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The role of environment in Drosophila behavioral variability and the genetics of life 

history variation 

Abstract 
 

Phenotypic differences among individuals are ubiquitous, but our understanding of their origins 

and evolutionary consequences is still not complete. Previous work has identified within-

genotype behavioral differences that persist even in constant laboratory environments 

(behavioral variability). Causes of variability have been investigated, though its response to the 

environment and its adaptive value are largely uncharacterized. In Chapter I, I tested the 

hypothesis that Drosophila melanogaster behavioral variability could be increased under an 

enriched environment with more micro-environmental variation. I found that behavioral variability 

slightly increased under environmental enrichment, but that genotype-by-enrichment effects 

dominated the behavioral variability response. In Chapter II, I investigated, using a combination 

of simulations and measurements of wild fly behavior, whether variability in D. melanogaster 

thermal preference reflects bet-hedging, a risk-spreading evolutionary strategy. I found that the 

seasonal dynamics of mean preference and genetic determination of variability in wild 

populations supported a pervasive bet-hedging strategy as predicted by modeling. Differential 

thermal preference heritability across six sites distributed across the continental U.S. supported 

modeling results that there are regional differences in the adaptive value of bet-hedging. Unlike 

behavioral variability, life history trait variation is largely genetic in origin - in Chapter III, I found 

that the genetic basis of offspring number and weight is highly polygenic, implicating genes 

previously unknown to have roles in life history. Overall, the results of my studies point to 
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complex relationships among genes and genes and environment in determining phenotypes, as 

well as an evolutionary role for non-genetic phenotype determination. 
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Introduction 

Variation can be observed at all levels of the biological world, from stochastic fluctuations at the 

cellular level to divergences between populations. Research on variation among organisms 

spurred on seminal findings in genetics and evolutionary biology, such as the concept of trait 

inheritance and theories of natural selection and speciation. Even now, trait variation remains an 

active field of study - we have expanded our tools in model organisms to probe the molecular 

basis of the relationship between genes and phenotypes and leveraged large population 

samples and novel statistical approaches to understand the influence of genes and the 

environment on variation. Throughout this document, I will use variation to refer to genetic and 

environmental differences (and the resulting trait differences) between individuals, variability to 

refer to trait differences observed within a genotype and under a controlled environment, and 

variance to refer to statistical measures of phenotype, genetic, and environmental differences 

within a population.  

  

Trait variation can arise from several different mechanisms. Genetic differences between 

individuals have been extensively investigated as a cause of trait variation. In some cases, 

strong effects on traits can come from alleles of a single gene, as in human genetic disorders1, 

rodent coat colors2,3, and fruit fly pigmentation and morphology4–6, leading to distinct phenotype 

classes. More often, observed trait differences are a result of a complex interplay between many 

genes and the environment. Genetic mapping studies, such as QTL mapping7–10 and genome-

wide association studies (GWAS)11–13, have been instrumental in determining the genetic basis 

of complex traits. With the advent of easier and cheaper sequencing technology, genome-wide 

association studies have been employed to map complex traits across a variety of organisms, 

including humans14–16, dogs17,18, mice19, fish20,21, birds22,23, insects24,25, plants26,27, and 

microbes28. In model organisms, GWAS coupled with functional validation of candidate genes 
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using amorphic alleles29,30, overexpression, and/or gene knockdowns31 in genetically tractable 

organisms has expanded our overall knowledge of the genetic basis of complex traits, often with 

direct implications on our understanding of human biology and disease.  

 

Drosophila melanogaster, commonly known as the fruit fly or the vinegar fly, has an incredible 

array of tools32 to tackle the questions of what genes underlie complex traits. One of the more 

important resources for genetic mapping in D. melanogaster has been the Drosophila Genetic 

Reference Panel (DGRP), a collection of fully-sequenced inbred fly lines established using wild-

caught individuals from Raleigh, North Carolina, USA33. The DGRP has been a cornerstone for 

many quantitative genetic analyses - as of 2017, there were 61 different GWA studies using the 

DGRP collection25. The inbred line structure of the DGRP increases additive genetic variance 

(loci are almost all homozygous within an inbred line, so dominance effects are practically non-

existent) and allows for detection of common allelic variants with modest to large effects on 

traits. Overall, the DGRP studies reveal that complex traits usually have a very polygenic basis, 

with most of the identified associated variants present in intronic or intergenic regions rather 

than in coding sequences. Another valuable resource for genetic mapping has been the 

Drosophila Synthetic Population Resource (DSPR)34. The DSPR is a large collection of 

recombinant inbred lines (RILs) that were created through 50 generations of recombination of 

eight inbred founder lines, followed by inbreeding. Mapping using the DSPR allows for 

identification of associated quantitative trait loci (QTLs), and putatively causative variants could 

be identified using the assigned founder genotypes from the RILs at each QTL. Interestingly, 

when the same complex traits are mapped using the DGRP and the DSPR, the resulting 

associated variants and QTLs do not clearly overlap between the two panels35,36. Differences in 

mapping approaches can influence what loci are able to be detected - the DSPR can map QTLs 

consisting of multiple variants, but if the variants under the QTL are of small effect, then a 

GWAS using the DGRP is unlikely to pick them up due to the stringent genome-wide false 
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positive correction37. In addition to this, the DSPR captures global genetic variation in D. 

melanogaster with eight founder lines, while the DGRP is a single sample of genetic variation 

within one population. Therefore, it is likely that associated variants found in one panel are 

simply not segregating in the other panel or are present at a low allele frequency and do not 

pass the statistical threshold to be detected38. The non-overlapping results from the DSPR and 

DGRP mapping, as well as the lack of overlap between top hits of multiple DGRP studies on the 

same trait35, support the idea that complex traits are determined by a large number of variants 

of small effect.  

 

The genetics of life history traits are of particular interest, as they are the most directly 

connected to organismal fitness39. Examples of life history traits include fecundity, longevity, and 

body size. Given the genetic toolkit of D. melanogaster, as well as its short development time 

and large numbers of offspring, it has been a popular model organism for studying life history 

trait variation. Life history traits in D. melanogaster show a large contribution of genetic 

variance. For example, in longevity, mutant screens40, QTL analysis40, and GWAS using the 

DGRP41 reveal a highly polygenic basis. Genes involved in stress response, insulin signaling, 

growth, and metabolism all contribute to variation in longevity. Mutations that decrease gene 

expression in the insulin signaling pathway produce a longer lifespan, and differences in the 

allele frequency of a deletion at an insulin receptor coincide with differences in average lifespan 

in natural populations. DGRP lines show heritable variation in embryonic development time42 

with a direct impact on fitness - decreased development time increased egg-to-adult viability. 

Once again, a variety of genes determine development time, most with known roles in the cell 

cycle, cell signaling, and development. In addition, variants associated with development time 

are found in regulatory regions, showing that for traits closely related to fitness, changing gene 

expression is likely a more common approach to regulating trait variation than changing the 

coding sequence. Fecundity43, body size44, nutritional indices45, and immunity46 also have a 
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polygenic basis - with traits that are closely related to fitness, it would not be surprising that 

almost every gene in the genome would contribute in some small way (an omnigenic basis)47. In 

Chapter III, I use the DGRP to examine the genetic basis of a trade-off between offspring 

number and body weight in a resource-limited scenario in order to see what complement of 

genes plays a role post-egg laying to determine offspring viability and robustness.  

 

In addition to genetic variation, differential environmental exposure can play a large role in trait 

variation among individuals. Trait variation or phenotypic variance (VP) is a combination of 

genetic variance (VG), environmental variance (VE), and genotype-by-environment variance 

(VGxE). If a substantial proportion of phenotypic variance comes from VE, the trait is regarded as 

phenotypically plastic48. A way to evaluate the plasticity of a trait is to look at its reaction norm, 

the phenotypic response of a genotype under different environmental treatments. A plastic trait 

will have significant responses to the environmental treatments, whereas a non-plastic trait will 

hold the same value over all treatments. Variable reaction norms across genotypes show that 

there is a VGxE component to the trait. Plastic traits are varied in scope - traits can be considered 

active or passive, reversible or irreversible, and, related to the former, can be caused by 

environmental cues acting at different points in development e.g. embryonic vs. adult 

stages48,49. Active plastic response is thought to occur in response to an environmental cue in 

order to anticipate a changing environment, such as increase in predators, a change in resource 

abundance, or seasonal changes. A passive plastic response comes from a direct influence of 

the environment on the physiology of the organism, without any anticipation of changing 

circumstances, e.g. poor nutrition leading to small size. The environment can influence an 

organism at multiple stages of its life; plastic responses during development are likely to be 

irreversible commitments to a particular trait, whereas responses during the adult stages are 

likely to be flexible and reversible e.g. metabolic switches, behavioral changes, and 
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acclimation50. The environment can have a large impact on phenotype - there is evidence to 

support that for certain traits, environmental changes can phenocopy genetic mutations51.  

 

D. melanogaster shows developmental plasticity in morphological traits52. When flies were 

raised at 19ºC, they had a longer thorax and wings (due to a larger body size) and also a higher 

ratio of wing to thorax length. Bristle number was higher in flies reared at 25ºC. The plastic 

response was heritable in all three traits and correlated across the thorax and wing length 

measurements. In a sister species, Drosophila simulans, morphological plasticity was evaluated 

in a population sampled from the wild (exposed to natural seasonal temperature fluctuations) 

and a wild-derived lab population exposed to comparable temperature regimes in the laboratory. 

The reaction norms were qualitatively similar, though less pronounced in the populations 

sampled from the wild (perhaps due to the conflicting influences of food availability and 

seasonal temperatures in the wild on the trait plasticity)53. In neuroanatomical traits, D. 

melanogaster shows plasticity in brain size in response to certain environmental pressures54. 

Mushroom body size decreases when larva are heat stressed, but is unaffected by larval 

crowding, yet antenna lobe, olfactory lobe, and central complex size decreases with increased 

larval crowding. An enriched environment for adults did not affect olfactory associative learning 

or brain structure size. Plastic responses in the brain are not always consistent among studies. 

Previous work found an increase in the mushroom body calyx of females with a longer 

developmental time when subjected to higher larval densities, and an increase in brain size 

under enriched living conditions55. It is likely that there are genotype effects on brain size 

plasticity that contribute to the inconsistency in results - previous work using the DGRP has 

found that there is a genetic basis for variation in mushroom body size56, and that some of the 

functionally validated genes play a role in mushroom body plasticity in the adult. In agreement 

with potential genotype-by-environment interactions in brain plasticity, genotype-by-environment 

interactions have been shown to be present in behaviors, such as male aggression57. Male flies 
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from the DGRP lines were reared post-eclosion either in mixed-sex housing or in isolation and 

then assayed for aggressive behaviors towards other male flies. The results show that social 

isolation had variable effects on aggressive behaviors - some lines showed a decrease in 

aggression after isolation, some showed an increase, and some showed no change. Annotated 

genes associated with variation in genotype-by-environment interactions in male aggression are 

involved in nervous system growth and morphogenesis, as well as sleep and memory. Overall 

results from D. melanogaster show both developmental and adult plasticity across a variety of 

traits, though the effects of the interaction of environment, genotype, and specific trait can be 

complex.  

 

The studies on plasticity mentioned above focused on controlled large-scale environmental 

changes, such as different diets, social exposure, or stressors, to measure the change in the 

mean trait response. Yet, there is also an uncontrolled component of environmental variance 

that exists within the treatment regime. The two components can be thought of as macro-

environmental variance and micro-environmental variance, respectively58. In laboratory studies, 

macro-environmental variance is imposed by the researcher as experimental treatments, and 

micro-environmental variance is the component responsible for within-treatment phenotypic 

variability (phenotypic variance observed within a genotype and under controlled environmental 

conditions). Under natural conditions, it would be more appropriate to think of environmental 

variance as existing on a continuum from macro- to micro-scale. Micro-environmental variance 

is thought to arise from stochastic differences among individuals, ranging from the internal, such 

as epigenetic59 or neuron wiring differences60, to the external, such as micro-habitat differences 

in developmental temperature or food availability. Since micro-environmental variance by 

definition comes from uncontrolled and stochastic influences, it is difficult to rank the possible 

factors in order of importance for trait variability - it is also very likely that the external and 

internal factors are interconnected e.g. small differences in developmental nutrition or 
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temperature could manifest in epigenetic differences, which in turn produces phenotype 

differences between individuals. The degree of trait variability which a particular genotype 

shows under a controlled environment has been termed its micro-environmental plasticity or 

intra-genotypic variability. Fascinatingly, there are genotype differences in micro-environmental 

plasticity61–64. A GWAS using the DGRP mapped the genetic basis of micro-environmental 

plasticity in starvation resistance, chill coma recovery time, and startle response63. Micro-

environmental plasticity in the traits was highly heritable, comparable to the heritability of the 

trait means, and the genetic basis was trait-specific, meaning that there was no genetic 

correlation in micro-environmental plasticity among the three traits measured. Examination of 

variants associated with micro-environmental plasticity in the three traits showed a polygenic 

basis, with no presence of a single variant of large effect (though the power of the study was 

diminished due to the noise inherent in measures of micro-environmental plasticity). Studies 

using the DGRP combined with studies on plasticity show that D. melanogaster is a powerful 

model organism for teasing apart the complex interactions between genotype, macro-, and 

micro-environmental plasticity. In Chapter I, I consider the effects of enriched environments 

during the developmental and adult stages of D. melanogoster on genotype- and behavior-

specific micro-environmental plasticity.  

 

While the proximal causes of trait variation can be broadly agreed upon, the adaptive value of 

trait variation is not always clear cut. Under what conditions is increased phenotypic variance 

maintained in the population? Should the variation come from plastic responses, genetic 

determination, or a mix of both? What are the costs and limits to the different strategies for 

establishing trait variation?  

 

An initial proposal for the maintenance of genetic variance is that it arises from a balance 

between variation created by mutations and elimination of variation by purifying selection65. 
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While some studies have shown that observed levels of genetic variance can be maintained by 

the mutation-selection balance (though with some restrictive assumptions)65,66, there are other 

scenarios where high levels of genetic variance can be maintained. Balancing selection at loci 

and fluctuating spatial and/or temporal environments67 can also maintain genetic variance. 

Balancing selection can maintain genetic variance through overdominance, or selection for high-

fitness heterozygous genotypes, or through negative frequency-dependent selection, where the 

rarer allele has a fitness advantage. To maintain genetic variance under fluctuating 

environmental pressures, genotype-by-environment effects on fitness must exist i.e. an allele 

that has a positive effect on fitness in one environment has a negative (or no) effect on fitness in 

another. As discussed above, there are many examples of genotype-by-environment effects in 

traits that lend support for this scenario. Just as fluctuating environments can cause 

maintenance of genetic variance, the level of genetic variance may also be important in the 

persistence of populations under fluctuating environments68. In an environment with long-period 

cyclical fluctuations, increased genetic variance allows populations to track the phenotypic 

optimum more closely. The advantage of genetic variance diminishes as the cyclical fluctuations 

get more rapid and the strength of selection increases. Modeling even suggests that under rapid 

periodic fluctuations in the phenotypic optimum, it is advantageous to dampen the genetic and 

phenotypic response to selection through a modifier locus69 so that previous responses to 

selection do not negatively impact future responses.  

 

Since phenotypic variance does not only depend on genetic variance, we can also consider the 

adaptive value of environmental variance. Bet-hedging is a non-genetic strategy for producing 

phenotypic variance as a way to cope with the risk of environmental fluctuations70–73. The driving 

force behind the advantage of a bet-hedging strategy is that, over the long-term, a reduction in 

mean fitness is overcome by a reduction in the fitness variance72,73. In essence, a bet-hedging 

genotype would not have optimal fitness under every environment, but it would perform 
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consistently well over time, thereby increasing its geometric mean fitness at the expense of 

arithmetic mean fitness. There are two types of bet-hedging strategy - conservative and 

diversifying72. Conservative bet-hedging is a way to deal with environmental uncertainty that 

avoids risk altogether, for example, always migrating early in the year to avoid a potentially early 

winter. A diversifying bet-hedging strategy mitigates risk by investing in multiple phenotypes for 

one genotype, a classic example being different seed germination timing to prevent complete 

failure to reproduce in a bad year70. Diversifying bet-hedging (just referred to as bet-hedging 

from now on) is of particular interest here, because of its direct parallels to observed micro-

environmental plasticity74. The fluctuating selection pressures that favor bet-hedging differ from 

those that favor maintenance of genetic variance. A bet-hedging strategy is advantageous when 

the variance in the phenotypic optimum across time outcompetes the purifying selection 

pressure against deviations from the optimum at a particular time75. Overall, the common thread 

of many modeling studies is that bet-hedging requires a higher and more rapid fluctuations of 

the environment to be a favorable strategy75–79, whereas genetic variance is favored under 

slower fluctuations79. In addition to the extensive theoretical discussion on bet-hedging, there 

have been empirical studies on putative bet-hedging traits across many organisms73, though 

evidence for bet-hedging across the studies is variable, and with few studies looking at behavior 

as a possible bet-hedging trait. In Chapter II, I examine empirical evidence for bet-hedging in 

thermal preference of Drosophila melanogaster, as well as whether bet-hedging in thermal 

preference is dependent on climate. 

  

Future directions of study on trait variation still remain quite open. Understanding trait variation 

is less tied to a purely genetic approach, but rather a more holistic approach that incorporates 

the effect of environment at both large and small scales and its interaction with genotype. 

Previously unexplained components of trait variation have now become fascinating avenues of 

new research. The research presented in the following chapters will examine the interactions 
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between genetic and environmental influences on variation in behavior and life history traits in 

Drosophila melanogaster.   
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 Chapter I - The effect of environmental enrichment on 

behavioral variability depends on genotype, behavior, and 

type of enrichment 
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Abstract 

Non-genetic individuality in behavior, also termed intragenotypic variability, has been observed 

across many different organisms. A potential cause of intragenotypic variability is sensitivity to 

minute environmental differences during development, even as major environmental parameters 

are kept constant. Animal enrichment paradigms often include the addition of environmental 

diversity, whether in the form of social interaction, novel objects, or exploratory opportunities. 

Enrichment could plausibly affect intragenotypic variability in opposing ways: it could cause an 

increase in variability due to the increase in microenvironmental variation, or a decrease in 

variability due to elimination of aberrant behavior as animals are taken out of impoverished 

laboratory conditions. In order to test our hypothesis, we assayed five isogenic Drosophila 

melanogaster lines raised in control and mild enrichment conditions, and one isogenic line 

under both mild and intense enrichment conditions. We compared the mean and variability of 

six behavioral metrics between our enriched fly populations and the laboratory housing control. 

We found that enrichment often caused a small increase in variability across most of our 

behaviors, but that the ultimate effect of enrichment on both behavioral means and variabilities 

was highly dependent on genotype and its interaction with the particular enrichment treatment. 

Our results support previous work on enrichment that presents a highly variable picture of its 

effects on both behavior and physiology.   



 

 18 

Introduction 

Stable behavioral differences among conspecifics are seen in a wide array of species. These 

differences, caused (definitionally) by some combination of genetic and environmental factors, 

are commonly referred to as individuality1–3. Yet, even after experimentally homogenizing 

genotype and environment, individuality still persists 4, often undiminished or even increased5,6. 

Multiple studies across different organisms demonstrate non-genetic individuality, which we 

refer to as intragenotypic variability (fruit flies:5,7; pea aphid:8; nematodes:9; fish:10; crayfish:11; 

mice:12,13).  

 

This intragenotypic variability may originate in sensitivity to stochastic microenvironmental 

effects that persist even when large-scale differences in environment across individuals are 

removed14–16. Along these lines, environmental causes of phenotypic differences can be 

decomposed into deterministic (macro) and stochastic (internal or micro) aspects16,17. Examples 

of macroenvironmental effects are different levels of fertilizer or different temperatures across 

treatments. Examples of microenvironmental effects include whether an individual animal ate 

more food in the morning or evening, or (in the case of flies) whether they pupated on the plastic 

vial or food media surface. Generally, microenvironmental effects exist within a treatment 

regime14 and are hard to measure15. For individuals of the same genotype raised in a 

homogenous experimental environment, trait differences would be primarily due to 

microenvironmental effects, and the propensity to this variation is known as microenvironmental 

plasticity18. For a given trait, it would seem that intragenotypic variability would be maladaptive 

since some individuals are far from the trait optimum. Yet, in unpredictable and/or fluctuating 

environments, having intragenotypic variability can be advantageous19. In such so-called 

diversifying bet-hedging strategies, variability can protect against sudden environmental 

changes, by increasing the likelihood that at any time a subset of the population has high 

fitness20,21.  
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Many studies have focused on characterizing the intragenotypic variability in morphological, 

physiological, and behavioral traits5,7,10,12,18,22–29. In Drosophila melanogaster, intragenotypic 

variability was found in chill coma recovery time, starvation resistance, sternopleural bristles, 

wing traits, and neuronal morphology in the larval ventral nerve cord18,24,25,27,28. Morphological 

variations present in the ventral nerve cord and optic lobes are of particular note as they 

respectively correlate with the timing of flight initiation and visually-guided locomotor biases, 

providing a link between morphological and behavioral intragenotypic variability27,30. Our 

research has identified intragenotypic variability in isogenic lines of D. melanogaster for turning 

bias, phototaxis, and thermotaxis5,7,26. Outside of flies, intragenotypic variability in behavior has 

been studied in inbred mice and clonal fish (Amazon molly), with mice showing variation in 

exploratory behavior and fish showing variation in activity10,12. If these examples of 

intragenotypic variability have their basis in microenvironmental differences, it may be hard to 

attribute the behavioral outcomes of specific individuals to their micro-causal underpinnings. It 

is, however, possible to test whether changing in the degree of microenvironmental variation 

predicts changes in the amount of intragenotypic variability. 

 

As most lab organisms are already raised in heavily standardized environments where 

microenvironmental variation is minimized, it is feasible to increase microenvironmental 

variation and examine the effects on behavior. “Enrichment” treatments include a variety of 

different modifications to regular laboratory housing, such as opportunities for exercise, novel 

object interaction, and socialization31. Enrichment may add microenvironmental variation to a 

particular treatment, potentially affecting both the mean and variance of phenotypic traits32. 

Typically, enrichment treatments are hypothesized to more closely match an animal's natural 

habitat, increasing mean well-being and cognition (while perhaps increasing intragenotypic 

variability). For mice and rats, enrichment has been shown to enhance mean gliogenesis, 
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neurogenesis, and synapse formation in the cortex, hippocampus, and cerebellum, leading to 

improved memory and cognition31,33–36. While there are some consistent enrichment effects in 

rats and mice, physiological and behavioral strain differences in responses to enrichment have 

been observed37–39. There is conflicting evidence for the effect of enrichment on brain size in 

fish, with enrichment having no effect on three-spined sticklebacks, but decreasing brain size in 

eastern mosquitofish40,41. Early studies in D. melanogaster have found that changing the social 

milieu affects the size of brain structures, with social isolation leading to decreased sizes and 

numbers of Kenyon cell fibers42–44. In addition, social isolation in D. melanogaster leads to faster 

cancer progression, suggesting that a stimulating social environment buffers against stresses45. 

In crickets, mushroom body neurogenesis is higher in enriched environments with complex 

visual, olfactory, and auditory stimuli as compared to impoverished environments46. On the 

other hand, enriched olfactory environments did not change mushroom body calyx size or affect 

odor learning in D. melanogaster47.  

 

The effect of enrichment on trait variability has been primarily studied in mice and rats and 

focused on understanding whether enriched rearing and housing conditions would decrease the 

statistical power to detect treatment effects by increasing within-sample variance38. The 

evidence presented from behavioral and physiological studies has been conflicting - studies 

have shown that enrichment can increase, decrease, or have no effect on variability depending 

on the trait in question38,39,48–51. A recent study by Körholz et al. chose to focus more directly on 

whether intragenotypic variability in behavior and brain plasticity is influenced by the diversity of 

experiences that results from an enriched environment. They found that enrichment increases 

variation in specific domains - mice from enriched environments showed higher variation in 

exploratory behavior (object interaction times, habituation, but not locomotion), adult 

neurogenesis, and motor cortex thickness32. They attributed this increase in variation directly to 
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the diversity of experiences or diversity of microenvironments that individuals could explore in 

an enriched environment.  

 

Given the conflicting evidence for the effects of enrichment on variability, we propose two 

hypotheses for how enrichment may influence variation in traits. The first hypothesis is that 

enrichment introduces microenvironmental differences which in turn increase trait differences 

through microenvironmental plasticity. Our second hypothesis is that by more closely matching 

natural conditions to which organisms are adapted, enrichment increases the robustness of 

development and somatic maintenance, with a corresponding reduction in variation (due to the 

removal of aberrant phenotypes that may appear in impoverished laboratory conditions). Even 

though they predict opposite outcomes, both of these hypotheses are intuitive, and have some 

support in the literature. We chose to test them by measuring intragenotypic variability in D. 

melanogaster under control and enriched treatments. This species is a good model system for 

this work because of the ease of rearing large experimental groups from isogenic lines, and its 

suitability for automated behavioral phenotyping. We were also interested in testing whether the 

observed effects of enrichment were dependent on genotype. We measured a variety of 

behavioral metrics associated with spontaneous locomotion and phototaxis5–7 in one isogenic 

line across two enrichment treatments and five isogenic lines in a single enrichment treatment to 

examine the effects of enrichment and the interaction of genotype and enrichment on behavioral 

variability. We found that while enrichment often caused a small increase in intragenotypic 

variability, the predominant determinants of behavioral means and variabilities were genotype 

and its interaction with the particular enrichment treatment.  
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Results 

Intragenotypic variability is evident in locomotor and phototactic behaviors 

In order to measure intragenotypic variability, we employed two automated assays (which 

measure spontaneous locomotion and locomotor responses to light) to rapidly collect many 

behavioral observations from many individual flies. We first confirmed that intragenotypic 

variability was present in a standard lab wild-type strain, Canton-S, in left-right turn bias and 

light-choice probability (Figure 1.1). Indeed, the observed distributions of these measures were 

significantly broader (p < 1E-3 by bootstrapping, "2, and Kolmogorov-Smirnov tests) than 

expected under null models in which all individuals behaved identically, i.e., sequences of 

behavior drawn from identical distributions (see Methods).   
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Figure 1.1 - Observed and null hypothesis distributions of Y-maze and FlyVac behavioral 
measures for Canton-S (wild type) flies.  
Dotted lines represent the distributions expected under null hypotheses in which all individuals exhibit 
behaviors drawn from identical distributions. The solid line represents the observed distribution, with the 
shaded region representing +/- 1 standard error of the distribution, as estimated by bootstrap resampling. 
Insets show 10 minutes of representative data of the original behavior traces of extreme individuals and 
the corresponding value of that metric. a) Metrics from the Y-maze assay: turn bias is the fraction of turns 
made to the right, number of turns is the number of left-right choices made in the 2 hour test, turn 
direction switchiness is a turn bias-normalized measure of the mutual information between successive 
turns (for higher values, left turns are more predictive of subsequent left turns and vice versa), and turn 
timing clumpiness is a normalized measure of the irregularity of turns (the mean absolute deviation of the 
inter-turn intervals divided by the mean inter-turn interval). Purple ticks represent left turns and green 
represent right turns. b) Metrics from the FlyVac phototaxis assay: light-choice probability is the fraction of 
choices toward light, inter-choice interval is the mean time between choices. White ticks indicate a light 
choice, dark ticks show a dark choice, and shaded areas represent regions of time where no choice is 
made. 151 flies were analyzed for Y-maze behaviors, and 175 flies for FlyVac behaviors.  
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We next asked if there is evidence of intragenotypic variability in other measurements taken 

while measuring turn bias and phototactic preference in these assays. As with turn bias, the 

observed distributions of number of turns, turn switchiness, and turn clumpiness were 

significantly broader than expected under null models in which all flies behaved identically 

(Figure 1.1a). Using FlyVac data, we observed that the distribution across flies of the average 

interval between phototactic choices also was broader than expected if all flies were behaving 

identically (Figure 1.1b). Thus, intragenotypic variability was evident in all six behavioral traits 

examined. 

 

Enrichment affects behavioral means in a genotype-, measure-, and enrichment-dependent 

manner  

We developed enrichment protocols that were either “mild” or “intense” (Figure 1.2). Our mild 

enrichment treatment, the fly jungle gym, was designed to provide a variety of textures, colors, 

and light conditions, whereas the intense cage enrichment was designed for flies to experience 

natural weather conditions, in addition to several different foods and a greater variety of biotic 

and abiotic substrates.  
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Figure 1.2 - Illustration of enrichment paradigms used.  
a) Control vials vs. mild enrichment vials. b) Photo of the inside of the intense enrichment cage. c) 
Diagram of the mild enrichment jungle gym components. d) Diagram of the intense enrichment cage 
components. e) Weather conditions that the intense enrichment cage was subject to for the experimental 
period. For the daylight timeline, yellow indicates potential direct sunlight on the cage, grey periods where 
the cage was shaded by our building, and black shows nighttime. The cloudiness timeline reflects the 
NOAA 10-point scale where 0 is clear skies and 10 is full cloud cover. f) Timelines of experiments 
showing the development, staging, and behavioral testing of the experimental animals for both mild and 
intense enrichment treatments. Each contiguous horizontal line indicates the time spent in a fresh 
container. The no enrichment control was the same as the mild enrichment, except all vials used were 
unenriched. 
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To confirm that the enrichment treatments had an effect on our flies, we examined the mean 

values of our six behavioral phenotypes under each treatment. We used a Bayesian framework 

with a weakly informative prior to estimate the posterior distributions of the means and 

variances of each behavioral metric under the mild and intense enrichment treatments. We used 

the 99% highest density interval, also termed credible interval (see Methods), to assess whether 

the posterior distributions of the means of each behavioral metric were different from each 

other. Intense enrichment caused strong decreases in the mean of number of turns and inter-

choice interval, and a strong increase in the turn switchiness when compared to mild enrichment 

and the control (Figure 1.3a).   
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Figure 1.3 - Posterior distributions of a) mean and b) intragenotypic variability (coefficient of 
variation; CV) for Canton-S flies under both enrichment treatments.  
Values shown at the top of each plot are the fraction of the posterior distribution of differences between 
two treatments (e.g., control and mild enrichment) that lies either below or above zero, depending on the 
direction of change. Given our finite posterior sampling, we cannot estimate fractions of distributions 
accurately below approximately 1E-4. Bold values indicate treatments for which the 99% credible interval 
of the treatment effect does not include 0. Sample sizes of each experiment are provided in the Methods. 
 

For these behaviors, intense enrichment had a larger effect on the mean than mild enrichment. 

Mild enrichment had a less pronounced effect on the mean number of turns and turn 

clumpiness. There was no apparent effect of enrichment on turn bias and light-choice 

probability, though the FlyVac assay has lower power than the Y-maze assay. We viewed these 

observed mean changes as a positive control that the flies were sensitive to our enrichment 

treatments. Our results were supported by a non-parametric test of mean differences (Figure 

1.4).  
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Figure 1.4 - Non-parametric tests of mean and variance differences across the unenriched, mildly 
enriched, and intensely enriched treatment groups in Canton-S flies for the six behaviors 
examined. 
Kernel density plots and raw data were plotted for each behavior and each treatment group. Significant 
differences in treatment group means (as shown by the letter code) were determined using a Kruskal-
Wallis test followed by a Dunn’s test of multiple comparisons with a Bonferroni correction. Significant 
differences among group variances (bolded letter code) were determined by a Fligner-Killeen test of 
homogeneity of variances with a Bonferroni correction to control for multiple comparisons.  
 

We estimated the effects of genotype, mild enrichment and genotype-by-mild enrichment on 

behavioral means using four Drosophila Genetic Reference Panel (DGRP)52 lines (45, 105, 535, 

796) and Canton-S (Figure 1.5). Genotype had an effect (i.e., zero was not in the 99% credible 

interval of the posterior distribution) on all behaviors except turn bias. Mild enrichment caused a 

genotype-independent increase in number of turns and switchiness, but no other behaviors. 

There were genotype-by-mild enrichment effects on number of turns, switchiness, and 

clumpiness, and the direction of those effects were variable.  
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Figure 1.5 - Genotype, mild enrichment, and genotype-by-mild enrichment effects on behavioral 
measure means.  
Asterisks mark those effects whose 99% credible interval does not include zero. All effects were 
normalized by the grand mean of all treatments and genotypes, so these values can be interpreted as 
effect sizes of each condition on the mean. Sample sizes of each experiment are provided in the 
Methods. ME, mild enrichment. 
 

Genotype, behavioral measure, enrichment, and their interactions determine intragenotypic 

variability  

We examined the effect of mild and intense enrichment on intragenotypic variability in our 

behavioral measures (Figure 1.3b). We chose to look at the coefficient of variation as our 

measure of intragenotypic variability in order to standardize it across multiple types of measures 

and control for mean effects (estimates of the posterior distributions of variance effects, not 

normalized by the treatment means, are included in Figure 1.6 and Figure 1.7).  
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Figure 1.6 - Posterior distributions of behavioral measure variance for Canton-S flies under two 
enrichment treatments.  
Numbers at the tops of the panels are the fraction of the posterior distribution of differences between two 
treatments (e.g., control and mild enrichment) that lies either below or above zero, depending on the 
direction of change. Given our finite posterior sampling, we cannot accurately estimate fractions of 
distributions below approximately 1E-4. Bold values indicate treatments for which the 99% credible 
interval of the treatment effect does not include 0. See Methods. Sample sizes of each experiment are 
provided in the Methods.  
 

 
Figure 1.7 - Genotype, mild enrichment, and genotype-by-mild enrichment effects on behavioral 
metric variance.  
Asterisks mark those effects whose 99% credible interval does not include zero. All effects were 
normalized by the grand variance of all treatments and genotypes. Sample sizes of each experiment are 
provided in the Methods. ME, mild enrichment.  
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For nearly all behaviors, intense enrichment had a larger effect on variability than mild 

enrichment, but these effects were not all in the same direction (results of a non-parametric test 

of differences in variance are shown in Figure 1.4). Intense enrichment decreased the variability 

of turn bias and turn direction switchiness but increased the variability of number of turns and 

inter-choice interval, when compared to the control and mild enrichment treatments. Intense 

enrichment increased variability in clumpiness, though the effect was more pronounced upon 

comparison to mild enrichment as opposed to the control.  

 

Mild enrichment caused small or no differences (zero effect was within the 99% credible 

interval) when compared to the control treatment for all the behavioral measures from both 

assays, with turn direction switchiness and turn timing clumpiness the most likely behavioral 

measures to be affected by mild enrichment. Variability in turn bias and number of turns 

probably increased slightly under mild enrichment, while clumpiness and switchiness probably 

decreased slightly. In two of these cases the direction of the effect matched the direction of the 

intense enrichment effect; in the other two cases, it did not. To summarize, intense enrichment 

had stronger effects on variability than mild enrichment, and the direction of these effects was 

behavior-dependent.  

 

In our analysis of five isogenic lines (four DGRP and Canton-S) under unenriched and mildly 

enriched conditions, we found that genotype, mild enrichment and genotype-by-mild enrichment 

all had effects on intragenotypic variability (Figure 1.8). We found that the variability of all 

behavioral measurements, except the number of turns, were affected by genotype. The 

variability of number of turns, clumpiness, and light choice increased in a genotype-independent 

manner under mild enrichment. Variability of switchiness and inter-choice interval were probably 

also increased in a genotype-independent manner by mild enrichment (a large majority of their 

respective posterior distributions was above zero). We observed genotype-by-mild enrichment 
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effects for number of turns, switchiness, clumpiness, and light-choice probability. Of all the 

behavioral measures, switchiness showed the most variable and the strongest genotype-by-

enrichment effects. To summarize, mild enrichment often increased variability in a genotype-

independent fashion, but there were also frequently genotype-by-mild enrichment effects.  

 

Figure 1.8 - Genotype, mild enrichment, and genotype-by-mild enrichment effects on measures of 
behavioral intragenotypic variability.  
Asterisks mark those effects whose 99% credible interval does not include zero. All effects were 
normalized by the grand variability of all treatments and genotypes, so these values can be interpreted as 
effect sizes of each condition on intragenotypic variability. Sample sizes of each experiment are provided 
in the Methods. ME, mild enrichment.  
 

Interestingly, we found that the average magnitudes of mean effects were smaller than the 

average magnitudes of variability effects (Figure 1.9a,b). For both mean and variability, 

genotype effects tended to be larger than the mild enrichment or genotype-by-mild enrichment 

effects. This pattern was especially prominent for mean effects. We also found that the sizes of 
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the effects on behavioral means were uncorrelated with sizes of effects on variability (Figure 

1.9c).  

 

 

Figure 1.9 - Summary of the genotype, mild enrichment, and genotype-by-mild enrichment effects 
on measures of behavioral mean and intragenotypic variability.  
a-b) Length of the bar represents the average magnitude of the effect; G is genotype effect, E is mild 
enrichment effect, and GxE is genotype-by-mild enrichment effect. c) Correlation of variability effect sizes 
and mean effect sizes across all behaviors, separated into genotype, mild enrichment, and genotype-by-
mild enrichment effects. All effects were normalized by either the grand mean or variability of all 
treatments and genotypes, so these values can be interpreted as effect sizes of each condition. 
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Discussion 

The goal of our study was to test two opposing hypotheses about the effects of enrichment on 

intragenotypic behavioral variability. We hypothesized that enrichment could increase variability 

due to the increase in microenvironmental diversity or decrease variability due to enriched 

environments more closely mimicking natural conditions (resulting in more robust development 

of behaviors and elimination of extremes that can occur in impoverished conditions)32. To this 

end, we examined six behaviors in Drosophila melanogaster across several genotypes and 

employed two levels of enrichment. We found that for five of the six behaviors, when examined 

across several genotypes, mild enrichment via a fly jungle gym likely led to an increase in 

intragenotypic variability, supporting the hypothesis that enrichment causes an increase in 

behavioral variability due to an increase in microenvironmental diversity. However, these 

genotype-independent effects were generally smaller than the effects of genotype or genotype-

by-enrichment interactions. Therefore, the effect of enrichment on intragenotypic variability 

appears to depend on the particular genotype and behavior being assayed. When we examine 

the effects of enrichment on variability within a genotype, we see support for both hypotheses 

depending on the behavioral measure and enrichment treatment examined (mild or intense). 

Therefore, while it is broadly true that mild enrichment causes a small increase in the 

intragenotypic variability, a more granular look at the effects of enrichment reveals both strong 

increases and decreases in variability. We also found that the effects of enrichment on 

behavioral means and variabilities were largely independent of each other, with variability 

effects having larger magnitudes than mean effects (Figure 1.9). This finding confirms that our 

enrichment paradigm was able to affect both mean and variability, and that these effects are 

potentially independent. From our experiments, it remains uncertain which aspects of 

enrichment influence mean and which influence variability, or indeed, if these aspects are one 

and the same. Behavioral variability was also more strongly impacted by enrichment, which may 

underscore a biological flexibility that is not present in determining mean behavior.  



 

 35 

 

With respect to both mean and variability, we found that genotype usually had a larger effect 

than the mild enrichment. This was especially obvious when looking at the genotype effects on 

behavioral means, where all behaviors except turn bias showed large genotype effects (Figure 

1.5, Figure 1.9). The lack of effect of genotype on turn bias is consistent with previous work that 

found no differences in the mean turn biases of 159 DGRP lines5. Genotype also had strong 

effects on intragenotypic variability (Figure 1.8), as expected5–7. 

 

We found evidence of interactions between genotype and enrichment for practically all the 

behavioral measures examined, though the magnitude of these interactions was behavior-

dependent (Figure 1.9). For example, turn bias and inter-choice interval showed very little 

genotype-by-enrichment effect for variability, but large effects were seen for turn switchiness. 

Dependence of variability on the particular parameter measured was previously noted in mouse 

enrichment studies32,50. Behavioral parameters may fall into different categories with respect to 

their response to enrichment. For example, switchiness is a measure of intraindividual variability 

(Figure 1.1), hinting at a link between the biological mechanism controlling variability from trial-

to-trial and individual-to-individual53. Our results also make it clear that in assessing the effects 

of enrichment on a particular measure of behavior, genotype cannot be ignored. These 

interactions are consistent with previous findings in rats and mice37–39, where the effects of 

enrichment differed between strains. Our results also imply that there is genotype-dependent 

plasticity in variability. In essence, phenotype variability is not a static feature of a genotype, but 

depending on the trait measured, the environment can have a large effect. Evolution of plasticity 

has usually been examined in trait means. Our findings suggest such inquiries should extend to 

variability. Going forward, thinking about variability as a flexible, evolvable trait may be 

necessary to understand how phenotype distributions arise.  
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Our fly jungle gym enrichment (mild enrichment) featured an array of perching sites and 

perching materials. The goal was that flies in the jungle gyms would experience a diversity of 

perching sites and textures, as well as be forced to navigate a more complex environment. Flies 

would therefore be subject to a diversity of experiences closer to what they might have in the 

wild while still under the constraints of laboratory conditions. We expected that the mild 

enrichment would mostly affect locomotion and activity behaviors, such as turn bias and inter-

choice interval. We see that mild enrichment caused an increase in the mean of the number of 

turns and switchiness, as well as an increase in the variability of all behaviors except turn bias 

(Figure 1.5, Figure 1.8). Surprisingly, we see that variability in light-choice probability also 

increased under the mild enrichment treatment, which leads us to believe that our jungle gym 

construction may have also created differential light conditions in the vial or stimulated 

phototaxis variability via more indirect means.  

 

The six behavior measures examined were chosen largely because they could be measured at 

scale across many individuals, a requirement for measuring effects on variability.  Still, we can 

speculate on the ecological relevance of variability in several of the phenotypes measured. We 

suspect that variability in turn bias could be potentially advantageous for exploration, dispersal, 

and/or foraging via a bet-hedging mechanism. Individuals with stronger turning biases move 

through the environment with lower effective diffusion constants. If the spatial scale of resources 

in the environment fluctuates unpredictably, variation in turn bias could reflect a matched 

strategy of diversifying diffusion constants. Light-choice bias in our assay may be reflective of 

an escape response since the fly is startled prior to the light choice7. Variability in moving toward 

light upon being startled could reflect a bet-hedging mechanism as well, if the threats faced by 

flies are variable i.e., if it is alternatively advantageous to seek light or dark after a startle. 

Predator escape behavior has been considered to be a possible bet-hedging trait - for example, 

clonal pea aphids show variability in predator escape behavior among individuals8. We have 
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also found that variability in light preference under non-startled conditions could influence the 

thermal experience of a fruit fly in nature, and therefore also be part of a bet-hedging strategy26.  

 

We examined whether the effects on variability would change with a different type of 

enrichment. We raised one cohort of flies in a naturalistic setting, subject to the environmental 

fluctuations of the outdoors and with access to numerous organic and inorganic substrates 

(Figure 1.2). Compared to the jungle gyms of mild enrichment, this intense enrichment 

treatment had more structural complexity and diversity of biotic (fruits, plants, spider predators) 

and abiotic (sunlight, temperature) factors. By increasing the microenvironmental diversity along 

several different axes, we expected to observe stronger effects on variability on flies reared in 

this treatment. In general, this intense enrichment did have stronger effects on our behavioral 

measures than the mild enrichment. Even though the effects of intense enrichment were more 

pronounced, the direction of these effects was behavior-dependent (Figure 1.3). For example, 

we saw a decrease in intragenotypic variability for turn bias and turn switchiness under intense 

enrichment, but an increase in the variability for number of turns and turn clumpiness. The 

directions of these effects varied by behavior, even relative to the direction of the mild 

enrichment effect.  

 

The intense enrichment treatment was created to have a higher level of microenvironmental 

diversity than the mild enrichment treatment, yet we observe that the behavioral variability does 

not always change in the same direction between these treatments.  For example, we saw a 

small increase in variability under mild enrichment but a large decrease under intense 

enrichment such as for turn bias (Figure 1.3). This leads us to believe that the relationship 

between the mild and intense enrichment is not just a simple increase in “enrichment intensity.” 

Still, we recorded some direct evidence that flies in the intense enrichment indeed experienced 

at least one dimension of increased microenvironmental variation compared to the mild 
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enrichment: flies recovered from the intense enrichment cage exhibited variation in the color of 

their gut contents, consistent with their having recent fed on different food sources (Figure 1.10). 

This variation was absent in flies subject to mild enrichment. One of our predictions was that a 

more naturalistic enrichment treatment could lead to a decrease in variability because of an 

increase in robustness, but it could also be that naturalistic enrichments cause fly populations to 

exhibit more natural behaviors in general, whether or not that corresponds to a decrease in 

behavioral variability. Future studies could address what constitutes natural fly behavior in more 

detail, whether by making field-deployable assays or bringing wild flies directly to the lab for 

testing, though any comparisons with our current enrichment paradigm would need to carefully 

consider population genotypic variance.  

 

Figure 1.10 - Differences in food consumption in intense enrichment.  
Flies recovered from the intense enrichment cage displayed differences in the type of food consumed, as 
shown by the differences in the gut color (black arrowhead).  
 

Overall, our results support the hypothesis that enrichment increases intragenotypic variability, 

though this effect is highly dependent on the particular genotype, enrichment, and behavior in 

question. We also conclude that genotype is likely to remain the main determinant of 

intragenotypic variability. Our findings make it apparent that the genotype used, and behavior 
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measured will affect the inferred relationship between environmental variability and behavioral 

variability. Moreover, the type of enrichment (e.g., mild vs intense enrichment) can qualitatively 

and quantitatively alter this relationship. This, and the effects of genotype and behavioral 

measure, could be why effects observed in one enrichment study may not be replicated in 

another38. While the multifactorial nature of enrichment provides challenges, its specific effects 

continue to be of great interest in behavioral research, and high throughput, data-driven 

approaches have the potential to illuminate the complex relationships between environmental 

variability and behavioral variability.  
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Methods 

Behavior and enrichment protocols 

Fly stocks were cultured in vials on Caltech formula media at 25°C in temperature-controlled 

incubators on a 12h-12h light-dark cycle. For our isogenic populations, we used Canton-S and 

four lines from the Drosophila Genetic Reference Panel52. These lines (numbers 45, 105, 535 

and 796) were derived from different wild-caught gravid females and then inbred for 20 

generations. Thus, there is significant genetic variation between the lines, but not within them. 

We chose to work with these particular lines because we have previously observed that they 

vary in intragenotypic variability in Y-maze turn bias5. Flies were subjected to two enrichment 

treatments: mild enrichment (the addition of a small “jungle gym” to each culture vial) and 

intense enrichment (growth of the flies in a 1m3 cage filled with many rotting fruit substrates, 

plants, rocks etc.) (Figure 1.2). 

 

For mild enrichment, in each vial of media where experimental animals were to develop, 3 

female and 2 male parental flies were housed for 3-5 days. The parents were removed and the 

jungle gym enrichment was inserted. The enrichment object consisted of plastic tubing, pipe 

cleaners and fuzzy pom poms that were hot-glued to a balsa wood applicator stick that was 

inserted into the media (Figure 1.2c). These were identically constructed for ~30 vials, with the 

exception of the pom-pom color, which in some vials at random was white and in the others 

pink. F1 experimental progeny developed in this enriched environment for around 10 days in 

incubators. Once they began eclosing, they were allowed to accumulate for 1-2 days, after 

which they were removed and mixed under cold anesthetization with other flies from the same 

genotype. They were then sorted into cohorts of 40 males and 40 females and placed in mildly 

enriched vials for 3-5 days. At this point, their behavior was measured in the Y-mazes for 2 

hours according to the methods in Buchanan et al., 20156 (though here we loaded anesthetized 

experimental animals on ice to transfer them into the Y-mazes, rather than CO2). After the Y-
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maze assay, they were anesthetized on ice and returned to their mildly enriched vials for 5-10 

days at which point their phototactic preferences were measured using FlyVac according to the 

methods in Kain et al. (2012)7. This mild enrichment procedure was used for flies of all 

genotypes. See Figure 1.1 for representations of the six behavioral metrics we acquired in these 

two assays, and their distributions across Canton-S flies. 

 

For intense enrichment, we prepared a population cage using 1m wooden dowels to make a 

cubic frame, with sheer white polyester drapery material as walls (Figure 1.2b). A tube of this 

material, normally held closed by binder clips, provided access to the inside of the cage. The 

items shown in Figure 1.2d were introduced to the cage at the time of its construction: six kinds 

of fly food (a variety of decomposing fruits as well as bottles of standard cornmeal media), 

houseplants, stones, varied plastic objects, etc The cage was placed outside on a deck where it 

experienced natural fluctuations in luminance, temperature, rainfall, wind, humidity, etc. during 

the course of our experiment (Figure 1.2e). For the experiment, a parental Canton-S population 

of 200 males and 200 females was placed in the cage on September 5th 2013, and removed 9 

days later. F1s were collected on September 28th, 30th, and October 5th 2013 and assayed in the 

Y-mazes on those days respectively. Flies were recovered from the Y-mazes using cold 

anesthetization and stored in unenriched standard media tubes in groups of ~30 individuals until 

testing with FlyVac on October 6th 2013 (Figure 1.2f). For all assays, males and females were 

tested in equal proportions.  

 

For Y-maze enrichment experiments with Canton-S, we assayed 151 control flies, 203 mildly 

enriched flies, and 206 intensely enriched flies. For Canton-S FlyVac experiments, we assayed 

175 control flies, 140 mildly enriched flies, and 86 intensely enriched flies.  

 

For Y-maze enrichment experiments with the DGRP lines, we assayed:  
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DGRP 45: 166 control, 133 mildly enriched 

DGRP 105: 130 control, 148 mildly enriched 

DGRP 535: 113 control, 111 mildly enriched 

DGRP 796: 132 control, 128 mildly enriched 

 

For FlyVac enrichment experiments with DGRP lines, we assayed: 

DGRP 45: 157 control, 144 mildly enriched 

DGRP 535: 122 control, 140 mildly enriched 

 

Behavior measures and null model distributions 

Behavior measures from the Y-maze assay (turn bias, number of turns, turn direction 

switchiness and turn timing clumpiness) were calculated from the vectors of turn directions and 

times that each fly produced in the experiment. Behavior measures from FlyVac (light-choice 

probability and inter-choice interval) were calculated from the FlyVac data output file7. These 

measures were computed and/or collected into a common data structure in MATLAB 2013a 

(The Mathworks, Inc., Natick, MA). With Y-maze arrays6, we measured the left-vs-right free 

locomotion turning bias of individual flies. With FlyVac, we measured the locomotory response 

to light cues of agitated flies (“fast phototaxis”54). We have previously used both of these assays 

to detect genetic and neural circuit regulators of intragenotypic variability5–7, and between them, 

we examined both spontaneous and stimulus-evoked behaviors. Beyond turn bias in the Y-

maze assay, we assessed 1) the number of turns completed by individual flies within the two 

hour trials, 2) flies' tendencies to alternate between left and right turns successively 

(“switchiness”), and 3) the extent to which their turning events were clustered in time 

(“clumpiness”). For the FlyVac dataset, we measured the average interval between phototactic 

choices in addition to the light-choice probability. While the Y-maze arrays and FlyVac were 

primarily designed to measure locomotor turning and phototaxis, respectively, they also produce 
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precise estimates of these other individual behavioral measures, so for the purpose of this 

study, we do not emphasize any of these measures over the others. 

 

Null hypothesis distributions were generated in MATLAB 2013a by resampling (with 

replacement) a million values for each distribution as follows: 1) For turn bias and light-choice 

probability, a) all observed choice values (i.e. left vs. right and light vs. dark) were pooled across 

individuals, b) an individual was chosen at random from all tested, and a vector of length equal 

to the number of behavioral choices performed by that individual during the experiment was 

populated randomly with values from the pool, and c) the turn bias or light-choice probability for 

that vector was recorded. 2) For number of turns, a) the observed inter-turn intervals (ITIs) were 

pooled across individuals, b) ITIs were chosen randomly one at a time until their cumulative sum 

exceeded 7200000ms, the length of an experiment, and c) the number of turns in this sequence 

was recorded. The moderate discrepancy in mean between the null hypothesis distribution and 

experimental distribution in this analysis arises from the disproportionate number of short 

intervals contributed to the total pool by more active animals. 3) For switchiness, which arises 

from slight dependence between consecutive turns in the LR turn sequence, a) we implemented 

a Markov chain in which the L-L (= R-R) transition probabilities yielded LR sequences with 

mutual information between successive turns equal to the observed mutual information (0.018 

bits, P(L-L) = 0.592). b) An individual was chosen at random from all tested, and a choice 

sequence of length equal to the number of choices performed by that individual during the 

experiment was generated using the Markov chain, and c) the switchiness of this sequence (= 

(#LR+#RL)/(2*turn bias*(1-turn bias)*num turns ) was recorded. 4) For clumpiness, a) the 

observed ITIs were pooled across individuals, b) an individual was chosen at random from all 

tested, and a vector of length equal to the number of choices performed by that individual during 

the experiment was populated randomly with values from the ITI pool, and c) clumpiness (= 

MAD(ITIs)/(sum(ITIs)/num turns), where MAD is the median absolute deviation from the 
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median) was recorded. Thus, this approach reflects sampling variation in number of turns and 

mean ITI as well as clumpiness. 5) For inter-choice interval (ICI), a) the observed ICIs were 

pooled across individuals, b) an individual was chosen at random from all tested, and a vector of 

length equal to the number of choices performed by that individual during the experiment was 

populated randomly with values from the ICI pool, c) the mean ICI across this vector was 

recorded.  

 

Bayesian inference of mean and variance effects 

To get the estimates of the posterior distributions of behavioral mean and variance, and the 

effects on the observed distributions of enrichment treatment, genotype, and their interactions, 

we employed linear and generalized linear models in R's Stan interface v.2.18.2. The Stan 

platform allows the user to specify desired models and performs full Bayesian inference using 

Hamiltonian Monte Carlo with the No U-Turn sampler55. To get the posterior distributions of the 

mean and variance for turn bias, light-choice probability, switchiness, and clumpiness under 

different enrichment-genotype conditions, we specified the following model: 

 

!! 	∼ $%&'()(µ!, -!) 
#	 = 	(	 + 1 ⋅ 3 
$" =	4# + 5 ⋅ 4 

 

where %! is the behavioral outcome of an individual n that comes from a normal distribution with 

parameters µ! (mean) and $! (standard deviation). # and $" are vectors specified via linear 

models, where ' and (# are intercepts, )	is a logical predictor matrix specifying the genotype 

and/or enrichment treatment for each individual, and +	and (	are vectors of coefficients of the 

linear model.  
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Since the distribution of the number of turns was right-skewed, bounded to real positive 

integers, and overdispersed compared to a Poisson distribution, we chose to model this 

measure with a negative binomial as follows: 

 

!! 	∼ $6789:%'9()(µ!, ;!) 
#	 = 	6<=(5 ⋅ >) 
,	 = 	6<=(5 ⋅ ?) 

$"	 =	@	 +	@
"

A
 

 

Here, %! is the number of turns made by individual n modeled by a negative binomial distribution 

with parameters µ!(mean) and -! (dispersion). Both parameter vectors are related to the 

coefficients of a generalized linear model (vectors . and /) via a log-link function. )is the 

experimental design matrix, as above. $"	is the variance vector calculated from the mean and 

dispersion parameter vectors.  

 

To model inter-choice intervals, we chose a gamma distribution since the data is right-skewed 

and positive continuous: 

 

!! 	∼ B((!, C!) 
#	 = 	6<=(5 ⋅ >) 
$"	 	= 	6<=(5 ⋅ ?) 
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Where %!  is the inter-choice interval of individual n and '! and +! are the shape and rate 

parameters of the gamma distribution, respectively, and the rest of the parameters are as 

above.  
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For the estimation of all posterior distributions, we set our priors on the coefficients to broad 

Cauchy distributions centered at 0 to allow them to be weakly informative56. Our qualitative 

findings were robust to the choice of prior, as an uninformative uniform prior told the same story 

(Figure 1.11).  

 

 

Figure 1.11 - Weakly informative Cauchy and uniform priors result in similar posterior 
distributions.  
a) Posterior distributions generated under a Cauchy prior. b) Posterior distributions generated under a 
uniform prior. Thus, our choice of a weakly informative prior, rather than non-informative prior, is not 
driving our conclusions about the treatment effects. Turn bias, number of turns, and inter-choice interval 
were chosen to represent the three types of models used: normal, negative binomial, and gamma, 
respectively. Sample sizes of each experiment are provided in the Methods.  
 

To sample posteriors, we used four chains and 50,000 - 100,000 iterations per chain, with the 

target average proposal acceptance probability of 0.8-0.9 and maximum tree depth of 10-15, to 
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generate a posterior distribution of 100,000 - 200,000 samples (50% of chain iterations were 

used for tuning the Hamiltonian Monte Carlo sampler parameters and were discarded as the 

burn-in period). The ratio of chain effective sample size to sample size was in the range of 0.7 - 

1.2, indicating that posterior estimate error due to autocorrelation was minimal. To get posterior 

distributions for the coefficients of variation, we took the square root of the variance and divided 

it by the mean at each step in the chain. To check our model fits, we carried out graphical 

posterior predictive checks (Figure 1.12) and found that our models fit the data well.  

 

 

Figure 1.12 - Concordance between values sampled from our models of treatment effect 
parameters and the experimental data (posterior predictive checks).  
Violin plots are kernel density estimates from a sample of values drawn from distributions whose 
parameters are drawn from our effect posteriors. Points are the original data. The general agreement 
between the modeled and empirical distributions indicates that we have appropriately modeled the effects 
and that our choice of priors was not wholly inappropriate. Sample sizes of each experiment are provided 
in the Methods. C, control, ME, mild enrichment.  
 

We adapted the methodology used by Kruschke's BEST method57 to our own posterior 

distributions in order to determine which effects were inferred to differ from zero. To estimate 
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the posterior distribution of a treatment effect, we subtracted the parameter values of one 

treatment condition from the control (or the other treatment condition) at each step in the chain 

and took the distribution of that difference. We calculated the 99% highest density interval (the 

credible interval) of the posterior of treatment effects to evaluate whether the treatments had an 

effect - if the 99% highest density interval excluded 0, we inferred an effect between the 

treatments. Since this approach is subject to multiple comparisons concerns, we chose the 99% 

credible interval (rather than e.g., 95%) as a more stringent indicator of effects. While we think 

that the 99% credible interval is a useful guide to pulling out the strongest effects we observe, 

we believe that the strength of Bayesian inference lies in being able to examine the posterior 

distributions as a whole and observing their trends (rather than applying a threshold to identify 

effects).  

 

To determine the contribution of genotype, mild enrichment, and genotype-by-mild enrichment 

effects to the variability (coefficient of variance) and mean of each behavior, we used the 

following formulas: 

 

01%&	 = 01# 	+ 	4% 	+ 	5& 	+ 	4% × 5& 
#%& = ## 	+ 	4% 	+ 	5& 	+ 	4% × 5& 

 

01%&	and #%&are the variability and mean, respectively, of genotype i in treatment group j. 01# and 

## are the grand variability and mean, averaged over all genotypes and treatments. 4% is the 

deviation of the variability or mean of genotype i from the grand parameter in question, 

calculated over all treatment groups. 5& is the deviation of treatment group j from the grand 

parameter, calculated over all genotypes. The treatment groups in this experiment were mild 

enrichment or control vials. 4% × 5& is the specific deviation of genotype i in treatment group j 

after accounting for the main effects of genotype i and treatment group j. All deviations were 
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standardized by dividing them by the grand parameter value in order to interpret them as effect 

sizes.   
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 Chapter II - Wild flies hedge their thermal preference bets in 

response to seasonal fluctuations 
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Abstract  

Fluctuating environmental pressures challenge organisms by shifting the optimum phenotype. 

Two contrasting strategies to cope with these pressures are either via evolution of the mean 

phenotype to follow the optimum (adaptive tracking) or via diversifying phenotypes of individuals 

to hedge against the fluctuations (bet-hedging). Stable differences in the behavior of individuals 

are a ubiquitous phenomenon and are present even when genotype and environment are held 

constant. Instead of being simply “noise”, behavioral individuality may reflect a bet-hedging 

strategy of phenotype diversification. Using geographically diverse wild-derived fly strains and 

high-throughput assays of individual preference, we tested whether thermal preference in 

Drosophila melanogaster reflected a bet-hedging strategy and whether populations from 

different regions preferentially adopt bet-hedging or adaptive tracking strategies. Our modeling 

predicted regional differences in the advantage of bet-hedging, and in support of that, we found 

that heritability in thermal preference across six locations is negatively correlated with predicted 

bet-hedging advantage. We also found that dynamics of mean preference and variability in 

preference support the existence of bet-hedging in thermal preference. Our empirical results 

point to bet-hedging in thermal preference as an important evolutionary strategy in wild 

Drosophila populations.  
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Introduction 

Individuals differ in their behavior – these differences can be caused by local environment, age, 

sex, and genetic variation. There exists a wide range of behavioral differences between 

individuals that are consistent across environments and time in every species examined1–5. The 

ubiquity of this variability is evidence for its potential ecological and evolutionary importance, 

which raises the question as to how it arises and is maintained. 

 

Temporal fluctuations in the environment are a way that interindividual differences in a 

polygenic population can be maintained by selection – at different points in time, environmental 

pressures will select for a different optimum6–9. If interindividual differences are determined by 

genetic polymorphisms segregating in the population, polymorphism frequencies will change 

due to adaptation to the new selection pressures, and as a consequence, the behaviors of 

individuals may also change10,11. This process is referred to as adaptive tracking12. When these 

temporal fluctuations are relatively rapid, the population lags behind the selective pressures, 

which can lead to lower relative fitness13–15. In this case, it has been proposed that it is 

advantageous to reduce the phenotype expression of the segregating variants, thereby 

minimizing the effect of previous selection in the current environment15.   

  

Diversifying bet-hedging (from here on out referred to as bet-hedging) is an alternative strategy 

that overcomes the limitations faced by adaptive tracking in rapidly fluctuating environments, 

because it ensures that there will always be fit individuals should a drastic or unpredictable 

environmental change occur7,16–18. Under this strategy, a single genotype produces multiple 

phenotypes as a way to mitigate risk i.e. “don’t put all your eggs in one basket”. This bet-

hedging strategy reduces fitness variance between generations, increasing geometric mean 

fitness at the expense of arithmetic mean fitness16,19–21. Intuitively, this means that although in a 

single generation a bet-hedger may not be optimally fit given the environment, the stability of 
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fitness over generations (a bet-hedger potentially always having decent fitness no matter the 

circumstances) results in success for the strategy over the long term. As environmental variance 

increases, bet-hedging becomes an evolutionarily optimal strategy that can explain the 

maintenance of interindividual differences22–26. There is a variety of evidence for bet-hedging 

traits across organisms, though there are few examples of bet-hedging in behavioral traits12. 

 

We expect that individuals from a bet-hedging genotype would exhibit stable idiosyncratic 

behavioral biases, even reared in the same environment. Work in Drosophila melanogaster has 

shown that in a constant environment and genetic background, individuals exhibit consistent, 

but starkly different, behaviors - examples include turning bias27,28, phototaxis29, and thermal 

preference30. These differences are termed intragenotypic variability, and they can reflect a bet-

hedging strategy. Kain et al. used a model that translated observed phototaxis and thermal 

preference intragenotypic variability into simulated variability in life history, under either a bet-

hedging or adaptive tracking strategy in natural populations of Drosophila melanogaster30. They 

found that bet-hedging is more advantageous than adaptive tracking when in environments with 

a high variance in seasonal temperatures and a short breeding season. Despite this effort, 

empirical, rather than computational evidence that animals use bet-hedging strategies, 

particularly with respect to behavior, is scarce. 

 

We present findings from empirical tests of the predictions made by the Kain et al. model to test 

the hypothesis that thermal preference in Drosophila melanogaster follows a bet-hedging 

strategy and that bet-hedging and adaptive tracking strategies are geographically determined.  

Measuring the thermal preferences of many individual flies collected wild from multiple 

geographic sites, we show that 1) patterns of mean thermal preference over the season support 

the existence of a bet-hedging strategy, 2) variability across locations doesn’t correlate with their 
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predicted bet-hedging advantage, and 3) heritability of thermal preference is inversely correlated 

with the predicted bet-hedging advantage of a location.   
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Results 

Individual thermal preference is idiosyncratic and persistent 

If individual variation in thermal preference behavior reflects an evolutionary bet-hedging 

strategy, individual preferences would represent stable phenotypes. As such, they would be 

quantifiable and stable over time. We created a two-choice preference assay to measure 

individual thermal preferences of many flies in parallel (Figure 2.1a). We measured an individual 

fly’s thermal preference as the average of time spent on the hot and cold sides of the assay 

(Figure 2.1b). We compared the observed distribution of thermal preferences within a wild-type 

line (isogenic animals raised in a temperature-controlled incubator) to a null distribution in which 

all flies have identical preferences and sampling error alone generates dispersion in the 

measurement of that distribution (null distribution was generated by bootstrap resampling of 

walking bouts). The observed distribution was significantly broader than the null distribution 

(Kolmogorov-Smirnov test, p = 9.1E-9 ; Figure 2.1c), indicating that thermal preferences are 

overdispersed, i.e., the flies exhibited individuality in thermal preference. We also observed 

significant positive correlation (Figure 2.1d; r = 0.50, p = 6.2E-5) in thermal preference 

measured on consecutive days, consistent with individual measured thermal preferences 

representing stable phenotypes.  

 

Life history modeling predicts that the adaptive value of bet-hedging varies geographically 

With this new, high-throughput method for measuring thermal preference, we sought to update 

a temperature-dependent life history model of fly development and mortality from Kain et al.30 

(Figure 2.1e). This model estimates the dynamics of populations implementing pure bet-hedging 

or adaptive tracking strategies, under specific climate conditions. We updated the model in two 

ways: 1) we updated the temperature-dependent life history equations with fits to new data 

collected from isofemale lines established using wild-caught females (Figure 2.1e) and 2) we 

implemented more realistic rules to convert individual thermal preference, in combination with 
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the range of temperatures available on a given day, to individual thermal experience (See 

Methods). With these improvements, we recalculated the predicted bet-hedging advantage 

(Figure 2.1f) across the continental U.S.A. and Puerto Rico using the 1981-2010 climate 

normals from 7112 weather stations (U.S. National Oceanic and Atmospheric Administration 

[NOAA]31). To make predictions at sites between weather stations, and take into account local 

dispersal of flies, we employed a Gaussian convolution on the station data with a standard 

deviation of 0.04 decimal degrees (equivalent to 3-4km depending on the latitude). We chose 

this value based on empirical data from a release and recapture study32 that found appreciable 

frequencies (~15%) of marked flies 3-6km from the release site.  

 

Bet-hedging advantage was calculated as the natural log of the final size of the bet-hedging 

population divided by the final size of the adaptive tracking population. Overall, the predictions 

of this updated model are in qualitative agreement with the original model: we predicted that 

bet-hedging advantage is higher in the north. In the eastern half of the U.S.A., we predicted a 

decline in bet-hedging advantage towards the south, while in the western half, bet-hedging 

advantage persisted in the southern latitudes. The most adaptive-tracking favored (least bet-

hedging favored) regions were in the south and south-east, along the Gulf Coast, Texas, 

Florida, and Puerto Rico. It is notable that within these regions, we still predicted heterogeneity 

in bet-hedging advantage, likely due to local microclimates.   
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Figure 2.1 - Individual thermal preference is persistent over time in isogenic and wild D. 
melanogaster populations.  
a)   Diagram of the automated two-choice assay used to measure individual thermal preference. b) 
Examples of position over time in the assay for extreme cold- and warm-preferring flies. Thermal 
preference is calculated as the proportion of trial time spent on the hot side of the tunnel. ºC metric is the 
average temperature experienced. c) Observed (blue) vs null distribution (gray) of thermal preference for 
an isogenic line. Null distribution is created by simulating single flies by randomly assembling bouts from 
the hot and cold sides to build a 4-hour experiment. Solid lines show the observed data kernel-density 
estimate or the mean kernel density estimate of 100 simulated null distributions. Shaded areas show +/- 2 
s.d. of kernel-density estimates of 100 bootstrap resamples of observed data (n=57) or 100 simulated null 
distributions. d) Persistence of thermal preference over 24hrs in an isogenic line (n = 57). Shaded area 
shows the 95% CI of a linear fit to the data. 
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Figure 2.1 (continued) - e) (top) Life history vs. temperature relationships used in the bet-hedging vs. 
adaptive tracking model. Error bars show the 95% confidence interval of the mean. (bottom) 
Temperature dependent life history model used to simulate fly population evolution: β, birth rate; δ, death 
rate; M, metamorphosis time; A, adult life span; T, thermal preference index. “Fly skull and crossbones” 
icons indicate death (adapted with permission from Kain et al.30). f) Map of bet-hedging advantage across 
the continental U.S.A. and Puerto Rico calculated using a Gaussian convolution on the predicted bet-
hedging advantage at 7112 weather stations (µ = 0.44, σ2 = 0.015 for all stations). Sampling locations are 
overlaid in black stars.  
 

Seasonal patterns in mean thermal preference are consistent with a bet-hedging strategy 

We hypothesized that seasonal patterns in mean thermal preference would reflect the bet-

hedging advantage of the particular locale, with locations where bet-hedging is predicted to be 

advantageous exhibiting a more constant mean preference (phenotypic variation in strictly bet-

hedging traits is not heritable). To test our hypothesis, we assayed wild-caught flies weekly over 

from late June to late October/early November in Cambridge, Massachusetts, U.S.A. (MA), 

Charlottesville, Virginia, U.S.A. (VA), and Coral Gables, Florida, U.S.A. (FL). Flies were 

captured in residential areas of Cambridge and Coral Gables and in an orchard on the outskirts 

of Charlottesville; assays were performed in a laboratory environment (Figure 2.2, Figure 2.3a).  

 

 

Figure 2.2 - Experimental timelines for seasonal collections across the three locations.  
Each timeline shows the process of collection and testing for flies collected from a particular week.  
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We chose these locations due to their differences in predicted bet-hedging advantage - 

Cambridge is predicted to be the most bet-hedging advantageous (BH advantage = 0.0042, 

corresponding to an annual growth advantage of 0.42% for a bet-hedging strategy), followed by 

Charlottesville (BH advantage = 0.0020 or annual growth advantage of 0.20% for a bet-hedging 

strategy), while Coral Gables is strongly favored for adaptive tracking (BH advantage = -0.54 or 

annual growth disadvantage of 58% for a bet-hedging strategy) (Figure 2.1f). To test whether 

the seasonal patterns in mean preference followed bet-hedging or adaptive tracking predictions, 

we plugged daily temperature data from 2018 into our model to generate site-and-year-specific 

predicted patterns in mean preference for a purely bet-hedging or a purely adaptive tracking 

population. We calculated a log-likelihood ratio to gauge whether the observed dynamics are 

more likely under a bet-hedging or an adaptive tracking strategy.   
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Figure 2.3 - Dynamics of mean thermal preference over the course of the fly breeding season 
reflect a bet-hedging strategy in both bet-hedging and adaptive tracking favored regions.  
a) General experimental timeline for the seasonal sampling - for further detail see Figure 2.2. b) (top) 
Flies were collected in residential neighborhoods near Harvard University, Cambridge, MA. Solid lines 
show the predicted mean thermal preference under bet-hedging (BH, red) and adaptive tracking (AT, 
blue) modeling predictions. To create these predictions, we used 2018 daily average temperatures31 from 
April to November and empirically determined µ = 0.45, σ2 = 0.016. The light gray points represent the 
thermal preference of individual flies caught, with the dark gray point and error representing the mean +/- 
1 S.E of that week’s collection. The heatmap at the bottom of the plot shows the temperature of each day 
in the breeding season. (bottom) Dashed line shows the log likelihood ratio (BH/AT) of the observed 
data, while the kernel-density estimate shows the log likelihood ratios calculated from 1000 bootstrap 
resamples of the observed data. c)  Flies collected in Carter Mountain Orchard, Charlottesville, VA. Top 
and bottom panels are the same as in (b) with the fly breeding season established to be from March until 
November and µ = 0.37, σ2 = 0.019. d) Flies collected in residential neighborhoods next to University of 
Miami, Coral Gables, FL. Top and bottom panels are the same as (b) with µ = 0.49, σ2 = 0.010.  
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We found that in Cambridge, MA, the log-likelihood ratio supported bet-hedging over adaptive 

tracking (log-likelihood ratio [LLR] = 14.43; Figure 2.3b). These findings were in line with our 

modeling predictions for Cambridge, MA being a bet-hedging favored locale. In Charlottesville, 

VA, the observed data were still more likely under a bet-hedging strategy, though the likelihood 

of a bet-hedging strategy was less strong than in Cambridge, MA (LLR = 1.56; Figure 2.3c). In 

agreement with the observed dynamics, Charlottesville was predicted by our model to be bet-

hedging favored, though less so than Cambridge. In Coral Gables, FL, the observed dynamics 

of mean thermal preference are much more likely under the bet-hedging than the adaptive 

tracking model (LLR = 132.90; Figure 2.3d). Our model predicts that flies in Coral Gables will 

exhibit adaptive tracking. However, we observed mean temperature preference dynamics that 

are more likely under a bet-hedging strategy. The predicted mean preference dynamics for 

Coral Gables show a clear selection for colder thermal preference, but this was not observed 

empirically. Interestingly, the model predicted a steep decline in total population during the 

hottest part of the summer - with the exception of a couple of weeks, we observed a sharp drop 

in the number of collected D. melanogaster during this time (Figure 2.4).   
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Figure 2.4 - Predicted population crash in Coral Gables, FL coincides with low numbers of caught 
D. melanogaster.  
a) Predicted population sizes under adaptive tracking (AT) and bet-hedging (BH) strategies for the entire 
2018 Coral Gables, FL breeding season. Gray area denotes the collection period. b) The number of 
collected D. melanogaster over the 20-week period from June to November 2018. The heatmaps at the 
bottom of the plots show the daily temperatures. 
 

We assessed the potential role of developmental temperature on the dynamics of  mean 

preference we observed. We reared offspring from a single isofemale line at 18ºC, 22ºC, and 

26ºC from egg to adulthood. We found that rearing temperature had a minimal and non-linear 

effect on the preference mean or variance (Figure 2.5), leading us to believe that plasticity in 

thermal preference is not a driving force for the patterns observed.  

 

Figure 2.5 - Plasticity in mean and standard deviation of thermal preference.  
a) Posterior estimates of mean temperature preference under three different rearing temperatures (18ºC: 
n=134; 22ºC: n=166; 26ºC: n=145). b) Posterior estimates of variability (s.d.) under three different rearing 
temperatures. 
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Variability in thermal preference differs among isofemale lines, but does not correlate with 

predicted bet-hedging advantage 

When comparing phenotypic variability within a single genotype, one might expect that a bet-

hedging genotype would show higher variability than an adaptive tracking genotype, as the 

adaptive tracking genotype may have been subject to purifying selection. Under adaptive 

tracking, deviations from the mean phenotype are maladaptive if a genotype is adapted to the 

current environment. Phenotypic diversity for a bet-hedging genotype is an essential part of the 

diversification strategy to avoid risk, and therefore would be maintained. Therefore, we 

hypothesized that variability in thermal preference would be higher in locales where the bet-

hedging strategy is predicted to be advantageous. We established isofemale lines from gravid 

females sampled from seven locations across the U.S.A. (three of which were used for the 

weekly seasonal sampling experiment). We measured variability of each isofemale line as the 

standard deviation in thermal preference (Figure 2.6a). Using Bayesian inference on a 

hierarchical model which treated isofemale lines as nested within their respective location 

(population), we estimated a posterior distribution for the variability in thermal preference for 

individual lines as well as for the overall sampling location (Figure 2.6b). Variability of a 

particular location shows no correlation (r = -0.04, p = 0.92) to the predicted bet-hedging 

advantage (Figure 2.6c). We did observe strong line-by-line differences in variability in the 

isofemale lines measured. We also found that the largest variability estimate was from 

Pennsylvania, U.S.A. (PA). Since we were not using isogenic lines for this analysis, we 

examined if there was a correlation between variability and genetic diversity, estimated as 

Watterson’s θs. We found no significant correlation between θs measured at the level of 

isofemale lines (r = 0.14, p = 0.55) and at the level of location (r = 0.027, p = 0.95) and the 

corresponding variability estimate (Figure 2.7a-c).  
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Figure 2.6 - Variability of thermal preference in geographically diverse isofemale lines does not 
show a relationship with the bet-hedging advantage of the geographic origin but does show line-
to-line differences.  
a) Experimental timeline for assessing variability. b) (top) Posterior distributions of thermal preference 
standard deviation for isofemale lines chosen from each sampling location (origin). Posterior distributions 
were generated using a Bayesian modeling approach that takes into account the nested nature of the 
dataset (lines come from a single origin) and “sampling error” (inflated variance measures that come from 
inactivity in the assay). (bottom) Posterior distributions of standard deviation for each sampling location 
(origin). Asterisks indicate where the 95% credible interval of the difference between locations does not 
include 0. c) Variability within a location vs. the bet-hedging advantage estimate for that location. Vertical 
error bars show +/- 2 standard deviations of the variability posterior distribution.  
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Figure 2.7 – Relationship of population genetic diversity compared with variability and heritability.  
a) Resampling estimate of θs within a location vs. the variability estimate for that location (n = 7; r = 0.027, 
p = 0.95). Vertical error bars show +/- 2 s.d. of the variability posterior distribution and horizontal error 
bars show +/- 2 s.d. of the bootstrap distribution of θs. b) Average PoPoolation estimate of θs/nt within a 
location vs. the variability estimate (r = 0.23, p = 0.62). c) θs within an isofemale line vs. the variability 
estimate of that line (n = 20; r = 0.14, p = 0.55). Vertical error bars show +/- 2 s.d. of the variability 
posterior distribution. d) Relationship between heritability (h2) and resampling estimate of θs (n=6; r = 
0.54, p = 0.27) Vertical error bars show the 95% confidence interval on the h2 estimate (regression slope) 
and horizontal error bars show +/- 2 s.d. of the bootstrap distribution of the θs estimate. e) Average 
PoPoolation estimate of θs/nt within a location vs. the h2 estimate (r = 0.90, p = 0.015). Removing the 
Coral Gables, FL data point diminished the positive correlation (r = 0.33, p = 0.59). 
 

Geographic variation in heritability of thermal preference is consistent with predicted bet-

hedging advantage 

An integral aspect of bet-hedging is that phenotypic variation does not arise due to genetic 

variation. Therefore, we hypothesized that heritability of thermal preference would be higher in 

those locations that are predicted to follow the adaptive tracking strategy. We used isofemale 

lines from six locations to perform midparent-offspring regression in order to measure the 

narrow-sense heritability (h2) (Figure 2.8a). We found that the highest heritability was in Coral 

Gables, FL (h2 = 0.50, 95%CI = [0.24, 0.75]; Figure 2.8b). Across all sites, h2 is inversely 

correlated with the predicted bet-hedging advantage of the geographic origin. Sites predicted to 

favor adaptive tracking have higher thermal preference heritability than sites predicted to favor 
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bet-hedging (r = -0.90, p = 0.011; Figure 2.8c). Removing the Coral Gables, FL data point still 

produced a negative correlation, though the magnitude was smaller and the correlation was no 

longer significant (r = -0.75, p = 0.14). There was no significant positive correlation of h2 with the 

θs estimate (r = 0.54, p = 0.27) calculated using our bootstrap resampling method (see 

Methods), but there was a significant positive correlation using the PoPoolation θs estimate (r = 

0.90, p = 0.015) (Figure 2.7d,e). The significance of the correlation between h2 and θs was 

highly influenced by the presence of the Coral Gables, FL data point (r = 0.33, p = 0.59 with FL 

data point removed).  

 

Figure 2.8 - Heritability (h2) of thermal preference varies with geographic origin and is correlated 
with the origin’s bet-hedging advantage.  
a) Experimental timeline for assessing heritability. b) h2, as measured by the slope of the midparent-
offspring regression, varies with geographic origin of the isofemale lines. Coral Gables, FL had the only 
slope that was significantly different from zero (p = 4.1E-4), though Charlottesville, VA was close to 
significant (p = 0.057). c) Correlation between h2  and predicted bet-hedging advantage of the location. 
Vertical error bars show the 95%CI on the heritability estimate (95%CI of the parent-offspring regression 
slope).   
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Discussion 

Bet-hedging, in which a single genotype produces a distribution of phenotypes to maintain 

fitness in the face of fluctuating selection, is a potential explanation of observed inter-individual 

phenotypic variability, including behavioral variability16,30. While this framework has strong 

theoretical foundations, empirical evidence, particularly in animals and with respect to 

behavioral phenotypes is lacking. The goal of our study was to help close this gap by examining 

whether thermal preference variability in Drosophila melanogaster reflects either a bet-hedging 

or adaptive-tracking strategy depending on regional climate. We found that dynamics of mean 

preference were consistent with bet-hedging, regardless of geographic prediction, variability 

varied by line, but not with geographic prediction, and that heritability of thermal preference 

varied geographically, in agreement with the predictions of the life history model. Overall, we 

find this to be strong empirical evidence that bet-hedging underlies thermal preference variability 

in Drosophila. 

 

More specifically, we observed persistent individual thermal preferences that do not depend on 

genetic or macro-environmental differences, showing that thermal preference is a potential bet-

hedging trait. Modeling the breeding seasons of purely bet-hedging and adaptive-tracking fly 

populations using local climate data across the U.S.A., we predicted the existence of regional 

differences in preferred strategy. We predicted that for most of the contiguous U.S., bet-hedging 

strategy has an advantage over adaptive tracking. Adaptive tracking was a favored strategy only 

in the deep south of the Gulf Coast (south-eastern U.S.A.), where mild temperatures allow for 

year-round breeding seasons, as well as slow and mild seasonal fluctuations that give time for 

populations to track the phenotypic optimum. We did not observe similar predictions in the 

south-west, a region also marked by warm weather, though with cooler average temperatures 

and/or higher temperature variance than in the Gulf Coast. These patterns supported our 
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previous findings that bet-hedging advantage depended on both average seasonal temperature 

and standard deviation30, with bet-hedging at a disadvantage in very warm and stable seasons.  

 

Given our predictions of regional differences in strategy, we collected wild flies both across 

different sites and seasons to test for the presence of a bet-hedging strategy using 1) dynamics 

of mean thermal preference, 2) variability in thermal preference, and 3) heritability of thermal 

preference. We found that heritability of thermal preference depended on the geographic 

population sampled. Low thermal preference heritability was observed in the populations 

collected from sites predicted to be favored for bet-hedging by the life history model, while high 

heritability was observed in the FL population that was collected from a site predicted to be 

highly favored for adaptive-tracking (Figure 2.8b,c). We found that temporal patterns in mean 

preference over a 20-week period for MA, VA, and FL sampling sites supported the bet-hedging 

strategy, which aligned with our life history model bet-hedging predictions for MA and VA, but 

not FL. In contrast, variability in thermal preference was not associated with predicted bet-

hedging advantage.  

 

In Coral Gables, FL, the finding that dynamics of mean preference supported the bet-hedging 

strategy was at odds with our estimate of high heritability in thermal preference, which supports 

an adaptive-tracking strategy (variation between individuals in a strictly bet-hedging trait is non-

genetic) (Figure 2.3d, Figure 2.8b). The predicted mean preference pattern under a purely 

adaptive-tracking strategy for Coral Gables was different than in Cambridge, MA and 

Charlottesville, VA, showing more extreme fluctuations and a shift of the mean preference to 

colder temperatures (Figure 2.3d). The year-round high temperatures in Coral Gables are the 

likely culprit, resulting in strong selection for cold thermal preference in our model under the 

adaptive tracking strategy. We had lower sampling success in FL, as compared to MA and VA, 

which remained low over the course of the collection period as the high daily temperatures 
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persisted (Figure 2.4). The observations of D. melanogaster abundance and the modeling 

predictions together suggest that the high temperatures could have led to a decrease in the 

available population through strong selection against warm-preferring flies. Since our traps were 

set outside, it is possible that we failed to capture a representative sample if the majority of the 

fly population (potentially consisting of cool-preferring flies) had migrated into human 

residences. This biased sampling could potentially lead to the appearance of a “bet-hedging” 

pattern in the Coral Gables fly population. As an alternative hypothesis, we note that Drosophila 

simulans repopulates the northern limits of its range via seasonal migration33. The existence of 

a corresponding seasonal migratory repopulation in D. melanogaster could also explain these 

sampling observations. 

 

Even though we found that there was little difference between sites in thermal preference 

variability, we observed a high level of heterogeneity in thermal preference variability across the 

isofemale lines. Differences in variability across lines is consistent with there being a genetic 

component to variability, previously noted in fruit fly turn bias behavior28. A genetic basis for 

variability may be indicative of a bet-hedging trait, as optimal levels of variability could be 

selected for19,21–24. Interestingly, we also observed that rearing temperature caused plasticity in 

the variability of an isofemale line (Figure 2.5). We previously found plasticity in variability of 

several locomotion and phototaxis behavior metrics when comparing flies that were raised in 

standard and enriched food vials34. Environmental plasticity in variability, in addition to a genetic 

contribution to variability, indicates that both genetics and environment could play a role in 

determining the degree of variability of behavioral traits.   

 

The lack of relationship between the estimated variability of a site and the predicted bet-hedging 

advantage suggests that the difference in optimal variability under bet-hedging and adaptive 

tracking may be low. Measuring variability on its own may not be diagnostic as to which 
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evolutionary strategy a population is employing. At a population-level, we observed consistency 

in the level of variability, with all but one population having a similar level of variability (s.d. 1.2-

1.4ºC). PA’s variability estimate was biased strongly upward by one isofemale line (Figure 2.6b), 

which was influential in a limited sample size. Since we identified differences in thermal 

preference heritability among our populations, we propose that the underlying differences 

between individuals may be primarily due to stochastic microenvironmental forces for 

populations with lower heritability and allelic variation for thermal preference in populations with 

higher heritability.  

 

When examining thermal preference heritability and variability, we were cognizant that genetic 

diversity could affect our estimates. We evaluated genome-wide levels of variation (Watterson’s 

θs) using individuals from isofemale lines with a custom bootstrapping approach in addition to 

PoPoolation software. For both methods of estimating θs, we did not see a strong relationship 

with variability, though we observed a stronger positive relationship with heritability (Figure 2.7). 

A positive relationship with heritability is likely due to both heritability and θs following the same 

geographical patterns, with higher heritability and θs in our sampled south-eastern populations 

(TX, FL) as opposed to the northern populations. Higher θs in southern latitudes has been found 

in previous studies35–37. Coral Gables, FL was an influential point in the relationship between θs 

and heritability, given that it was the only sampling site where we observed a strong heritability 

of thermal preference. We do not claim that there is a causal relationship between θs and 

heritability - we would guess that the relationship between them is likely mediated through 

geography.  

 

Overall, our investigations provide evidence for bet-hedging in thermal preference, showing 1) 

high levels of non-genetic individual differences within lines and a genetic basis for the degree 

of variability across lines, 2) seasonal mean preference patterns consistent with bet-hedging 
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predictions, and 3) low trait heritability. Strikingly, our heritability results also align with our 

modeling predictions of regional differences in adaptive-tracking vs. bet-hedging strategy 

advantage, with the adaptive-tracking favored region showing high heritability in thermal 

preference, but the bet-hedging favored regions showing low heritability. Our findings put 

behavioral individuality into an ecological and evolutionary context, showing that putative “noise” 

may reflect an adaptive strategy for dealing with risky environments.  
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Methods 

Fly husbandry 

Unless otherwise stated, all stocks and Isofemale lines were maintained at 22-23ºC and 45% 

relative humidity (RH) in temperature controlled incubators in 12L:12D conditions on a yeast, 

cornmeal, and dextrose media (23g yeast/L, 30g cornmeal/L, 110g dextrose/L, 6.4g agar/L, and 

0.12% Tegosept). 

 

Thermal preference assay 

A two-choice assay was created to assay thermal preference, where occupancy (time spent) 

was the metric of an individual’s thermal preference. The behavioral assay consisted of 20 

tunnels, with each half of the set of tunnels under independent temperature control. Peltier 

elements (Custom Thermoelectric 12711-5L31-09CQ) were wired in series and put under PID 

control by either a commercial (AccuThermo FTC100D) or a custom Arduino-based temperature 

controller to create one-half of an arena. Two Peltier sets under independent control were put 

across from each other to create a full arena. This design gave the ability to precisely control 

temperature, as well as to switch the orientations of the cold and hot sides. Unless otherwise 

stated, the setpoint for the cold side was kept at 20ºC and the set point for the hot side was kept 

at 28ºC. The set points were chosen to be within the fly’s innocuous temperature range, so as to 

avoid activating any noxious stimuli receptors38, as well as being amenable to an hours-long 

experiment where an excessively high temperature can lead to desiccation or an excessively 

low temperature can lead to cessation of movement.  

 

In order to measure an individual’s occupancy over time, single flies were placed into each 

tunnel and allowed to explore for 4 hours. Their positions were monitored and recorded under 

far infrared lighting (940nm) in an enclosed box using the beta version of the Massively 
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Automated Real-time GUI for Object-tracking software39 in MATLAB 2018a (Mathworks, Inc). 

Two behavioral arenas were simultaneously tracked by one camera, resulting in 40 flies 

assayed in a single camera box. Three boxes were set up to work in parallel to facilitate higher 

throughput.  

 

An initial thermal preference metric ranging from 0 to 1 was calculated for each individual at the 

end of the trial by measuring the proportion of time spent on the hot side over the total trial time. 

In order to correct for any bias induced by long periods of inactivity, pauses longer than 5 

minutes were filtered out from the tracks and the thermal preference was recalculated. Flies 

which had less than 1 hour total activity throughout the trial post-filtering were removed from 

further analysis. Since minor temperature differences were observed among the Peltier 

elements at the given setpoints, a tunnel temperature correction was applied to the 0-1 metric. 

The tunnel correction gives a thermal preference metric in ºC, which translates to the average of 

time spent at the cold and hot temperatures.  

 

Bet-hedging and adaptive tracking model 

Predictions for seasonal patterns in mean thermal preference and calculations of bet-hedging 

advantage were done using a modified modeling approach based on Kain et al.30 In brief, the 

approach in Kain et al. used a system of difference equations coupled to empirically determined 

relationships between temperature and development time/lifespan to model fly populations over 

a breeding season. Thermal preference within each generation of the modeled fly populations 

could be determined by one of two pure strategies: bet-hedging (no heritability in thermal 

preference, thermal preference of the new generation determined by sampling from a beta 

distribution) or adaptive tracking (heritability of 1, thermal preference of offspring is determined 

entirely by parents). The model also incorporated a birth rate (β) for the new generation and a 

death rate (δ) from random events unrelated to thermal experience. These were calibrated 
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under the adaptive tracking strategy using a hill-climbing algorithm to ensure that 1) the initial 

population size matched the final population size at the end of the breeding season and 2) the 

mean preference at the start of the season matched the mean preference at the end of the 

season. These constraints were chosen to ensure that the population is at equilibrium and not 

evolving across breeding seasons. Using climate normals, a breeding season was established 

to start when the temperatures exceed 6.5ºC and end when they drop below 10ºC. To apply 

these thresholds to daily temperature measurements, a two-month moving average window was 

used to smooth the daily fluctuations before applying the threshold.  

 

Two aspects of the original model were modified here: 1) determination of thermal experience 

given a thermal preference and the available environmental temperature range and 2) 

empirically determined relationships between temperature and development time/lifespan. 

Under the Kain et al. approach, thermal experience (!) of fly i on day j was calculated as: 

 

!(9, D) 	= =&6E% ∗ 7ºI ∗ J)%KLI%46&& 	+ M6'=& 

 

Where prefi is thermal preference of fly i (0-1 scale), 7ºC is a typical empirical difference 

between sun and shade temperatures, cloudCoverj is the fraction of cloud cover on day j, and 

tempj is the average in-shade temperature on day j30. This coding of thermal experience 

produces a 7ºC difference in thermal experience between flies at the thermal preference 

extremes, without consideration of flies avoiding noxiously hot and cold temperatures38 (Figure 

2.9d). Under our approach, thermal experience was coded as a piecewise function to avoid 

instances where flies with extreme thermal preferences would be experiencing noxious 

temperatures.  
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!(9, D) = (1 − () ∗ M6'=& 	+ 	( ∗ 9M6'=& 	+ 3.5ºI ∗ J)%KLI%46&&:: 
	M6'=' ≥ =&6E( 

!(9, D) = (1 − () ∗ 9M6'=& + 7ºI ∗ J)%KLI%46&&:+ 	( ∗ 9M6'=& 	+ 3.5ºI ∗ J)%KLI%46&&:: 
	M6'=' + 	7ºI ≤ =&6E( 

!(9, D) = (1 − () ∗ =&6E% 	+ 	( ∗ 9M6'=& 	+ 3.5ºI ∗ J)%KLI%46&&::	 
M6'=' < =&6E( < M6'=' + 7ºI 

 

Where tempj and cloudCoverj are as above, prefi is thermal preference of fly i in ºC, and a is a 

value between 0 and 1. Prefi ranges between 18ºC and 30ºC, the limits of the thermal 

preference assay in Kain et al. The new formula specifies that when the preference of fly i in ºC 

is between the in-shade and in-sun temperatures of day j, the fly’s thermal experience is a 

combination of the proportion of time spent at the thermal preference temperature, prefi  

(thermoregulation), and proportion of time spent at the average daily temperature, tempj + 3.5ºC 

x cloudCoverj (non-thermoregulated activities, such as predator avoidance or foraging). When 

the in-sun temperature for day j, tempj + 7ºC x cloudCoverj , is less than or equal to the fly’s 

thermal preference, the fly will spend the thermoregulation portion of the day at the in-sun 

temperature (maximum temperature it can achieve). When the in-shade temperature, tempj , is 

greater than or equal to the fly’s thermal preference, the fly will spend the thermoregulation 

portion of the day at the in-shade temperature (minimum temperature it can achieve). For a sun 

vs. shade temperature difference of 7ºC, an a of 0.4 was chosen, signifying that flies spend 60% 

of their day doing thermoregulated activities. An a of 0.4 was chosen so that the maximum 

standard deviation in thermal experience over the entire breeding season would be ~1.5ºC, the 

average measured standard deviation in the laboratory thermal assay (Figure 2.9, Figure 2.6b). 

The relative bet-hedging advantages calculated from the model are robust to different a values 

(Table 2.1).  
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Figure 2.9 - Relationships between thermal preference and thermal experience (!) in the original 
Kain et al. model and the updated model. 
Colored lines in a-b) and d-e) reflect individual flies with particular thermal preferences bounded by 18ºC 
and 30ºC (color scale). a) ! under an average Boston, MA breeding season in the Kain et al. model. b) ! 
under an average Boston, MA breeding season in the updated model. c) Standard deviation in ! over the 
Boston, MA breeding season for the updated model. d) ! under an average Miami, FL breeding season in 
the Kain et al. model. e) ! under an average Miami, FL breeding season in the updated model. f) 
Standard deviation in ! over the Miami, FL breeding season for the updated model.  
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Table 2.1 - Bet-hedging advantage under different a values. 
Bet-hedging advantage was calculated as log(BHfinal pop size/ATfinal pop size). Station-specific climate normals 
were used to calculate the bet-hedging advantage (µ = 0.44, σ2 = 0.015). A dash (-) signifies that for that 
combination of location and a value, β and δ parameters were not able to be calibrated and no estimate 
of bet-hedging advantage was calculated.  
 

Location (Station ID) a=0.7 a=0.5 a=0.4 a=0.3 a=0.2 

Berkeley, CA (USC00040693) 8.6E-4 2.6E-3 3.7E-3 5.3E-3 7.0E-3 

Boston, MA (USW00014739) 1.3E-3 2.9E-3 3.8E-3 4.7E-3 5.7E-3 

Philadelphia, PA (USW00013739) 3.4E-4 7.2E-4 9.1E-4 1.1E-3 1.3E-3 

Charlottesville, VA (USW00003759) 8.1E-4 1.6E-3 1.9E-3 2.4E-3 3.0E-3 

Pasadena, CA (USC00046719) 3.3E-4 6.5E-4 9.9E-4 1.1E-3 1.3E-3 

Houston, TX (USW00012918) 4.7E-3 5.4E-3 7.8E-3 - - 

Miami, FL (USC00085667) -0.17 -0.35 -0.45 -0.57 -0.68 

 

The relationships of development time and lifespan to temperature experience were updated 

based on data collected from three isofemale lines from Coral Gables, FL, Cambridge, MA, and 

Charlottesville, VA (Figure 2.10). For the relationship between development time and 

temperature, a quadratic fit on combined data from the three isofemale lines was used. For 

lifespan vs. temperature, a natural logarithm fit to the combined data was used. For fly i and on 

day j, development time and lifespan are determined by the following equations:  

 

L64W9'6(9, D) 	= 	0.1445 ∗ Z(9, D)" 	− 7.5636 ∗ Z(9, D) + 108.1585 
)9E6]=(:(9, D) 	= 	459.9 − 128.0 ∗ )%7(Z(9, D)) 

 

Where !(i, j) is the thermal experience of fly i on day j.  
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Figure 2.10 - Life history relationships used in the model.  
Life history data used in the Kain et al. model (black dashed lines) and updated model life history data 
using isofemale lines from three locations (colored lines). Error bars show the 95% confidence interval of 
the mean. 
 

Seasonal patterns of mean thermal preference 

Weekly collections were carried out from June 24, 2018 until November 1, 2018 in Cambridge, 

Massachusetts, U.S.A. (MA), Charlottesville, Virginia, U.S.A (VA), and Coral Gables, Florida, 

U.S.A. (FL). In VA, Drosophila were collected via aspiration from rotting fruit at Carter Mountain 

Orchard (37.99° N, 78.47° W). In MA and FL, traps were set out to capture Drosophila around 

the residential areas in the vicinity of Harvard University (42.38° N, 71.12° W) and University of 

Miami (25.72° N, 80.28° W).  

 

The MA and FL traps were created by cutting an approximately 2 inch flap into an empty one-

gallon plastic ethanol jug (Koptec, Decon Labs) and baiting them with a fruit and wine mixture. 

Flies were collected by placing an empty fly food bottle over the neck of the jug and allowing 

flies in the trap to move upwards into the bottle. Bait for a single trap was made by mixing two 

sliced bananas with ½ sliced orange and soaking them in 50mL of 8.5% alc/vol red wine 

overnight. Bait was added to the trap, sprinkled with yeast, and the trap was hung on a fence or 

railing 2-3 days prior to the start of the week’s collections. At the end of the week’s collections, 



 

 83 

the trap was removed and thoroughly washed to get rid of any bait/larvae/pupae that remained 

before fresh bait was put back in.  

 

Collected flies were taken back to the local lab and sorted by sex and species (see Figure 2.2 

for detailed experimental timeline for each location). For the thermal preference assay, D. 

melanogaster males and D. melanogaster/ D. simulans females were chosen (visual species 

identification of female melanogaster and simulans was too difficult to perform at a large-scale). 

The female flies were housed individually after the completion of the assay to allow for species 

identification to be performed on the male offspring. Females that did not produce an F1 

generation were species identified through sequencing of CoII gene (forward primer: 5' - 

ATGGCAGATTAGTxGCAATGG; reverse primer: 5' -GTTTAAGAGACCAGTACTTG).  

 

The chosen flies were assayed for thermal preference immediately after capture in MA during 

the entire sampling period. Due to mortality in the assay preventing species identification, VA 

and FL females were switched to testing 1-7 days post-collection to allow time for egg laying to 

occur. Caught flies were stored in vials with mixed-sex groups at 22-23ºC in ambient laboratory 

conditions. A mean thermal preference was determined from all the flies sampled on a particular 

week.  

 

Observed mean preferences over the 20 week sampling period were compared to predicted 

patterns given a purely bet-hedging population or a purely adaptive tracking population as 

specified in Kain et al.30 The predicted patterns were calculated using location-specific 2018 

daily average temperatures31 into a difference equations model simulating an infinite population 

reproducing over a breeding season with thermal preference determined by 1) a random draw 

from the observed distribution (bet-hedging) or 2) direct inheritance (adaptive tracking). The 

mean and variance parameters for the location-specific model run were empirically determined 
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using the assayed flies from each location. Birth (β) and death (δ) rates were calibrated for each 

population independently using daily average 2018 temperatures for Boston, MA and 

Charlottesville, VA and NOAA climate normals for Coral Gables, FL (due to failure of calibration 

on 2018 daily temperatures). To determine whether the bet-hedging model or adaptive tracking 

model fits the observed patterns, a log likelihood ratio was calculated on the observed data. 

1000 bootstrap resamples were done to determine the estimation error. The findings are robust 

to different a values, as well as different relationships between temperature and life history 

(Figure 2.11). 

 

Figure 2.11 - Robustness of log-likelihood ratios to a value and life history parameters.  
β and δ parameters for Boston, MA and Charlottesville, VA were calibrated using the 2018 historical 
temperature data. β and δ parameters for Coral Gables, FL were calibrated using climate normals, as it 
was not feasible to calibrate using the 2018 data. Dashed lines show the observed a) Log-likelihood ratio 
(bet-hedging vs. adaptive tracking) of observed seasonal patterns of thermal preference under different a 
values. b) Log likelihood ratios (bet-hedging vs. adaptive tracking) using a linear fit to the isofemale 
lifespan data and using the life history data from thel Kain et al. model (a = 0.4).  
 
 
Thermal preference variability of geographically diverse lines 

Wild gravid D. melanogaster females caught in Houston, Texas, U.S.A (TX) (29.76° N, 95.36° 

W) and Oakland, California, U.S.A (CA) (37.80° N, 122.27° W) in September 2018 and 
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Pasadena, California, U.S.A (CA) (34.15° N, 118.14° W) and Media, Pennsylvania, U.S.A (PA) 

(39.89° N, 75.41° W) in October 2018 were used to establish isofemale lines in order to extend 

our study to more locales that may vary in bet-hedging advantage. In addition, as part of the 

seasonal collection experiment, two gravid females per week from June to October 2018 in FL, 

MA, and VA were retained to establish isofemale lines. Isofemale lines were maintained with 

overlapping generations. Four isofemale lines from each location (with the exception of 

Berkeley, where there were three) were chosen for evaluation of thermal preference variability. 

Lines chosen from FL, MA, and VA were established from gravid females collected from the 

start of July to the end of August.  

 

200-250 mated female flies (aged 3-6 days) from FL, MA, TX, and VA isofemale lines were 

tested in two batches (two lines from each location per batch) in November and December 

2018. Northern CA (Oakland), Southern CA (Pasadena), and PA flies were tested in two 

batches in late January 2019 and April 2019. Two MA isofemale lines previously tested earlier 

were retested alongside these lines to control for batch effects on variability. Batch effects were 

calculated as the average difference in variability for the internal control lines between the 

November/December 2018 trials and the January 2019 or April 2019 trials. Batch effects were 

added to the variability estimates of the isofemale lines to remove the effect of the time of year 

on variability.  

 

Bayesian inference was used on a hierarchical model to estimate the mean and variance of 

thermal preference (in ºC) in each isofemale line and for each location. In the hierarchical 

model, isofemale lines were nested within sampling location, such that the prior on the line 

mean and variance was dependent on the hyper-prior for the location: 
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#)*+,-(*! ∼ $(0,1) 
$")*+,-(*! ∼ B(2, 0.1) 

 
#)(!. ∼ $(5)*+,-(*! ⋅ 	@)*+,-(*!, -/!"#$) 

$")(!. ∼ $(5)*+,-(*! 	 ⋅ -")*+,-(*!	, -0%!"#$) 
 

The likelihood was specified as follows: 

 

`(!	|	@)(!. , -) 	∼ $(5)(!. ⋅ @)(!. , -) 

$ = ;(51%23 ⋅ -21%23) + 	Ab5 
 

Where % is the vector of observed thermal preferences (ºC), ) is dummy-coded predictor matrix 

for either line or location categories, and <	is a vector of distance traveled (px) over the course 

of the experiment. $ depends on both the line variance ($"'%!() and a sampling error component 

(,<)) that depends on distance traveled during the experiment (rarely moving flies register 

fewer effective data points about their preference)40. , and = constants were calculated by 

fitting a power function to the relationship between variance and distance traveled for flies 

experiencing no temperature stimulus. This allows us to differentiate variance that is inherent to 

the line from variance that comes from sampling noise due to low activity in the assay.  

 

Bayesian inference was done using R's Stan interface v.2.18.2. The Stan platform does full 

Bayesian inference using a Hamiltonian Monte Carlo approach with the flexibility of custom 

model specification41. Posterior distributions for mean and variance for both lines and locations 

were generated by sampling using four chains - 25,000 iterations per chain, with target average 

proposal acceptance probability of 0.9, and maximum tree depth of 10. Every other sample from 

the chain was saved to the posterior distribution to reduce autocorrelation between the samples, 

thereby increasing the ratio of effective sample size to actual sample size and reducing 
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uncertainty in our estimate. To estimate variability, we used standard deviation, which was 

calculated by taking the square root of the variance at each step in the chain. Model fits were 

qualitatively evaluated using graphical posterior predictive checks, where mock data that was 

generated using values from the posterior distributions were compared to our observed data.  

 

To establish whether variability estimates between two locations were different from each other, 

we generated the posterior distribution of differences by subtracting variability estimates for one 

location from the other at each step in the chain. If the 95% credible interval for the distribution 

of differences did not include 0, the two locations were considered to be different from each 

other in terms of variability34,42.  

 

Heritability of thermal preference 

Narrow-sense heritability was calculated using parent-offspring regression. Males and females 

from 5 isofemale lines from the Southern CA, PA, and TX sampling locations were chosen for 

the parental generation. Males and females from 10 isofemale lines (original females collected 

between mid-August and late October) from FL, MA, and VA sampling locations were also 

chosen for the parental generation. Parents were collected, separated by sex to maintain 

virginity of females, and aged 3-6 days before testing for thermal preference. 10 crosses were 

made from the Southern CA, PA, and TX parents, and 20 crosses were made from the FL, MA, 

and VA parents (Figure 2.12). Each cross between two lines was replicated 2-3 times with 

independent sets of parents. Parent flies had to pass the activity thresholds for the thermal 

preference assay to be included in the crossing scheme.  
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Figure 2.12 - Cross scheme for heritability analysis.  
Gray squares indicate a cross between two lines and an “X” indicates the diagonal (no crosses were 
made along the diagonal).  
 

Male F1s from each cross were collected and aged 3-7 days prior to testing. For each cross, a 

minimum of four male F1s were tested, with 10 male F1s tested for 96% (221/230) of crosses. 

All crosses with fewer than three male F1s passing the thermal preference filtering threshold 

were excluded from further analysis. Narrow-sense heritability was estimated from the slope of 

the regression of F1 mean thermal preference on the mid-parent thermal preference.  

 

Plasticity in thermal preference 

Males and females (0-2 days old) were collected from a MA isofemale established in mid-

August and allowed to lay eggs for 48 hours at 26ºC (45% RH) and 22ºC (45% RH) and 96 

hours at 18ºC (50-55% RH). Female F1s were collected daily and aged 3-6 days with males (to 

ensure mated status) at the treatment temperature prior to testing for thermal preference. Mean 

and variability in thermal preference was estimated using Bayesian inference on R’s Stan 

interface, as mentioned above. The priors and likelihood function were as follows: 
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# ∼ $(0,1) 
$" ∼ B(2, 0.1) 

 

`(!	|	@, -) 	∼ $(5 ⋅ @, -) 

$ = ;(5 ⋅ -2)+ 	Ab5 
 
Where % is the vector of observed thermal preferences, ) is dummy-coded predictor matrix for 

the temperature treatments, and <	is a vector of distance traveled (px) over the course of the 

experiment. As for the variability experiments, $ is partitioned into the line variance ($") and a 

component (,<)) that denotes the variance due to sampling noise. 

 

Estimating genetic diversity in the sampled populations 

Genomic DNA from 4 female flies from each isofemale line tested in the heritability and 

variability assays was extracted using bead-beating and the ZYMO Quick-DNA kit (cat. no. 

D3012). DNA was made into libraries using a liquid handling robot (Analytic Gena CyBi-Felix 

Model 30-5015-100-24). Library preparation was done using a tagmentation protocol with Tn5 

transposase43,44. Genomic DNA from 273 individual flies was made into per-individual libraries. 

150bp paired-end reads were sequenced on an Illumina NovaSeq platform with mean 0.02x - 8x 

coverage per individual. Alignment of reads was done using the BWA-MEM algorithm (v0.7.15; 

default parameters)45 to the Drosophila melanogaster reference genome 6.28 release. PCR and 

optical duplicates were flagged using Picard’s MarkDuplicates (v2.20.6). HaplotypeCaller in 

GATK version 4.1.3.0 was used to call variants46. Given the low sequencing coverage, minimum 

pruning support and minimum dangling branch length were set to 1; all other parameters were 

kept at default values. Mean coverage depth and fraction of missing genotypes per individual 

was quantified using VCFtools47. Individuals with mean coverage depth less than 2x were 

excluded from further analysis, leaving a total of 246 individuals.  
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Variants were filtered for biallelic SNPs with a minor allele frequency > 5%. 15,080 SNPs 

(distributed across the genome) with called genotypes for all individuals were chosen. This set 

of SNPs was used to calculate Watterson’s θs in the downstream analysis. A genotype matrix of 

variants by individuals was created - the cells of the matrix contain whether a particular 

individual is homozygous for the reference or alternate allele or heterozygous. Since the number 

of individuals and number of lines in each population will influence the θs estimate, a 

subsampling approach was taken.  

 

The individuals were divided into subsets: those used in the heritability analysis and those used 

in the variability analysis. For each subset, the geographic population that had the fewest lines 

and individuals was chosen as the subsampling benchmark. To estimate θs in a population and 

its uncertainty, a bootstrapping approach was employed in addition to the subsampling. For 

each bootstrap iteration, a subsample was taken from the target population that had the same 

number of lines and the same number of individuals per line as the benchmark population (the 

same individual could be chosen more than once). For each variant, a homozygous individual 

would contribute either a reference or alternate allele, and a heterozygous individual would 

contribute a reference allele with a 50% probability. A variant was counted as segregating if 

individuals contributed both reference and alternate alleles. The number of segregating sites 

and Watterson’s theta (θs) were then calculated from the chosen individuals:  

 

!" =
#

∑ 1
&

#$%
&'%
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where # is the number of segregating sites and ' is the number of chromosomes (i.e. 

individuals). The final result was a metric of genetic diversity that could be compared across 

populations of different individual and line compositions (Figure 2.13).   

 

To calculate within-line genetic diversity, the same general approach as above for calculating θs 

was employed. Since there was a maximum of four individuals per line, a bootstrapping 

approach was not used. Instead, θs was calculated only for lines that had the full complement of 

four individuals (Figure 2.13).  

 

 

Figure 2.13 - Flowchart of the two approaches used to estimate Watterson’s θs. 
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As a complement to the bootstrapping approach, θs was also calculated using PoPoolation48 for 

both the heritability and variability flies. Using only the 246 individuals with mean coverage > 2x, 

the number of reads per individual was downsampled using SAMtools49 to match the individual 

with the lowest coverage in order to standardize coverage across individuals. As in the 

bootstrapping approach, populations with more isofemale lines were subsampled to match the 

population with the fewest isofemale lines prior to making the population pileup file. The pileup 

file was then filtered using the identify-genomic-indel-regions.pl and filter-pileup-by-gtf.pl 

functions to remove indels and the variants within 5bp of them. θs was calculated from the pileup 

file in 50kb non-overlapping windows using only SNPs with a minimum minor allele count of 2, 

minimum site coverage of 4, maximum site coverage of 400, and reads with a minimum quality 

score of 20. 60% of the 50kb window had to have coverage between 4 and 400 for θs to be 

calculated. To get a single population θs, the mean of θs across all 50kb windows for 

chromosomes 2L, 2R, 3L, 3R, X, and 4 was taken (Figure 2.13). The θs from the PoPoolation 

analysis is reported as θs/nt to distinguish it from our bootstrapping approach.   
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 Chapter III - Genetic basis of offspring number and body 

weight in Drosophila melanogaster 
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Shraddha Lall carried out the functional validation tests for the candidate genes. In addition to 

the experimental work, I designed the experiments and analyzed the data. I also would like to 

thank Rob Unckless and Alan O. Bergland for sharing raw data on DGRP phenotypes.  
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Abstract 

Drosophila melanogaster egg production, a proxy for fecundity, has been an extensively studied 

life history trait with a strong genetic basis. As eggs develop into larva and adult offspring, space 

and resource constraints can put pressure on the developing offspring, leading to a decrease in 

viability, body size, and lifespan. We were interested in testing for and mapping the genetic 

basis of offspring number and weight using the restrictions of a standard laboratory vial.  

We screened 143 lines from the Drosophila Genetic Reference Panel for offspring numbers and 

weights to create an ‘offspring index’ that captured the number vs. weight trade-off. We found 

30 associated variants in 18 genes - validation of hid, Sox21b, CG8312, and mub candidate 

genes using gene disruption mutants showed them to be important in adult stage viability, while 

mutations in Ih and Rbp increased offspring number and increased weight, respectively. The 

polygenic basis of offspring number and weight with many variants of small effect, as well as the 

involvement of genes with varied functional roles, support an omnigenic model for this life 

history trait.  
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Introduction 

Life history traits, such as fecundity, lifespan, and body size, are major contributors to fitness. In 

Drosophila melanogaster, the genetics, plasticity, and evolution of life history traits have been 

extensively studied1. Drosophila fecundity, measured through egg-laying behavior, was 

previously shown to have a strong genetic component that is different between young and old 

flies2–5, but to also be influenced by temperature and nutrition6,7. In support of a resource 

allocation model of life history, fecundity has also been shown to trade-off with longevity5,8, 

showing that investment into the next generation comes at a cost to somatic maintenance via 

maintained energy reserves. A genome-wide association study revealed that age-specific 

fecundity is associated with variants present across a large set of candidate genes, enriched for 

genes involved in development, morphogenesis, neural function, and cell signaling4. Connecting 

fecundity with neural function, QTL and deficiency mapping revealed that expression of a Drip 

aquaporin in corazonin neurons was positively correlated with fecundity by modulating the 

neurohormone balance between corazonin and dopamine9.  

 

While the vast majority of Drosophila studies have focused on using egg production as a 

measure of fecundity, the number of eggs laid may not translate perfectly to viable offspring due 

to potential mortality at the larval stages. Under both natural and laboratory conditions, larvae 

must contend with a finite space and resource limitations given the constraints of either the 

rotting food substrate10,11 or the laboratory food and competition between larvae. Increased 

larval density decreases egg-to-adult viability12–14, body size13,15–18 and longevity19, while 

increasing development time13,14,16,18 and lowering starvation resistance15. Highly fecund flies 

that lay a large number of eggs may end up negatively affecting the larval and adult stages of 

their offspring due to the increased density. On the other end of the spectrum, flies producing 

fewer eggs may have large offspring capable of weathering stress20,21, but at a decrease to their 
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competitive ability with more fecund individuals. Therefore, imposed space and resource 

limitation may impose a trade-off between the number of and investment into offspring.  

 

Given the fitness ideal of having a large number of high-quality offspring, we were interested in 

whether, downstream of egg production, there was a genetic basis for adult offspring number 

and their quality under resource limitation. We used the standard laboratory food vial to impose 

both a space and food limitation on the developing offspring. As a measure of quality, we 

measured the wet weight of the eclosing offspring - increased body weight is correlated with 

increased starvation resistance21, increased nutrient stores, and increased immunity22, which 

indicate an investment in somatic maintenance. We scored lines from the Drosophila Genetic 

Reference Panel (DGRP)23 for numbers of adult offspring and their weight. We found candidate 

genes with variants significantly associated with a combined metric of offspring number and 

weight - disruption of these genes in most cases caused lethality or impaired survival at the 

adult stage, but in other cases shifted the balance between offspring weight and number.   
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Results 

Genome-wide association mapping for offspring index  

We collected four fecundity and body weight phenotypes from 143 DGRP lines: total number of 

female progeny, total number of male progeny, and their respective mean weights (in mg). We 

found inter-line differences for all four phenotypes measured (Figure 3.1a), as well as strong 

correlations between the phenotypes (Figure 3.1b). The estimated broad-sense heritability of 

mean female weight (0.639, 95%HPDI: 0.553 - 0.722) was lower than for mean male weight 

(0.725, 95%HPDI: 0.650 - 0.796). Both weight phenotype heritabilities were higher than 

heritabilities previously estimated for body weight21,24. The heritabilities of the total number of 

female progeny (0.465, 95% HPDI: 0.369 - 0.567) and male progeny (0.484, 95%HPDI: 0.390 - 

0.584) were higher than the heritabilities previously estimated on number of eggs laid4 (Table 

3.1). 

 

 
 
Figure 3.1 - DGRP lines show variation in offspring number and weight.  
a) Plot of phenotypes measured (+/- 1 s.e.) with the DGRP lines sorted ascending order for each 
phenotype (3 replicates/line). b) Correlation matrix of the phenotypes measured. 
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Table 3.1 - Heritability estimates for the means of the four phenotypes.  
HPD = highest posterior density.  
 

Phenotype Heritability Estimate 95% HPD Interval 

Mean ♀ Weight 0.639 0.553 - 0.722 

Mean ♂ Weight 0.725 0.650 - 0.796 

Number of ♀ 0.465 0.369 - 0.567 

Number of ♂ 0.484 0.390 - 0.584 

 

As we predicted based on resource limitation, we found that the number of offspring was 

negatively correlated with the offspring weight (Figure 3.1b). The strong correlations between 

the offspring number and weight phenotypes measured allowed us to use the first principal 

component to combine the four measurements into a single metric, which we termed the 

offspring index. The first principal component explained 71% of the variance and is negatively 

loaded for offspring number and positively loaded for offspring weight (Table 3.2).  

 

Table 3.2 - Variance proportion explained by each principal component and their loadings. 

 PC1 PC2 PC3 PC4 

St. dev 1.686 0.965 0.385  0.282 

Variance prop. 0.711 0.233 0.037 0.020 

Number of ♀ -0.505 0.501 -0.185 0.678 

Number of ♂ -0.510 0.483 0.211 -0.680 

Mean ♀ Weight 0.497 0.494   0.688 0.192 

Mean ♂ Weight 0.488 0.521  -0.670 -0.205 

 

A negative index value indicated many low-weight offspring, a positive index value indicated few 

high-weight offspring, and an index value close to zero indicated a balance between offspring 

number and weight. We used this phenotype for the genome-wide association study. Thirty 

variants were associated with the offspring index using a threshold of p < 1E-5 (Table 3.3). 12 of 
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the significant variants were located on the third chromosome, while 16 were located on the 

second chromosome and only 2 on the X chromosome. 23 of 30 of the variants were within 

1,000 bp of a gene, of which about half (14/23) were located in introns. Five of the associated 

variants are present in genes that were previously associated with fecundity4. Among the 

candidate genes, we did not find significant enrichment for particular biological processes or 

molecular functions using PANTHER’s Overrepresentation Test with the GO-Slim annotation 

sets25. The quantile-quantile plot shows no systematic bias and a slight enrichment for p < 1E-5 

(Figure 3.2a). The linkage disequilibrium plot reveals no long-distance linkage between variants 

(Figure 3.2b).  

 

 
Figure 3.2 – QQ plot and linkage disequilibrium of associated variants.  
a) Quantile-quantile plot comparing observed and expected p-values, with the red line showing a 1:1 
relationship. b) Linkage disequilibrium heat map for all the variants identified (p < 1E-4).   
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Table 3.3 - Variants significantly associated with the offspring index (p < 1E-5). 
Chromosome coordinates represented in dm5 assembly coordinates. MAF is minor allele frequency, Del 
is deletion, and numbers in parentheses represent the number of basepairs to the closest gene. Genes in 
bold were previously identified to contain variants associated with age-specific fecundity4.  
 

Chr Pos MAF Effect p-value Gene Class 

3L 18174169 0.492 0.697 3.43E-07 hid Intron 

2L 10356660 0.101 -1.112 7.65E-07 CG5367 Upstream (63bp) 

3L 14106797 0.456 -0.597 9.20E-07 Sox21b Del (12bp - Intron) 

3R 5440058 0.102 -1.075 1.01E-06 CG8312 Intron 

3R 5437737 0.090 -1.099 1.02E-06 CG8312 Intron 

3R 11212396 0.066 -1.260 1.40E-06 Rbp Intron 

3R 10285026 0.052 -1.473 2.01E-06 cv-c Intron 

3R 2150285 0.123 -0.980 2.74E-06 Osi17 Intron 

2R 19814320 0.130 -0.907 3.01E-06 CG2812 3' UTR 

2L 22137883 0.347 -0.700 3.15E-06 CG42748 Intron 

2R 8813359 0.291 0.703 3.85E-06 sug Intron 

2R 10191983 0.058 -1.326 3.96E-06 — — 

2R 16280567 0.346 -0.597 4.09E-06 — — 

2R 10186017 0.130 -0.935 4.23E-06 Ih 3' UTR 

X 16619471 0.338 0.652 4.33E-06 CG32572 Intron 

2R 18428402 0.050 -1.392 4.90E-06 px Synonymous 

2R 16643265 0.157 -0.823 5.56E-06 — — 

3L 21865887 0.121 -0.932 5.86E-06 mub Intron 

2R 10185377 0.058 -1.333 5.90E-06 Ih Intron 

2L 14413190 0.050 -1.315 6.21E-06 — — 

2L 14413193 0.057 -1.251 6.23E-06 — — 

3L 16206105 0.159 -0.843 6.38E-06 CG13073 Downstream(46bp) 

2R 10354544 0.050 -1.438 6.87E-06 — — 

3L 16206075 0.154 -0.851 7.11E-06 CG13073 Downstream(76bp) 

X 16619495 0.333 0.642 7.36E-06 CG32572 Intron 

3R 6652348 0.210 -0.682 7.91E-06 Cad86C Upstream(453bp) 

2L 19610094 0.072 -1.142 8.28E-06 Lar Intron 

2R 10185828 0.079 -1.101 8.30E-06 Ih Intron 

2L 14413263 0.051 -1.358 9.60E-06 — — 

3R 14116444 0.346 0.650 9.93E-06 l(3)05822 Synonymous 
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Fecundity differences are stable under different parental densities 

We assessed whether differences among DGRP lines in the offspring index would persist under 

different parental densities. We chose six lines from our screen that were representative of 

negative offspring index (many low-weight offspring), zero offspring index, and positive offspring 

index (few high-weight offspring) to assay for offspring phenotypes at different densities of 

parents (Figure 3.3). We find that parental density is a significant predictor of offspring number 

(females: p = 1.43E-7, males: p = 3.14E-6) and offspring weight (females: p = 2.42E-11, males: 

p = 2.35E-11). As expected, increasing parental density increased offspring number and 

decreased offspring weight, though the effects diminished with increasing density for most lines. 

Accounting for the effect of density, we see that the DGRP line still has a significant impact on 

offspring number (females: p = 2.58E-5, males: p = 1.84E-5) and offspring weight (females: p = 

8.57E-8, males: p = 2.48E-7). DGRP lines with positive index (RAL 812: +3.58; RAL 894: +3.79) 

maintained a low offspring number and high offspring weight under different densities. RAL 237, 

a DGRP line with a negative index (-2.87), had consistently high offspring numbers and low 

offspring weights. Surprisingly, RAL 176, a DGRP line with a negative index (-3.18) in our 

screen had fewer high-weight offspring compared to RAL 49, a line with an index close to zero 

(-0.04). We also could not detect significant line-by-density interactions on the phenotypes 

measured (female number: p = 0.663, female weight: p = 0.857, male number: p = 0.572, male 

weight: p = 0.540).  
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Figure 3.3 - Independent effects of parental density and line on offspring number and weight.  
a) Relationship between number of offspring and the density of parents. Each point represents the mean 
phenotype for a line at a particular density and errors bars show +/- 1 s.e. (n=2-7). b) Relationship 
between mean offspring weight and density of parents.  
 

Functional validation of associated variants shows  

We chose six candidate genes to validate for involvement with our fecundity phenotype - hid, 

Sox21b, Rbp, CG8312, mub, and Ih. Genes for validation were chosen based on having a 

variant with a high association with our offspring index, presence of multiple associated variants, 

and availability of mutant lines. We used mutant lines from the Exelixis gene disruption panel 

with a piggyBac construct in the gene of interest to validate our candidate genes. For four of the 

six candidate genes (hid, Sox21b, CG8312, and mub), we found that the available insertions 

severely impacted pupal and adult viability, to the point where we were unable to generate a 
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stable homozygous line to use in our validation experiments (Table 3.4). With the remaining 

genes, Rbp and Ih, we found opposite effects on the offspring index, with the Ih insertion 

strongly decreasing the offspring index, while the Rbp insertion slightly increased it (Figure 

3.4a). Breaking it down to individual phenotypes (Figure 3.4b), we see that the Ih insertion 

significantly increases the number of offspring (reflected also in the strong mean weight 

decrease). Disrupting Rbp did not have a statistically significant impact on the number of 

offspring, but there was a small, but statistically significant increase, in offspring weight. Both Ih 

and Rbp play a role in nervous system function. Ih encodes a voltage-gated potassium channel 

and Ih mutants show defects in locomotion, proboscis extension, circadian rhythm, and 

lifespan26,27. Rbp encodes a protein involved in the organization of the presynaptic active zone 

and is instrumental in proper vesicle release28 - mutations in Rbp can result in neurological and 

locomotor defects, and in some cases, lethality.  

 

For genes where we had multiple mutant lines, we could qualitatively compare the effect of 

insertion site on the fecundity phenotypes. We find that for Ih, Ihe01599 was a viable line with 

increased fecundity, while Ihf01485 has impaired adult viability (Table 3.4). While both insertions 

are in introns, Ih transcription has been shown to be disrupted in Ihf01485, but not in Ihe01599 29. 

The effect of the insertion on the final protein function of Ihe01599 is unknown, but RT-PCR shows 

that intronic insertion in Ihf01485 results in a null mutation29.  
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Figure 3.4 - Candidate gene validation using PBac{RB}Ihe01599 (n=10) and PBac{WH}Rbpf07217 (n=7), 
compared to their genetic background control, w1118.  
a) Impact of gene disruption on offspring index. b) Impact of gene disruption on individual phenotypes. 
The dark gray points and bars show the mean +/- 1 s.e., while the lighter gray points are replicates. 
Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. P-values were calculated using Dunnett’s test 
with a family-wise confidence level of 95%.  
 
 
Table 3.4 - Mutant genotypes used in candidate gene validation and their fecundity phenotypes 
and gene functions. 
Gene function information was retrieved from FlyBase30. Number of + or - is a qualitative representation 
of how much the measured phenotype increased or decreased as compared to the control genetic 
background line (only statistically significant differences are shown).  
 

Genotype Pupa? Adult 
survival? 

Fecundity phenotype Gene function 

PBac{PB}hidc01591 yes no — BIR domain binding protein; 
apoptosis regulator 

PBac{WH}Sox21bf06429 yes low — transcription factor; 
transcription regulation and 
development 

PBac{WH}Rbpf07217 yes yes + offspring weight RIM-binding protein; 
presynaptic active zone 
organization 

PBac{RB}CG8312e01204 yes low — transcription regulation 

PBac{WH}CG8312f02825 yes no — transcription regulation 

PBac{WH}mubf02647 no — — regulation of RNA splicing 

PBac{WH}Ihf01485 yes low — voltage-gated K+ channel;  

PBac{RB}Ihe01599 yes yes +++ offspring number 
- - - offspring weight  

voltage-gated K+ channel 
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Correlations among candidate gene expression and traits 

We examined whether the expression levels of candidate genes used in the validation were 

correlated. Five of the six candidate genes were used - CG8312 did not have available 

expression data. Using female expression data, we identified that Ih expression was positively 

correlated with hid expression and Rbp expression, following a multiple test correction (Ih-hid: r 

= 0.247, p = 2.5E-3; Ih-Rbp: r = 0.238, p = 3.1E-3) (Figure 3.5a). Using the male expression 

data and a multiple test correction, we find that mub is positively correlated with hid, Rbp, and Ih 

and negatively correlated with Sox21b (Figure 3.5b). We wanted to see whether the number of 

significant correlations we observed was higher than what you would get with random chance. 

To this end, we sampled five random genes from the expressed data and calculated how many 

significant correlations we would observe post-correction. We find that for both male and female 

expression, we have not enriched for a highly-correlated cluster of genes within our validation 

set (Figure 3.5c,d). Using the same approach on 17 of the candidate genes, we find a similar 

pattern (Figure 3.6).  
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Figure 3.5 - Correlation of expression among candidate genes used in the validation experiment.  
a) DGRP female expression data. b) DGRP male expression data. Kernel density plot of number of 
significant correlations of expression of 5 randomly chosen genes (1000 samples) from c) female 
expression data and d) male expression data. Red line shows our observed number of significant 
correlations. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. P-values shown are corrected for 
multiple tests using the Benjamini-Hochberg method. 
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Figure 3.6 - Kernel density plots of the number of significant correlations of expression of 17 
randomly chosen genes (1000 samples) from a) female expression data and b) male expression 
data.  
Red line shows our observed number of significant correlations among 17 candidate genes examined. P-
values were corrected for multiple tests using the Benjamini-Hochberg method prior to determining 
significance. 
 

We also examined whether expression of the candidate genes was significantly correlated to 

the phenotypes measured in this study. We did not find evidence of strong correlations between 

the gene expression of our candidate genes and the phenotypes measured (Figure 3.7). 

 

 
 

Figure 3.7 - Correlation of expression of candidate genes used in the validation experiment to 
phenotypes measured (pc = offspring index).  
a) DGRP female expression data. b) DGRP male expression data. P-values shown are corrected using 
the Benjamini-Hochberg method. 
 



 

 112 

We also measured correlations between traits measured in this study and traits measured in 

other DGRP studies. We looked at the following phenotypes: starvation resistance23, chill coma 

recovery time23, food intake31, fecundity and body size4, nutritional indices and weight22, and 

developmental time and egg-to-adult viability under different densities14. Using a less stringent 

within-study multiple testing correction, we find that offspring weight measured in our study was 

significantly correlated with body size and mean weight measurements made in previous DGRP 

studies (Table 3.5). There was no correlation found between our measurements of total progeny 

number and fecundity measurements (p > 0.1 for all comparisons). In addition, there was no 

correlation found between progeny weight and food intake (p > 0.1 for all comparisons). We 

found significant positive correlations between female starvation resistance and female (r = 

0.184, p = 0.028) and male (r = 0.168, p = 0.046) weight measured in our study, but the 

correlations did not remain significant after a multiple testing correction. In addition, we found 

that male and female development time under a high larval density treatment (measured in 31 

DGRP lines) was negatively correlated with the number of offspring, but positively correlated 

with offspring weight. Egg-to-adult viability under high larval density treatment was positively 

correlated with offspring number and negatively correlated with offspring weight. Though we 

observed a trend in the relationships, only a few correlations were significant, and none 

remained significant after multiple testing correction (p > 0.1 for all correlations).   
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Table 3.5 - Correlations of phenotypes measured in our study (phenotype) with traits measured in 
previous DGRP studies (phenotype (ref)).  
Only correlations that remained significant post-multiple testing correction are presented. The symbols 
are as follows: “-y” denotes a low yeast diet, “+y” denotes a high yeast diet, “+” denotes a high glucose 
diet, “-”  denotes a low glucose diet, and “cb” = overall effect when glucose diets are combined. P-values 
are corrected for multiple tests (within each study) using the Benjamini-Hochberg method. 
 

Phenotype Phenotype (ref) r p-value Reference 

mean weight(♂) body size(-y) 0.264 1.03E-2 Durham et al., 20144 

mean weight(♂) body size(+y) 0.277 1.03E-2 Durham et al., 20144 

mean weight(♀) mean weight(♂-) 0.409 1.38E-4 Unckless et al., 201522 

mean weight(♂) mean weight(♂-) 0.387 2.74E-4 Unckless et al., 201522 

mean weight(♀) mean weight(♂+) 0.442 5.49E-5 Unckless et al., 201522 

mean weight(♂) mean weight(♂+) 0.412 1.38E-4 Unckless et al., 201522 

mean weight(♀) mean weight(♂cb)  0.459 2.54E-5 Unckless et al., 201522 

mean weight(♂) mean weight(♂cb)  0.430 5.49E-5 Unckless et al., 201522 
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Discussion 

We investigated whether there was a genetic basis for adult offspring number and weight under 

space and resource limitation. We found that DGRP lines varied in the number of offspring 

produced and their mean weight, with the number negatively correlated with weight. Using a 

single “offspring index” derived from the first principal component of our offspring phenotypes, 

we found variants associated with variation in the offspring index among the lines i.e. variation 

from many low-weight offspring to few high-weight offspring. We examined the effects of gene 

disruption on six candidate genes and found that for all tested alleles of hid, Sox21b, CG8312, 

and mub, as well as one insertion allele of Ih, gene disruption caused phenotypes ranging from 

pupal lethality to low adult survival. Disruption of Rbp caused a small increase in offspring 

weight and an insertion allele of Ih caused a large increase in offspring number coupled with a 

decrease in offspring weight. While we did find significant correlations in gene expression 

between the candidate genes, the number of significant correlations did not exceed what could 

be found by random chance. When comparing our measured phenotypes to life history 

phenotypes measured in other DGRP studies, we found consistency in our body weight 

measurements and other measurements of weight and body size, but surprisingly, we did not 

find a relationship between offspring number and fecundity.  

 

We found that, similar to fecundity4, there is a polygenic basis to offspring number and weight. 

While a few of the candidate genes we found were previously associated with fecundity4, most 

were novel. Along with the polygenic nature of the traits, we were not able to find significant 

enrichment of genes involved in particular biological processes or molecular functions, though 

given our limited sample size of genes, only a very strong enrichment would have been able to 

pass the significance threshold. Even though only two of the six of the candidate genes tested in 

our validation experiments had roles in developmental processes, we found that gene disruption 

was severe enough to the survival of the pupal or adult stages in most cases to prevent us from 
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carrying out the validation experiments. These results indicate that offspring viability may be 

strongly dependent on the proper functioning of a varied suite of genes, such that even a 

disruption to a single gene is enough to completely impair successful development of the next 

generation.  

 

We hypothesize that an omnigenic model32,33 could explain the varied suite of genes associated 

with offspring number and weight phenotypes. One of the predictions of the omnigenic model is 

that all genes expressed at the appropriate developmental point and/or in a particular tissue 

contribute to the trait, leading to many loci that are weakly associated with the trait of interest. 

The omnigenic model also predicts that there should be a network of genes whose action is 

essential. Interestingly, even though we observe that disruptions to our candidate genes lead to 

strong effects, we do not find an enrichment for correlated expression among them. We were 

also unable to find enrichment for particular biological pathways or molecular processes among 

our candidate genes. Since we were unable to identify network relationships between our 

candidate genes, our results do not seem to explicitly support an omnigenic model, but perhaps 

reflect what was proposed in Fisher’s “infinitesimal model”34, where at its limits, a quantitative 

trait is made up of infinitely small contributions of infinitely many genes.  

 

We find that mutations in Rbp and Ih caused opposite phenotypes. Mutations in Ih increased the 

offspring number, and given the constraints of the vial, decreased offspring weight. Ih has not 

been previously implicated in fecundity phenotypes - while that does not preclude that Ih 

mutants may have laid more eggs, our results could indicate that there was a higher egg-to-

adult viability that led to the increase in offspring number and increased larval competition. 

Disruption of Rbp only increased weight without significantly affecting offspring number. A small 

effect on offspring number could have been obscured by limited sample size, but our results 

would still indicate that the weight increase was more prominent than the decrease in offspring 
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number. A decoupling of weight from offspring number shows that there is an independent axis 

where offspring weight can increase even though the level of larval competition and other 

density effects remain the same. This notion is supported by the second principal component of 

our dataset which is positively loaded for both weight and offspring number, indicating that a 

trade-off between the two is not mandatory (Table 3.2).  

 

We note that even within the same gene, different disruptions can lead to different phenotypes. 

Both the Ihe01599 and Ihf01485 alleles are intronic insertions that affect most transcripts, but Ihf01485 

shows impaired viability, while Ihe01599 shows an increase in offspring number. The Ihf01485 allele 

was shown to abolish transcription of all Ih transcripts29, but the Ihe01599 allele appeared to still 

have wild-type levels of expression29. Based on the insertion position, the Ihe01599 allele would 

affect eight of the eleven Ih transcripts - the phenotype difference between the alleles could 

depend on specific transcripts, though this is speculative. These results highlight a general 

caveat about using gene disruption lines to make conclusions about the exact role of the gene 

in determining the phenotype, rather than a general conclusion about whether or not the gene 

plays a role at all.  

 

When comparing our measured phenotypes with phenotypes measured in other DGRP studies, 

we found that there was correspondence between our weight metrics and body weight/size 

metrics from other studies, affirming that differences between DGRP lines remain consistent 

across different study environments. We did not, however, see a relationship between the 

number of offspring and fecundity measures - this is unexpected, as one would expect that the 

number of eggs laid should correspond to the number of offspring. A possible explanation for 

the lack of correlation could be due fecundity being assayed in individual females4, whereas we 

housed females in groups of 10 for our assay. Number of eggs laid per female was shown to 

decrease in more crowded conditions12,35, and with the presence of differential genotype 
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effects35, could lead to the lack of correlation observed. We also observe that, within 31 DGRP 

lines, more offspring is correlated with a lower developmental time and higher egg-to-adult 

viability under a high-density treatment. Though these correlations were not significant under 

the limited sample size of lines, it does indicate that lines producing more offspring may have 

adapted to do well under high-density conditions14,18.  

 

Overall, our results point to a polygenic basis for offspring number and weight, with validation of 

the candidate genes implicating an array of biological processes in controlling adult stage 

viability. Combining our results with results from studies on other Drosophila life-history traits, 

we find support for the idea that traits closely related to fitness may be directly and/or indirectly 

affected by a large set of genes, perhaps ultimately encompassing the vast majority of 

functional genes.  
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Methods 

Drosophila stocks and husbandry 

We analyzed 143 lines from the Drosophila Genetic Reference Panel23. All stocks were 

maintained at 23ºC, 12L:12D cycle and reared on a yeast, cornmeal, and dextrose media (23g 

yeast/L, 30g cornmeal/L, 110g dextrose/L, 6.4g agar/L, and 0.12% Tegosept). Experiments 

were carried out in polystyrene narrow culture vials (25 x 95 mm, #32-109, Genesee Scientific). 

Mutant lines for validation were obtained from the Exelixis collection at Harvard Medical School 

(Boston, MA)36 The w1118 (#6326) genetic background was obtained from the Bloomington 

Drosophila Stock Center (BDSC) as a control for the candidate gene validation mutant lines.  

 

Phenotypic measurements of DGRP lines 

Bottles were seeded with 15 females and 15 males at 12L:12D to generate the parent flies that 

would go on to lay eggs for the experiment. 10 females and 5 males (2-5 days old) from the 

parent flies were placed in each of the three vials (along with ~30 grains of dry yeast) and left to 

lay for 2 days at 23ºC, 12L:12D. The parent flies were removed, and the vials were kept at 

23ºC, 12L:12D until progeny began to eclose. From the start of eclosion, all of the vials were 

examined every day over the course of 10 days. The number of females and males for each vial 

was recorded, as well as the total wet weight (to 0.1 mg accuracy) of the females and the total 

combined wet weight of the females and males. 10 days was chosen as a conservative time 

course to prevent the next generation from being included in the analysis. 143 lines were tested 

in two batches. 134 lines were done in the first batch - the second batch included the 35 lines 

that did not have three complete vial replicates in the first batch, and 9 lines that were not tested 

at all in the first batch.   
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Genome-wide association mapping for offspring index  

The four phenotypes measured in this screen were the total number of females (males) eclosed 

and the average weight of a female (male) fly. Since lines were assayed in two batches, the 35 

lines that were tested in both batches were used to check for a batch effect. The batch effect for 

each of the four phenotypes was corrected by applying an offset (difference of mean phenotype 

between the first and second batch) calculated from the overlapping set of lines.  

 

For offspring total counts, a random intercept linear model was used to calculate the random 

effect of each DGRP line. 

 

c, = @ + )9:6, 	+ d 

 

where c,is the phenotype measure for that particular line combination, )9:6, is the random 

effect of DGRP line, and ? is the error term. For mean offspring weights, a random intercept 

generalized linear model was used (model formula as above), assuming a gamma distribution of 

mean weights and a logarithm link function. The LME4 package (v1.1-21) in R (v3.5.3) was 

used to make the models. To estimate heritability for each phenotype, we used the R package 

brms (v2.8.0) and our models to estimate variance explained by line and divided it by the sum of 

all sources of variance.  

 

Since we were interested in a single metric to summarize the number of offspring and their 

average weight, we used prcomp with scaling in R’s factoextra package (v1.0.5) to generate the 

principal components of the dataset. The first principal component explained 71% of the 

variance of the dataset, so we chose to use the value of the rotated data (line phenotype values 
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multiplied by the rotation values of the first principal component) as our summary phenotype, 

which we called the offspring index (Table 3.2).  

 

We used the DGRP2 webtool (Huang et al. 2014) to perform a mapping of variants associated 

with the offspring index. The webtools controls for inversion and Wolbachia infection status prior 

to mapping. We chose a significance threshold of p < 1E-5 to identify variants for further 

consideration.  

  

Parental density analysis 

Six DGRP lines were chosen from the overall screen based on their offspring index values - two 

lines with an extreme negative index (RAL 176: -3.18, RAL 327: -2.87), two lines with an index 

around zero (RAL 49: -0.04, RAL 350: -0.22), and two lines with a highly positive index (RAL 

812: +3.58, RAL 894: +3.79). Five density treatments were chosen: 1♀,1♂, 5♀,1♂, 10♀,5♂, 

25♀,10♂, 50♀,20♂. Lines were reared in bottles at 23ºC, 12L:12D and a minimum of 5 

(maximum of 10) replicates per line-density combination were set up, with the exception of RAL 

894 at the highest density where no replicates were set up due to an insufficient number of flies. 

Parent flies were 3-5 days old at the time of experiment set-up and the egg-laying conditions 

were matched to the DGRP phenotype screen. Given the slowed eclosion of offspring in the 

high-density treatments, an extended window of 25 days was used to evaluate offspring 

phenotypes. Daily records after the 12th day were monitored for unusual spikes in offspring 

number that could be indicative of a large number offspring from the next generation, but as flies 

were removed daily from the vials and not allowed to lay for extended periods of time, a strong 

influence of next-generation offspring on the counts was deemed unlikely.  

 

To evaluate the impact of DGRP line and density on offspring counts, a generalized linear 

model was used, assuming a negative binomial distribution of the response along with a 



 

 121 

logarithm link function. A negative binomial model was used because of the large spread and 

right skew of the offspring count distribution that made a regular linear model a poor fit. For 

offspring weight, a generalized linear model with a gamma response distribution and logarithm 

link function was used. The model formula was as follows:  

 

c,6 = @ + )9:6, + L6:]9M!6 	+ )9:6, ∗ L6:]9M!6 + d 

 

where c,6 is the phenotype measure for a particular line-density combination, )9:6, is the fixed 

effect of a DGRP line, L6:]9M!6 is the fixed effect of a density treatment,)9:6,	 ∗ L6:]9M!6 is 

the interaction term, and ? is the error term. DGRP line and density were treated as ordered 

factors in the model. As above, the LME4 package was used, in addition to the MASS package 

(v7.3-51.1) for the negative binomial model. To evaluate the significance of a predictor, a 

likelihood-ratio test from the anova function in R’s STATS (v3.5.3) package was used to 

compare models with and without the predictor. 

  

Validation of candidate genes 

Mutant lines for validation of candidate genes were obtained from the Exelixis collection36 for six 

genes containing variants associated with the offspring index at a p < 1E-5 threshold. The 

mutant lines are as follows: PBac{PB}hidc01591, PBac{WH}Sox21bf06429, PBac{WH}Rbpf07217, 

PBac{RB}CG8312e01204, PBac{WH}CG8312f02825, PBac{WH}mubf02647, PBac{WH}Ihf01485, and 

PBac{RB}Ihe01599 (#17970 BDSC). All lines were made homozygous for the insertion prior to 

testing. The genetic background for this gene disruption panel was w1118. To generate the 

parental flies for each mutant line and the control, ~30 females and 10 males were placed in 

bottles at 22ºC, 12L:12D to lay for 7-10 days to generate the experimental flies. 10 females and 

5 males from the experimental flies were put into a single vial with ~30 yeast pellets (ten 



 

 122 

replicates per mutant line) and allowed to lay for 2 days at 22ºC, 12L:12D. The parental flies 

were removed, and the progeny was phenotyped the same way as for the DGRP phenotype 

screen. The validations were done in two batches staggered by one week, but there was no 

significant batch effect, therefore replicates were combined across batches. Mutant lines were 

compared to the w1118 genetic background control using Dunnett’s test with a family-wise 

confidence level of 95%. Offspring index for the mutant lines was calculated using the principal 

component loadings calculated from the DGRP data.  

 

Gene expression correlations and correlations with other traits 

Gene expression data was obtained from Huang et al. (2015)37. We calculated the Pearson 

correlation between the expression of candidate genes tested in the validation experiment, as 

well as the correlation between the expression of those genes and the phenotypes measured in 

our screen. We also correlated the traits measured in this study against similar or putatively 

related traits measured in other DGRP studies4,22,23,31. All analysis was done in R (v3.5.3).   
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 Discussion 

The work in my dissertation focused on the role of environment in behavioral trait variability, the 

adaptive value of behavioral variability, and the impact of genetics on life-history trait variation. 

While we found that enriching the environment of D. melanogaster produced a small overall 

increase in behavioral variability, the impact of environment alone was overwhelmed by the 

effect of genetic background and a three-way interaction between genotype, environment, and 

behavioral metric. Next, we focused on an ecologically relevant behavioral trait, thermal 

preference, in order to examine the adaptive value of environmentally produced behavioral 

variability as a bet-hedging strategy. Our modeling supported a climate-dependent advantage 

for bet-hedging vs. adaptive tracking (a strategy where thermal preference variation is primarily 

due to a genetic component). Bet-hedging was the predicted preferred strategy in most of the 

contiguous U.S., while the predicted adaptive tracking advantage was limited to southern areas 

with warm and mild climates. Empirical tests of modeling predictions found that heritability in 

thermal preference in a particular region matched with the predicted bet-hedging advantage - 

regions with low bet-hedging advantage (favored for adaptive tracking) had the highest 

heritability. Seasonal patterns in mean preference and variability in thermal preference, while 

yielding more mixed results across the sampled regions, still supported the notion that thermal 

preference in wild D. melanogaster populations can be determined by a bet-hedging strategy. 

While behavioral trait variation that impacts fitness may not need to have a large genetic 

component, we found that life-history trait variation has a large genetic component. The many 

genes associated with life-history trait variation are not confined to a particular cellular process - 

we observed strong impacts on offspring metrics for mutations in genes that have no known 

roles in fecundity or growth. Our findings, in addition to previous studies on life-history traits, 

leads us to speculate that for traits closely related to fitness, practically every gene in the 

genome will contribute through either indirect or direct action on the cellular pathways involved 
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in the trait. I believe that the work discussed here has provided valuable insights on the origins 

and adaptive value of micro-environmental contributions to behavioral variability and additional 

support for the polygenic basis of life-history traits.  

 

One of the common themes that emerged from our studies of behavioral variability is that there 

is a substantial amount of interaction between genotype, macro-, and micro-environmental 

influences in determining the observed degree of variability. Genotype-by-(macro-)environment 

interactions have been commonly observed under laboratory-imposed treatment regimes, and 

genotype has also been shown to play a role in the degree of micro-environmental plasticity. 

Our studies demonstrated another connection, one that is perhaps not surprising given the inter-

relationships already described - genotype and macro-environment interact to influence micro-

environmental plasticity. We tested this idea explicitly by examining the impact of enrichment on 

the variability of six behavioral metrics (four for turning bias and two for phototactic preference). 

To our surprise, the impact of the enrichment treatment, after controlling for behavioral metric 

and genotype, was quite small, though always positive. The biggest contributing factors to the 

degree of variability were genotype and genotype-by-enrichment interactions, though the 

specific magnitudes of genotype, enrichment, and genotype-by-enrichment contributions 

depended on the behavior metric. Even within a particular suite of behavioral metrics, for 

example those related to turning bias locomotion, there was no predictable pattern of how much 

each component contributed to variability and/or the sign of the contribution. While this variety of 

effects on variability could potentially be attributed to the particular nature of rearing flies in an 

enriched environment, we also found that variability in thermal preference was affected by 

rearing temperature. In this case, besides temperature, the only other unavoidable difference 

was the incubator used. Evidence seems to point strongly to the existence of not only the 

canonical genotype-by-environment effects on trait means, but also genotype-by-environment 

effects on trait variabilities.  
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This finding opens up a discussion on what are the direct and indirect causes of micro-

environmental plasticity (also referred to as variability in this text). Organisms do not develop in 

a vacuum, and establishment of the final phenotype is a result of innumerable internal and 

external interacting factors. While there is an undeniable determinism in certain aspects of 

development - for example, flies that emerge from the same vial all have the same body plan 

and do not each resemble a unique Picasso interpretation - the research in this dissertation and 

previous work1 demonstrated that not all traits are under strict control. Of the potential factors 

that can shape a phenotype, factors that can be reliably measured and controlled compose only 

a subset - the rest, which shape observed variability, are stochastic and unobservable2. 

Potential factors at all levels of organization could be implicated - transcriptional fluctuations, 

epigenetic modifications, and cell differentiation (in the case of behavior, neuronal wiring2), for 

example. One can imagine potential cascading effects where small perturbations early on in 

gene expression affect epigenetic modifications, which then create variability in cell 

differentiation, more permanently altering gene expression patterns in later stages of 

development. For thermal preference, stochastic differences in expression of peripheral 

warming3,4 and cooling3 sensors could be the proximal cause that underlies the individual 

differences, or in deeper brain areas, such as differential cyclic adenosine mono-phosphate5 or 

dopamine signaling6 in the mushroom body. In support of this hypothesis, I found preliminary 

evidence of a negative correlation between expression of trpA1, a warmth sensor, and thermal 

preference within an isogenic line (Figure 4.1). What is currently not well-described is how the 

degree of stochasticity in these proximal mechanisms (e.g. gene expression) is established 

through genetic and/or environmental means.  
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Figure 4.1 - trpA1 expression is negatively correlated with thermal preference.  
Pearson correlation (r = -0.23, p = 0.37) of trpA1 expression with thermal preference of females from an 
isogenic line (n=18). trpA1 expression was measured using digital droplet PCR on RNA from individual 
brains and normalized using expression of a pan-neuronal gene CG16779. 
 

A possible process by which genotype and external environment can influence the degree of 

variability is by genotype affecting how robust the developmental program is under the pressure 

of environmental perturbations. A developmental program that is robust is said to be canalized7, 

or able to produce consistent phenotypes despite mutational and/or environmental forces. 

Canalizing mechanisms that buffer phenotypes should be insensitive to the type of force they 

are buffering against (genetic or environmental)8, since genotype and environment act together 

to determine phenotype - buffering against just one would be less effective. In addition, 

mutations and environmental fluctuations are unpredictable. Therefore, it is likely that the 

buffering mechanism is non-specific and participates in many cellular processes. A promising 

candidate is Hsp90, a heat-shock protein that is involved in many signaling processes as a 

stabilizer of conformationally plastic signaling proteins9. Downregulation of Hsp90 in Drosophila9 

and Arabidopsis10,11 increases morphological variance, likely due to Hsp90-regulated processes 

destabilizing under stochastic environmental fluctuations (either internal or external to the 

organism) and, in certain instances, previously cryptic genetic variation. The chaotic dynamics 

of cellular processes can amplify potentially small deviations in signaling cascades into large-
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scale changes. Interestingly, Hsp90 is not the only identified candidate to regulate variability. In 

Arabidopsis, QTL mapping for variability in flowering traits revealed tight links to the ERECTA 

(ER) locus12, which encodes a protein kinase that functions in cell-cell signaling and 

developmental processes. In contrast to Hsp90, which acts to canalize traits, the wild-type ER 

allele decanalizes the leaf number trait. Therefore, ER can be considered as an amplifier of 

environmental perturbations12. In Drosophila, a GWAS on variability in three traits1 revealed 36 

associated genes in addition to Hsp90 that are associated with variability in startle response - 

these genes function in nervous system development and behavior. GWAS for variability in chill 

coma recovery time and starvation resistance did not show enrichment for significantly 

associated variants, even though broad-sense heritability was high. The overall message from 

the described studies is that the genes involved in determining the degree of variability act 

during development, even for behaviors1,13.  

 

This result for behaviors is interesting as behaviors are usually considered to be more plastic 

than morphological traits in the adult organism e.g. experience-dependent learning, but 

evidence points to a component of behavioral variability established prior to the adult stage. A 

GWAS on D. melanogaster turning bias variability also found associated variants in genes 

enriched for functional roles in the nervous system13. One such candidate gene is Tenascin 

accessory (Ten-a), which encodes for a signaling protein that functions in proper formation of 

neuromuscular junctions and patterning of a locomotion center in the central brain. Knockdown 

of Ten-a increases variability in turning bias, but only when the knockdown was done during 

pupal development, when Ten-a expression peaks and brain structures responsible for 

locomotion form13. Encoding of variability in the developmental stages can explain why we 

observe persistence in behavioral traits (a “personality”14) over an organism’s lifetime. On the 

other hand, we also observe some decay in behavioral persistence in D. melanogaster over 
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time15, which indicates that there is plasticity in behavioral traits. The decay depends on the 

behavior and may reflect on how much input adult experience has on shaping the behavior.  

 

Given that there is a genetic basis to variability, it is a trait that can respond to selection 

pressures. As a bet-hedging strategy, trait variability should ideally evolve to match the 

environmental variance16–18. On the other hand, in the extreme case of an unchanging 

environment with one optimal phenotype, a genotype that produces a variable phenotype will be 

at a fitness disadvantage compared to one that does not. We found that maintenance under 

general laboratory conditions does not select against different degrees of variability, likely 

because of relaxed selection pressures (ad libitum food, minimal pathogen load, etc.). Yet, due 

to the environmental component in the degree of variability, the expression of variability that we 

see under standard laboratory conditions does not necessarily equate to what we would 

observe under natural conditions. With this in mind, our laboratory-based approach in assessing 

the degree of variability in thermal preference across different regions is limited in how well the 

results translate to wild populations. We found heterogeneity in thermal preference variability 

when comparing isofemale lines, but barely any differences in variability when comparing sites, 

especially as they correlate to predicted bet-hedging advantage. It is possible that working with 

laboratory-reared flies and deconstructing variability by isofemale line altered the genotype-by-

environment interactions that determine thermal preference variability, possibly obscuring an 

actual effect present in wild populations.  

 

The environmental component can also complicate selection for an optimal level of variability, 

given the broad functions of genes that may be responsible for establishing the degree of 

variability. For example, there may exist an optimal variability in thermal preference given 

fluctuations in seasonal weather patterns, yet observed variability in the wild is likely a function 

of the interaction between genotype and environmental fluctuations across many axes, possibly 
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orthogonal or on different time scales to the seasonal weather patterns e.g. nutrition, predation. 

There is no clear evidence that the genes responsible for setting the degree of variability in a 

particular trait are specific to the trait in question and that the variability is only responsive to 

environmental fluctuations that are directly associated with the trait e.g. predation risk and 

startle response or temperature changes and thermal preference. Hsp90 has been identified as 

a locus for controlling variability at numerous traits - if evolution toward an increased variability 

in startle response takes place via changing allele frequencies at Hsp90 (perhaps because of 

unpredictable predation risk19), it may be counteracted by suboptimal increased variability in 

morphology. Counter to the Hsp90 example, no cross-trait genetic correlation in variability was 

found when a GWAS was performed on startle response, starvation resistance, and chill coma 

recovery variability1. In this case, it may be possible to increase variability in one trait without 

affecting others. The ER locus in Arabidopsis is currently implicated only in the variability of a 

single flowering trait, but it is unclear if there is specificity in what environmental perturbations 

cause the variability. In Drosophila, Ten-a is proposed to control turning bias through its 

functions in nervous system development, but it is also unclear if there is specificity in what 

external/internal environmental forces turn bias variability is sensitive to. Given variability in a 

myriad of traits is still observed under standardized laboratory conditions, far removed from 

most natural experiences, we can surmise that there is no strict specificity. Therefore, it 

becomes difficult to imagine a scenario where variability in a trait can be specifically tuned to a 

single external influence. It seems likely that environmental pressures can favor increased or 

decreased variability, but that the actual degree of variability is set by complex interactions 

between multiple environmental and genetic factors.  

 

So far, the discussion has centered around the complexity of interactions between the 

environment and genotype in determining trait variation. Yet, trait variation can also depend on 

interactions among genes. For life-history traits, including offspring number and weight studied 
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here, trait variation comes from the small contributions of many variants across the genome, as 

opposed to a few variants with large effects. Interestingly, the set of variants affecting a 

particular life-history trait seems to expand with every new study. In our study on offspring 

number and weight, we found associated genes and variants that had not been previously 

identified to affect fecundity or growth. The omnigenic model of complex traits20, discussed 

mostly in the context of disease risk, stipulates that complex traits are affected by a limited 

number of core genes that play a direct role in the trait, but that due to the interconnectedness 

of cellular pathways, most of the heritability for a trait comes from genes outside the core 

pathway that have indirect impacts on the trait. In this case, there is practically no gene that 

does not somehow contribute to trait variation. In addition to complex diseases, life-history traits 

could also be considered to have an omnigenic basis. Our findings showed a highly polygenic 

basis to the relationship between offspring number and body weight, but we were unable to find 

an enrichment in our candidate genes for a particular biological process. Therefore, we lacked 

evidence for a core gene network as suggested under an omnigenic model. The omnigenic 

model takes inspiration from Fisher’s “infinitesimal model”21, where at the extreme limit, a 

complex trait is made up of infinitesimally small contributions from infinitely many genes. An 

interesting question is whether all complex traits reflect the biological reality of the extreme of 

the “infinitesimal model” or if there is a continuum along which traits can be ranked. If it is the 

latter, then why do life-history traits seem to trend towards the extreme? A possible reason 

could be that these traits, which are closely tied to fitness, are the products of many biological 

pathways - for example, there is likely a myriad cellular processes  that can be perturbed to 

affect lifespan or viability, but fewer that affect wing shape or bristle count. Research beyond 

genetic variants and into the networks of molecular interactions in cells may help in our 

understanding of why the genetic basis of some traits is so broad.  

 



 

 134 

Future Directions 

In his review on the empirical evidence for bet-hedging22, Simons introduced six evidence 

categories used to evaluate a potential bet-hedging trait. The last two evidence categories, for 

which the fewest studies exist, are direct tests to determine the adaptive value of bet-hedging. 

Our current work has established the existence of a bet-hedging trait and the climate patterns 

that favor bet-hedging, as well as provided observational evidence that bet-hedging may be 

advantageous only in certain climates. As a next step in our investigation of thermal preference 

variability as a bet-hedging trait, we can consider a direct test of fitness under fluctuating or 

constant environments. A simple starting hypothesis is that a fluctuating environment, modeled 

after the weather patterns of a predicted bet-hedging favored location, would favor increased 

thermal preference variability. We can then compete a high variability genotype against a low 

variability genotype under laboratory-established fluctuating conditions (and, in parallel, under 

constant conditions) for several generations to see whether the high variability genotype will be 

overrepresented in fluctuating conditions and the low variability genotype in constant conditions. 

Higher fitness of one genotype over another would be evaluated using sequencing of offspring 

across the experiment to see whether there are reproducible increases in haplotypes originating 

from a particular parental line (high or low variability). Sequencing and haplotype assignment 

would also allow us to determine genetic regions that control thermal preference variability, as, 

under our hypothesis, those would be the regions with the strongest allele frequency changes 

over time. While this direct test of bet-hedging would make a great contribution toward our 

understanding of the evolution of bet-hedging traits, there are strong considerations that need to 

be examined. The timescale of the selection experiment should be established using 

simulations to determine feasibility - perhaps, in order to see appreciable changes in allele 

frequency, either the time to carry out the experiment or the selection coefficient will have to be 

prohibitively large. Replicates and controls will have to be maintained in order to control for 

genetic drift and generally adaptive alleles. In addition, because of the known genotype-by-
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environment component in variability, it would have to be established that the high and low 

variability genotypes still express the same relative phenotypes in the fluctuating and constant 

environmental conditions. Heterozygosity and recombination in the offspring may influence the 

expression of variability in unpredictable ways during the experiment due to dominance or 

epistatic interactions. These caveats underscore the difficulty in carrying out direct tests of bet-

hedging and likely explain why there are so few studies that attempt them. Yet, questions about 

the adaptive value of variability remain - with a rigorous approach and a consideration of 

limitations, future work on variability and bet-hedging may provide us with the answers.  

 

Another question that deserves further attention is whether there exists a direct link between a 

specific environmental factor and variability in a related trait. Even though environmental 

contributions to variability seem multifaceted, could one specific factor e.g. light, temperature, 

odor, have an outsize influence on variability and/or in a positively correlated fashion? The 

difficulties in these studies would be choosing the appropriate environmental factor-trait pair and 

extensively controlling all the other factors. Evidence from bees shows that enriched odor 

experience heightened inter-individual variation in odor responses23. Odor enrichment in fruit 

flies did not show mean effects on brain anatomy or odor learning24, but trait variability was not 

examined. Odor exposure and odor preference would be solid candidates for an experimental 

study on this question - there is a strong a priori link between the two and enriching the 

environment for odors is more straightforward and may introduce fewer confounds with other 

factors than, for example, trying to affect locomotion. Further studies could dig down to 

understand how this specific correspondence occurs on a genetic and molecular level. 

Understanding exactly how the environment influences variability is necessary for a more 

complete picture of how traits are shaped by genetics and the environment.  
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The overall conclusions of my research into behavioral variability and variation in life-history 

underline the interconnectedness of genetics and the environment, the adaptive value of 

environmentally-caused variability, and a holistic perspective on the genetics of life-history. 

Future studies will unravel some of the complex interrelationships proposed here, to the benefit 

of our understanding of observed biological diversity.  
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Abstract 

Organisms use various strategies to cope with fluctuating environmental conditions. In 

diversified bet-hedging, a single genotype exhibits phenotypic heterogeneity with the 

expectation that some individuals will survive transient selective pressures. To date, empirical 

evidence for bet-hedging is scarce. Here, we observe that individual Drosophila melanogaster 

flies exhibit striking variation in light- and temperature-preference behaviors. With a modeling 

approach that combines real world weather and climate data to simulate temperature 

preference-dependent survival and reproduction, we find that a bet-hedging strategy may 

underlie the observed inter-individual behavioral diversity. Specifically, bet-hedging 

outcompetes strategies in which individual thermal preferences are heritable. Animals 

employing bet-hedging refrain from adapting to the coolness of spring with increased warm-

seeking that inevitably becomes counterproductive in the hot summer. This strategy is 

particularly valuable when mean seasonal temperatures are typical, or when there is 

considerable fluctuation in temperature within the season. The model predicts, and we 

experimentally verify, that the behaviors of individual flies are not heritable. Finally, we model 

the effects of historical weather data, climate change, and geographic seasonal variation on the 

optimal strategies underlying behavioral variation between individuals, characterizing the 

regimes in which bet-hedging is advantageous.  
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Introduction 

How do organisms thrive in the face of fluctuating environmental conditions? Understanding 

their strategies is a major challenge in evolutionary ecology. One versatile adaptive “solution” is 

phenotypic plasticity – in which an individual adjusts its phenotype in direct response to the 

current environmental condition, such as modulation of leaf size in response to lighting 

conditions1. In principle, plasticity can embody perfect solutions to any environmental challenge, 

as animals can employ a “lookup table,” producing the perfect response to any condition. 

However, there are limitations to plasticity2,3, such as the metabolic cost of encoding a lookup 

table, and the speed with which an organism can change its phenotype. The latter constraint, 

phenotypic inflexibility, applies particularly to animals, like insects, that attain a final adult life 

stage. That said, behavioral phenotypes specifically have the potential to be quite flexible.  

 

Populations can also survive changing conditions by having diversified phenotypes as a result 

of genetic variation; this also allows organisms to readily evolve/adapt to new conditions. This is 

termed “adaptive tracking.” However, if the environmental changes are transient, as one would 

observe with seasonal variation, it would be detrimental to rapidly adapt to their local/temporal 

environment (summer adapted animals would not fare well during the winter). Instead, an 

adaptive response to fluctuating selection can be to suppress the phenotypic expression of 

genetic variation, reducing heritability4. While genetic variation can be maintained under some 

circumstances, recent evidence suggests that temporal environmental fluctuations may reduce 

polymorphism through most of the genome more severely than even constant environments5. 

 

A third possible solution to the problem of uncertainty is to utilize a bet-hedging strategy (also 

called risk-spreading), in which developmental stochasticity produces a distribution of adult 

phenotypes. In diversified bet-hedging, a single genotype can (stochastically) generate a 

distribution of phenotypes, guaranteeing that at least some individuals are well suited to any 
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environmental condition6–8. More formally, bet-hedging can be defined as evolutionary strategies 

that reduce the variance in fitness (maximizing the geometric mean of fitness, at the expense of 

the arithmetic mean of fitness) across time and environmental conditions. 

 

Some individuals in bet-hedging populations will have reduced fitness for any given 

environmental condition. The adaptive value of bet-hedging increases with increased 

environmental variation9, provided that the fluctuations are not brief compared to animal 

lifespans10. An elegant example is the timing of seed germination11. If all the seeds from a 

desert plant germinated after the first rain of the season, they would be vulnerable to extinction 

if there is an extensive drought before the second rain. Conversely, if the seeds all germinate 

later in the season, they will be at a disadvantage relative to other seeds that had germinated at 

the first opportunity (in typical seasons without an early drought). Thus, an optimal strategy may 

be for the plant to hedge its bets and have a fraction of seeds delay germination while the 

others respond to the first rain. Of course, this is biology, and real organisms surely employ a 

combination of plasticity, adaptive tracking and bet-hedging12. Yet, bet-hedging in animal 

systems remains poorly studied, in part because of the difficulties of studying intra-genotypic 

variability within a common environment, let alone in more complex and biologically realistic 

scenarios. 

 

The evolutionary optimality of bet-hedging can explain why a single genotype gives rise to a 

distribution of phenotypes13. This question has also been addressed within behavioral ecology 

from the perspective of animal personality. Genetic variants are often assumed to underlie the 

behavioral differences described as personality variants, and indeed animal personality 

syndromes may be largely heritable (up to 52% of variance)14. However, to explain the 

remaining variance in individual behavior, stochastic mechanisms generating intra-genotypic 

variability are almost certainly at play, including bet-hedging. Thus, in explaining variation in the 
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personality of individual animals, it is essential to assess the degree to which bet-hedging is 

itself under genetic control.  

 

While animal personality is typically evaluated along axes that correspond to dimensions of 

variation in human personality, such as shyness vs. boldness, behavioral variation is richly 

multidimensional15. We assert that if there is 1) variation in a behavior among closely related 

individuals, and 2) these idiosyncratic differences persist within the lifetime of those individuals, 

this is an example of a facet of animal personality, broadly construed. As an example, fruit flies 

exhibit life-long locomotor biases (preferring to turn left or right on an individual-by-individual 

basis15,16). This variation has no clear relationship with the bold-shy axis but represents one 

orthogonal axis of “personality” among many. 

 

Fruit flies are one of the most studied organisms for many aspects of biology, including the 

basis of behavioral diversity. We chose to study bet-hedging using the fly’s positional response 

to thermal gradients (thermotaxis) and asymmetric illumination (phototaxis). The thermotactic 

and phototactic responses of Drosophila depend on a wide range of environmental and stimulus 

parameters17, such as humidity18, directionality of the light source19, and agitation state of the 

flies19–21. The type of phototactic response is particularly sensitive to the state of agitation. In 

most Drosophila species, agitated animals exhibit “fast phototaxis” toward the light source, while 

unagitated animals exhibit “slow phototaxis” as a preference to stay in shaded areas. The 

former response is thought to reflect a predator evasion instinct to move skyward22, while the 

latter reflects a thermoregulatory and anti-desiccation instinct during rest23.  

 

Thermal experience has dramatic effects on the life history of Drosophila24–26. Individuals can 

control this experience through a variety of behaviors27,28 including shade-seeking phototaxis 

and direct positional response to thermal gradients. Thus, the net resting behavior of flies will 
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greatly affect the amount of heat they experience across their lifetime, and consequently their 

vulnerability to unusual weather, season and climate fluctuations. The light versus shade and 

thermal gradient resting preferences of animals can be readily quantified in laboratory 

experiments.  

 

Recent results from several groups hint that fluctuating temperature specifically could favor bet-

hedging. The optimal preferred temperature of ectotherms may not be the single temperature 

that yields the fastest growth, if the fitness function on temperature is skewed29. Selection for 

heat-resistance indirectly increased cold resistance30, suggesting that evolutionary solutions to 

extreme temperatures may act on the absolute deviation from mean temperatures as much as 

the direction of deviation. Moreover, populations evolved specifically in fluctuating environments 

acquired thermal resistance to temperatures outside the selected temperature range, even 

when the fluctuating temperatures were moderate, and centered on the animals’ preferred 

temperature30,31. 

 

We found considerable variation in the slow phototactic and thermotactic responses of very 

recently domesticated Drosophila from Cambridge, Massachusetts, U.S.A. . Some individual 

flies strongly preferred to rest in the shaded portion of the phototactic arena (or the cool portion 

of the thermotactic arena), others strongly preferred the lit portion (or the warm portion). We 

wondered whether this behavioral diversity represented a bet-hedging strategy to maximize 

fitness in the face of fluctuating seasonal or weather conditions. In order to compare the 

performance of bet-hedging versus a strategy in which the individual behavioral preferences are 

heritable (i.e. adaptive tracking sensu Simons7) we developed a model incorporating our 

behavioral data with local weather and climate data from historical records. Phenotypic plasticity 

in response to environmental fluctuations is unlikely to explain the behavioral differences we 

observed between individuals reared in essentially identical lab environments; under phenotypic 
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plasticity, we would expect animals to adopt similar behaviors as their response to a similar 

environment, but this is not what we observe. Our scope here is to specifically consider a head-

to-head comparison of bet-hedging and adaptive tracking strategies, both of which remain 

plausible explanations of the observed behavioral variation. Thus, we test the hypothesis that 

the observed individual behavioral differences reflect a bet-hedging strategy, rather than genetic 

variation underlying an adaptive-tracking strategy. 

 

We find that the bet-hedging strategy generally outcompetes adaptive tracking. Since the 

generation time of Drosophila is short relative to the seasons, seasonal temperature fluctuations 

can induce genetic adaptations in the spring32 which could then decrease fitness in the summer. 

This reversal of selective pressures throughout the year renders adaptive tracking 

counterproductive. The alternative bet-hedging strategy is particularly valuable when there is 

high fluctuation in temperature throughout the season. Adaptive tracking is advantageous, 

however, during seasons that are consistently warm or cold throughout, because it engenders 

long-term changes to average behaviors by altering genotypic frequencies. Interestingly, since 

global climate change will bring about an increase in mean temperatures, we predict that the 

optimal strategy will change in approximately 100 years, and adaptive tracking will become 

more advantageous than bet-hedging.  
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Results 

Drosophila exhibit more behavioral variability than expected by chance alone 

We sought to directly measure the slow phototactic and thermotactic response of recently 

domesticated D. melanogaster flies and assess to what extent there was individual-to-individual 

variability in this behavior. An isofemale line (“CamA”) was established from a single fertilized 

female caught in Cambridge, Massachusetts, U.S.A. . To assess phototaxis, age- and sex-

matched CamA adults, cultured on standard fly media, were assayed individually in our “slow 

photobox” (Figure 5.1A), where their light versus shade preference was measured by 

automated image analysis 24 times per fly (Figure 5.1B), once every 10 minutes. We tested 219 

individuals in total, and found that their average light-choice probability was 0.32 with a standard 

error of 0.032, indicating a preference for resting in the shade. The observed distribution of light-

choice probabilities was considerably overdispersed compared to the null hypothesis that all 

animals were choosing the light with identical probabilities of 0.32 (p = 4E-6, 1E-11 and < 0.001 

by Kolmogorov-Smirnov (KS) test, @2 test of variance and bootstrap resampling respectively; 

Figure 5.1C), indicating considerable individual-to-individual behavioral variability. We estimated 

44.2% of the experimental variance was due to individual differences, corresponding to a 

preference index standard deviation across individuals of 0.085 (95% CI = [0.74, 0.94], 

estimated by bootstrap resampling). These results are similar to our previous findings on 

agitated phototaxis where we observed significant individual-to-individual variability that was not 

explainable by differences in age, sex, reproductive status, birth order, social interactions, or 

previous exposure to light33. 

 

To assess thermotaxis, similarly cultured animals were tested individually on a linear thermal 

gradient ranging from 30°C to 18°C (Figure 5.1D), which spans most of the range of flies’ 

natural environment. The position of each of 41 flies within this gradient was measured 20 times 

per animal, once every 10 minutes, with their position indicating their per-trial thermotactic 
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preference (Figure 5.1E). The mean average preference was 23.1°C with a standard error of 

0.22°C. We observed considerable inter-individual variation in mean thermotactic preferences 

(F = 3.07, d.f. = 40, p < 1E-6 by 1-way ANOVA on fly identities; Figure 5.1F). We estimated 

14.7% of the experimental variance was due to individual differences, corresponding to a 

standard deviation across individuals of 1.4°C (95% CI = [1.15, 1.77], estimated by bootstrap 

resampling). 
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Figure 5.1 - Measurement of phototactic and thermotactic variation and a model of their effect on 
fitness.  
(A) Schematic of the “slow photobox” – a device for the high-throughput characterization of slow 
phototaxis. Animals were placed individually into clear tubes with a lit and shady side. Their position in the 
tube was recorded by a camera. (B) Example of data from the slow photobox. Each row represents an 
individual fly’s phototactic preferences at 24 instances, spaced at 10 minute intervals. White boxes 
indicate lit choice and black boxes indicate shaded choice. Purple and green asterisks indicate examples 
of shade- and light-preferring individuals, respectively. (C) Observed histogram of the phototactic 
preference across individual flies (blue line). Dashed gray line indicates a best-fit beta-binomial 
distribution for the observed data. Gray line indicates expected distribution for the same flies if they were 
each to choose light with identical probabilities. Gray shaded region indicates 95% confidence interval of 
the expected distribution given sampling error. Shaded blue areas indicate discrepancies between the 
observed and expected histograms consistent with behavioral heterogeneity. (D) Schematic of the “slow 
thermobox.” (E) Example data from the slow thermobox, as in B. Grayscale indicates thermotactic 
preference over time. Purple and green asterisks indicate examples of cool- and warm-preferring 
individuals, respectively. (F) Histograms of thermotactic preference values across all trials (vertical, grey) 
for individual flies, sorted by mean preference (black bars). Black bars indicate individual mean 
preferences. 
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We performed day-to-day persistence experiments to see if the individual differences in 

thermotaxis and phototaxis were stable across time, rather than arising from transient state 

differences such as satiety. Individual scores for both phototactic and thermotactic preference 

were significantly correlated across 24 hours inter-test intervals (Figure 5.2; r = 0.71, p < 

0.0001, d.f. = 70 and r = 0.48, p = 0.002, d.f. = 36 respectively). 

 

 

Figure 5.2 - Persistence of individual behavioral phenotypes.  
(A) Scatter plot of phototactic preference on day 2 versus phototactic preference on day 1. Flies were 
assayed for 40 hours continuously. Their position with respect to a phototactic gradient was recorded 
every 10 minutes. Daily preference values were calculated as the average of all observations in the first 
24 hours (day 1) and all the points in the last 16 hours of the recording (day 2). Points are individual flies; 
dotted line is the best geometric mean regression fit; shaded region is the 95% confidence interval on the 
fit as determined by bootstrap resampling. Pearson r = 0.71, n = 24, p < 0.0001. (B) As in (A) for thermal 
preference. Rather than continuous recording, in the thermal persistence experiment, thermal preference 
was measured as in all other thermal experiments, over four hours, and fly identity was maintained across 
successive days by individual housing. Regression fits as in A. Pearson r = 0.48, n = 37, p = 0.002. 
Genotypes of the inbred flies tested here are w1118 and DGRP line #796 respectively. 
 

A model to compare adaptive tracking and bet-hedging strategies 

Could the observed behavioral individuality represent a bet-hedging strategy to increase the 

probability that at least some individuals will be well adapted to the current weather conditions? 

To test this, we proposed a model of fly development and reproduction (Figure 5.3A) in which 

an individual animal’s behavior could be treated either as perfectly inherited from the mother 

(i.e. adaptive tracking – AT), or as non-heritable/stochastic variation indicative of a bet-hedging 
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strategy (BH). Holding the magnitude of variation constant, we can evaluate which is more 

advantageous, adaptive tracking or bet-hedging, and under what conditions.  

 

In considering how thermal experience might affect fitness, we recognized that the 

metamorphosis time from egg to adulthood depends on the temperature experienced during 

that period, in a relationship determined by previous experimental work24,25, with flies developing 

fastest at 25°C (Figure 5.3B). The expected total lifespan of flies also depends on 

temperature26, with flies living considerably longer at cooler temperatures (Figure 5.3C). We 

assume that the effective temperature experienced throughout adulthood depends on the 

integrated results of many behavioral choices for each individual fly. By contrast, we assume the 

temperature experienced during growth from egg through pupa depends on the thermal 

preference index of each fly’s mother (the alternative, that developmental temperature depends 

on progeny preference, yields qualitatively identical results). These are clearly simplifying 

assumptions – the total amount of thermal energy integrated across a lifespan and the choice of 

oviposition site depend on more behaviors than just phototaxis and thermotaxis. But, 

constraining the model with empirical data on these behaviors allows us to investigate their 

roles in fitness. We lastly assume that throughout metamorphosis and adulthood flies face a 

constant risk of death (by e.g. predation, disease, fly swatter, etc.), and after reaching 

adulthood, flies produce new offspring at a constant rate. Thus, temperature choices represent 

a tradeoff for the fly: warm-preferring animals will have the benefit of faster development at the 

cost of shorter lifespan, the kinetics of which are temperature-dependent. 
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Figure 5.3 - A fly temperature-dependent life history model.  
(A) Diagram of the fly life history model; see description in text. (: birth rate, ): death rate, M: 
metamorphosis time, A: adult lifespan, T: thermal preference index. “fly skull and crossbones” icons 
indicate death. (B) Time to eclosion plotted as a function of temperature, as used by the model. Data 
points from (Ashburner, 1978). (C) Lifespan plotted as a function of temperature, as used by the model. 
Data points from (Miquel et al., 1976). 
 

In order to formulate a single variable representing the diversity of temperature experience due 

to all dimensions of behavioral variability, we compared our phototactic and thermotactic 

observations. The effect of phototactic preference on temperature experience depends on the 

temperature difference between shade and sunlight. This in turn depends on numerous factors, 

including weather conditions, latitude, season, wind, substrate composition and duration of 

exposure to the sun. We measured this directly and determined that a 7°C difference between 

sun and shade was attained quickly after exposure to sunlight on both natural and artificial 

substrates in Cambridge, Massachusetts, U.S.A. This estimate is well within the range of 

previous estimates of the temperature difference between insects in sunlight vs shade27. We 

observed that the mean light-choice probability of flies in the slow phototaxis assay was 0.32, 

with a standard deviation of 0.13 (Figure 5.1C). Assuming that a fly which spends x% of the time 

in the light would spend x% of the time in the sun and 7°C warmer than the remaining 100-x% of 

the time, this phototactic variance implies a standard deviation of temperature experience of 

0.89°C. The mean observed thermotactic preference was 23.1°C with a standard deviation of 

1.4°C. These two observations are in agreement that individual flies have substantially different 

temperature experiences. For the model, we let the “thermal preference index” of individual flies, 

integrated across all behaviors determining temperature experience, vary from 0 to 1, 
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corresponding to a 7°C temperature range. This index has the same range as the phototactic 

data. Allowing it to follow the same distribution across flies as the phototactic data (beta-

distributed, with mean 0.32 and variance 0.22), it reflects a conservative estimate of thermal 

experience variability, compared to the direct thermotactic measurements. 

 

The model contains two unknown parameters, the lifelong risk of death from causes other than 

thermal experience-dependent mortality (A), and the birth rate at which new eggs are laid by 

sexually mature flies in the wild (.). We have no empirical data from which to assert these 

values, but the behavior of the model constrains them under two reasonable assumptions – 1) 

that the population size of flies is the same at the end of each season as the beginning, and 2) 

that the mean thermal preference index of the population is the same at the end of the season 

as the beginning, i.e. they are adapted to average conditions. These assumptions constrain the 

random death probability of flies in the wild to 0.013-0.044/day, and the birth probability to 

0.037-0.11/mother/day (depending on which weather model is used; Table 5.1. See Methods for 

details); both of these ranges seem plausible. 
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Table 5.1 - Weather variables simulated in each implementation of the model, and associated 
values of the fit birth and death rate parameters. 

Figure 
Panel(s) 

Model Type Variables Simulated * + 

2A-E stochastic daily temperature normals 0.1062 0.0435 

2D stochastic constant seasonal temperature 0.0366 0.0203 

4A-B difference 
equation 

daily temperature normals 0.04480243 0.012755 

5A-C difference 
equation 

daily temperature normals 
historical daily temperature deviations 
historical daily cloud cover fractions 

0.05388375 0.013635 

5D-E difference 
equation 

daily temperature normals 
simulated daily temperature deviations 
simulated daily cloud cover fractions 

0.05388375 0.013635 

6A difference 
equation 

daily temperature normals 
simulated daily temperature deviations 
simulated daily cloud cover fractions 
100 sequential seasons 

0.04661 0.01168 

6B difference 
equation 

daily temperature normals 0.04480243 0.012755 

6C difference 
equation 

daily temperature normals from 1469 
different locations 

varies varies 

 

Bet-hedging outperforms adaptive tracking 

We simulated a stochastic (agent-based) implementation of this model, tracking 100 individual 

flies experiencing the average seasonal temperature fluctuations34 of a typical fly breeding 

season in Boston Massachusetts, U.S.A., lasting approximately from April 1 to October 31 

(Figure 5.4). We implemented two versions of the model. 1) For the adaptive tracking strategy 

(AT; Figure 5.4A), the thermal preference index of new flies equaled that of their mother. 2) For 

the bet-hedging strategy (BH; Figure 5.4B), the preference of each new fly was drawn at 

random from a beta distribution fitting the observed behaviors (mean thermal preference index = 
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0.32 and standard deviation 0.13; Figure 5.1C). The initial population of all simulations also 

followed this distribution, irrespective of strategy. 

 

 

Figure 5.4 - Performance of the bet-hedging and adaptive tracking versions of the stochastic 
model.  
(A) Subset of simulated lineages from one run of the model, under the AT strategy. Branch points indicate 
the birth of new flies; colors indicate thermal preference index; gray dots indicate death events for 
reasons other than thermal experience-dependent mortality (due to parameter δ); red dots indicate death 
events due to thermal experience-dependent mortality. Rows of dots at bottom are projected from above 
for comparison, with random y-scatter for visibility. Asterisks indicate thermal experience-dependent 
death events associated with high summer temperatures in light-preferring lineages. Temperature at each 
day is indicated by the colored bar here and in all other panels. (B) As in (A), but for the BH strategy. (C) 
The mean performance of a bet-hedging (BH) (red line) and adaptive tracking (AT) (blue) version of the 
model over time. Gray lines represent a sampling of 100 individual simulated seasons. (D) Mean final 
population size produced by each version of the model for either constant average weather (yellow) or 
seasonal weather (colored bar). Error bars are +/-1 one standard error of the mean; n = 40,000 
simulations per group. (E) Mean thermal preference index of the population over time for each version of 
the model. Shaded regions (barely wider than plot lines) are +/-1 one standard error of the mean. 
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We measured fitness by calculating the population size at the end of the breeding season 

compared to the beginning. On average, the BH strategy outperformed the AT strategy by just 

over 2% (Figure 5.4C, D, p < 0.0001 by t-test), an effect that is completely absent (and non-

significantly reversed, p = 0.64 by t-test) in simulations of constant seasonal temperatures. The 

reason for the greater population growth of flies using BH is evident in an inspection of the 

average thermal preference index of the fly population across the breeding season (Figure 

5.4E). (The average preference changes even under BH due to temperature-dependent 

shortening of the lifespan of warm-seeking individuals). In the AT strategy, the cool spring 

selects for warm-preferring flies because their progeny will develop to maturity more quickly. 

However, at the onset of summer, the selection is reversed in favor of cool-preferring flies, 

which have a longer overall lifespan. Once the direction of selection switches, the BH strategy 

begins to outperform the AT strategy, because AT responds to even transient selective 

pressures by shifting the population mean. 

 

Individual phototactic preference is not heritable 

The model establishes that bet-hedging is a plausible explanation for the behavioral diversity 

seen experimentally in thermotactic and phototactic preference. However, if the observed 

individuality we see truly represents bet-hedging, then the differences in preference between 

individual flies are probably not due to genetic polymorphisms or trans-generational epigenetic 

effects, which would be heritable. This hypothesis generates two predictions: 1) reducing 

genetic diversity by inbreeding a polygenic stock should have no effect on the breadth of its 

behavioral distribution, and 2) the progeny of light- (or shade-) preferring parents should exhibit 

the same distribution of behaviors as the entire parental generation, not their specific parents. 

(These predictions were tested in the phototactic paradigm because of its higher throughput and 

our use of its parameter values in the model). We compared the behavioral distribution of our 

polygenic isofemale CamA line with that of the line “inbred-CamA”, which was inbred by sibling 
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matings for 10 generations. Inbreeding had no significant effect on the mean or variance of the 

behavioral distribution (Figure 5.5A). Using inbred-CamA we set up multiple crosses comprising 

a male and a virgin female that both either prefer the shade or the light (Figure 5.5B, C). If their 

individual photopreferences are due to genetic polymorphisms between flies, then their progeny 

should have a correspondingly shifted mean photopreference relative to the original population. 

However, we found there was no difference in the mean photopreferences of broods derived 

from shade-preferring parents versus light-preferring (Figure 5.5B-E). Using Fisher’s selection 

estimator of heritability (h2 = R/S), we estimated h2 = -0.026, with a standard error of 0.048. 

Thus, heritable polymorphisms determine at most a small component of each individual’s 

behavior, consistent with a bet-hedging strategy. Moreover, the distributions of brood 

photopreferences were indistinguishable from the parental distribution, in variance as well as 

mean (Figure 5.5D,E).  
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Figure 5.5 - Individual phototactic preference is not heritable.  
(A) Observed histogram of the phototactic preference across individual CamA flies (blue) and inbred-
CamA flies (black). Points and bars represent the distribution mean and +/- 1 standard deviation. p-values 
from two-sample Kolmogorov-Smirnov test comparing each progeny distribution to the parental 
distribution. (B) Representative samples of the phototactic scores of a shade-preferring male and female 
(top) and the phototactic scores of their resulting progeny (bottom). Each row represents an individual 
fly’s phototactic preference over time. White boxes indicate lit choice, black boxes indicate shaded 
choice, and gray boxes a missing value. (C) As in (B), but for light-preferring parents and their progeny. 
(D) Phototactic indices for strongly biased shade- or light-preferring individuals (tan and brown bars) and 
their resultant progeny (dark blue bars). The dashed line and yellow bar indicate the original pool of 
animals from which strongly biased individual parents were selected. Numbers above bars indicate 
sample size, with p-values from KS test uncorrected for multiple comparisons. Error bars are +/-1 one 
standard deviation. (E) Histograms of phototactic preferences within the respective progeny. 
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Deterministic model shows that the bet-hedging advantage is population size invariant 

The heritability intrinsic to the AT strategy means that in a finite population simulation (such as 

in our model population of 100 virtual flies; Figure 5.4) the mean thermal preference index of the 

population can vary significantly from replicate to replicate due to the stochastic nature of the 

model (Figure 5.4C). AT may lock in maladaptive thermal preference indices due to drift, and 

the rate at which this happens depends critically on the simulated population size35. Since it was 

arbitrary to simulate 100 animals, and effective population sizes in the wild are unknown (and 

perhaps far too large to simulate efficiently36), we developed a difference equation version of the 

model, in which the population size was effectively infinite and immune to stochastic effects. In 

this implementation, sub-populations of flies with specific thermal preference indices were 

determined by a set of difference equations (see Methods). The difference equation versions of 

the BH and AT strategies performed similarly to the simulations of individuals (Figure 5.6A, B), 

with BH outperforming AT by 1.1% by the end of the summer, and the AT model undergoing two 

selective sweeps of opposite direction.  

 

 

Figure 5.6 - Performance of BH and AT using a difference equation implementation of the model.  
(A) Abundance of flies as a function of thermal preference index and time for AT and BH strategies under 
the difference equation model. Arrowhead indicates adaptive thermal positivity during the spring. Dashed 
white line indicates the mean thermotactic preference. (B) Population size (solid lines) and mean thermal 
preference index (dashed lines) over time of BH (red) and AT (blue) versions of the difference equation 
model. 
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Using this variant of the model, we confirmed that populations utilizing either a BH or AT 

strategy performed best with intermediate levels of variability (Figure 5.7; for these analyses, we 

relaxed the constraint of matching simulated variability to experimentally observed variability). 

Performance diminished when variability was too low or too high, supporting the hypothesis that 

the observed thermotactic and phototactic preference variability is adaptive. The qualitative 

results of this model are robust to most assumptions, but sensitive, as expected, to seasonal 

weather conditions and the range of temperatures accessible by behavioral choices (Table 5.2). 

The model is qualitatively sensitive to the mean thermal preference index value, which is not 

surprising, since altering this value means flies are mismatched to their life history tradeoff 

optimum. An AT strategy allows them to adaptively counter this mismatch. 

 

 

Figure 5.7 - End-of-season population size, as a function of phenotypic variance.  
Solid lines reflect performance under seasonally varying temperatures (following the mean daily 
deviations for Boston, MA). Dotted lines reflect performance in constant temperature seasons. Red 
indicates bet-hedging populations, blue adaptive tracking. In all conditions the initial phenotypic 
distribution followed a beta distribution with mean equal to the experimental mean thermal preference, 
and variance equal to the experimental variance multiplied by the multiplier indicated on the x-axis. 
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Table 5.2 - Assessment of model qualitative robustness to various parameters and assumptions. 
* indicates robustness in the relative performance of bet-hedging and adaptive tracking, but unrealistic 
output otherwise, such as rapidly expanding populations when * is increased on its own. Bold figures 
indicate conditions with BH out performing AT at the end of the season. Numbers in parentheses indicate 
default values. All parameters or assumptions were changed singly, while holding all others at their 
default values. 
 

Parameter or Assumption Robust or 
Sensitive 

Evidence 

thermal preference mean (0.3183) sensitive TPM = 0.16 … BH vs AT = -47% 
TPM = 0.26 … BH vs AT = -11% 
TPM = 0.38 … BH vs AT = -1.7% 

thermal preference variance (0.0162) robust TPV = 0.012 … BH vs AT = 0.82% 
TPV = 0.032 … BH vs AT = 1.7% 

birth rate parameter (*) (0.04480243) robust* * = 0.040 … BH vs AT = 1.2% 
* = 0.060 … BH vs AT = 0.05% 

death rate parameter (+) (0.012755) robust* + = 0.008 … BH vs AT = 0.62% 
+ = 0.016 … BH vs AT = 0.047% 

shade temperature difference (7°C) robust STD = 4°C … BH vs AT = 0.27% 
STD = 10°C … BH vs AT = 1.5% 

time to eclosion vs. temperature = M(T) robust M(T) = 0.23T2–11.8T+168 (+10d offset) 
… BH vs AT = 1.5% 
M(T) = 90–3T (linear, decreasing) 
… BH vs AT = 0.24% 
M(T) = 100000T–3 (asymptotically decreasing) 
… BH vs AT = 1.5% 

adult lifespan vs. temperature = A(T) robust A(T) = 0.41T2–28.4T+606 (+100d offset) 
… BH vs AT = 0.035% 
A(T) = 130–3T (linear, decreasing) 
… BH vs AT = 0.17% 
A(T) = 120–0.12T2 (concave-down, 
decreasing) 
… BH vs AT = 0.22% 

immature fly thermal experience 
determined by parental preference 

robust Stochastic simulation run with immature fly 
thermal experience determined by their own 
preference. Results statistically 
indistinguishable. Not applicable to difference 
equation model. 

flies overwinter as adults robust Stochastic simulation run with initial fly ages 
either uniformly distributed > maturity age, or 0. 
Results statistically indistinguishable. Not 
applicable to difference equation model. 

seasonal weather conditions varies Figure 5.4D, Figure 5.8, Figure 5.9 

length of breeding season robust Figure 5.8F 

inclusion of plastic behavioral 
responses 

robust Figure 5.7 
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Incorporating historical weather data into the model 

To test the effects of daily temperature fluctuations and cloud cover, we ran the difference 

equation model against historic weather data collected in Boston, Massachusetts, U.S.A. (U.S. 

National Oceanic and Atmospheric Administration [NOAA]34; Figure 5.8A). The temperature in 

each day of the simulation was taken from actual historical data from that day, on a year-by-

year basis. Cloud cover was implemented by assuming that the temperature difference 

available for flies to respond to (i.e. between sun and shade) each day was proportional to the 

average cloud cover of that day. Not surprisingly, reducing the temperature difference available 

to flies (due to cloud cover) reduced the magnitude of the advantage of the BH strategy (to 

around 0.2% for years 2007-2010) (Figure 5.8B). We initially thought that short-term heat waves 

(or cold spells) might be enough to confer an advantage to bet-hedging, but no clear 

conclusions about the impact of short-term fluctuations could be drawn from this historical data. 

However, it was clear that some years were more conducive to bet-hedging than others. For 

example, in 2010 the BH advantage was comparatively low (Figure 5.8B). The weather that 

year was consistently warmer than in the others, particularly in the spring and fall (Figure 5.8A, 

C), exerting a comparatively uniform selective pressure for cool-seeking, thereby reducing the 

advantage of bet-hedging. Consequently, the AT population exhibited a more consistent trend of 

decreasing mean thermal preference index across the entire year (Figure 5.8C), although 

overall BH still outperformed AT. 
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Figure 5.8 - BH vs AT in historical and modeled breeding seasons.  
(A) Abundance of flies as a function of thermal preference index and time in the BH version of the 
difference equation model, applied to historical weather data (temperatures and cloud cover) from 2008 
and 2010. Orange and blue traces indicate temperature deviation from daily normals. Gray traces indicate 
daily cloud cover percentage. Colored bars indicate the daily mean temperature. (B) BH versus AT 
advantage as a percent of the final population vs. year ((popBH-popAT)/popAT*100). (C) Mean thermal 
preference indices for AT (blue) and BH (red) versions of the real weather difference equation model for 
2008 (solid lines) and 2010 (dashed lines). Colored bar as in (A). (D) Histogram of BH versus AT 
advantage as a percent of final population using the difference equation model across 3000 simulated 
seasons. Shaded region indicates the simulations in which BH outperformed AT. (E) Scatterplot of BH 
versus AT advantage versus mean temperature (left panel) or the standard deviation of the temperature 
(right panel), across 3,000 simulated seasons. Shaded region indicates the simulations in which BH 
outperformed AT. r2 values reflect quadratic fits (dashed lines). (F) Scatterplot of BH versus AT 
advantage versus breeding season length, across 1000 simulated weather seasons. Shaded region and 
r2 value as in E. 
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Mean temperature and temperature range are most predictive of the BH vs AT advantage 

We developed statistical models of the daily temperature fluctuations and cloud cover that 

allowed us to simulate realistic random breeding seasons, and systemically tested the factors 

favoring the BH and AT strategies. Across 3000 random seasons, BH outperformed AT 68% of 

the time (Figure 5.8D). We examined numerous metrics describing the simulated seasons 

(Figure 5.9) and found two in particular that were predictive of the magnitude of the BH vs AT 

advantage (Figure 5.8E): the temperature mean and standard deviation. BH outperformed AT 

when the season has a typical temperature while exceptionally hot or cold seasons favored the 

AT strategy. Additionally, AT performs poorly during “high variance” seasons (those with cold 

springs and falls, and hot summers) because it engenders large, lagged fluctuations in genotype 

frequency.  
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Figure 5.9 - BH versus AT advantage versus various seasonal measures.  
All Y-axes as in the first panel. F-H were calculated by summing the normalized autocorrelation vector of 
the daily temperature deviations for the specified range of offsets. Most measures showing clear 
relationships with BH-AT advantage reduce to either mean temperature (A) or temperature standard 
deviation (B). As examples: Seasons with many days of moderate temperature (R, S) correspond to 
seasons of low temperature standard deviation. Conversely, seasons with more very high temperature 
days (X-Z) correspond to hot years (A). Seasons with greater correlation between daily temperature and 
temperature normal (α, γ) have more extreme temperature ranges, corresponding to (B). 
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We also analyzed the effects of shorter or longer breeding seasons by compressing or 

stretching random temperature and cloud cover histories into seasons ranging from 107 to 365 

days (Figure 5.8F). The mean relative advantage of BH versus AT did not depend on season 

length, however the variance of BH advantage increased with season length. Only long seasons 

exhibited strong advantages for either BH or AT, presumably because increasing the number of 

generations per season increases the potential for adaptation, whether it be productive or 

counterproductive. The shortest seasons exhibited little difference between BH and AT. 

 

Global climate change is predicted to shift evolutionary strategy from BH to AT 

Across the 3000 random seasons, the BH vs. AT advantage never exceeds ~1% per season 

but could drop as low as ~-2% in some seasons (Figure 5.8D). Despite the longer negative tail 

in this distribution, the small advantage of BH over AT in most summers quickly accumulated 

across simulations of multiple sequential seasons (Figure 5.10A), indicating this strategy was 

highly favored on longer timescales. However, we found that an increase of only 2°C to the 

mean seasonal temperature was sufficient to change the evolutionary dynamic in favor of 

adaptive tracking (Figure 5.10B). Conservative models of global climate change predict 

increases in this range in the Boston area by the end of the century37. Thus, while seasonal 

weather fluctuations generally favor bet-hedging in thermal preference behavior, climate change 

will likely cause a phase-shift in the evolutionarily optimal strategy toward adaptive tracking. 
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Figure 5.10 - Climatic and geographic variation in BH vs AT advantage.  
(A) Relative population sizes for the BH (red) and AT (blue) versions of the model (top) and cumulative 
BH vs. AT advantage (middle) over the same 100 random simulated seasons. Bottom panel shows the 
corresponding abundance of flies as a function of thermal preference index and time, across 100 
seasons, for each strategy. (B) Phase space of BH vs. AT advantage as a function of the two most 
predictive metrics. Color indicates magnitude of the advantage. Circle indicates current state while the 
square indicates the state if the average temperature were to increase 2°C. (C) Geographic map of BH vs 
AT advantage. Data points correspond to specific NOAA weather stations; background coloration is 
interpolated. 
 

Geographical variation in BH vs AT advantage 

Lastly, we considered to what extent the BH vs AT advantage we saw with Boston weather data 

was location specific. We ran the model using mean daily temperature data from more than 

1400 weather stations across the continental United States34 and compared the performance of 
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the BH and AT strategies (Figure 5.10C). Our model predicts substantial regional variation in 

the optimal strategy. In most locations, BH maintains a small advantage. In the deep south, 

where the breeding season is year-long, allowing more time for adaptation, BH performance is 

much worse than AT. However, the temperature extremes and shortened breeding season of 

regions just north (or at higher elevation in the southern Appalachians) renders BH strongly 

advantageous. This is consistent with the observation that a long breeding season can strongly 

favor either AT or BH (Figure 5.8F). Consistently, the short breeding seasons of higher latitudes 

and the Rocky Mountains favor neither AT nor BH strongly. AT appears to be favored along the 

Pacific coast, which is characterized by low temperature fluctuations.  
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Discussion 

Here we explored whether a bet-hedging strategy could explain the large observed variation in 

temperature preference in Drosophila, as measured in phototactic and thermotactic paradigms. 

We find that in the face of fluctuating seasonal temperature selective pressures, adaptive 

tracking (in which progeny inherit the thermal preference index of their parent) always lags; by 

the time the population has adapted to the cool springtime with increased warm-preference, 

summer arrives. By contrast, the population grows faster if the behavioral preference of 

individual flies is non-heritable so that there are always spring-adapted and summer-adapted 

animals being born. The bet-hedging advantage is strongest under two conditions. 1) Highly 

variable temperatures (cool springs coupled to hot summers) magnify the selective pressure on 

the adaptive tracking population and thus produce larger counterproductive changes in 

genotype frequency as the temperature fluctuates throughout the season. This is consistent with 

the observations of seasonally fluctuating allele frequencies in flies32. 2) When mean 

temperatures are typical, the ability of the AT strategy to adaptively evolve is superfluous. In one 

example, the year 2010 was warmer on average, and its spring was particularly warm, reducing 

the seasonal temperature variability. Both of these factors gave the AT strategy a relative boost 

for being able to evolve, and thus reduced the overall BH advantage (Figure 5.8B,C). 

 

Beyond adaptive tracking and bet-hedging, another major strategy for dealing with 

environmental heterogeneity is plasticity, in which organisms adaptively tune their phenotype in 

direct response to environmental fluctuations. The set of plasticity strategies can even include 

hybrid strategies such as the moment-to-moment regulation of the extent of bet-hedging in 

response to environmental conditions. In the absence of constraints, such as metabolic cost or 

limits on achievable phenotypes, a plasticity strategy is tautologically optimal38, though such 

constraints surely exist. Generating an empirical estimate of the costs imposed on Drosophila in 

response to environmental fluctuations is beyond our capabilities.  
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Instead, we offer three lines of evidence suggesting plasticity cannot explain away the apparent 

adaptive advantages of bet-hedging. First, we simulated flies that were able to use behavioral 

choices to achieve a preferred thermal experience, bounded by the environmental temperature 

range available between shade and sun. Varying strengths of this strategy were combined with 

bet-hedging, and we found that over a wide range of strengths of plasticity, bet-hedging 

continued to offer a relative advantage (Figure 5.11). Second, we observed striking behavioral 

variation in populations of animals grown in essentially identical conditions (laboratory culture); 

to first approximation, there were no environmental fluctuations (e.g. variations in ambient 

temperature or luminance) to which a plasticity strategy could respond. Third, under conditions 

of convex fitness functions (i.e. with a single predominant mode of fit phenotypes), plasticity 

strategies can be at a disadvantage compared to bet-hedging strategies even if they come with 

low costs38. The unimodal relationships between temperature and eclosion time and lifespan 

(Figure 5.3B, C) yield a convex fitness function in our case, suggesting that plasticity may be 

outcompeted by bet-hedging (or even adaptive tracking), even if it comes at a relatively low 

cost. 
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Figure 5.11 - Relative performance of bet-hedging vs. adaptive tracking, as a function of the 
strength of a concurrent plasticity strategy.  
Top) Simulated flies experienced temperatures corresponding to the weighted average of their baseline 
strategy (either BH or AT) and a plasticity strategy in which they could choose to rest either in the shade, 
or the sun, in whatever portion brought their thermal experience closest to the species-wide preferred 
temperature (25°C). X-axis corresponds to the relative weighting of the plasticity strategy, with 0 
indicating entirely BH or AT, and 1 indicating entirely the plastic strategy. Bottom) We simulated this 
strategy by assuming that the thermal experience of flies on a given day was T + x * shadeDiff * 
cloudCover + p * ATD, where T is the daily in-shade temperature, x is the animal’s thermal preference, 
shadeDiff is the shade vs. sunlight temperature difference (7°C), cloud cover is the fraction of cloud cover 
(0-10 in NOAA coding, divided by 10 in our calculations), p is the strength of plasticity, and ATD is the 
“achievable temperature delta” (the temperature offset attainable by behavioral choices, equation given 
above). 
 

Our analysis focused on Drosophila melanogaster, a species with a relatively short reproductive 

cycle capable of producing several generations within the breeding season. It is likely that 

species generating fewer generations per season (i.e. K-selected species) would be less 

subject to the pitfalls of an adaptive tracking strategy since they would respond less to any 

temperature fluctuation. While our model did not permit us to realistically change the life history 

of our simulated Drosophila in the context of real weather data, we were able to simulate 
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changes in the length of the breeding season (Figure 5.8F). Shorter seasons are comparable to 

a K-selected life history because they yield fewer generations per season. We found that, as 

hypothesized, shorter seasons reduce the difference between adaptive-tracking and bet-

hedging strategies, while long seasons can favor either strategy depending on other factors (i.e. 

Figure 5.8E). 

 

This modeling highlights the importance of population-level properties, namely the amount of 

variation and the heritability of that variation. Population-level traits touch on the topic of group 

selection39, and indeed aspects of bet-hedging were sometimes conflated with group selection 

in the literature6. However, our models do not directly address this controversial issue because 

they have no reliance on specific population structures, (the concept of which largely evaporates 

when considering non-heritable traits). Importantly, selection still operates, in all 

implementations of our model, at the level of the individual. 

 

Two avenues for future investigation emerge from our results. First, flies captured and assayed 

at different time points throughout the season should show differences in their mean 

thermotactic preference (Figure 5.4E), that reflect their mode of inheritance. Specifically, flies 

using a AT strategy and caught in the early summer would be comparatively warm-seeking, 

while flies using a BH strategy would be comparatively cool-preferring at the height of the 

summer, when the high temperature selectively shortens the lifespan of warm-seeking 

individuals. However, analysis of behavior across the breeding season must consider seasonal 

changes in allelic frequencies32.  

 

Second, flies from locales with large seasonal weather changes (e.g., Boston, Massachusetts, 

U.S.A.) may have greater behavioral variation than those from milder, less variant climates 

(e.g., coastal central California, U.S.A.; Figure 5.10C). This prediction plays out on a variety of 
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spatial scales, the largest being a latitudinal cline in the east and midwest, where southern 

climates favor AT and northern climates BH. This prediction is consistent with recent 

experiments showing that northern strains of Drosophila subobscura are more resistant to high 

intensity fluctuating thermal stress, but more sensitive to prolonged (but milder) constant offset 

conditions40. Further experiments are needed to test these hypotheses, as other groups have 

found no latitudinal signal across several measures of thermal tolerance and plasticity in 

Australian Drosophila simulans41. Moreover, both of these studies examined isofemale lines; 

examination of isogenic lines would more directly permit the detection of a relationship between 

latitude and bet-hedging derived behavioral variability. 

 

There is also a third prediction from these models concerning the effect of climate change on 

these strategies. Due to incrementally increasing mean temperatures over time, AT becomes 

the more evolutionarily advantageous option as the organisms continually adapt to the new 

normal. An increase of 2°C will be sufficient to favor adaptive tracking over bet-hedging, a 

change predicted to take approximately one hundred years. As both phototactic42 and 

thermotactic17 preference are heritable in outbred populations, we expect that flies will be able 

to adapt to climate change, but not by employing bet-hedging. Heritability of individual behaviors 

is a prerequisite for the evolution of AT, and it is plausible that a switch in selective pressure on 

strategies could increase adaptive tracking by favoring individuals with deeper developmental 

canalization. This would reduce the phenotypic variance associated with any single genome and 

allow the distribution of genetic variation for behavioral traits to more directly determine the 

phenotypic distribution. 

 

The underlying basis of individual differences in thermal preference also remains to be 

discovered. Many mechanisms are possible, such as variation in thermoreceptor expression or 

propensity to stop and rest, but our model is indifferent to underpinnings of individual variability. 
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The conclusions drawn from the models here are not meant to say that bet-hedging is the sole 

explanation for behavioral variation. However, we have found that under the constraint of 

experimental data on the magnitude of behavioral variability between individuals, and with a 

minimal set of assumptions, bet-hedging appears to be a more adaptive explanation of 

behavioral variation than deterministic genetic heterogeneity. Indeed, we believe that real 

Drosophila probably utilize at least three strategies – bet-hedging, adaptive tracking, and 

phenotypic plasticity – to optimize its survival in an uncertain world.   
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Methods 

Behavior 

The Drosophila melanogaster line CamA was established from a single mated female caught 

from the wild in Cambridge, MA U.S.A. and propagated in the lab for approximately two 

generations at typical Drosophila culture densities prior to behavioral testing. The line inbred-

CamA was derived by 10 generations of sibling matings. All flies were cultured on standard 

growth medium (Scientiis) in 25°C incubators at 30-40% relative humidity on a 12-12h light-dark 

cycle. Phototactic experiments were conducted at 23°C. Both behavioral assays were 

conducted at 30-40% humidity in environmental rooms. We found no difference in the 

behavioral responses of males versus females and merged their data. For both assays, only 

those flies registering 10 or more choices were analyzed (flies with only a small number of 

choices yield noisy estimates of individual preference). 

 

Age- and sex-controlled flies were placed singly into 30 tubes in the “slow photobox,” which is 

illuminated from below by diffused white LEDs (5500K, LuminousFilm) (Figure 5.1A). A 50% 

neutral density filter was used to generate a lit half and shaded half for each tube. The lit portion 

of the arenas were slightly (0.1-0.5°C) warmer than the shaded portion. The arenas, 

illuminators, and diffusers are mounted on kinematic flexure mounts allowing ~1cm translation 

parallel to the testing tubes, under the control of a solenoid/microcontroller system driving 

vibration at 20 Hz. Agitation of the animals induced them to run and thereby reset their position 

between successive measurements of their light/shade preference. Each trial consisted of 

agitation (three 2s pulses, each separated by a 1s pause), an interval of 577s, acquisition of the 

photo used to score animal position, and a 15s interval completing the 10m trial. Animal position 

was determined by subtracting the background image of the rig and calculating the centroid of 

all pixels that had changed relative to the background (on a tube-by-tube basis), subject to a 
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noise-eliminating threshold. Animals not registering more than 10 choices were excluded from 

analysis. 

 

The slow thermobox (Figure 5.1D) was fabricated by placing the acrylic tray of choice tubes 

used in the slow photobox down on a slab of aluminum with thermal grease. The aluminum slab 

was in contact with two larger aluminum blocks, one warmed to 40°C with resistive heating 

elements, and one cooled to 10°C with thermoelectric coolers (Peltier elements). The 

temperature of both larger blocks was held constant by PID controllers reading insulated 

resistance temperature detectors (3-wire, 100ohm). The 30-18°C gradient achieved within the 

choice tubes was measured using an infrared thermometer gun and was highly linear. For each 

of 20 trials, animals were first agitated by flowing air into the choice tubes, dislodging the 

animals toward the warm end. After 9.5 minutes the tubes were photographed, and the position 

of each animal measured digitally.  

 

Day-to-day persistence of phototactic preferences was measured in a modified apparatus in 

which the floors of the imaging tubes were open at either end unto a surface of standard fly food 

poured in a ~0.5cm thick layer. This way, the flies could feed during an extended 40h trial. Day-

to-day persistence of thermotactic preference was measured by the standard assay, individual 

housing of flies overnight, and retesting under the standard protocol. 

 

Temperature measurement 

Temperature differences between sun and shade were measured using an infrared 

thermometer gun on partly cloudy days in the summer and autumn. In one set of comparisons 

we measured the temperature of substrates in the shade of clouds, and then waited until ~5 

minutes after the cloud had passed and measured their temperature in sunlight. In another set 

of comparisons, we compared adjacent sunlit and shaded (e.g. by a building or road sign) 
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substrates of the same orientation. Measured substrates included grass, brick, pine branches, 

tree bark, gravel etc. 

 

Statistics  

Data from individual flies that did not move upon agitation for 3 or more successive trials were 

discarded since these measurements were clearly non-independent from trial to trial. Sequential 

slow phototactic choices were found to have an average of 0.054 bits of mutual information 

across individuals, indicating effective independence (0 bits indicates complete independence in 

every animal, 1 complete dependence). This justifies treating behavioral choices as 

independent events and shows that the agitation protocol succeeded in rousing the animals 

between trials. We therefore modeled the expected distribution of light-choices with a binomial 

distribution with parameter p equal to the average light-choice probability of all animals tested, 

and parameter n equal to the number of trials, 24.  

 

Modeling 

See Results and Figure 5.12 for descriptions of the model. In the bet-hedging implementations 

of the model, each fly was randomly assigned a thermal preference index drawn from the 

experimentally observed preference distribution (fit by a beta distribution; Figure 5.1C). In 

adaptive-tracking implementations, the seed population was initialized in that way, but all 

subsequent animals were assigned a preference identical to their mother’s preference (thus the 

model is asexual). Stochastic simulations of finite populations were seeded with 100 flies with 

ages uniformly distributed on [M(T), A(T)] – respectively the temperature-dependent mean ages 

of eclosion and death – since flies may overwinter as adults43. We also implemented a version 

of the model in which the seed population was synchronized to the egg stage. This model was 

qualitatively indistinguishable. Flies in this initial population were assigned to have developed at 

random in the sun versus the shade with a probability equal to the population mean thermal 
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preference index. Individual flies were simulated, removed from the virtual population at random 

according to the parameter δ, and born stochastically at a rate β from mature flies already in the 

population. The temperature experience of fly i on day j was determined as pi * shadeDiff * 

cloudCoverj + Tj, where pi is the thermal preference index of fly i, shadeDiff is the temperature 

difference between light and shade, cloudCover is the average fraction of cloud cover on day j, 

and Tj is the in-shade temperature on day j. The birth and death rate parameters were identified 

(by grid search or hill-climbing algorithm) as the unique pair of values that satisfy two 

assumptions: 1) the fly population neither grows nor diminishes across the breeding season, i.e 

it is at numerical equilibrium, and 2) the mean thermal preference index does not evolve across 

the breeding season, i.e. flies are adapted to typical conditions. For every distinctive weather 

model, parameter fitting was independently performed using the adaptive tracking 

implementation. See Table 5.1 for parameter values.  
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Figure 5.12 - Flowchart of the stochastic agent-based implementation of the fly life history model.   
See Results for additional explanation. 
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A related version of the model, which simulates infinite population sizes, was implemented 

analogously using a system of difference equations, but could be used to efficiently evaluate 

historical and simulated daily temperature deviations and cloud-cover values. In this 

implementation of the model, clouds reduced the maximum ambient temperature difference 

attainable by individual flies in proportion to the mean daily cloud cover fraction. Historical daily 

temperature deviations were normally distributed and modeled using a 30 parameter 

autoregression filter of normally distributed white noise. Random cloud cover was generated by 

drawing a season-long sequence of values from the observed (non-Gaussian) distribution of 

cloud cover fractions. These values were then shuffled until the new cloud cover sequence was 

no longer correlated with the original sequence (r < 0.1), under the constraint that the 

autocorrelation of the simulated sequence was correlated to that of historical cloud data with 

r>0.998, thus preserving temporal statistical structure of the sequence. Historical cloud and 

temperature deviation data were uncorrelated (r = 0.02), so simulated sequences of these 

variables were derived independently.   
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Difference equation model 

The difference equation model was: 

 

Here, Nj(t) is the number of flies alive at time t with thermal preference index j. Δ(j) is the rate at 

which flies die due to thermal experience-dependent mortality as a function of j. τ(j) is the 

effective temperature experienced by flies with thermal preference index j, with Temp(t) 

indicating temperature and Sky(t) indicating respectively the temperature and cloud cover 

fraction at time t. The summation term in Nj(t) indicates the number of flies born at time t with 

thermal preference index j, born from parents with thermal preference index i, which depends on 

the population sizes of flies with thermal preference index i at time t-1(Ni(t-1)), the fraction of 

each of those parental subpopulations which are fertile (F(i)) and the probability densities of 
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parental thermal preference index (Pj(i)) conditioned on the thermal preference index of the 

progeny (j), and given the alternative BH vs AT strategies. (Pj(i) is coded as a matrix with 

probability entries in row j, column i. For strategy AT, it is the identity matrix; for strategy BH, 

every row of Pj(i) equals the beta-fit distribution from Figure 1C.) F(i) depends on the ratio of 

development time D(i) to total lifespan L(i) of flies with thermal preference index i. D(i) depends 

on the effective temperature experienced by parents (as this determines egg laying site) during 

development τD(i) which we approximate as the mean effective temperature across a range 

starting at time t minus half the typical lifespan, and ending D(τ’D) days later (bounded by the 

time endpoints of the simulation). Development time is dependent on integrated temperature, 

which in turn depends on the length of development, given temperature’s temporal fluctuation. 

The calculation of D(τ’D) reflects one level of recursion in the calculation of this feedback. τ’D is 

calculated as the average temperature from t’D1 through 21 days later, an interval approximating 

half a typical lifespan. The results of the difference equation model are very robust to the choice 

of the intervals in this recursion approximation, as well as the number of recursive levels 

implemented. 

 

In comparisons of populations with differing initial thermal preference index distributions, we 

could not use the same values of δ and β for both conditions. Thus, an approach of fitting those 

parameters to satisfy the constraint of constant population size from beginning to end of the 

breeding season would not work - both populations would tautologically have identical 

populations at the end of the season. In these cases, we calibrated δ and β using a different 

assumption: identical mean population sizes across the breeding season, thus allowing the final 

population size to vary, and allowing us to assess relative growth rates. The other fitting 

assumption, that the mean thermal preference index did not evolve, was invoked in all cases. 
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In simulations of sequential seasons, the mean thermal preference index of the initial population 

of each season was set to the mean of population at the end of the previous season, but the 

variance was reset to match the empirical data. In geographic simulations, breeding seasons 

were defined as all days between the first day of the year in which temperatures reach 6.5°C 

and the first day when mean temperatures fall below 10°C, the same thresholds used in the 

Boston season. The non-parity in these values reflect our understanding that the first thaw 

suffices to end diapause while the first frost is sufficient to trigger it. The specific predictions 

associated with some stations are sensitive to these bounds, but the overall geographic patterns 

are not. The β and δ parameters were fit independently for each station automatically using a 

hill-climbing algorithm. Included stations were chosen at random from the 7500 stations in the 

NOAA data set, however, the algorithm was unable to fit the model parameters for some 

stations in very hot regions, i.e. some of the deep south and the Mojave Desert, so station 

geographic sampling is not unbiased. Background interpolation in geographic maps was done 

pixel by pixel using the function , i.e. the average of all stations 

indexed by i and weighted by wi, where , i.e. inverse 

Euclidean distance from the pixel (x,y) to station i raised to the third power. This exponent was 

chosen to ensure a sharp drop-off with distance from the station but is otherwise arbitrary.  

 

  



 

 183 

References 
 
1. Sultan, S. E. Phenotypic plasticity for plant development, function and life history. Trends in 

Plant Science 5, 537–542 (2000). 

2. DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. 
Evol. 13, 77–81 (1998). 

3. Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of 
phenotype and plasticity. Heredity 115, 293–301 (2015). 

4. Kawecki, T. J. The Evolution of Genetic Canalization Under Fluctuating Selection. Evolution 
54, 1–12 (2000). 

5. Huang, Y., Wright, S. I. & Agrawal, A. F. Genome-Wide Patterns of Genetic Variation within 
and among Alternative Selective Regimes. PLOS Genet. 10, e1004527 (2014). 

6. Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. 
Entomol. 44, 535–560 (1999). 

7. Simons, A. M. Modes of response to environmental change and the elusive empirical 
evidence for bet hedging. Proc. R. Soc. B Biol. Sci. 278, 1601–1609 (2011). 

8. Levy, S. F., Ziv, N. & Siegal, M. L. Bet Hedging in Yeast by Heterogeneous, Age-Correlated 
Expression of a Stress Protectant. PLOS Biol. 10, e1001325 (2012). 

9. Haccou, P. & Iwasa, Y. Optimal Mixed Strategies in Stochastic Environments. Theor. Popul. 
Biol. 47, 212–243 (1995). 

10. Müller, J., Hense, B. A., Fuchs, T. M., Utz, M. & Pötzsche, Ch. Bet-hedging in stochastically 
switching environments. Journal of Theoretical Biology 336, 144–157 (2013). 

11. Cohen, D. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 
119–129 (1966). 

12. Svardal, H., Rueffler, C. & Hermisson, J. Comparing environmental and genetic variance as 
adaptive response to fluctuating selection. Evol. Int. J. Org. Evol. 65, 2492–2513 (2011). 

13. Sasaki, A. & Ellner, S. The Evolutionarily Stable Phenotype Distribution in a Random 
Environment. Evolution 49, 337–350 (1995). 

14. Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to 
personality variation: heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 
(2015). 

15. Ayroles, J. F. et al. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. 
Proc. Natl. Acad. Sci. U. S. A. 112, 6706–6711 (2015). 



 

 184 

16. Buchanan, S. M., Kain, J. S. & de Bivort, B. L. Neuronal control of locomotor handedness in 
Drosophila. Proc. Natl. Acad. Sci. U. S. A. 112, 6700–6705 (2015). 

17. Dillon, M. E., Wang, G., Garrity, P. A. & Huey, R. B. Thermal preference in Drosophila. J. 
Therm. Biol. 34, 109–119 (2009). 

18. Waddington, C. H., Woolf, B. & Perry, M. M. Environment Selection by Drosophila Mutants. 
Evolution 8, 89–96 (1954). 

19. Rockwell, R. F. & Seiger, M. B. Phototaxis in Drosophila: A Critical Evaluation. Am. Sci. 61, 
339–345 (1973). 

20. Lewontin, R. C. On the Anomalous Response of Drosophila pseudoobscura to Light. Am. 
Nat. 93, 321–328 (1959). 

21. Seiger, M. B., Seiger, L. A. & Kertesz, J. A. Photoresponse in Relation to Experimental 
Design in Sibling Sympatric Species of Drosophila. Am. Midl. Nat. 109, 163–168 (1983). 

22. Scott, J. P. Effects of single genes on the behavior of Drosophila. Am. Nat. 77, 184–190 
(1943). 

23. Pittendrigh, C. S. Adaptation, natural selection and behavior. in Behavior and Evolution 
390–416 (Yale University Press, 1958). 

24. Ashburner, M. Drosophila: a laboratory handbook. (Cold Spring Harbor Laboratory Press, 
2005). 

25. Ashburner, M. & Thompson, J. N. Jr. Laboratory culture of Drosophila. Genet. Biol. Drosoph. 
2a, 1–109 (1978). 

26. Miquel, J., Lundgren, P. R., Bensch, K. G. & Atlan, H. Effects of temperature on the life 
span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347–370 
(1976). 

27. Parry, D. A. Factors Determining the Temperature of Terrestrial Arthropods in Sunlight. J. 
Exp. Biol. 28, 445–462 (1951). 

28. Digby, P. S. B. Factors Affecting the Temperature Excess of Insects in Sunshine. J. Exp. 
Biol. 32, 279–298 (1955). 

29. Martin, T. L. & Huey, R. B. Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm 
thermal preferences. Am. Nat. 171, E102-118 (2008). 

30. Condon, C. et al. Indirect selection of thermal tolerance during experimental evolution of 
Drosophila melanogaster. Ecol. Evol. 5, 1873–1880 (2015). 

31. Tobler, R., Hermisson, J. & Schlötterer, C. Parallel trait adaptation across opposing thermal 



 

 185 

environments in experimental Drosophila melanogaster populations. Evol. Int. J. Org. Evol. 
69, 1745–1759 (2015). 

32. Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic 
Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in 
Drosophila. PLOS Genet. 10, e1004775 (2014). 

33. Kain, J. S., Stokes, C. & de Bivort, B. L. Phototactic personality in fruit flies and its 
suppression by serotonin and white. Proc. Natl. Acad. Sci. U. S. A. 109, 19834–19839 
(2012). 

34. Arguez, A. et al. U.S. Daily Climate Normals (1981-2010). doi:10.7289/V5PN93JP (2010). 

35. Wright, S. Evolution in Mendelian Populations. Genetics 16, 97–159 (1931). 

36. Karasov, T., Messer, P. W. & Petrov, D. A. Evidence that adaptation in Drosophila is not 
limited by mutation at single sites. PLoS Genet. 6, e1000924 (2010). 

37. Meehl, G. A. et al. Global climate projections. in IPCC, 2007: Climate Change 2007: the 
physical science basis. contribution of Working Group I to the Fourth Assessment Report of 
the Intergovernmental Panel on Climate Change 747–846 (Cambridge University Press, 
2007). 

38. DeWitt, T. J. & Langerhans, R. B. Integrated solutions to environmental heterogeneity: 
theory of multimoment reaction norms. in Phenotypic Plasticity: Functional and Conceptual 
Approaches 98–111 (Oxford University Press, 2004). 

39. Wilson, D. S. & Wilson, E. O. Evolution ‘for the Good of the Group’. Am. Sci. 96, 380–389 
(2008). 

40. Castañeda, L. E., Rezende, E. L. & Santos, M. Heat tolerance in Drosophila subobscura 
along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. 
Evolution 69, 2721–2734 (2015). 

41. van Heerwaarden, B., Lee, R. F. H., Overgaard, J. & Sgrò, C. M. No patterns in thermal 
plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. J. Evol. 
Biol. 27, 2541–2553 (2014). 

42. Dobzhansky, T. & Spassky, B. Artificial and natural selection for two behavioral traits in 
Drosophila pseudoobscura. Proc. Natl. Acad. Sci. U. S. A. 62, 75–80 (1969). 

43. Izquierdo, J. I. How does Drosophila melanogaster overwinter? Entomol. Exp. Appl. 59, 51–
58 (1991). 

 


