−1,mH}. Let σ t(θk)(mk) = 1 for
2 ≤ k ≤ K− 1, σ t(θH)(mH) = 1, and σ t(θL)(mL) = x, σ t(θL)(mH) = 1 − x for
some x ∈ (0, 1) so that the posterior belief after observingmH is (1 − ε)1H ⊕ ε1L.

For every ε > 0, the information structure just described leads to one-shot
resolution of states θ /∈ {θL, θH}.The difference between its expected news
utility and that of one-shot resolution isW(ε), given by

π0(θH) · [N((1 − ε)1H ⊕ ε1L | π0) + N(1H | (1 − ε)1H ⊕ ε1L)− N(1H | π0)]

+
ε

1 − ε
π0(θH) · [N((1 − ε)1H ⊕ ε1L | π0) + N(1L | (1 − ε)1H ⊕ ε1L)− N(1L | π0)] .

W is continuously differentiable away from 0 andW(0) = 0.To show that
W(ε) > 0 for some ε > 0, it suffices that limε→0+ W′

(ε) > 0.Using the
continuous differentiability ofN except when its two arguments are identical,
this limit is

lim
ε→0+

N((1 − ε)1H ⊕ ε1L | π0)− N(1H | π0)

ε
+ lim

ε→0+

N(1H | (1 − ε)1H ⊕ ε1L)
ε

+N(1H | π0) + N(1L | 1H)− N(1L | π0).

Simple rearrangement gives the expression from Proposition 12. The expression
for the case of mean-based μ follows by algebra, noting that
N((1 − x)1H ⊕ x1L | π0) = μ((1 − x)− v0) for x ∈ [0, 1].
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If T > 2, then note the sender’s T-period problem starting with prior π0 has a
value at least as large as the 2-period problem with the same prior. On the other
hand, one-shot resolution brings the same total expected news utility regardless
of T. □

B.1.3 Proof of Corollary 1

Proof. We verify Proposition 12’s condition

μ
′
(0+) + μ(1 − π0)− μ(−π0) > −μ(−1) + μ

′
(1 − π0).

We have that

LHS = αp + αp(1 − π0)− βp(1 − π0)
2 − [βnπ

2
0 − αnπ0]

RHS = [−βn + αn] + [αp − 2βp(1 − π0)]

By algebra,

LHS− RHS = (1 − π0)(αp − αn) + (1 − π2
0)(βp + βn).

Given that (αn − αp) ≤ (βp + βn) and 1 − π2
0 > 1 − π0 for 0 < π0 < 1,

LHS− RHS > −(1 − π2
0)(βp + βn) + (1 − π2

0)(βp + βn) = 0.

□

B.1.4 Proof of Corollary 2

Proof. This follows from Proposition 12 because μ′
(0+) = ∞ for the power

function. □
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B.1.5 Proof of Proposition 13

Proof. Suppose Θ = {θ1, ..., θK} and assume without loss the states are
associated with consumption levels c1 < ... < cK.

Let the message space beM = {m1, ...,mK,m∗}. In the first period,

• σ1(mk | θk) = 1 for 1 ≤ k ≤ K− 2,

• σ1(m∗ | θK−1) = 1,

• σ1(m∗ | θK) = π0(θK−1)
1−π0(θK)

,

• σ1(mK | θK) = 1 − σ1(m∗ | θK).

So, messagemk perfectly reveals state θk,whereasm∗ is a “muddled” message that
implies the state is either θK−1 or θK. By simple algebra, the probability that the
receiver assigns to state θK afterm∗ is the same as the prior belief,

P[θK | m∗] =
π0(θK) · σ1(m∗ | θK)

π0(θK) · σ1(m∗ | θK) + π0(θK−1) · 1
= π0(θK).

In the second period, the information structure perfectly reveals the true state
regardless of the last message, σ2(mk | θk) = 1 for all 1 ≤ k ≤ K.

Percentile0 1

c1 c2 c3 c4

c3 c4
prior
belief

new
belief

Figure B.1.1: New belief about consumption after the muddled message m∗.
Environment with 4 states; new belief compared with the old belief given by the prior π0.

To compute the news utility of the muddled messagem∗, note that at
percentiles p ∈ [0, π0(θ1)), the change in p-percentile consumption utility is
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v(cK−1)− v(c1). Similarly, for 2 ≤ k ≤ K− 2, the change in consumption utility
at percentile p ∈

[∑k−1
j=1 π0(θj), π0(θk) +

∑k−1
j=1 π0(θj)

)
is v(cK−1)− v(ck).

There are no changes at percentiles above
∑K−2

j=1 π0(θj).
If θ = θK−1, total news utility from receivingm∗ thenmK−1 is[

K−2∑
k=1

π0(θk) · μ(v(cK−1)− v(ck))

]
︸ ︷︷ ︸

from m∗ in period 1

+ π0(θK) · μ(v(cK−1)− v(cK))︸ ︷︷ ︸
from mK−1 in period 2

.

This is identical to the news utility from one-shot resolution in state θK−1.

Similarly, the information structure just constructed gives the same news utility
as one-shot resolution when the state is θk for 1 ≤ k ≤ K− 2, and when the state
is θK and the receiver getsmK in period 1.

When the receiver seesm∗ in period 1 andmK in period 2 in state θK, an event
that happens with strictly positive probability since π0(θK−1) < 1 − π0(θK) as
K ≥ 3, he gets strictly more news utility than from one-shot resolution.

If θ = θK, total news utility from receivingm∗ thenmK is[
K−2∑
k=1

π0(θk) · μ(v(cK−1)− v(ck))

]
︸ ︷︷ ︸

from m∗ in period 1

+

[
K−1∑
k=1

π0(θk) · μ(v(cK)− v(cK−1))

]
︸ ︷︷ ︸

from mK in period 2

,

while one-shot resolution gives

K−1∑
k=1

π0(θk) · μ(v(cK)− v(ck)).

For each 1 ≤ k ≤ K− 2 (non-empty since K ≥ 3),

μ(v(cK)− v(cK−1)) + μ(v(cK−1)− v(ck)) > μ(v(cK)− v(ck))

by sub-additivity in gains. This shows the constructed information structure
gives strictly more news utility. □
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B.1.6 Proof of Proposition 15

Proof. Let (!) be the following geometric condition: the concavification of
U1(p|π0) involves a linear segment starting at the pair p = 0,U1(0|π0)which is
strictly aboveU1(π0|π0)when evaluated at p = π0. We need to show that (!)
holds true if and only if partial bad news are suboptimal. It is clear that whenever
the geometric condition (!) is satisfied, partial bad news are suboptimal as the
posterior induced in the bad state must be equal to 0 with probability one. On
the other hand, knowing that the posterior induced in the bad state is 0 with
probability 1 implies two possibilities: (i) either perfect revelation of the state is
optimal, or (ii) the optimal information structure involves partial good news and
perfect revelation of the bad state. In either case, the only posterior induced in
the bad state is that of 0, i.e. the concavification has to include the point
(0,U1(0|π0)). From the definition of concavification and the fact that it is
supported on two points of the graph of q→U1(q|π0), it follows that the
concavification has to include a linear segment starting at (0,U1(0|π0)), thus (!)
should hold true.

Because of the two-point support feature of the concavification and the fact
that the average of the posteriors needs to be equal to the prior π0 ∈ (0, 1), this
implies that there is a q > π0, which is the second point of support for the
concavification and the linear segment. In case (i) above, it holds q = 1 whereas
in case (ii) it holds q < 1. □

B.1.7 Proof of Corollary 3

We first prove a sufficient condition for the sub-optimality of information
structures with partial bad news with T = 2. Consider the chord connecting
(0,U1(0 | π0)) and (π0,U1(π0 | π0)) and let ℓ(x) be its height at x ∈ [0, π0]. Let
D(x) := ℓ(x)− U1(x | π0).

Lemma 21. For this chord to lie strictly above U1(p | π0) for all p ∈ (0, π0), it
suffices that D′

(0) > 0,D′
(π0) < 0, and D′′

(p) = 0 for at most one p ∈ (0, π0).
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Proof. We needD > 0 in the region (0, π0). We know thatD(0) = D(π0) = 0.
Given the conditions in the statement and the twice-differentiability ofD in
(0, π0) it follows thatD′′ changes sign only once. Moreover, it also follows that
D > 0 in a right-neighborhood of x = 0 and a left-neighborhood of x = π0.
SupposeD has an interior minimum at x0 ∈ (0, π0). Then it holdsD′′(x0) ≥ 0.

SupposeD′′(x) > 0 for all small x. Then it follows x0 ≤ p, where we set
p = π0 if p doesn’t exist. BecauseD′′(x) ≥ 0 for all x ≤ pwe have that
D′(x) > 0 for all x ≤ p. In particular alsoD(x) > 0 for all such x due to the
Fundamental Theorem of Calculus. Thus, the interior minimum is positive and
so the claim aboutD in (0, π) is proven in this case.

Suppose instead thatD′′(x) < 0 for all x near enough to 0. Then it follows that
x0 ≥ p. In particular, for all x > pwe haveD′′(x) > 0. Since the derivative is
strictly increasing for all x ∈ (x0, π0) andD′(π0) < 0 we have thatD′(x) < 0 for
all x ∈ (x0, π0). In particular, from the FundamentalTheorem of Calculus,D(π0)

is strictly belowD(x0). SinceD(π0) = 0 we have again thatD(x0) > 0.
Given the boundary values ofD and the signs of the derivatives at 0, π0 and

that any interior minimum ofD is strictly positive, we have covered all cases and
so shown thatD > 0 in (0, π0). □Now we verify that the condition in Lemma
21 holds for the quadratic news utility, which in turn verifies the condition of
Proposition 15 for q = π0 and shows partial bad news information structures to
be strictly suboptimal.

Proof. Clearly,D(p) is a third-order polynomial, soD′′
(p) has at most one root.

For p < π0,we have the derivative

d
dp

U(p | π0) =2βn(p− π0) + αn + αp(1 − p)− βp(1 − p)2

+ p(−αp + 2βp(1 − p))− (βnp
2 − αnp) + (1 − p)(2βnp− αn)

The slope of the chord between 0 and π0 is:
αp − βp + (2βp − αp + αn)π0 − (βp + βn)π

2
0. So, after straightforward algebra,

D′
(0) = (2(βp + βn)− (αp − αn))π0 − (βp + βn)π

2
0. Applying weak loss
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aversion with z = 1, αp − αn ≤ βp − βn.This shows

D
′
(0) ≥ (2(βp + βn)− (βp − βn))π0 − (βp + βn)π

2
0

= (βp + βn)π0(1 − π0) + 2βnπ0 > 0

for 0 < π0 < 1.
We also deriveD′

(π0) = (αp − 2βp − 2βn − αn)π0 + (2βp + 2βn)π
2
0.Note

that this is a convex parabola in π0, with a root at 0. Also, the parabola evaluated
at 1 is equal to αp − αn ≤ 0,where the inequality comes from the weak loss
aversion with z = 0. This impliesD′

(π0) < 0 for 0 < π0 < 1. □

B.1.8 Proof of Proposition 14

Proof. We show that one-shot resolution gives weakly higher news utility
conditional on each state, and strictly higher news utility conditional on at least
one θ ∈ ΘB.

When θ ∈ ΘB, P(M,σ)-almost surely the expectations in different periods form
a decreasing sequence v0 ≥ v1 ≥ ... ≥ vT = v(cθ). By super-additivity in losses,∑T

t=1 μ(vt − vt−1) ≤ μ(vT − v0) = μ(v(cθ)− v0).This shows P(M,σ)-almost
surely the ex-post news utility in state θ is no larger than μ(v(cθ)− v0), the news
utility from one-shot resolution.

Let E be the event where the receiver’s expectation strictly decreases two or
more times. From the definition of strict gradual bad news, there exists some
θ∗ ∈ ΘB so that P(M,σ)[E | θ∗] > 0.On E ∩ {θ∗},∑T

t=1 μ(vt − vt−1) < μ(v(cθ∗)− v0) from super-additivity in losses, which means
the expected news utility conditional on E ∩ {θ∗} is strictly lower than that of
one-shot resolution. Combined with the fact that the ex-post news utility in state
θ∗ is always weakly lower than μ(v(cθ∗)− v0), this shows expected news utility in
state θ∗ is strictly lower than that of one-shot resolution.

Conditional on any state θ ∈ ΘG, there is some random period
t∗ ∈ {0, ...,T− 1} so that vt is weakly decreasing up to t = t∗ and vt = v(cθ) for
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t > t∗. If t∗ = 0, then this belief path yields the same news utility as one-shot
resolution. If t∗ ≥ 1, then the total news utility is

t∗∑
t=1

μ(vt − vt−1) + μ(v(cθ)− vt∗).

By sub-additivity in gains,

t∗∑
t=1

μ(vt − vt−1) ≤ μ(vt∗ − v0),

and for the same reason,

μ(v(cθ)− vt∗) ≤ μ(v0 − vt∗) + μ(v(cθ)− v0)

as we must have vt∗ ≤ v0. Total news utility is therefore bounded above by

μ(vt∗ − v0) + μ(v0 − vt∗) + μ(v(cθ)− v0).

By weak loss aversion, μ(vt∗ − v0) + μ(v0 − vt∗) ≤ 0, therefore total news utility
is no larger than that of one-shot resolution, μ(v(cθ)− π0). □

B.1.9 Proof of Proposition 16

Proof. We have

d
dp

U(p | π0) = 2αp−αn−βp+2βpπ0+p(−2αp+2βp+2αn+2βn)+p2(−3βp−3βn)

Further, p times slope of chord is:

U(p | π0)− U(0 | π0) =U(p | π0)− (βnπ
2
0 − αnπ0)

=π0(−αp + αn) + π2
0(−βp − βn) + p(2αp − αn − βp)

+ p2(−αp + βp + αn + βn) + p3(−βp − βn) + pπ0(2βp)
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Equating p · d
dpU(p | π0) = U(p | π0)− U(0 | π0), we get

π0(αn − αp)− (βp + βn)π
2
0 = p2(αn − αp + βn + βp)− p3(2βp + 2βn).

Define c = αn−αp
βn+βp

. Then, we can write the implicit function as

π0c− π2
0 = p2(1 + c)− 2p3.

That for every 0 ≤ c ≤ 1 and π0 ∈ (0, 1) this has a solution we know it from the
fact that the chord condition is always satisfied for quadratic specification. We
want to take derivatives though and maybe try and solve explicitly for the
function p(π0, c).

The condition to apply implicit function theorem: define the function
f(π0, p, c) = p2(1 + c)− 2p3 − π0c+ π2

0 with domain (0, 1)3; then we need
∂pf(π0, p, c) 6= 0. If this is true, then we can solve locally for p(π0, c) and then
also calculate the local derivative/comparative statics we do below locally. We
note that ∂pf(π0, p, c) = 2p(1 + c)− 6p2. Thus, the only constellation where this
would be zero is if p = 1+c

3 =: p̂ ∈ [ 13 ,
2
3 ], given the sufficient condition c ∈ (0, 1)

that we are imposing (see Corollary 1) but we leave out the boundary values for a
second). Now, let us see for a fixed c, what π0 would give p̂ (because we only
focus on region where implicit function gives out a solution). This would mean
solving for π0 the quadratic equation

π2
0 − π0c+

1
27
(1 + c)3 = 0. (B.1)

Let’s calculate the discriminant as a function of c. It is given as
D(c) = c2 − 4

27(1 + c)3. Note thatD′(c) = 2
9(2 − c)(2c− 1). In particular,D is

falling from c = 0 till c = 1
2 and increasing from then on till c = 1. We note also

thatD(0) < 0,D(1) < 0 so that overall it follows thatD(c) < 0 for all c ∈ [0, 1].
In particular, it holds that Equation (B.1) is never solvable! This means that ∂pf
never changes sign in (0, 1)3 ∩ {(p, π0, c) : π0c− π2

0 = p2(1 + c)− 2p3} (f is a
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smooth function on its domain). Thus, implicit function theorem is applicable
for all (π0, c) ∈ (0, 1)2.

Totally differentiating, we get:

dπ0 · (αn − αp)− (βp + βn)2π0 · dπ0 = 2p · dp · (αn − αp + βn + βp)− 3p2 · dp · (2βp + 2βn),

which can be rearranged to dp
dπ0

1
p =

c−2π0
2p2(1+c)−6p3 .We note that we showed above

the denominator of this expression never changes sign. Given that we know it’s
negative at c = 0 we conclude that it’s always negative for all c and all π0 ∈ (0, 1).
It follows that unless c = 0, p(π0) is falling till some prior and increasing
afterwards. For c = 0 it is strictly increasing all the way. Note that an implication
of the shape for the case of c > 0 is that p(0, c) = 1+c

2 (because the other root
which is zero would lead to a contradiction of the shape, given that p ∈ [0, 1])).
Thus, the amount of partial good news in the good state remains bounded away
from zero as the prior indicates more and more that overall the state is bad with
high probability. □

B.1.10 Proof of Proposition 17

Proof. Consider an agent who prefers B over A. In state A, he gets μ(−ρ0)with
one-shot information, but

∑T
t=1 μ(ρt − ρt−1)with gradual information. For each

t, ρt − ρt−1 < 0, and furthermore
∑T

t=1 ρt − ρt−1 = −ρ0 by telescoping and
using the fact that ρT = 0. Due to super-additivity in losses, we get that
μ(−ρ0) >

∑T
t=1 μ(ρt − ρt−1). In state B, he gets μ(1 − ρ0)with one-shot

information. With gradual information, let T̂ ≤ T be the first period where the
coin toss comes up tails. His news utility is

[∑T̂−1
t=1 μ(ρt − ρt−1)

]
+ μ(1 − ρT̂−1)

where each ρt − ρt−1 < 0 for 1 ≤ t ≤ T̂− 1. Again by super-additivity in losses,∑T̂−1
t=1 μ(ρt − ρt−1) < μ(ρT̂−1 − ρ0). By sub-additivity in gains,

μ(1− ρT̂−1) < μ(ρ0 − ρT̂−1) + μ(1− ρ0) ≤ −μ(ρT̂−1 − ρ0) + μ(1− ρ0), where
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the weak inequality follows since λ ≥ 1. Putting these pieces together, T̂−1∑
t=1

μ(ρt − ρt−1)

+ μ(1 − ρT̂−1) < μ(ρT̂−1 − ρ0)− μ(ρT̂−1 − ρ0) + μ(1 − ρ0)

= μ(1 − ρ0)

as desired.
Now consider an agent who prefers A over B. We show that when λ = 1, the

agent strictly prefers gradual information to one-shot information. By continuity
of news utility in λ, the same strict preference must also hold for λ in an open
neighborhood around 1.

In state A, the agent gets μ(1 − π0)with one-shot information, but∑T
t=1 μ(πt − πt−1)with gradual information. For each t, πt − πt−1 > 0, and

furthermore
∑T

t=1 πt − πt−1 = 1 − π0 by telescoping and using the fact that
πT = 1. Due to sub-additivity in gains, we get that∑T

t=1 μ(πt − πt−1) > μ(1 − π0). In state B, he gets μ(−π0)with one-shot
information. With gradual information, let T̂ ≤ T be the first period where the
XT̂ = 0. His news utility is

[∑T̂−1
t=1 μ(πt − πt−1)

]
+ μ(−πT̂−1)where each

πt − πt−1 > 0 for 1 ≤ t ≤ T̂− 1. Again by sub-additivity in gains,∑T̂−1
t=1 μ(πt − πt−1) > μ(πT̂−1 − π0). By super-additivity in losses,

μ(−πT̂−1) > μ(−(πT̂−1 − π0)) + μ(−π0) = −μ(πT̂−1 − π0) + μ(−π0), where
the equality comes from the fact that λ = 1 so μ is symmetric about 0. Putting
these pieces together, T̂−1∑

t=1

μ(πt − πt−1)

+ μ(−πT̂−1) > μ(πT̂−1 − π0)− μ(πT̂−1 − π0) + μ(−π0)

= μ(−π0)

as desired. □
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B.1.11 Proof of Proposition 18

Proof. (1) Suppose μ is two-part linear with μ(x) = kx for x ≥ 0, μ(x) = λkx
for x < 0,where k > 0, λ ≥ 1. Then, agents preferring either state will strictly
prefer one-shot information over gradual information. Indeed, since news utility
is proportional to negative of expected movement in beliefs, and since
E[
∑T

t=1 |πt − πt−1|] = E[
∑T

t=1 |(1 − ρt)− (1 − ρt−1)|] = E[
∑T

t=1 |ρt − ρt−1|],
agents preferring state A and state B also derive the same amount of news utility
from each informational structure and hence have the same intensity of
preference for one-shot information.

If λ = 1, agents do not exhibit strict preference for either information
structure.

(2) Anticipatory utility. If u is linear, then agents are indifferent between
gradual and one-shot information, so (up to tie-breaking) the agents preferring
states A and B have the same preference over information structure. If u is strictly
concave, then for 1 ≤ t ≤ T− 1,E[u(πt)] < u(π0) andE[u(ρt)] < u(ρ0) by
combining the martingale property and Jensen’s inequality. So all agents strictly
prefer to keep their prior beliefs until the last period and will therefore all choose
one-shot information.

(3) Suspense and surprise. Ely, Frankel, and Kamenica [2015] mention a
“state-dependent” specification of their surprise and suspense utility functions.
With two states, A and B, their specification uses weights αA, αB > 0 to
differentially re-scale belief-based utilities for movements in the two different
directions. Specifically, their re-scaled suspense utility is

T−1∑
t=0

u
(
Et
[
αA · (πt+1 − πt)2 + αB · (ρt+1 − ρt)

2])
and their re-scaled surprise utility is

E

[
T∑
t=1

u
(
αA · (πt+1 − πt)2 + αB · (ρt+1 − ρt)

2)] .
258



We may consider agents with opposite preferences over states A and B as agents
with different pairs of scaling weights (αA, αB). Specifically, say there are
αHigh > αLow > 0. For an agent preferring A, αA = αHigh, αB = αLow. For an
agent preferring B, αA = αLow, αB = αHigh. But note that we always have
πt+1 − πt = −(ρt+1 − ρt), so along every realized path of beliefs,
(πt+1 − πt)2 = (ρt+1 − ρt)

2. This means these two agents with the opposite
scaling weights actually have identical objectives and therefore will have the same
preference over gradual or one-shot information. □

B.1.12 Proof of Lemma 3

Proof. Part 1. Fix a prior π0 and a pair (M̄, σ̄)which induces an equilibrium as
in Definition 6. We focus on the case that |M̄| > 2 as the other cases are trivial.

LetM = {g, b} and we will inductively define the sender’s strategy σ t on t so
that (M, σ) is another equilibrium which delivers the same expected utility as
(M̄, σ̄). In doing so we will successively define a sequence of subsets of histories,
Ht

int ⊆ Mt and H̄t
int ⊆ M̄t, which are length t histories associated with interior

equilibrium beliefs about the state in the new and old equilibria, as well as a map
φ that associates new histories to old ones.

LetH0
int = H̄0

int := {∅}, φ(∅) = ∅.

Once we have defined σ t−1,Ht−1
int , H̄t−1

int and φ : Ht−1
int → H̄t−1

int , we then define
σ t. If ht−1 /∈ Ht−1

int , then simply let σ t(ht−1, θ)(g) = 0.5 for both θ ∈ {G,B}. For
each ht−1 ∈ Ht−1

int , by the definition of H̄t−1
int , the equilibrium belief πt−1 associated

with φ(ht−1) in the old equilibrium satisfies 0 < πt−1 < 1. Let ΦG(ht−1) and
ΦB(ht−1) represent the sets of posterior beliefs that the sender induces with
positive probability in the good and bad states following public history
φ(ht−1) ∈ H̄t−1

int in (M̄, σ̄).
We must have ΦG(ht−1)\ΦB(ht−1) ⊆ {1} and ΦB(ht−1)\ΦG(ht−1) ⊆ {0},

since any message unique to either state is conclusive news of the state. We
construct σ t(ht−1, θ) based on the following four cases.

Case 1: 1 ∈ ΦG(ht−1) and 0 ∈ ΦB(ht−1). Let σ t(ht−1,G) assign probability 1 to
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g and let σ t(ht−1,B) assign probability 1 to b.
Case 2: 1 ∈ ΦG(ht−1) but 0 /∈ ΦB(ht−1). By Bayesian plausibility, there exists

some smallest q∗ ∈ (0, πt−1)with q∗ ∈ ΦG(ht−1) ∩ ΦB(ht−1), induced by some
message m̄b ∈ M̄ sent with positive probabilities in both states. Also, some
message m̄g ∈ M̄ sent with positive probability in stateG induces belief 1. Let
σ t(ht−1,B)(b) = 1 and let σ t(∅,G)(b) = xwhere x ∈ (0, 1) solves

πt−1x
πt−1x+(1−πt−1)

= q∗.
Case 3: 1 /∈ ΦG(ht−1) but 0 ∈ ΦB(ht−1). By Bayesian plausibility, there exists

some largest q∗ ∈ (πt−1, 1)with q∗ ∈ ΦG(ht−1) ∩ ΦB(ht−1). Let
σ t(ht−1,G)(g) = 1 and let σ t(ht−1,B)(g) = xwhere x ∈ (0, 1) solves

πt−1
πt−1+(1−πt−1)x

= q∗.
Case 4: 1 /∈ ΦG(ht−1) and 0 /∈ ΦB(ht−1). By Bayesian plausibility,

ΦG(ht−1) = ΦB(ht−1), and there exist some largest qL ≤ πt−1 and smallest
qH ≥ πt−1 in this common set of posterior beliefs, and further there exist
x, y ∈ (0, 1) so that πt−1x

πt−1x+(1−πt−1)y
= qH and πt−1(1−x)

πt−1(1−x)+(1−πt−1)(1−y) = qL. Let
σ(ht−1,G)(g) = x and σ(ht−1,B)(g) = y.

Having constructed σ t, letHt
int be those on-path period t histories with interior

equilibrium beliefs, that is ht = (ht−1,m) ∈ Ht
int if and only if ht−1 ∈ Ht−1

int and
σ(ht−1, θ)(m) > 0 for both θ ∈ {G,B}. A property of the construction of σ t is
that if ht−1 ∈ Ht−1

int , then both (ht−1, g) and (ht−1, b) are on-path. That is, off-path
histories can only be continuations of histories with degenerate beliefs in {0, 1}.

Let H̄t
int be on-path period t histories with interior equilibrium beliefs in

(M̄, σ̄). By the definition of σ t, there exists m̄ ∈ M̄ so that ht induces the same
equilibrium belief in the new equilibrium as the history (φ(ht−1), m̄) ∈ H̄t

int in
the old equilibrium, and we define φ(ht) := (φ(ht−1), m̄).

The receiver’s expected payoff in both the B andG states are the same as in the
old equilibrium. To see this, note that by our construction, the receiver’s
expected payoff in state B is the same as if we took a deterministic selection of
messagesm1,m2, ... in the old equilibrium with the property that
σ1(∅,B)(m1) > 0 and, for t ≥ 2, σ t(m1, ...,mt−1, θ)(mt) > 0.Then, we had the
sender play messagemt in period t. Since this sequence of messages is played with
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positive probability in state B of the old equilibrium, it must yield the expected
payoff under B— if it yields higher or lower payoffs, then we can construct a
deviation that improves the receiver’s ex-ante expected payoffs in the old
equilibrium. A similar argument holds for stateG.

It remains to check that (M, σ) is an equilibrium by ruling out one-shot
deviations. We argued before that all off-path histories must follow an on-path
history with equilibrium belief in 0 or 1. There are no profitable deviations at
off-path histories or at on-path histories with degenerate beliefs, because the
receiver does not update beliefs after such histories regardless of the sender’s play.

So consider an on-path history with a non-degenerate belief, i.e. a member
ht ∈ Ht

int. A one-shot deviation following ht corresponds to a deviation following
φ(ht) in (M̄, σ̄), and must not be strictly profitable.

Part 2. We now turn to the second claim. If T ≤ T′ , then for any equilibrium
with horizon T,we may construct an equilibrium of horizon T′ which sends
messages in the same way in periods 1, ...,T− 1, but babbles starting in period T.
This equilibrium has the same expected payoff as the old one. □Note that the
first claim of Lemma 3 also holds for the infinite horizon model of subsection
2.5.3. Nothing in the argument relies on T being finite. This is because the proof
argument relies on the one-shot deviation property which holds for equilibria in
both finite and infinite horizon models. Thus, in particular, in the proof of
Proposition 25 we can also focus on a binary signal space.

B.1.13 Proof of Lemma 4

Proof. Due to sub-additivity,

μ(p) < μ(p− π) + μ(π). (B.2)

Note that symmetry implies μ(−p) = −μ(p) and that μ(−π) = −μ(π).
Rearranged (B.2) is preciselyN(0; π) < N(p; π). □
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B.1.14 Proof of Proposition 19

We begin by giving some additional definition and notation.
For p, π ∈ [0, 1], letNG(p; π) := μ(p− π) + μ(1 − p).
We state and prove a preliminary lemma aboutNG andNB.

Lemma 22. Suppose μ exhibits diminishing sensitivity and greater sensitivity to
losses. Then, p 7→ NG(p; π) is strictly increasing on [0, π] and symmetric on the
interval [π, 1]. For each p1 ∈ [π, 1], there exists exactly one point p2 ∈ [π, 1] so that
NG(p1; π) = NG(p2; π). For every pL < π and pH ≥ π,NG(pL; π) < NG(pH; π).
Also, NB(p; π) is symmetric on the interval [0, π]. For each p1 ∈ [0, π], there exists
exactly one point p2 ∈ [0, π] so that NB(p1; π) = NB(p2; π).

Proof. We have ∂NG(p;π)
∂p = μ′

(p− π)− μ′
(1 − p). For 0 ≤ p < π and under

greater sensitivity to losses, μ′
(p− π) ≥ μ′

(π − p). Since μ′′
(x) < 0 for x > 0,

μ′
(π − p) > μ′

(1 − p). This shows ∂NG(p;π)
∂p > 0 for p ∈ [0, π).

The symmetry results follow from simple algebra and do not require any
assumptions.

Note that ∂2NG(p;π)
∂p2 = μ′′

(p− π) + μ′′
(1 − p) < 0 for any p ∈ [π, 1], due to

diminishing sensitivity. Combined with the required symmetry, this means
∂NG(p;π)

∂p crosses 0 at most once on [π, 1], so for each p1 ∈ [π, 1], we can find at
most one p2 so thatNG(p1; π) = NG(p2; π). In particular, this implies at every
intermediate p1 ∈ (π, 1),we getNG(p1; π) > NG(π; π) since we already have
NG(1; π) = NG(π; π).This showsNG(·; π) is strictly larger on [π, 1] than on
[0, π).

A similar argument, using μ′′
(x) > 0 for x < 0, establishes that for each

p1 ∈ [0, π], we can find at most one p2 so thatNB(p1; π) = NB(p2; π). □
Consider any period T− 2 history hT−2 in any equilibrium (M, σ∗, p∗)where
p∗(hT−2) = π ∈ (0, 1). Let PG and PB represent the sets of posterior beliefs
induced at the end of T− 1 with positive probability, in the good and bad states.
The next lemma gives an exhaustive enumeration of all possible PG, PB.

Lemma 23. The sets PG, PB belong to one of the following cases.
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A. PG = PB = {π}

B. PG = {1}, PB = {0}

C. PG = {p1} for some p1 ∈ (π, 1) and PB = {0, p1}

D. PG = {π, 1} and PB = {0, π}

E. PG = {p1, p2} for some p1 ∈ (π, 1+π
2 ), p2 = 1 − p1 + π, PB = {0, p1, p2}.

Proof. Suppose |PG| = 1.
If PG = {π}, then any equilibrium message not inducing π must induce 0. By

the Bayes’ rule, the sender cannot induce belief 0 with positive probability in the
bad state, so PB = {π} as well.

If PG = {1}, then any equilibrium message not inducing 1 must induce 0.
Furthermore, the sender cannot send equilibrium messages inducing belief 1
with positive probability in the bad state, else the equilibrium belief associated
with these messages should be strictly less than 1. Thus PB = {0}.

If PG = {p1} for some 0 ≤ p1 < π, then any equilibrium message not
inducing p1 must induce 0. This is a contradiction since the posterior beliefs do
not average out to π.

This leaves the case of PG = {p1} for some π < p1 < 1. Any equilibrium
message not inducing p1 must induce 0. Furthermore, the sender must induce the
belief p1 in the bad state with positive probability, else we would have p1 = 1. At
the same time, the sender must also induce belief 0 with positive probability in
the bad state, else we violate Bayes’ rule. So PB = {0, p1}.

Now suppose |PG| = 2.
In the good state, the sender must be indifferent between two beliefs p1, p2

both induced with positive probability. By Lemma 22,NG(p; π) is strictly
increasing on [0, π] and strictly higher on [π, 1] than on [0, π), while for each
p1 ∈ [π, 1], there exists exactly one point p2 ∈ [π, 1] so that
NG(p1; π) = NG(p2; π).This means we must have p1 ∈ [π, 1+π

2 ], p2 = 1 − p1 + π.
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If PG = {π, 1}, any equilibrium message not inducing π or 1 must induce 0.
Also, 1 /∈ PB, because any message sent with positive probability in the bad state
cannot induce belief 1. We cannot have PB = {0}, because then the message
inducing belief π actually induces 1. We cannot have PB = {π} for then we
violate Bayes’ rule. This leaves only PB = {0, π}.

If PG = {p1, p2} for some p1 ∈ (π, 1+π
2 ), then any equilibrium message not

inducing p1 or p2 must induce 0. Also, p1, p2 ∈ PB, else messages inducing these
beliefs give conclusive evidence of the good state. By Bayes’ rule, we must have
PB = {0, p1, p2}.

It is impossible that |PG| ≥ 3, since, by Lemma 22,NG(p; π) is strictly
increasing on [0, π] and strictly higher on [π, 1] than on [0, π), while for each
p1 ∈ [π, 1], there exists exactly one point p2 ∈ [π, 1] so that
NG(p1; π) = NG(p2; π). So the sender cannot be indifferent between 3 or more
different posterior beliefs of the receiver in the good state. □

We now give the proof of Proposition 19.

Proof. Consider any period T− 2 history hT−2 with p∗(hT−2) ∈ (0, 1). By
Lemma 4,NB(p; p∗(hT−2)) > NB(0; p∗(hT−2)) for all p ∈ (p∗(hT−2), 1].
Therefore, cases 3 and 5 are ruled out from the conclusion of Lemma 23. This
shows that after having reached history hT−2, the receiver will get total news
utility of μ(1 − p∗(hT−2)) in the good state and μ(−p∗(hT−2)) in the bad state.
This conclusion applies to all period T− 2 histories (including those with
equilibrium beliefs 0 or 1). So, the sender gets the same utility as if the state is
perfectly revealed in period T− 1 rather than T, and the equilibrium up to period
T− 1 form an equilibrium of the cheap talk game with horizon T− 1. By
backwards induction, we see that along the equilibrium path, whenever the
receiver’s belief updates, it is updated to the dogmatic belief in θ. □

B.1.15 Proof of Proposition 20

Proof. The conclusions of Lemmas 22 and 23 continue to hold, since these only
depend on μ exhibiting greater sensitivity to losses. As in the proof of Proposition

264



19, we only need to establishNB(p; π0) > NB(0; π0) for all p ∈ (π0, 1] to rule out
cases 3 and 5 from Lemma 23 and hence establish our result.

For p = π0 + zwhere z ∈ (0, 1 − π0],

NB(p; π0)− NB(0; π0) = μ(z) + μ(−(π0 + z))− μ(−π0).

Consider the RHS as a functionD(z) of z.ClearlyD(0) = 0, and
D′
(z) = μ′

(z)− μ′
(−(π0 + z)). Since minz∈[0,1−π0]

μ
′
(z)

μ′ (−(π0+z))
> 1,we get

D′
(z) > 0 for all z ∈ [0, 1 − π0], thusD(z) > 0 on the same range. □

B.1.16 Proof of Corollary 4

Proof. First, μ exhibits greater sensitivity to losses, because μ(−x) = −λμ(x)
for all x > 0 and we have λ ≥ 1.

To apply Proposition 20, we only need to verify that
minz∈[0,1−π0]

μ
′
(z)

μ′ (−(π0+z))
> 1. For the λ-scaled μ,

minz∈[0,1−π0]
μ
′
(z)

μ′ (−(π0+z))
= 1

λ · minz∈[0,1−π0]
μ̃
′
pos(z)

μ̃′pos(π0+z)
. The assumption that

minz∈[0,1−π0]
μ̃
′
pos(z)

μ̃′pos(π0+z)
> λ gives the desired conclusion. □

B.1.17 Proof of Proposition 21

Proof. By the proof of Proposition 22, which does not depend on this result,
there is a GGN equilibrium with one intermediate belief p ∈ (π0, 1)whenever
NB(p; π0) = NB(0; π0). In this equilibrium, the sender induces a belief of either
p or 0 by the end of period 1, then babbles in all remaining periods of
communication. Since the sender is indifferent between inducing belief p or 0 in
the bad state, this equilibrium gives the same payoff as the babbling one in the
bad state. But, since μ(p− π0) + μ(1− p) > μ(1− π0) due to strict concavity of
μ̃pos, the receiver gets strictly higher news utility in the good state.

To find λ̄ that guarantees the existence of a p solvingNB(p; π0) = NB(0; π0),

letD(p) := NB(p; π0)− NB(0; π0).We haveD(π0) = 0 and
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limp→π+0 D′
(p) = limx→0+ μ̃′

pos(x)− μ′
(−π0) = limx→0+ μ̃′

pos(x)− λμ′
(π0). For

any finite λ, this limit is∞, since limx→0+ μ̃′

pos(x) = ∞. On the other hand,
D(1) = μ(1 − π0) + μ(−1)− μ(−π0) = μ̃pos(1 − π0)− λ(μ̃pos(1)− μ̃pos(π0)).

Since μ̃pos(1)− μ̃pos(π0) > 0, we may find a large enough λ̄ ≥ 1 so that
μ̃pos(1 − π0)− λ̄(μ̃pos(1)− μ̃pos(π0)) < 0.Whenever λ ≥ λ̄,we therefore get
D(π0) = 0, limp→π+0 D′

(p) = ∞, andD(1) < 0. By the intermediate value
theorem applied to the continuousD, there exists some p ∈ (π0, 1) so that
D(p) = 0. □

B.1.18 Proof of Proposition 22

Proof. Let J intermediate beliefs satisfying the hypotheses be given. We
construct a gradual good news equilibrium where pt = q(t) for 1 ≤ t ≤ J, and
pt = q(J) for J+ 1 ≤ t ≤ T− 1.

LetM = {g, b} and consider the following strategy profile. In period t ≤ J
where the public history so far ht−1 does not contain any b, let σ(ht−1;G)(g) = 1,
σ(ht−1;B)(g) = xwhere x ∈ (0, 1) satisfies pt−1

pt−1+(1−pt−1)x
= pt. But if public

history contains at least one b, then σ(ht−1;G)(b) = 1 and σ(ht−1;B)(b) = 1.
Finally, if the period is t > J, then σ(ht−1;G)(b) = 1 and σ(ht−1;B)(b) = 1. In
terms of beliefs, suppose ht has t ≤ J and every message so far has been g. Such
histories are on-path and get assigned the Bayesian posterior belief. If ht has t ≤ J
and contains at least one b, then it gets assigned belief 0. Finally, if ht has t > J,
then ht gets assigned the same belief as the subhistory constructed from its first J
elements. It is easy to verify that these beliefs are derived from Bayes’ rule
whenever possible.

We verify that the sender has no incentive to deviate. Consider period t ≤ J
with history ht−1 that does not contain any b.The receiver’s current belief is pt−1

by construction.
In state B, we first calculate the sender’s equilibrium payoff after sending g.The

receiver will get some I periods of good news before the bad state is revealed,
either by the sender or by nature in period T.That is, the equilibrium news utility
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with I periods of good news is given by

I∑
i=1

μ(pt−1+i − pt−2+i) + μ(−pt−1+I).

Since pt−1+I ∈ P∗(pt−2+I), we haveNB(pt−1+I; pt−2+I) = NB(0; pt−2+I), that is to
say μ(pt−1+I − pt−2+I) + μ(−pt−1+I) = μ(−pt−2+I).We may therefore rewrite
the receiver’s total news utility as

∑I−1
i=1 μ(pt−1+i − pt−2+i) + μ(−pt−2+I). But by

repeating this argument, we conclude that the receiver’s total news utility is just
μ(−pt−1). Since this result holds regardless of I’s realization, the sender’s
expected total utility from sending g today is μ(−pt−1), which is the same as the
news utility from sending b today. Thus, sender is indifferent between g and b and
has no profitable deviation.

In stateG, the sender gets at least μ(1 − pt−1) from following the equilibrium
strategy. This is because the receiver’s total news utility in the good state along
the equilibrium path is given by

∑J−(t−1)
i=1 μ(pt−1+i − pt−2+i) + μ(1 − pt−1+I). By

sub-additivity in gains, this sum is strictly larger than μ(1 − pt−1). If the sender
deviates to sending b today, then the receiver updates belief to 0 today and belief
remains there until the exogenous revelation, when belief updates to 1. So this
deviation gives the total news utility μ(−pt−1) + μ(1). We have

μ(1) < μ(1 − pt−1) + μ(pt−1)

≤ μ(1 − pt−1)− μ(−pt−1),

where the first inequality comes from sub-additivity in gains, and the second
from weak loss aversion. This shows μ(−pt−1) + μ(1) < μ(1 − pt−1), so the
deviation is strictly worse than sending the equilibrium message.

Finally, at a history containing at least one b or a history with length K or
longer, the receiver’s belief is the same at all continuation histories. So the sender
has no deviation incentives since no deviations affect future beliefs.

For the other direction, suppose by way of contradiction there exists a gradual
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good news equilibrium with the J intermediate beliefs q(1) < ... < q(J). For a
given 1 ≤ j ≤ J, find the smallest t such that pt = q(k−1) and pt+1 = q(k). At every
on-path history ht ∈ Ht with p∗(ht) = pt, we must have σ∗(ht;B) inducing both
0 and q(j) with strictly positive probability. Since we are in equilibrium, we must
have μ(−q(j−1)) being equal to μ(q(j) − q(j−1)) plus the continuation payoff. If
j = J, then this continuation payoff is μ(−q(j)) as the only other period of belief
movement is in period Twhen the receiver learns the state is bad. If j < J, then
find the smallest t̄ so that p̄t+1 = q(j+1). At any on-path ht̄ ∈ Ht̄ which is a
continuation of ht,we have p∗(ht̄) = q(j) and the receiver has not experienced
any news utility in periods t+ 2, ..., t̄. Also, σ∗(ht̄;B) assigns positive probability
to inducing posterior belief 0, so the continuation payoff in question must be
μ(−q(j)). So we have shown that μ(−q(j−1)) = μ(q(j) − q(j−1)) + μ(−q(j)), that
isNB(q(j); q(j−1)) = NB(0; q(j−1)). □

B.1.19 Proof of Corollary 5

Proof. We apply Proposition 22 to the case of quadratic. Recall the relevant
indifference equation in the good state.

(!) μ(−qt) = μ(qt+1 − qt) + μ(−qt+1).

Plugging in the quadratic specification and algebraic transformations lead to

0 = (αp − αn)(qt+1 − qt)− βp(qt+1 − qt) + βn(qt+1 − qt)(qt+1 + qt)

Define r = qt+1 − qt. Then this relation can be written as

(βp − βn)r
2 + (αn − αp − 2βnqt)r = 0,

i.e. r is a zero of a second order polynomial. For P∗ to be non-empty we need this
root r to be in (0, 1 − qt). In particular the peak/trough r̄ of the parabola defined
by the second order polynomial should satisfy r̄ ∈ (0, 1−qt

2 ). Given that
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r̄ = 2βnqt−(αn−αp)
2(βp−βn)

for the case that βp 6= βn, we get the equivalent condition on the
primitives

0 <
2βnqt − (αn − αp)

2(βp − βn)
<

1 − qt
2

.

The root r itself is given by r = 2βnqt−(αn−αp)
βp−βn

,which leads to the recursion

(R) qt+1 = qt
βp + βn
βp − βn

−
αn − αp
βp − βn

.

This leads to the formula for P∗(π) in part 1).
Case 1: When βp < βn the coefficient in front of qt is negative so that the

recursion (R) leads to

(!!) qt+1 − qt = qt
2βn

βp − βn
−

αn − αp
βp − βn

< 0.

One also sees here that for the case that βp < βn to give a gradual good news
equilibrium of time-length 1, one needs a low enough prior: namely
π0 <

αn−αp
2βn

=: q∗. For all priors larger or equal than q∗, there is no one-shot bad
news partial good news equilibrium.

Case 2: When βp > βn the slope in (R) is above 1 so that for all priors π0 large
enough we get an increasing sequence qt which satisfies (!). It is also easy to see
from (R) that

(qt+2 − qt+1)− (qt+1 − qt) =

(
βp + βn
βp − βn

− 1

)
> 0,

proving the statement in the text after the corollary.
That an equilibrium can exist where partial good news are released for more

than two periods, is shown by the example in the main text following the
statement of the Corollary (see Figure 2.4.2). □
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B.1.20 Proof of Proposition 23

Proof. SinceNB(p; π)− NB(0; π) = 0 for p = π and ∂
∂pNB(p; π)|p=π > 0,

NB(p; π)− NB(0; π) starts off positive for p slightly above π.Given that
|P∗(π)| ≤ 1, if we find some p′

> π withNB(p
′
; π)− NB(0; π) > 0, then any

solution toNB(p; π)− NB(0; π) = 0 in (π, 0)must lie to the right of p′
.

If q(j), q(j+1) are intermediate beliefs in a GGN equilibrium, then by
Proposition 22, q(j) ∈ P∗(q(j−1)) and q(j+1) ∈ P∗(q(j)). Let
p′

= q(j) + (q(j) − q(j−1)). Then,

NB(p
′
; q(j))− NB(0; q(j)) = μ(p

′ − q(j)) + μ(−p
′
)− μ(−q(j))

= μ(q(j) − q(j−1)) + μ(−q(j) − (q(j) − q(j−1)))− μ(−q(j))

> μ(q(j) − q(j−1)) + μ(−q(j−1) − (q(j) − q(j−1)))− μ(−q(j−1)),

where the last inequality comes from diminishing sensitivity. But, the final
expression isNB(q(j); q(j−1))− NB(0; q(j−1)), which is 0 since q(j) ∈ P∗(q(j−1)).
This shows we must have q(j+1) − q(j) > q(j) − q(j−1). □

B.1.21 Proof of Corollary 6

Proof. We verify the sufficient condition in Proposition 23. We get
∂
∂pNB(p; π) = α

(p−π)1−α − λα
p1−α , so ∂

∂pNB(p; π)|p=π = ∞.
To show that |P∗(π)| ≤ 1, it suffices to show that ∂

∂pNB(p; π) = 0 for at most
one p > π. For the derivative to be zero, we need ( p

p−π )
1−α = λ. As the LHS is

decreasing for p > π, it can have at most one solution. □

B.1.22 Proof of Proposition 24

Proof. Consider the following operator φ on the space of continuous functions
on [0, 1]. For V : [0, 1] → R, define φ(V)(p) := Ṽ(p | p),where

Ṽ(· | p) := cavq[μ(q− p) + δV(q) + (1 − δ)(q · μ(1 − q) + (1 − q) · μ(−q))].
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We show that φ satisfies the Blackwell conditions and so is a contractionmapping.
Suppose that V2 ≥ V1 pointwise. Then for any p, q ∈ [0, 1],

μ(q− p) + δV2(q) + (1 − δ)(qμ(1 − q) + (1 − q)μ(−q))

≥ (q− p) + δV1(q) + ((1 − δ)(qμ(1 − q) + (1 − q)μ(−q))

therefore Ṽ2(· | p) ≥ Ṽ1(· | p) pointwise as well. In particular,
Ṽ2(p | p) ≥ Ṽ1(p | p), that is φ(V2)(p) ≥ φ(V1)(p).

Also, let k > 0 be given and let V2 = V1 + k pointwise. It is easy to see that
Ṽ2(· | p) = Ṽ1(· | p) + δk for every p, because the argument to the
concavification operator will be pointwise higher by δk. So in particular,
φ(V2)(p) = φ(V1)(p) + δk. By the Blackwell conditions, the operator φ is a
contraction mapping on the metric space of continuous functions on [0, 1]with
the supremum norm. Thus, the value function exists and is also unique.

To show pointwise monotonicity in δ, suppose 0 ≤ δ < δ
′
< 1. First,

Vδ(0) = Vδ(1) = 0 for any δ ∈ [0, 1).Now consider an environment where full
revelation happens at the end of each period with probability 1− δ, and fix a prior
p ∈ (0, 1).There exists some binary information structure with message space
M = {0, 1}, public historiesHt = (M)t for t = 0, 1, ..., and sender strategies
(σ t)∞t=0 with σ t : Ht × Θ → Δ(M), such that (M, σ) induces expected news
utility of Vδ(p)when starting at prior p.

We now construct a new information structure, (M̄, σ̄) to achieve expected
news utility Vδ(p)when starting at prior p in an environment where full
revelation happens at the end of each period with probability 1− δ

′
,with δ

′
> δ.

Let M̄ = {0, 1,∅}.The idea is that when full revelation has not happened, there
is a 1 − δ

δ′
probability each period that the sender enters into a babbling regime

forever. When the sender enters the babbling regime at the start of period t+ 1,
the receiver’s expected utility going forward is the same as if full revelation
happened at the start of t+ 1.
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To implement this idea, after any history ht ∈ Ht not containing∅, let

σ̄ t+1(ht; θ) =


∅ w/p 1 − δ

δ′

1 w/p δ
δ′
· σ t+1(ht; θ)(1)

0 w/p δ
δ′
· σ t+1(ht; θ)0)

.

That is, conditional on not entering the babbling regime, σ̄ behaves in the same
way as σ. But, after any history ht ∈ Ht containing at least one∅, σ̄ t+1(ht; θ) = ∅
with probability 1. Once the sender enters the babbling regime, she babbles
forever (until full revelation exogenously arrives at some random date). We need
to verify that payoff from this strategy is indeed Vδ(p). Fix a history ht not
containing∅ and a state θ, and suppose p∗(ht) = q. Under σ̄ t+1, with probability
of (1 − δ′) + δ′(1 − δ

δ′ ) = 1 − δ the receiver gets the expected babbling payoff
qμ(1 − q) + (1 − q)μ(−q) in the period of state revelation. Analogously, under
σ t+1, there is probability 1 − δ that state revelation happens in period t+ 1 and
the receiver gets qμ(1 − q) + (1 − q)μ(−q) in expectation. With probability
δ′ δδ′ = δ, the receiver facing σ̄ gets the payoff induced by σ t+1(ht; θ) in period
t+ 1 and the same distribution of continuation histories as under σ. The same
argument applies to all these continuation histories, so σ̄ must induce the same
expected payoff as σ when starting at (ht; θ). □

B.1.23 Proof of Proposition 25

Proof. We show first sufficiency. Consider the following strategy profile. In
period twhere the public history so far ht−1 does not contain any b, let
σ(ht−1;G)(g) = 1, σ(ht−1;B)(g) = xwhere x ∈ (0, 1) satisfies pt−1

pt−1+(1−pt−1)x
= pt.

But if public history contains at least one b, then σ(ht−1;G)(b) = 1 and
σ(ht−1;B)(b) = 1. In terms of beliefs, suppose ht is so that every message so far
has been g. Such histories are on-path and get assigned the Bayesian posterior
belief. If ht contains at least one b, then belief is 0. It is easy to verify that these
beliefs are derived from Bayes’ rule whenever possible.
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We verify that the sender has no incentive to deviate. Consider period twith
history ht−1 that does not contain any b.The receiver’s current belief is pt−1 by
construction.

In state B, we first calculate the sender’s equilibrium payoff after sending g. For
any realization of the exogenous revelation date, the receiver’s total news utility in
the good state along the equilibrium path is given by∑J

j=1 μ(pt−1+j − pt−2+j) + μ(−pt−1+J) for some integer J ≥ 1. Since
pt−1+J ∈ P∗(pt−2+J), we haveNB(pt−1+J; pt−2+J) = NB(0; pt−2+J), that is to say
μ(pt−1+J − pt−2+J) + μ(−pt−1+J) = μ(−pt−2+J).We may therefore rewrite the
receiver’s total news utility as

∑J−1
j=1 μ(pt−1+j − pt−2+j) + μ(−pt−2+J). But by

repeating this argument, we conclude that the receiver’s total news utility is just
μ(−pt−1). Since this result holds regardless of J, the sender’s expected total utility
from sending g today is μ(−pt−1), which is the same as the news utility from
sending b today. Thus, sender is indifferent between g and b and has no profitable
deviation.

In stateG, the sender gets at least μ(1 − pt−1) from following the equilibrium
strategy. This is because for any realization of the exogenous revelation date, the
receiver’s total news utility in the good state along the equilibrium path is given
by
∑J

j=1 μ(pt−1+j − pt−2+j) + μ(1 − pt−1+J) for some integer J ≥ 1. By
sub-additivity in gains, this sum is strictly larger than μ(1 − pt−1). If the sender
deviates to sending b today, then the receiver updates belief to 0 today and belief
remains there until the exogenous revelation, when belief updates to 1. So this
deviation has the total news utility μ(−pt−1) + μ(1). We have

μ(1) < μ(1 − pt−1) + μ(pt−1)

≤ μ(1 − pt−1)− μ(−pt−1),

where the first inequality comes from sub-additivity in gains, and the second
from weak loss aversion. This shows μ(−pt−1) + μ(1) < μ(1 − pt−1), so the
deviation is strictly worse than sending the equilibrium message.

Finally, at a history containing at least one b, the receiver’s belief is the same at
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all continuation histories. So the sender has no deviation incentives since no
deviations affect future beliefs.

We now show necessity. Suppose that we have a (possibly infinite) gradual
good news equilibrium given by the sequence p0 < p1 < · · · < pt < . . . . By
Bayesian plausibility and because we are focusing on two-message equilibria the
sender must be sending the messages {0, pt} in period t if the state is bad. The
sender must thus be indifferent between these two posteriors in the bad state.
Formally,NB(0; pt) = NB(pt+1; pt) for all t ≥ 0, as long as there is no babbling.
Written equivalently in the language of P∗: pt+1 ∈ P∗(pt) for all t ≥ 0, as long as
there’s no babbling, where here p0 = π0. □

B.2 Residual ConsumptionUncertainty

B.2.1 A Model of Residual Consumption Uncertainty

In the main text, we studied a model where the sender has perfect information
about the receiver’s final-period consumption level.

Now suppose the sender’s information is imperfect. In state θ, the receiver will
consume a random amount c in period T+ 1, drawn as c ∼ Fθ, deriving from it
consumption utility v(c). As before, v is a strictly increasing consumption-utility
function. We interpret the state θ as the sender’s private information about the
receiver’s future consumption, while the distribution Fθ captures the receiver’s
residual consumption uncertainty conditional on what the sender knows. The
case where Fθ is degenerate for every θ ∈ Θ nests the baseline model.

Assume thatEc∈F
θ′
[v(c)] 6= Ec∈F

θ′′
[v(c)]when θ

′ 6= θ
′′
.We may without loss

normalize minθ∈Θ Ec∈Fθ [v(c)] = 0, maxθ∈Θ Ec∈Fθ [v(c)] = 1.
The mean-based news-utility functionN(πt | πt−1) in this environment is the

same as in the environment where the receiver always gets consumption utility
Ec∼Fθ [v(c)] in state θ.This is because given a pair of beliefs Fold, Fnew ∈ Δ(Θ)

about the state, the receiver derives news utilityN(Fnew | Fold) based on the
difference in expected consumption utilities, μ(Ec∼Fnew [v(c)]− Ec∼Fold [v(c)]). So,
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all of the results in the paper concerning mean-based news utility immediately
extend. The two results in the paper that are not specific to mean-based news
utility, Propositions 11 and 12, apply to any functionsN(πt | πt−1) satisfying the
continuous differentiability condition stated in Section 2.2, without requiring
any relationship betweenN and consumptions in different states.

We now defineN using Kőszegi and Rabin [2009]’s percentile-based
news-utility model with a power-function gain-loss utility, in an environment
with residual consumption uncertainty. We apply Proposition 12 to the resulting
N and show that one-shot resolution is strictly sub-optimal. This result applies
for any K ≥ 2.

Corollary 11. Consider the percentile-based model with

μ(x) =

xα x ≥ 0

−λ(−x)α x < 0
for 0 < α < 1, λ ≥ 1. Suppose there are two states

θG, θB ∈ Θ with distributions of consumption utilities v(FθB) = Unif[0, L],
v(FθG) = J+ v(FθB) for some L, J > 0. One-shot resolution is strictly suboptimal for
any finite T.

Proof. We show that limε→0
N(1G|(1−ε)1G⊕ε1B)

ε = ∞ under this set of conditions.
The argument behind Proposition 12 then implies some information structure
involving perfect revelation of states other than θG, θB, one-shot bad news, partial
good news for the two states θG, θB is strictly better than one-shot resolution.

For r ∈ [0, 1],write Fr for the distribution of consumption utilities under the
belief r1G ⊕ (1 − r)1B.

Note we must have
∫ 1
0 cF1(q)− cF1−ε(q)dq = Jε, and that cF1(q)− cF1−ε(q) ≥ 0

for all q.
Let q∗ = min(ε · J/L, ε). It is the quantile at which cF1−ε(q∗) = J.
For all q ≥ q∗, cF1(q)− cF1−ε(q) ≤ εL.
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Case 1: J ≥ L, so q∗ = ε.∫ q∗

0
cF1(q)− cF1−ε(q)dq =

∫ ε

0
J− q · 1

ε
· ((1 − ε)L)dq

= Jε − 1
2
ε(1 − ε)L.

This implies
∫ 1
q∗ cF1(q)− cF1−ε(q)dq =

1
2 ε(1 − ε)L.

The worst case is when the difference is εL on some q-interval, and 0
elsewhere. For small ε < 0 so that εL < 1,∫ 1

q∗
(cF1(q)− cF1−ε(q))

αdq ≥ (εL)α · (1/2) · ε(1 − ε)L
εL

=
1
2
(εL)α(1 − ε).

Therefore, for small ε > 0, N(1G|(1−ε)1G⊕ε1B)
ε = 1

2
1

ε1−αLα(1 − ε), which diverges to
∞ as ε → 0.

Case 2: J < L, so q∗ = εJ/L.∫ εJ/L

0
cF1(q)− cF1−ε(q)dq =

∫ εJ/L

0
J− q · 1

εJ/L
(J− J

L
ε · L)dq

=
1
2
J2

L
ε +

1
2
J2

L2 ε
2L

<
1
2
Jε +

1
2
Lε2

using J < L. This then implies
∫ 1
q∗ cF1(q)− cF1−ε(q)dq >

1
2 Jε −

1
2Lε

2.

So, again using the worst-case of the difference being εL on some q-interval,
and 0 elsewhere,

N(1G | (1 − ε)1G ⊕ ε1B)
ε

>
1
ε
(εL)α ·

1
2 Jε −

1
2Lε

2

εL
=

1
ε1−αL

α ·
( 1
2
J/L− 1

2
ε
)
.

As ε → 0, RHS converges to∞. □
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B.2.2 A Calibration Comparing Percentile-Based News Utility and
Mean-Based News Utility

Since Proposition 11’s procedure for computing the optimal information
structure applies to generalN, including both the percentile-based and the
mean-based news-utility functions in an environment with residual consumption
uncertainty, we can compare the solutions to the sender’s problem for these two
models.

Consider two states of the world, Θ = {G,B}. For some σ > 0, suppose
consumption is distributed normally conditional on θ with FG = N (1, σ2),
FB = N (0, σ2), consumption utility is v(x) = x, and gain-loss utility (over
consumption) is μ(x) =

√
x for x ≥ 0, μ(x) = −1.5

√
−x for x < 0.We

calculated the optimal information structure for the mean-based model in an
analogous environment, as reported in Figure 2.3.1.

With the percentile-based model, an agent who believes P[θ = G] = π has a
belief over final consumption given by a mixture normal distribution,
πFG ⊕ (1 − π)FB, illustrated in Figure B.2.1.

We plot in Figure B.2.2 the optimal information structures for T = 5, σ = 1.
The optimal information structures for σ = 0.1, 1, 10 all involve gradual good
news, one-shot bad news. Table B.2.1 lists the optimal disclosure of good news
over time. Not only are the shapes of the concavification problems qualitatively
similar to those of the mean-based model, but the resulting optimal information
structures also bear striking quantitative similarities.

From Table B.2.1, it appears that percentile-based and mean-based models
deliver more similar results for larger σ2. We provide an analytic result consistent
with the idea that these two models generate similar amounts of news utility
when the state-dependent consumption utility distributions have large variances.

Proposition 43. SupposeΘ = {B,G} and the distributions of consumption utilities
in states B and G are Unif[0, L] and Unif[d, L+ d] respectively, for L, d > 0. Let
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Figure B.2.1: The densities and CDFs of final consumption utility distribu-
tions under two different beliefs.
P[θ = G], π = 0.1 and π = 0.9. The dashed black lines in the CDFs plot show the
differences in consumption utilities at the 25th percentile, 50th percentile, and 75th per-
centile levels between these two beliefs. The news utility associated with updating belief
from π = 0.1 to π = 0.9 in the percentile-based model is calculated by applying a gain-
loss function μ to all these differences in consumption utilities at various quantiles, then
integrating over all quantiles levels in [0, 1].

Nperc(p2 | p1) be the news utility associated with changing belief in θ = Gfrom p1 to p2
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Figure B.2.2: The concavifications giving the optimal information structure
with Kőszegi and Rabin [2009]’s percentile-based
More precisely, we consider a Gaussian environment. horizon T = 5, gain-loss function

μ(x) =

{√
x for x ≥ 0

−1.5
√
−x for x < 0

, prior π0 = 0.5, and σ = 1. The y-axis in each graph

shows the sum of news utility this period and the value function of entering next period
with a certain belief.

in a percentile-based news-utility model with a continuous gain-loss utility μ. Then,

lim
L→∞

(
sup

0≤p1,p2≤1
|Nperc(p2 | p1)− μ[(p2 − p1)d]|

)
= 0.

In a uniform environment, if there is enough unresolved consumption risk
even conditional on the state θ, then the difference between percentile-based
news utility and mean-based news utility goes to zero uniformly across all
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
percentile-based, σ = 0.1 0.50 0.55 0.61 0.69 0.80 1.00
percentile-based, σ = 1 0.50 0.55 0.62 0.71 0.83 1.00
percentile-based, σ = 10 0.50 0.56 0.63 0.72 0.84 1.00

mean-based, any σ 0.500 0.556 0.626 0.715 0.834 1.000

Table B.2.1: Optimal disclosure of good news. The optimal information
structure under a square-root gain-loss function with λ = 1.5 takes the form
of gradual good news, one-shot bad news both in the mean-based model and
the percentile-based model for T = 5, σ = 0.1, 1, 10. The table shows belief
movements conditional on the good state in different periods.

possible belief changes.¹

Proof. Let Fp(x) be the distribution function of the mixed distribution
p · Unif[d, L+ d]⊕ (1 − p) · Unif[0, L], and F−1

p (q) its quantile function for
q ∈ [0, 1]. By a simple calculation, F−1

p (d/L) = d+ pd and
F−1
p (1 − d/L) = L+ pd− d. At the same time, for d/L ≤ q ≤ 1 − d/Lwhere

q = d/L+ y, we have F−1
p (q) = d+ pd+ yL.

This shows that over the intermediate quantile values between d/L and
1 − d/L,∫ 1−d/L

d/L
μ
[
F−1
p2 (q)− F−1

p1 (q)
]
dq =

∫ 1−d/L

d/L
μ [(p2 − p1)d] dq = (1−2d/L)·μ[(p2−p1)d].

For the lower part of the quantile integral [0, d/L], using the fact that
F−1
p (d/L) = d+ pd, we have the uniform bound 0 ≤ F−1

p (q) ≤ 2d for all
p ∈ [0, 1] and q ≤ d/L. So,∣∣∣∣∣

∫ d/L

0
μ
[
F−1
p2 (q)− F−1

p1 (q)
]
dq

∣∣∣∣∣ ≤ d
L
· max
x∈[−2d,2d]

|μ(x)|.

¹Lemma 3 in the Online Appendix of Kőszegi and Rabin [2009] states a similar result, but for
a different order of limits.
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By an analogous argument,∣∣∣∣∫ 1

1−d/L
μ
[
F−1
p2 (q)− F−1

p1 (q)
]
dq
∣∣∣∣ ≤ d

L
· max
x∈[−2d,2d]

|μ(x)|.

So for any 0 ≤ p1, p2 ≤ 1,

|Nperc(p2 | p1)− μ[(p2 − p1)d]| ≤
2d
L

max
x∈[d,d]

|μ(x)|+ 2d
L

max
x∈[−2d,2d]

|μ(x)|,

an expression not depending on p1, p2.The max terms are seen to be finite by
applying extreme value theorem to the continuous μ, so the RHS tends to 0 as
L → ∞. □
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C
Appendix to Chapter 3

C.1 Properties of the value function of the agent

We note here properties of the value functions A→W̃0(A, π0). Most of the
proofs are routine checking, except for the second part of 5) which is established
by an example.

Lemma 24. (Axioms from De Oliveira et al. [2017]) Fix the sequential experiment
E .

For both cases SeSa-GD and SeSa-LC the map
W̃0 : A× Δ(S)→R, (A, π)→W̃0(A, π)mapping a menu A and a prior π to the
ex-ante value of the decision problem has the following properties.

1) it is continuous,¹

¹Here we equipA×Δ(Δ(S))with the product topology of the Hausdorff topology onA and
the weak convergence topology on Δ(Δ(S)).
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2) it is convex in the first argument,
3) it is monotonic with respect to set inclusion in the first argument,
4) it satisfies Dominance with respect to the taste u:
(Dominance) for every information structure π, menu A and act g such that there

exists f ∈ A with u(f(s)) ≥ u(g(s)) for all s ∈ S it holds
W̃0(A, π) = W̃0(A ∪ {g}, π),
5) in case B. it satisfies Independence of Degenerate Decisions:
(IDD) for every fixed information structure π, pair of acts h, h′ ∈ F and menus

A,B ∈ A it holds

W̃0(λA+ (1 − λ){h}, π) ≥ W̃0(λB+ (1 − λ){h}, π)

⇐⇒

W̃0(λA+ (1 − λ){h′}, π) ≥ W̃0(λB+ (1 − λ){h′}, π).

In general IDD is not satisfied for the case SeSa-GD.

Proposition 24 implies that the SeSa-LC model satisfies the axioms in
De Oliveira et al. [2017] and so is a rational inattention model in their
terminology. In a general rational inattention model the costs of information
enter the overall utility of the agent in an additive separable way. The following
example shows that IDD may be violated under SeSa-GD.

Example 1 (Example 1-A: IDD may be violated for SeSa-GD). Take Z = R+

and an agent with taste u(z) = z and state space S = {s1, s2} as well as uniform prior
π0 = ( 1

2 ,
1
2). If the agent decides to acquire information she learns the true state of the

world. Finally, let δ ∈ ( 1
2 , 1). Consider the menus A = {(1, 0), (0, 1)} and

B = {(1 − ε, 1 − ε)} with ε ∈ (0, 1
2). Thus menu B offers full insurance to the agent

but at a cost, whereas menu A exposes her to full uncertainty. Since the agent is
relatively patient she will decide to learn for menu A. She will never learn for menu B.
Now consider for α ∈ (0, 1) the menus αA = {(α, 0), (0, α)} and
αB = {(α(1 − ε), α(1 − ε))}. These are just rescalings of the menus A and B.
One can easily show that
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i. W̃0(A, π) > W̃0(B, π),

ii. W̃0(αA, π) > W̃0(αB, π) (mixing with {0}),

iii. W̃0(αA+ (1 − α)1, π) < W̃0(αB+ (1 − α)1, π) (mixing with {1}),
whenever α satisfies δ− 1

2
1−δ > 1−α

α > δ−(1−ε)
1−δ .

Thus IDD is violated in the case of impatience costs.

Remark 13. Part 2) of Lemma 24 holds true under the model assumptions for every
value function A 7→ W̃t(A, et) for all et and t ∈ {1, . . . ,T}. This is proven as in
Lemma 24 through induction over T− t (induction start is Lemma 24 with T = 0).

C.2 Continuity axiom andmenus without ties

We start with a Lemma establishing that the collection of menus where the agent
has to break ties is ‘small’ relative to the collection of all menusA.

Lemma 25. Suppose the model is true, i.e. either of the cases SeSa-GD or SeSa-LC
are true. Then the set of menus Â ⊂ A such that the agent has no ties w.r.t. either
stopping decision or choice from menu upon stopping is dense in the setA.

Proof. We use utility acts for the proof. If the SeSa models are true, which is the
premise of the Lemma, this is w.l.o.g. Recall that we are assuming a worst prize
w ∈ Zwhose utility value we take to be 0.

There are two sorts of ties in the model. First, there may be ties due to choice
out of menu upon stopping. Since the tree of posteriors of the agent is finite there
are only finitely many possible SEUs at which the agent can stop. The set of
menus out ofA for which each SEU exhibits ties is nowhere dense inA and also
closed and convex. Taking the union of all these sets we get a nowhere dense set,
because the union of finitely many closed, nowhere dense sets is nowhere dense
and closed. Therefore, the collection of menus for which the agent has ties on
choice out of menus upon stopping is a subset of a nowhere dense set and thus
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itself a nowhere dense set. Denote this collection of menus byAn,s. Note that this
argument does not depend on whether we are in case SeSa-GD or SeSa-LC.

The second kind of ties are ties coming from the stopping decision, i.e. menus
where the agent at some node corresponding to a history of experimental
outcomes (and a related history of posteriors) is indifferent between continuing
and stopping.

Case A - discounting.
We show that for any menu A and any open neighborhoodNA of A in the

Hausdorff topology ofA such that A has ties about continuing or stopping in a
period t ∈ {0, . . . ,T− 1} there exists a menu A′ in the neighborhood such that
the agent strictly wants to stop in every node where she was indifferent before.
Moreover, A′ will be such that otherwise, for the other history nodes the agent
will take the same decision continue/stop decision as for A. Fix in the following a
deterministic prize z0 > 0 and assume that et is a first (in terms of time t) node
where the agent is indifferent between stopping and continuing.

This means that for all shorter histories es, s < t in previous periods as well as
for nodes e′t ∈ E1 × · · · × Et, where the agent has strict incentives for the
decision to stop/continue we have

V(A, π(es)) 6= δWs+1(A, es). (C.1)

Now due to continuity of the value functions it holds that the relation (C.1)
holds true in an open neighborhoodNA of A (in the Hausdorff topology onA)
for all nodes es of depth s ≤ twhere the agent has strict incentives for the
continue/stop decision with the same inequality direction as for A. This uses
continuity of the value functions V(A, π(es)),Ws+1(A, es) in the menu A.

Now note that it holds for B = {z0} that V(B, π(et)) = W(B, et). Moreover,
due to convexity ofW(·, et) and the fact that δ < 1 it also holds for every
λ ∈ (0, 1) that
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V(λA+ (1 − λ)B, π(et)) = λV(A, π(et)) + (1 − λ)V(B, π(et)) (C.2)

> δ [λWt+1(A, et) + (1 − λ)Wt+1(B, et)] ≥ δWt+1(λA+ (1 − λ)B, et).

The first (strict) inequality is due to δ < 1 and the fact that
V(A, π(et)) = Wt+1(A, et) by assumption, whereas the second inequality follows
from convexity ofWt+1(·, et).

Now pick an λ(et) ∈ (0, 1) s.t. for all λ ∈ (λ(et), 1) it holds
λA+ (1 − λ)B ∈ NA. If there are other e′t ∈ E1 × · · · × Et with ties about the
continuation decision then pick λt := max λ(e′t) ∈ (0, 1)where the max runs
over these history nodes of depth t that have ties in the continue/stop decision.

In addition, pick λ<t ∈ (0, 1) such that for all λ ∈ (λ<t, 1) it holds
λA+ (1 − λ)B ∈ NA and also that λA+ (1 − λ)B has no ties in the
continuation/stopping decision at all history nodes of depth s < t. Recall, that
by minimality choice of t at the start this is always possible. Finally, set
λ̂ = max{λt, λ<t}.

We have then that for all λ ∈ (λ̂, 1) the continuation/stopping decision at
times s ≤ t is always strict for menus of the type λA+ (1 − λ)B and that all these
menus are inNA. Now pick such a mixed menu and denote it by A(λ). If for A(λ)
the agent becomes indifferent at some future period t′ > t then let t′ > t be the
earliest such period and repeat the procedure above for A(λ)with the same B to
arrive at some new A(λ′)with some λ′ ∈ (λ, 1). One goes on like this inductively
till the last period is reached. The process ends because of the finiteness of the
tree of posteriors.

In this way one constructs a sequence of menus An→A such that all of the An

have no ties regarding stopping or continuation decisions at any node.² We also
note here that the sequence An we construct in the proof has at most |A|
elements.³

²Recall thatA is a metric space with the Hausdorff topology.
³This is important for the discussion right after the proof.
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DenoteAn,c the set of menus where the agent has ties w.r.t. the
continuing/stopping decision. We just showed that the setAn,c is nowhere dense
inA. It follows that the setAn,c ∪ An,s is also nowhere dense. Take
Â := A \ (An,s ∪ An,c) to conclude.

Case B - additive costs.
This is analogous to case A. with the only change being that instead of (C.2)

we use the chain of inequalities

V(λA+ (1 − λ)B, π(et)) = λV(A, π(et)) + (1 − λ)V(B, π(et))

> [λ(Wt+1(A, et)− c) + (1 − λ)(Wt+1(B, et)− c)] ≥ Wt+1(λA+ (1 − λ)B, et)− c.

Note that here we have used c > 0.
□

Recovering Â from a RCDT.

Definition 11. Say that a menu A ∈ A is without ties if there exists a
neighborhoodNA of A inA such that for every sequence An ∈ NA with An→A
and |An| = |A| it holds uniformly for t ∈ {0, . . . ,T} that PAn(fn, t)→PA(f, t) if
An 3 fn→f ∈ A.

Say that a menu has ties if it is not a menu without ties.
Say that a menu has no ties with respect to the stopping decision if and only if

there exists a neighborhoodNA of A inA such that for every sequence An ∈ NA

with An→A it holds uniformly for t ∈ {0, . . . ,T} that PAn(τ = t)→PA(τ = t).

Imposing the following Axiom on RCDT data ensures that we can focus on
menus without ties throughout the analysis of the model.

Axiom: Continuity The set of menus without ties as defined in Definition
11 is dense inA.

If the model is correct then the set of menus without ties corresponds to Â. To
see this, note that if A ∈ Â then it is trivial to show that A has no ties according to
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Definition 11, given the finiteness of the model.
On the other hand, if A ∈ An,c then there exists a first time twhere a tie in the

stop/continue decision appears. Take then a perturbation An of A as in the proof
of Lemma 25. It follows that PAn(τ = t) ↛ PA(τ = t) even though An→A and
|An| = |A| for all large enough n. A cannot have no ties in the sense of Definition
11 then, because if it had no ties there would be convergence of the marginal of
decision time for the menus An as well.

Let on the other hand A ∈ An,s \ An,c. Let t be a first time where a tie in
choice appears. In particular the agent stops with positive probability in period t.
Looking at PA(·|τ = t), this is a SCF as in Duraj [2018a] or also full observability
SCF in the terminology of Duraj and Lin [2019]).⁴ In particular, there is a tie in
choice at time t if and only if there exists a f ∈ A and a sequence fn→mf as well as
Bn→mA \ {f}⁵ with limn→∞ PBn∪{fn}(fn|τ = t) 6= PA(f|τ = t). But because A has
no ties w.r.t. decision time it follows that Awill have ties according to Definition
11 since it will violate the definition of no-ties there at the tuple (A, f, t) for the
sequence Bn ∪ {fn}which again has at most |A| elements (and ultimately also
exactly |A| elements).

C.3 Proofs for sections 3.3, 3.4 and 3.6

Proof ofTheorem 4. We work with utility acts throughout. We look first at the
discounting case. Note that a linear combination of absolutely continuous
functions is absolutely continuous. In particular, even more is true: any linear
combination of Lipschitz functions is again Lipschitz. Recall also that a Lipschitz
function is absolutely continuous. LetG ∈ Δ (Δ(S))× T ), writeGt ∈ Δ(Δ(S))
for the conditional distributionG(· ⊂ Δ(S)|τ = t) on stopping at time t ⁶ and

⁴The concept of SCF for menus of Anscombe-Aumann acts first appears in Lu [2016].
⁵See Definition 11 in Duraj [2018a] for the concept of mixture convergence→m.
⁶We denote with τ the projection τ : Δ(S)× T →T with τ(π, t) = t.
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define

f(G, λ) =
T∑
t=0

G(τ = t)δtEπ∼Gt [V(A ∪ {b− λ}, π)] , λ ∈ [0, b].

For fixed belief π the function λ→V(A ∪ {b− λ}, π) is Lipschitz in λ with
Lipschitz-constant 1 and so is then also λ→Eπ∼Gt [V(A ∪ {b− λ}, π)] upon
integration. In particular, the latter is also absolutely continuous.

One can adapt Lemma 3 in Lin [2018] easily (this is Lemma A2 in the jmp
version as of January 22) and get for the derivative

d
dλ

Eπ∼Gt [V(π,A ∪ {b− λ})] = −1 + ρGt
A∪{b−λ}(A), a.e. λ ∈ (0, b),

(alternatively this follows from results in Lu [2016]). Here ρGt is a stochastic
choice function (Lu [2016], Duraj [2018a]) corresponding to the subjective
learning model (Dillenberger et al. [2018]) with posterior distributionGt.
Overall it follows that f(G, ·) is absolutely continuous and we have

d
dλ

f(G, λ) =
T∑
t=0

δtG(τ = t)
(
−1 + ρGt

A∪{b−λ}(A)
)

(C.3)

and ∣∣∣∣ ddλ f(G, λ)
∣∣∣∣ ≤ 2

T∑
t=0

δt < ∞.

Note that the agent cannot choose arbitraryG ∈ Δ(Δ(S)× T ). G has to
correspond to the distribution over Δ(S)× T of a random variable pair (πτ, τ)
where τ is a (randomized) stopping time as introduced in subsection 3.2.2 and π
is the process of martingale beliefs induced through the sequential experiment E
and the prior π0. Recall that we denoted by μ(π0) the measure of this belief
process over the space of experimental outcomes. For further use denote the
collection of such distributionsG over Δ(S)× T resulting from (randomized)
stopping the martingale process with measure μ(π0) by Π′. One can show easily
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that this set is compact in the topology of weak convergence of probability
measures; it is namely closed in that topology and also tight, since the measures
have bounded support.

Conditions for using Theorems 1 and 2 from Milgrom and Segal [2002] are
satisfied so that applying them and using (C.3) as well as the fact that
V({b}) = b gives

Vδ(A) = b−
∫ b

0

T∑
t=0

δtPA∪{λ}(τ = t)dλ+
∫ b

0

T∑
t=0

δtPA∪{λ}(A, t)dλ = b−
∫ b

0

T∑
t=0

δtPA∪{λ}(λ, t)dλ.

Overall we get for any b ≥ b(A) (recall that b(A) denotes the best prize feasible
under acts from menu A)

Vδ(A) =
∫ b

0

(
1 −

T∑
t=0

δtPA∪{λ}(λ, t)

)
dλ.

Now take any b > b(A). Then it follows that PA∪{λ}(τ = t) = δ{0}(t) for the
optimal choice ofG for A∪ {λ} by the agent so that the integrand is zero for such
b and we can let b→∞ and get the result.⁷

We now turn to the case of linear costs. Now the function f takes the form

f(G, λ) =
T∑
t=0

G(τ = t) (Eπ∼Gt [V(A ∪ {b− λ}, π)]− ct) , λ ∈ [0, b].

It follows just as above that f(G, ·) is absolutely continuous with

d
dλ

f(G, λ) =
T∑
t=0

G(τ = t)
(
−1 + ρGt

A∪{b−λ}(A)
)

and ∣∣∣∣ ddλ f(G, λ)
∣∣∣∣ ≤ 2T < ∞.

Using again the results from Milgrom and Segal [2002] and the fact that

⁷We use the usual notation δ{0}(t) = 0 unless t = 0 in which case it becomes 1.
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V({b}) = b leads to

Vc(A) = b−
∫ b

0

T∑
t=0

PA∪{λ}(τ = t)dλ+
∫ b

0

T∑
t=0

PA∪{λ}(A, t)dλ =
∫ b

0

T∑
t=0

PA∪{λ}(A, t)dλ.

Now take again any b > b(A). Then it follows that PA∪{λ}(λ, τ = 0) = 1 so that
we can let b→∞ and get the result. □

Proof of Proposition 26. We focus again on utility acts and we look at
variations of a menu A of the form A+ k, k ≥ 0, where k is a constant act giving
the constant prize of k ≥ 0 in every state of the world. Namely, we want to justify
writing

Vδ(A+ k) = Vδ(A) +
∫ k

0

d
dλ

Vδ(A+ λ)dλ. (C.4)

In line with the notation from Milgrom and Segal [2002] we now define for a
givenG ∈ Π′

f(G, λ) =
T∑
t=0

G(τ = t)δtEπ∼Gt [V(A+ λ, π)] , λ ∈ [0, k],

whereGt := G(π ∈ ·|τ = t). It holds now that

V(A+ λ, π) = λ + V(A, π).

Therefore it follows that λ→Eπ∼Gt [V(A+ λ, π)] is trivially Lipschitz with
constant 1 and so is λ→f(G, λ) for everyG ∈ Π′ as well. In particular, it is
absolutely continuous with derivative d

dλEπ∼Gt [V(A+ λ, π)] = 1.
It follows easily that

d
dλ

f(G, λ) =
T∑
t=0

δtG(τ = t) = Eτ∼marg{0,...,T}G[δ
τ]
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and ∣∣∣∣ ddλ f(G, λ)
∣∣∣∣ ≤ T∑

t=0

δt < ∞.

All conditions from Theorem 2 of Milgrom and Segal [2002] are thus satisfied
whenever we assume that k comes from a bounded set. We arrive at the following
representation.

Vδ(A+ k) = Vδ(A) +
T∑
t=0

δt
∫ k

0
PA+λ(τ = t)dλ. (C.5)

If instead k is negative, we can write the following after the obvious changes to
the argument above.

Vδ(A) = Vδ(A− k) +
T∑
t=0

δt
∫ −k

0
PA−k+λ(τ = t)dλ. (C.6)

□

Proof of Proposition 27. Looking at (3.4) we define

f(G, k) =
T∑
t=0

G(τ = t)δtEπ∼Gt [V(A, π)] + k ·
T∑
t=0

G(τ = t)
1 − δt+1

1 − δ
,

for someG ∈ Π′. For fixedG this is clearly a Lipschitz function of k. Moreover,
we have the derivative

d
dk

f(G, k) =
T∑
t=0

G(τ = t)
1 − δt+1

1 − δ
,

which is clearly bounded uniformly for allG ∈ Π′. In particular, all conditions of
the Theorems 1 and 2 in Milgrom and Segal [2002] are satisfied so that the
application of the abstract envelope theorems is warranted. From this the
statements of the Proposition follow immediately.

□
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Proof of Proposition 28. Looking at (3.5) we define

f(G, c) =
T∑
t=0

G(τ = t) (Eπ∼Gt [V(A, π)]− ct) ,

for someG ∈ Π′. For fixedG this is clearly a Lipschitz function of c. Moreover,
we have the derivative

d
dc
f(G, c) = −

T∑
t=0

G(τ = t)t,

which is clearly bounded uniformly for allG ∈ Π′. In particular, all conditions of
the Theorems 1 and 2 in Milgrom and Segal [2002] are satisfied so that the
application of the abstract envelope theorems is warranted. From this the
statements of the Proposition follow immediately. □

Proof of Claim 2. This is similar to the proof of Claim 1 in text. We have

Vk
δ(A+ λ) = E[δτA,kV(A, μτA,k)] + kE

[
1 − δτA,k+1

1 − δ

]
.

Here τA,k is an optimal stopping strategy for the menu Awhen the duration of the
experiment is subsidized by k and expectations are w.r.t. the random realizations
of τA,k and μτA,k . It holds by revealed preference for k 6= k′, both positive
numbers, that

E[δτA,kV(A, μτA,k)]+kE
[
1 − δτA,k+1

1 − δ

]
≥ E[δτA,k′+1V(A, μτA,k′ )]+kE

[
1 − δτA,k′

1 − δ

]
.

(C.7)
By combining the inequality (C.7) for the optimality of τA,k in the case of a
subsidy of kwith its analogue for the optimality of τA,k′ in the case of a subsidy of
k′ we get
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1 − δ
δk

(
E[δτA,kV(A, μτA,k)]− E[δτA,k′V(A, μτA,k′ )]

)
≥ E[δτA,k ]− E[δτA,k′ ]

≥ 1 − δ
δk′

(
E[δτA,kV(A, μτA,k)]− E[δτA,k′V(A, μτA,k′ )]

)
.

From here Claim 2 easily follows. □

Proof of Claim 3 in section 3.3 and of (3.16). One makes use of the fact that
the setT of randomized stopping times is a lattice and shows easily that the map
R× T 3 R, (k, τ) 7→ kE[τ] is supermodular in (k, τ). Moreover, the function
R× T→R, (k, τ) 7→ E[V(A, πτ)] is also supermodular in (k, τ). This is because
π is a Martingale and soE[V(A, πτ)] is increasing in τ. In particular, the function
R+ × T→R, (c, τ) 7→ E[V(A, πτ)]− cE[τ] is supermodular in (−c, τ). It
follows from Theorem 2.8.2 in Topkis [1998] that τcA is pointwise decreasing in c.
The last statement is a trivial implication of the FOSD-monotonicity of the
expectation operator.

Proof of (3.16): Since s→
∑T

t=0 tP
s
A(τ = t) is weakly decreasing in the costs s

it follows that

c
T∑
t=0

tPcA(τ = t)− c′
T∑
t=0

tPc
′

A(τ = t)

= (c− c′)
T∑
t=0

tPcA(τ = t) + c′
(

T∑
t=0

tPcA(τ = t)−
T∑
t=0

tPc
′

A(τ = t)

)

≤ (c− c′)
T∑
t=0

tPcA(τ = t) ≤
∫ c

c′

T∑
t=0

tPsA(τ = t)ds

= Vc′(A)− Vc(A).

We have used monotonicity of the expected stopping time in costs in the two
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inequalities. Note that we get a strict inequality in

c
T∑
t=0

tPcA(τ = t)− c′
T∑
t=0

tPc
′

A(τ = t) ≤ Vc′(A)− Vc(A),

whenever s→
∑T

t=0 tP
s
A(τ = t) is strictly decreasing in some range of (c′, c). □

Proof ofTheorem 39. This is done in the text of chapter 3. □

Proof ofTheorem 6. The axioms are clearly necessary. Sufficiency is also clear,
once one notes that axioms 1-4 in both case A. and B. ensure that the
identification procedure from section 3.4 works to deliver a unique cost of
learning in the respective models. Namely, Axiom 1 and 2 yield the prior and the
Bernoulli utility of the agent in a classical way. Moreover, Axiom 3 (Taste
stationarity) ensures that the risk preferences of the agent remain ordinally the
same across time. This allows the construction of utility acts and their associated
menus. Axiom 4-δ ensures that the identification procedure in SeSa-GD for the
discount factor works for at least one menu A ∈ At and yields a discount factor
strictly in (0, 1). Axiom 4-c implies that costs of information enter utility of the
agent additively, that they are proportional to the expected decision time and that
the marginal costs of an additional experiment are menu-independent. It also
ensures that the identification of the additive costs does not depend on the menu
A ∈ At without ties chosen. Axiom 5 for both versions of the model then
complete rationalizability by showing that the agentA = (u, δ, E , π0) in the case
of SeSa-GD orA = (u, c, E , π0) in the case of SeSa-LC, where taste, prior and
costs of information are identified from Axioms 1-4, match the data of the RCDT
for menus without ties where the agent has strict incentives to learn. □

C.4 Calculations for section 3.5

Calculations for SeSa-GD example.

295



Identification. This can be solved by backwards induction. Suppose that her
discount factor is δ = 4

5 . Consider choosing from menu {fs, r} for r ∈ [0, 1].
Without loss of generality, suppose s = s1. The optimal learning strategy can be
derived by backward induction. Below, we do not deal with the situation where
indifference in acts or stopping strategy occurs.

At t = 1, choose fs only if s1 occurs.
At t = 1, suppose that {s1, s2} occurs. If r ∈ ( 1

4 ,
2
3), then delay choice and the

value of A is 2
5 (1+ r). If r < 1

4 , then choose fs to enjoy expected utility 1
2 . If r >

2
3 ,

then choose r. Suppose instead {s1, s2} does not occur. Then always choose r.
At t = 0, if r < 1

8 or r > 4
11 , then choose fs or r respectively. If r ∈ ( 1

8 ,
4
11), then

waiting is optimal. This leads to Table 1.

Welfare. SeSa-GD model with a lump-sum tax.

A. Suppose that S = {s1, · · · , s4} and T = 2. At t=1, it is revealed whether
event {s1, s2} occurs or not. At t = 2, the true state of nature is disclosed.

B. The prior belief over S is uniform (π0(s) = 1
4 for all s ∈ S). The discount

factor is δ = 4
5 .

C. Let A = {e1, 1
3}. Let’s solve the learning behavior for menu A+ k given

various value of k.

D. Note that if the agent continues at t = 0 and learns {s3, s4} at t = 1, then it
is optimal to stop at t = 1 for any k > 0 because f1 + k is never optimal.
Therefore, we can focus only on the following three stopping strategies:

τ: Continue at t = 0. Continue at t = 1 if and only if {s1, s2} occurs.

τ′: Continue at t = 0. Stop at t = 1 no matter which event happens.

τ′′: Stop at t = 0.

E. First, we derive the value of k for which τ is optimal. When agent learns
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{s1, s2} at t = 1, continuing is optimal if and only if

1
2
+ k ≤ 4

5

[
1
2
(1 + k) +

1
2

(
1
3
+ k
)]

⇔ k ≤ 1
6
.

Given k ≤ 1
6 , continuing at t = 0 is optimal if and only if

1
3
+k ≤ 4

5

{
1
2
× 4

5

[
1
2
(1 + k) +

1
2

(
1
3
+ k
)]

+
1
2

(
1
3
+ k
)}

⇔ k ≤ 1
21
.

Thus, τ is optimal if and only if k ≤ 1
21 .

F. Second, we derive the value of k for which τ′ is optimal. When agent
learns {s1, s2} at t = 1, stopping is optimal if and only if

1
2
+ k ≥ 4

5

[
1
2
(1 + k) +

1
2

(
1
3
+ k
)]

⇔ k ≥ 1
6
.

Given k ≥ 1
6 , continuing at t = 0 is optimal if and only if

1
3
+ k ≤ 4

5

[
1
2

( 1
2
+ k
)
+

1
2

(
1
3
+ k
)]

⇔ k ≤ 0.

Thus, τ′ is not optimal for any k.

G. According to the previous discussion, τ′′ is optimal if and only if k ≥ 1
21 .

H. Suppose that k = 1. Now, we want to compare the indirect utilities from A
and A+ k. These utilities can be computed from behavior.

I. Consider menu (A+ 1) ∪ {r} = {f1 + 1, 4
3 , r}where r > 0. When r ≤ 4

3 ,
this menu is equivalent to A+ 1 and so the agent chooses 4

3 at t = 0.
When r > 4

3 , this menu is equivalent to {f1, r− 1}+ 1. It can be shown
that stopping at t = 0 is still optimal, and rwill be chosen. The following
table summarizes.
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P(A+1)∪{r} (A+ 1, 0) (r, 0) (A+ 1, 1) (r, 1) (A+ 1, 2) (r, 2)

r ∈ [0, 4
3 ) 1 0 0 0 0 0

r ∈ ( 4
3 ,∞) 0 1 0 0 0 0

Table C.4.1: RCDT for the SeSa-GD example - part 1.

J. Next consider menu A ∪ {r}. When r < 1
3 , this menu is equivalent to A.

When r > 1
3 , this menu is equivalent to {f1, r}. Thus, we have the

following table (recall that we have solved for this menu before).

PA∪{r} (A, 0) (r, 0) (A, 1) (r, 1) (A, 2) (r, 2)

r ∈ [0, 1
3) 0 0 1

2 0 1
2 0

r ∈ ( 1
3 ,

4
11) 0 0 0 1

2
1
4

1
4

r ∈ ( 4
11 , 1] 0 1 0 0 0 0

Table C.4.2: RCDT for the SeSa-GD example - part 2.

K. Suppose that an analyst has already identified δ = 4
5 . Then, usingTheorem

1 and Table 7, an analyst can compute the indirect utility of A:

∫ ∞

0

(
1 −
∑
t∈T

δtPA∪r(r, t)

)
dr =

1
3
+

(
4
11
− 1

3

)(
1 − 4

5
× 1

2
− 16

25
× 1

4

)
=

26
75
.

If we compute the value of A directly from the model, we get

4
5

[
1
2
× 4

5

(
1
2
× 1 +

1
2
× 1

3

)
+

1
2
× 1

3

]
=

26
75
.

This verifies Theorem 4 once again.

L. Similarly, from the data in part I., an analyst can compute the indirect
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utility of A+ 1, which is 4
3 . Then this analyst concludes that

Vδ(A+ 1)− Vδ(A) =
4
3
− 26

75
=

74
75

< 1.

Thus, if a social planner subsidize menu Awith 1 util, there is a deadweight
loss 1

75 .

Calculations for SeSa-LC example.

Identification We study first the belief process given the prior π0 = ( 1
2 ,

1
2)

and the i.i.d. experiments prescribed in the example.
Suppose that j 6= i. By Bayes’ rule,

π1(si|si) = a; π1(si|sj) = 1 − a.

And

π2(si|si, si) =
a2

1 − 2a+ 2a2 π2(si|sj, sj) =
(1 − a)2

1 − 2a+ 2a2 ,

π2(si|si, sj) = π2(si|sj, si) =
1
2
.

Let’s consider SeSa-LC model. Consider menu A = {f1, 7
12}. Suppose that

a = 2
3 . Let qt denote the belief on state s1. The random process {qt} is the

following:

q0 =
1
2
; q1 =

{
2
3 with prob. 1

2 ,
1
3 with prob. 1

2 ;

q2|e1=s1 =

{
4
5 with prob. 5

9 ,
1
2 with prob. 4

9 ;
; q2|e1=s2 =

{
1
2 with prob. 4

9 ,
1
5 with prob. 5

9 ;

When facing A, f1 is optimal only if the agent observes only one or two
consecutive signals s1. For various learning cost c, only three stopping strategies
may be optimal. They are
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τ0: Stop at t = 0.

τ1: Continue at t = 0; stop at t = 1.

τ2: Continue at t = 0; continue at t = 1 if and only if q1 =
2
3 .

Let V(A, τ, c) denote the expected utility from A under stopping strategy τ
and learning cost c. Then

V(A, τ0, c) =
7
12
;

V(A, τ1, c) =
1
2
× 2

3
+

1
2
× 7

12
− c =

5
8
− c;

V(A, τ2, c) =
5
18

× 4
5
+

13
18

× 7
12

−
( 1
2
× 2c+

1
2
c
)
=

139
216

− 3
2
c.

Thus, τ0 is optimal if and only if

7
12

≥ max
{ 139

216
− 3

2
c,

5
8
− c
}
⇔ c ≥ 1

24
.

Strategy τ1 is optimal if and only if

5
8
− c ≥ max

{ 139
216

− 3
2
c,

7
12

}
⇔ 1

27
≤ c ≤ 1

24
.

Strategy τ2 is optimal if and only if

139
216

− 3
2
c ≥ max

{ 7
12
,
5
8
− c
}
⇔ c ≤ 1

27
.

Intuitively, when c gets smaller, the agent learns more information.
Now we work backwards and assume that c = 1

36 . Thus τ2 is optimal for A, and
the value of A is 139

216 −
3
2 ×

1
36 =

65
108 .

Consider facing menu A ∪ r. When r ≤ 7
12 , the agent behaves as if facing A

because r is dominated. Thus τ2 is optimal. When r > 4
5 , the agent will not learn

because f1 is never optimal.

300



Consider r ∈ ( 2
3 ,

4
5 ). Then f1 will be chosen only when observing two signals

s1. In other words, under τ1, r is always chosen and so τ1 is worse than τ0. The
expected utility from A ∪ r under τ2 is

V(A ∪ r, τ2, c) =
5
18

× 4
5
+

13
18

× r− 3
2
× 1

36
=

13
72

+
13
18
r.

The utility is r under τ0. Thus τ0 is optimal for all r ∈ ( 2
3 ,

4
5 ).

Consider r ∈ ( 7
12 ,

2
3).

Then

V(A ∪ r, τ0, c) = r;

V(A ∪ r, τ1, c) =
1
2
× 2

3
+

1
2
× r− 1

36
=

11
36

+
1
2
r;

V(A ∪ r, τ2, c) =
5
18

× 4
5
+

13
18

× r− 3
2
× 1

36
=

13
72

+
13
18
r.

Thus, τ2 is optimal when r ∈ ( 7
12 ,

13
20); τ0 is optimal when r ∈ ( 13

20 ,
2
3). In sum,

an analyst, who does not know c, observes the table below.

PA∪r (A, 0) (r, 0) (A, 1) (r, 1) (A, 2) (r, 2)

r ∈ [0, 7
12) 0 0 1

2 0 1
2 0

r ∈ ( 7
12 ,

13
20) 0 0 0 1

2
5
18

4
18

r ∈ ( 13
20 ,∞) 0 1 0 0 0 0

Table C.4.3: RCDT for the SeSa-LC example - part 1.

Then consider menu αA+ (1 − α)(A ∪ r). When α is close to 1 enough, the
agent’s choice from this mixed menu reveals how she would choose from A ∪ r if
she follows the same stopping strategy as facing A. An analyst observes the
following table.
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τ{A,r} (A, 0) (r, 0) (A, 1) (r, 1) (A, 2) (r, 2)

r ∈ [0, 7
12) 0 0 1

2 0 1
2 0

r ∈ ( 7
12 ,

4
5 ) 0 0 0 1

2
5
18

4
18

r ∈ ( 4
5 ,∞) 0 0 0 1

2 0 1
2

Table C.4.4: RCDT for the SeSa-LC example - part 2.

An analyst given above two tables can compute the ex-ante value of A:∫ 1

0

∑
t∈T

PA∪r(A, t)dr =
7
12

× 1 + (
13
20

− 7
12
)× 5

18
=

65
108

,

compute the expected utility gain from menu A:∫ 1

0
τA∪r(A)dr =

7
12

× 1 + (
4
5
− 7

12
)× 5

18
=

139
216

,

and compute the average decision time when facing A:∑
t∈T

t× PA(A, t) =
1
2
× 1 +

1
2
× 2 =

3
2
.

Consequently, this analyst recovers the flow cost of time:

c =
139
216 −

65
108

3
2

=
9

216
× 2

3
=

1
36
.

Welfare. Consider an information market. An agent who has to choose from
menu Awould like to learn information about the state of the world. A scientist
can run the experiment at a fixed fee. The price (in utils) of the experiment is c.
That is, if the agent wants to run the experiment k times, she has to pay k× c to
the scientist.

Suppose that c = 1
36 . As we have shown before, the agent adopts learning

strategy τ2.
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Now suppose that the government intends to tax the experiment. Specifically,
if the agent runs the experiment k times, she has to pay the government
k× ( 1

25 −
1
36). Thus, the effective cost of learning becomes 1

25 . The agent will
adopt stopping strategy τ1 instead, learning less information. Recall that expected
decision time is equal to 1.

Before tax, the welfare of the government is 0. The welfare of the scientist is
1
36Eτ2 [t] = 1

36 ×
3
2 . The welfare of the agent is Vc(A)|c= 1

36
= 65

108 . Total welfare in
the economy is 139

216 .
After tax, the welfare of the government is 1

25 −
1
36 . The welfare of the scientist

is 1
36 . The welfare of the agent is Vc(A)|c= 1

25
= 5

8 −
1
25 =

117
200 . The total welfare is 5

8 .
The agent is worse off, and the total welfare also decreases. Note that

Vc(A)|c= 1
36
− Vc(A)|c= 1

25
=

91
5400

>
1
36

× 3
2
− 1

25
=

1
600

.

Therefore we have a dead-weight loss of

91
5400

− 1
600

=
41

2700
.

C.5 Identification of the additive costs in SeSa-LC with-

out decision time data

Here we use again utility acts w.r.t. a Bernoulli utility u as well as the
identification result from Lin [2018]. From there we know that the minimal
canonical costs of a rational inattention model are given by

c(π) = sup
A∈A

[∫
Δ(S)

max
f∈A

(p · f)π(dp)−
∫ ∞

0
PA∪{a}(A)da

]
. (C.8)

Now for the sequential sampling model with linear costs c per unit of time, if
we allow for randomized stopping times and the agent’s belief martingale is the
Δ(S)-valued process μt, t ≤ Twe know that the set of posterior distributions
achieved is given as follows.
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F(μ) = {π ∈ Δ(Δ(S)) : μτ =
d π, τ randomized stopping time}.

This is a convex, compact subset of Δ(Δ(S)). If we look at the decision problem
of the agent in (3.5) we see that it corresponds to a rational inattention model
with costs

C(π) = c min
τ randomized, μτ=dπ

E[τ]. (C.9)

Note that the costs here are also normalized: C(δπ0) = 0 (using the prior is
costfree).

Due to Theorem 2 in Lin [2018] the two costs (C.8) and (C.9) should be
equal for every π ∈ F(μ) that is realized for somemenu A ∈ A. But since for the
other π-s we can change the canonical costs in any way we want it follows overall
that we can use the following formula to identify the costs c:

c =
supA∈A

[∫
Δ(S) maxf∈A(p · f)π(dp)−

∫∞
0 PA∪{a}(A)da

]
minτ randomized, μτ=dπ E[τ]

, for some π ∈ F(μ).
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